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ρ(vvv, lll) = kd + ks (nnn · hhh)e
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4 (nnn · lll) (nnn · vvv)



Motivation
๏ BRDF

• Central Role in CG

• Material/Reflectance behavior

• 4D Function

๏ BRDF Models

• Analytical Models

• Data driven
- Gonioreflectometer

- [Ward92][LFTW05]
- CCD  

- [Matusik03] [Ngan05]

[Ward92]

[Matusik03]



Motivation : Handling measured BRDF

Challenges for BRDF Representations 

๏ Low Memory cost

• BRDF in Merl-MIT: 33MB

๏ Handle all types of  measured materials

• From Lambertian to mirror

๏ Efficient evaluation for rendering

๏ Importance sampling friendly

• Global Illumination. Monte-Carlo...

Merl-MIT database



Previous Work: basis functions

๏ Spherical Harmonics [Cabral87,Westin92,...]

๏ Zernike Polynomials [Koenderink96]

๏ sRBF [Zickler05,...]

๏ Spherical Wavelets [Schröeder95]

๏⇔ Linear decomposition

Easy fitting (projection into the basis)
Fast evaluation 
Memory cost increases with specularity
⇔ Quadratic cost  [Mahajan08]



Previous Work: analytical models

๏ Empirical (ad-hoc):  e.g, [Phong75]

๏ Physics-based Models: e.g., [Ward92]

Low number of coefficients 
High specularity well handled
Limited representations  [Ngan05]

Non-linear fitting technique [Levenberg-Marquardt,SQP]

• Numerically unstable
- With >= 3 lobes 

• No guaranty on global convergence

Lafortune 



Previous Work: BRDF importance sampling

๏ Analytical BRDF Models [Phong, Blinn, Lafortune,  Ashikhmin,..] 

• Closed-form importance sampling function
Low memory consumption
Efficiency decreases with grazing angle 

- cosine factor (except. [Kurt 2010])

๏ Tabulated Data Approaches  (e.g., [Lawrence 2004]) 
Take into account BRDF and cosine factor 
Memory cost for high specular materials



Contributions

Framework

๏ Rational Functions as representations for

• BRDF 

• inverse CDF (for BRDF importance sampling)

• Low memory cost 

๏ Approximation technique

• A priori error control

• Global convergence guaranteed

๏ New Estimator for Monte-Carlo Importance Sampling

• No probability density function (pdf) storage needed



Rational Functions Framework

๏ Rational Functions as representations for

• BRDF 

• Inverse CDF (for BRDF importance sampling)

๏ Approximation technique

• A priori error control

• Global convergence guaranteed

• Correct Inverse CDF guaranteed

๏ New Estimator for Monte-Carlo Importance Sampling

• No probability density function (pdf) storage needed



๏ Widely used in approximation theory

• Related to  Schlick BRDF Model [EG94]

๏ More powerful than polynomials

• ideal for steep changes (e.g., BRDF specular lobes)

Rational Functions

rn,m(xxx) =
pn(xxx)

qm(xxx)
=

n�

j=0

pj bj(xxx)

m�

k=0

qk bk(xxx)

n , m number of coefficients

pj , pk coefficients

bj , bk basis functions



Rational Functions

Text

Rational Function

Polynomials

Original Data

Approximation Comparisons with 7 coefficients



Rational Functions Framework

๏ Rational Functions as representations for

• BRDF 

• Inverse CDF (for BRDF importance sampling)

๏ Approximation technique

• A priori error control

• Global convergence guaranteed

๏ New Estimator for Monte-Carlo Importance Sampling

• No probability density function (pdf) storage needed
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data sample
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๏ Choose a BRDF model ρ(v,l) and optimize its parameters :

Fitting data: problem statement
data sample

xxxixxx0 xxxs

min
ccc

||ρccc(vvv, lll)− data(vvv, lll)||2 ρccc = c0 + c1(nnn · hhh)c2



๏ Choose a BRDF model ρ(v,l) and optimize its parameters :

Local convergence
No error control

Fitting data: problem statement
data sample

xxxixxx0 xxxs

min
ccc

||ρccc(vvv, lll)− data(vvv, lll)||2 ρccc = c0 + c1(nnn · hhh)c2

ρc�c�c�

ρc��c��c��

ρccc



Fitting data: Rational Function Approach

data sample

rn,m(xxxi)
xxxixxx0 xxxs



Fitting data: Rational Function Approach

interval

data sample

rn,m(xxxi)

fi

fi
xxxixxx0 xxxs



๏ Find the Rational Function such that:

Fitting data: Rational Function Approach

interval

data sample

rn,m(xxxi)

fi

fi
xxxixxx0 xxxs

∀i = 0, . . . , s fi � rn,m =
pn(xxxi)

qm(xxxi)
� fi

with n+m � s

and qm(xxxi) > 0



Overview of our fitting algorithm

1. Choose  Cmax=(n+m) coefficients for the Rational Function

2. Set intervals’ size Fi = 

3. S = fitRationalFunction( Cmax, Fi, data)

4. while S == ∅

4.1. Increase intervals’ size Fi

4.2. S = fitRationalFunction( Cmax, Fi, data)

5. Return S

|fi − fi|
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Fitting a Rational Function
Based on the algorithm from 
[Celis2007]

