
Efficient Approximations for Global Illumination

by

Romain Pacanowski
romain.pacanowski@etu.u-bordeaux1.fr

under the supervision of

Xavier Granier
granier@labri.fr

January 2005

Abstract

”An Approximate Global Illumination System for
Computer Generated Films” presents for the first
time a complete rendering framework with Global Il-
lumination capabilities used to produce Shrek 2. Al-
though this article does not introduce significant in-
novations for the research area, the introduced frame-
work allows artists to easily incorporate Global Illu-
mination effects and quickly gives them visual feed-
back. To achieve this amazing feat, Dreamworks and
PDI have modified existing acceleration techniques
and made geometrical and physical simplifications.
This document reviews them and presents alterna-
tive or complementary published techniques that may
also be used as efficient simplifications.

1 Introduction

Around us, the world contains many light phenom-
ena and computers are used to simulate them. For
the past twenty years, Global Illumination has been
a research area for computer graphics and its goal is
to simulate all light phenomena in order to compute
realistic images. Realistic images are synthetic im-
ages indisguinshtable from real world images such as
photographs. The input for a Global Illumination al-
gorithm is a description of the 3D world, called scene,
of the viewer observing the scene, of the material of
all elements in the scene and of the light sources.

Without Global Illumination technique, illumina-
tion looks too flat or too synthetic. In some cases
such as illustrated by figure 1, the scene cannot be
rendered without Global Illumination technique.

Since light and material interactions are physical
complex phenomena, Global Illumination techniques
are complex to implement and involve a rather slow
process. This is why, for a long time, production
renderers have preferred to ignore it or fake it. In
a production context, art direction cannot wait for
hours (or even days) for small or invisible changes in
an image that will be seen during 5 seconds of the
whole movie.

Before presenting the Global Illumination that has
been added in PDI/DW renderer as well as the opti-
mizations and simplifications that were made, we will
briefly present some fundamentals of Global Illumi-
nation.

2 Preliminary : Fundamentals of
Global Illumination

The final goal of Global Illumination algorithms is
to compute images that accurately reproduce the ap-
pearance of objects. Since the object’s appearance is
strongly correlated to its material (see 2.2) and the
light present in the scene, physical quantities (see 2.1)
that describe and modelise light’s behavior need to be
introduced.

Note that these quantities are also necessary to for-
mulate the main problem that Global Illumination
must solve as we will see it in the section 2.3.

2.1 Radiometry

Radiometry is the area of study involved in the phys-
ical measurement of light. The most important ra-
diometric quantities are:

1. Radiant Power or Flux Φ, expressed in
Watt (W), represents how much energy flows
from/through a surface per unit time.

2. Irradiance E, expressed in Watt per square me-
ter (Wm−2), represents the energy of light ar-
riving on a surface, per unit surface area.

3. Radiosity B, expressed in Watt per square meter
(Wm−2), represents the energy of light leaving
a surface per unit surface area.

4. Radiance L is the flux per unit projected area
per unit solid angle (Wsr−1m−2), it represents
how much power arrives/leaves from a point on
a surface per unit projected area and per unit
solid angle (see figure 2).

Note that radiance is a five dimensional quantity
varying with position and direction. We use the same
notation as [12] to differentiate incident from exitant
radiance.

1. L(x → Θ) represents the radiance leaving point
x in direction Θ.

2. L(x ← Θ) represents the radiance arriving at
point x from direction Θ.

Radiance is the most important quantity for com-
puter graphics because radiance measures/captures
exactly the appearance (the color) of the object. Ra-
diance is what our eyes, sensors or cameras perceive
and it is invariant along straight paths. Therefore,
Global Illumination algorithms’ goal is to compute
radiance for every pixel in the image.

1

Figure 1: A complex scene rendered with a classical ray tracer (left picture) and rendered with Global Illu-
mination technique (right picture).

The following relationships between the previous
four quantities can be derived:

Φ =
∫

A

∫
Ω

L(x→ Θ) cos Θ dωΘ dAx (1)

E(x) =
∫

Ω
L(x← Θ) cos Θ dωΘ (2)

B(x) =
∫

Ω
L(x→ Θ) cos Θ dωΘ. (3)

Figure 2: Illustration of the solid angle and differien-
tial solid angle.

2.2 Light interaction with materials

In general, light enters a material at some point P1

with a given direction Θ1 at some time t1 with a
wavelength λ1 and exit from it at a point P2 with a
direction Θ2 at time t2 with a wavelength λ2.

Most Global Illumination algorithms suppose that
t1 equals t2, thus ignoring phosphorescence effects,

and also suppose that λ1 equals λ2, thus ignoring
fluorescence effects.

Based on these assumptions the Bidirectional Scat-
tering Surface Reflection Distribution Function (BSS-
RDF see [20]) modelises the behaviour of light arriv-
ing at some point P with a given direction Θ. Unfor-
tunately, this is an eight-dimensional function that is
too costly to be used. Another assumption commonly
made is to consider that light arrives in and leaves
the surface from the same point (P1 = P2). This
simplifies the BSSRDF in a so called Bidirectional
Reflection Surface Distribution (BRDF see [12]) de-
fined over the entire sphere.

The BRDF (see figures 3 and 4) is a positive value,
a four-dimensional reciprocal quantity defined at each
point on a surface as:

Figure 3: Illustration of the BRDF quantity.

fr(x,Ψ↔ Θ) =
dL(x→ Θ)
dE(x← Ψ)

=
dL(x→ Θ)

L(x→ Ψ) cos(Nx,Ψ) dωΨ

(4)

where

2

Figure 4: Illustration of different types of BRDFs.
From left to right : uniform diffuse also called Lam-
bertian BRDF; pure specular (mirror) BRDF and
glossy BRDF.

