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ABSTRACT

Splitting and importance sampling are the two primary tech-
niques to make important rare events happen more fre-
quently in a simulation, and obtain an unbiased estimator
with much smaller variance than the standard Monte Carlo
estimator. Importance sampling has been discussed and
studied in several articles presented at the Winter Simula-
tion Conference in the past. A smaller number of WSC
articles have examined splitting. In this paper, we review
the splitting technique and discuss some of its strengths and
limitations from the practical viewpoint. We also introduce
improvements in the implementation of the multilevel split-
ting technique. This is done in a setting where we want to
estimate the probability of reaching B before reaching (or re-
turning to) A when starting from a fixed state x0 6∈ B, where
A and B are two disjoint subsets of the state space and B
is very rarely attained. This problem has several practical
applications.

1 SETTING

We consider a discrete-time Markov chain {X j, j ≥ 0} with
state space X . Let A and B be two disjoint subsets of X
and let x0 ∈ X \B be the initial state. The chain starts in
state X0 = x0, leaves the set A if x0 ∈ A, and then eventually
reaches B or A. Let τA = inf{ j > 0 : X j−1 6∈ A and X j ∈ A},
the first time when the chain hits A (or returns to A af-
ter leaving it), and τB = inf{ j > 0 : X j ∈ B}, the first time
when the chain reaches the set B. The goal is to estimate
γ = P[τB < τA], the probability that the chain reaches B be-
fore A. This particular form of rare-event problem, where
γ is small, occurs in many practical situations (Shahabuddin
1994, Heidelberger 1995).

The standard Monte Carlo method estimates γ by run-
ning n independent copies of the chain up to the stopping
time τ = min(τA,τB), and counting the proportion of runs
for which the event {τB < τA} occurs. The resulting estima-

tor γ̂n has relative error

RE[γ̂n] =
(Var[γ̂n])1/2

γ0
=

(γ0(1− γ0)/n)1/2

γ0
≈ (γ0n)−1/2,

which increases to infinity when γ → 0. This naive estimator
is thus highly unreliable when γ is small.

An alternative unbiased estimator of γ , say γ̃n, is said to
have bounded relative error if limγ→0+ RE[γ̃n] < ∞. This
implies that

lim
γ→0+

log(E[γ̃2
n ])

logγ
= 2. (1)

When the latter (weaker) condition holds, the estimator γ̃n
is said to be asymptotically efficient (Heidelberger 1995,
Bucklew 2004). To take into account the computing cost
of the estimator, it is common practice to consider the
efficiency of an estimator γ̃n of γ , defined as Eff[γ̃n] =
1/(Var[γ̃n]C(γ̃n)) where C(γ̃n) is the expected time to com-
pute γ̃n. Efficiency improvement means finding an un-
biased estimator with larger efficiency than the one pre-
viously available. The estimator γ̃n has bounded work-
normalized relative error, or relative efficiency bounded
away from zero, if limγ→0+ γ2Eff[γ̃n] > 0. It is work-
normalized asymptotically efficient (a weaker condition) if
limγ→0+ log(C(γ̃n)E[γ̃2

n ])/logγ = 2. A sufficient condition
for this is that (1) holds and limγ→0+ logC(γ̃n)/ logγ = 0.

Splitting and importance sampling are the two major ap-
proaches to deal with rare-event simulation. Importance
sampling increases the probability of the rare event by
changing the probability laws that drive the evolution of the
system. It then multiplies the estimator by an appropriate
likelihood ratio to recover the correct expectation (i.e., so
that the estimator remains unbiased for γ in the above set-
ting). The main difficulty in general is to find a good way
to change the probability laws. For the details, we refer the
reader to Glynn and Iglehart (1989), Heidelberger (1995),
Bucklew (2004), and many other references given there.

In the splitting method, the probability laws remain un-
changed, but an artificial drift toward the rare event is cre-
ated by terminating with some probability the trajectories
that seem to go away from it and by splitting (cloning) those
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that are going in the right direction. In general, an unbi-
ased estimator is recovered by multiplying the original es-
timator by an appropriate factor (in some settings, this fac-
tor is 1). The method can be traced back to Kahn and Har-
ris (1951) and has been studied (sometimes under different
names) by several authors, including Booth and Hendricks
(1984), Villén-Altamirano and Villén-Altamirano (1994),
Melas (1997), Garvels and Kroese (1998), Glasserman et al.
(1998), Glasserman et al. (1999), Fox (1999), Garvels
(2000), Del Moral (2004), Cérou, LeGland, Del Moral, and
Lezaud (2005), Villén-Altamirano and Villén-Altamirano
(2006), and other references cited there.

The splitting methodology was invented to improve the
efficiency of simulations of particle transport in nuclear
physics; it is used to estimate the intensity of radiation
that penetrates a shield of absorbing material, for example
(Hammersley and Handscomb 1964, Spanier and Gelbard
1969, Booth and Hendricks 1984, Booth 1985, Booth and
Pederson 1992, Pederson, Forster, and Booth 1997). This
remains its primary area of application. It is also used to
estimate delay time distributions and losses in ATM and
TCP/IP telecommunication networks (Akin and Townsend
2001, Gorg and Fuss 1999). In a recent real-life applica-
tion, splitting is used to estimate the probability that two air-
planes get closer than a nominal separation distance, or even
hit each other, in a stochastic dynamical model of air traffic
where aircrafts are responsible for self-separation with each
other (Blom et al. 2005).

In Section 2, we review the theory and practice of split-
ting in a setting where we want to estimate γ = P[τB < τA].
We start with multilevel splitting and then discuss more gen-
eral alternatives. For multilevel splitting, we propose new
variants, more efficient than the standard implementations.
Numerical illustrations are given in Section 3. L’Ecuyer,
Demers, and Tuffin (2006) contains an expanded version
of the present overview article. It also studies the combi-
nation of splitting and importance sampling with two types
of randomized quasi-Monte Carlo methods: the “classical”
one (e.g., Owen 1998, L’Ecuyer and Lemieux 2000) and
the array-RQMC method for Markov chains proposed by
L’Ecuyer, Lécot, and Tuffin (2005).

