Motor, Affective and Cognitive Scaffolding for iCub (MACSi)

Project supported by the RobotCub Open Call

Presented at the iCub Workshop

January 18, 2010 / Sestri Levante - Italy

Camille Salaün, Charles Clercq, **Vincent Padois** and Olivier Sigaud vincent.padois@upmc.fr

> Université Pierre et Marie Curie Institut des Systèmes Intelligents et de Robotique (CNRS UMR 7222)

(日) (종) (종) (종)

200

From the industrial to the service Robotics context

 $\bullet\,$ Programming in advance the behaviour of a robot $\rightarrow\,$ not viable

- $\bullet\,$ Programming in advance the behaviour of a robot $\rightarrow\,$ not viable
- $\,\hookrightarrow\,$ Endow robots with some learning capabilities

- $\bullet\,$ Programming in advance the behaviour of a robot $\rightarrow\,$ not viable
- $\,\hookrightarrow\,$ Endow robots with some learning capabilities
 - \bullet Learning multiple tasks, multiple contexts $\rightarrow \infty$ of representations

- $\bullet\,$ Programming in advance the behaviour of a robot $\rightarrow\,$ not viable
- $\,\hookrightarrow\,$ Endow robots with some learning capabilities
 - $\bullet\,$ Learning multiple tasks, multiple contexts $\to\infty\,$ of representations
 - \bullet Designing all such representations by hand \rightarrow impossible

From the industrial to the service Robotics context

- $\bullet\,$ Programming in advance the behaviour of a robot $\rightarrow\,$ not viable
- $\,\hookrightarrow\,$ Endow robots with some learning capabilities
 - $\bullet\,$ Learning multiple tasks, multiple contexts $\to\infty\,$ of representations
 - \bullet Designing all such representations by hand \rightarrow impossible

Need for learning mechanisms able to build increasingly complex problem-specific representations as well as their solution from initially unstructured sensori-motor experiences represented a repre

Main goals of the MACSi Project

Central target of MACSi

Build mechanisms allowing a robot:

• to efficiently develop new basic sensorimotor skills

イロト 不良 トイヨト 不良 トーヨ

୬ ଏ (୦ 3 / 1

in partially unknown environments

through both:

- autonomous exploration
- social interaction with humans.

Main goals of the MACSi Project

Central target of MACSi

Build mechanisms allowing a robot:

- to efficiently develop new basic sensorimotor skills
- in partially unknown environments

through both:

- autonomous exploration
- social interaction with humans.

Goal experiment

An experiment in which iCub will:

- progressively build perceptuo-motor abstractions and representations allowing iCub to differentiate its body from external objects;
- learn how to control its body to manipulate these surrounding objects;
- driven both by intrinsic motivation, i.e. artificial curiosity, and social guidance provided by a human partner.

イロト イヨト イヨト イヨト

3

Overview of the MACSi project

Overview of the MACSi project

 \rightarrow In this presentation, focus is put on some of the work related to Task 2.

Which ones ?

- Of the robot itself;
- Of its environment.

5/1

Which ones ?

- Of the robot itself;
- Of its environment.

At which level ?

- Robot:
 - 3D geometry;
 - actuators dynamics;
 - joint space to task space direct and inverse mappings: kinematics, velocity kinematics, dynamics;

5/1

- Environment:
 - 3D geometry;
 - Interaction dynamics;
 - Behavioural.

Which ones ?

- Of the robot itself;
- Of its environment.

At which level ?

- Robot:
 - 3D geometry;
 - actuators dynamics;
 - joint space to task space direct and inverse mappings: kinematics, velocity kinematics, dynamics;

Environment:

- 3D geometry;
- Interaction dynamics;
- Behavioural.

What for ?

- Tasks realization (control);
- Constraints satisfactions;
- Future states prediction.

