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Low to high glossy materials with five diffuse area light sources Glossy materials with high-frequency environment map lighting
Figure 1: Our per-pixel second-order approximation of the variance leads to a new and automatic approach for balancing
the number of samples between two different sampling strategies. Except for light sources, the inset images show the sample
distribution for each pixel. The yellow corresponds to the default balance heuristic strategy [Vea98]. Compared to the balance
heuristic, the variance is reduced by (Left) 26% and (Right) 20% in average (14% and 11% for the standard deviation).

Abstract
Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance
Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between dif-
ferent strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any
scene characteristics knowledge, the default choice is to select the same number of samples from different strate-
gies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce
a second-order approximation of variance for balance heuristic. Based on this approximation, we introduce an
automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We
demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity),
our method actually reduces variance in average. We also propose an implementation with low overhead for offline
and GPU applications. We hope that this approach will help developing new balancing strategies.

1 Motivation and Previous Work
The computation of physically realistic shading [Kaj86]

for a position p viewed from direction o relies mostly on the
estimation of the following integral:

L(p→ o) =

∫
Ω

ρ(o,ω) cosθV(p,ω) L(ω→ p)dω

where Ω is the unit hemisphere, ρ(o,ω) is the reflectance
function, cosθ is the cosine factor, and L(ω→ p) represents
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the radiance coming from direction ω. For the sake of sim-
plicity, we denote the whole integrand by

f(p, o,ω) = ρ(o,ω) cosθV(p,ω) L(ω→ p).

The main trend to compute such integral is to use Monte
Carlo methods where the estimation of a reflected radiance
L(p→ o) is computed from a set of N samples:

L(p→ o) ≈
1
N

N∑
n=1

f(p, o,ωn)
p(ωn)

(1)

In Equation (1), p(ωn) is a Probability Density Function
(PDF), the closer it matches the numerator of the Equation
the lower the number of samples N will be required to con-
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verge to the solution. Although the best matching is reached
when p is proportional to f(p, o,ω), it is hard to obtain an
exact integrable analytical form in most cases.

A lot of work has been dedicated to derive an efficient
sampling strategy for each component, or a subset, of the
function f(p, o,ω) based on light [ODJ04,HSK∗05,EKÖ12],
or BRDF [AP07] or BRDF corrected by the cosine fac-
tor [PCS∗12]. For visibility, since no analytical form exists,
precomputation [GH06] is generally required. In general, a
product cannot be accurately approximated with only one of
its components.

A better PDF can be obtained by an approximation of the
whole integrand. Bidirectional Importance Sampling tech-
niques [BGH05, TCE05] approximate this product on a pre-
liminary sampling (either BRDF-based or light-based): a
weight is computed for each sample according to the shad-
ing functions. Then, a subset of these samples is selected by
using these weights. A potential problem is due to the over-
sampling needed to perform the second-step (resampling):
some generated samples will not be used for the final estima-
tor. Wang et al. [WA09] improved the techniques by combin-
ing lightcuts [WFA∗05] with a BRDF-based sampling to re-
duce the initial bias caused by the initial distribution. Rous-
selle et al. [RCL∗08] have extended these techniques by tak-
ing into account visibility.

More generally, precomputing conservative approxima-
tions of lighting environment and BRDF helps computing
dynamically PDFs based on the product of the lighting and
BRDF. For this purpose, Cline et al. [CETC06] split the en-
vironment map according to BRDF peaks computed from
BRDF-based importance sampling. To be more conserva-
tive, Clarberg et al. [CAM08b] use a wavelet representa-
tion of the environment map, a wavelet approximation of
the BRDF, and a fast computation of their product. These
techniques require dedicated representations to support a
per-pixel dynamic computation of the importance sampling
structure. Although photon maps can also be used (e.g.,
[PBPP11]), in this paper we focus on a technique that does
not required any additional storage.

Compared to these approaches, Multiple Importance
Sampling (MIS) [Vea98] is still a simple and efficient way
to combine different sampling techniques by first balanc-
ing the number of samples between the different strategies
and second combining them into a weighted estimator (bal-
ance, power, maximum heuristics [Vea98] or α-max heuris-
tic [GKPS12]). Despite the average improvement over the
use of a unique strategy, the optimal balancing may differ
from pixel to pixel in an unpredictable way [OZ00]. To re-
duce this problem, Pajot et al. [PBPP11] have introduced
the empirical notion of representativity that estimates the
concentration information for BRDF or photon maps. Intu-
itively, narrow lobe-shaped PDFs will request more samples.
General guidelines to develop new representativity functions
are introduced, but problems may occur when multiple con-
centrations exist such as in environment maps. Therefore,

our work differs on the following points. First, we do not
need to introduce a dedicated representativity function when
introducing a new sampling strategy. Second, we do not
make any assumption on the shape of the PDFs, which is
difficult to achieve on generic environment maps. Third, our
balancing is completely done per-pixel and takes into ac-
count the local shading configuration.

