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Résumé
Pour l'étude du patrimoine, de plus en plus d'objets 3D sont acquis par le biais de 
scanners 3D [Levoy 2000]. Les objets ainsi acquis contiennent de nombreux détails et 
fournissent une très grande richesse visuelle. Mais pour les affichers, leur très grande 
complexité  géométrique  nécessite  l'utilisation  d'algorithmes  spécifiques.  Nous 
montrons ici comment simplifier ces objets par un maillage de failble résolution et 
une  collection  de  cartes  de normales [Boubekeur 2005] pour  préserver  les  détails. 
Avec cette  représentation,  nous  montrons comment  il  est  possible  de  calculer  un 
éclairement réaliste à l'aide d'une grille et de données vectorielles [Pacanowski 2005]. 
Cette grille permet de capturer efficacement les basses fréquences d'un éclairement 
indirect. Nous utilisons des textures 3D (pour des gros objets) et potentiellement des 
textures 2D (pour les objets quasi-plan) afin de stocker un nombre pré-déterminer de 
vecteurs  d'irradiance.  Ces grilles sont  calculées  au cours d'un pré-calcul par  toute 
méthode stochastique de calcul d'éclairement global. Pour l'affichage, l'éclairement 
indirect  due  à  la  grille  est  interpolé  au  sein  de  la  cellule  associée  à  la  position 
courante,  forunissant  ainsi  une  représentation  continue.  De  plus,  cette  approche 
vectorielle  permet une plus grande  robustesse aux variations  local  des propriétés 
géométriques de la scène.

Abstract
For  cultural  heritage,  more  and  more  3D  objects  are  acquired  using  3D 
scanners [Levoy 2000].  The resulting objects are very detailed with a large visual 
richness but their geometric complexity requires specific  methods to render them. 
We first show how to simplify those objects using a low-resolution mesh with its 
associated  normal  maps [Boubekeur 2005]  which  encode  details.  Using  this 
representation, we show how to add global illumination with a grid-based and vector-
based representation [Pacanowski 2005]. This grid capture efficiently low-frequency 
indirect  illumination. We use 3D textures (for large objects) and 2D textures (for 
quasi-planar objects) for storing a fixed set of irradiance vectors. These grids are built 
during  a  preprocessing  step  by  using  almost  any  existing  stochastic  global 
illumination approach. During the rendering step, the indirect illumination within a 
grid cell is interpolated from its associated irradiance vectors, resulting in a smooth 
everywhere  representation.  Furthermore,  The  vector-based  representation  offers 
additional robustness against local variations of geometric properties of a scene.

1 - Introduction
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2 – Geometric simplification

Before any lighting computation, and in order to reduce the computational 
complexity to fit the 3D model with available memory, we need to reduce the number 
of polygons without loosing the visual richness of original models. For this purpose, 
we  use a mixed representation, based on a simplified geometry for the definition of 
overall shape and topology, and normal maps for preserving their local variations on 
the surface. Since the lighting mostly depend on the normal, this approach preserves 
the objects' appearance.

The large size of 3D models is not only a problem for the lighting simulation. We 
have also to deals with the fact that the main memory would not be sufficient to load 
the complete model for the simplification process. We need to use out-of core 
solutions. We thus decomposed our algorithm in four steps (more detailed 
presentation of this approach can be found in the paper [Boubekeur 2005]):

1. We perform an out-of-core simplification of the huge model using a uniform 
resampling [Lindstrom 2000, Boubekeur 2005]. A non-uniform and adaptive 
solution [Boubekeur 2006] could be also used. 

2. The  resulting  simplified  point  set  is  quickly  converted  into  a  triangle 
mesh [Boubekeur 2005,  2006]  and  organized  in  a  bounding  box  tree-
hierarchy.

3. Each leave of this tree hierarchy is associated with a quadrilateral texture. 
All the points of the original model are thus streamed through this tree and 
distributed to their corresponding leaves, where the point normal is projected 
into the associated texture. This streaming process is the key step of our 
technique, as it allows us to handle large models with limited memory. At 
the end of this step, each triangle of the low-resolution mesh is associated 
with a  high-resolution (and possible sparse) normal map.

