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ABSTRACT

This paper applies time-varying autoregressive (TVAR) models with stochasti-
cally evolving parameters to the problem of speech modelling and enhancement. The
stochastic evolution models for the TVAR parameters are Markovian diffusion pro-
cesses. The main aim of the paper is to perform on-line estimation of the clean
speech and model parameters, and to determine the adequacy of the chosen statis-
tical models. Efficient particle methods are developed to solve the optimal filtering
and fixed-lag smoothing problems. The algorithms combine sequential importance
sampling (SIS), a selection step and Markov chain Monte Carlo (MCMC) methods.
They employ several variance reduction strategies to make the best use of the statisti-
cal structure of the model. It is also shown how model adequacy may be determined
by combining the particle filter with frequentist methods. The modelling and en-
hancement performance of the models and estimation algorithms are evaluated in
simulation studies on both synthetic and real speech data sets.

SP Edics: 1-ENHA



I INTRODUCTION

A widely used and popular model for the speech production system is the autoregressive (AR)
process [27]. This model exploits the local correlations in a time series by forming the prediction
for the current sample as a linear combination of the immediately preceding samples. In practice
clean speech signals are rarely available, the speech being contaminated by some background or
application-specific noise process. Fortunately, most of these may be adequately modelled as a
slowly time-varying white Gaussian or Gaussian mixture process that additively combines with
the clean speech signal. This is the approach taken with success in e.g. [13, 22], and is hence also
adopted here.

The main shortcoming of the AR speech production model is obvious. Associated with the AR
coefficients is an articulatory configuration that remains fixed throughout the analysis interval.
In reality, however, the vocal tract is continually changing, sometimes slowly, sometimes rapidly
(e.9. during plosive sounds and speech transitions). To partly reconcile the time-varying char-
acter of the vocal tract with the time invariance of the model, speech is normally processed in
short (possibly overlapping) segments or frames, during each of which the signal is assumed to
be stationary. However, since the framing is defined a priori with no relation to the phonetic
information, non-stationary frames are still likely to occur, even for very short analysis intervals.
In these circumstances non-stationary models may provide more true-to-life approximations of the
behaviour of the vocal tract.

One such model is the time-varying AR (TVAR) process. Models within this general class have
been applied in the context of speech modelling and enhancement before in e.g. [8, 15, 16, 23].
The TVAR process is a generalisation of the standard AR process where the model parameters are
allowed to vary with time. In [30] a TVAR speech production model with stochastically evolving
parameters is adopted, and shown to outperform standard AR process models in terms of objective
speech modelling and enhancement criteria. This model is also adopted here.

In [30] the speech signal is still processed on a frame-by-frame basis, and even though the non-
stationary nature of the model allows for longer analysis intervals, undesired blocking artifacts still
remain, and discontinuities at the boundaries cannot be completely eliminated. Also, the iterative

nature of the batch estimation algorithms makes them unsuitable for real-time or near real-time



implementations. In most speech applications the samples become available sequentially, making
them more suited for on-line estimation methods. The development of such strategies is the main
focus of this paper.

The TVAR speech and noise process model facilitates a state-space representation. Within a
sequential framework general recursive expressions may be derived for the filtering and fixed-lag
smoothing distributions, from which estimates of the clean speech signal and model parameters
may be obtained. The integrations necessary to compute these distributions and the subsequent
estimates admit closed-form analytical solutions in only a small number of specialised cases, includ-
ing the celebrated Kalman filter for linear Gaussian state-space models. For general state-space
models, of which the one studied here is an example, approximate methods must be employed.
Classical methods to obtain approximations to the desired distributions include analytical approx-
imations, such as the extended Kalman filter [1] and the Gaussian sum filter [2], and deterministic
numerical integration techniques (see e.g. [6]). The extended Kalman filter and Gaussian sum
filter are computationally cheap, but fail in difficult circumstances. The numerical integration
techniques, on the other hand, are only feasible in low-dimensional state-spaces.

Another approximation strategy is that of sequential Monte Carlo integration, also commonly
known as particle methods. These methods were first introduced in automatic control at the end of
the 1960’s [17], but due to the primitive computers available at the time, were largely forgotten. In
the beginning of the 1990’s the great increase in computational power allowed a rebirth of this field.
The first operational particle filter, the so-called bootstrap filter, was proposed in [14]. Following
this seminal paper, particle methods have received a lot of interest in the engineering and statistical
communities (see [10, 25] for an introduction and [9] for a summary of the state-of-the-art).

Within the sequential Monte Carlo integration framework the distributions of interest are rep-
resented by a large number of samples, called particles. As will be evident later, these particles
and their associated importance weights evolve randomly in time according to a simulation-based
rule. This is equivalent to a dynamic grid approximation of the target distributions, where the
regions of higher probability are allocated proportionally more grid positions. Using these par-
ticles Monte Carlo estimates of the quantities of interest may be obtained, with the accuracy of

these estimates being independent of the dimension of the state-space. This method is easier to



implement than classical numerical methods, and allows complex non-linear and non-Gaussian
estimation problems to be solved efficiently in an on-line manner.

This paper applies particle techniques to obtain filtered and fixed-lag smoothed estimates of
the clean speech signal and model parameters, when modelling speech as the output of a TVAR
process with stochastically evolving parameters, observed in slowly time-varying additive white
Gaussian noise. The algorithms developed here are not just a straightforward application of the
basic methods, but are designed to make efficient use of the structure of the model, and incorporate
various variance reduction strategies. Related techniques have been applied before in the context
of discrete state estimation for jump Markov linear systems in [11]. Furthermore, the filtering
strategy developed here is straightforwardly combined with frequentist methods to perform model
validation [12]. At each iteration the algorithms have a computational complexity that is linear
in the number of particles, and can easily be implemented on parallel computers, thus facilitating
near real-time processing. It is also shown how an efficient fixed-lag smoothing algorithm may be
obtained by combining the filtering algorithm with Markov chain Monte Carlo (MCMC) methods
(see [28] for an introduction to MCMC methods).

The remainder of the paper is organised as follows. The model specification and estimation
objectives are stated in Section II. In Section III sequential particle methods are developed to
solve the filtering problem and determine the model adequacy. After having shown that a direct
extension of the filter to fixed-lag smoothing is inefficient, Section IV develops an efficient particle
fixed-lag smoothing algorithm, based on the introduction of MCMC steps. Section V presents
and discusses simulation results on synthetic and real speech data sets, and some conclusions are
reached in Section VI. Appendix A recalls the Kalman filter and backward information filter
equations, and finally the proof of an important proposition used here is presented in Appendix

B.