๏ Quadratic Problem P(n,m)

• Unique solution 

• Pole-free methods

• Global Convergence 
- Convex problem

• Size(A) ∝(n+m) X (2*s+2)

P(n,m) :

arg min
ccc∈Rn+m+2

|ccc = (p0, . . . , pn,q0, . . . ,qm)
t |2

subject to

AAA( j)
n,m ccc−δ |AAA( j)

n,m|2 � 0, j = 1, . . . ,2s+2
AAAn,m =





b0(xxx0) . . . bn(xxx0) − f0 b0(xxx0) . . . − f0 bm(xxx0)
...

...
...

...
b0(xxxs) . . . bn(xxxs) − fs b0(xxxs) . . . − fs bm(xxxs)

−b0(xxx0) . . . −bn(xxx0) f0 b0(xxx0) . . . f0 bm(xxx0)
...

...
...

...
−b0(xxxs) . . . −bn(xxxs) fs b0(xxxs) . . . fs bm(xxxs)



∀xi, qm(xixixi) > 0



Fitting a Rational Function
P(n,m) :

arg min
ccc∈Rn+m+2

|ccc = (p0, . . . , pn,q0, . . . ,qm)
t |2

subject to

AAA( j)
n,m ccc−δ |AAA( j)

n,m|2 � 0, j = 1, . . . ,2s+2
AAAn,m =





b0(xxx0) . . . bn(xxx0) − f0 b0(xxx0) . . . − f0 bm(xxx0)
...

...
...

...
b0(xxxs) . . . bn(xxxs) − fs b0(xxxs) . . . − fs bm(xxxs)

−b0(xxx0) . . . −bn(xxx0) f0 b0(xxx0) . . . f0 bm(xxx0)
...

...
...

...
−b0(xxxs) . . . −bn(xxxs) fs b0(xxxs) . . . fs bm(xxxs)





Our Algorithm to find a RF

• For (n+m) coefficients

• Test all possible combinations 
for numerator and denominator

     e.g., n+m=6 
     (1,5) (2,4) (3,3) (4,2) (5,1)

• If multiple solutions exists

- Keep the “most” stable
⇔ Lowest  condition number of A



Results:  BRDF fitting
๏ Tested on the MERL-MIT data base

• Data noisy
- at grazing angle
- at center of the specular lobe

• Isotropic BRDF

• 3D parametrization [Rusinkiewicz 1997]

๏ BRDF are approximated as 2D Rational Functions 

• 2D parametrization [Romeiro 2007]

ρ(vvv, lll) = ρ(θh, θd,φd)

ρ(vvv, lll) = ρ(θh, θd,φd) ≈ ρ(θh, θd)

3D Data
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Results: BRDF fitting
๏ Nickel Material  

๏ Very specular material

Maximum Relative Error (Blue Channel)Maximum Relative Error (Blue Channel)Maximum Relative Error (Blue Channel)

Rational
Non-linear
A&S BRDF

Polynomial

2.45 4.11 49 399

Memory FootprintMemory FootprintMemory Footprint

0.19KB 0.0625KB 0.19KB



Results: BRDF fitting
๏ Nickel Material  

๏ Very specular material

Rational Function Original 3D Data 

Mean Lab Error: 1.52



Results: BRDF Fitting Time
๏ Metallic-blue material

๏ 2D Fit for each color channel

• Grazing angles removed (> 78 degrees)

• 6308  data samples 

• Max relative error is 0.2

๏ Multi-threaded C++ algorithm

๏ Looking for all possible solutions up to 42 coefficients: 

• (1,41) (2,40) ... on i7-3820@3.60 GHz

๏ 22 seconds to find 2 solutions with 42 coefficients

mailto:i7-3820@3.60
mailto:i7-3820@3.60


Results:  GPU Frame rates
๏ Direct Implementation in CUDA on GTX 580

๏ Horner factorization (as done in C++)

๏ Image resolution: 1024x768 pixels  

๏ 256 directional light sources 

๏ 1K polygons Mesh

blue-metallic nickel chrome

#coefficients (48, 46, 32) (43, 49, 48) (101,61, 76)

fps 110 70 19

x3 + x2 + x+ 1 = ((x+ 1)x+ 1)x+ 1



Rational Functions Framework

๏ Rational Functions as representations for

• BRDF 

• Inverse CDF (for BRDF importance sampling)

