Some perspectives in interactive Robotics

Vincent Padois, Associate Professor **RTE chair of Intervention Robotics**

Université Pierre et Marie Curie Institut des Systèmes Intelligents et de Robotique (UMR CNRS 7222)

イロト イボト イヨト イヨト

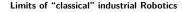
Introduction - A bit of context

Observation

- Robotics is absent from many domains of human activities (industry, service)
- \hookrightarrow Complexity of the activities and their related environments

A few industrial examples

- Construction, maintenance and dismantling of industrial products
- Flexible production lines, Construction and public works, production and transportation of energy, naval construction and aeronautics, off-shore activities...


??? →

イロト 不得 トイヨト イヨト

Introduction - A bit of context

- No versatility: pre-defined trajectories
- Intrinsically dangerous: high structural stiffness, high gear ratios and inertia, non back-drivability
- Perception capabilities ≈ 0

Caracteristics of the potentially new application fields of Robotics

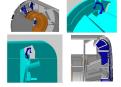
- Highly constrained and partially structured/known environments:
 - geometrically
 - mechanically
 - dynamically
- Multiple modes:
 - autonomous
 - teleoperated
 - collaborative
 - mixt
- Contacts are intrinsically present:
 - Under-actuated systems with non fixed base
 - Comanipulation
 - Task related mechanical actions applied to the environment

イロト イポト イヨト イヨト 二日

Introduction - A bit of context

What possibilities for the design of robots in this context ?

- Morphology and mechatronics properties
- Control laws
- Perception capabilities
- Control architectures


Design objectives ?

- Physical and cognitive ergonomy for the end users
- Safety wrt the environment
- Adaptation capabilities
- Performances
- $\rightarrow \text{Complex problems!}$

Scope of the presentation

Multi-tasks control under constraints

A few words about the automatic design of dedicated robotics architecture

A few words about learning and adaptation

イロト 不得 トイヨト イヨト

Multi-tasks control under constraints

Considered System

$$M(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{n}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \epsilon(\boldsymbol{q}, \dot{\boldsymbol{q}}, \dots) = J_c(\boldsymbol{q})^T \boldsymbol{\chi}, \qquad (1)$$

with $\boldsymbol{\chi} = \begin{bmatrix} \boldsymbol{w}_c^T \ \boldsymbol{\tau}^T \end{bmatrix}^T$:

• actuation torque ($oldsymbol{ au} \in \mathbb{R}^{n_a}$)

• external wrenches
$$(\boldsymbol{w}_{c} = \begin{bmatrix} \boldsymbol{w}_{c,1}^{T} & \dots & \boldsymbol{w}_{c,n_{c}}^{T} \end{bmatrix}^{T})$$

Constraints

- physics: (1)
- actuation limits (max torque and speed);
- obstacles (joint limits, environment);
- contact wrenches (existence conditions, magnitude...).

$$G(\boldsymbol{q}, \dot{\boldsymbol{q}})\boldsymbol{\chi} \leq \boldsymbol{h}(\boldsymbol{q}, \dot{\boldsymbol{q}}).$$
 (2)

◆ロト ◆御 ト ◆注 ト ◆注 ト ─ 注 …

Some prerequisites

- good knowledge of a realistic model of the system: modeling + identification + adaptation/learning
- perception and signal processing capabilities

Multi-tasks control under constraints

Task ?

- A function from the joint space to the operational space with characteristics:
 - a physical frame
 - a task parametrization $\boldsymbol{\xi}_i \in \mathbb{R}^{m_i}$
 - a forward model $\ddot{\boldsymbol{\xi}}_i = J_i(\boldsymbol{q})\ddot{\boldsymbol{q}} + \dot{J}_i(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}}$
 - ▶ a desired trajectory $\boldsymbol{\xi}_{i}^{\star}(t)$ obtained through
 - * Global planning
 - On-line min-jerk like planning
 - ★ Predictive control / Optimal control
 - * Motion primitives learned by demonstration (e.g. DMPs)
 - CPGs (!)
 - * ...
 - ► a local feedback controller (P(I)D with acceleration feedforward term)

$$\boldsymbol{\xi}_{i}^{a} = \boldsymbol{\xi}_{i}^{\star} + K_{p}\boldsymbol{e} + K_{d}\dot{\boldsymbol{e}}(+K_{i}\int \boldsymbol{e}dt)$$

a level of hierarchical importance α_i with respect to other tasks

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Multi-tasks control under constraints

Task ?

