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1 Different derivations

1.1 From Equation 2 to Equation 3

To estimate the integral of a function L =
∫

f(ω)dω us-
ing random samples {ωi=B|L,n=1..Ni } from two PDFs pB (for
BRDF-based strategy to generate NB samples) and pL (for
light-based strategy to generate NL samples), Veach [VG95]
has introduced the MIS estimator
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where wi(ωi,n) is a weighting function. For balance heuristic,

wi
(
ωi,n

)
=

Ni pi
(
ωi,n

)
NBpB

(
ωi,n

)
+ NLpL

(
ωi,n

) .
By denoting N = NB + NL (N is the total number of samples)
and NB = αN,
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Introducing everything in Equation 2 leads to
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A simple change of indices from {(B,n = 1..αN)} and
{(L,n = 1..(1−α) N)} to {i = 1..N} leads to the Defensive Im-
portance Sampling (DIS) [Hes95] formula

LN,α =
1
N

N∑
i=1

f (ωi)
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. (3)

1.2 Computing and Approximating E
[
L2

1,α

]
Starting from DIS formulation in Equation 3, we have

L1,α =
f (ω1)

αpB (ω1) + (1−α)pL (ω1)
.

Since in the case of DIS, the PDF corresponding to the sam-
pling strategy is pα(ω) = αpB(ω) + (1−α)pL(ω), we get
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It is equivalent to
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In the following, for legibility reasons, we will omit ω.

Introducing p̄ = (pB +pL)/2 and ∆p = (pB−pL)/2, we have

pα = p̄ + (2α−1) ∆p .

The Taylor expansion of the D-differentiable rational 1/pα
is given by

1
pα
'

D∑
d=0
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Therefore, we get the final Dth order Taylor expansion
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1.3 Minimization of the 2nd order approximation
To minimize E
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, we have to compute α such as
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Using the second-order approximation
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This approximation is equal to zero when
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1.4 Theoretical Accuracy for Two Cases
Since it is based on an approximation, our approach has

limited accuracy. We estimate it for two cases: perfect mirror
BRDF where α has to be 1 and Dirac light source where α
has to be 0.

For highly specular cases, BRDFs are zero in almost ev-
ery direction excepted in a small direction domain. And the
shading function follows the same behavior. In this domain,
pB(ω) is thus very large, therefore, ∆p and p̄ might be ap-
proximated simply by pB.

Consequently
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Finally
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2
⇔ α = 3/4.

Reciprocally, the same demonstration for very concen-
trated light source leads to

2α−1 = -
1
2
⇔ α = 1/4.

1.5 Theoretical Variance Reduction
In this section, we denote pα = αpL + (1−α)pB and p1/2 =

(pL + pB)/2. With such a notation the difference of variance
∆N is expressed as
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. In the following, we will fo-

cus on variance reduction expressed by ∆1. We have
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Since we assume unbiased sampling for all α, we have
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Factorization leads to
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By taking the absolute value
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to have an exact solution. However, we can provide a theo-
retical and conservative upper bound. For this purpose, we
notice that
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Scene 3 Scene 4 Scene 5
Diffuse BRDFs Diffuse BRDFs Highly specular BRDF

Three area light sources High-frequency environment map High-frequency environment map
+ 1 point light source

Scene 6 Scene 7 Scene 8
Diffuse BRDFs Glossy BRDF Mirror BRDF

Area light source Low-frequency environment map High-frequency environment map
+ 1 point light source

Scene 9 Scene 10 Scene 11
Glossy BRDFs and complex visibility Diffuse BRDFs and complex visibility Measured glossy BRDFs

Low-frequency environment map Low-frequency environment map High-frequency environment map
+ 1 point and 1 directional light sources

Figure 1: Our test scenes, ranging from diffuse (scenes 3, 4 and 6) to specular (scenes 8 and 2) materials including complex
visibility (scene 10) with different types of illumination such as area light sources (scenes 1, 3 and 6) and environment maps.
Since only one sample is required for point and directional light sources, their contribution are added separately and we exclude
them from variance computation.
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Figure 2: Effect of clamping α for each scene. The y-axis
represents the variance for LN,α, relatively to the best vari-
ance (cf. Figure 7). The x-axis represents the size of an in-
terval centered at 1/2 that restricts the value of α. When the
size if the validity domain is equal to zero, this corresponds
to the default balance heuristic. For each scene, the number
of samples per light source to estimate α is set to M = 128
and the one to compute the variance to N = 256.

Figure 3: Plot of the relative variance for V[L1,α] (y-axis),
with a fixed number of samples M = 128 to estimate α for dif-
ferent number of samples N (x-axis). The y-axis represents
the variance divided by the variance obtained when com-
puting α with M = 4096. When the number of samples N
increases, more samples benefit from our integrated estima-
tion (cf. Equation 6 in the paper) and therefore the variance
of L1,α is also reduced.

2 Clamping interval for α
Figure 2 shows the effect of clamping α for each test

scene. As explained in the paper, this experiment confirms
two facts. First, the second-order approximation is not suf-
ficient to capture some variance oscillations in the interval
[0,1] since clamping improves the results. Second, it also
confirms that our estimation still provide a good hint of what
is the dominant strategy. It also justifies our clamping of α
to [0.025,0.975] for all our results.

