The Arithmetic Toolbox in

Computational Geometry Algorithms Library

Sylvain Pion
Mini-workshop on iRRAM/MPC/MPFR
Schloß Dagstuhl
April 18-20, 2018
Talk outline

• Brief overview of CGAL

• Robustness issues

• Arithmetic toolbox
Brief overview of CGAL
CGAL project

• 20 years old project started in European academia
• 1M C++ template lines of geometric algorithms
• Open Source (GPL) and Commercial licenses
• >100 of commercial customers from:
 – CAD/CAM, VLSI, Digital maps, GIS, Medical, Telecom, Geophysics (Oil&Gas)...
• Key design goals:
 – Genericity (app. domain independent algorithms)
 – Robustness
 – Efficiency
Triangulations of Polygons
Triangulations of Polygons
Parametrizable Meshes

Without constraint Uniform Size function
Boolean Operations

Union Intersection Complement

Support for:
Line segments, Circular arcs, Bezier curves
Voronoi diagrams of line segments
3D Triangulations

- Delaunay and weighted
- Dynamic structure
- 1M points in 16s
Volumic mesh (segmented image)
Robustness - Exact Geometric Computing
Predicates and Constructions

orientation in_circle intersection circumcenter
Floating-point direct evaluation

\[
\text{orientation}(p,q,r) = \text{sign}((p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x))
\]
Non-robustness problems

- Direct use of FP arithmetic causes algorithms to
 - Produce [slightly] wrong output
 - Crash on invariant violation
 - Infinite loop

- Geometry is different
 - in theory
 - using FP arithmetic
Partial solution: ε heuristics

« If value < ε, consider value == 0 »

- Transitivity: $p = q$, $q = r$, $p \neq r$

- Does not generalize well
- Not beautiful / mathematically appealing
Better solution: Exact Geometric Computing paradigm

- « Make sure decisions are taken as if real arithmetic is used »
 - Theoretical proofs made in the Real-RAM model therefore apply
Exact Geometric Computing

For the simple but common cases of rational expressions

• Use *Multiple Precision* instead of FP
 – Works, but can be >100 times slower

• Increase precision as needed (filtering)
 – Try *Interval Arithmetic* before MP
 • 10 times slower than FP
 – Try *Static Error Analysis* before IA
 • <2 times slower than FP
Arithmetic toolbox
Multiple precision

- Integers, Dyadic (m.2^e), Rationals

- Implementations
 - LEDA, GMP
 - CGAL's own MP_Float, Quotient, Gmpzf

- MP_Float
 - Dyadic using signed limbs (no sign bit)
 - Quick implementation (O(n^2) mult...)
Interval Arithmetic

- Double precision mostly

- CGAL's own Interval_nt
 - For portability, integrability, efficiency
 - Decreasing number of rounding mode changes

- Gmpfi too (intervals based on MPFR)
Static Error Analysis

• For predicates that are signs of polynomial expressions, like orientation()
• Start from a bound on the input (known or computed), quickly deduce the maximum error on the final value

• Tradeoffs precision/speed
• Automatization (FPG, C++ ?)
• Formal proofs (COQ+Gappa)
Algebraic numbers

- Example: \(\text{sign}(\sqrt{2}^2-2) \) ?

- Repeated refined numeric approximation with separation bounds [LEDA, CORE]

- More demanding problems: algebraic methods for polynomial systems (not very functional in CGAL) [RS]

- Root_of_2
Side note: Modular arithmetic

- Used for quick non-zero testing
Generic programming

- Layers: Arithmetic, Algebra, Geometry
Concrete classes

- **Number Types**
 - `double`, `float`
 - `CGAL::Gmpq` or `leda::rational` (rational)
 - `Core` or `leda::real` (algebraic)
 - `CGAL::Lazy_exact_nt<ExactNT>`

- **Geometry Kernels**
 - `CGAL::Simple_cartesian<NT>`
 - `CGAL::Filtered_kernel<Kernel>`
 - `CGAL::Lazy_kernel<NT>`

- **Convenience Kernels**
 - `Exact_predicates_inexact_constructions_kernel`
 - `Exact_predicates_exact_constructions_kernel`
 - `Exact_predicates_exact_constructions_kernel_with_sqrt`
Filtered predicates

Generic functor adaptor Filtered_predicate<\texttt{P}>

```
try {
    evaluate predicate \texttt{P<interval arithmetic>};
} catch(UncertaintyException e) {
    evaluate predicate \texttt{P<exact arithmetic>};
}
```
Filtered constructions

Lazy numbers = interval + expression tree

(3.2 + 1.5) * 13

Lazy object = approximate object + geometric operations tree

Test which can trigger an exact re-evaluation:

if (n' < m')

if (collinear(a',m',b'))

Sylvain Pion Dagstuhl mini-workshop on iRRAM/MPC/MPFR 2018-04-18/20
External libraries vs internal

- Reasons/arguments to decide when to use external libraries versus implement internally
 - Availability, portability, ease of installation
 - Efficiency
 - Stability, maturity
 - License, standardizability
 - Inertia, available time/motivation for change, procrastination, whatever...
Conclusion & Open issues

- A mix of FP and EGC works well for most CGAL algorithms

- Some open issues:
 - Depth of cascaded constructions needs to stay reasonable
 - Topology preserving geometric rounding to the FP grid
 - Non-algebraic numbers
 - Static error analysis within C++ (machine precision ball arithmetic?)
 - Formal proofs
Acknowledgements

• Contributors to the CGAL arithmetic toolbox
 – Olivier Devillers, Marc Glisse
 – Michael Hemmer, Luis Peñaranda
 – Monique Teillaud
 – CGAL editors and developers

• Special Thanks
 – Mariette Yvinec, Jean-Daniel Boissonnat
 – Andreas Fabri & GeometryFactory

• Arithmetic libraries : LEDA, GMP, CORE, MPFR, MPFI
• Standards : C++, IEEE-754, IEEE-1788