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Origins of the MACSi project

From the industrial to the service Robotics context . . .

Programming in advance the behaviour of a robot → not viable
↪→ Endow robots with some learning capabilities

Learning multiple tasks, multiple contexts → ∞ of representations
Designing all such representations by hand → impossible

Need for learning mechanisms able to build increasingly complex
problem-specific representations as well as their solution from
initially unstructured sensori-motor experiences.
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Main goals of the MACSi Project

Central target of MACSi

Build mechanisms allowing a robot:
to efficiently develop new basic sensorimotor skills
in partially unknown environments

through both:
autonomous exploration
social interaction with humans.

Goal experiment

An experiment in which iCub will:
progressively build perceptuo-motor
abstractions and representations allowing
iCub to differentiate its body from external
objects;
learn how to control its body to
manipulate these surrounding objects;
driven both by intrinsic motivation, i.e.
artificial curiosity, and social guidance
provided by a human partner.
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Overview of the MACSi project

→ In this presentation, focus is put on some of the work related to Task 2.
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Models

Which ones ?
Of the robot itself;
Of its environment.

At which level ?
Robot:

3D geometry;
actuators dynamics;
joint space to task space direct and inverse mappings: kinematics, velocity
kinematics, dynamics;

Environment:
3D geometry;
Interaction dynamics;
Behavioural.

What for ?
Tasks realization (control);
Constraints satisfactions;
Future states prediction.
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Control: the velocity level task space loop closing example

Planning Inverse
Kinematics

Inverse
Dynamics

6 / 1



Planning: simplest implementation

Planning Inverse
Kinematics

Inverse
Dynamics

ξ: task space position
ξ?: desired task space position
ν?: desired task space velocity

Goal attractor: ν? = Kp (ξ? − ξ)
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Inverse velocity kinematics

Inverse
Kinematics

Inverse
Dynamics

q: articular position
ν: task space velocity
q̇: articular velocity

Velocity Kinematics: ν = J (q) q̇
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Inverse velocity kinematics

Inverse
Dynamics

q: articular position
ν: task space velocity
q̇: articular velocity

Inverse Velocity Kinematics: q̇? = IVK (q, ν?)
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Control redundancy

q̇? = J (q)+
ν? q̇? = J1 (q)+

ν?1 + (J2 (q) PJ1)+ν?2
with J+ = J t(JJ t)−1 and PJ = (I − J+J)

redundancy (short def.): “more actuated degrees of freedom than those
necessary to realise a task”
PJ is a projector onto the kernel of the Jacobian matrix J
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Inverse Dynamics

Inverse
Dynamics

Γ: torques
M: inertia matrix
b: Coriolis and centrifugal effects
g : gravity
ε: unmodeled effects
Γext : external forces

Forward dynamics:

q̈ = M−1 (Γ− b (q, q̇)− g (q)− ε (q, q̇) + Γext)

Γ = ID (q, q̇, q̈?)
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Identification

→ The control scheme presented here is an example of state-of-the-art result but requires a
knowledge of the involved models.

Forward kinematics
+

Mesure angular 
positions

Mesure reference frame

Mesure 
operational 
positions

BASE

TARGET

VISION

Classical parametric identification:
+ least-squares minimization problem;
+ tuning of a parametered model;
+ suitable and robust for rigid-body systems;
- impossible to learn a non-modelized part;
- not suitable if the model structure evolves.
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Model learning

Why learning models for Robotics (from a roboticist point of view) ?
Parametric identification approaches have limitations;
Some phenomenon are hard to model and identify: friction, local
mechanical compliance, etc.;
Robots may, in the coming years, switch from rigid-body systems to
structurally compliant systems;
The models of the robot itself may be known but this is not true for
its environment.

Does it work ?
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Learning inverse velocity kinematics

D’Souza et al. (1) learn the
inverse velocity kinematics
model
The model is learned along an
task space trajectory
Input dimension:
dim(xi + q) = 29
Output dimension:
dim(q̇) = 26
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Analytical Online Learning
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Learning inverse dynamics

Schaal et al. (2) learn the
inverse dynamics model
The model is learned along an
task space trajectory
Input dimension:
dim(q + q̇ + q̈) = 90
Output dimension:
dim(Γ) = 30
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Learning inverse task space dynamics

learn

Peters and Schaal (3) learn
inverse dynamics in the task
space space.
The model is learned along an
task space trajectory.
Input dimension: 7+7+3=17.
Output dimension: 7.
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Optimal control with dynamics learned with LWPR

iLQG u plantlearned
dynamics model

+

feedback
controller

x, dx

L, x

u

u

perturbationsxcost function
(incl. target)

δ

-

- u +-
uδ

Mitrovic et al. (4) learn inverse dynamics.
The model is learned in the whole space.
Input dimension:dim(q + q̇ + u) = 10 .
Output dimension: dim(q̈) = 2.
1, 2.106 training data points and 852 receptive
fields

Shoulder

Elbow

x

y

q
1

q
2

1

2

3

4

5

6

16 / 1



How does it work ?