4. Since there is no guaranty that each texel of the normal map corresponds to 
an existing point and thus an existing normal, the resulting map can contains 
some holes. We thus use a diffusion algorithm, to get a continuous normal 
field, interpolating the original normals of the huge model.

Thanks to this out of core simplification, the memory requirement is largely reduced 
while preserving most of the appearance details (see Figure X). Lighting can be 
computed on such a representation, but an adapted approach has to be developed.

Figure X: Original models and their simplified versions. Note the largely reduce size 
and the preserved appearance.

3 – Illumination Computation for Complex Geometry

In computer graphics, illumination computation has been extendily studied. Although 
direct illumination of an object is easily computed by suming the contribution of 
every light source seen  from the object, the indirect lighting is a more challenging 
task. Indeed, when considering indirect illumination, every objects in the scene plays 
potentially the role of a light source. Therefore, many algorithms (cf. [Dutré 2006] ) 
have been developed over the last decay to perform indirect illumination 
computation.  Among these algorithms, some of them use precomputed specific 



structures that cache the indirect illumination. As pointed out by Tabellion and 
Lamorlette [Tabellion 2004], caching efficiency generally diminishes with the 
increasing geometric complexity of a 3D scene.  

Main previous techniques are : 

Therefore,  we focus in this article only on structures that store the indirect lighting 
when using complex geometry.

 

In order to reduce this problem, this paper introduces a volumetric representation for 
indirect lighting based on irradiance vectors~\cite{Arvo1994}. From the irradiance 
vector, our representation inherits robustness against local variations of both 
photometric properties (diffuse component of reflectance) and geometric properties 
(surface normal vectors). From the volumetric structure and the associated 
interpolation scheme presented in this paper, we guarantee a smooth reconstruction 
everywhere in the 3D scene, making the cache representation directly accessible for 
the final rendering. Finally, our overall structure has low memory requirements and 
thus increases the scalability of the method. Furthermore, these qualities make this 
approach suitable for interactive hardware rendering. 

3-1 Irradiance Vector Grid (IVG)

Our structure is based on an axis-aligned uniform rectangular 3D grid, divided into 
$N_i\times N_j \times N_k$ voxels. %This grid can be considered as the highest 
level. At each vertex $\bm{v}^{ijk}$ of the grid (where $i \in [0,N_i],\, j \in 
[0,N_j],\, k \in [0,N_k])$, six irradiance vectors are stored, one for each main 
direction ($\pm\bm{x}|\pm\bm{y}|\pm\bm{z}$). Note that we actually store an 
irradiance matrix, as one vector is used for each color channel. In the remaining of 
this paper, we will note $\bm{I}^{ijk}_{\bm{\delta}}$, the irradiance vector stored 
at vertex $\bm{v}^{ijk}$ in the direction $\bm{\delta}$ where $\bm{\delta} = 
\pm\bm{x}|\pm\bm{y}|\pm \bm{z}$.

3-2 Irradiance VECTOR

For a given wavelength, the \emph{irradiance vector}

$\bm{I}_{\bm{n}}(\bm{p})$, as introduced by Arvo~\cite{Arvo1994}, is

defined for a point $\bm{p}$ with normal $\bm{n}$ as

%

\begin{equation*}

\bm{I}_{\bm{n}}(\bm{p}) = \int_{\Omega_{\bm{n}}}\,L(\bm{p} \leftarrow 
\bm{\omega}_{i})\,\bm{\omega}_{i}\,d\bm{\omega}_{i}\,

\end{equation*}

%

where $L(\bm{p} \leftarrow \bm{\omega}_{i})$ represents the incident

radiance at $\bm{p}$ from direction $\bm{\omega}_{i}$, $d\bm{\omega}_{i}$



the differential solid angle sustained by $\bm{\omega}_{i}$ and

$\Omega_{\bm{n}}$ the hemisphere centered at $\bm{p}$ oriented toward 

$\bm{n}$. The irradiance vector stores a radiometric and geometric

information and is directly related to the diffusely reflected

radiance:

\begin{equation}

L_{r}(\bm{p} \rightarrow \bm{\omega}_{o}) = \frac{\rho_{D}(\bm{p})}
{\pi}\,\langle\bm{I}_{\bm{n}}(\bm{p}),\bm{n}\rangle