II MODEL SPECIFICATION AND ESTIMATION OBJECTIVES

A Signal Model

The speech signal at discrete time ¢ > 0 is modelled as the output of a k-th order TVAR process,

parameterised by a vector 8; € ®@ C R"® | i.e.

k
o= i (0) moi +0c, (Br) e, e % N(0,1), (1)

=1
where a; (6;) £ (a1, (6:),... ,ar: (8:)) are the TVAR coefficients, 02, (6;) is the variance of the

TVAR innovation sequence, and N (0, 1) denotes the standard normal distribution. The signal is
assumed to be submerged in additive white Gaussian noise, so that the observed value at time

t > 0 becomes

Yt = T¢ +0on, (0)ng, 1y w (0,1), (2)

where {n;} is a white noise process independent of {e;}, and o2 (8;) is the variance of the
observation noise.

Conditionally on {8;} the signal model is linear, facilitating a conditionally Gaussian state-
space (CGSS) representation. More precisely, defining the vectors a; = (24,... ,2Zi_g41), V¢ =

(y¢), v¢ = (e;) and wy 2 (ny), and the system matrices

A a‘g (et) A Oe, (Ot)

A (6;) = B; (6;) = (3)
Ir—1 Op_1x1 _Ok—1><1_

Cf (Ot) =C 2 [1 lek—l] D, (ot) £ -O'nt (Bt)- ) (4)

the signal model of (1) and (2) is readily expressed in the CGSS form given by

iid

oy =A; (0) o1 + By (0) ve, Vi~ N(0p,x1,1n,) (5)
y: = C¢ (6;) ay + Dy (0;) wy, w, & (Onyx1,In,,), (6)

where a; € R"= is the system state, y; € R™ is the observation, and v; € R™ and w; € R™~ are
the system disturbances at time ¢, respectively, and N (u, X) denotes the Gaussian distribution
with mean g and covariance matrix ¥. It is further assumed that D, (6;) D} (6;) > 0, for all
t>0, a0 ~N(mg(6o),Po(60)), with Pg (8g) a positive definite matrix, and that ag, v; and w;

are mutually independent for all ¢ > 0.



The model order & is assumed to be fixed and known throughout. The unknown parameters are
then the TVAR coefficients and the excitation and observation noise variances. Here the TVAR

coeflicients are represented in their standard form, whereas the excitation and observation noise

A 2

variances are parameterised by their corresponding logarithms, i.e. ¢,, = log agt and ¢,,, 2 log O,
so that the unknown parameter vector at time ¢ may be expressed as 6; = (ay, ¢,,, ¢,,, ), no = k+2,
with corresponding support ® £ A, x Rx R, where A}, is the region of stability for the coefficients

of a k-th order stationary AR process.

Remark 1 a; € Ay, for allt > 0, is a sufficient, but not necessary, condition for the TVAR
process to be stable. Finding the true region of stability for the coefficients of a general TVAR
process is difficult, and hence the simpler condition will be enforced here, as was done for stationary

AR processes in e.g. [3].

The unknown parameters are assumed to evolve according to a first-order Markov process, which

is fully specified by its initial state and state transition distributions, here taken to be

p(60) = p(a0) p (¢e,) P (¢r,) (7)
P(8:10:1) 2 p(ailai1)p(@e, |60 ,) P (S0 dns)s £>0, (8)
with
P (a0) ¢ NV (a0; Ox1, Aap) [a, (a0) P (ar]az-1) oc N (a;ai—1, Aa) I, (ar) 9)
P (Bey) = N (8e,30,6¢,) (el bers) 2N (S0 Gerr?) (10)
P (B0g) 2 N ($30,82,) (00 bns) 2N (60360 n82), (1)

where T4 (-) is the indicator function for the set A. The parameters of the Markov process

(Bags Aa,82,,62,6%,,62), with A, 2 diag (57

€o? no? a1,07 " "

.62 ) and A, £ diag (62

2
200 aur--- 105, ), are

assumed to be fixed and known. The equations in (5) to (11) define a non-linear non-Gaussian
state-space system for which no finite-dimensional solutions exist for the filtering and fixed-lag

smoothing distributions, hence necessitating numerical estimation strategies.

B Estimation Objectives

Given at time ¢ > 0 the observations yi.;, all Bayesian inference for the signal model in Section

II-A relies on the joint posterior distribution p (., 0o:¢| y1:+) and its marginals. Two optimal



estimation problems are of interest here, namely

e Filtering. Compute the filtering distribution p (o, 0:|y1.¢), as well as the MMSE estimate
of fyi (s, 8;), with fy; : R x @ — R+, given by I (fy) = o ce,0sy10) Lf21t (@, 01) ]
To obtain the filtered estimates of the clean speech signal and model parameters f;; is set to
fej (@, 1) = (o, 64).

¢ Fixed-lag smoothing. Compute the fixed-lag smoothing distribution p (e, 0¢| y1:t+1), with
L € N*, as well as the MMSE estimate of f;;11 (o, 0;), with fysr : R x © — R"/tie+2 | given
by I (fijt+1) £ Ep(,0uly1usz) [foje+1 (@2, 0¢)]. To obtain the fixed-lag smoothed estimates of the

clean speech signal and model parameters fy ;. is set to fyqr (as, 0;) = (¢, 6y).

II1  PARTICLE FILTER

This section develops a particle filter to obtain filtered estimates of the clean speech signal and
model parameters. The standard Bayesian importance sampling (BIS) method is first described,
and then it is shown how variance reduction may be achieved by integrating out the states a.¢
using the Kalman filter. A sequential version of BIS for optimal filtering is then presented, and it is
shown why it is necessary to introduce a selection (or resampling) scheme. Finally, a particle filter
for speech signals is proposed, and it is shown how this filter may be combined with frequentist
methods to perform model validation. It should be stated that the particle filtering algorithm

remains valid for general CGSS models with Markovian evolving parameters.

A Monte Carlo Simulation for Optimal Estimation

For any fy; it will subsequently be assumed that |I(f;;)| < +0o. Suppose that it is pos-
sible to sample N i.i.d. samples, called particles, {(aé’i,@é’l) :i=1,...,N } according to

p(@o:t, B0:t| y1:t)- Then an empirical estimate of this distribution is given by

N
1
PN (da.t, d0o:t| y1:4) 2 N > 5(a(()z;179((’2) (doxo:t, dBo:t) , (12)
i=1

where 0x (-) is the Dirac delta measure concentrated on x. As a corollary, an estimate of

A1

p (i, 08¢ y1¢) follows as pn (dov,dO:|y1:¢) = Zfil 5(a(“ o) (dot,dBy). Using this distri-



bution, an estimate of I (f;;) for any f;; may be obtained as

T (foe) 2 [ fue (e, 80 P (dav,dB1] 1) = Zfﬂt(at 6). (13)

a.§.

This estimate is unbiased and from the strong law of large numbers (SLLN), In (fy:) Mind
N
I (fy:), where ““3” denotes almost sure convergence. If afcm £ Valp( .0, ly1.) Lfet (@1, 0)] <

+00, then a central limit theorem (CLT) holds, i.e.