Control: the velocity level task space loop closing example

Planning: simplest implementation

- ξ : task space position
- ξ^* : desired task space position
- $\nu^\star\colon$ desired task space velocity

< □ > < 団 > < 豆 > < 豆 > < 豆 > 三 の Q (~ 7 / 1

Planning: simplest implementation

Goal attractor: $\nu^{\star} = K_{p} \left(\xi^{\star} - \xi \right)$

- q: articular position
- ν : task space velocity
- q: articular velocity

Velocity Kinematics: $\nu = J(q)\dot{q}$

- q: articular position
- ν : task space velocity
- q: articular velocity

Inverse Velocity Kinematics:

 $\dot{q}^{\star} = J(q)^{+} \nu^{\star}$

- q: articular position
- ν : task space velocity
- q: articular velocity

Inverse Velocity Kinematics:

 $\dot{q}^{\star} = IVK(q,\nu^{\star})$

Control redundancy

- $\dot{q}^{\star} = J(q)^{+} \nu^{\star}$ $\dot{q}^{\star} = J_{1}(q)^{+} \nu_{1}^{\star} + (J_{2}(q)P_{J_{1}})^{+} \nu_{2}^{\star}$ with $J^{+} = J^{t}(JJ^{t})^{-1}$ and $P_{J} = (I - J^{+}J)$
- redundancy (short def.): "more actuated degrees of freedom than those necessary to realise a task"
- P_J is a projector onto the kernel of the Jacobian matrix J

Γ : torques

- M: inertia matrix
- b: Coriolis and centrifugal effects
- g: gravity
- $\epsilon :$ unmodeled effects
- Γ^{ext} : external forces

Forward dynamics:

$$\ddot{q}=M^{-1}\left(\Gamma-b\left(q,\dot{q}
ight)-g\left(q
ight)-\epsilon\left(q,\dot{q}
ight)+\Gamma^{\mathrm{ext}}
ight)$$

Γ : torques

- M: inertia matrix
- b: Coriolis and centrifugal effects
- g: gravity
- $\epsilon :$ unmodeled effects
- Γ^{ext} : external forces

Inverse dynamics:

$$\Gamma = M(q) \ddot{q}^{\star} + b(q, \dot{q}) + g(q) + \epsilon(q, \dot{q}) - \Gamma^{ext}$$

Γ : torques

- M: inertia matrix
- b: Coriolis and centrifugal effects
- g: gravity
- $\epsilon :$ unmodeled effects
- Γ^{ext} : external forces

Inverse dynamics:

$$\Gamma = M(q) \ddot{q}^{\star} + b(q, \dot{q}) + g(q) + \epsilon(q, \dot{q}) - \Gamma^{\text{ext}} \\ \Gamma = \frac{ID}{(q, \dot{q}, \ddot{q}^{\star})}$$

Identification

 \rightarrow The control scheme presented here is an example of state-of-the-art result but requires a knowledge of the involved models.

Classical parametric identification:

- + least-squares minimization problem;
- + tuning of a parametered model;
- + suitable and robust for rigid-body systems;
- impossible to learn a non-modelized part;
- not suitable if the model structure evolves.

Why learning models for Robotics (from a roboticist point of view) ?

- Parametric identification approaches have limitations;
- Some phenomenon are hard to model and identify: friction, local mechanical compliance, etc.;
- Robots may, in the coming years, switch from rigid-body systems to structurally compliant systems;
- The models of the robot itself may be known but this is not true for its environment.

Why learning models for Robotics (from a roboticist point of view) ?

- Parametric identification approaches have limitations;
- Some phenomenon are hard to model and identify: friction, local mechanical compliance, etc.;
- Robots may, in the coming years, switch from rigid-body systems to structurally compliant systems;
- The models of the robot itself may be known but this is not true for its environment.

Does it work ?