2 SPLITTING

2.1 Multilevel Splitting

We define the splitting algorithm via an importance function
h : X → R that assigns a importance value to each state of
the chain (Garvels, Kroese, and Van Ommeren 2002). We
assume that A = {x ∈ X : h(x) ≤ 0} and B = {x ∈ X :
h(x) ≥ `} for some constant ` > 0. In the multilevel split-
ting method, we partition the interval [0, `) in m subintervals
with boundaries 0 = `0 < `1 < · · ·< `m = `. For k = 1, . . . ,m,
let Tk = inf{ j > 0 : h(X j) ≥ `k}, let Dk = {Tk < τA} denote

the event that h(X j) reaches level `k before reaching level
0, and define the conditional probabilities pk = P[Dk |Dk−1]
for k > 1, and p1 = P[D1]. Since Dm ⊂ Dm−1 ⊂ ·· · ⊂ D1,
we have

γ = P[Dm] =
m

∏
k=1

pk.

The intuitive idea of multilevel splitting is to estimate each
probability pk “separately”, by starting a large number of
chains in states that are generated from the distribution of
XTk−1 conditional on the event Dk−1. This conditional distri-
bution, denoted by Gk−1, is called the (first-time) entrance
distribution at threshold `k−1, for k = 1, . . . ,m + 1 (G0 is
degenerate at x0). Conceptually, the estimation is done in
successive stages, as follows.

In the first stage, we start N0 independent chains from
the initial state x0 and simulate each of them until time
min(τA, T1). Let R1 be the number of those chains for which
D1 occurs. Then p̂1 = R1/N0 is an obvious unbiased estima-
tor of p1. The empirical distribution Ĝ1 of these R1 entrance
states XT1 can be viewed as an estimate of the conditional
distribution G1.

In stage k, for k ≥ 2, ideally we would like to gener-
ate Nk−1 states independently from the entrance distribution
Gk−1. Or even better, to generate a stratified sample from
Gk−1. But we usually cannot do that, because Gk−1 is un-
known. Instead, we pick Nk−1 states out of the Rk−1 that are
available (by cloning if necessary), simulate independently
from these states up to time min(τA, Tk), and estimate pk by
p̂k = Rk/Nk−1 where Rk is the number of chains for which
Dk occurs. If Rk = 0, then p̂ j = 0 for all j ≥ k and the al-
gorithm can immediately return γ̂n = 0. The initial state of
each of the Nk−1 chains at the beginning of stage k has dis-
tribution Gk−1. Thus, for each of these chains, the event Dk
has probability pk and the entrance state at the next level if
Dk occurs has distribution Gk.

Even though the p̂k’s are not independent, we can
prove by induction on k that the product p̂1 · · · p̂m =
(R1/N0)(R2/N1) · · ·(Rm/Nm−1) is an unbiased estimator
of γ (Garvels 2000, page 17): If we assume that
E[p̂1 · · · p̂k−1] = p1 · · · pk−1, then

E[p̂1 · · · p̂k] = E[p̂1 · · · p̂k−1E[p̂k | N0,R1, . . . ,Nk−1]]
= E[p̂1 · · · p̂k−1(Nk−1 pk)/Nk−1]
= p1 · · · pk.

Combining this with the fact that E[p̂1] = p1, the result fol-
lows.

2.2 Fixed Splitting vs Fixed Effort

There are many ways of doing the splitting (Garvels 2000).
For example, we may clone each of the Rk chains that
reached level k in ck copies, for a fixed positive integer ck.
Then, each Nk = ckRk is random. This is fixed splitting. If
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we want the expected number of splits of each chain to be
ck, where ck = bckc+δ and 0≤ δ < 1, then we assume that
the actual number of splits is bckc+1 with probability δ and
bckc with probability 1−δ .

In the fixed effort method, we fix each Nk a priori and
make just the right amount of splitting to reach this target
value. This can be achieved by random assignment: draw
the Nk starting states at random, with replacement, from the
Rk available states. This is equivalent to sampling Nk states
from the empirical distribution Ĝk of these Rk states. In a
fixed assignment, on the other hand, we split each of the Rk
states approximately the same number of times as follows.
Let ck = bNk/Rkc and dk = Nk mod Rk. Select dk of the Rk
states at random, without replacement. Each selected state is
split ck +1 times and the other states are split ck times. The
fixed assignment gives a smaller variance than the random
assignment because it corresponds to stratification over the
empirical distribution Ĝk at level k.

These variants are all unbiased, but they differ in terms
of variance. Garvels and Kroese (1998) conclude from their
analysis and empirical experiments that fixed effort performs
better, mainly because it reduces the variance of the number
of chains that are simulated at each stage. It turns out that
with optimal splitting factors, this is not always true (see the
next subsection).

The fixed effort implementation with random assignment
fits the framework of interacting particle systems studied
by Del Moral (2004) to approximate Feynman-Kac distri-
butions. In this type of system, particles that did not reach
the threshold are killed and replaced by clones of randomly
selected particles among those that have succeeded. This re-
distributes the effort on most promising particles while keep-
ing the total number constant. Cérou, LeGland, Del Moral,
and Lezaud (2005) derive limit theorems for the correspond-
ing estimators.

2.3 Variance Analysis for a Simplified Setting

We outline a very crude variance analysis in an idealized
fixed-effort setting where

N0 = N1 = · · ·= Nm−1 = n

and where the p̂i’s are independent binomial random vari-
ables with parameters n and p = γ1/m. Then, for m > 1, we

have (Garvels 2000, L’Ecuyer, Demers, and Tuffin 2006):

Var[p̂1 · · · p̂m]

=
m

∏
i=1

E[p̂2
i ]− γ

2

=
(

p2 +
p(1− p)

n

)m

− p2m

=
mp2m−1(1− p)

n
+

m(m−1)p2m−2(1− p)2

2n2

+ · · · +
(p(1− p))m

nm .

