Second-Order Approximation for Variance Reduction in Multiple Importance Sampling

Heqi Lu Romain Pacanowski Xavier Granier

Motivation

• Realistic rendering and light transport

ω

PG

2013

X

 $\tilde{L}_N = \frac{1}{N} \sum_{i=1}^{N} \tilde{L}(i)$

• Reflected radiance [Kajiya1986]

$$L = \int f(x, o, \omega)$$

• Monte Carlo Estimation

Convergence

- Variance
 - Estimation of the convergence
 - Estimation of the noise

Sampling Techniques

- Light-based Importance Sampling
- BRDF-based Importance Sampling
- Multiple Importance Sampling
 - [Veach98] [Pajot11] [Georgiev12]

$$\tilde{L}_{(N_l+N_b)} = \frac{1}{N_l} \sum_{n=1}^{N_l} w_l(n) \tilde{L}_l(n) + \frac{1}{N_b} \sum_{n=1}^{N_b} w_b(n) \tilde{L}_b(n)$$
$$w_l(n) + w_b(n) = 1$$
$$w_l(n) > 0 \quad w_b(n) > 0$$
PG

Previous Work

- Heuristic strategies for weights [Veach98] $w_l(n) = \frac{\rho_l(n)}{\rho_b(n) + \rho_l(n)}$
 - Balance Heuristic
 - Power Heuristic

-N

Aaximum Heuristic
$$ho_s(n) = p(s)p_s(n)$$

- $-\alpha$ -max heuristic [Georgiev12]
- The problem: how to compute p(s)
 - means
 - -Balancing scheme:

$$p(l):p(b)=N_l:N_b$$

The problem

- Good p(s) for each pixel
 - Not enough knowledge about sampling strategy
 - No prior knowledge about the scene
 - Previously, p(s) = 0.5 (default balancing)

PG

Contribution

• Good balancing for each pixel [per-pixel p(s)]

- Without prior knowledge about

- Scene characteristics
- Sampling strategies
- Lighter solution than [Pajot11]
 - Low computation cost
 - No additional storage
 - Independent of any specific techniques

Main Idea

- Minimize the variance to get p(s)
 - Small set of samples N_m
 - with balance heuristic
 - with cheap and approximated minimization
- Use the Use the p(s) for the rest of the samples
 Keep the samples for the Minimization

$$\tilde{L}_N = \frac{N_m}{N} \tilde{L}_{N_m} + \frac{N_n}{N} \tilde{L}_{N_n}$$

Minimization

• Minimize the sampling variance.

 $V[\tilde{L}_N] = \frac{1}{N} V[\tilde{L}_1] \qquad V[\tilde{L}_1] = E[\tilde{L}_1^2] - L^2$

- Minimize the $E[\tilde{L}_1^2] \iff \frac{d}{d\rho(s)}E[\tilde{L}_1^2] = 0$
- Taylor Expansion at p(s) = 0.5

$$\frac{d}{dp(s)}E[\tilde{L}_1^2] \approx \sum_{d=0}^{D} (-1)^d (2p(s) - 1)^d \int \frac{f(x, o, \omega)}{(p_l + p_b)^{(d+1)}}$$

Second-order Approximation

• Second-order Taylor Expansion

PG 2013

Third-order Approximation

• No extreme value in [0,1]

Fourth-order Approximation

Estimation of balancing

• May converge slowly

$$\frac{d}{dp(s)}E[\tilde{L}_1^2] \approx \sum_{d=0}^{D} (-1)^d (2p(s) - 1)^d \int \frac{f(x, o, \omega)}{(p_l + p_b)^{(d+1)}}$$

$$L = \int f(x, o, \omega)$$

- p(s) still gives good hint Non-converged
- Advantage
 - Estimate and at the same time \tilde{L}_{N_m} p(s)

PG

How much is enough?

• The convergence of the minimization

Results

Variance comparison									The smaller the better		
Method	sc1	sc2	sc3	sc4	sc5	sc6	sc7	sc8	sc9	Sc10	Sc11
Balance 0.5	1	1	1	1	1	1	1	1	1	1	1
Power 0.5	1.1	1.0	1.0	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.1
Max 0.5	1.4	1.1	1.0	1.3	1.3	1.3	1.7	1.4	1.0	1.5	1.4
Ours	0.47	0.62	0.36	0.53	0.66	0.39	0.88	0.77	0.38	0.75	0.82

Results

• Different p(s) for each pixel

specular dragon + diffuse ground

Coherent with the original paper [Clarberg08]

PG 2013

Results

Efficiency comparison [Veach98]
 –Variance & Time

$$\epsilon = \frac{1}{V[\tilde{L}_N]T[\tilde{L}_N]}$$

The bigger the better

PG

2013

Method	sc1	sc2	sc3	sc4	sc5	sc6	sc7	sc8	sc9	Sc10	Sc11
Balance 0.5	1	1	1	1	1	1	1	1	1	1	1
Power 0.5	0.89	1.0	0.99	0.90	0.94	0.89	0.94	0.94	1.0	0.93	0.93
Max 0.5	0.72	0.94	0.99	0.78	0.80	0.80	0.63	0.73	1.0	0.69	0.76
Ours	1.28	1.17	1.32	1.30	1.16	1.32	1.03	1.22	1.44	1.11	1.15

Ours: 128 samples for minimization, 128 samples for using the p(S)

Others: 256 samples for rendering using p(S) = 0.5

Limitation

• Average variance reduction only

PG

Conclusion

- Contribution
 - Variance reduction without prior knowledge
 - Efficient and simple solution
 - Good balancing for most of pixels
- Future work
 - Variance reduction for all the pixels
 - More sampling strategies support
 - Multi-pass sampling techniques integration

PG

Thank you for your attention