
Workshop on Material Appearance Modeling 2015
H. Rushmeier and R. Klein
(Editors)

Volume 34 (2015), Number 4

In Praise of an Alternative BRDF Parametrization

P. Barla1,2 and L. Belcour3 and R. Pacanowski2

1 Inria - LaBRI (CNRS) 2 LP2N (CNRS) - U. Bordeaux 3 U. Montréal

Figure 1: The three BRDF parameterizations (one per row) considered in our study. The first column shows the same color
code we use for each parametrization axis. The remaining columns visualize each parametrization on a hemisphere, for three
successive viewing elevations. The first set of images focus on the mirror direction, the last set on the back direction.

Abstract
In this paper, we extend the work of Neumann et al. [NNSK99] and Stark et al. [SAS05] to a pair of 4D BRDF
parameterizations with explicit changes of variables. We detail their mathematical properties and relationships to
the commonly-used halfway/difference parametrization, and discuss their benefits and drawbacks using a few an-
alytical test functions and measured BRDFs. Our preliminary study suggests that the alternative parametrization
inspired by Stark et al. [SAS05] is superior, and should thus be considered in future work involving BRDFs.

1. Motivation and previous work

Bidirectional reflectance distribution functions (BRDFs) are
playing an increasingly important role in physically-based
rendering engines. The choice of their parametrization is es-
sential: it has the potential to cleverly guide the acquisition
process; it should align with main material effects for BRDF
modeling; and it may provide a structure for efficient impor-
tance sampling strategies during rendering.

Most recent BRDF models (e.g., [LKYU12, BSH02])
are based on the halfway/difference parametrization
for which a change of variables has been given by
Rusinkiewicz [Rus98]. A few alternative parameterizations
have been presented in the literature, but they all fall short
of providing an explicit, bijective change of variables. Neu-
mann et al. [NNSK99] use orthographic projections of un-
normalized vectors, which amounts to a 2D parametrization.

Low et al. [LKYU12] have recently shown that these dimen-
sions better account for iso-reflectance lines of glossy mate-
rials, even though they raise issues for Fresnel effects. Stark
et al. [SAS05] proposed three 2D parameterizations and an-
alyzed their ability to represent BRDFs with only two di-
mensions. Edwards et al. [EBJ∗06] introduced yet another
parametrization based on projections but with the major in-
convenient that it does not ensure reciprocity.

The contribution of this paper is twofold. We first ex-
tend the work of Neumann et al. [NNSK99] and Stark
et al. [SAS05] to provide a pair of alternative 4D BRDF
parameterizations with explicit changes of variables (Sec-
tion 2). We then study their mathematical properties and re-
lationships with the halfway/difference parametrization by
means of analytical test functions and analyze their distor-
tions with a few representative materials from the MERL
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database (Section 3). Our study strongly suggests that the
parametrization inspired by Stark et al. [SAS05] is superior
to others in most respects, and should be considered with re-
newed interest in future work involving BRDFs (Section 4).

2. Parameterizations

A simple way to parametrize a BRDF is to make use
of the incoming ωi and outgoing ωo directions, for in-
stance via their azimuth/elevation angular coordinates de-
fined with respect to the tangent/bi-normal/normal frame
{t,b,n}. The BRDF is then written as ρ(θi,φi,θo,φo). For
isotropic BRDFs (invariant to rotations about n), the BRDF
dimensionality can be reduced to 3D using the absolute
difference of azimuth: ρ(θi,θo, |φi − φo|). However, this
parametrization makes it difficult to study very specular ma-
terials because of its dependence on both ωi and ωo [SO07].

The use of the normalized halfway vector ĥ = h
‖h‖ where

h = ωi+ωo
2 , solves this issue. The halfway vector is used in

microfacets theory to define the distribution of the micro-
scopic surface normals, which adequately models specular
effects. The following parameterizations all use either ĥ or
h, and obtain remaining dimensions via a change of vari-
ables. In all three cases, an isotropic BRDF is invariant to the
halfway azimuth angle φh, independently of its norm ||h||.

Halfway/difference parametrization. Most BRDF mod-
els make use of the normalized halfway vector ĥ given by
(θh,φh) in angular coordinates. To obtain a full change of
variables, Rusinkiewicz [Rus98] introduced the normalized
difference vector d̂ given by (θd ,φd) in angular coordinates.
It describes the direction of ωi in a frame where ĥ is the north
pole, which can obtained by rotations: d̂ = rotb,-θh rotn,-φh ωi.