If we assume that

n � (m−1)(1− p)/p, (2)

the first term mp2m−1(1− p)/n ≈ mγ2−1/m/n dominates in
the last expression. The standard Monte Carlo variance, on
the other hand, is γ(1− γ)/n ≈ γ/n. To illustrate the huge
potential variance reduction, suppose γ = 10−20, m = 20,
p = 1/10, and n = 1000. Then the MC variance is 10−23

whereas mp2m−1(1− p)/n ≈ 1.8×10−41. This oversimpli-
fied setting is not realistic, because the p̂i are generally not
independent and it is difficult to have pi = γ1/m for all i, but
it gives an idea of the order of magnitude of potential vari-
ance reduction.

The amount of work (or CPU time, or number of steps
simulated) at each stage is proportional to n, so the total
work is proportional to nm. Most of this work is to sim-
ulate the n chains down to level 0 at each stage. Thus,
the efficiency of the splitting estimator under the simplified
setting is approximately proportional to n/[γ2−1/mnm2] =
γ−2+1/m/m2 when (2) holds. By differentiating with re-
spect to m, we find that this expression is maximized by
taking m = − ln(γ)/2 (we neglect the fact that m must
be an integer). This gives pm = γ = e−2m, so p =
e−2. Garvels and Kroese (1998) have obtained this result.
The squared relative error in this case is (approximately)
γ2−1/m(m/n)γ−2 = e2m/n = −e2 ln(γ)/(2n) and the rela-
tive efficiency is proportional to γ2γ−2+1/m/m2 = (em)−2 =
[(e/2) ln(γ)]−2, again under the condition (2).

When γ → 0 for fixed p, we have m → ∞, so (2) does
not hold. Then, the relative error increases toward infinity
and the relative efficiency converges to zero, at a logarithmic
rate in both cases. This agrees with Garvels (2000), page 20.
With γ̃n = p̂1 · · · p̂m, the limit in (1) is

lim
γ→0+

log(p2 + p(1− p)/n)m

logγ

= lim
γ→0+

− log(p2 + p(1− p)/n)
− log p

< 2.

Thus, this splitting estimator is not quite asymptotically ef-
ficient, but almost (when n is very large).
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Consider now a fixed-splitting setting, assuming that N0 =
n, pk = p = γ1/m for all k, and that the constant splitting
factor at each stage is c = 1/p; i.e., Nk = Rk/p. Then,
{Nk, k ≥ 1} is a branching process and the estimator be-
comes

p̂1 · · · p̂m =
R1

N0

R2

N1
· · · Rm

Nm−1
=

Rm pm−1

n
.

From standard branching process theory (Harris 1963), we
have that

Var[p̂1 · · · p̂m] = m(1− p)p2m−1/n.

If p is fixed and m→∞, then the squared relative error m(1−
p)/(np) is unbounded here as well. However, the limit in (1)
becomes

lim
γ→0+

log(m(1− p)γ2/(np)+ γ2)
logγ

= lim
γ→0+

−2m log p− log(1+m(1− p)/(np))
−m log p

= 2,

so the splitting estimator is asymptotically efficient
(Glasserman et al. 1999). This implies that fixed splitting
is asymptotically better in this case.

Glasserman et al. (1999) study the fixed splitting frame-
work with splitting factor ck ≡ c, for a countable-state space
Markov chain. They assume that the probability transition
matrix Pk for the first-entrance state at level k given the
first-entrance state at level k− 1 converges to a matrix P
with spectral radius ρ < 1. This implies that pk → ρ when
k→∞. Then they use branching process theory to prove that
the multilevel splitting estimator (in their setting) is work-
normalized asymptotically efficient if and only if c = 1/ρ .
Glasserman et al. (1998) show that the condition c = 1/ρ

is not sufficient for asymptotic efficiency and provide ad-
ditional necessary conditions in a general multidimensional
setting. Their results highlight the crucial importance of
choosing a good importance function h.

Even though fixed splitting is asymptotically better un-
der ideal conditions, its efficiency is extremely sensitive to
the choice of splitting factors. If the splitting factors are
too high, the number of chains (and the amount of work) ex-
plodes, whereas if they are too low, the variance is very large
because very few chains reach B. Since the optimal splitting
factors are unknown in real-life applications, the more ro-
bust fixed-effort approach is usually preferable.

2.4 Implementation

The fixed-effort approach has the disadvantage of requir-
ing more memory than fixed splitting, because it must use
a breadth-first implementation: at each stage k all the chains
must be simulated until they reach either A or level `k before
we know the splitting factor at that level. The states of all

the chains that reach `k must be saved; this may require too
much memory when the Nk’s are large. With fixed splitting,
we can adopt a depth-first strategy, where each chain is sim-
ulated entirely until it hits ` or A, then its most recent clones
(created at the highest level that it has reached) are simulated
entirely, then those at the next highest level, and so on. This
procedure is applied recursively. At most one state per level
need to be memorized with this approach. This is feasible
because the amount of splitting at each level is fixed a priori.

As a second issue, an important part of the work in multi-
level splitting is due to the fact that all the chains considered
in stage k (from level `k−1) and which do not reach `k must
be simulated until they get down to A. When `k−1 is large,
this can take significant time. Because of this, the expected
amount of work increases with the number of thresholds.
One heuristic that reduces this work in exchange for a small
bias truncates the chains that reach level `k−β downward af-
ter they have reached `k−1, where β ≥ 2 is a fixed integer
large enough so that a chain starting at level `k−β has a very
small probability of getting back up to `k. We discuss unbi-
ased alternatives in Section 2.7.