1. dωΨ is the differential solid angle centered
around Ψ direction

2. Nx is the surface’s normal at point x .

BRDF should be energy conservative. This means
that no energy can be created when light interacts
with material. The total amount of light leaving at
some surface’s point must be less or equal to the total
amount of light arriving in the same point. Note that
for computation reasons the BRDF can be split into
two parts resulting in the following equation:

fr(x,Ψ↔ Θ) = fr,S(Ψ↔ Θ) + fr,D(Ψ↔ Θ)

where

1. fr,S represents the specular/glossy term (not
necessarily a perfect specular reflection)

2. fr,D represents the diffuse term (not a necessarily
Lambertian reflection) .

One important consequence is that knowing the
irradiance at a point x, we may compute the radiance
with the BRDF:

L(x→ Θ) =
∫

Ωx

fr(x,Ψ↔ Θ) dE(x← Ψ). (5)

2.3 The Rendering Equation [21]

The Rendering Equation is a precise and elegant for-
mulation of the Global Illumination problem. It has
been introduced by Kajiya [21] who also introduced,
in the same article, a method to solve it (i.e., to ren-
der an image with a full global illumination solution).

The hemispherical formulation of the rendering
equation will be presented below. Other formulations
may be found in [12].

Energy law conservation gives us that:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ) (6)

where

- Le(x→ Θ) is the emitted radiance by the surface
at x and in the outgoing direction Θ

- Lr(x → Θ) is the reflected radiance by the sur-
face at x in direction Θ .

Although it appears very simple, this equation is
in fact highly complex because after using the fact
that radiance is invariant along a straight line, and
using equation (4), we obtain:

L(x→ Θ) = Le(x→ Θ)+∫
Ωx

L(x← Ψ) fr(x,Ψ→ Θ) cos(Nx,Ψ) dωΨ. (7)

This last equation is called the Rendering Equa-
tion. Radiance appears both on the left side and on
the right side making analytical resolution impossi-
ble in practice. The equation is highly recursive and
the dimension of the Global Illumination problem is
infinite!

The main problem in this equation is to evaluate
L(x ← Ψ) (and thus the irradiance) which is un-
known. Since radiance is invariant along straight
paths we can rewrite L(x← Ψ) as:

L(x← Ψ) = L(r(x,Ψ)→ −Ψ)

where r(x,Ψ) is the closest intersection from a ray
leaving x in Ψ direction. At this point, we once again
have to evaluate the radiance and thus we have a re-
cursive procedure to evaluate L(x ← Ψ). The stop-
ping condition occurs when the ray hits a light source.
The method used to evaluate L(x ← Ψ) is called
light-gathering algorithm.

2.4 Regular Expressions for Light Paths

A common way to describe the different light paths
has been introduced by Heckbert [17]. By using Reg-
ular Expressions, all light paths may be summed up
in the following regular expression:

L(S|D)∗E (8)

where

- L represents a Light source

- E represents the eye of the observer

- S represents a specular reflection

- D represents a diffuse reflection

- (k)∗ means zero or more k events

- (r|p) means an r or p event

- (k)+ one or more k events.

3

Suykens [22] extends this notation by introducing a
G term for glossy reflections illustrated by figure 11.
Equation (8) becomes:

L(S|D|G)∗E. (9)

Therefore, a full Global Illumination method must
handle all light paths and some of them are illustrated
by figures 5, 6 and 7.

Figure 5: Illustration of diffuse interreflections rep-
resented by L(D+)E paths. Note the blue appearance
of the right box’s right face due to the reflection of
light on the blue wall.

Figure 6: Illustratation the direct caustic phenomena
represented by L(S+)DE paths. The refractive sphere
focuses light on specific area on the table.

2.5 Classical Ray Tracing

Global Illumination methods are subdivided into two
classes: determinist methods and stochastic methods.
Stochastic methods extend the classical ray tracing

Figure 7: Illustration the indirect direct caustic phe-
nomena represented by L(S+)(D+)DE paths. Light
coming from another room is concentrated through a
blue refractive sphere which produces a blue caustic
on the table.

algorithm while determinist methods may use it in
the final rendering step.

Classical ray tracing has been introduced by Whit-
ted [41] as backward ray tracing. It is a simple recur-
sive procedure that traces rays backward from eye to
light sources as illustrated by figure 8. For each pixel,
a ray is launched through it and tested for intersec-
tion against the objects in the scene. If an intersec-
tion is found, local illumination is computed at the
intersection point. The stop condition of the recur-
sion is fixed by the user (bias is therefore introduced)
or it is stopped when a ray hits a diffuse surface or
even if a ray does not hit anything. In this last case,
a background color is assigned to the pixel. If recur-
sion is limited to 1 then the ray tracing algorithm is
called ray casting and performs only visibility. Clas-
sical ray tracing allows to simulate phenomena such
as perfect mirror reflection or refraction. Therefore it
simulates only LD?S∗E light paths. Note that com-
puting ray-object intersections is the most costly part
of the ray tracing algorithm even if intersection ac-
celeration techniques exist (more details in [13] and
in [33]).

Distributed Ray Tracing is a direct extension to
the classical ray tracing algorithm made by Cook et
al. [8] to simulate soft glossy reflections (see figure 11)
and shadows. Soft shadows are related to the pres-
ence of a penumbra region around the umbra region.
Figure 10 illustrates soft shadows while figure 9 illus-

4

Figure 8: Classical ray tracing algorithm. S denotes
a shadow ray, R a reflected ray , T a transmitted
(refracted) ray, E the eye position and L the light
position.

trates hard shadows.

Figure 9: Taken from [16]. Hard shadows.

3 Simplified Lighting Model and
Optimisation Techniques

3.1 Accelerating Radiance Computation

As explained in the previous section, radiance com-
putation is recursive and thus very time consuming.
It seems logical to try to accelerate the radiance com-
putation and more precisely the light-gathering part.
We will first briefly review some popular accelerating
methods and then introduce Tabellion et al [37].

Figure 10: Taken from [16]. Soft shadows.

Figure 11: Scene rendered on the left side with perfect
(mirror) reflection and on the right side with glossy
reflection.