VN (I (f42) =1 (F) =, N (0.3,,). (14

where “=" denotes convergence in distribution. The advantage of the Monte Carlo method is
clear. It is easy to estimate I ( ft‘t) for any f;;, and the rate of convergence of this estimate does
not depend on ¢ or the dimension of the state space, but only on the number of particles N and
the characteristics of the function f;;. Unfortunately, it is not possible to sample directly from
the distribution p (@.t, Bo.t| y1:t) at any ¢, and alternative strategies need to be investigated.
One solution to estimate p (ao:t, @o:¢| y1:¢) and I (fy;) is the well-known BIS method [4]. This
method assumes the existence of an arbitrary importance distribution 7 (ag.t, 89.¢| y1.¢) which is
easily simulated from, and such that p (aq.t,00.¢| y1.¢) > 0 implies m (@o.¢, 00.¢| y1:¢) > 0. Using

this distribution I (f;);) may be expressed as

]Eﬂ'(aomeo:ﬂyht) [ft|t (ata et) w (a0:t7 OO:t)]

I(fy) = , 15
(Fee) Er (ages00ely1m) [ (@07, 802)] (1)
where the importance weight w (., 0o.¢) is given by
.+, B9. .
w (a0:t,00:t) - p (o, 0At|}’1.t) (16)

7 (o:t, 60:¢] Y1:t).
The importance weight can normally only be evaluated up to a constant of proportionality, since,

following from Bayes’ rule,

b (Y1:t| @o:t, 90:t) b (040:t, 00:t)
P (y1:¢)

p(a0:t700:t|y1:t) = ) (17)

where the normalising constant p (y1::) = [ P (¥1:t| @0:t, 0o:t) p (dexo:t, dBo:) can typically not be
expressed in closed-form.
If N did samples {(aé’i,e((f;)t) te=1,...,N } can be simulated according to

7 (@o.t,00:t| ¥1:¢), @ Monte Carlo estimate of I (ft|t) in (15) may be obtained as

- z) (#) g(%)
IAIIV (fue) 2 gTNEf ; s Y 1ft£j€vat ( )u;((a)o ¢ 60; t) - w(()zl (atz) 0(1))’ (18)
N e 0:t



where the normalised importance weights are given by

~ w(a60)

wi) & i=1,...,N. (19)
R G) @)’ e

E,‘:NU .15 Y0:t

This method is equivalent to a point mass approximation of p ( ag.¢, 8o.¢| y1.¢) of the form

N
P (dag:t, dBo:e| y1:4) = ZU(()Q(S(Q((’{) o) (dovo:t, dBo:t) (20)
i=1 o

leading to px (dov,d6:|yi1) = Ez]il m((l?f&(ag"),og”) (dag, d;) as a corollary. The perfect sim-

ulation case, i.e. when 7 (o:,800:t|y1:t) = p(o0:t,00:t|y1:t), corresponds to E(()’)t = N1,
1 = 1,...,N. In practice, the importance distribution will be chosen to be as close as possi-
ble to the target distribution in a given sense. For finite IV, fj\lv ( ft|t) is biased, since it involves
a ratio of estimates, but asymptotically, according to the SLLN, f}; (fo1e) NEOO I(fy¢). Under

additional assumptions a CLT also holds (see Section III-B).

B  Variance Reduction

The naive Bayesian importance sampling estimate in (18) does not make full use of the statis-
tical structure of the model. Conditional on the parameters 6y.;, the signal model reduces to a
linear Gaussian state-space system, and estimates of the clean speech ag.; can be obtained an-
alytically. Thus, it is possible to reduce the problem of estimating p (o, 0:|y1:t) and I ( ft|t)
to one of sampling from p(6o.¢|y1t). Indeed, p(cu,B0.4|y1:t) = p (|60t ¥1:4) P (Bo:t] y1:t),
where p (| 0o.¢,y1:¢) is a Gaussian distribution whose parameters may be computed using the
Kalman filter. Thus, given an approximation of p (80¢.¢| y1:¢), an approximation of p (o, 0| y1:¢)
may straightforwardly be obtained. Defining the marginal importance distribution and associated

importance weight as

6o. |y1:t)
—_— é/ dos, ol 3. 00) o P00l y1). 21
7 (00:¢| y1:t) 7 (doo:t, Qo:¢| y1:¢) w (Bo:¢) 7 (80| Y1) (21)

and assuming that a set of i.i.d. samples {0((]2:1': 1,...,N } distributed according to

7 (B8o:¢| y1:) is available, an alternative BIS estimate of I (f;) follows as

—

B (fue) 2 AR (fie) & Y1 Ep( a0 yi) [ft‘t <at’0£i))] v (9(()21)
RO S

_ iw(()ng( s 00yre) [Fo (0,68

i=1

(22)



provided that Ep( a,(60.0,y1.) [f)t (0, 0¢)] can be evaluated analytically. In (22) the normalised

marginal importance weights are given by

(4)
~(i) A& v (OO:t) =1 N )
’LUO:t—N—(j), 1= 1,...,1V. (3)
Zj:l w (OO:t)

Intuitively, to reach a given precision, I% (fy:) will less samples compared to Iy, (f;), since it
only requires samples from the lower-dimensional distribution 7 (8g.¢| y1.¢)- This is proved in the
following proposition where it is shown that, if it is possible to integrate analytically over the
states aq.¢, then the variance of the resulting estimates is lower than that of the standard BIS

estimates. The reduction achieved is specified in the proof of the proposition in Appendix B.

Proposition 1 For any N the variance of the importance weights and the numerators and de-

nominators of the BIS estimates satisfy

VaTr(89.¢|y1:t) [’LU (00275)] S VOTr(exo:4,00:4 |y1:¢) [w (a02t’ 00275)] (24)
VAT (00:1|y1:¢) [A?v (ftlt)] S V0Tr( 04,004 1y1:4) [A}v (ft\t)] (25)
VOT7(@0.4|y1:t) I:Blz\/' (ft|t)] < VaTr( cto:e,00:¢]y1:¢) [Bllv (ft|t):| . (26)

Furthermore, if varp(a,.0,ly..) [fet (0, 0:)] < +o0o and w(aot,00:) < C; < 400 for any

(atoit, B0:4) € (R )T x @) then f}; (fi) and j]\ZV (fee) satisfy a CLT, i.e.

