ICT'08 : The iCub and friends forum MACSi: Motor, Adaptive and Cognitive Scaffolding for iCub Project supported by the RobotCub OpenCall

Project coordinator : Olivier Sigaud (olivier.sigaud@upmc.fr) Contact at ICT'08 : **Vincent Padois** (vincent.padois@upmc.fr)

Université Pierre et Marie Curie Institut des Systèmes Intelligents et de Robotique (CNRS UMR 7222)

A D > <
A +
A >
A

通 ト イ ヨ ト イ ヨ ト

Scope of this presentation

1 A word about the partners of the project

2 Main goals of the MACSi Project

Oescription of the work packages

Partners

A word about the partners of the project: UPMC - ISIR

Université Pierre et Marie Curie (UPMC) - Paris

- A "Science" university
- 32000 students
- 10000 staff among which 5600 researchers
- 160 laboratories
- 3500 PhD candidates

Institut des Systèmes Intelligents et de Robotique (ISIR)

- A "young" CNRS research lab. (UMR 7222) born from the fusion of three different labs in jan. 2007: LIP6/AnimatLab, LRP, LISIF/PRC
- $\bullet~{\sim}100$ people among which 30 faculties
- Lab. director : Prof. Philippe Bidaud
- 3 research groups:
 - Interactive Systems: micro/nano-manipulation, surgical robotics
 - Mobile and autonomous Systems: bio-inspired robotics, mobile robotics, autonomous systems
 - Perception and Motion : Human and artificial perception, motion analysis, rehabilitation, humanoid robots control
 - 4 people directly involved in the MACSi project. Leader : Olivier Sigaud

Work packages

A word about the partners of the project

INRIA : Projet Flowers - Bordeaux

- Flowers : FLOWing Epigenetic Robots and Systems
- INRIA research team on developmental and social robotics
- A team of 5 people headed by : Pierre-Yves Oudeyer

ENSTA : The Cognitive Robotics Team - Paris

- A team of the Computer Science and Electronics Lab. at ENSTA
- A team of 3 people headed by: David Filliat

Gostai - Paris

- A company developping software for Robotics
- URBI: a universal Robotics software platform providing a scripting language with dedicated features to deal with parallelism, event-based programming and distributed objects.
- A team of ~10 people headed by: Jean-Christophe Baillie

ロ と く 同 と く ヨ と く 目 と

Main goals of the MACSi Project

Central target of MACSi

Build mechanisms allowing a robot to efficiently develop new basic sensorimotor skills through both:

- autonomous exploration
- social interaction with humans

in partially unknown environments.

Goal exeperiment

An experiment in which a robot will:

- progressively build perceptuo-motor abstractions and representations allowing him to differentiate its body from external objects;
- learn how to control its body to manipulate these surrounding objects;
- driven both by intrinsic motivation, i.e. artificial curiosity, and social guidance provided by a human partner.

< □ > < 同 > < 三 > < 三 >

Work packages

・ロト ・四ト ・ヨト ・ヨト

Dissemination

Overview of the MACSi project

Description of the work packages : 1 - perception workpackage

Perception work package: Elaborating objects through the organization of perceptual spaces into proto-objects

> Workpackage main investigator: ENSTA

> Main steps:

- Tagged objects localization in the Cartesian world coordinates and social cues recognition software implementation in Urbi for iCub;
- Proto-object model and software implementation of this model;
- "Human" category discovery;
- "Self" category discovery;
- "Manipulable object" category discovery;
- Final object category learning capacity including all objects type implemented in Urbi for iCub.

Description of the work packages : 2 - motor learning workpackage

Motor learning work package: Learning motor control and motor representations driven by intrinsic motivations and social guidance

> Workpackage main investigator: ISIR

> Main steps:

- Basic 3D reaching skill implemented in an Urbi package for iCub;
- Learned 3D reaching skill implemented in an Urbi package for iCub;
- Learned motor models of interaction with objects, identification of the domain of unusual effects;
- Motor skills with task specified in the visual frame of reference implemented in an Urbi package for iCub;
- Comparison between motor skills realised with task specified in the visual frame of reference and task specified in the external world Cartesian frame of reference.

イロン 不得 とくき とくき とうき

Description of the work packages : 3 - exploration guidance

Exploration guidance work package: Heuristics for guiding exploration - Intrinsic Motivation and Social Incentives

- > Workpackage main investigator: INRIA
- > Main steps:
 - Algorithm and software for a bottom-up region growing version of the IAC exploration heuristics that scales in high-dimensions;
 - Algorithm and software for competence-based intrinsic motivation system;
 - Systematic comparison in simulation and on the real iCub of the two intrinsic motivation systems;
 - Algorithm and software for coupling a new variant of IAC and social cheering, allowing to guide the exploration and collection of learning example for the sensorimotor learning algorithms of WP 2;
 - Algorithm and software for coupling intrinsic motivation with social cheering and stimulus enhancement, usable for the final demonstration of the iCub.

(日)

Description of the work packages : 4 - Integration

 $\mathsf{Exploration}$ guidance work package: Global architecture design, software integration and demonstrations

- > Workpackage main investigator: Gostai
- > Main steps:
 - Detailed specification of the project architecture in terms of representations and interfaces between task-related components;
 - Urbi server for iCub. Development kit for Urbi modules;
 - Basic YARP modules integrated as UObjects;
 - Urbi platform for iCub ported on the simulator reliably providing equivalent behaviour;
 - Demonstration of separate components corresponding to the first software deliverables of WP 1, 2 and 3;
 - Intermediate and final demonstrations of integrated architecture incrementally including all advanced versions of components based on learning + videos.

Dissemination and communication

Outcome of the project

- Creation of a web site. Progress can also been followed at : http://eris.liralab.it/wiki/UPMC_iCub_project;
- Urbi for iCub software package made available online;
- All Open Source code made available with user manuals on the web site;
- Movies of the experimental demonstrations made available online.

イロン イ団 と イヨン イヨン

э

Thank you for your attention.