Figure 4: Plot of the relative variance for V[LN,α] (y-axis),
with a fixed number of samples M = 128 to estimate α for
different number of samples N (x-axis). The y-axis repre-
sents the relative variance for LN,α: V(LN,α)/V(LN=128,α).
Our method converges faster than default balance heuristic
when increasing number of samples N for shading.

3 More Variance Analysis

As illustrated in Figure 3, for a fixed number of samples
M for α estimation, increasing the number of samples N for
shading will make more and more samples benefit from our
method. Therefore, the sampling variance V[L1,α] also de-
creases. Note that, because of the low number of samples
M, the quality of α cannot be always as good as the prepro-
cessed one, which is computed with M = 4096. However,
a low-quality α value still helps reducing the sampling vari-
ance. As shown in Figure 4, with the same conditions of Fig-
ure 3, the variance of LN,α also benefits from the sampling
variance. For a given value of α, V[L1,α] is fixed and our
method converges faster than the default balance heuristic.
This illustrated by the fact that the lines of our method are
all below the black one which represents the balance heuris-
tic.

4 Equal Time Comparisons

In order to visualize the efficiency of our method, we re-
port equal time comparisons for different test scenes (cf. Fig-
ures 5 and 6). These results are generated by adjusting the
number of samples per light source for the balance heuristic
in order to match the rendering time of our method when us-
ing N = 256 samples per light source (cf. Equation 7 in the
paper with M = 128). Our α estimation changes the weights
of using different sampling strategies allowing to more sam-
ples for the same rendering time (Scenes 8 and 11). Al-
though, our method requires less samples for Scenes 1,2 and
9, our method still gives better results. Especially in shad-
ows and highlights where we have less noise. The estimator
variance V[LN,α] is reported here, rather than the sampling
variance V[L1,α], since the latter one is not impacted by the
number of samples N.

© 2013 The Author(s)
Computer Graphics Forum© 2013 The Eurographics Association and John Wiley & Sons Ltd



H. Lu, R. Pacanowski & X. Granier / Second-Order Approximation for Variance Reduction in MIS

Default Balance Heuristic Our Method Reference Solution
Sc

en
e

1

Mean Lab error: 0.134 Mean Lab error: 0.13
Var: 0.0034 @ 268 samples Var: 0.0026 @ 256 samples

Sc
en

e
2

Mean Lab error: 0.801 Mean Lab error: 0.78
Var: 0.018 @ 264 samples Var: 0.015 @ 256 samples

Sc
en

e
11

Mean Lab error: 1.57 Mean Lab error: 1.51
Var: 0.00022 @ 248 samples Var: 0.00020 @ 256 samples

Figure 5: Close-up views for Scenes 1, 2 and 11. Equal time comparisons between (Left) balance heuristic and (Center) our
method against (Right) a reference solution computed with 32768 samples per light source. For each scene we report the mean
Lab error, the estimator variance V[LN,α] and the number of samples per light source for the full image shown in Figure 1.

Figure 7: Number of samples M to estimate α per scene. The
y-axis represents the variance for LN,α (N = 256), relatively
to the best variance obtained by our technique with different
value of M for a given scene, thus illustrates the convergence
of α estimation.

5 Other results
5.1 Per-pixel α values

Per-pixel α values (cf. Figures 8 and 9) are presented as
RGB colors, the RGB color for each pixel is computed as:

(R,G,B) =

(
α

max(α,1−α)
,

1−α
max(α,1−α)

,0
)

where the perfect red means samples are all selected from
light sources, the perfect green means from BRDFs, and the
perfect yellow means the classical half-half strategy.

5.1.1 Per-pixel α values for Each Light Source

The α value is computed for each light source and can thus
be also visualized separately. We illustrate this feature in
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Default Balance Heuristic Our Method Reference Solution
Sc

en
e

8

Mean Lab error: 1.21 Mean Lab error: 1.15
Var: 0.00017 @ 248 samples Var: 0.00014 @ 256 samples

Sc
en

e
9

Mean Lab error: 0.45 Mean Lab error: 0.44
Var: 0.00093 @ 270 samples Var: 0.00067 @ 256 samples

Sc
en

e
10

Mean Lab error: 1.65 Mean Lab error: 1.60
Var: 0.0016 @ 256 samples Var: 0.0014 @ 256 samples

Figure 6: Close-up views for Scenes 8 to 10. Equal time comparisons between (Left) balance heuristic and (Center) our method
against (Right) a reference solution computed with 32768 samples per light source. For each scene we report the mean Lab
error, the estimator variance V[LN,α] and the number of samples per light source for the full image shown in Figure 1.

Figure 9 on scene 1. It clearly shows that the larger the light
source is and the closer it is to a glossy BRDF, the more
samples from BRDF will be used.

