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Origins of the MACSi project

From the industrial to the service Robotics context . ..
@ Programming in advance the behaviour of a robot — not viable
— Endow robots with some learning capabilities
@ Learning multiple tasks, multiple contexts — oo of representations

@ Designing all such representations by hand — impossible

Need for learning mechanisms able to build increasingly complex
problem-specific representations as well as their solution from
initially unstructured sensori-motor experiences.
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Build mechanisms allowing a robot:

@ to efficiently develop new basic sensorimotor skills

@ in partially unknown environments
through both:

@ autonomous exploration

@ social interaction with humans.
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Main goals of the MACSi Project

Central target of MACSi

Build mechanisms allowing a robot:
@ to efficiently develop new basic sensorimotor skills
@ in partially unknown environments

through both:
@ autonomous exploration

@ social interaction with humans.

Goal experiment

An experiment in which iCub will:

@ progressively build perceptuo-motor
abstractions and representations allowing
iCub to differentiate its body from external
objects;

@ learn how to control its body to
manipulate these surrounding objects;

@ driven both by intrinsic motivation, i.e.

artificial curiosity, and social guidance
provided by a human partner.
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Overview of the MACSi project
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’% In this presentation, focus is put on some of the work related to Task 2. ‘
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Which ones ?
@ Of the robot itself;

@ Of its environment.
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Models

Which ones ?
@ Of the robot itself;

@ Of its environment.

At which level ?

@ Robot:
@ 3D geometry;
@ actuators dynamics;
@ joint space to task space direct and inverse mappings
kinematics, dynamics;

@ Environment:

@ 3D geometry;
@ Interaction dynamics;
@ Behavioural.

: kinematics, velocity



Models

Which ones ?
@ Of the robot itself;

@ Of its environment.

At which level ?

@ Robot:
@ 3D geometry;
@ actuators dynamics;
@ joint space to task space direct and inverse mappings
kinematics, dynamics;
@ Environment:

@ 3D geometry;
@ Interaction dynamics;
@ Behavioural.

What for ?
@ Tasks realization (control);
@ Constraints satisfactions;

@ Future states prediction.

: kinematics, velocity



Control: the velocity level task space loop closing example
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Planning: simplest implementation
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Planning: simplest implementation
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&: task space position
£*: desired task space position

v*: desired task space velocity

Goal attractor:  v* = K, (£* =€)



Inverse velocity kinematics
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q: articular position
v: task space velocity

g: articular velocity

Velocity Kinematics:

v=1J(q)q

8/1



Inverse velocity kinematics
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q: articular position
v: task space velocity

g: articular velocity

Inverse Velocity Kinematics:
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Inverse velocity kinematics

Inverse
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q: articular position
v: task space velocity

g: articular velocity

Inverse Velocity Kinematics:

g* = IVK (q,v*)
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Control redundancy

g =J(q) v g = h(a) vi+(%(a)Py)Trs
with J* = J5(UJ) " and Py = (1 — JTJ)

@ redundancy (short def.): “more actuated degrees of freedom than those
necessary to realise a task”

@ P, is a projector onto the kernel of the Jacobian matrix J
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Inverse Dynamics
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Inverse Dynamics
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Inverse Dynamics

& q d[ q| El
[: torques
. . . o
M: inertia matrix
b: Coriolis and centrifugal effects 'y
g: gravity s
€: unmodeled effects T,

et external forces

Inverse dynamics:

Fr=M(q)g"+b(q,9)+g(q)+e(q,q) — T
r=1D(q,9,q%)
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Identification

— The control scheme presented here is an example of state-of-the-art result but requires a

knowledge of the involved models.

TARGET
Mesure
operational
positions

Forward kinematics,

Mesure angular
positions

.-
‘ VISION
X

; - I Mesure reference frame

BASE

Classical parametric identification:
+ least-squares minimization problem;
+ tuning of a parametered model;
+ suitable and robust for rigid-body systems;
- impossible to learn a non-modelized part;

- not suitable if the model structure evolves.
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Model learning

Why learning models for Robotics (from a roboticist point of view) ?
@ Parametric identification approaches have limitations;

@ Some phenomenon are hard to model and identify: friction, local
mechanical compliance, etc.;

@ Robots may, in the coming years, switch from rigid-body systems to
structurally compliant systems;

@ The models of the robot itself may be known but this is not true for
its environment.
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Model learning

Why learning models for Robotics (from a roboticist point of view) ?
@ Parametric identification approaches have limitations;

@ Some phenomenon are hard to model and identify: friction, local
mechanical compliance, etc.;

@ Robots may, in the coming years, switch from rigid-body systems to
structurally compliant systems;

@ The models of the robot itself may be known but this is not true for
its environment.

