
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Real-Time Importance Sampling
of Dynamic Environment Maps

H. Lu1† R. Pacanowski1‡ X. Granier1§

Inria - Univ. Bordeaux CNRS, LP2N IOGS, LP2N
1. Inria Bordeaux Sud-Ouest - LP2N (Univ. Bordeaux, IOGS, CNRS) - LaBRI (Univ. Bordeaux, CNRS)

Figure 1: Time-varying light samples distribution for one pixel (cyan dot) on the dragon model when lit with a dynamic
environment map [STJ∗04]. In the cube map images, the cyan dot corresponds to the normal direction. For each frame, among
on-the-fly generated samples (red+yellow+green) on the whole environment map, our technique selects 50 of them (yellow and
green dots). The green dots correspond to effective samples where the cosine factor is strictly positive. At nearly noon (Left),
our technique selects less samples on the sun than at sunset (Right), since it is located at a more grazing angle. This example
runs in average at 145 fps using Multiple Importance Sampling with 50 samples for the energy conserving Lafortune Phong
BRDF with a shininess exponent set to 150.

Abstract
We introduce a simple and effective technique for light-based importance sampling of dynamic environment maps
based on the formalism of Multiple Importance Sampling (MIS). The core idea is to balance per pixel the number
of samples selected on each cube map face according to a quick and conservative evaluation of the lighting
contribution: this increases the number of effective samples. In order to be suitable for dynamically generated or
captured HDR environment maps, everything is computed on-line for each frame without any global preprocessing.
Our results illustrate that the low number of required samples combined with a full-GPU implementation lead to
real-time performance with improved visual quality. Finally, we illustrate that our MIS formalism can be easily
extended to other strategies such as BRDF importance sampling.

1. Motivation

Captured HDR environment maps participate, as natural
light sources, to the realism of synthetic images. The result-
ing direct illumination at position p with normal nnn is:

L(p,ooo) =

∫
Ω

s(p,nnn,ooo,ωωω)dωωω with

s(p,nnn,ooo,ωωω) = ρ(ooo,ωωω) 〈nnn,ωωω〉 V(p,ωωω) L(ωωω)

where Ω is the full unit sphere, ρ(ooo,ωωω) is the reflectance
function (BRDF), <,> the positive clamped dot product op-
erator (aka cosine factor), V(p,ωωω) is the visibility function
(we will omit it in this paper) and, L(ωωω) represents the radi-
ance emanating from the directionωωω. The size of the texture

† e-mail: heqi.lu@inria.fr
‡ e-mail: romain.pacanowski@institutoptique.fr
§ e-mail: xavier.granier@institutoptique.fr

representing the environment map prohibits achieving real-
time results with a brute force approach. This becomes even
more obvious if L(ωωω) is dynamic (i.e., on-line generated or
acquired [HSK∗05]).

Precomputed Radiance Transfer (PRT) techniques (e.g.,
[WTL06]) improve rendering performance and integrate
complex BRDFs and inter-reflections. However, the required
memory to store the precomputed data can quickly be-
come a bottleneck. Furthermore, the costly precomputa-
tion time prevents using PRT with dynamic environment
maps [HSK∗05]. Another trend is to use the general Monte-
Carlo framework where the reflected radiance L(p,ooo) is ap-
proximated by Ns samples:

L(p,ooo) ≈
1

Ns

Ns∑
i=1

s(p,nnn,ooo,ωωωi)
pdf(ωωωi)

(1)

where pdf(ωωωi) is the Probability Density Function (PDF).
The closer it matches the numerator of Equation (1) the

c© The Eurographics Association 2013.

H. Lu, R. Pacanowski & X. Granier / Sampling Dynamic Environment Maps

lower the number of samples Ns will be required to converge
to the solution.

In this paper, we focus on light importance sampling of
dynamic environment maps (i.e., pdf(ωωω) is proportional to
L(ωωω)). More precisely, we introduce a real-time GPU im-
portance sampling technique that recomputes for each frame
a tabulated version of the Cumulative Distribution Function
(CDF) of an environment map. To generate the light samples
{ωωωi}, the CDF is inverted through a binary search before the
shading pass. Our work can be applied to any kind of envi-
ronment map (spherical, hemispherical, longitude-latitude)
but is particularly interesting for cube maps that are widely
used for real-time applications. Furthermore, to improve ren-
dering performance, we also introduce an unbiased Monte-
Carlo estimator that:
- limits the number of useless light samples that would have

been null due to the cosine factor
- reduces popping artifacts that occur when using a low

number of samples (this property is particularly important
when using time-dependent light sources)

- integrates easily with Multiple Importance Sampling
(MIS).