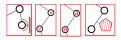
- A function from the joint space to the operational space with characteristics:
 - a physical frame
 - a task parametrization $\boldsymbol{\xi}_i \in \mathbb{R}^{m_i}$
 - a forward model $\ddot{\boldsymbol{\xi}}_i = J_i(\boldsymbol{q})\ddot{\boldsymbol{q}} + \dot{J}_i(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}}$
 - ▶ a desired trajectory \$\mathcal{\xi}_i^*(t)\$ obtained through
 - ★ Global planning
 - On-line min-jerk like planning
 - ★ Predictive control / Optimal control
 - * Motion primitives learned by demonstration (e.g. DMPs)
 - CPGs (!)
 - * ...
 - a local feedback controller (P(I)D with acceleration feedforward term)

$$\ddot{oldsymbol{\xi}}_{i}^{d}=\ddot{oldsymbol{\xi}}_{i}^{\star}+\mathcal{K}_{
ho}oldsymbol{e}+\mathcal{K}_{d}\dot{oldsymbol{e}}(+\mathcal{K}_{i}\intoldsymbol{e}dt)$$

a level of hierarchical importance α_i with respect to other tasks

\rightarrow Find τ at each control instant in order to maximize the task performance under constraints

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ


Multi-tasks control under constraints: the Telemach example

Objective: safe and reactive control law in a static environment

Reactive ?

- reactive \neq planned movie
- Operational objectives are set in real-time
- Teleoperation, exteroceptive sensor-based control,...

Safe ?

- Robot related: joint position, velocity and torque limit
- Environment related: no collision

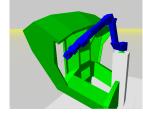
Guarantee the existence of a solution to the control problem $t ightarrow \infty$

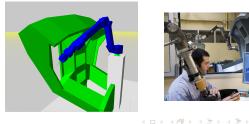
- Modify the constraints expression a priori
- Acceleration capabilities of the system in operational space (!)

イロト 不得 トイヨト イヨト

One Check on-line the existence of an escape trajectory

Multi-tasks control under constraints: the Telemach example

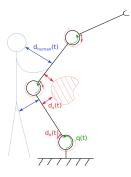

Constraints Compliant Control (CCC)

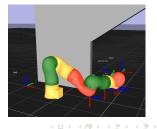

- 3-level hierarchical control law
 - Highest priority task: passive avoidance
 - Secondary task: task objective $\dot{\boldsymbol{\xi}}_{O} = J_{O}(\boldsymbol{q})\dot{\boldsymbol{q}}$
 - Smallest priority task: active avoidance
 - Tikhonov regularization of the Jacobian pseudoinverse
 - Heuristic iteration over the constraints to be avoided passively
- Hypothesis: constraints are compatible (a solution exists)

•
$$\dot{q} = J_c^+ 0 + (J_O P_{J_c})^+ \dot{\xi}_O^d + (J_{\bar{c}} P_{\begin{bmatrix} J_c \\ J_O \end{bmatrix}})^+ (\dot{\xi}_{\bar{c}}^d - J_{\bar{c}} (J_O P_{J_c})^+ \dot{\xi}_O^d$$

\hookrightarrow Under optimal LQP solution

Some results





Multi-tasks control under constraints: workspace sharing

Objective: safe and reactive control law in a human/robot workspace sharing context

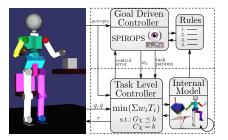
- \hookrightarrow Challenge 1 Dynamic performance vs User safety
- $\,\hookrightarrow\,$ Challenge 2 Intuitive and continuous mode switching
 - Energetic approach
 - \hookrightarrow Classical obstacle avoidance (no contact) + ...
 - $\,\hookrightarrow\,$... monitored robot energy contact
 - \hookrightarrow Considered energy for each segment: Σ_c (noo contact) + $\Sigma_{p,elastique}$ (contact)

Multi-tasks control under constraints: workspace sharing

Control law

$$\min_{\chi,\ddot{q}} \frac{1}{2} \left(\beta \| \ddot{\xi}^{d} - J \ddot{q} + \dot{J} \dot{q} \|^{2} + \delta \| E_{i/j} \|^{2} \right)$$
s.t. $M(q) \ddot{q} + n(q, \dot{q}) = J_{c}(q)^{T} \chi$
 $G(q, \dot{q}) \chi \leq h(q, \dot{q})$
 $E_{i/j} \leq E_{limite}^{j} (d, d_{safe}, E_{safe}, d_{max}, k)$