\label{reflRadEq}

\end{equation}

where $\rho_{D}$ is the diffuse BRDF and $\langle,\rangle$ denotes a

dot product. The main benefits of irradiance vectors compared to

irradiance is that for a local variation of the normal, the reflected 

radiance can be adjusted, making this representation more

geometrically robust. Irradiance Vectors are precomputed using any classical 
algorithm such as Photon-Tracing or Monte-Carlo sampling.

3-3 IRRADIANCE VECTOR INTERPOLATION

In order to compute smooth indirect illumination, we

interpolate an irradiance vector for each point $\bm{p}$ with normal $\bm{n}$

that needs to be shaded.  This interpolation

is performed in two successive steps: a spatial interpolation according to $\bm{p}$

and then a directional interpolation according to  $\bm{n}$.

In the first step, the irradiance vector $\bm{I}_{\bm{\delta}}(\bm{p})$

is obtained by spatial interpolation of the irradiance vectors

$\bm{I}^{ijk}_{\bm{\delta}}$ stored at 

the grid vertices surrounding point $\bm{p}$. The interpolation is

only done for three out of the six possible directions of

$\bm{\delta}$. The choice between $\bm{\pm x}$ (resp. $\bm{\pm y}$ and

$\bm{\pm z}$) is done according to the sign of $n_x$ 

(resp. $n_y$ and $n_z$). Trilinear or tricubic interpolation approximate

satisfactory smooth results for spatial interpolation.

In the second step, the final interpolated irradiance vector

$\bm{I}_{\bm{n}}(\bm{p})$ is obtained by remapping the three spatially



interpolated irradiance vectors according to the normal direction $\bm{n}$ at

point $\bm{p}$:

$$

\bm{I}_{\bm{n}}(\bm{p}) =

\bm{I}_{\bm{x}}(\bm{p})\,n_{x}^{2}

+\bm{I}_{\bm{y}}(\bm{p})\,n_{y}^{2}

+\bm{I}_{\bm{z}}(\bm{p})\,n_{z}^{2}\,.

$$

3-4  Hardware Implementation

The great benefit of using a 3D regular grid is that the data structure can be 
straightforwardly uploaded on GPU as a 3D texture. In our case, the interpolated 
irradiance vectors are simply used by the fragment shader as additional light sources 
that are meant to encode indirect illumination.. Remember that each grid vertex holds 
one irradiance vector $\bm{I}_{\lambda}$ per color channel for each of the six 
$\bm{\delta}$ directions, i.e., $3 \times 3 \times 6 = 54$ floating point numbers.To 
reduce the number of texture fetches which may be costly in current graphics 
hardware, we compress the 3 irradiance vectors as one color and one direction:

$$r = \| \bm{I}_R \| \hspace*{0.15cm}

  g = \| \bm{I}_G \| \hspace*{0.15cm}

  b = \| \bm{I}_B \|\hspace*{0.5cm}

\bm{d} = \frac{\bm{I}_R + \bm{I}_G + \bm{I}_B}

                {\| \bm{I}_R + \bm{I}_G + \bm{I}_B \|}.$$

These two vectors are encoded in two 16 bit 3D textures,and therefore the 
information for the six $\bm \delta$ directions require 12 3D textures.

4 – Results

To  illustrate  the  geometric  robustness  of  our  structure  we  compare  the  indirec 
illumination obtained when using our structure precomputed with a geometry at full 
resolution (cf. Figure ) vs a geometry at low resolution (cf. Figure). As illustrated in 
Figure the perceptive difference is  very low with a Lab of only .  Figure shows a 
complete scene where the indirect illumination is stored with our IVG.

Conclusion and Future Works
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