2.5 The RESTART Algorithm

The RESTART method (Villén-Altamirano and
Villén-Altamirano 1994, Villén-Altamirano and
Villén-Altamirano 2006) is a variant of splitting where
any chain is split by a fixed factor when it hits a level
upward, and one of the copies is tagged as the original for
that level. When any of those copies hits that same level
downward, if it is the original it just continues its path, oth-
erwise it is killed immediately. This rule applies recursively,
and the method is implemented in a depth-first fashion,
as follows: whenever there is a split, all the non-original
copies are simulated completely, one after the other, then
simulation continues for the original chain. Unbiasedness
is proved by Garvels (2000) and Villén-Altamirano and
Villén-Altamirano (2002). The reason for killing most of
the paths that go downward is to reduce the work. The
number of paths that are simulated down to A never exceeds
N0. On the other hand, the number of chains that reach a
given level is more variable with this method than with the
fixed-effort and fixed-assignment multilevel splitting algo-
rithm described previously. As a result, the final estimator
of γ has a larger variance (Garvels 2000). Another source of
additional variance is that the resplits tend to share a longer
common history and to be more positively correlated. This
source of variance can be important when the probability
of reaching B from a given level varies significantly with
the entrance state at that level (Garvels 2000). In terms of
overall efficiency, none of the two methods is universally
better; RESTART wins in some cases and splitting wins
in other cases. Villén-Altamirano and Villén-Altamirano
(2002) provide a detailed variance analysis of RESTART.
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2.6 Choice of the Importance Function and Optimal
Parameters

Key issues in multilevel splitting are the choices of the im-
portance function h, levels `k, and splitting factors. To dis-
cuss this, we introduce some more notation. Let Xk ⊂ X
be the support of the entrance distribution Gk, i.e., the states
in which the chain can possibly be when hitting level `k for
the first time. Let γ(x) = P[τB < τA | τ > j, X j = x], the
probability of reaching B before A if the chain is currently
in state x, and pk(x) = P[Dk | Dk−1,XTk−1 = x], the proba-
bility of reaching level k before hitting A if the chain has
just entered level k− 1 in state x, for x ∈ Xk−1. Note that
pk =

∫
x∈Xk−1

pk(x)dGk−1(x) and γ = γ(x0).

One-dimensional case: Selecting the levels. If the
Markov chain has a one-dimensional state space X ⊂ R,
γ(x) is increasing in x, and if A = (−∞,0] and B = [`,∞) for
some constant `, then we could simply choose h(x) = x (or
any strictly increasing function). In this case, the kth level is
attained when the state reaches the value `k. This value need
not be reached exactly: in general, the chain can jump di-
rectly from a smaller value to a value larger than `k, perhaps
even larger than `k+1. So even in the one-dimensional case,
the entrance state x at a given level is not unique in general
and the probability pk(x) of reaching the next level depends
on this (random) entrance state. It remains to choose the
levels `k.

We saw earlier that in a fixed effort setting and under sim-
plifying assumptions, it is optimal to have pk ≡ p = e−2 for
all k. This gives m =− ln(γ)/2 levels. To obtain equal pk’s,
it is typically necessary to take unequal distances between
the successive levels `k, i.e., `k − `k−1 must depend on k.

Suppose now that we use fixed splitting with ck = 1/pk =
e2 for each k. If we assume (crudely) that each chain is split
by a factor of e2 at each stage, the total number of copies of
a single initial chain that have a chance to reach B is

e2m−2 = e− ln(γ)−2 = e−2
γ
−1. (3)

Since each one reaches B with probability γ , this crude argu-
ment indicates that the expected number of chains that reach
B is approximately equal to p = e−2 times the initial num-
ber of chains at stage 0, exactly as in the fixed-effort case.
However, the variance generally differs.

For RESTART, Villén-Altamirano and Villén-Altamirano
(1994) concluded from a crude analysis that pk ≈ e−2 was
approximately optimal. However, their more careful analy-
sis in Villén-Altamirano and Villén-Altamirano (2002) indi-
cates that the pk’s should be as small as possible. Since the
splitting factor at each level must be an integer, they recom-
mend pk = 1/2 and a splitting factor of ck = 2.

Cérou and Guyader (2005) determine the thresholds adap-
tively for the splitting with fixed effort in dimension 1. They
first simulate n chains (trajectories) until these chains reach

A or B. Then they sort the chains according to the max-
imum value of the importance function h that each chain
has reached. The k trajectories with the largest values are
kept, while the n− k others are re-simulated, starting from
the state at which the highest value of the importance func-
tion was obtained for the (n− k)-th largest one. They pro-
ceed like this until n− k trajectories have reached B. Their
estimator is proved to be consistent, but is biased.

Multidimensional case: Defining the importance func-
tion. In the case of a multidimensional state space, the
choice of h is much more difficult. Note that h and the `k’s
jointly determine the probabilities pk(x) and pk. Based on
large deviation theory, Glasserman et al. (1998) shows that
the levels need to be chosen in a way consistent with the
most likely path to a rare set. Garvels, Kroese, and Van
Ommeren (2002) show by induction on k that for any fixed
p1, . . . , pm, h should be defined so that pk(x) = pk (indepen-
dent of x) for all x ∈ Xk−1 and all k. This rule minimizes
the residual variance of the estimator from stage k onward.
With an h that satisfies this condition, the optimal levels and
splitting factors are the same as in the one-dimensional case:
m =−(1/2) lnγ levels, pk ≈ e−2 and E[Nk] = N0 for each k.
A simple choice of h and `k’s that satisfies these conditions
is

h(x) = h∗(x) def= γ(x) and `k = e−2(m−k) = γe2k.

Garvels, Kroese, and Van Ommeren (2002) gave the follow-
ing (equivalent) alternative choice: `k = k for each k and

h(x) = h∗∗(x) def=
ln(γ(x)/γ)

2
= m+

ln(γ(x))
2

for all x ∈ X . However, these levels are optimal only if
we assume that the chain can reach `k only on the set {x :
γ(x) = e−2(m−k)}, an optimistic assumption that rarely holds
in practice, especially in the multidimensional case.

Garvels, Kroese, and Van Ommeren (2002) also show
how to get a first estimate of γ(x) beforehand, in simple sit-
uations where the Markov chain has a finite state space, by
simulating the chain backward in time. They construct an
approximation of h∗∗ from this estimate and then use it in
their splitting algorithm. They apply their method to a tan-
dem queue with two or three nodes and obtain good results.
However, this method appears to have limited applicability
for large and complicated models.