3.1.1 Previous Approaches

Popular methods that are “Map based” try to ac-
celerate the light gathering algorithm by including a
first pass in the Global Illumination algorithm where
light is deposed on a map. This map is then used to
evaluate the term L(x← Ψ).

Illumination Map [3] Illumination Map intro-
duced by Arvo [3] is a technique that stores illumi-
nation value in a texture map. It is the first method
which was able to render caustics.

During a first pass, photons emanating from lights

5

are deposed on the texture map. After the first pass,
the texture map contains the irradiance of the model.
During the second pass (rendering pass), the illumi-
nation map is used to estimate irradiance.

More precisely, each photon is not stored in the illu-
mination map but its power is accumulated for some
local region. Knowing the area of the region gives
immediatly an estimate of the photons’ density and
then of the irradiance. This approach is a histogram
approach.

The main problem with those maps is that they are
correlated to the geometry of the surface they are as-
sociated with. Therefore they can be very difficult to
use even if a parametrization exists. In addition it
is very difficult to choose the resolution of the map
and furthermore the incoming direction of the pho-
tons is not stored. As a result illumination maps are
restricted to lambertian surfaces.

Photon Map [20] Photon Map is an extension of
illumination maps in 3D. Photon maps are not ge-
ometry correlated and consequently can be used with
very complex models. Photon Map is the main struc-
ture used in the photon mapping algorithm that is
a stochastic Global Illumination method. The first
pass of the algorithm builds the photon map and the
second pass uses a path-tracing algorithm combined
with the photon map to render the scene. In the last
development two maps are built: one for caustics and
another for indirect illumination.

The photon map data structure is 3D kd-tree which
is balanced for efficiency reasons. The kd-tree allows
to quickly find, for a given photon, its neighbours, in
3D space. During the first pass, photons from light
sources are emitted. A photon touching an object
can be reflected, transmitted or absorbed according
to the material properties of the hit surface. Only
photons that hit diffuse surfaces will be stored (in fact
their power and their incoming direction are stored).
Note that unlike Illumination Map the Photon Map
uses a kernel density approach (more details in Bruce
Walter’s PhD thesis [38]) that operates directly on
elements, to estimate the photons density. This ap-
proach allows filtering the estimate with a local kernel
operator (cone or gaussian kernel filters for example).

Finally, the classical ray tracing algorithm is used
for specular surfaces. Optimizations such as Russian
Roulette or Projection Maps are used to quickly com-
pute the Photon Maps and to avoid the introduction
of a bias.

Unfortunately the main bottleneck of photon map-
ping is still the light gathering part of it. When Radi-
ance needs to be computed for a given position x the

procedure used can be seen as an expanding sphere
around x that grows until N photons are found or
until a maximal radius R is reached (R and N are
user defined parameters).

Radiosity Textures [17] Radiosity Textures have
been introduced and used by Heckbert to include dif-
fuse interreflections in the classical ray-tracing algo-
rithm. It is a hybrid approach that combines radios-
ity and classical ray tracing in a three pass method:

1. size pass records screen size information for each
Radiosity Texture.

2. light pass progressively traces rays from light
sources to depose photons on diffuse surfaces and
to construct the Radiosity textures.

3. eye pass is an adaptive supersampling ray tracing
pass that computes the image using the textures
(see below).

The size pass should be used to compute the resolu-
tion of the Radiosity Textures called Adaptive radios-
ity Textures or Rexes. Their resolution is computed
according to their screen size. Rexes are implemented
as quadtrees and store for diffuse surfaces only the
number of photons and their power.

Since the photons are stored in a texture a surface
parametrization is needed to know where to store the
photon in the associated Rex. Thus the Rex is a
density estimator. In Heckbert’s article a histogram
approach is used to estimate the density instead of a
kernel approach which is better.

Furthermore, the light pass uses adaptive sampling
to concentrate rays on visible portions of the scenes
and radiosity is also adaptively resolved according
to each surface’s projection. Although radiosity is
a view-independent quantity, the radiosity textures
computed in this method are view-dependent.

Finally, in Heckbert’s article the size pass has not
been implemented and the rendering method is lim-
ited to LS∗DS∗E paths and therefore does not in-
clude all possible light paths.

3.1.2 Tabellion et al. [37] Radiosity Map

Tabellion et al. make a clear choice not to completely
solve the Rendering Equation. Their Renderer con-
centrates its efforts on the most important parts of
the scene which will be seen in the image.

Their strategy to accelerate radiance computation
is mainly based on Adaptive Radiosity Textures [17]

6

where they add some simplifications. Those sim-
plifications are needed to improve the user work-
flow because using Radiosity Textures is still a time-
consuming method.

Firstly, they limit the recursion of indirect illumi-
nation to one. For each surface they map a tex-
ture image, called Radiosity Map, in which each texel
(a texture element) contains a radiance value. This
value is computed during a preprocessing step by di-
rectly calling the shader that computes the local illu-
mination from the texel associated point in 3D space.
This is only possible because the recursion of indirect
illumination has been limited to one. More precisely,
texel’s value is computed by inverting its four cor-
ners resulting in a quadrilateral area on the surface of
which shading, texturing anti-aliasing is performed.

Like in [17], the resolution of the texture is com-
puted by default according to the surface’s size in
screen space. This means that far points will have a
low resolution (and thus automatically noise filtering)
texture. However, with extreme camera motions, this
method fails to provide a good resolution.

3.2 Approximate Lighting Model

3.2.1 Dreamworks lighting model

Tabellion et al. [37] limit their renderer to take only
into account diffuse intereflections for indirect illumi-
nation. Obviously caustics or glossy reflections can-
not be rendered and are left to other specific methods.

With this approximation, when computing the ra-
diance estimate for indirect illumination, the shader
uses only the diffuse component (fr,D) of the BRDF.
Of course, this is too limiting for perfect specular sur-
faces directly seen by the camera. Therefore the in-
direct diffuse illumination interacts with an arbitrary
BRDF during the final shading pass (eye pass).