イロト イロト イヨト イヨト 二日

Learning inverse velocity kinematics

- D'Souza et al. (1) learn the inverse velocity kinematics model
- The model is learned along an task space trajectory
- Input dimension: dim(xi + q) = 29
- Output dimension: $dim(\dot{q}) = 26$

イロト イヨト イヨト イヨト

Э

Learning inverse dynamics

- Schaal et al. (2) learn the inverse dynamics model
- The model is learned along an task space trajectory
- Input dimension: $dim(q + \dot{q} + \ddot{q}) = 90$
- Output dimension: $dim(\Gamma) = 30$

イロト イヨト イヨト

Learning inverse task space dynamics

- Peters and Schaal (3) learn inverse dynamics in the task space space.
- The model is learned along an task space trajectory.
- Input dimension: 7+7+3=17. Output dimension: 7.

イロト イヨト イヨト イヨト

Э

Optimal control with dynamics learned with LWPR

- Mitrovic et al. (4) learn inverse dynamics.
- The model is learned in the whole space.
- Input dimension: $dim(q + \dot{q} + u) = 10$. Output dimension: $dim(\ddot{q}) = 2$.
- 1,2.10⁶ training data points and 852 receptive fields

イロト イヨト イヨト

Least Squares, Recursive Least Squares and Partial Least Squares

Least Squares, Recursive Least Squares and Partial Least Squares

Least Squares

• Least Squares: Not incremental, need to save data and run a batch identification

Least Squares, Recursive Least Squares and Partial Least Squares

Least Squares

• Least Squares: Not incremental, need to save data and run a batch identification

Least Squares, Recursive Least Squares and Partial Least Squares

Least Squares

• Least Squares: Not incremental, need to save data and run a batch identification
Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs
- Partial Least Squares: Projections to focus on relevant inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs
- Partial Least Squares: Projections to focus on relevant inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs
- Partial Least Squares: Projections to focus on relevant inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs
- Partial Least Squares: Projections to focus on relevant inputs

Least Squares, Recursive Least Squares and Partial Least Squares

- Least Squares: Not incremental, need to save data and run a batch identification
- Recursive Least Squares: Incremental but diverges with linearly dependent inputs
- Partial Least Squares: Projections to focus on relevant inputs

Radial Basis Function Networks

Radial Basis Function Networks

Radial Basis Function Networks

Radial Basis Function Networks

$$\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$$

< □ > < 団 > < 臣 > < 臣 > < 臣 > 三 のへで 18 / 1

Radial Basis Function Networks

$$\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$$

< □ > < 団 > < 臣 > < 臣 > < 臣 > 三 のへで 18 / 1

Radial Basis Function Networks

$$\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 18 / 1

Radial Basis Function Networks

$$\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 18 / 1

Radial Basis Function Networks

 $\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$

Radial Basis Function Networks

 $\hat{y}(x) = \sum_{i=1}^{N} w_i e^{-\beta_i ||x-c_i||^2}$

Locally Weighted Regression

• $\phi_k = e^{-\frac{1}{2}(x_k - x)\sigma(x_k - x)}$ where $k \in [1 \ q]$ span the number of saved points

Locally Weighted Regression

• $\phi_k = e^{-\frac{1}{2}(x_k - x)\sigma(x_k - x)}$ where $k \in [1 \ q]$ span the number of saved points • $\beta = X^{\Phi+}Y$ where $X = [x_1 \cdots x_q], Y = [y_1 \cdots y_q]$ and $\Phi = [\phi_1 \cdots \phi_q].$

> <ロ > < 回 > < 巨 > < 巨 > < 巨 > 巨 の Q () 19 / 1

Locally Weighted Regression

• $\phi_k = e^{-\frac{1}{2}(x_k - x)\sigma(x_k - x)}$ where $k \in [1 \ q]$ span the number of saved points • $\beta = X^{\Phi+}Y$ where $X = [x_1 \cdots x_q], Y = [y_1 \cdots y_q]$ and $\Phi = [\phi_1 \cdots \phi_q].$ • $\hat{y} = \beta x$