(a) Sans contrainte énergétique



・ロト ・部ト ・ヨト ・ヨト 三日

Multi-tasks control under constraints: complex activities

Objective: complex activities through combination and sequencing of elementary tasks

Limitations

- No strict hierarchies between tasks
- Reactive approach: no anticipation of disturbances related to task incompabilites at short term

Specificities

- Non strict task hierarchies (weighting strategy)
- Position, wrench or impedance takss
- Fuzzy decision making engine: tasks weights and activations
- Reactive approach but ...
- ... model predictive control to generate $\ddot{\boldsymbol{\xi}}^{d}_{CdG}$

イロト イポト イラト イラト

Task transition mechanism

Objective: Unique formalism to define both strict and soft tasks hierarchies and allowing to modify continously priority levels

Existing approaches

- ► Analytical → inequality constraints are problematic
- Numerical (through opitmization, QP type)
- In both case two paradigms: strict hierarchies (SoT) or soft hierarchies but no global approach

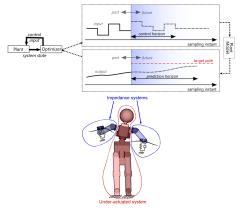
Soft hierarchies through weighting

$$\begin{cases} \min_{\substack{\mathbf{w}_{1},\mathbf{w}_{2},\dot{q} \\ s.t \\ w_{2} = \dot{x}_{2} - J_{2}\dot{q}}} \frac{\frac{1}{2}[k_{1}||\mathbf{w}_{1}||^{2} + k_{2}||\mathbf{w}_{2}||^{2} + \varepsilon ||\dot{q}||^{2}]}{k_{1} - \lambda_{1}\dot{q}} \end{cases}$$
(3)

Strict hierachies

$$\begin{cases} \min_{\substack{w_{1},\dot{q} \\ s.t. \\ s.t. \\ s.t. \\ w_{1} + J_{1}\dot{q} = \dot{x}_{1}} \end{cases} (4) \begin{cases} \min_{\substack{w_{2},\dot{q} \\ w_{2},\dot{q} \\ s.t. \\ \dot{x}_{1} - J_{1}\dot{q} \end{bmatrix} \leq w_{1}^{*}} \\ (4) \end{cases}$$

$$\begin{aligned} \underset{\ddot{\boldsymbol{q}}',\boldsymbol{\chi}}{\operatorname{arg\,min}} \quad & \sum_{i=1}^{n_t} \left\| \boldsymbol{f}_i \left(\ddot{\boldsymbol{q}}'_i, \ddot{\boldsymbol{\xi}}^d_i \right) \right\|^2 + \left\| \begin{bmatrix} \ddot{\boldsymbol{q}}' \\ \boldsymbol{\chi} \end{bmatrix} \right\|_{Q_r}^2 \\ \text{subject to} \\ & J_c(\boldsymbol{q})^T \boldsymbol{\chi} = M(\boldsymbol{q}) P \ddot{\boldsymbol{q}}' + \boldsymbol{n}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \\ & G(\boldsymbol{q}, \dot{\boldsymbol{q}}) \begin{pmatrix} P \ddot{\boldsymbol{q}}' \\ \boldsymbol{\chi} \end{pmatrix} \leq \boldsymbol{h}(\boldsymbol{q}, \dot{\boldsymbol{q}}), \end{aligned}$$
with $\ddot{\boldsymbol{q}}' = \begin{bmatrix} \ddot{\boldsymbol{q}}'_1 \\ \vdots \\ \ddot{\boldsymbol{q}}'_{n_t} \end{bmatrix}$ and $P = [P_1(\alpha_1) \dots P_{n_t}(\alpha_{n_t})].$


Specificites

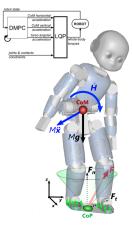
- Non lexicographic notion of what priority is (no global order)
- By default, projection of task *i* in the kernel of others
- Continuous modification of the projector onto the kernel associated to task *i*: *i* > *j* ↔ *j* > *i*