The rendering equation used is then:

L(x→ Θ) = Le + Ldirect ill. +∑
λ=R,G,B

fr(x,Θ
′
λ → Θ)Lλ(x← Θ

′
λ) |−→n ·Θ′

λ|.

The approximation made, appears more clearly the
way the incident radiance Lλ(x← Θ

′
) is computed:

Lλ(x← Θ
′
) =

E(x,−→n)
|−→n ·Θ′ |

(10)

where E(x,−→n) is the extrapolated irradiance com-
puted with irradiance caching scheme (see 3.3.2) and
Θ

′
is the incoming dominant light direction derived

using weights ωi computed during the irradiance
caching construction.

3.2.2 Average incoming light direction using
Light Vectors

The approach used by Tabellion is very close to the
approach used with Light Vectors that have been in-
troduced by Zaninetti et al. [42] and improved in [31].

The Light Vector is derived from Arvo’s Irradiance
Jacobian [4]. It is a data structure that may be seen
as a virtual point light source simulating the incident
energy at point x.

Like in Photon Mapping, the computation of Lr

(cf equation 6) is split into separate components:

1. direct component

2. specular component

3. caustic component

4. indirect component.

For each part of the illumination described above,
a separate Light Vector is used and Light Vectors are
stored, like in Photon Mapping, in a separate kd-tree
allowing fast neighbourhoods’ search.

Our main interest relies on the Indirect Light Vec-
tor (ILV) that approximates the indirect lighting. An
ILV at point x contains:

1. n components according to the color model used
(n=3 for RGB model)

2.
−→
D normalized average direction of incident light

3. P irradiance value

4. quantities used to interpolate the ILV:

(a) The gradient vector

(b) The tangent coordinate system to the sur-
face at point x

(c) Arithmetic average distance to the other
objects in the scene.

−→
D and P are gathered in the following equation:

Lindirect(x,−→ω r) = P frd(x,
−→
D → −→ω r). (11)

Lindirect(x,−→ω r) is computed with a path tracing
algorithm by sampling the hemisphere centered on x.
As previously stated this is very time-consuming and
Zaninetti et al. introduced a bias by limiting the re-
cursiveness of the path-tracing algorithm while saving
computational time. While sampling the hemisphere
they also compute for a small overhead

−→
D value. The

ILV is then fully defined.
Furthermore, equation (11) is more robust than

Tabellion’s equation (10).

7

3.3 Irradiance Caching improvements

Irradiance Caching is a well known method intro-
duced by Ward [40] to accelerate the computation of
indirection illumination. It is also used in the Pho-
ton Mapping algorithm. Irradiance computation is
time consuming because it is computed by uniformly
sampling the incident radiance over the hemisphere
requiring many ray tracing computations.

A good observation made by Ward is that illumina-
tion varies slowly on a continuous region. Penumbra
and Umbra regions or caustics introduce discontinu-
ities but if we limit ourselves to lambertian surfaces,
we avoid discontinuity events. Therefore irradiance
caching only works with Lambertian surfaces. Ward’s
main idea is to compute irradiance only at some lo-
cations in the scene and to interpolate it for the re-
maining locations.

Formally, the Irradiance E at a given point x with
a given normal −→n is approximated by the following
equation:

E(x,−→n) ≈
∑

i ωiEi(xi)∑
i ωi

(12)

where ωi are weights. The way the weights are
computed depends on the error function (see below).

3.3.1 Classical Irradiance Caching

The decision to interpolate or compute irradiance at
a location is based on the weights value.

In Ward’s method weights are computed according
to the following equation:

ωi(x,−→n) =
1

εi(x,−→n)

where εi(x,−→n) is the error function.
Ward’s error function depends on:

1. R0 harmonic mean distance to the object seen
from x

2. ‖x−xi‖, euclidian distance between already com-
puted irradiance sample and x

3. Normals’ variation between x and xi.

Ward also suggests that a weight is used only if
ωi > 1

a where a is a user defined parameter. The
higher the weight the better the estimate. Therefore,
equation 12 becomes:

E(x,−→n) ≈

∑
i,ωi>

1
a

ωiEi(xi)∑
i,ωi>

1
a

ωi(xi,
−→n)

. (13)

If there are not enough samples (i.e., all ωi are < 1
a)

then a new irradiance value is computed.
Computing weights can be very long and some op-

timisation techniques have been elaborated in order
to make the irradiance cache algorithm more practi-
cal.

Irradiance gradients have been introduced later by
Ward and Heckbert [39] to improve the rendering
quality. One gradient vector modelizes the orienta-
tion rate of change and another modelizes the posi-
tion rate of change. Using those gradients improves
the estimated irradiance and smoother images are
rendered.

3.3.2 Irradiance Caching Coherence (ICC)

Dreamworks Renderer modifies the classical error
function to take into account the visual importance
of the point x for which irradiance is needed. The
visual importance term introduced is related to the
projected pixel area by using the solid angle of the
pixel through which x is seen.

Their error function also includes a unique user
parameter K that controls the accuracy of the algo-
rithm.

Every irradiance value is stored in a cache with
corresponding geometric information and irradiance
gradient vectors.

The main advantage of their new error function is
that sampling density is automatically adjusted. This
avoids over sampling the irradiance in corner areas.
Furthermore their method avoids sampling patterns
that are too dense or too sparse as illustrated by fig-
ure 12.

Figure 12: Taken from [37]. Left: Irradiance sam-
pling frequency with PDI error function. Right: Irra-
diance sampling frequency with Ward error function.

Finally, weights are computed using the following
equation:

ωi(x,−→n) = 1− εi(x,−→n)

and the Irradiance equation used only takes into ac-
count samples with a positive weight. Also notice

8

that dominant incoming light direction is computed,
weighted and stored in the cache when looping over
irradiance samples whose weight is positive. This
procedure is very similar to the one used for the com-
putation of

−→
D in Light Vector’s technique.