The BRDF is given by ρ(θh,φh,θd ,φd), or ρ(θh,θd ,φd)
for isotropic BRDFs. Reciprocity is ensured by a sym-
metry under φd → φd + π. The inverse mapping from the
halfway/difference parametrization to (ωo,ωi) is given by:

ωi = rotn,φh rotb,θh d̂, (1)

ωo = 2(ωi · ĥ)ĥ−ωi. (2)

The top row of Figure 1 visualizes θh (in red) and θd
(in green) for various values of θo. At grazing angles, red-
dish isolines reveal the characteristic "pinched" shape of the
parametrization around the mirror direction, while it exhibits
concentric greenish isolines around the back direction.

Orthographic parametrization. Low et al. [LKYU12]
have recently shown that θh is not an optimal choice for
the fitting of glossy lobes. Instead, they propose to use the
unnormalized halfway vector orthographically projected in
the tangent plane h̄ = h− (n ·h)n. This transformation dates
back to Neumann et al. [NNSK99] who also introduced an
unnormalized back vector k = ωi−ωo

2 and used its projection
in the tangent plane k̄ = k− (n ·k)n for retro-reflection.

Although not mentioned by Low et al. or Neumann et al.,
a change of variables is easily obtained by expressing h̄ and
k̄ in 2D polar coordinates. We thus write ρ(‖h̄‖,φh,‖k̄‖,φk),
dropping φh for isotropic BRDFs as before. Reciprocity
is ensured by a symmetry under φk → φk + π (equiva-
lently k̄→−k̄). The inverse mapping from this orthographic
parametrization to (ωo,ωi) is straightforward:

ωi = ω̄i +
√

1−‖ω̄i‖2 n, (3)

ωo = ω̄o +
√

1−‖ω̄o‖2 n, (4)

where ω̄i = h̄+ k̄ and ω̄o = h̄− k̄ are the orthographically
projected incoming and outgoing directions respectively.

The middle row of Figure 1 visualizes ‖h̄‖ (in red) and
‖k̄‖ (in green) for various values of θo. At grazing an-
gles, reddish isolines around the mirror direction reveal less
distortions compared to the halfway/difference parametriza-
tion [LKYU12]. The parametrization exhibits greenish iso-
lines around the back direction, with the same type of distor-
tions as reddish isolines since their formula are identical.

Hybrid parametrization. Stark et al. [SAS05] introduced
three 2D BRDF parameterizations, the last of which was
found to produce the best dimensionality reduction results.
This so-called (α,σ) parametrization is related to the ortho-
graphic parametrization by α = ‖k‖2 and σ = ‖h̄‖2 (Equa-
tions 35 and 36 in their paper).

We thus suggest an hybrid parametrization using ‖k‖ in-
stead of ‖k̄‖, with the BRDF given by ρ(‖h̄‖,φh,‖k‖,φk).
As before, φh is dropped for isotropic BRDFs and reci-
procity is ensured by a symmetry under φk→ φk +π (equiv-
alently k → −k). The inverse mapping from this hybrid
parametrization to (ωo,ωi) is more involved though. We first
express h and k in terms of parametric coordinates as ex-
plained in the Appendix. We then obtain ωo and ωi using:

ωi = h+k, (5)

ωo = h−k. (6)

The bottom row of Figure 1 visualizes ‖h̄‖ (in red) and
‖k‖ (in green) for various values of θi (or θo). Reddish iso-
lines are obviously identical to those obtained with the ortho-
graphic parametrization. Greenish isolines around the back
direction are similar to the halfway/difference parametriza-
tion: they are concentric (albeit with a different spacing).

3. Analysis

We now study how analytic or measured isotropic BRDFs
(i.e., assuming φh = 0) map to the different dimensions of
each parametrization. In particular, we study the variations
of the mapping as a function of φd or φk, which permits to
visualize 2D BRDF slices as seen in Figures 2 through 5.
Observe that in all figures, the orthographic and hybrid pa-
rameterizations are identical at φk = 90◦. This is because k
then lies in the tangent plane and is equal to k̄.
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Figure 2: Top: test functions (S in red, G in blue, F in white)
at three viewing elevations. Bottom: the halfway/difference
parametrization (1st row) exhibits strong distortions of both
S and G; the orthographic parametrization (2nd row) shows
distortions of both F and G; the hybrid parametrization (3rd
row) only shows slight distortions of G.

