RLPark 1.0.0
Reinforcement Learning Framework in Java
|
00001 package rlpark.plugin.critterbot.examples; 00002 00003 import rlpark.plugin.critterbot.actions.CritterbotAction; 00004 import rlpark.plugin.critterbot.actions.VoltageSpaceAction; 00005 import rlpark.plugin.critterbot.actions.XYThetaAction; 00006 import rlpark.plugin.critterbot.data.CritterbotLabels; 00007 import rlpark.plugin.critterbot.environment.CritterbotEnvironment; 00008 import rlpark.plugin.critterbot.environment.CritterbotSimulator; 00009 import rlpark.plugin.critterbot.environment.CritterbotSimulator.SimulatorCommand; 00010 import rlpark.plugin.rltoys.envio.observations.Legend; 00011 00012 public class CritterbotExample { 00013 public static void main(String[] args) { 00014 SimulatorCommand command = CritterbotSimulator.startSimulator(); 00015 CritterbotEnvironment environment = new CritterbotSimulator(command); 00016 Legend legend = environment.legend(); 00017 while (!environment.isClosed()) { 00018 double[] obs = environment.waitNewObs(); 00019 CritterbotAction action; 00020 if (obs[legend.indexOf(CritterbotLabels.IRDistance + "0")] > 128) 00021 action = new XYThetaAction(10, -10, 10); 00022 else 00023 action = new VoltageSpaceAction(10, -10, 10); 00024 environment.sendAction(action); 00025 } 00026 } 00027 }