VN (I§ (fur) = 1 (F40)) = N (0,09) (27)
VN (B (fue) =1 (Fa0)) = N (0,03), (28)

with 02 > 02, 02 and o2 being given by

2
U% £ Ew(aomgo:tb!l:z) I:((ft\t (at’ gt) —I (ft|t)) w (ao”f’ 00:t)) ] (29)
2
U% é EW(Go:tb’l:t) [((EP( @:|00:t,y1:¢) [ft‘t (at’ et)] -1 (ft|t)) w (00”&)) ] N (30)
Given these results, the subsequent discussion will focus on BIS methods to obtain approximations
of p (60| y1:¢) and I (fy;) using an importance distribution of the form 7 (8.¢| y1.¢). The methods

described up to now are batch methods. The next section illustrates how a sequential method

may be obtained.

10



C  Sequential Importance Sampling (SIS)

The importance distribution at time ¢ may be factorised as
t
7 (8o:t|y1:t) = 7 (80 y1:) [ ] 7 (6| Oo:k—1,y1:4) - (31)
k=1
The aim is to obtain at any time ¢ an estimate of the distribution p (6¢.t| y1.:) and to be able to
propagate this estimate in time without modifying subsequently the past simulated trajectories
{Oéz)t i=1,... ,N}. This means that 7 (6o.t| y1.t) should admit 7 (6¢.;—1|y1.+—1) as marginal
distribution. This is possible if the importance distribution is restricted to be of the general form
t
7 (8o:¢| y1:4) = 7 (6o) H 7 (Ok| Qo:k—1, Y1:1)
k=1 (32)
=7 (60:t—1|y1:t—1) 7 (6t O0:t—1, ¥1:1) -

Such an importance distribution allows a recursive evaluation of the importance weights, i.e.

w (0o.t) = w (0g.4_1) wy, with

té p(y:‘,|00:taY1:t—1)p(et|0t—1) 0(p(Ytl00:ta}’1:t—1)p(0t|0t—1)
P (¥t| y1:t—1) 7 (6] Oo:t—1,¥1:¢) 7 (04| 00:4—1,¥1:1)

. (33)

1 Choosing the Importance Distribution

There is an unlimited number of choices for the importance distribution 7 (8g.¢| y1:¢), the only
restriction being that its support includes that of p(8¢.:| y1::). Two possibilities are considered
next.

¢ Optimal importance distribution. A possible strategy is to choose at time ¢ the importance
distribution that minimises the variance of the importance weights given 6¢.; 1 and y;.;. The im-
portance distribution that satisfies this condition is given by m (6:| 60.t—1,¥1:t) = p (6¢| O0.t—1,¥1:¢)

[10]. From Bayes’ rule the optimal importance distribution may be expressed as

(Yt| 001, Y1:t—1)p (9t| 9t71)

b
6, 00.t 1,V14) = 34
P(6:]80:t-1,¥1.) p(¥t| Oo:t—1,¥1:¢—1) (34)
leading to w; in (33) being
wy X p(ye| Qo:t—1,Y1:4—1) = /p(Yt| 00:t,y1:4—1) P (dOs] O¢_1), (35)

where p (yi|@o.t,¥1:4-1) = N(yt;yt|t_1 (Bo:t) , St (00;t)) is given by the Kalman filter (see Ap-

pendix A). The optimal importance distribution is not easily simulated from and the integral in

11



(35) cannot be evaluated analytically, since p (y¢| 0o:t,¥1:t—1) is a complex non-linear function of
6;. An approximation to the optimal importance distribution may be obtained by locally linearis-
ing p (64| 6o.t_1,y1.t)- This is computationally expensive since it requires a set of ng + n2 Kalman
filter-like recursions to calculate the gradient and Hessian of the optimal importance distribution
with respect to the parameters [18]. Instead, a suboptimal method, discussed next, is employed
here.

e Prior importance distribution. If the importance distribution at time ¢ is taken to be
the prior distribution, i.e. m(6¢|600.t—1,¥1.t) = p (60 0:—1), then w; in (33) becomes w; o
2 (y¢t| 6o:t,¥1:t—1). Evaluation of this requires only one step of the Kalman filter for each par-

ticle.

2 Degeneracy of the Algorithm

For importance distributions of the form specified by (32) the unconditional variance of the im-
portance weights (i.e. with the observations y1.; being interpreted as random variables) can only
increase over time. This is established by a straightforward extension of the theorem in [21, p.
285] to an importance distribution of the form specified by (32). It is thus impossible to avoid a
degeneracy phenomenon. Practically, after a few iterations of the algorithm, all but one of the
normalised importance weights are very close to zero, and a large computational effort is devoted
to updating trajectories whose contribution to the final estimate is almost zero. For this reason
it is of crucial importance to include a selection step in the algorithm. This is discussed in more

detail in the following section.

D  Selection

The purpose of a selection (or resampling) procedure is to discard particles with low normalised
importance weights and multiply those with high normalised importance weights, so as to avoid
the degeneracy of the algorithm. A selection procedure associates with each particle, say 5((:1,
1 =1,...,N, a number of children N; € N, such that Eil N; = N, to obtain N new particles
{0(()11 i=1,...,N } If N; = 0 then 5(()11 is discarded, otherwise it has N; children. After the
selection step the normalised importance weights for all the particles are reset to N1, thus dis-

carding all information regarding the past importance weights. Thus, the normalised importance

12



weights prior to selection in the next time step is proportional to (33). These will subsequently
be denoted as G,Ei), since they do not depend on any past values of the normalised importance
weights.

Numerous selection strategies are available. Some of the more commonly used methods include
sampling importance resampling (or multinomial sampling) [14], residual resampling [25] and
stratified sampling [20]. All of these schemes are unbiased, i.e. E[N;] = Niﬁ,gi), and may be
implemented in O (N) operations. However, recent theoretical results (see [7]) suggest that it is
not necessary for the selection schemes to be unbiased. With this restriction removed very efficient
selection schemes may be designed.

On the downside, it is straightforward to show that all selection schemes lead to an increase
in the variance of the Monte Carlo estimates. However, as shown in [24] in a different framework
that could be adapted to the one presented here, performing selection is still worthwhile, since it
usually decreases the variance of estimates at future times. Stratified sampling is the method that
introduces the least extra Monte Carlo variation, and is subsequently adopted here.

Selection poses another problem. During the resampling stage any particular particle with a
high importance weight will be duplicated many times. As a result the cloud of particles may
eventually collapse into a single particle. This degeneracy leads to poor approximations of the
distributions of interest. Several suboptimal methods have been proposed to overcome this problem
and introduce diversity amongst the particles. Most of these are based on kernel density methods
[9], which approximate the probability distribution using a kernel density estimate based on the
current set of particles, and sample a new set of distinct particles from it. However, the choice
and configuration of a specific kernel are not always straightforward. Moreover, these methods
introduce additional Monte Carlo variation. In Section IV it is shown how MCMC methods may
be combined with SIS to introduce diversity amongst the samples without increasing the Monte

Carlo variation.