Contributions In this paper, we introduce a second-order
approximation for variance reduction when using MIS ap-
proaches. We demonstrate that our approach leads to a new
and automatic way to distribute samples between different
strategies. We show that for our test scenes and for direct
lighting, our approximation also improves the average vari-
ance, validating its accuracy. We also demonstrate that we
can use our approach for offline rendering with a better effi-
ciency compared to previous balancing techniques. Its accu-
racy also permits to visualize what should be the dominant
strategy for future investigations.

2 Theoretical Variance Reduction
To estimate the integral of a function L =

∫
f(ω)dω us-

ing random samples {ωi=B|L,n=1..Ni } from two PDFs pB (for
BRDF-based strategy to generate NB samples) and pL (for
light-based strategy to generate NL samples), Veach [Vea98]
has introduced the following MIS primary estimator

LNL,NB =
∑

i=B|L

1
Ni

Ni∑
n=1

wi
(
ωi,n

) f
(
ωi,n

)
pi

(
ωi,n

) (2)

where wi(ωi,n) is a weighting function. For balance heuristic,

wi
(
ωi,n

)
=

Ni pi
(
ωi,n

)
NBpB

(
ωi,n

)
+ NLpL

(
ωi,n

) .
By denoting N = NB + NL (N is the total number of samples)
with NB = αN, NL = (1−α)N, α ∈ [0,1] and as pointed by
Georgiev et al. [GKPS12], this estimator is equivalent to the
secondary estimator

LN,α =
1
N

N∑
n=1

f (ωn)
αpB (ωn) + (1−α)pL (ωn)

. (3)

This is an estimator for the Defensive Importance Sampling
strategy [Hes95] where a set of N samples ωn is generated
according to αpB +(1−α)pL. In this paper, we focus on min-
imizing the variance of this estimator to improve the sam-
pling quality.

2.1 Second-Order Approximation of Variance
Finding the best α that minimizes the variance of LN,α

(i.e., V
[
LN,α

]
) is equivalent to minimize the sampling vari-

ance of the strategy (i.e., V
[
L1,α

]
) since

V
[
LN,α

]
=

1
N

V
[
L1,α

]
.

If αpB +(1−α)pL leads to an unbiased strategy for all α (this
is the case when both pB and pL generate unbiased samples),
the expected value of L1,α is independent of α since, by def-
inition of unbiased techniques, E

[
L1,α

]
= L. Minimizing the
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sampling variance is therefore similar to minimize E
[
L2

1,α

]
since V

[
L1,α

]
= E

[
L2

1,α

]
−E

[
L1,α

]2 = E
[
L2

1,α

]
−L2.

Nonetheless, the analytical form of the minimum for such
a function is too complex to obtain. Therefore, we approx-
imate the problem using a second order Taylor expansion
around α = 1/2:

E
[
L2

1,α

]
'

∫
f2

p̄
− (2α−1)

∫
f2∆p
p̄2 + (2α−1)2

∫
f2∆p2

p̄3

where p̄ = (pB + pL)/2 and ∆p = (pB − pL)/2. We demon-
strate (cf. the derivation in the supplemental material) that
this quadratic objective function is minimized when

α =
1
4

(
2 +

∫
f2∆p
p̄2 /

∫
f2∆p2

p̄3

)
(4)

We do a Taylor expansion around α = 1/2 since it ensures
that the best approximation is centered in the definition do-
main of α, which is [0,1]. As discussed in Section 2.3, when
the best sampling strategy is to use a unique strategy (i.e.,
α= 0 or α= 1), our approximation becomes less valid. How-
ever, as demonstrated in the Section 3, our estimation of α
still reduces the variance compared to the default balance
heuristic.

2.2 Estimation of α
Despite the fact that we have an analytical formula (cf.

Equation 4) to compute what would the best α according to
a second-order approximation of the sampling variance, two
numerical integrations have to be computed. For this pur-
pose, we use a MIS approach by classically selecting the
same number of samples from each strategy, and combin-
ing them with balance heuristic. Then, the two integrals are
estimated using M samples:∫

f2∆p
p̄2 '

1
M

M∑
m=1

(
f(ωm)
p̄(ωm)

)2
∆p(ωm)

1
p̄(ωm)∫

f2∆p2

p̄3 '
1
M

M∑
m=1

(
f(ωm)
p̄(ωm)

)2
∆p2(ωm)

p̄(ωm)
1

p̄(ωm)

(5)

Therefore, like Bidirectional Importance Sampling tech-
niques and oppositely to [PBPP11], we compute and make
use of the evaluated shading function on the generated sam-
ples: f(ωm). However, instead of rejecting the samples, we
use them to estimate the radiance as well.