Test functions. We begin our study with three analytic 1D
test functions that characterize typical BRDF effects, all
shown at once using a color code in Figure 2.

Our Fresnel test function is shown in white and given by
F(ωi,ωo) = 1−cosθd . It is naturally aligned with the verti-
cal axis of the halfway/difference parametrization. However,
it also seems to be aligned with the vertical axis of the hy-
brid parametrization. Indeed, as explained in the Appendix
(see also [SAS05]), cos2

θd = 1−‖k‖2. In contrast in the
orthographic parametrization, the isolines of F bend toward
the anti-diagonal when φk departs from 90◦, which might
explain why modeling Fresnel effects was found to be prob-
lematic in this parametrization [NNSK99, LKYU12].

Our specular test function is shown in red and follows
Low et al. [LKYU12]: S(ωi,ωo) = 1−‖h̄‖. By construc-
tion, S is aligned with the horizontal axis of both the ortho-
graphic and hybrid parameterizations. This is not the case
of the halfway/difference parametrization where S appears
significantly distorted, independently of φd . Indeed, as ex-
plained in the Appendix, ‖h̄‖2 = sinθh cosθd , which is sim-
ilar to diffraction effects in BRDF models [HP15].

Figure 3: Top: gold-metallic-paint3 material in
three environment lightings. Bottom: luminance isolines
of reflectance are distorted in the halfway/difference
parametrization (1st row), but not in other parametrizations
(orthographic in the 2nd row and hybrid in the 3rd row).

Lastly, our grazing test function is shown in blue and
given by G(ωi,ωo) = 1− (ωi ·n)(ωo ·n), with its 0-isoline
corresponding to hemispherical boundaries. All parameter-
izations exhibit distortions of G to different degrees, with
those of the halfway/difference (resp. hybrid) parametriza-
tion being the most (resp. least) pronounced. Isolines of G
are circular in both the orthographic and hybrid parameter-
izations at φk = 90◦, since (ωi · n)(ωo · n) = 1− ‖h̄‖2 −
‖k‖2(1+ cos2

θk) as detailed in the Appendix.

Taken together, the equations relating ‖h̄‖ and ‖k‖ to θh
and θd seem to imply that there is a simple warping re-
lating the hybrid to the halfway/difference parametrization.
As shown in the Appendix, this warping is 2D since φk =
φh +φd ; in other words, any slice in the hybrid parametriza-
tion corresponds to a warped slice in the halfway/difference
parametrization. This means in particular that reducing a
BRDF dimensionality to 2 by means of projection will yield
the exact same approximations in both parametrizations.

BRDF data. Next, we examine three isotropic BRDF sam-
ples from the MERL database [MPBM03], mapping them
to each parametrization. We chose a metallic paint (Fig-
ure 3), a finished wood (Figure 4), and a textile (Figure 5)
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Figure 4: Top: colonial-maple-223 material in
three environment lightings. Bottom: luminance isolines
of reflectance around the top left corner of both
the halfway/difference (1st row) and hybrid (3rd row)
parametrization are only slightly distorted; more distorsions
are exhibited in the orthographic parametrization (2nd row).

as they exhibit different combinations of Fresnel, specular
and grazing effects. Each material is shown rendered on a
sphere in three environment illuminations: Eucalyptus
Grove, Uffizi Gallery and Galileo’s Tomb. We
superimpose luminance isolines on top of reflectance data to
better visualize distortions due to each parametrization.

Figure 3 shows gold-metallic-paint3, which ex-
hibits a glossy material appearance. Luminance isolines are
clearly similar to our specular test function S. In partic-
ular, they are strongly distorted irrespective of φd in the
halfway/difference parametrization. These observations are
similar to those made by Low et al. [LKYU12].

Figure 4 shows colonial-maple-223, a finished
wood with diffuse reflectance and significant material sheen.
As before, distortions similar to those observed with S ap-
pear in the halfway/difference parametrization. However,
material sheen (top left corner) remains relatively sta-
ble across changes in φd . In contrast, the orthographic
parametrization exhibits distortions in this region away from
φk = 90◦. The hybrid parametrization does the best job of

Figure 5: Top: pink-felt material in three environ-
ment lightings. Bottom: luminance isolines of reflectance are
strongly distorted in the halfway/difference parametrization
at φd = 90◦ (1st row) and in the orthographic parametriza-
tion at φk = 0◦ (2nd row). The hybrid parametrization (3rd
row) only shows slight distortions across φk.

keeping distortions minimal. These observations are likely
to be connected to those made on the Fresnel function F .