イロト イヨト イヨト

- Implicit task insertion/deletion mechanism
- Continuous control approach

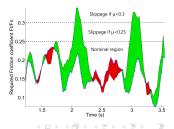
Objective: robustness of the solutions to the multi-tasks control under constraints problem

General principles


- Looking for an optimal control input horizon (sliding window)
- Use of a computationally inexpensive model of the system which dynamics has to be pre-visualized
- Locomotion: generation of reference trajectories for the center of mass position

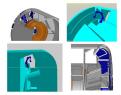
Specificities

- Extension of the existing ZMP models to consider external disturbances
- Optimal horizon of control gains for the manipulation tasks (impedance adaptation)


イロト イボト イヨト イヨト

Objective: robustness of the solutions to the multi-tasks control under constraints problem

Specificities


- Distributed approach
- Optimal trade-off between several contradictory objectives for the center of mass
- Minimization of the tipping-over risk and optimization of the friction conditions
- Optimal horizon of horizontal and vertical center of mass acceleration and torso angular acceleration

Scope of the presentation

Multi-tasks control under constraints

A few words about the automatic design of dedicated robotics architecture

A few words about learning and adaptation

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Objective: Optimization of the morphology of a manipulator evolving in an highly cluttered environment

Observation

- No intuitive solution
- Combinatorics is high
- Classical design method are not adapted
- \hookrightarrow MO optimization problem (MO)

How to solve it ? ... knowing that

- Iooking for an arrangement of bodies and joints
- Optimization criteria of very different nature / contradictory
- Evaluation of the solution wrt specific tasks ot be performed \rightarrow simulations
- The structure of the space of solutions is unknown (local minima ...)
- Large optimization problem

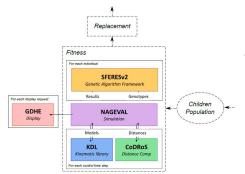
\hookrightarrow Stochastic optimization using MO evolutionary algorithms

イロト イヨト イヨト

How to represent a robot

- Genotype: each gene codes for a body and the following joint
- The value of the gene accounts for the type of joint and the length of the associated body

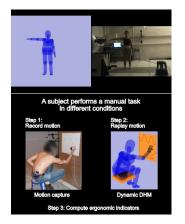
Optimization criteria


- \searrow complexity of the solution (nb. of DoFs, total length...)
- A tasks performances
- rgonomy

General principle of genetic algorithms

- Initial candidate robots population
- Evaluation of the population
- Selection of the individuals of the next generation: performance and diversity
- Genetic operations (mutation, crossing,...) on the population

Update of the population



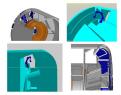
Telemach example

- NSGA2 algorithm in the Sferes *framework* (by S. Doncieux et JB. Mouret, ISIR)
- Kinematic evaluation of robots
- Trajectory tracking using of "typical" trajectories using the CCC

イロト イヨト イヨト

Objective: Definition of quantitative ergonomy and performance indicators for the design of a cobot

Approach


- Mocap and indicators synthesis
- Cobots architectures are evaluated through simulation

Scope of the presentation

Multi-tasks control under constraints

A few words about the automatic design of dedicated robotics architecture

A few words about learning and adaptation

イロト 不得 とう アイロト

A few words about learning and adaptation

Objective: learning and adaptation of the models and optimal policies required for the control of robots

Problem

- Infinity of possibilities of the world
- Need of adaptation in unknown contexts
- Computationally efficient and incremental acquisition of optimal motor abilities

Some on-going work

- Visuo-motor Jacobian incremental learning
- Socially guided exploration for learning in high dimension spaces
- Bridging the gap between optimal control and policy learning through reinforcement learning
- Learning globally stable controllers based on demonstrated trajectories

イロト イボト イヨト イヨト

 Context and objective based MPC parameters tuning through evolutionary exploration (with C. Santos, S. Doncieux and José Pontes)

Conclusions

Manipulation in constrained environment is a complex problem !