3.3.3 Another Irradiance Caching Scheme
used by Light Vectors

The Irradiance Caching Scheme used by Za-
ninetti [42] is different to the previous one. Zaninetti
et al. use a caching scheme to accelerate ILV compu-
tations.

Because the mapping used to sample the hemi-
sphere is different (not stratified) from Ward’s and
Heckbert’s, the irradiance gradients derived are not
the same. Note that the gradient computed for each
ILV is computed in the same loop as Lindirect and
therefore the extra-computation needed is negligible.

The error function used is very close to Ward’s ex-
cept that:

1. Two user-defined accuracy tolerance thresholds
are used. One for the change of the gradient and
the other for surface’s curvature change.

2. the cached sample and the current point must
belong to objects having the same BRDF.

Here it is not the irradiance value at point x that
is directly interpolated but the Indirect Light Vector.

The main contribution using ILV instead of Irra-
diance Caching is not to be restricted to Lambertian
surfaces because an average incoming direction is also
stored in the ILV. The direction is firstly computed
without weights. Weights only apply to ILVs inter-
polation.

4 Simplified Geometry for Global
Illumination

Highly detailed geometry is required to modelize
complex object’s shape. Unfortunately if we increase
the number of polygons/triangles to describe the
model we also increase the rendering time when using
ray tracing. This is why simplified geometry methods
have been developed to reduce the ray-intersection
computation time while preserving highly detailed ge-
ometry for the rendering. First we will briefly present
Tabellion’s approach based on micro-polygons and
then we will present an alternative method: Points.

4.1 Tabellion’s Approach

A common technique called displacement mapping
allows to modelize very complex geometry.

This technique allows to add geometric detail to a
surface geometry. The key idea behind displacement
mapping is that surfaces in the real world are never
totally flat but have some bumps.

Displacement mapping is a method to present sur-
face details by defining an offset (displacement) from
a base surface. It is different from Bump Mapping
because the geometry and the normal are perturbed.
The basic idea is very simple : the base surface is
perturbed along its normals using displacement val-
ues specified in the displacement map.

Historically there are two families of implemen-
tation : one using scan line renderer with micro-
polygons and the other one using ray tracing algo-
rithm. The necessity to use ray tracing with micro-
polygons is straightforward in order to use Global
Illumination methods and therefore to include shad-
ows. In fact scan line methods do not typically in-
clude shadows.

The main problem when using micro-polygons is
the huge amount of geometry produced due to the
small size of them. Computing the intersection be-
tween many (more than 1 million) micro-polygons
and a ray could be very lengthy or even impossible
due to the nature of the ray tracing algorithm that
requires random access to all geometry data at the
same time ! The main problem with micro-polygons
and ray tracing is that most of the time all micro-
polygons geometry won’t fit into memory or that it
is too costly to allocate such a huge amount of mem-
ory.

One approach to resolve this problem is to use the
fact that rays are spatially coherent for a given pixels’
neighborhood. Therefore the geometry cache intro-
duced by Pharr and Pat Hanrahan [28] enables the
rendering of highly complex scenes while using a lim-
ited amount of memory.

Of course, this only solves the memory problem
and does not solve the computation time required to
compute ray micro-polygons intersection.

Tabellion et al. [37] used recent optimization tech-
niques [7] that are based on a multiresolution geome-
try. Multiresolution geometry may be seen as a level
of details where the same object has many represen-
tations. For example in [7] they compute three ap-
proximations of the same geometry: coarse, medium
and fine tessellation.

Inspired by this approach Tabellion et al. use a
simplified version of the micro-polyons geometry to
accelerate ray tracing intersection but use the full
geometry to compute the shading.

9

4.2 Alternative Approach using Points

Other simplified geometry techniques exist. In this
section we will see how points have been a research in-
terest area for almost 20 years and how they recently
became very popular and how they can be used in
Global Illumination algorithm

4.2.1 Overview of Points

Since the first pioneer report by Levoy et al. [23],
where they show how to reconstruct a continous sur-
face from sampled points and how to render it with
anti-aliasing, points have renewed interest since 1998
with Grossman’s article [15]. Another reason for this
renewed interest is that 3D scanners have become
very popular and allow to acquire very complex ge-
ometry from real world objects. The most advanced
method used, presented in the last Siggraph Point
course is the one developed by Matusik [25]. Finally
points ”renaissance” is also due to the constant grow-
ing complexity of polygons/triangles. Managing a
complex growing connectivity while polygon/triangle
occupies only a few pixels in screen space have
brought researchers to question the utility of trian-
gles as a fundamental display primitive.

Points are nonuniform samples of the surface. A
points’ cloud describes the surface geometry, includ-
ing position and normals, and the appearance of
the surface (reflectance property or a BRDF at each
point). This means that Points discretize appearance
and geometry at the same rate but points suffer from
the loss of connectivity information.

As illustrated by figure 13 there are two main issues
with Points:

- acquisition of points with reflectance properties
and efficient storage of the acquired data.

- reconstruction and rendering surface from
points.

Figure 13: Taken from Siggraph2004 Course, the ren-
dering point pipeline and its equivalent step for the
triangle rendering pipeline.

Reconstruction problems appear because of the
connectivity loss when using point sampled geometry.
Good reconstruction must solve tears or hole prob-
lems as quickly as possible. There are two main ap-
proaches for reconstuction techniques: object space
and screen space. We will briefly review reconstruc-
tion techniques in screen space. Reconstruction in
object space are presented further.

As pointed out by Grossman et al. [15], when a
point sample is projected into image space and then
converted to screen space it hits a pixel. Unfortu-
nately all pixels belonging to the same surface are
not necessarily hit by the points sampled for that
surface: holes may appear. Grossman et al. [15] use
hierarchical Z-Buffer to detect gaps and to fill them.

