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Rational BRDF: Supplemental Material

1 More on BRDF Approximation

Parametrization: (θh, θd,φd) vs. (θh, θd)

The most comprehensive and accurate database of measured
isotropic BRDF, known as the MERL-MIT BRDF database,
combines over 1 billion individual BRDF measurements gen-
erated by Matusik et al. [?]. The measured BRDF data are
available with a 90×90×180 angular sampling in (θh, θd,φd),
which represents a storage amount of 33 MB per material.

As noted by Romeiro et al. [1], projecting the isotropic
materials of the MERL-MIT database on the (θh, θd) sub-
space generates relatively few visual artefacts compared to
the ground-truth image obtained by using the whole 3D
(θh, θd,φd) parametrization. This projection naturally generates
90×90 clusters, each containing theoretically 180 reflectance
values. In practice, many clusters contain less than 180 values,
as many (θh, θd,φd) triplets generate viewing and/or lighting
directions that are located beneath the tangent plane.

We have analyzed the result of this clustering process by
computing mean and variance values of each individual
cluster, presented in Figure 1 for our four selected mate-
rials: beige-fabric (almost perfect lambertian reflection),
blue-metallic-paint (glossy reflection with strong chro-
matic behavior), nickel (specular reflection), chrome (almost
perfect mirror reflection).

For diffuse and glossy materials, the variance in each cluster
is always very low compared to the absolute magnitude of the
corresponding reflectance, whereas for specular and almost-
mirror materials, the variance increases. This can be explained
by mainly two reasons: first, the angular resolution may be-
come insufficient to accurately sample the reflectance behavior
of high-frequency materials, and second, these materials are
much more prone to measurement noise. Note that even for
low-frequency materials, acquisition noise can be observed at
grazing angles, which naturally increases the variance of the
corresponding clusters.

In such cases, filtering may be employed to reduce variance
before starting the fitting process. However, to avoid any
statistical bias, we have only performed data filtering within
each individual cluster, and not among neighboring clusters.
After having tested several averaging procedures to find a
representative sample for each cluster (arithmetic, geometric
or harmonic mean, root mean square, etc.), we have found
that taking the median reflectance value appears to be the
most robust choice, as it naturally removes outliers within the
cluster.

For glossy and specular materials, most interesting phenomena
are located on the isolines θh = 0 and θd = 0 as shown in

fabric-beige

blue-metallic-paint

nickel

chrome

Fig. 1. (left) Mean and (right) normalized variance values
obtained when projecting BRDF data from the original 3D
(θh, θd,φd) space into the 2D (θh, θd) subspace.

Figure 1. These two curves are shown in Figure 2, where the
data coming from all three color channels are presented.

As noted in the main paper, we have also observed that the
filtering operator involved by the 2D projection (using either
the mean or the median values of the cluster) sometimes
even improves the visual aspect of the material, by removing
some acquisition artefacts. As can be seen in Figure 3, when
rendering some materials from the MERL-MIT database with
the original 3D data, lens-flare-like visual artefacts can be
observed in the resulting images. This phenomenon remains
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present, even when removing the noisier data that are located
at grazing angles (> 80o), as recommended by several re-
searchers whom have worked on the MERL-MIT database in
the past. When rendering the same scene with the projected
2D data, these artefacts are totally removed.

Additional Visual Comparison

Figures 4 and 5 present additional comparisons with our
four selected MERL-MIT materials, by showing the visual
difference (presented as a difference image in the Lab color
space) between similar renderings obtained with either the
original 3D data, the projected 2D data, or the rational BRDF
fit. Figure 4 only uses one directional light source colinear
to the view direction, while Figure 5 uses 1024 directional
light sources sampled by importance from the surrounding
environment map.