- It requires scientific contributions in several domains
 - design
 - control
 - learning and adaptation
 - ▶ ...
- From a control perspective, advanced model-based control algorithms exist in order to
 - combine tasks
 - under constraints
 - in an optimal fashion (MPC)
- ... but they require
 - realistic models of the robot and its environment: identification, learning and adaptation
 - perception capabilities

1

イロト 不得 トイヨト イヨト

Collaborations (academia and industry)

Chaire de Robotique d'Intervention RTE/UPMC - 2011-2016

Projet ANR TELEMACH - 2008-2010

Projet FUI ROMEO2 - 2013-2017

Projet TELEMACH, ROMEO2, Simulateur physique

Projet ANR Equipex robotex Réseau "Robotique Humanoïde et Interactions Naturelles"

Projet PESSOA – 2014 avec l'Université de Minho * O

Projet européen CODYCO - STREP FP7-ICT-2011.2.1 - 2013–2017 porté par l'Institut Italien de Technologie + University of Birmingham + TU Darmstadt + Institut Jožef Stefan + UPMC

Projet ANR MACSi - 2010–2013 porté par l'UPMC + INRIA Bordeaux + ENSTA + Gostai

イロト イポト イヨト イヨト 二日

ISIR People involved

P. Bidaud

A. Droniou

S. Hak

G. Hamon

A. Ibanez

M. Liu

P. Maurice

J. Pontes

S. Rubrecht

C. Salaün

J. Salini

A. Seeleuthner

・ロト ・御 ト ・注 ト ・ 注 ト

Y. Tan

References

- S. Rubrecht, V. Padois, P. Bidaud and M. de Broissia: Constraints Compliant Control: constraints compatibility and the displaced configuration approach. IROS 2010.
- S. Rubrecht, V. Padois, P. Bidaud and M. de Broissia: Constraint Compliant Control for a Redundant Manipulator in a Cluttered Environment. ARK 2010
- S. Rubrecht, V. Padois, P. Bidaud, M. de Broissia, and M. Da Silva Simoes: Motion safety and constraints compatibility for multibody robots. Autonomous Robots 2012.
- J. Salini, V. Padois and P. Bidaud: Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. ICRA 2011.
- J. Salini, V. Padois, P. Bidaud and A. Buendia: A Goal driven perspective to generate humanoid motion synthesis. CLAWAR 2011.
- J. Salini, S. Barthélemy, P. Bidaud and V. Padois: Whole-Body Motion Synthesis with LQP-based Controller - Application to iCub. Cognitive Systems Monographs: Modeling, Simulation and Optimization of Bipedal Walking, Springer Berlin Heidelberg, publisher. Vol 18 Pages 119-210, 2013.
- A. Ibanez, P. Bidaud and V. Padois: Unified preview control for humanoid postural stability and upper-limb interaction adaptation. IROS 2012.
- A. Ibanez, P. Bidaud and V. Padois: Previewed impedance adaptation to coordinate upper-limb trajectory tracking and postural balance in disturbed conditions. CLAWAR 2013.

- A. Ibanez, P. Bidaud and V. Padois: A Distributed Model Predictive Control approach for robust postural stability of a humanoid robot. ICRA2014.
- M. Liu, Y. Tan and V. Padois: Generalized Smooth Hierarchical Control. Submitted to IEEE Transactions on Robotics.
- S. Rubrecht, V. Padois and P. Bidaud: Evolutionary design of a robotic manipulator for a highly constrained environment. New Horizons in Evolutionary Robotics: extended contributions from the EvoDeRob workshop, volume 341 of Studies in Computational Intelligence, Springer, 2011.
- P. Maurice, Y. Measson, V. Padois and P. Bidaud: Assessment of Physical Exposure to Musculoskeletal Risks in Collaborative Robotics Using Dynamic Simulation. Romansy 2012.
- P. Maurice, Y. Measson, V. Padois and P. Bidaud: Experimental assessment of the quality of ergonomic indicators for collaborative robotics computed using a digital human model. Submited DHM 2014.
- O. Sigaud, C. Salaün and V. Padois: On-line regression algorithms for learning mechanical models of robots: a survey. Robotics and Autonomous Systems 2011.
- A. Droniou, S. Ivaldi, V. Padois and O. Sigaud: Autonomous Online Learning of Velocity Kinematics on the iCub: a Comparative Study. IROS 2012.
- S. Ivaldi, S.M. Nguyen, N. Lyubova, A. Droniou, V. Padois, D. Filliat, P.-Y. Oudeyer and O. Sigaud: *Object learning through active exploration*. IEEE Transactions on Autonomous Mental Development 2013.

Thank you for your attention. Questions ?

æ

・ロト ・御 ト ・ ヨト ・ ヨト