2.3 Theoretical Accuracy and Improvement
Since our approach is based on an approximation, it has

limited accuracy. We estimate its accuracy for two cases:
perfect mirror BRDF where α has to be 1 and Dirac light
source where α has to be 0. For highly specular cases,
BRDFs are zero in almost every direction except in a small
direction domain. In this domain, pB(ω) is very large, there-
fore, ∆p and p̄ are well approximated by pB(ω). One can
demonstrate (cf. the supplemental material) that α = 3/4 in-
stead of α = 1. Similarly, with extremely directional light
sources, α becomes equal to 1/4 for our approximation

Method
Scene

1 2 8 9 10 11
BRDF 67.3 4597 2.070 0.0198 139.75 0.378
Light 0.47 2.56 0.036 118.20 0.776 0.127

Balanced heur. 0.90 4.76 0.043 0.250 0.402 0.055
Power heur. 0.99 4.87 0.046 0.255 0.440 0.059

Maximum heur. 1.24 5.11 0.061 0.256 0.618 0.075
Preprocessed α 0.42 2.95 0.033 0.095 0.301 0.045

Table 1: Comparisons, for each scene, of different balancing
methods in terms of average sampling variance. The average
variances are computed over all the pixels using the same
number of samples N = 256 for each light source.

whereas α = 0 is expected. Note that 1/4 and 3/4 are not
bounds of our estimation, but theoretical values for two se-
lected cases. This demonstrates that, in these two cases, we
cannot find the optimal value for α. However, our estimated
α still clearly indicates the dominant strategy.

We demonstrate (cf. supplemental material) that our vari-
ance reduction is proportional to |2α−1|:∣∣∣∣V [

L1,α
]
−V

[
L1,1/2

]∣∣∣∣ ≤ |2α−1|
(
V

[
L1,1/2

]
+ L2

)
. (6)

The closer the estimated α is to 1/2, the less efficient be-
comes our approach.

3 Numerical Validation
We have implemented our α estimation into PBRT [PH04]

and tested our technique on many different scenes (cf. Fig-
ures 1 and 2 and to the supplemental material for the full set).
All the results are computed using 4 camera rays per pixel.
For each camera ray, we use the default PBRT approach and
sample uniformly all light sources and accumulate the con-
tribution of each light source to estimate the final radiance.
In the following, we will indicate the number of samples per
light source.

3.1 Variance Reduction
To demonstrate the limited accuracy of our approach, we

compare (cf. Table 1) the use of a reliable estimation of α,
which is computed using M = 4096 samples for each light
source, against different sampling and combination strate-
gies: only light-based importance sampling, only BRDF-
based one, and the half-half strategies that use the same num-
ber of samples between the two sampling techniques, com-
bined with balance, power, or maximum heuristics. We do
not compare with the α-max heuristic [GKPS12] since it re-
quires additional knowledge about which strategy achieves
more often a better sampling than the others.

As shown in Table 1, in most cases our technique re-
duces the variance compared to previous methods. As dis-
cussed in Section 2.3, since our second-order approximation
is done around α = 1/2, the approximation is getting worse
for α = 0 or α = 1. Therefore, we cannot guarantee to detect
correctly if using only light-based or BRDF-based strategy
is the best solution. For example in scene 2 only light-based
sampling performs better in average, and in scene 9 only
BRDF-based sampling is better. However, our approach is
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Scene 8 Scene 9 Scene 10 Scene 11

Mirror BRDF Glossy BRDFs, complex vis. Diffuse BRDFs, complex vis. Measured glossy BRDFs
High-frequency env. map Low-frequency env. map Low-frequency env. map High-frequency env. map

+ 1 point and 1 directional light sources
Figure 2: Subset of test scenes, ranging from diffuse (10) to mirror (8) materials including complex visibility (9-10) with
different types of illumination. These images are computed using the estimator of Eq. ( 7) with N = 256 and M = 128. Since
only one sample is required for point and directional light sources, their contribution are added separately and are removed
from the variance computation.