In the context of light importance sampling, many tech-
niques (e.g., [ODJ04]) for static environment maps have
been introduced. However, their high computational cost
make them unsuitable for dynamic lighting case. One no-
table exception is the work from Havran et al. [HSK∗05]
where they generate samples on the CPU. However, con-
trary to their work, we do not precompute a set of visible
light sources for each shaded point p. Our approach com-
putes dynamically a set of light samples according to the
light distribution of the environment map and selects some
of them according to the pixel normal: it is therefore more
suited for dynamic environment maps.

2. Fast and Continuous Sampling on the GPU
2.1. Monte-Carlo Estimator
When using cube maps, one needs to distribute the Ns sam-
ples between the six faces of the cube. Let µ f be the pro-
portion of samples used for the face f (i.e., N f = µ f Ns), and
pdfL(ωωω| f) the probability density function to select direction
ωωω on the face f . Then, Equation (1) can be rewritten in a
MIS formalism [Vea98]:

L(p,ooo) ≈
1

Ns

6∑
f =1

N f∑
i=1

s(p,nnn,ooo,ωωωi)∑6
f =1 µ f pdfL(ωωωi| f)

. (2)

In this paper, we target GPU importance sampling for dy-
namic environment maps. For this purpose, the cumulative
distribution function of each cube face need to be computed
at each frame. We thus use tabulated CDFs computed using
optimized versions for GPU of the prefix sum [HSO07] on
each face. The supplemental material provides a complete
derivation on how to compute the associated pdf.

An obvious choice is to distribute uniformly the samples

across the faces (i.e., µ f = 1/6). Unfortunately, depending on
the orientation of nnn, some samples may be behind the point
and will be canceled by the cosine factor. A drastic example
is when a very bright source (such as the sun) is behind the
point p: many useless samples will still be generated on the
face the sun belongs to. To prevent this behavior, one solu-
tion is to integrate the cosine factor 〈nnn,ωωω〉 into the PDF at the
price of computing new CDFs that depends also on the nor-
mal nnn. However, this becomes too costly in terms of memory
and computation. Instead, we introduce a conservative, sim-
ple and dynamic strategy where µ f depends on the normal nnn
and is computed as follow:

µ f (nnn) =
F f (nnn)I f∑
f F f (nnn)I f

with F f (nnn) =
∑
c j∈ f

〈
nnn,c j
〉

(3)

where c j are normalized vertexes of the cube map face f .
F f (nnn) can be seen as a pseudo form factor (point to face).
Equation (3) balances dynamically for p the number of sam-
ples on each face according to its importance.

To prevent popping artefacts when the number of samples
is low and changing between neighboring normals, we use
a floating point N f and introduce a new weight βi for each
sample. By combining Equation (2) and Equation (3) our
estimator becomes:

L(p,ooo) ≈
1

Ns

6∑
f =1

i<N f (nnn)+1∑
i=1

βi
s(p,nnn,ooo,ωωωi)

µ f (nnn)pdfL(ωωωi| f)
(4)

with βi =

1 if i ≤ N f (nnn)
frac(N f (nnn)) else

(5)

where frac returns the fractional portion. Since pdfL(ωωω| f) = 0
if ωωω < f , the sum in the denominator in Equation 2 disap-
pears. Thanks to the use of the weight βi, the last sample is
introduced progressively.

As demonstrated in the results section, compared to the
classical approach, our strategy improves the frame rate be-
cause it limits the generation of useless light samples. Based
on MIS formalism, we can easily integrate other strate-
gies. We illustrate this by using BRDF importance sampling
pdfB. For the balance heuristic, half samples are used for
light importance sampling, half for BRDF. Therefore, we
use N f (nnn) = µ f (nnn)Ns/2 for each face and Nb = Ns/2 for the
BRDF. This leads to the following estimator:

L(p,ooo) ≈
1

Ns

 6∑
f =1

i<N f (nnn)+1∑
i=1

βi g f ,i +

i<Nb+1∑
i=1

βi fi

with g f ,i =

s(p,nnn,ooo,ωωωi)
(1/2)µ f (nnn)pdfL(ωωωi| f) + (1/2)pdfB(ωωωi)

and fi =
s(p,nnn,ooo,ωωωi)

(1/2)
∑

f µ f (nnn)pdfL(ωωωi| f) + (1/2)pdfB(ωωωi)

(6)

2.2. GPU implementation
The rendering process for each frame is organized as pre-
sented in Algorithm 1. The whole process starts by an early

c© The Eurographics Association 2013.