Splatting technique has been introduced by Levoy
et al. [23] but the main contribution has recently been
from Zwicker et al. [43] after a first approach in [27]
where Pfister et al. introduced the first complete
point (called Surfel) rendering framework with a hi-
erarchical representation, texture filtering, visibility
calculations and image reconstruction. In order to fill
holes, they use symetric radial gaussian filters cen-
tered on each hole or the supersampling procedure.

Finally, in [43], Zwicker et al. make a new step in
point rendering quality with an improved splatting
technique that introduces a new EWA([19] and [18])
formulation for irregular point data. Their new tech-
nique handles correctly hidden surface removal and
transparency as illustrated by figure 14.

Figure 14: Taken from [43] Complex point sampled
semi-transparent object.

10

Multiresolution Data Structures Once point
samples have been recovered they must be organized
efficiently. We will compare two approaches that were
published in 2000 at Siggraph Conference.

The Layered Depth Cube Tree Pfister et
al. [27] use a Layered Depth Cube (LDC) Tree to
store the acquired point samples. LDC is inspired by
Chang et al. [6] Layered Depth Image (LDI) Tree and
Shade et al. [32] who have introduced LDI.

An LDI is simply a view of the scene from a cam-
era but multiple pixels are stored along each line of
sight. It is a bidimensionnal array composed by lay-
ered depth pixel where a layered depth pixel con-
tains multiple (the number of layers) depth pixels.
A depth pixel contains visual attributes such as the
color and of course a floating value corresponding to
its depth. Three orthogonal LDIs are gathered to
form an LDC [24].

In [27] ray casting is used to create the three or-
thogonal LDIs and therefore the corresponding LDC.
Contrary to Chang et al. [6] who organize LDI in a
hierarchical tree in which they adaptatively select the
best LDI according to the desired sampling rate, Pfis-
ter et al. [32] organize their LDIs in an octree where
each node contains an LDC (called block).

QSplat [29] For the Michelangelo’s project
Rusinkiewicz and Levoy created a multiresolution
point rendering system nammed QSplat. The data
structure used to store the geometry can handle very
large meshes or point clouds (such as 127 mio input
points correspondig to 760MB of data and up to 8
mio rendered points). It is a bounding sphere hier-
archy constructed as a preprocess and written onto
disk. Each node of the tree contains the sphere center
and radius and optionally a color.

Stamminger et al. [9] improve the QSplat data
structure in so-called “Sequential Point Trees”. In-
stead of a hierarchical traversal rendering algorithm.
The hierarchical points representation is broken into
sequential segments to accelerate the rendering that
is done in the GPU. Their structure also allows
smooth transition between points and triangles rep-
resentation according to the distance viewer.

4.2.2 Radiosity using Points

Until recently, no article had been published where
points were used with a determinist method.

Determinist methods, also called Radiosity based
methods, have been introduced before the Rendering
Equation by [14]. In fact Radiosity methods do not
solve the complete Rendering Equation but only a

part of it and therefore take only into account diffuse
interreflections that correspond to LD∗E paths.

These assumptions simplify the Rendering Equa-
tion in a so called Radiosity equation:

Bi = Bei + ρi

∑
j

Fij Bj . (14)

Details on how this equation is derived may be found
in Sillion et al. [34] or in Dutre et al. [12].

This equation shows that the radiosity Bi at a
patch i is the sum of the self-emitted radiosity Bei

and the fraction of irradiance at i that gets reflected.
The Fij is the so-called patch-to-patch form factor
and represents the fraction of the irradiance on i orig-
inates at j or the fraction of power emitted by i that
lands on j. Radiosity is a determinist method be-
cause the light interactions are computed with a finite
number of polygons called patches here. A classical
radiosity algorithm contains the following step:

1. scene discretization in patches

2. Form factors computation

3. Numerical solve of the radiosity system defined
by equation (14)

4. Display of the solution.

Note that the solution of Radiosity system is view-
independent and that the solution is the equilibrum
of the light exchange between surfaces. To solve the
radiosity system is not very complex and iterative nu-
merical method such as Jacobi or Gauss-Seidel con-
verge after relatively few iterations.

Before returning to our points we should highlight
the two main problems in the radiosity algorithm.

Patches should be small enough to capture illumi-
nation variation (near soft shadows regions for exam-
ple) otherwise visual artefacts will appear but their
number should not be too large because the memory
needed to store them would dramatically increase.

Form factors also need to be stored but the
main problem is to compute them. As explained
in [34] simple cases allow to compute analytically the
form factor between two patches. Otherwise, each
form factor requires the solution of non-trivial four-
dimensional integral with singularity where the dis-
tance between two patches tends to zero and the inte-
grand may also have discontinuities due to visibility
changes.

When using points we are facing a significant prob-
lem: there are no patches at all! Yamamoto et al. [11]
address this problem by computing an effective area
between two surfels defined by a point, a normal and

11

a radius. This effective area attempts to take into ac-
count discs overlapping that necessary to avoid holes
in the sampled geometry.

Once effective areas have been computed they
are organised in hierarchical structure of bounding
spheres. Form factors are then computed using effec-
tive areas and the image is rendered using the Stam-
minger [9] method to compute diffuse interreflections.

Atlas of Discoids Basically a Surfel is a point with
a radius and a normal at this point. Thus it also
defines a disc. As previously stated during the ac-
quisition step, those discs overlap each other to avoid
holes. Michelin et al. [35] have developed a method to
construct an implicit surface from a set of discs that
overlapped. This set is called Atlas of Discoids. The
basic idea is to sketch the model with a set of discs
that can overlap each other. Furthermore overlaps
are welcome with the discoids technique. Although
the paper in which discoids are introduced does not
mention the use of this technique in point sample ge-
ometry. The link and the utility of such a technique
seems obvious.

The implicit surface is defined where superposing
areas appear. In the simple case of planar surfaces
that overlap the superposition area corresponds to
their intersection. Of course this simple case is not
the general one. Therefore, if ∆ is the subset of dis-
coids overlapping each other the implicit surface de-
fined by this subset according to Michelin et al. is:

Z(M) =
∑

i |Di∈∆

βi(Mi) zi(M) = 0

where

- βi is a distance function between Mi and the
center of the discoid Di. It varies continously
from the center of the discoid to the border of it
from 1 to 0.