Figure 5 shows pink-felt, a textile with diffuse re-
flectance and grazing angle effects. This example best illus-
trates the variability of each parametrization along their re-
spective φ dimension. The halfway/difference parametriza-
tion well captures grazing effects along the hemispherical
boundaries except at φd = 90◦ where they become exagger-
atedly distorted. The orthographic parametrization reason-
ably captures these effects at φk = 90◦; but they get com-
pressed for other values of φk. The hybrid parametrization
provides the best trade-off, even though some distortions re-
main as was observed when studying G.

4. Discussion and future work

Our preliminary study strongly suggests that the hybrid
parametrization inspired by the work of Stark et al. [SAS05]
better aligns with common material properties. We believe
this should have important consequences on the acquisition
and modeling of BRDFs. For instance, a good choice of
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parametrization could lead to an optimal repartition of sam-
ples that cover most known effects of materials. This could
not only lead to more accurate data interpolation or fitting,
but also provide guidance for material acquisition using a
gonio-reflectometer. An optimal parametrization also has the
potential of inspiring new BRDF models with dimensions
better aligned with real-world material properties.

In future work, we plan to run a quantitative valida-
tion on publicly available databases, for both isotropic and
anisotropic BRDFs. In particular, we would like to study
other (e.g. bilateral) symmetries and understand how they
relate to BRDF parameterizations. However, care should be
taken with measured data at grazing and retro-reflection an-
gles depending on the device employed. An alternative re-
search direction we would like to pursue is the simulation of
BRDF acquisition using a virtual gonio-reflectometer. This
should allow us to draw connections between subsets of a
parametrization and the corresponding subset of light paths.
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Appendix

Recall that h = ωi+ωo
2 and k = ωi−ωo

2 . We start by deriv-
ing a few identities that will prove useful. First observe
that ‖h‖2 = 1+ωi·ωo

2 . Similarly, ‖k‖2 = 1−ωi·ωo
2 . Hence

‖h‖2 +‖k‖2 = 1. We also have h ·k =
‖ωi‖2−‖ωo‖2

4 = 0.

As mentioned in Section 2, the inverse mapping for the
hybrid parametrization requires to express h and k in para-
metric coordinates. We start with the halfway vector:

h = ‖h‖

 sinθh cosφh
sinθh sinφh

cosθh

=

 ‖h̄‖cosφh
‖h̄‖sinφh

h ·n

 .

We must then find an expression of h · n in terms of para-
metric coordinates. Since we have ‖h̄‖2 = ‖h‖2− (h ·n)2 =
1−‖k‖2− (h ·n)2, then h ·n =

√
1−‖k‖2−‖h̄‖2.

Now for the back vector, we write as before:

k = ‖k‖

 sinθk cosφk
sinθk sinφk

cosθk

 .

We must then find an expression of θk in terms of parametric
coordinates. To this end, we compute explicitly h ·k:

h ·k = ‖h̄‖‖k‖sinθk cos(φh−φk)+h ·n‖k‖cosθk = 0.

By rearranging and simplifying terms, we obtain:

θk = tan-1

(
−
√

1−‖k‖2−‖h̄‖2

‖h̄‖cos(φh−φk)

)
.

We now turn to the mathematical properties and relation-
ships introduced in Section 3, starting with:

cosθd = ωi · ĥ =
ωi ·h
‖h‖ =

1+ωi ·ωo

2‖h‖ = ‖h‖=
√

1−‖k‖2.

The θh coordinate is given in terms of ‖h̄‖ and ‖k‖ by:

cos2
θh =

(h ·n)2

‖h‖2 =
1−‖h̄‖2−‖k‖2

1−‖k‖2 ,

which by inversion yields ‖h̄‖2 = (1−cos2
θh)(1−sin2

θd).
To find relationship between azimuthal angles, we ob-

serve that k = ωi−h = ωi− ĥ‖h‖, which yields:

k = rotn,φh rotb,θh

(
d̂−n(n · d̂)

)
= rotn,φh rotb,θh d̄.

Since d̄ makes an angle φd with b, we obtain φk = φh +φd .

Finally, the expression for grazing effects is given by:

(ωi ·n)(ωo ·n) = (h ·n)2− (k ·n)2

= 1−‖h̄‖2−‖k‖2(1+ cos2
θk).

Note in particular that θk = ±90◦ when φk = 90◦, which
explains the circular isolines in the bottom right of Figure 2.
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