E Implementation Issues

Given at time t—1, N € N* particles {0(()2_1 :i=1,...,N } distributed approximately according

to p(6o:t—1|¥1:t—1), the particle filter proceeds as follows at time ¢.
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Algorithm 1 (Particle Filter)
SIS Step
e Fori=1,...,N, sample 5?) ~T (9t| 9(()?:_1,}’1:15) and set 5((;1 = (Oéfl_l,gii)).

e Fori=1,...,N, evaluate the importance weights up to a normalising constant

(0 (@) | =)
) p (}’t| 00:t7y1:t—1> p (et 9t1>
K3

wy’ - : (36)
=(1) | =(i)
7| 6| 6o.4—1,Y1:t
e Fori=1,...,N, normalise the importance weights
(4)
~(1) Wy
Zj:l ng)

Selection Step

o Multiply / discard particles {5(()21 i=1,... ,N} with respect to high/ low normalised impor-

tance weights to obtain N particles {0(()’25 i=1,... ,N}.
[ |

The computational complexity of this algorithm at each iteration is clearly O (N). At
first glance, it could appear necessary to keep in memory the paths of all the trajectories
{Of)z)t :i=1,...,N }, so that the storage requirements would increase linearly with time. In
fact, for both the optimal and prior importance distributions, 7 (6:| 8¢.t—1,y1:t) and the associ-
ated importance weights depend on 6g.;_; only via a set of low-dimensional sufficient statistics,
namely {my; (6o:¢) ,Pys (Bo:¢) }, where p(a| 004, y1:4) = N (05 my (B0:t) , Pyt (B0:¢)) is the fil-
tering distribution of the state conditional on the parameters, which may be computed using the
Kalman filter. Thus, only these values need to be kept in memory for each particle, so that the

storage requirements are also O (N) and do not increase over time.

F  Model Validation

Model validation is the process of determining how well a given model fits the data. Within a
Bayesian framework models can be compared using posterior model probabilities, but this strategy

only provides relative performance indicators, and does not tell whether any particular model fits
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the data well. In this section it is shown how SIS and frequentist methods may be combined to
determine the goodness of fit for any model of the data.

In what follows let Y}, denote the random variable associated with the scalar observation yy.
Under the null hypothesis that the model is correct it is straightforward to show (see [29]) that
the sequence {uy : k= 1,...,t}, with ux 2 p (Y% < yi|y1.x_1), is a realisation of i.i.d. random
variables uniformly distributed on [0, 1]. This result holds true for any time series model and may
be used in statistical tests to determine the adequacy of the model.

Computing the wuj requires integration over the model parameters, an operation which is an-
alytically intractable in general. It is shown here how Monte Carlo integration may be used
to overcome this problem. A similar strategy is developed in [12] using batch MCMC methods
and importance sampling. Using the one-step ahead prediction distribution, an expression for wuy

follows straightforwardly as

up = /p(Yk < yk| Bo:k, Y1:—1) P (dB0.k| Y1:k—1) - (38)

Knowing that p(6o.kx|y1:k—1) = P(6k|@k—1)p(00:k—1|y1:6~1), a Monte Carlo approxima-

tion of the one-step ahead prediction distribution may be obtained as py (dB@o.k|y1:k—1)

>

N 0N, g0 (d804), where 650 2 (85 1,6;7), with BN (dB0uk-1| 1)
N1 Eil i (dB@¢.x—1) the Monte Carlo approximation of the filtering distribution at time
0:k—1

k—1, and Gz(i) ~p (0k| 0,(:11) generated from the Markov process prior. With this approxima-

tion a Monte Carlo estimator for uj, follows straightforwardly as

N

@l %Zp (Y <l y10-1). )

i=1
For the model presented here the quantities p (Yx < yi| €o:x, y1:x—1) required for the estimator
in (39) can be calculated analytically. More specifically, denoting for scalar observations the

one-step ahead prediction distribution for the observations, obtained from the Kalman filter, as

P (yrl Ok, Y1:k-1) = N (Uk; Ykk—1,52)5 P (Y < Yk| Bo:k, ¥1:k—1) may be calculated as

Yk 1 Yk — Yk|k—
P(Yk S yk| 90:k’y1:k—1) = / p(dysl OO:kaylzk—l) =1-— —erfc (¢> . (40)

oo 2 /288
The estimates in (39) obtained for the u; may be used instead of the true values in statistical

tests to determine the adequacy of the model. Most of these tests are based on transforming the
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sequence {uy : k= 1,...,t} to the sequence {vy, : k = 1,... ,t}, where vy = ¥~ (u},), with ¥ the
standard Gaussian cumulative distribution function. Thus, under the null hypothesis that the
model is correct the v, are i.i.d. distributed according to A/ (0,1). The statistical tests employed
here are designed to test for the normality and whiteness of the vy, and are briefly described
below. Similar tests were used before in the context of model validation for time series models in
e.g. [12, 19].

¢ Bowman-Shenton [5]. This test checks for normality using the statistic ¢ 2 72 + 73,
where 7, and 7, are standardised normal equivalents of the skewness v, = 5/ ug/ ? and kurtosis
Yo =y /u3 — 3, with y; the i-th central moment of the random variable associated with vy around
its mean p. These values are approximated by their sample averages. Under the null hypothesis
that the data is normal ¢®° is asymptotically distributed according to a chi-square distribution
with two degrees of freedom, i.e. ¢55 ~ x2.

e Ljung-Box [26]. This test gives an indication of the goodness of fit of a time series model

K 72

by checking for the whiteness of the vj using the statistic ¢¥® = N (N +2) i, N, Where

N
o~ A Dk—it1 VkVR—i

ri = SRS V2 is the i-th sample autocorrelation of the viy. Under the null hypothesis qIIgB is

asymptotically distributed according to a chi-square distribution with K degrees of freedom, i.e.

LB 2
9k ~ Xk-
IV PARTICLE FIXED-LAG SMOOTHER

The estimates of the clean speech signal and model parameters may be improved by performing
fixed-lag smoothing with a delay of, say, L € N*. In this section it is shown that a direct application
of the methodology discussed in Section III is not satisfactory if L is large, and an alternative

method is then proposed.
A Some Strategies for Fixed-Lag Smoothing

1 Direct Methods

In theory, the particle filter of Section III can straightforwardly be extended to fixed-lag smooth-
ing. At time ¢ + L the Monte Carlo approximation of the distribution p(6¢.tyr|¥1:t+L) is

PN (dBo.t4L| y1:t+L) 4 N1 Zf;l 5e(i) (dBo.¢+-1.), so that a Monte Carlo approximation of the
0:t+L
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marginal distribution p (8o.¢| y1.¢41) follows as pn (dBo.¢| y1.e41) = N1 Eivzl 59&3 (dBo:t). How-

ever, from time ¢ + 1 to ¢t + L the trajectories have been resampled L times, so that very few

distinct trajectories remain at time ¢ + L. This is the classical problem of depletion of samples.
Fixed-lag smoothing of @; can also be performed by using an importance distribution of the

form

¢
7 (00:¢| ¥1:441) = 7 (00| ¥1:.) H 7 (0% 00:k—1, Y1:k+1L)
k=1 (41)