Booth and Hendricks (1984) propose adaptive methods
that learn the importance function as follows. In their set-
ting, the state space is partitioned in a finite number of re-
gions and the importance function h is assumed to be con-
stant in each region. This importance function is used to de-
termine the expected splitting factors and Russian roulette
probabilities (see Section 2.8) when a chain jumps from one
region to another. They estimate the “average” value of γ(x)
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in each region by the fraction of chains that reach B among
those that have entered this region. These estimates are taken
as importance functions in further simulations used to im-
prove the estimates, and so on.

Constructing the functions h∗ or h∗∗ essentially requires
the knowledge of the probability γ(x) for all x. But if we
knew these probabilities, there would be no need for sim-
ulation! This is very similar (and related) to the issue of
constructing the optimal change of measure in importance
sampling (Glasserman et al. 1998). In general, finding an
optimal h, or an h for which pk(x) is independent of x, can
be extremely difficult or even impossible. When pk(x) de-
pends on x, selecting the thresholds so that pk ≈ e−2 is not
necessarily optimal. More importantly, with a bad choice of
h, splitting may increase the variance, as illustrated by the
next example.

Example 1 This example was used by Parekh and Walrand
(1989), Glasserman et al. (1998), Glasserman et al. (1999),
and Garvels (2000), among others. Consider an open tan-
dem Jackson network with two queues, arrival rate 1, and
service rate µ j at queue j for j = 1,2. Let X j = (X1, j, X2, j)
denote the number of customers at each of the two queues
immediately after the jth event (arrival or end of service).
We have A = {(0,0)} and B = {(x1,x2) : x2 ≥ `∗} for some
large integer `∗. A naive choice of importance function here
would be h(x1,x2) = x2. This seems natural at first sight
because the set B is defined in terms of x2 only. With this
choice, the entrance distribution at level k turns out to be
concentrated on pairs (x1,x2) with small values of x1. To
see why, suppose that x2 = `k′ > 0 for some integer k′ and
that we are in state (x1,x2 − 1) where x1 > 0 is small. The
possible transitions are to states (x1 +1,x2−1), (x1,x2−2),
and (x1−1,x2), with probabilities proportional to 1, µ2, and
µ1, respectively. But the chains that go to state (x1 − 1,x2)
are cloned whereas the other ones are not, and this tends to
increase the population of chains with a small x1.

Suppose now that µ1 < µ2 (the first queue is the bottle-
neck). In this case, the most likely paths to overflow are
those where the first queue builds up to a large level and
then the second queue builds up from the transfer of cus-
tomers from the first queue (Heidelberger 1995). The im-
portance function h(x1,x2) = x2 does not favor these types
of paths; it rather favors the paths where x1 remains small
and these paths have a very high likelihood of returning to
(0,0) before overflow. As a result, splitting with this h may
give an even larger variance than no splitting at all. For this
particular example, h∗∗ increases in both x1 and x2 (Garvels,
Kroese, and Van Ommeren 2002).

2.7 Unbiased Truncation

We pointed out earlier that a large fraction of the work in
multilevel splitting is to simulate the chains down to level
zero at each stage. Truncating the chains whenever they fall

below some level `k−β in stage k reduces the work but in-
troduces a bias. A large β may give negligible bias, but also
a small work reduction. In what follows, we describe un-
biased truncation techniques based on the Russian roulette
principle (Kahn and Harris 1951, Hammersley and Hand-
scomb 1964).

Probabilistic truncation. The idea here is to kill the
chains at random, with some probability, independently of
each other. The survivors act as representatives of the killed
chains. For stage k, we select real numbers rk,2, . . . ,rk,k−1
in [1,∞). The first time a chain reaches level `k− j from
above during that stage, for j ≥ 2, it is killed with proba-
bility 1− 1/rk, j. If it survives, its weight is multiplied by
rk, j. (This is a version of Russian roulette.) When a chain
of weight w > 1 reaches level `k, it is cloned into bwc ad-
ditional copies with probability δ = w−bwc and bw− 1c
additional copies with probability 1−δ . Each copy is given
weight 1. Now, the number of representatives retained at any
given stage is random. Note that we may have rk, j = 1 for
some values of j.

Periodic truncation. To reduce the variability of the num-
ber of selected representatives at each level `k− j, we may
decide to retain every rk, j-th chain that down-crosses that
level and multiply its weight by rk, j; e.g., if rk, j = 3, we
keep the third, sixth, ninth, etc. This would gener-
ally give a biased estimator, because the probability that a
chain is killed would then depend on its sample path up
to the time when it crosses the level (for instance, the first
chain that down-crosses the level would always be killed if
rk, j > 1). A simple trick to remove that bias is to modify
the method as follows: generate a random integer Dk, j uni-
formly in {1, . . . ,rk, j}, retain the (i rk, j + Dk, j)-th chain that
down-crosses level `k− j for i = 0,1,2, . . . , and kill the other
ones. We assume that the random variables Dk,2, . . . ,Dk,k−1
are independent. Then, any chain that down-crosses the level
has the same probability 1−1/rk, j of being killed, indepen-
dently of its trajectory above that level. This is true for any
positive integer rk, j. Moreover, the proportion of chains that
survive has less variance than for the probabilistic truncation
(the killing indicators are no longer independent across the
chains). The chains that reach `k are cloned in proportion to
their weight, exactly as in the probabilistic truncation.