< □ > < 部 > < 言 > < 言 > 三 の < ⊙ 20 / 1

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

•
$$\phi_i = e^{-\frac{1}{2}(x-c_i)D_i(x-c_i)}$$

イロト イヨト イヨト イヨト 二日

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

•
$$\phi_i = e^{-\frac{1}{2}(x-c_i)D_i(x-c_i)}$$

• $y_i = \beta_i x$

イロト イヨト イヨト イヨト 二日

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

•
$$\phi_i = e^{-\frac{1}{2}(x-c_i)D_i(x-c_i)}$$

• $y_i = \beta_i x$

•
$$\hat{y} = \frac{\sum_{i=1}^{N} \phi_i y_i}{\sum_{i=1}^{N} \phi_i}$$

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

•
$$\phi_i = e^{-\frac{1}{2}(x-c_i)D_i(x-c_i)}$$

• $y_i = \beta_i x$

•
$$\hat{y} = \frac{\sum_{i=1}^{N} \phi_i y_i}{\sum_{i=1}^{N} \phi_i}$$

- Incremental algorithm which approximates non-linear functions with huge input space taking into account only relevant information
- LWPR is based on Locally Weighted Regression and Partial Least Squares

イロト イヨト イヨト イヨト 二日

LWPR supply the derivative of the learnt model (5).

$$\frac{\partial \hat{y}}{\partial x} = \frac{1}{\Phi} \sum_{i=1}^{N} \left(\frac{\partial \phi_i}{\partial x} y_i + \phi_i \frac{\partial y_i}{\partial x} \right) - \frac{1}{\Phi^2} \sum_{i=1}^{N} \phi_i y_i \sum_{k=1}^{N} \frac{\partial \phi_k}{\partial x}$$

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

• ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.
- So, to control redundancy, we have chosen to:

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.
- So, to control redundancy, we have chosen to:
 - learn separately velocity kinematics and dynamics models;

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.
- So, to control redundancy, we have chosen to:
 - learn separately velocity kinematics and dynamics models;

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.
- So, to control redundancy, we have chosen to:
 - learn separately velocity kinematics and dynamics models;
 - learn models on the whole state space;

イロト イロト イヨト イヨト 三日

Our claim: At the velocity level, one should rather learn forward mappings ((8)) for each task because ...

- ... directly learning inverse mappings leads to a loss of information about the redundant nature of the system;
- ... a priori task combination requires to (re)learn everything again when modifying the task combination.
- So, to control redundancy, we have chosen to:
 - · learn separately velocity kinematics and dynamics models;
 - learn models on the whole state space;
 - learn forward velocity kinematics and invert it analytically.

Learning the velocity kinematics mapping with LWPR

Figure: Point to point task with limited joint space babbling: 2000 samples.

compatible task

incompatible task

normalized task space error

Figure: Point to point task with adaptation to an unknown external force (after 2 seconds)

Learning velocity kinematics on the real robot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Э 25 / 1

DQC

Summary

• Combination of model-based control techniques and incremental learning algorithms.

- Combination of model-based control techniques and incremental learning algorithms.
- From the simulated world to iCub.

- Combination of model-based control techniques and incremental learning algorithms.
- From the simulated world to iCub.
- Dynamics control and learning requires torque control.

Summary

- Combination of model-based control techniques and incremental learning algorithms.
- From the simulated world to iCub.
- Dynamics control and learning requires torque control.
- $\,\hookrightarrow\,$ looking for the next iCub technological improvements.