๏ Approximation technique

• A priori error control

• Global convergence guaranteed

๏ New Estimator for Monte-Carlo Importance Sampling

• No probability density function (pdf) storage needed



Monte-Carlo Importance Sampling

๏ Generation of samples

• Inverse CDF to generate 

• Associated PDF 

๏ PDF proportional to BRDF scaled by cosine factor 

• Inverse of a Rational Function is hard too find automatically

• Tabulated approaches work well [Lawrence2004, Montes2008]

L(vvv) ≈ 1

K

K�

k=1

nnn · lllk
PDF(vvv|lllk)

ρ(lllk, vvv) L(lllk)

lllk
lllk

nnn · lllk



Importance Sampling with Rational Functions

1. Generate tabulated data for the BRDF × cosine 

1. 2D Table: 
2. 3D Table:

2. Approximate inverse CDFs with Rational Functions

3. Deduce the PDF from the inverse CDFs

�
θl = CDF−1(θv, µ) ≈ rnθ,mθ (θv, µ)

φl = CDF−1(θv, τ |θl) ≈ rnφ,mφ(θv, θl, τ)

�
θl = CDF−1(θv, µ)

φl = CDF−1(θv, τ |θl)



New Monte-Carlo Estimator

๏ Goal:  avoid fitting and storing the PDF

๏ Derivative of the inverse CDF 

• Equal  to 1.0/PDF

• Evaluated on the fly during rendering

L(vvv) ≈ 1

K

K�

k=1

nnn · lllk
PDF(vvv|lllk)

ρ(lllk, vvv) L(lllk)

L(vvv) ≈ 1

K

K�

k=1

αvvv(µk, τk) ρ(vvv, lllk) (nnn · lllk) L(lllk)

with αvvv(µ, τ) =
∂CDF−1

vvv

∂µ
(µ)

∂CDF−1
vvv

∂τ
(τ | θl) sin θl



(Inverse) CDFs fitting
CDF is

๏ Normalized Integral of the PDF 
➪ simpler than the PDF

๏ Algorithm should return a CDF
➪ Quadratic Problem modified:

• Boundary constraints

• Monotonicity constraints

• Symmetry constraints
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Boundary Constraints for CDF fitting

For 2D  inverse CDF For 3D inverse CDF

CDF−1(θv, µ=0) = 0

CDF−1(θv, µ=1) =
π

2

CDF−1(θv=0, θl, τ) = πτ

CDF−1(θv, θl=0, τ) = πτ



Boundary Constraints for CDF fitting

For 2D  inverse CDF For 3D inverse CDF

CDF−1(θv, µ=0) = 0

CDF−1(θv, µ=1) =
π

2

CDF−1(θv=0, θl, τ) = πτ

CDF−1(θv, θl=0, τ) = πτ

rnθ,mθ (θv, µ) =
π

2
µ+ µ(1− µ)

pnθ (θv, µ)

qmθ (θv, µ)

rnφ,mφ(θv, θl, τ) = π τ + τ(1− τ) θv θl
pnφ(θv, θl, τ)

qmφ(θv, θl, τ)

⇒ Embedded in the models:



Monotonicity Constraints for CDF fitting

0
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0.6
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0

0.5

1

1.5

µ

∂rn,m
∂xj

(xxx) � 0

• CDFs is monotonically increasing :



Monotonicity Constraints for CDF fitting

๏ Adding linear inequalities for each 
data sample:
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∂pn,m
∂xj

(xxxi) �
∂qn,m
∂xj

(xxxi) fi

∂pn,m
∂xj

(xxxi) � fi
∂qn,m
∂xj

(xxxi)

∂rn,m
∂xj

(xxx) � 0

• CDFs is monotonically increasing :



Results:  Nickel inverse CDFs
Rational Functions Tabulated Data

Variance 
(0.0017,0.0141,0.0156)
Mean Lab Error: 0.44

Variance 
(0.0025,0.0020,0.0022)



Results:  Chrome inverse CDFs
Rational Functions Tabulated Data

Variance 
(0.0701,0.0631,0.0937)
Mean Lab Error: 1.13

Variance 
(0.0077,0.0062,0.0095)



Results:  Global illumination
Rational Functions

Tabulated Data

BRDFs : 1.67KB
Inverse CDFs: 0.600KB
Mean Lab Error: 0.77

BRDFs: 480 KB
CDFs + PDFs: 30 MB



Conclusion
๏ Rational Functions Framework:

• Representation for BRDF and inverse CDF

• Associated Fitting Technique
- Global convergence
- A priori error control

• New Monte-Carlo estimator without PDF storage

๏ Limitations:

• Poles between data samples
- Happen for sparse data
- Very rare for the MERL-MIT data base 
- Solution: generate artificial samples with intervals

• No straightforward way to do Multiple Importance Sampling



Future Work
๏ Color Compression 

๏ Controllable Rational Functions for artists/users

• Separable diffuse, specular, fresnels effects

๏ Speed improvement for the fitting algorithm

๏ General Fitting Library

• Non-linear, linear and quadratic approaches

• C++ and Cuda

• Free and Open Source
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