Figure 3: Plot of the variance V[LN=256,α] for increasing
number of samples M used to estimate α. The plot is nor-
malized by dividing the variance value by the one obtained
when estimating α with M = 4096. This illustrates the con-
vergence of the α estimation.

always better than default balance/power/maximum heuris-
tics: this demonstrates that our second-order approximation
is sufficient to improve (sometimes slightly) these strategies.
The improvements may be small in average since, for pix-
els where the best α is 1/2, our approach does not improve
anything (cf. Equation 6). Moreover, selecting either light-
based or BRDF-based requires an a priori knowledge, which
is unavailable in most practical cases, but our α estimation
provide an indication of what may be the dominant strategy.

3.2 Convergence Speed and Clamping Interval for α
For practical reasons, the number of samples to estimate α

should be as low as possible. In Figure 3 we investigate how
many samples are required to bring a satisfying variance re-
duction. Depending on the scene, the number of samples per
light source can be low (upper curve) but conservatively, at
least 128 samples per light source are required for a good
estimation of α that will reduce the variance of the LN,α es-
timator. We will use this number for the following tests.

We already know from Section 2.3 that our estimation is
only an approximation of the best α. In order to investigate
its limited accuracy in a more general context, we have tested
(cf. supplemental material for details) the effect of clamping
the estimated α. The main result of this experiment is that,
for some scenes, the variance increases if the value of α is

outside the interval [0.025,0.975] (i.e., with a size of 0.95).
Furthermore, this experience confirms two facts. First, the
second-order approximation is not sufficient to capture some
variance oscillations in the interval [0,1] since clamping im-
proves the results. Second, it also confirms that our estima-
tion still provides a good hint of what is the dominant strat-
egy. Finally, it justifies the clamping of α to [0.025,0.975]
for all the following results.

4 Practical Implementations and Results
4.1 Integrated α Estimation

In Section 3.1, we have demonstrated the accuracy of our
α estimation with M samples. Moreover, instead of losing
these M samples we would like to reuse them to compute the
radiance LN,α. One solution would be to store and use them
with the estimated α to compute the shading. However, this
would require an extra-storage of size M per pixel. There-
fore, we prefer to use a less optimal but simpler solution that
reduces the memory footprint.

We first estimate α using a low number of M samples as
in Equation 5. At the same time, we estimate a first radiance
value LM/2,M/2 as in Equation 2 with the default balance
heuristic. Once α is known, we estimate the second radiance
value Lα(N−M),(1−α)(N−M) and combine these two estimators:

LN =
M
N

LM/2,M/2 +
N −M

N
Lα(N−M),(1−α)(N−M) (7)

With this formula, when α= 1/2, our estimator is exactly the
same as the default balance heuristic one.

Variance Reduction The maximum expected variance re-
duction is the one obtained without any combination as in
Section 3.1 or when N is very large compared to M (cf. the
supplemental material). In most cases, the expected reduc-
tion will be lower than this maximum, but better than the
default balance heuristic. Even when using M = N/2 our
approach still preserves the variance reduction (cf. Table 2-
top). To visualize the variance reduction for each pixel, we
compute the difference of variance between the default bal-
ance heuristic and our approach (cf. Figure 4). As shown
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Method
Scene

1 2 8 9 10 11

Va
r. for Light and BRDF, cf. Table 1

Est. 7 0.66 3.88 0.037 0.1700 0.359 0.051

Ti
m

e
(s

) BRDF 158.6 138.1 36.5 49.2 354 91.0
Light 299.7 102.8 34.2 27.1 178 53.0
Est. 7 250.8 128.3 34.5 40.9 281 72.0

E
ffi

ci
en

cy BRDF 0.0001 0.0000 0.0132 1.0265 0.0000 0.0291
Light 0.0071 0.0038 0.8122 0.0003 0.0072 0.1486
Est. 7 0.0060 0.0020 0.7834 0.1438 0.0099 0.2723

Table 2: Average variance, rendering time and efficiency
for different sampling stratetgies (for the full table, read the
supplemental material). We use N = 256 samples per light
source for each method. Est. 7 refers to the estimator intro-
duced in Equation 7 where we use half of the total samples
to evaluate α (M = 128) and the remaining half to evaluate
the radiance with the estimated α. Efficiency [Vea98] is the
inverse of the product between variance and rendering time.

by the preponderance of the red color, our method outper-
forms the default balance heuristic for most pixels. When our
technique is worse (green pixels), the value of α oscillates
around 1/2 (cf. the inset image in Figure 1-left): this illus-
trates where slow convergence for α-estimation takes place.