H. Lu, R. Pacanowski & X. Granier / Sampling Dynamic Environment Maps

GBuffer pass (line 4) and ends by the final tone mapping
(lines 15 and 16). In-between, we compute the tabulated
CDF (lines 5 to 11), then we generate the light samples (line
10) and compute the shading (line 13).

We compute the 2D CDF by using the inversion
method [PH04]) and store it on GPU. More precisely, a 1D
CDF (CDF(u)) and a 2D CDF (CDF(v|u)) are computed us-
ing parallel prefix sum [HSO07] and stored as floating point
buffer for each cube map face (u and v are the pixel coordi-
nates on a face corresponding to a given light sample). The
CDF computations are implemented using two GPU Com-
puting kernels (lines 8 and 9) that are called successively be-
cause CDF(v|u) depends on CDF(u). Based on these CDFs,
we conservatively generate Ns/2 light samples per face be-
fore computing the shading. This ensures the generation of
a sufficient amount of samples on each face for the dynamic
balancing. For degenerated cases, all the Ns/2 samples dedi-
cated to light sampling will be on a unique face. These sam-
ples are generated using a classical binary search.

High performance in CUDA requires thread coherency,
memory coalescing and branch consistency. We have there-
fore designed the Algorithm 2 for the shading step (cf.
line 13) to reach the best performance of our different im-
plementations. After shading, the computation of the aver-
age luminance is done using a reduction operation [RAH07]
for the tone mapping step.

Finally, since our per pixel Monte-Carlo estimator is un-
biased, our approach does not introduce any bias for a given
pixel. However, for efficiency reason, we use the same pre-
computed random sequence for all the pixels. This intro-
duces a spatial bias between neighbor pixels but it has the
advantage to limit disturbing noise in the final image. A pos-
sible extension to reduce the spatial bias would be to use
interleaved sampling.

3. Results
The companion video and all results presented in this pa-
per were computed on a 2.67 GHz PC with 6 GB of RAM
and a NVIDIA GTX 680 graphics card. We implemented our
system using DirectX, CUDA and the Thrust Library. The
static environment map used in Figure 2 has a resolution of
256×256×6 pixels. For the dynamic environment map used
in Figure 1, we use the available 67 frames from the capture
made during a full day by Stumpfel et al. [STJ∗04]. Before
using it, the only preprocess we apply on the captured im-
ages is a re-parametrization (from hemisphere to cube) to
obtain 256×256×6 pixels images. We also fill with an aver-
age color the pixels belonging to the roof where the acquisi-
tion device was placed. For all results, we achieve real-time
framerates with dragon models, 369K (resp. 100K) polygons
in Figure 1 (resp. Figure 3) as well as the model (169K poly-
gons) used in Figure 2.

Figure 1 shows a set of images with a time-varying en-
vironment map captured from daylight to night. The central
images show where the light samples are located for a given
pixel. Notice how our technique avoids generating useless

Algorithm 1 Steps to render one frame. We use GCwhen us-
ing GPU computing and GS when using GPU shader. We in-
dicate the for-loop that are parallelized using CUDA threads
with the keyword "do in parallel".

1: procedure RenderFrame
2: GEO2D . Buffer for vertex positions and normals
3: LS 1D[f] . Buffers of light samples for each face f
4: GBuffer_Pass(GEO2D) . GS
5: for each face f of the cube environment map do
6: compute_luminance_per_pixel . GC
7: compute_prefix_sum_by_inclusive_scan . GC
8: compute_CDF_1D_u . GC
9: compute_CDF_2D_v_knowing_u . GC

10: LS 1D[f]=generate_light_samples(Ns/2) . GC
11: end for
12: for each pixel (p,nnn) ∈GEO2D do in parallel
13: shade(ooo,p,nnn,Ns) . GC - Algo. 2
14: end for
15: compute_average_intensity(frame) . GC
16: Tone_mapping(frame) . GS
17: end procedure

Algorithm 2 Shading procedure with our dynamic balanc-
ing technique. To take advantage of the CUDA architecture,
we have integrated the BRDF sampling pass as a 7th pass
and used a fixed maximal number of iterations (cf Line 6).

1: procedure shade(ooo,p,nnn,Ns) . in parallel for each pixel p
2: N f [1..6] = Samples_Per_Face(Ns/2) . Equation 3
3: N f [7] = Ns/2 . number of BRDF samples
4: for each step f =1..7 do
5: for each i = [0,Ns/2] do
6: break when i ≥ N f [f]
7: compute βi . Equation 5
8: if f < 7 then
9: sample = LS 1D[f][i] . see Algo. 1

10: else
11: sample = BRDF_sampling
12: end if
13: L(p,ooo)+= βi g f ,i . Equation 6
14: end for
15: end for
16: L(p,ooo) = L(p,ooo)/Ns
17: end procedure

samples on the sun for the highlighted pixel. Moreover, the
companion video demonstrates our real-time performance as
well as the temporal coherence of our Monte-Carlo estima-
tor when changing the view direction or the lighting or even
the BRDF parameters.