Summary

- Combination of model-based control techniques and incremental learning algorithms.
- From the simulated world to iCub.
- Dynamics control and learning requires torque control.
- $\,\hookrightarrow\,$ looking for the next iCub technological improvements.
 - * Clercq, C. and Salaun, C. and Padois, V. and Sigaud, O. (2010). On the Limitations of a Model Learning Approach for a velocity Controlled Humanoid Robot. Submitted to IEEE RAM.
 - Salaun, C. and Padois, V. and Sigaud, O. (2010). Learning Forward Models for the Operational Space Control of Redundant Robots. From motor to interaction learning in robots Springer, publisher. Pages 169-192.
 - Salaun, C. and Padois, V. and Sigaud, O. (2009). A Two-Level Model of Anticipation-Based Motor Learning for Whole Body Motion. LNAI 5499: Anticipatory Behavior in Adaptive Learning Systems: From Psychological Theories to Artificial Cognitive Systems Springer, publisher. Pages 229–246.
 - Salaun, C. and Padois, V. and Sigaud, O. (2009). Control of Redundant Robots Using Learned Models: An Operational Space Control Approach. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Pages 878–885. Saint-Louis, USA.

イロト イロト イヨト イヨト 二日

Close the loop at the vision level and combine proprioceptive and exteroceptive state estimation.

イロト イヨト イヨト イヨト 二日

27 /

- Locate end-effectors;
- Differentiate objects, humans, the robot limbs;
- Multi-sensors state estimation.

Close the loop at the vision level and combine proprioceptive and exteroceptive state estimation.

イロト イヨト イヨト イヨト 二日

27 /

- Locate end-effectors;
- Differentiate objects, humans, the robot limbs;
- Multi-sensors state estimation.

Solve the exloration problem.

- Close the loop at a higher level;
- Combine artificial curiosity and human guidance.

- RobotCub for:
 - providing us with a great robot;
 - allowing both national and international scientific collaboration;
 - constant technical support.
- My colleagues and students working on this project:
 - Olivier Sigaud;
 - Pierre-Yves Oudeyer & Olivier Ly (INRIA Flowers);
 - David Filliat (ENSTA);
 - Jean-Christophe Bailli (Gostai);
 - Camille Salaün (PhD student);
 - Charles Clercq (former CS Master Student, now at IIT);
 - Guillaume Sicard (CS Master student);
 - Pierre Griffault, Kevin Hoang and Abhishek Agarwal (former interns).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Thank you for your attention.

<ロト < 部ト < 差ト < 差ト 差 の Q (C 30 / 1

- A. D'Souza, S. Vijayakumar, and S. Schaal, "Learning inverse kinematics," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, vol. 1, 2001, pp. 298–303.
- [2] S. Schaal, C. G. Atkeson, and S. Vijayakumar, "Scalable techniques from nonparametric statistics for real time robot learning," *Applied Intelligence*, vol. 17, no. 1, pp. 49–60, 2002.
- [3] J. Peters and S. Schaal, "Learning to control in operational space," *The International Journal of Robotics Research*, vol. 27, no. 2, pp. 197–212, 2008.
- [4] D. Mitrovic, S. Klanke, and S. Vijayakumar, "Adaptive Optimal Control for Redundantly Actuated Arms," in From Animals to Animats 10: 10th International Conference on Simulation of Adaptive Behavior, Sab 2008, Osaka, Japan, July 7-12, 2008, Proceedings. Springer, 2008, p. 93.

- [5] S. Klanke, S. Vijayakumar, and S. Schaal, "A library for locally weighted projection regression," *The Journal of Machine Learning Research*, vol. 9, pp. 623–626, 2008.
- [6] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally weighted learning," *Artificial Intelligence Review*, vol. 11, no. 1, pp. 11–73, 1997.
- [7] S. Vijayakumar, A. D'Souza, and S. Schaal, "LWPR: A scalable method for incremental online learning in high dimensions," Edinburgh University Press, Tech. Rep., 2005.
- [8] L. Natale, F. Nori, G. Metta, and G. Sandini, "Learning precise 3d reaching in a humanoid robot," in *Proceedings of* the IEEE International Conference of Development and Learning (ICDL), London, UK, July 2007, pp. 1–6.

イロト イロト イヨト イヨト 二日

31 / 1