2 More on CDF Approximation

A Brief Primer on Monte-Carlo Rendering

Over the years, Monte-Carlo-based techniques have become
the standard approach to generate realistic images of arbitrary
3D scenes in the context of global illumination. As the
convergence speed of such techniques is typically proportional
to the square root of the number of samples, it is critical
to exploit efficient variance reduction techniques, the most
common one being Importance Sampling (IS). The principle
of IS used in Monte-Carlo rendering is to perform a stochastic
evaluation of the rendering equation:

L(vvv) =

∫
ρ(vvv,lll) (nnn · lll) L(lll) dlll (1)

by defining an estimator that averages the contribution of K
random light directions lllk selected according to a conditional
Probability Density Function (PDF) p(lllk | vvv) = PDFvvv(lllk):

L(vvv) ≈
1
K

K∑
k=1

1
PDFvvv(lllk)

ρ(vvv,lllk) (nnn · lllk) L(lllk). (2)

When there is no a priori knowledge about the incident
lighting, the optimal choice for the PDF is to be proportional
to the BRDF multiplied by (nnn · lll) (i.e. the cosine of θl):

PDFvvv(lll) ∝ ρ(vvv,lll) (nnn · lll).

As lll is defined by its spherical coordinates, the PDF PDFvvv(lll)
is actually a bivariate function PDFvvv(θl,φl) which can be
decomposed as a product of a 1D PDF PDFvvv(θl) with a 1D
marginal PDF PDFvvv(φl | θl).

Each individual sample of the IS process for Monte-Carlo
rendering consists in generating a pair of uniform random
numbers (µ,τ) ∈ [0,1) and computing the corresponding vector
lll(θl,φl) by successively inverting the two Cumulative Distri-
bution Functions (CDF) corresponding to the pair of previous
PDFs:

θl = CDF−1
vvv (µ) and φl = CDF−1

vvv (τ | θl).

Direct Use of CDF−1

As recalled in the main paper, two different approaches have
been proposed in the past to obtain efficient evaluation of these
inverse CDFs: either use a specific family of CDFs which
allows a closed-form expression for its inverse function, or
perform an on-the-fly numerical inversion from a tabulated
version of the CDF. We propose here an innovative technique
intended to combine the strengths of both approaches. The idea
is to directly define a closed-form expression for the inverse
CDF, without preliminary analytical formulation of neither the
CDF nor the PDF. This offers several interesting features:

(a) With a well-chosen representation for the inverse CDF,
the generation of each sample light direction required by
the Monte-Carlo estimator can be done very efficiently,
whatever the complexity of the corresponding BRDF.

(b) Both the CDF and the inverse CDF are monotonic func-
tions, whereas the PDF may present many oscillations.
Thus the inverse CDF is usually much more accurately
approximated by a numerical process, compared to the
corresponding PDF.

(c) When the inverse CDF is derivable, there is no need
neither to store nor to compute the PDF, as one can derive
a Monte-Carlo estimator entirely based on the inverse
CDF (see below).

About Feature (a): Starting from a measured BRDF scaled by
nnn ·lll, we create a tabulated version for each of the inverse CDFs:
a 1D table for CDF−1

vvv (µ) and a 2D table for CDF−1
vvv (τ | θl).

Then, as we did for BRDFs, we use the rational interval
interpolation approach [2] to get a bivariate RF rm,n(µ) that
approximates CDF−1

vvv (µ) and a trivariate RF rm,n(τ | θl) that
approximates CDF−1

vvv (τ | θl).

As a result, generating each random vector lllk required by
the Monte-Carlo estimator can be done very efficiently as it
involves only the computation of a pair of low-degree rational
functions. Moreover, this is always done in constant time,
which is not the case with approaches based on numerical
inversion of tabulated CDFs.

About Feature (b): In the main paper, we have presented two
sample plots, respectively of PDFvvv(φl | θl) and CDF−1

vvv (τ | θl),
for our four selected MERL-MIT materials at θv = π/4.
Figures 6 to 8 present a more complete version of these
plots, showing the variation when θv goes from 0 to π/2. As
can be observed, the shapes of the inverse CDF are always
much simpler than of their corresponding PDF. This strongly
supports our choice to fit inverse CDFs instead of PDFs. As
already mentioned, the steep variations present in most plots
can be accurately managed by the Vertical Segments fitting
process [2].

About Feature (c): Starting from the inverse CDF, the cor-
responding PDF can be easily obtained using the following
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equations (as demonstrated in the main paper):

∂CDF−1
vvv

∂µ
(µ) =

1
PDFvvv(θl)

;
∂CDF−1

vvv

∂τ
(τ | θl) =

1
PDFvvv(φl | θl) sinθl

.