5.2 Lab Difference Images

Figure 10 and Figure 11 present, for each scene, Lab
difference images between our balancing method and their
corresponding reference solution. Each Lab image is com-
puted from an LDR image obtained after applying the tone-
mapping operator (gamma correction) to the corresponding
original HDR image.
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Method
Scene

1 2 3 4 5 6 7 8 9 10 11
BRDF 67.3 4597 24.14 0.294 0.469 1.260 5.39 2.070 0.0198 139.75 0.378
Light 0.47 2.56 0.005 0.014 4.131 0.088 61.7 0.036 118.20 0.776 0.127

Balanced heuristic 0.90 4.76 0.096 0.027 0.410 0.120 5.76 0.043 0.250 0.402 0.055
Power heuristic 0.99 4.87 0.097 0.030 0.450 0.138 6.42 0.046 0.255 0.440 0.059

Maximum heuristic 1.24 5.11 0.097 0.035 0.550 0.157 9.78 0.061 0.256 0.618 0.075
Preprocessed α 0.42 2.95 0.035 0.016 0.27 0.047 5.09 0.033 0.095 0.301 0.045

Table 1: Comparisons, for each scene, of different balancing methods in terms of average sampling variance. The average
variances are computed over all the pixels using the same number of samples N = 256 for each light source.

Method
Scene

1 2 3 4 5 6 7 8 9 10 11

Va
r. cf. Table 1

Integrated estimation of α 0.66 3.88 0.065 0.022 0.35 0.086 5.68 0.037 0.1700 0.359 0.051

L
ab

er
ro

r

BRDF 14.9 6.5 10.5 2.80 1.10 22.9 2.00 3.85 0.36 5.26 3.38
Light 0.14 1.11 0.25 0.78 7.50 0.23 3.60 1.16 15.9 2.00 2.25

Balance heuristic 0.14 0.81 0.31 0.91 0.77 0.28 1.04 1.21 0.47 1.65 1.54
Power heuristic 0.11 0.83 0.31 0.93 0.78 0.28 1.06 1.22 0.46 1.70 1.59

Maximum heuristic 0.12 0.95 0.31 0.99 0.85 0.28 1.30 1.37 0.45 1.98 1.71
Integrated estimation of α 0.13 0.78 0.29 0.86 0.74 0.26 1.02 1.15 0.44 1.60 1.51

Ti
m

e
(s

ec
.)

BRDF 158.6 138.1 40.6 55.1 33.7 16.9 59.1 36.5 49.2 354 91.0
Light 299.7 102.8 147.4 41.8 18.6 33.8 41.7 34.2 27.1 178 53.0

Balance heuristic 237.7 123.5 95.5 48.9 28.0 25.5 52.0 36.2 40.0 281 74.0
Power heuristic 239.9 122.3 95.7 48.8 27.1 24.9 49.9 35.9 39.2 275 74.0

Maximum heuristic 239.0 121.6 95.4 48.1 26.0 24.5 49.5 34.9 38.5 264 71.1
Integrated estimation of α 250.8 128.3 106.9 45.8 28.3 26.9 51.1 34.5 40.9 281 72.0

E
ffi

ci
en

cy

BRDF 0.0001 0.0000 0.0010 0.0617 0.0633 0.0470 0.0031 0.0132 1.0265 0.0000 0.0291
Light 0.0071 0.0038 1.3569 1.7088 0.0130 0.3362 0.0004 0.8122 0.0003 0.0072 0.1486

Balance heuristic 0.0047 0.0017 0.1091 0.7574 0.0871 0.3268 0.0033 0.6424 0.1000 0.0089 0.2457
Power heuristic 0.0042 0.0017 0.1077 0.6831 0.0820 0.2910 0.0031 0.6055 0.1000 0.0083 0.2290

Maximum heuristic 0.0034 0.0016 0.1081 0.5940 0.0699 0.2600 0.0021 0.4697 0.1015 0.0061 0.1875
Integrated estimation of α 0.0060 0.0020 0.1439 0.9925 0.1010 0.4323 0.0034 0.7834 0.1438 0.0099 0.2723

Table 2: Average variance and Lab error, rendering time and efficiency for each scene and for different balancing methods.
We use N = 256 samples per light source for each method. Integrated estimation of α refers to the estimator introduced in
Equation 7 in the paper where we use half of the total samples to evaluate α (M = 128) and the remaining half to evaluate the
radiance with the estimated α. The Lab error is computed against the reference solution. The efficiency [Vea98] of each strategy
is computed as the inverse of the product of the variance and the rendering time.
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Our Result α-Balance Map Our Result α-Balance Map

Figure 8: Per-pixel α values. For each scene we show (Left) our result and (Right) the αbalance map, which represents how
the α value varies spatially.
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Combined α Light source 1 Light source 2

Front light source Light source 3 Light source 4

Figure 9: (Scene 1). Per-pixel α value for each of the five light sources. One light source is not directly visible since it is facing
the whole scene.
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Balance Heuristic Power Heuristic Max Heuristic Our Method
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Figure 10: Lab difference images computed against a reference solution rendered with 32768 samples per light source.
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Balance Heuristic Power Heuristic Max Heuristic Our Method
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Figure 11: Lab difference images computed against a reference solution rendered with 32768 samples per light source.
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