Tag-based truncation. In the periodic truncation method,
the level at which a chain is killed is determined only when
the chain reaches that level. An alternative is to fix all these
levels right at the beginning of the stage. We first select pos-
itive integers rk,2, . . . ,rk,k−1. Then each chain is tagged to
the level `k− j with probability qk, j = (rk, j −1)/(rk,2 · · ·rk, j)
for j = 2, . . . ,k − 1, and to level `0 with probability 1−
qk,k−1 − ·· ·− qk,2 = 1/(rk,2 · · ·rk,k−1). Thus, all the chains
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have the same probability of receiving any given level and
the probability of receiving level zero is positive. If the
tags are assigned randomly and independently across the
chains, then this method is equivalent to probabilistic trun-
cation. But if the integers rk,2, . . . ,rk,k−1 are chosen so that
their product divides (or equals) Nk, the number of chains at
the beginning of stage k, then the tags can also be assigned
so that the proportion of chains tagged to level `k− j is ex-
actly qk, j, while the probability of receiving a given tag is
the same for all chains. The reader can verify that the fol-
lowing scheme gives one way of achieving this: Put the Nk
chains in a list (in any order), generate a random integer D
uniformly in {0, . . . ,Nk −1}, and assign the tag k− j∗(i,D)
to the i-th chain in the list, for all i, where j∗(i,D) is the
smallest integer j in {2, . . . ,k} such that rk,2 · · ·rk, j does not
divide (D + i) mod Nk (when (D + i) mod Nk = 0, we put
j∗(i,D) = k). . After the tags are assigned, the chains can
be simulated one by one for that stage. Whenever a chain
down-crosses for the first time (in this stage) a level `k− j
higher than its tag, its weight is multiplied by rk, j. If it
down-crosses the level of its tag, it is killed immediately.
The chains that reach `k are cloned in proportion to their
weight, as before.

Unbiasedness. L’Ecuyer, Demers, and Tuffin (2006) show
that all the above truncation methods are unbiased by prov-
ing the next proposition and then showing that each trunca-
tion method satisfies the assumptions of the proposition.

Proposition 1 Suppose there are real numbers
rk,2, . . . ,rk,k−1 in [1,∞) such that for j = 2, . . . ,k − 1,
each chain has a probability 1− 1/rk, j of being killed at
its first down-crossing of level `k− j, independently of its
sample path up to that moment, and its weight is multiplied
by rk, j if it survives. Then the truncated estimator remains
unbiased.

Getting rid of the weights. In the unbiased truncation
methods discussed so far, the surviving chains have differ-
ent weights. The variance of these weights may contribute
significantly to the variance of the final estimator. For exam-
ple, if k is large, the event that a chain reaches `k (from `k−1)
after going down to `1 is usually a rare event, and when it
occurs the corresponding chain has a large weight, so this
may have a non-negligible impact on the variance. This
can be addressed by resplitting the chains within the stage
when they up-cross some levels, instead of increasing their
weights at down-crossings. We explain how the probabilistic
and tag-based truncation methods can be modified to incor-
porate this idea. In these methods, the weights of all chains
are always 1, and whenever a chain down-crosses `k− j (not
only the first time), for j ≥ 2, it can get killed.

Probabilistic truncation and resplitting within each
stage. The probabilistic truncation method can be modi-
fied as follows. During stage k, whenever a chain reaches a
level `k− j from below, it is split in rk, j identical copies that
start evolving independently from that point onward (if rk, j
is not an integer, we split the chain in brk, j +1c copies with
probability δ = rk, j −brk, jc and in brk, jc copies with prob-
ability 1− δ ). Whenever a chain down-crosses `k− j (not
only the first time), for j ≥ 2, it is killed with probability
1−1/rk, j. All chains always have weight 1.

Tag-based truncation with resplits. This method is
equivalent to applying RESTART separately within each
stage of the multistage splitting algorithm. It modifies
the tag-based truncation as follows: Whenever a chain up-
crosses level `k− j for j ≥ 2, it is split in rk, j copies. One
of these rk, j copies is identified as the original and keeps its
current tag, while the other rk, j −1 copies are tagged to the
level `k− j where the split occurs. As before, a chain is killed
when it down-crosses the level of its tag.

Unbiasedness. L’Ecuyer, Demers, and Tuffin (2006)
prove the following proposition and show that the two trun-
cation methods with resplits that we just described satisfy its
assumptions.

Proposition 2 Suppose there are positive real numbers
rk,2, . . . ,rk,k−1 such that for j = 2, . . . ,k− 1, each chain is
killed with probability 1− 1/rk, j whenever it down-crosses
level `k− j, independently of its sample path up to the time
when it reached that level, and that this chain is split into
C chains when it up-crosses that same level, where C is a
random variable with mean rk, j, independent of the history
so far. Then the estimator with probabilistic truncation and
resplits (without weights) is unbiased for γ .

Effectiveness and Implementation. The resplit versions
of the truncation methods are expected to give a smaller
variance but require more work. So there is no universal
winner if we think of maximizing the efficiency. One disad-
vantage of the resplit versions is that the number of chains
alive at any given time during stage k has more variance and
may exceed Nk−1. In a worst-case situation, a chain may go
down and up many times across several levels without being
killed, giving rise to a flurry of siblings along the way. For-
tunately, this type of bad behavior has an extremely small
probability and poses no problem when the splitting para-
meters are well chosen. In all our experiments, the number
of chains alive simultaneously during any given stage k has
rarely exceeded Nk−1. If we want to insist that the number
of chains never exceeds Nk−1, we can use weights instead
of splitting, but just for the splits that would have made the
number of chains too large. We may want to do that if the
chains are stored in an array of size n = Nk−1 and we do not
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want their number to exceed n. This type of implementation
is needed when we combine splitting with the array-RQMC
method (L’Ecuyer, Demers, and Tuffin 2006).

We have a lot of freedom for the choice of the trunca-
tion and resplit parameters rk, j. We can select different
sets of values at the different stages of the multilevel split-
ting algorithm. It appears sensible to take rk, j = 1/p̂k− j =
Nk− j−1/Rk− j, the actual splitting factor used at level `k− j of
the splitting algorithm, for j ≥ 2. In our experiments, this
has always worked well.