=7 (80:4—1|y1:t4L-1) T (6¢] O0:4—1, Y1:t+L)
to simulate from the fixed-lag smoothing distribution p (8¢.t| y1:t+z)- The same developments as
in Section ITII-C may then be done. In this case the optimal importance distribution at time ¢
becomes 7 (0¢| 0¢.t—1,¥1:4+1L) = P (64| Oo:4—1, Y1:1+1), With the associated importance weight given

by
wy 0<p(Yt+L| 00:t—17Y1:t+L—1) = /p(Yt+L| 00:t+LaY1:t+L—1)p(det:t-i-Ll 9t—1)- (42)

Direct sampling from the optimal importance distribution is difficult, and evaluating the im-
portance weight is analytically intractable. A similar problem holds for the evaluation of the
importance weight associated with the prior importance distribution, which is of similar form as

(42).

2 MCMC Methods

An alternative approach to fixed-lag smoothing consists of adding a MCMC step to the particle
filter (see [28] for an introduction to MCMC methods). This introduces diversity amongst the
samples and thus drastically reduces the problem of depletion of samples.

Assume that, at time ¢ + L, the particles {06(:?+ rii=1,...,N } are marginally distributed
according to p(6o:e4r|y1:44+2). If a Markov transition kernel K (d6o.s41|6g, 1) Wwith invari-
ant distribution p(@¢.t+r|y1:t+1) is applied to each of the particles, then the new particles
{9(()11 4it=1...,N } are still distributed according to the distribution of interest. Any of the
standard MCMC methods, such as the Metropolis-Hastings (MH) algorithm or Gibbs sampler,
may be used. However, contrary to classical MCMC methods, the transition kernel does not need

to be ergodic. Not only does this method introduce no additional Monte Carlo variation, but it
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improves the estimates in the sense that it can only reduce the total variation norm [28] of the

current distribution of the particles with respect to the target distribution.
B Implementation Issues

1 Algorithm

Given at time t + L — 1, N € N* particles {95’1 yr-1:t=1...,N } distributed approximately
according to p(60o:t+L—1|Y1:4+L—1), the particle fixed-lag smoother proceeds as follows at time

t+ L.

Algorithm 2 (Particle Fixed-Lag Smoother)

SIS Step
. =(4) (i) =(4) _
eFor i = 1,...,N, sample 0, ;, ~ = (0t+L|00:t+L_1,y1:t+L) and set Oy,.; =
i =(4)
(6625008 )
e Fori=1,...,N, compute the normalised importance weights GE?L using (36) and (37).

Selection Step

e Multiply / discard particles {58+L i=1,... ,N} with respect to high / low normalised

importance weights to obtain N particles {06(?+L i=1,... ,N}.
MCMC Step

e Fori=1,...,N, apply to 06(:?+L a Markov transition kernel K (de(()ngL‘ 06(:?+L) with invariant

distribution p (8o.¢41| y1:4+z) to obtain N particles {eg;;; pii=1,. ,N}.
n

At each iteration the computational complexity of the particle fixed-lag smoother is
O((L+1)N), and it is necessary to keep in memory the paths of all the trajectories

from time ¢t to t + L, i.e. {0§f2+L:i: 1,... ,N}, as well as the sufficient statistics

{mtlt (9(()11) s Pyt (9(()11) ri=1,... ’N}-
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2 Implementation of the MCMC Steps

There is an unlimited number of choices for the MCMC transition kernel. Here a one-at-a-time MH
algorithm is adopted that updates at time t+ L the values of the Markov process from time ¢ to t+L.
More specifically, OS), k=t,...,t+L,i=1,...,N, is sampled according to p (0k| 0%, yl:t+L),
with 8, 2 (6f),,6{",...,6" 6D, ,6\7,). Tt is straightforward to verify that this
algorithm admits p (0o.+41|y1:t+1) as invariant distribution. Sampling from p (0k| B(j)k, Vit L)
can be done efficiently via a backward-forward algorithm of O (L + 1) complexity. This algorithm

has been developed in a batch framework in [30], so the proofs are omitted here. At time ¢t + L it

proceeds as summarised below for the i-th particle.

Algorithm 3 (Backward-Forward Algorithm)
Backward Step

e For k = t+ L,...,t, compute and store P;c_|;+1 (O;C(j_)l:HL) m;c|k+1 (ngl:HL) and

P;c_“;rl (B;C(_?leL) by running the information filter defined in (54) to (61) of Appendix A.

Forward Step
e Fork=t,... ,t+ 1L,

— Sample a proposal 8 ~ g (0k| 0(_’39) using the proposal distribution in (45).
— Perform one step of the Kalman filter in (48) to (53) of Appendix A for the current value

G;c(i) and the proposed value 6}, and calculate their posterior probabilities using (43).

—If (u~Upy) <a (9k| 0;“)) (see (46)), set 0,(3) = 0, otherwise set OEJ) = 0;(’.).
|

In the above U4 denotes the uniform distribution on the set A. The target posterior distribution
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for each of the MH steps is given by

P (0k) 0k, y1:44+1) X p(Ort1|Ok) P (Ok| Ok—1) N (Y Ykjk—1 (Bo:k) > Sk (Bo:))

‘71/2

x |Ln., + Iy (60:4) RE (B0:4) Py 1 (Bkr1642) Ris (B0:k)
\

X exp (—% (miuc (60:x) PZ_\;H (Ok+1:t+1) My (Bo:x)

- QmE\k (Bo:x) PZ\;H (Ok+1:e+0) My gy (Orrietr)

- <m§c|k+1 (Oh+1:40) — My (9o:k))T Plrr Okriess) Qk (Bor)

X P;c_\l::+1 (Ok+1:t+1) (m;c|k+1 (Oht1:41) — My (00:19)))) )
with Py, (80:6) = Ri (80.) I, (80.) R (80.4), where IT; (60.;) € R *7= is the diagonal matrix
containing the Ny < no non-zero singular values of Py, (6o:x), and R; (80.;) € R X7 ig the
matrix containing the columns of Ry (6y.;) corresponding to the non-zero singular values, where
Pk (Bo:x) = Ry (60:x) I (6o.1) R} (00.x) is the singular value decomposition of Pk (80:x). The

matrix Qk (Bo:t+1) is given by
~ ~ ~ —1 ~ -1 ~ -1
Qi (Bo+2) 2 R (o) (L, (Bo) + RE (Book) Plins (Bksvierr) R (Box)) R (Bou) . (44)

To sample from the distribution in (43) using a MH step, the proposal distribution is here taken

to be

q(0k|0-1) < p(Ort1|6k) (6| Ok-1)- (45)

If the current and proposed new values for the state of the Markov chain are given by 6 and 6},

respectively, the MH acceptance probability follows as
o (6} 0r) = min{1,r (6}|6k)}, (46)

with the acceptance ratio given by

p (6] 60—k, y1:041) a(Ok|6_4)
p(okl 0—k7y1:t+L) q (9;‘:| B_k) )

HCALDES (47)

V  EXPERIMENTS AND RESULTS

A Synthetic Data

Figure 1 shows 200 samples generated by a third-order TVAR process, together with a noise-

corrupted version of the signal for which the input SNR is 4.64 dB. The corresponding TVAR
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parameters are depicted in Figure 2 and follow a Markov process with fixed parameters

(Aay, Aa,682,,62,62 ,62) = (0.5I3,5 x 107°15,0.5,0.5 x 1072,0.5,0.5 x 1073).