Does it work ?
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Learning inverse velocity kinematics
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@ D’'Souza et al. (1) learn the
inverse velocity kinematics
model

Analytical — Oniine Learning

@ The model is learned along an
task space trajectory

@ Input dimension:
dim(xi + q) =29

@ Output dimension:
dim(g) = 26
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Learning inverse dynamics
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@ Schaal et al. (2) learn the
inverse dynamics model

@ The model is learned along an
task space trajectory

@ Input dimension:
dim(g+ ¢+ §) =90

@ Output dimension:
dim(I') = 30
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Learning inverse task space dynamics
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@ The model is learned along an
task space trajectory.

@ Input dimension: 747+43=17.
Output dimension: 7.
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Optimal control with dynamics learned with LWPR

cost function
(incl. target)
learned

dynamics model

@ Mitrovic et al. (4) learn inverse dynamics.

@ The model is learned in the whole space.

@ Input dimension:dim(q+ g + u) =10 .
Output dimension: dim(g) = 2.

@ 1,2.10° training data points and 852 receptive
fields

perturbations

Shoulder

16 /1



Linear functions approximation:

Least Squares, Recursive Least Squares and Partial Least Squares
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How does it work ?

Linear functions approximation:

Least Squares, Recursive Least Squares and Partial Least Squares
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Least Squares

@ Least Squares: Not incremental, need to save data and run a batch identification
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How does it work ?

Nonlinear functions approximations using nonlinear elementary functions:

Radial Basis Function Networks
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How does it work ?

Nonlinear functions approximation using linear elementary functions:

Locally Weighted Regression
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How does it work ?

Nonlinear functions approximation using linear elementary functions:

Locally Weighted Regression

[e]

T

1
@ ¢ = e 20k NTX) \yhere k € [1 g] span the number of saved points
@ B=X""Y where X =[x1---x], Y =[y1--yg] and & = [¢1 - - - ¢g]-
@ y =[x
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

@ Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information

o LWPR is based on Locally Weighted Regression and Partial Least
Squares
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

@ Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information

o LWPR is based on Locally Weighted Regression and Partial Least
Squares
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

@ Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information

o LWPR is based on Locally Weighted Regression and Partial Least

Squares
5
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

@ Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information

o LWPR is based on Locally Weighted Regression and Partial Least

Squares
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

@ Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information

o LWPR is based on Locally Weighted Regression and Partial Least

Squares
5
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LWPR supply the derivative of the learnt model (5)
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Our approach
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Our claim: At the velocity level, one should rather learn forward
mappings ((8)) for each task because ...
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Our claim: At the velocity level, one should rather learn forward
mappings ((8)) for each task because ...
@ ... directly learning inverse mappings leads to a loss of information
about the redundant nature of the system;
@ ... a priori task combination requires to (re)learn everything again
when modifying the task combination.
So, to control redundancy, we have chosen to:
@ learn separately velocity kinematics and dynamics models;
@ learn models on the whole state space;
@ learn forward velocity kinematics and invert it analytically. 21 /1



Figure: Point to point task with limited joint space babbling: 2000 samples.
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2 seconds)

Figure: Point to point task with adaptation to an unknown external force (after
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Learning velocity kinematics on the real robot

meters.
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@ Combination of model-based control techniques and incremental
learning algorithms.
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@ Combination of model-based control techniques and incremental
learning algorithms.

@ From the simulated world to iCub.
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Summary

@ Combination of model-based control techniques and incremental
learning algorithms.

@ From the simulated world to iCub.

@ Dynamics control and learning requires torque control.
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looking for the next iCub technological improvements.

Clercq, C. and Salaun, C. and Padois, V. and Sigaud, O. (2010). On the Limitations of a Model Learning Approach for a velocity
Controlled Humanoid Robot. Submitted to IEEE RAM.

Salaun, C. and Padois, V. and Sigaud, O. (2010). Learning Forward Models for the Operational Space Control of Redundant
Robots. From motor to interaction learning in robots Springer, publisher. Pages 169-192.

Salaun, C. and Padois, V. and Sigaud, O. (2009). A Two-Level Model of Anticipation-Based Motor Learning for Whole Body
Motion. LNAI 5499: Anticipatory Behavior in Adaptive Learning Systems: From Psychological Theories to Artificial Cognitive
Systems Springer, publisher. Pages 229-246.

Salaun, C. and Padois, V. and Sigaud, O. (2009). Control of Redundant Robots Using Learned Models: An Operational Space
Control Approach. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Pages 878-885.
Saint-Louis, USA.

26/ 1



Perspectives

Close the loop at the vision level and combine proprioceptive and
exteroceptive state estimation.
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Perspectives

Solve the exloration problem.
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@ Close the loop at a higher level,

@ Combine artificial curiosity and human guidance.
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Thank you for your attention.
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