- zi algebraic distance between M and its orthog-
onal projection on discoid Di.

Note that βi functions affect the shape and the con-
tinuity of the surface in the overlapping area there-
fore only βi functions have to be chosen ! With this
method Michelin et al. [36] have also reformulated
the Radiosity equation in a new function basis with
local support that allows them to render scene with
a Radiosity technique without artifacts (such as dis-
continuities across a surface) that appear with the
classical Radiosity method.

4.2.3 Stochastic Methods using Points

The problem using points with stochastic methods
can be formulated this way: how to compute the
intersection between a ray and a point and how to
make sure that the computed intersection is view-
independent ?

[30] Jensen et al. choose not to compute a view-
independent intersection. After all, global illumina-
tion algorithm are not view-independent even if ray
- polygon intersection normally are !

Instead of trying to reconstruct a surface from the
point sampled geometry Jensen et al. derives a view-
dependent intersection procedure, based on cylinders
infered by surfels, whose result gives the point inter-
section and its normal. This can be view as a screen
space reconstruction procedure.

On the other hand [1] Adamson et al. introduce
a new way to efficiently compute the intersection of
a ray and point set surfaces. This is done by recon-
structing the surface in object space with a method
called Moving Least Squares (MLS).

MLS [10] based approach MLS is binded to a
projection procedure that allows to reconstruct a
smooth surface from unscattered data. This projec-
tion procedure is fully described in [2]. The result is
an infinitely smooth and manifold surface controlled
by a parameter h that allows to smooth out the noise.
As illustrated by figure 15, for each projected point a
local reference domain/plane H and a local bivariate
polynomial g approximation is needed to reconstruct
the surface called point set surface.

Figure 15: Taken from [2] MLS Projection.

It seems obvious not to use a global scale factor h
with non uniform point samples. If h is too large, too
much smoothing is done for a high density area. If h
is too low, as described in [2], numerical instabilities
may occur in a sparsely sampled region. Extensions
to adaptatively compute h have been made in [5] and
in [26].

12

Finally implicit surfaces driven by discoids are also
candidates to stochastic methods since Michelin et
al. [35] derive a procedure to compute the intersec-
tion between a ray and an atlas of discoids. Unfortu-
nately it seems that no article was published in which
discoids or MLS surfaces are used with a stochastic
method.

5 Conclusion

In this document we have covered the optimizations
and the approximations made by Tabellion et al. [37]
in order to add Global Illumination capabilities to
their rendering framework. We have also pointed out
other published techniques that can be used to ac-
celerate the computation of the Rendering Equation
or to simplify the geometry. Light Vector may be a
valid approach to take into account specular reflec-
tions with indirect illumination and Points, as ge-
ometrical simplification may also be an interessting
line of research instead of micro-polygons.

References

[1] Anders Adamson and Marc Alexa. Ray trac-
ing point set surfaces. In SMI ’03: Proceedings
of the Shape Modeling International 2003, page
272. IEEE Computer Society, 2003.

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or,
Shachar Fleishman, David Levin, and Clau-
dio T. Silva. Computing and rendering point
set surfaces. IEEE Transactions on Visualiza-
tion and Computer Graphics, 9(1):3–15, 2003.

[3] James Arvo. Backward ray tracing. In SIG-
GRAPH 86 Course Notes, Volume 12, August
1986.

[4] James Arvo. The irradiance jacobian for par-
tially occluded polyhedral sources. In SIG-
GRAPH ’94: Proceedings of the 21st annual
conference on Computer graphics and interactive
techniques, pages 343–350. ACM Press, 1994.

[5] Mario Botsch, Andreas Wiratanaya, and Leif
Kobbelt. Efficient high quality rendering of point
sampled geometry. In EGRW ’02: Proceedings
of the 13th Eurographics workshop on Rendering,
pages 53–64. Eurographics Association, 2002.

[6] Chun-Fa Chang, Gary Bishop, and Anselmo
Lastra. Ldi tree: A hierarchical representation
for image-based rendering. In Alyn Rockwood,
editor, Siggraph 1999, Computer Graphics Pro-
ceedings, pages 291–298, Los Angeles, 1999. Ad-
dison Wesley Longman.

[7] Per H. Christensen, David M. Laur, Julian Fong,
Wayne L. Wooten, and Dana Batali. Ray differ-
entials and multiresolution geometry caching for
distribution ray tracing in complex scenes. In
Computer Graphics Forum (Eurographics 2003
Conference Proceedings, pages 543–552. Black-
well Publishers, Septemner 2003.

[8] Robert L. Cook, Thomas Porter, and Loren
Carpenter. Distributed ray tracing. In SIG-
GRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive
techniques, pages 137–145. ACM Press, 1984.

[9] Carsten Dachsbacher, Christian Vogelgsang, and
Marc Stamminger. Sequential point trees. ACM
Trans. Graph., 22(3):657–662, 2003.

[10] Lévin David. Mesh-independent surface inter-
polation. In Geometric Modeling for Scientific
Visualization, pages 37–49. Edited by Brunnett,
Hamann and Mueller, Springer-Verlag, 2003.

13

[11] Yoshinori Dobashi, Tsuyoshi Yamamoto, and
Tomoyuki Nishita. Radiosity for point-sampled
geometry. In PG ’04: Proceedings of the Com-
puter Graphics and Applications, 12th Pacific
Conference on (PG’04), pages 152–159. IEEE
Computer Society, 2004.

[12] Philip Dutre, Kavita Bala, and Philippe
Bekaert. Advanced Global Illumination. A. K.
Peters, Ltd., 2002.

[13] Andrew S. Glassner. An Introduction to Ray
tracing. Morgan Kaufmann, 1989.

