Supplemental Material: Position-dependent Importance Sampling of Light Field Luminaires

Heqi Lu, Romain Pacanowski, Xavier Granier

Abstract

This complementary document provides the reader with more details on the derivation of the different equations contained in the paper entitled "Position-dependent Importance Sampling of Light Field Luminaires".

Index Terms-Models of Light Sources, Light Field, Importance Sampling, Real-time Rendering,

Fig. 1. Model parametrization of [1]. The 4D space of rays emitted from the light source is parametrized by a position \mathbf{u} on a plane \mathcal{U} that supports the reconstruction 2D basis functions Φ_{m}, and a position \mathbf{s} on a plane \mathcal{S}, that supports the C_{m} images. $\Phi_{m}(\mathbf{u})$ is a short notation for $\Phi_{m}(u, v)$ and $C_{m}(\mathbf{s})$ for $C_{m}(s, t) . \delta$ is the inter-plane distance and $\Delta(\mathbf{p})$ is the distance between \mathbf{p} and \mathcal{S}. \mathbf{u}, \mathbf{s} and \mathbf{p} are aligned.

1 From Goesele’s Model to Equation 1

In their paper, Goesele et al. describe their (cf. Equation 8 in [1]) light field luminaire by the following equation (using the notation introduced in Figure 1):

$$
L(\mathbf{u} \rightarrow \mathbf{s})=\frac{R^{2}(\mathbf{u}, \mathbf{s})}{\cos ^{2} \theta(\mathbf{u}, \mathbf{s})} \sum_{m} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u})
$$

with $L(\mathbf{u} \rightarrow \mathbf{s})$ representing the radiance transfered from \mathbf{u} to s. To simplify the notation, reader can note that the geometric

- Heqi Lu is an Inria PhD student at Univ. Bordeaux, with LaBRI (CNRS : UMR5800 - Univ. Bordeaux) - 33400 Talence, France. E-mail: heqi.lu@inria.fr
- Romain Pacanowski is a research engineer at CNRS, with LP2N (Institut d'Optique Graduate School - CNRS : UMR5298 - Univ. Bordeaux) and with Inria - 33400 Talence, France. E-mail: romain.pacanowski@institutoptique.fr
- Xavier Granier is a professor at Institut d'Optique Graduate School, with LP2N (Institut d'Optique Graduate School - CNRS : UMR5298 - Univ. Bordeaux) and with Inria - 33400 Talence, France. E-mail: xavier.granier@institutoptique.fr
configuration leads to
and to

$$
R(\mathbf{u}, \mathbf{s})=|\mathbf{u}-\mathbf{s}|
$$

By combining these three equations together we obtain the equation used in our paper:

$$
\begin{equation*}
L(\mathbf{u} \rightarrow \mathbf{s})=\frac{|\mathbf{s}-\mathbf{u}|^{4}}{\delta^{2}} \sum_{m} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) \tag{1}
\end{equation*}
$$

2 Derivation for $I_{m}(\mathbf{p})$

The irradiance $I(\mathbf{p})$ that can potentially reach \mathbf{p} from the light source is:

$$
I(\mathbf{p})=\int_{\mathbf{s} \in I} L(\mathbf{s} \rightarrow \mathbf{p}) \frac{\cos \theta(\mathbf{u}, \mathbf{s})}{|\mathbf{s}-\mathbf{p}|^{2}} d \mathbf{s}
$$

According to the geometric configuration introduced in Figure $1, \Delta(\mathbf{p})=|\mathbf{s}-\mathbf{p}| \cos \theta(\mathbf{u}, \mathbf{s})$. Therefore, it can also be written as presented in our paper:

$$
\begin{equation*}
I(\mathbf{p})=\int_{\mathbf{s} \in \mathcal{I}} L(\mathbf{s} \rightarrow \mathbf{p}) \frac{\Delta(\mathbf{p})}{|\mathbf{s}-\mathbf{p}|^{3}} d \mathbf{s} \tag{2}
\end{equation*}
$$

Combining Equation 1 with Equation 2 leads to

$$
\begin{aligned}
I(\mathbf{p}) & =\sum_{m} I_{m}(\mathbf{p}) \\
I_{m}(\mathbf{p}) & =\int_{\mathbf{s} \in I} \frac{|\mathbf{s}-\mathbf{u}|^{4}}{\delta^{2}} \frac{\Delta(\mathbf{p})}{|\mathbf{s}-\mathbf{p}|^{3}} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s}
\end{aligned}
$$

We replace $\Delta(\mathbf{p})$ by $|\mathbf{s}-\mathbf{p}| \cos \theta(\mathbf{u}, \mathbf{s})$ and δ by $|\mathbf{u}-\mathbf{s}| \cos \theta(\mathbf{u}, \mathbf{s})$ to obtain

$$
\begin{aligned}
& I_{m}(\mathbf{p})= \\
& \Leftrightarrow \int_{\mathbf{s} \in I} \frac{|\mathbf{s}-\mathbf{u}|^{4}|\mathbf{s}-\mathbf{p}| \cos \theta(\mathbf{u}, \mathbf{s})}{|\mathbf{u}-\mathbf{s}|^{2} \cos ^{2} \theta(\mathbf{u}, \mathbf{s})|\mathbf{s}-\mathbf{p}|^{3}} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s} \\
& \Leftrightarrow I_{m}(\mathbf{p})= \\
& \Leftrightarrow \int_{\mathbf{s} \in I} \frac{|\mathbf{s}-\mathbf{u}|^{2}|\mathbf{s}-\mathbf{p}| \cos \theta(\mathbf{u}, \mathbf{s})}{\cos ^{2} \theta(\mathbf{u}, \mathbf{s})|\mathbf{s}-\mathbf{p}|^{3}} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s} \\
& \Leftrightarrow \int_{\mathbf{s} \in I} \frac{|\mathbf{s}-\mathbf{u}|^{2}|\mathbf{s}-\mathbf{p}| \cos ^{2} \theta(\mathbf{u}, \mathbf{s})}{\cos ^{3} \theta(\mathbf{u}, \mathbf{s})|\mathbf{s}-\mathbf{p}|^{3}} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s} \\
& \Leftrightarrow I_{m}(\mathbf{p})= \\
& \Leftrightarrow \int_{\mathbf{s} \in I}\left(\mathbf{p}-\mathbf{p} \left\lvert\, \frac{|\mathbf{s}-\mathbf{u}|^{2} \cos ^{2} \theta(\mathbf{u}, \mathbf{s})}{\cos ^{3} \theta(\mathbf{u}, \mathbf{s})|\mathbf{s}-\mathbf{p}|^{3}} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s}\right.\right. \\
& \int_{\mathbf{s} \in I}|\mathbf{s}-\mathbf{p}| \frac{\delta^{2}}{\Delta^{3}(\mathbf{p})} C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s}
\end{aligned}
$$

Since $\Delta(\mathbf{p})$ and δ do not depend on \mathbf{s}, we finally obtain the equations introduced in our paper:

$$
\begin{align*}
I(\mathbf{p}) & =\sum_{m} I_{m}(\mathbf{p}) \tag{3}\\
I_{m}(\mathbf{p}) & =\frac{\delta^{2}}{\Delta^{3}(\mathbf{p})} \int_{\mathbf{s} \in I}|\mathbf{s}-\mathbf{p}| C_{m}(\mathbf{s}) \Phi_{m}(\mathbf{u}) d \mathbf{s} \tag{4}
\end{align*}
$$

References

[1] M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, "Accurate light source acquisition and rendering," ACM Trans. Graph., vol. 22, no. 3, pp. 621-630, 2003.