2.8 Getting Rid of the Levels

In some versions of the splitting and Russian roulette tech-
nique, there are no levels (or thresholds), but only an im-
portance function (some authors call it branching function).
For instance, Ermakov and Melas (1995) and Melas (1997)
study a general setting where a chain can be split or killed
at any transition. If the transition is from x to y and if
α = h(y)/h(x)≥ 1, then the chain is split in a random num-
ber C of copies where E[C] = α , whereas if α < 1 it is
killed with probability 1−α (this is Russian roulette). In
case of a split, the C−1 new copies are started from state x
and new transitions are generated (independently) for those
chains. Their method is developed to estimate the average
cost per unit of time in a regenerative process, where a state-
dependent cost is incurred at each step. In the simulation,
each cost incurred in a given state x is divided by h(x). We
may view 1/h(x) as the weight of the chain at that point.
At the end of a regenerative cycle, the total weighted cost
accumulated by the chain over its cycle is the observation
associated with this cycle. The expected cost per cycle is
estimated by averaging the observations over all simulated
cycles. The expected length of a cycle is estimated in the
same way, just replacing costs by lengths. The authors show
that their method is consistent and propose an adaptive algo-
rithm that estimates the optimal h.

This method can be applied to a finite-horizon simulation
as well. In our setting, it suffices to replace the regeneration
time by the time when the chain reaches A or B, and then
forget about the length of the cycle. When a chain reaches B,
it contributes its weight 1/h(XτB) to the estimator. For a very
crude analysis, suppose we take h(x) = γ(x) and that there
is a split in two every time the function h doubles its value.
Here, h(y)/h(x) = γ(y)/γ(x), so a chain that reaches the set
B would have split in two approximately− log2 γ times. This
gives a “potential” of 2− log2 γ = 1/γ copies that can possibly
reach B for each initial chain at level 0, the same number as
for the multilevel splitting and RESTART; see Equation (3).
This argument suggests that an optimal h in this case should
be proportional to γ(x).

In general, splitting and Russian roulette can be imple-
mented by maintaining a weight for each chain. Initially,
each chain has weight 1. Whenever a chain of weight w is

split in C copies, the weight of all the copies is set to either
w/C or w/E[C]. Booth (1985) shows that using w/E[C] is
usually better. When Russian roulette is applied, the chain is
killed with some probability α < 1; if it survives, its weight
is multiplied by 1/(1−α). The values of C and α at each
step can be deterministic or random, and may depend on
the past history of the chain. Whenever a cost is incurred, it
must be multiplied by the weight of the chain. Unbiasedness
for this general setting is proved (under mild conditions) by
Booth and Pederson (1992), for example.

2.9 Weight Windows

Particle transport simulations in nuclear physics often com-
bine splitting and Russian roulette with importance sam-
pling. Then, the weight of each chain must be multiplied
by the likelihood ratio accumulated so far. The weight is re-
defined as this product. In the context of rare events, it is
frequently the case that the final weight of a chain is occa-
sionally large and usually very small. This gives rise to a
large variance and a highly-skewed distribution, for which
variance estimation is difficult.

To reduce the variance of the weights, Booth (1982) intro-
duced the idea of weight windows, which we define as fol-
lows (see also Booth and Hendricks (1984) and Fox (1999)).
Define the weighted importance of a chain as the product of
its weight w and the value of the importance function h(x)
at its current state. Select three real numbers 0 < amin <
a < amax. Whenever the weighted importance ω = wh(x) of
a chain falls below amin, we apply Russian roulette, killing
the chain with probability 1−ω/a. If the chain survives, its
weight is set to a/h(x). If the weighted importance ω rises
above amax, we split the chain in c = dω/amaxe copies and
give weight w/c to each copy. The estimator of γ = P[τB <
τA] is the sum of weights of all the chains that reach the set
B before reaching A. The importance function h∗(x) = γ(x)
should be approximately optimal in this case. The basic mo-
tivation is simple: if the weight window is reasonably nar-
row, all the chains that reach B would have approximately
the same weight, so the only significant source of variance
would be the number of chains that reach B (Booth and Hen-
dricks 1984). If we take a = (amin + amax)/2 ≈ γ , then this
number has expectation n (approximately), where n is the
initial number of chains.

In the original proposal of Booth (1982) and Booth and
Hendricks (1984), the windows are on the weights, not on
the weighted importance. The state space is partitioned in a
finite number of regions (say, up to 100 regions), the impor-
tance function is assumed constant in each region, and each
region has a different weight window, inversely proportional
to the value of the importance function in that region. Such
weight windows are used extensively in the Los Alamos par-
ticle transport simulation programs. Our formulation is es-
sentially equivalent, except that we do not assume a finite
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partition of the state space.
Fox (1999), Chapter 10) discusses the use of weight win-

dows for splitting and Russian roulette, but does not mention
the use of an importance function. Weight windows without
an importance function could be fine when a good change of
measure (importance sampling) is already applied to drive
the system toward the set B. Then, the role of splitting and
Russian roulette is only to “equalize” the contributions of the
chains that reach B and kill most of those whose anticipated
contribution is deemed negligible, to save work. This type of
splitting, based only on weights and without an importance
function, gives no special encouragement to the chains that
go toward B. If we use it alone, the event {τB < τA} will
remain a rare event.

If there is no importance sampling, the multilevel split-
ting techniques described earlier (except those with trunca-
tion and no resplits, in Section 2.7) have the advantage of
not requiring explicit (random) weights. All the chains that
reach level `k have the same weight when they reach that
level for the first time. So there is no need for weight win-
dows in that context.

3 EXAMPLES

Example 2 We return to Example 1, an open tandem Jack-
son queueing network with two queues. The choice of h is
crucial for this example, especially if µ1 < µ2 (Glasserman
et al. 1998). Here we look at a case where µ1 > µ2. We
consider the following choices of h:

h1(x1,x2) = x2; (4)
h2(x1,x2) = (x2 +min(0,x2 + x1− `))/2; (5)
h3(x1,x2) = x2 +min(x1, `− x2−1)× (1− x2/`).(6)

The function h1 is a naive choice based on the idea that the
set B is defined in terms of x2 only. The second choice, h2,
counts ` minus half the minimal number of steps required
to reach B from the current state. (To reach B, we need at
least `−min(0,x2 + x1 − `) arrivals at the first queue and
`−x2 transfers to the second queue.) The third choice, h3, is
adapted from Villén-Altamirano (2006), who recommends
h(x1,x2) = x2 + x1 when µ1 > µ2. This h was modified as
follows. We define h3(x) = x1 +x2 when x1 +x2 ≤ `−1 and
h3(x) = ` when x2 ≥ `. In between, i.e., in the area where
`−x1−1≤ x2 ≤ `, we interpolate linearly in x2 for any fixed
x1. This gives h3.