Figure 2 presents a comparison between a classical light-
based importance sampling and our approach. As shown in
the picture, both images have almost the same quality when
compared to a reference solution, but our technique uses
three times less samples and is consequently faster. Finally,
Figure 3 demonstrates the convergence speed and the qual-
ity obtained with our MIS technique. As shown by the Lab
difference between our results and a reference solution, even

c© The Eurographics Association 2013.

H. Lu, R. Pacanowski & X. Granier / Sampling Dynamic Environment Maps

Number of samples: 60 Dynamic Balancing Uniform Balancing Number of samples: 180

Mean Lab Error: 6.44 Valid samples: 47/60 Valid samples: 116/180 Mean Lab Error: 6.22

Figure 2: Comparison of (Left) our dynamic sampling technique for the highlighted pixel (with a cyan dot) with (Right) uniform
balancing of the samples per face. Among the pre-generated samples (red+yellow+green), our technique selects 60 of them for
the current pixel (yellow and green dots) from which 47 are effective samples (green dots). However, to achieve the same quality
with uniform balancing, three times more samples are required (180 vs 60) resulting in 116 effective samples. The Lab errors
are compared with a reference solution computed with 256 × 256 × 6 samples generated uniformly on the environment map.

60 spp @ 198 fps (8.59 Lab) 240 spp @ 81 fps (3.56 Lab) 480 spp @ 45 fps (1.87 Lab) 655000 spp - Reference Solution

Figure 3: Convergence speed of our technique when increasing the number of samples per pixel (spp). We compute the mean
Lab error between our results and a reference solution (right image) computed using 655000 spp generated from a cosine-based
hemisphere sampling scheme. As shown by the decreasing Lab errors our MIS technique converges toward the correct solution
when increasing the number of samples. Even with 240 spp, we achieve real-time frame rate (81 fps) with a very low Lab error
(3.56).

with 60 samples per pixel our method achieves visual plau-
sible results in real-time (198 fps).

4. Conclusion and Future Work

In this paper we have introduced an improved Monte-Carlo
estimator for light-based importance sampling of dynamic
environment maps. Our pixel-based technique increases the
number of effective samples and is faster for the same quality
compared to a uniform distribution of samples on each face.
Furthermore, our technique handles efficiently dynamic and
time-varying environment maps. Based on Multiple Impor-
tance Sampling formalism, it can be easily combined with
other sampling strategies. For future work, we would like
to incorporate a more robust balancing scheme to distribute
light samples and also to introduce visibility and indirect
lighting effects.

Acknowledgments
Heqi Lu’s PhD scholarship is funded by the Région
Aquitaine. This research has been supported by the ALTA
project (ANR-11-BS02-006).

References
[HSK∗05] Havran V., Smyk M., Krawczyk G., Myszkowski K.,

Seidel H.-P.: Interactive System for Dynamic Scene Lighting
using Captured Video Environment Maps. In Eurographics Sym-
posium on Rendering (2005), pp. 31–42. 1, 2

[HSO07] Harris M., Sengupta S., Owens J.: Parallel prefix sum
(scan) with CUDA. GPU Gems 3, 39 (2007), 851–876. 2, 3

[ODJ04] Ostromoukhov V., Donohue C., Jodoin P.-M.: Fast hier-
archical importance sampling with blue noise properties. In Proc.
SIGGRAPH ’04 (2004), ACM, pp. 488–495. 2

[PH04] Pharr M., Humphreys G.: Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Publishers,
2004. 3

[RAH07] Roger D., Assarsson U., Holzschuch N.: Efficient
Stream Reduction on the GPU. In Workshop on General Pur-
pose Processing on Graphics Processing Units (Oct. 2007). 3

[STJ∗04] Stumpfel J., Tchou C., Jones A., Hawkins T., Wenger
A., Debevec P.: Direct HDR capture of the sun and sky. In Proc.
AFRIGRAPH ’04 (2004), ACM, pp. 145–149. 1, 3

[Vea98] Veach E.: Robust monte carlo methods for light transport
simulation. PhD thesis, 1998. 2

[WTL06] Wang R., Tran J., Luebke D.: All-frequency relighting
of glossy objects. ACM Trans. Graph. 25, 2 (2006), 293–318. 1

c© The Eurographics Association 2013.