Figure 1 about here

Figure 2 about here

The particle filter was run on the data in Figure 1 for various values of N. For the fixed
parameters of the Markov process on the TVAR parameters the corresponding true values were
used, but the results were found to be relatively insensitive to the specific values chosen for
these quantities. Stratified sampling was used as the selection procedure, and the importance
distribution was taken to be the prior distribution. Estimates for the clean speech were obtained
using the Monte Carlo estimator in (22).

The SNR improvement results are summarised in the first row of Table 1, and were obtained by
averaging over 50 independent runs of the algorithm for each value of N. There is a steady increase
in the SNR improvement as IV increases up to 100, with no significant further improvement with a
further increase in N. Thus, N = 100 particles seem to yield a sufficiently accurate representation

of the filtering distribution for this realisation.

Table 1 about here

Table 2 about here

The particle fixed-lag smoother was also run on the data in Figure 1. This time N was fixed
to 100, and L was varied between 10 and 40. The SNR improvement results, again obtained
by averaging over 50 independent runs of the algorithm for each value of L, are summarised in
the first row of Table 2. For L = 10 there is a significant improvement in the reconstruction
performance over the particle filter with NV = 100, with no significant further improvement with a

further increase in L.

B  Speech Data

Figure 3 shows two frames of speech and their corresponding noise-corrupted versions, with input
SNRs of -0.61 dB and 6.10 dB, respectively. These sections of speech were chosen to be represen-

tative of the kind of non-stationarities that are traditionally not well modelled by the standard
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fixed-parameter AR model [30]. The first shows the rather gradual transition between the frica-
tive /sh/ and the vowel /uw/ in the word “should”, whereas the second depicts the much sharper
transition between the fricative /s/ and the vowel /er/ in the word “service”. In the subsequent
discussion the first frame will be referred to as F1, and the second, as F2. This data was analysed

using TVAR models and batch stochastic estimation algorithms before in [30].

Figure 3 about here

The particle filter and the fixed-lag smoother were run on F1 and F2 in experiments similar
to those for the synthetic data. The model order was fixed to & = 4. No significant further
improvements in the results were observed with an increase in k£ above 4. This useful result is due
to the fact that the non-stationary character of the TVAR model allows for much more modelling
flexibility than, say, a standard fixed-parameter AR model of the same order. The fixed parameters
of the Markov process on the TVAR parameters were set to values similar to those used for the
experiments on the synthetic data. Yet again the results proved to be relatively insensitive to the
specific values chosen for these quantities.

The SNR improvement results are summarised in the second and third rows of Tables 1 and
2. The filtering performance for F2 steadily improves with an increase in the number of particles
up to N = 1000, whereas good filtering performance is achieved for F1 with as few as N = 10
particles. This discrepancy is due to the relatively low input SNR of F1 compared to that of
F2. For both F1 and F2 the benefit of the fixed-lag smoother is clear. The extra information
carried in the future samples leads to better estimates for lags of up to 20, whereafter the gain is
negligible. The results compare favourably with those of a batch MCMC algorithm, which yielded
SNR improvements of 3.46 dB and 2.32 dB for F1 and F2, respectively, using the same values for
the fixed parameters of the Markov process on the model parameters.

To determine the adequacy of the model the statistical tests in Section III-F were applied to
F1 and F2, using K = 5. The results were obtained by averaging over 50 independent runs of
the algorithm, and are presented in Table 3, together with the 5% critical values for the statistics.
The results of the Bowman-Shenton test show that the residuals are indeed standard normal
distributed for both F1 and F2. The results of the Ljung-Box test, however, indicate that there

are still significant autocorrelations present in the residuals. Thus, even though the TVAR model is
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superior to the standard fixed-parameter AR model, it is still less than ideal, and does not capture
all the salient features present in the speech signals. A possible explanation for this inadequacy
may be the presence of longer-term dependencies due to the glottal excitation in voiced speech
signals. These dependencies cannot adequately be accounted for by models conditioning only on
the recent past. Future work will focus on extending the basic TVAR model to overcome this

problem.

Table 3 about here

With these results in mind the filter and fixed-lag smoother with L = 10 were both run with
N = 100 particles on an utterance of the sentence “Good service should be rewarded by big tips.”
by a male American speaker. The clean signal was acoustically combined with a slowly time-
varying additive white Gaussian noise process so that the input SNR over the whole utterance was
0.16 dB. The filter and fixed-lag smoother achieved SNR improvements of 5.44 dB and 5.85 dB,
respectively. Informal listening tests confirmed the reduction in the noise and revealed no musical

or other undesired artifacts common to block-based enhancement algorithms.

VI  CONCLUSIONS

This paper applied TVAR models with stochastically evolving parameters to the problem of speech
modelling and enhancement. Sequential particle methods were developed to compute the filtering
and the fixed-lag smoothing distributions, from which Monte Carlo estimates of the clean speech
signal and model parameters may be obtained. The algorithms make use of several variance reduc-
tion strategies to fully exploit the statistical structure of the model, and allow model validation to
be performed. Although the algorithms are computationally expensive, they can straightforwardly
be implemented on parallel computers, thus facilitating near real-time processing. The estima-
tion results compare favourably with those of batch MCMC algorithms for the same model, and
indicate that adequate representations of the clean speech signal may be obtained with a TVAR
model order of as low as 4, and as few as 100 particles. Regardless of its superiority over the
standard fixed-parameter AR model, the TVAR model is still unable to fully capture the longer-
term dependencies due to the glottal excitation in voiced speech signals. Future work will focus

on overcoming this difficulty.
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A THE KALMAN FILTER AND BACKWARD INFORMATION FILTER

The exposition is given for the CGSS system in (5) and (6). The parameters 6y.; being here

assumed known, the Kalman filter equations are as follows. Initialise mgo (69) = myg (6p) and

Pgjo (60) = Po (6o), then for k = 1,... ,t, compute

my -1 (60:x) = A (Ok) mp_15—1 (Bo:k-1)