Linear functions approximation:

Least Squares, Recursive Least Squares and Partial Least Squares

Least Squares Recursive Least Squares Partial Least Squares

Least Squares: Not incremental, need to save data and run a batch identification
Recursive Least Squares: Incremental but diverges with linearly dependent inputs
Partial Least Squares: Projections to focus on relevant inputs
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How does it work ?

Nonlinear functions approximations using nonlinear elementary functions:

Radial Basis Function Networks

−5 0 5 10 15
−3

−2

−1

0

1
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3

4

5

ŷ(x) =
N∑
i=1

wie−βi‖x−ci‖
2
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ŷ(x) =
N∑
i=1

wie−βi‖x−ci‖
2

18 / 1



How does it work ?

Nonlinear functions approximations using nonlinear elementary functions:

Radial Basis Function Networks

−5 0 5 10 15
−3

−2

−1

0

1

2

3

4

5
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How does it work ?

Nonlinear functions approximation using linear elementary functions:

Locally Weighted Regression

φk = e− 1
2 (xk−x)σ(xk−x) where k ∈ [1 q] span the number of saved points

β = XΦ+Y where X = [x1 · · · xq ], Y = [y1 · · · yq ] and Φ = [φ1 · · ·φq ].
ŷ = βx
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Locally Weighted Projection Regression: Definition [(6), (1), (7)]

Incremental algorithm which approximates non-linear functions with
huge input space taking into account only relevant information
LWPR is based on Locally Weighted Regression and Partial Least
Squares

φi = e− 1
2 (x−ci )Di (x−ci )

yi = βix

ŷ =

∑N
i=1

φi yi∑N
i=1

φi

LWPR supply the derivative of the learnt model (5).

∂ŷ
∂x

=
1
Φ

N∑
i=1

(
∂φi

∂x
yi + φi

∂yi
∂x

)
−

1
Φ2

N∑
i=1

φiyi

N∑
k=1

∂φk

∂x
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Our approach

Our claim: At the velocity level, one should rather learn forward
mappings ((8)) for each task because ...

... directly learning inverse mappings leads to a loss of information
about the redundant nature of the system;
... a priori task combination requires to (re)learn everything again
when modifying the task combination.

So, to control redundancy, we have chosen to:
learn separately velocity kinematics and dynamics models;
learn models on the whole state space;
learn forward velocity kinematics and invert it analytically.
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Learning the velocity kinematics mapping with LWPR

Figure: Point to point task with limited joint space babbling: 2000 samples.
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Controlling redundancy with LWPR

compatible task incompatible task normalized task space error
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Inverse dynamics and motor adaptation

Figure: Point to point task with adaptation to an unknown external force (after
2 seconds)
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Learning velocity kinematics on the real robot
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Summary

Combination of model-based control techniques and incremental
learning algorithms.
From the simulated world to iCub.
Dynamics control and learning requires torque control.

↪→ looking for the next iCub technological improvements.
? Clercq, C. and Salaun, C. and Padois, V. and Sigaud, O. (2010). On the Limitations of a Model Learning Approach for a velocity

Controlled Humanoid Robot. Submitted to IEEE RAM.

? Salaun, C. and Padois, V. and Sigaud, O. (2010). Learning Forward Models for the Operational Space Control of Redundant
Robots. From motor to interaction learning in robots Springer, publisher. Pages 169-192.

? Salaun, C. and Padois, V. and Sigaud, O. (2009). A Two-Level Model of Anticipation-Based Motor Learning for Whole Body
Motion. LNAI 5499: Anticipatory Behavior in Adaptive Learning Systems: From Psychological Theories to Artificial Cognitive
Systems Springer, publisher. Pages 229–246.

? Salaun, C. and Padois, V. and Sigaud, O. (2009). Control of Redundant Robots Using Learned Models: An Operational Space
Control Approach. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Pages 878–885.
Saint-Louis, USA.
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Perspectives

Close the loop at the vision level and combine proprioceptive and
exteroceptive state estimation.

Vision

+
-

Locate end-effectors;
Differentiate objects, humans, the robot limbs;
Multi-sensors state estimation.
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Perspectives

Solve the exloration problem.

Planning
Artificial
curiosity

Close the loop at a higher level;
Combine artificial curiosity and human guidance.

28 / 1



Acknowledgments

RobotCub for:
providing us with a great robot;
allowing both national and international scientific collaboration;
constant technical support.

My colleagues and students working on this project:
Olivier Sigaud;
Pierre-Yves Oudeyer & Olivier Ly (INRIA Flowers);
David Filliat (ENSTA);
Jean-Christophe Bailli (Gostai);
Camille Salaün (PhD student);
Charles Clercq (former CS Master Student, now at IIT);
Guillaume Sicard (CS Master student);
Pierre Griffault, Kevin Hoang and Abhishek Agarwal (former interns).

29 / 1



Thank you for your attention.
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