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Motivation

• Realistic rendering and light transport

• Reflected radiance [Kajiya1986]

• Monte Carlo Estimation
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Convergence

• Variance
– Estimation of the convergence

– Estimation of the noise 
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Sampling Techniques

• Light-based Importance Sampling 

• BRDF-based Importance Sampling

• Multiple Importance Sampling
– [Veach98] [Pajot11] [Georgiev12]
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• Heuristic strategies for weights [Veach98]

– Balance Heuristic

– Power Heuristic

– Maximum Heuristic

– α-max heuristic [Georgiev12]

• The problem: how to compute  

•          means
–Balancing scheme:

Previous Work
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The problem

• Good         for each pixel  
– Not enough knowledge about sampling strategy

– No prior knowledge about the scene

– Previously,                       (default balancing)
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Contribution

• Good balancing for each pixel [per-pixel         ]
– Without prior knowledge about 
• Scene characteristics
• Sampling strategies 

• Lighter solution than [Pajot11] 
– Low computation cost

– No additional storage

– Independent of any specific techniques
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Main Idea

• Minimize the variance to get
– Small set of samples
• with balance heuristic

• with cheap and approximated minimization

• Use the             for the rest of the samples

• Keep the samples for the Minimization
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Minimization

• Minimize the sampling variance.

• Minimize the

• Taylor Expansion at 
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Second-order Approximation

• Second-order Taylor Expansion
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Third-order Approximation

• No extreme value in [0,1] 
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Fourth-order Approximation

• Why not 4th-order?

PG PG 
20132013



Estimation of balancing

• May converge slowly 

• Non-converged           still gives good hint

• Advantage

– Estimate          and          at the same time
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How much is enough?

• The convergence of the minimization
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Results

• Variance comparison
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Method sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 Sc10 Sc11

Balance 0.5 1 1 1 1 1 1 1 1 1 1 1
Power 0.5 1.1 1.0 1.0 1.1 1.1 1.2 1.1 1.1 1.0 1.1 1.1
Max 0.5 1.4 1.1 1.0 1.3 1.3 1.3 1.7 1.4 1.0 1.5 1.4
Ours 0.470.47 0.620.62 0.360.36 0.530.53 0.660.66 0.390.39 0.880.88 0.770.77 0.380.38 0.750.75 0.820.82

The smaller the better



Results

• Different          for each pixel 
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Coherent with the original paper [Clarberg08]

l                                          bspecular dragon + diffuse ground



Results

• Efficiency comparison   [Veach98]

–Variance & Time
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Method sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 Sc10 Sc11

Balance 
0.5

1 1 1 1 1 1 1 1 1 1 1

Power 0.5 0.89 1.0 0.99 0.90 0.94 0.89 0.94 0.94 1.0 0.93 0.93

Max 0.5 0.72 0.94 0.99 0.78 0.80 0.80 0.63 0.73 1.0 0.69 0.76

Ours 1.281.28 1.171.17 1.321.32 1.301.30 1.161.16 1.321.32 1.031.03 1.221.22 1.441.44 1.111.11 1.151.15

The bigger the better

Ours: 128 samples for minimization, 128 samples for using the p(S)

Others: 256 samples for rendering using p(S) = 0.5



Limitation

• Average variance reduction only
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Conclusion

• Contribution
– Variance reduction without prior knowledge

– Efficient and simple solution

– Good balancing for most of pixels

• Future work
– Variance reduction for all the pixels

– More sampling strategies support

– Multi-pass sampling techniques integration
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Thank you for your attention
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