Prik—1 (B0:k) = A (6%) P-vjp—1 (Bo:x—1) A (Bx) + By (6) By, (6%)

Yilk—1 (Bo:k) = Cr (Ok) my -1 (Bo:x)

Sk (Bo:k) = Cy (8x) Prj—1 (Bo:k) Ci (6k) + Dy (8) D}, ()

my i (B0:x) = my -1 (Box) + Pprx—1 (Bo:k) C (8x) Sy ' (Bo:k) (¥& — Yrin-1 (Bo:r))

Pyx, (Bo:k) = Prp—1 (Bo:k) — Prjp—1 (B0:x) C, (k) Sy, ' (Bo:x) Cr (6k) Prjp—1 (Bo:k) »

(48)
(49)
(50)
(51)
(52)

(53)

where p (o] 0.k, Y1:k-1) = N (ag; My p_1 (0o:1) , Prji—1 (Bo:x)) is the one-step ahead prediction

distribution, and p (| 0o.k, y1:k) = N (ag; my i, (B0.) , Prjk (Bo:x)), the Kalman filtering distri-

bution for the state a, respectively, and p (yk| 6ok, y1:6-1) = N (¥k3 Yrjk—1 (Bo:x) » Sk (Bo:x)) is

the one-step ahead prediction distribution for the observation yy.

The backward information filter proceeds as follows for k = t+ L, ... ,t. At time ¢+ L, initialise

I—l

-1
Piirjerr @err) my gy p (0in) = Ciip (Br41) (Detr (8r42) DIy (B141)) Yerr

=1

teritsr (0e4r) = Chyp (B14L) (Desr (8142) DLy (8142))  Cevr (Berr),

then for k=t+ L —1,...,t, compute

—_1 -1
Apy1 (Oprr:e4L) = (Inv + By (k1) Piyyjirs (Brsratr) Brpn (9k+1))

I—l

Rit1 (Okv1:642) = Lng — Phpyppps Orkrrierr) Bryn (Ok1) Agra (Okr1:+2) Bigq (Or41)
—1 -1
kikr1 Orrrtrn) My iy (Okrriern) = Agpq (Ok1) Rier Orgrtrr) Plyjors (Okriiesr)
X m;c+1|k+1 (Ort1:t+1)

I—l

-1
Kkt Oksrerr) = Ajiy (Ok41) Plyy s (Ortrarn) Ripr (Ogrierr) Agpr (Ortr)
—1 -1
;s:|k (Ok:t+1) m;c\k: (Or:t+L) = P;c\lc+1 (Ok+1:t+L) m;c\lc+1 (Ory1:t4L)

+CI (6;) (Dx (6x) DL (61)) " yi

Pl (Okt+r) = Pl Bkprers) + CL (8k) (Di (6x) DY (6) ™ Ci (85) -
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B PROOF OF PROPOSITION 1

To avoid cumbersome notation in the calculations that follow all dependencies are dropped from
distributions and variables when there is no danger of ambiguities arising. Unless stated otherwise,
joint distributions and functions of the states and parameters are denoted in the usual way, e.g.
m and w are equivalent to 7 ( @g.¢, 8o.¢| y1.¢+) and w (e.¢, Bo.¢), whereas marginal distributions and
functions of the parameters are distinguished by a bar over the original variable, e.g. ™ and w are
equivalent to 7 (0o.t| y1.¢) and w (6y.;). Distributions of the states conditional on the parameters
are distinguished by a tilde over the original variable, e.g. 7 is equivalent to 7 (@o.¢| Oo:t, Y1:t)-
To prove the variance reduction, use is made of the variance decomposition theorem. For the

importance weights this result yields
vary [w] = varg [Ez [w]] + Er [varz [w]]. (62)
But Ex [w] = Ez [2] = E; [w] = w, so that
vary [w] = varg [w] + Ex [varz [w]. (63)

The result in (24) follows. The proofs for (25) and (26) follow in a similar manner.
The existence of a CLT for IA}V and jff; is now proved. Since Z}: and I?E are sums of N i.i.d.

random variables, the delta method yields

var, [IA}V] v, i B E2 [A}i] \?;r [lev] . va:‘,r [/A;\}V]
B}, E: [BY] B2 [BY]
_ Z]E" [A}v] covj\[@jﬂ Lo (Nfa/z) (64)
B [B}]

But E, [4}| = NE, [f,] = NI and E, [B}] = N, so that

var, [IA}V] =N—2 (Izvar,r [EE] + var, [ZE] — 2Icov, [ZE,E;D +0 (N_3/2)

(65)
= N"Yvary [(for — 1) w] + 0 (N72).
But E, [(fy¢: — I) w] =0, so that
var [I4] = N7y [((for = D) w)®] + 0 (N#72). (66)
Using similar arguments an expression for var, [fg] follows as
vare [IR] = N7z [((B5 [foe] - 1) @)°] +0 (N372). (67)
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The expressions for 02 and o2 follow. The variance decomposition result yields

vary [(fye — 1) w] = varr [Bx [(fy — 1) w]] + Br [varz [(fy — 1) w]] - (68)

But B [(fys — 1) w] = (B [fys] — 1)@, so that

varr [(fye = ) w] = varr [(Bp [fy:] = I) @] +Ex [varz [(fy: = I) w]], (69)

from which it is evident that o7 > 3.
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N 10 50 | 100 | 250 | 500 | 1000 || SNRin

synthetic | 0.97 | 1.53 | 1.76 | 1.74 | 1.79 | 1.76 4.64
F1 2.79 | 2.95| 2.81 | 2.81 | 2.83 | 2.85 -0.61

F2 -0.17 | 1.36 | 1.69 | 1.86 | 1.90 | 1.94 6.10

Table 1: SNR improvement results in dB vs. the number of particles.
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Figure 1: Clean (top) and noise-corrupted (bottom) synthetic third-order TVAR, data.
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Figure 2: TVAR parameters for the data in Figure 1.
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Figure 3: Clean (top) and noisy (bottom) speech frames depicting the transitions between /sh/

and /uw/ in “should” (left) and /s/ and /er/ in “service” (right).

L 10 20 30 40

synthetic | 1.76 | 2.53 | 2.51 | 2.45 | 2.39
F1 2.81 | 3.10 | 3.40 | 3.30 | 3.23
F2 1.69 | 2.00 | 1.87 | 1.80 | 1.86

Table 2: SNR improvement results in dB vs. the lag for the fixed-lag smoother, with N fixed to

100.
Frame | N Bowman-Shenton Ljung-Box
¢®% | 5% crit. val. | ¢F® | 5% crit. val.
F1 100 | 2.1930 5.9915 20.4634 11.0705
F2 250 | 4.2357 5.9915 25.7460 11.0705

Table 3: Model validation results for the speech data in Figure 3.
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