(3)
A nice side-effect of this latter equation is that we can also
replace the PDF in the standard Monte-Carlo estimator (see
Equation 2) of the rendering equation, to get a new estimator
that is directly based on the inverse CDF:

L(vvv) ≈
1
K

K∑
k=1

αvvv(µk, τk) ρ(vvv,hhhk) (nnn · lllk) L(lllk) (4)

with

αvvv(µ,τ) = ∂µCDF−1
vvv (µ) ∂τCDF−1

vvv (τ | θl) sinθl .

Moreover as inverse CDFs are defined as rational functions
R(x) = P(x)/Q(x), their partial derivatives can be trivially
obtained by:

∂R
∂x

(x) =

∂P
∂x (x) − R(x) ∂Q

∂x (x)
Q(x)

.

This offers very compact storage, as we can analytically define
the partial derivatives of polynomials ∂P

x (x) and ∂Q
x (x) on-the-

fly. However, for faster processing, the coefficients of these
new polynomials may also be precomputed and stored with
an offline process.

References

[1] F. Romeiro, Y. Vasilyev, and T. Zickler, “Passive reflectometry,” in Proc.
Eur. Conf. on Comp. Vision, 2008, pp. 859–872.

[2] O. Salazar Celis, A. Cuyt, and B. Verdonk, “Rational approximation of
vertical segments,” Numerical Algorithms, vol. 45, pp. 375–388, 2007.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXXX, NO. XXXXXX, XXX 20XX 4

blue-metallic-paint nickel chrome
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Fig. 2. Wavelength-dependent BRDFs of our four selected MERL-MIT materials, plotted for θh = 0 (top) or θd = 0 (bottom).
Noise is typically located near grazing angles (θd ≥ 80o = 1.39 radians) for all materials, but its amplitude depends on the
specularity. Note the specific chromatic behavior of the blue-metallic-paint material. As the decrease is very steep for
nickel and chrome, the plots on the bottom row have been clamped for better illustration.
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chrome-steel

grease-covered-steel

steel

3D (θh, θd ,φd) 3D without θh|d > 80o 2D (θh, θd)

Fig. 3. Lens-flare-like acquisition artefacts are particularly visible on different MERL-MIT materials when rendering with a
small set of directional light sources.
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Original data in (θh, θd ,φd) Projected data in (θh, θd) Rational BRDF fit in (θh, θd)

33 MB 190 KB (183:1) 1.15 KB (34170:1)

Mean Lab error: 1.00 (0.21%) Mean Lab error: 1.14 (0.24%)
Max Lab error: 5.18 (1.09%) Max Lab error: 5.03 (1.06%)

33 MB 190 KB (183:1) 0.85 KB (40500:1)

Mean Lab error: 0.38 (0.08%) Mean Lab error: 0.76 (0.16%)
Max Lab error: 1.80 (0.38%) Max Lab error: 2.66 (0.56%)

Fig. 4. blue-metallic-paint (top) and fabric-beige (bottom) rendered with one directional light colinear with the view
direction.
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Original data in (θh, θd ,φd) Projected data in (θh, θd) Rational BRDF fit in (θh, θd)

33 MB 190 KB (183:1) 1.15 KB (34170:1)

Mean Lab error: 1.38 (0.29%) Mean Lab error: 1.33 (0.28%)
Max Lab error: 6.51 (1.37%) Max Lab error: 5.36 (1.13%)

33 MB 190 KB (183:1) 0.85 KB (40500:1)

Mean Lab error: 1.00 (0.21%) Mean Lab error: 1.38 (0.29%)
Max Lab error: 4.65 (0.98%) Max Lab error: 9.07 (1.91%)

Fig. 5. blue-metallic-paint (top) and fabric-beige (bottom) rendered with 1024 lights selected from the surrounding
environment map.
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beige-fabric blue-metallic-paint nickel chrome

Fig. 6. Visualization of 2D PDFvvv(θl) for different BRDFs.

beige-fabric blue-metallic-paint nickel chrome

Fig. 7. Visualization of the slice θv = 40◦ for the 3D PDFvvv(φl | θl) of different BRDFs.
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beige-fabric blue-metallic-paint nickel chrome

θv = 0

θv = 20

θv = 40

θv = 60

θv = 80

Fig. 8. Visualization of slices for different values of θv of the 3D CDF−1
v (φl | θl, τ) for different BRDFs.