[14] Cindy M. Goral, Kenneth E. Torrance, Don-
ald P. Greenberg, and Bennett Battaile. Model-
ing the interaction of light between diffuse sur-
faces. In SIGGRAPH ’84: Proceedings of the
11th annual conference on Computer graphics
and interactive techniques, pages 213–222. ACM
Press, 1984.

[15] J. P. Grossman and William J. Dally. Point sam-
ple rendering. pages 181–192. Springer-Verlag,
August 1998.

[16] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and François Sillion. A survey of
real-time soft shadows algorithms. In Eurograph-
ics. Eurographics, Eurographics, 2003. State-of-
the-Art Report.

[17] Frank Heckbert. Adaptive radiosity textures for
bidirectional ray tracing. In ACM SIGGRAPH
Proceedings, volume 24, pages 145–154, August
1990.

[18] Paul Heckbert. Survey of texture mapping.
In IEEE Computer Graphics and Applications,
November 1986.

[19] Paul Heckbert. Fundamental of texture mapping
and image warping. In Master’s Thesis. Univer-
sity of California. Berkeley, 1989.

[20] Henrik Wann Jensen. Realistic image synthesis
using photon mapping. A. K. Peters, Ltd., 2001.

[21] James T. Kajiya. The rendering equation. In
SIGGRAPH ’86: Proceedings of the 13th annual
conference on Computer graphics and interactive
techniques, pages 143–150. ACM Press, 1986.

[22] Frank Suykens De Laet. On Robust Monte
Carlo Algorithms for Multi-pass Global Illumi-
nation. PhD thesis, Departement of Com-
puter Science, Kathoelike Universiteit Leuven,
September 2002.

[23] M. Levoy and T. Whitted. The use of points as
a display primitive. Technical report, University
of North Carolina, January 1985.

[24] Dani Lischinski and Ari Rappoport. Image-
based rendering for non-diffuse synthetic scenes.
In Proceedings of the 9th Eurographics workshop
on Rendering, pages 301–314, 1998.

[25] Wojciech Matusik, Hanspeter Pfister, Addy
Ngan, Paul Beardsley, Remo Ziegler, and
Leonard McMillan. Image-based 3d photogra-
phy using opacity hulls. ACM Trans. Graph.,
21(3):427–437, 2002.

[26] Mark Pauly, Markus Gross, and Leif P. Kobbelt.
Efficient simplification of point-sampled sur-
faces. In VIS ’02: Proceedings of the conference
on Visualization ’02. IEEE Computer Society,
2002.

[27] Hanspeter Pfister, Matthias Zwicker, Jeroen
van Baar, and Markus Gross. Surfels: sur-
face elements as rendering primitives. In SIG-
GRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, pages 335–342. ACM Press/Addison-
Wesley Publishing Co., 2000.

[28] Matt Pharr and Pat Hanrahan. Geometry
caching for ray-tracing displacement maps. In
Xavier Pueyo and Peter Schröder, editors, Eu-
rographics Rendering Workshop 1996, pages 31–
40, New York City, NY, 1996. Springer Wien.

[29] Szymon Rusinkiewicz and Marc Levoy. Qs-
plat: a multiresolution point rendering system
for large meshes. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages
343–352. ACM Press/Addison-Wesley Publish-
ing Co., 2000.

[30] Gernot Schaufler and Henrik Wann Jensen. Ray
tracing point sampled geometry. In Proceed-
ings of the Eurographics Workshop on Render-
ing Techniques 2000, pages 319–328. Springer-
Verlag, 2000.

[31] Xavier Serpaggi and Bernard Péroche. An
adaptive method for indirect illumination us-
ing light vectors. In A. Chalmers and T.-M.
Rhyne, editors, Eurographics 2001 Proceedings,
volume 20(3), pages 278–287. Blackwell Publish-
ing, 2001.

14

[32] Jonathan Shade, Steven Gortler, Li wei He, and
Richard Szeliski. Layered depth images. In SIG-
GRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive
techniques, pages 231–242. ACM Press, 1998.

[33] Peter Sherley. Realistic Ray Tracing. AK Peters,
2003.

[34] François Xavier Sillion and Claude Puech. Ra-
diosity and Global Illumination. Morgan Kauf-
mann Publishers, Inc., 1994.

[35] Michelin Sylvain, Arquès Didier, and Piranda
Benôıt. Modelisation of implicit surfaces driven
by an atlas of discoids. In GraphiCon’2000, pages
256–261, August 2000.

[36] Michelin Sylvain, Arquès Didier, and Piranda
Benôıt. Overlapping radiosity: Using a new
function base with local disk support. In 8th
International Conference in Central Europe on
Computer Graphics and Visualization, volume 2,
pages 236–243, February 2000.

[37] Eric Tabellion and Arnauld Lamorlette. An ap-
proximate global illumination system for com-
puter generated films. ACM Trans. Graph.,
23(3):469–476, 2004.

[38] Bruce Walter. Density Estimation Techniques
for Global Illumination. PhD thesis, Cornell
University, 1998.

[39] Gregory J. Ward and Paul Heckbert. Irradiance
gradients. In Third Eurographics Workshop on
Rendering, pages 85–98, Bristol, UK, 1992.

[40] Gregory J. Ward, Francis M. Rubinstein, and
Robert D. Clear. A ray tracing solution for dif-
fuse interreflection. In SIGGRAPH ’88: Pro-
ceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, pages
85–92. ACM Press, 1988.

[41] Turner Whitted. An improved illumination
model for shaded display. In Communications
of the ACM 23(6), May June 1980.

[42] Jacques Zaninetti, Xavier Serpaggi, and Bernard
Péroche. A vector approach for global illumina-
tion in ray tracing. In Computer Graphics Fo-
rum, volume 17, September 1998.

[43] Matthias Zwicker, Hanspeter Pfister, Jeroen van
Baar, and Markus Gross. Surface splatting. In
SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques, pages 371–378. ACM Press, 2001.

15