Efficiency and Computation Time We have also investi-
gated the overhead of the required α estimation on an Intel
i7-3930K@3.2 GHz PC. This overhead takes place only dur-
ing the first step and is consistently about 1% of the render-
ing time. This comes from the fact that most of the rendering
cost is due to shading computation and PDF evaluation: the
estimation of α, based on Equation 5, simply reuses these
values. That is also why the fastest strategy is either light-
based or BRDF-based sampling (cf.Table 2).

We have computed the efficiency [Vea98] of the sampling
strategies: as shown in supplemental material, for all tested
scenes our strategy outperforms the previous ones (balance,
power and max heuristics). Moreover as shown in Table 2,
for some scenes (e.g., 10 and 11), our method is even better
than the two extreme strategies: BRDF-based or light-based
sampling. Figure 6 shows that for the same rendering time
our approach is slightly better for Lab error (1.51 vs 1.57)
and estimator variance V[LN,α] (1.9910−4 vs 2.2210−4).

4.2 GPU Implementation
As shown in the companion video, the low overhead of

our approach is suitable for a GPU implementation. It could
help exploring new balancing strategies for dynamic scenes.
For this purpose, we have implemented the two-step ap-
proach, described in the previous section, into a full dedi-
cated GPU solution for dynamic environment maps [LPG13]
lighting. The solution is implemented on a NVIDIA 580
GTX with 1.5 GB of memory. For one environment map and
without any visibility computation, we achieve a frame rate
of 67 fps with 256 samples per pixels at a 1024×768 resolu-
tion. Finally, Figure 5 and the companion video illustrate that
our approach is perfectly suited for dynamic scenes where it
is difficult to know a priori the scene characteristics.

Figure 4: Per-pixel comparison for variance reduction. This
figure shows the difference of variance between the default
balance heuristic and our method. Red corresponds to pix-
els where our method is better whereas Green corresponds
to those where the default balance heuristic is better. Black
means that variances are equal.

Morning sky Afternoon sky
Figure 5: Dynamic sample distribution for dynamic envi-
ronment maps ( same color legend as figure 1): Red channel
represents α (samples from light sources), whereas Green
channel represents 1−α (samples from BRDF).

5 Final Discussion and Future Work
Accuracy of α Estimation As pointed out in Sections 2.3
and 3.2, the main limitation of our approach is due to the
second-order approximation of the variance around α = 1/2.
We have investigated third-order approximation but there
is generally no real solution to the objective equation. In
the case of forth-order approximation, the theoretical upper
bound is only slightly improved to α ' 0.8 at the price of a
larger computational cost. Finally, we have shown that the
use of a non-converged estimation of α may lead to some
variance improvements.

Despite these limitations and since our technique exhibits
some consistent improvements for variance reduction, we
believe that it might be a good framework for future stud-
ies on balancing criteria. We think that our second-order ap-
proximation provides a good trade-off between accuracy and
computational cost. It may also be used to estimate α pro-
gressively using a non-linear optimization method.

More Sampling Strategies We have experimented our ap-
proach for balancing only between two strategies that do not
require a precomputation step. The same approach might be
use to combine them with other strategies such as the ones
based on Photon Mapping as in [PBPP11] or visibility-based
ones [GH06]. For more than two strategies, the minimiza-
tion of the second-order approximation will result in solving
a linear system to find the strategy weights.

Since our approach reduces the sampling variance, it can
also benefit to Bidirectional Importance Sampling strategies.

© 2013 The Author(s)
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Default balance heuristic Our combined estimator Reference solution (32768 samples, 9163s)
Figure 6: Equal time (72ms) comparisons for scene 11. Our solution is slightly smoother and also closer (1.51 vs 1.57 mean
Lab error) to the reference solution than the default balance heuristic (cf. supplemental material for more comparisons).

For example, Burke et al. [BGH05] use either BRDF-based
or light-based strategies as initialization step. Improved sam-
pling would certainly improve it. Similarly, our approach
can serve as a support for Control Variate techniques (e.g.,
[CAM08a]) since they can be used on top of state-of-the-art
schemes for importance sampling.

6 Conclusion
In this paper, we have introduced a second-order approx-

imation of variance for Multiple Importance Sampling. This
approximation leads to an automatic distribution of sam-
ples between different sampling strategies. We have demon-
strated that, for all our test scenes, our balancing technique
reduces (sometimes slightly) the variance compared to previ-
ous MIS approaches and outperforms them as well in terms
of efficiency. Finally, we have also shown that it fits into ex-
isting MIS approaches and that it can be implemented on
GPU. We believe that our approach will help further investi-
gations on how to develop improved balancing strategies.
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