We did a numerical experiment with µ1 = 4, µ2 = 2, and
` = 30, with our three choices of h. For each h and each trun-
cation method discussed earlier, we computed the variance
per chain, Vn = nVar[γ̂n], where n is the (expected) number
of chains at each level, and the work-normalized variance
per chain, Wn = SnVar[γ̂n], where Sn is the expected total
number of simulated steps of the n Markov chains. If Sn is
seen as the computing cost of the estimator, then 1/Wn is

the usual measure of efficiency. For fixed splitting without
truncation and resplits, Vn and Wn do not depend on n.

Here we briefly summarize the detailed results given in
L’Ecuyer, Demers, and Tuffin (2006). We have Vn ≈ γ ≈
1.3× 10−9 with standard Monte Carlo (no splitting) and
Vn ≈ 1.1×10−16 with the multilevel splitting with h2, using
fixed effort and no truncation. This is a huge variance reduc-
tion. With h1, V̂n and Ŵn were significantly higher than for
h2 and h3, whereas h3 was just a bit better than h2. The trun-
cation and resplit methods improved the efficiency roughly
by a factor of 3. There is slightly more variance reduction
with the variants that use resplits than with those that do not
resplit, but also slightly more work, and the efficiency re-
mains about the same.

Example 3 We consider an Ornstein-Uhlenbeck stochastic
process {R(t), t ≥ 0}, which obeys the stochastic differential
equation

dR(t) = a(b−R(t))dt +σdW (t)

where a > 0, b, and σ > 0 are constants, and {W (t), t ≥ 0} is
a standard Brownian motion (Taylor and Karlin 1998). This
is the Vasicek model for the evolution of short-term interest
rates (Vasicek 1977). In that context, b can be viewed as
a long-term interest rate level toward which the process is
attracted with strength a(b−R(t)).

Suppose the process is observed at times t j = jδ for
j = 0,1, . . . and let X j = R(t j). Let A = (−∞,b], B = [`,∞)
for some constant `, and x0 ≥ b. We want to estimate the
probability that the process exceeds level ` at one of the ob-
servation times before it returns below b, when started from
R(0) = x0. Here we take b = 0.

Suppose we take the importance function h equal to the
identity. The thresholds `k should be placed closer to each
other as k increases, because the attraction toward b = 0 be-
comes stronger. Preliminary empirical experiments suggest
the following rule, which makes the pk’s approximately in-
dependent of k: set tentatively `k = `

√
k/m for k = 1, . . . ,m,

let k∗ be the largest k for which `k < 2, and reset `k =
`k∗(k/k∗) for k = 1, . . . ,k∗ − 1. The latter makes the first
thresholds approximately equidistant.

Because of the time discretization, the entrance distribu-
tion Gk has positive support over the entire interval [`k,∞).
This means that a chain can cross an arbitrary number of
thresholds in a single jump. The simulation starts from a
fixed state only at the first level.

We made some experiments with a = 0.1, b = 0, σ = 0.3,
x0 = 0.1, δ = 0.1, ` = 4, and m = 14 levels. With these pa-
rameters, we have Vn ≈ γ ≈ 1.6×10−8 with standard Monte
Carlo (no splitting) and Vn ≈ 1.0×10−14 with the multilevel
splitting without truncation, with either the fixed splitting or
fixed effort approach. The truncation and resplit methods
improve the work-normalized variance Wn roughly by a fac-
tor of 3, as in the previous example. The work is reduced by
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a factor of 4.3 without the resplits and by a factor of 3.5 with
the resplits, but the variance is increased roughly by a factor
of 1.4 without the resplits and 1.2 with the resplits.

The benefits of splitting and of truncation increase with
`. For ` = 6, for example, we have Vn ≈ γ ≈ 4.2× 10−18

with standard Monte Carlo and Vn ≈ 5.0× 10−33 with the
multilevel splitting without truncation, with m = 30 (this
gives pk’s of approximately the same size as with ` = 4 and
m = 14). In this case, the truncation and resplit methods re-
duce the work-normalized variance approximately by a fac-
tor of 8 to 10. Fixed effort and fixed splitting also have com-
parable efficiencies when no truncation is used.

Example 4 There are situations where the splitting method
is not appropriate whereas importance sampling can be
made very effective. Consider for example a highly-reliable
Markovian multicomponent system (Shahabuddin 1994) for
which the failure of a few components (e.g., 2 or 3) may be
sufficient for the entire system to fail, and where all the com-
ponents have a very small failure rate and a high repair rate.
If we want to apply splitting, the thresholds must be defined
in terms of the vector of failed components (the state of the
system). But whenever there are failed components, the next
event is a repair with a very high probability. So regardless
of how we determine the thresholds, the probabilities pk of
reaching the next threshold from the current one are always
very small. For this reason, the splitting method cannot be
made efficient in this case. On the other hand, there are ef-
fective importance sampling methods for this type of model
(Shahabuddin 1994, Cancela, Rubino, and Tuffin 2002).

4 CONCLUSION

Splitting is a valuable but seemingly under-exploited vari-
ance reduction technique for rare-event simulation. It cer-
tainly deserves further study. In multidimensional settings,
finding out an appropriate importance function h can be
a difficult task and seems to the the main bottleneck for
an effective application of the method. Providing further
hints in this direction, and developing adaptive techniques
to learn good importance functions, would be of significant
interest. Unfortunately, splitting can hardly be applied to
problems where rarity comes from the occurrence of a low-
probability transition that cannot be decomposed in several
higher-probability transitions.
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