
1

Variance Reduction for Particle Filters of Systems
with Time Scale Separation

Dror Givon, Panagiotis Stinis, and Jonathan Weare

Abstract—We present a particle filter construction for a system
that exhibits time scale separation. The separation of time
scales allows two simplifications that we exploit: i) the use
of the averaging principle for the dimensional reduction of
the dynamics for each particle during the prediction step and
ii) the factorization of the transition probability for the Rao-
Blackwellization of the update step. The resulting particle filter
is faster and has smaller variance than the particle filter based
on the original system. The method is tested on a multiscale
stochastic differential equation and on a multiscale pure jump
diffusion motivated by chemical reactions.

Index Terms—particle filter, multiscale, dimensional reduction,
variance reduction, Rao-Blackwellization, stochastic differential
equations, jump Markov processes

I. INTRODUCTION

The field of dimensional reduction has seen a flourishing
in the last decade (see e.g. the reviews in [1], [2]), mainly
due to i) the realization that many systems of physical interest
are more complex than one can handle even with the largest
available computers and ii) the fact that for many complex
systems the quantities of interest are coarse-scale features.
Once a reduced model is constructed, it can be used in
conjunction with filtering algorithms, like particle filters [3], to
incorporate information from real-time measurements. If the
system under consideration exhibits time scale separation, the
construction of a reduced model and subsequently of a particle
filter, is also simplified. In this work we present a particle filter
which exploits this simplification to create a particle filter that
is more efficient than the particle filter of the original (large
dimensional) system. The particle filter we construct is proved
to converge to the analytical filter of the original system.

A strategy for reducing the number of unknowns in an
application of a filter for nonlinear dynamical systems is
proposed in [4]. In that work the authors assumed that the
dynamics are strongly locally contractive in some directions
which are found adaptively. Here we make an alternative
assumption. We instead assume that the system exhibits a time
scale separation. By this we mean that certain components or
modes of the system tend to move very slowly in comparison
with the rest of the modes. In particular we are interested in
approximating conditional expectations the form

E [f (Xsk) | {Z1, . . . , Zk}]

where Zk are noisy observations of some multiscale Markov
process Xt at discrete times s1, . . . , sN . For a very general
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definition of a multiscale Markov process see [5], [6] and [7].
We will illustrate the method presented below for the par-
ticular case that Xt is the solution to a stochastic differential
equations with time scale separation (see equation (III.1)). The
basic idea, however, can be applied to filtering problems for a
variety of multiscale Markov process for which fast multiscale
integration methods are available (see [8], [9], [10], [11], [12],
[13], [14], [7] and the references therein). In section IV, our
filtering method is applied first to the reconstruction of the
trajectory of a multiscale stochastic differential equation and
second to the reconstruction of a trajectory of a pure jump
Markov process motivated by chemical reactions that takes
place on vastly different time scales.

Loosely speaking, recursive estimation of conditional expec-
tations of the form above can be accomplished in two steps.
First, in the prediction step, the system is evolved according
to its evolution law. Second, in the update step, the resulting
samples of the system are weighted by the likelihood of the
next observation given the sample. We describe the filtering
problem in more detail in the next section. The separation of
time scales facilitates the construction of an efficient particle
filter in two ways: i) it allows for fast evolution of the system
in the prediction step and ii) it allows the integration of the
observation weights over the fast modes of the system during
the update step. Step ii) amounts to a Rao-Blackwellization of
a standard particle filter estimator.

Multiscale phenomena have been observed in wide ranging
areas of research. For example, empirical evidence from
a study of exchange rate dynamics in [15], suggests the
use of stochastic volatility models with both fast and slow
time scales. Other examples of systems with scale separation
include chemical reaction systems where there can exist a
difference of several orders of magnitude among the differ-
ent reaction rates (see [12], [13], [16], [17], [18]). Similar
problems exist in material science (see [19]) and molecular
dynamics simulations (see [20]) where one is interested in
large scale features of the system but this behavior depends
critically on the small (and fast) scale motion. An even more
challenging problem is that of weather prediction and how to
assimilate (through filtering) the vast amount of measurements
collected daily around the globe. The weather system exhibits
an extremely large range of active scales not necessarily
with clear time scale separation (see [21], [22]). A projection
formalism framework, for the construction of reduced models
of large systems with or without time scale separation, has
been presented by Chorin and co-workers (see [23]).

The main difficulty presented by multiscale phenomena is
that they are extremely costly to integrate. The vast majority
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of computational time is spent evolving the fast components of
the system while one may be primarily interested in slow scale
characteristics. This implies that the prediction step in any
filtering method which does not take directly into account the
multiscale structure of the problem will become prohibitively
costly as the time scale separation increases. As described
in detail below, our method addresses this issue through its
incorporation of the multiscale integration scheme.

A second issue, common to importance sampling techniques
for high dimensional problems, is controlling the variance
of the resulting estimator. To address this in the context of
particle filtering, many authors have suggested the use of some
form of Rao-Blackwellization (see [24], [25], [26], [27], [28],
[29] for example). The distribution of the underlying Markov
process given current and past observations can always be
factored into a posterior marginal distribution for some set
of (in our case slow) variables and a posterior conditional
distribution for the remaining (in our case fast) variables
given the first set of variables. Rao-Blackwellization requires
that expectations with respect to the resulting posterior con-
ditional distribution can be carried out exactly. In the case
that the posterior conditional distribution can be sampled,
the Rao-Blackwellization procedure can be approximated by
Monte Carlo averaging over these samples. As discussed in
detail later, the separation of scales assumption made in this
paper allows an approximate factorization of the posterior
distribution in which samples from the posterior conditional
distribution can be easily and efficiently generated. While
our assumption on the system clearly restricts the class of
possible applications, another advantage of our setup is that the
posterior conditional distribution of the unresolved variables is
allowed to be quite general (for example very non-Gaussian).

A method closely related to the one presented here was
recently proposed in [30]. There is, however, an important
difference. In [30] it is assumed that the observations and
the objective function (f in the conditional expectation above)
depend directly only on the slow modes in the system. Here we
allow for general observations and general objective functions.
This fact is central to the utility of our algorithm. The method
proposed here is designed to not only improve the efficiency
of the prediction step of a particle filter, but also to reduce the
number of particles required to achieve a given accuracy. In
fact, in some problems with a moderate time scale separation,
one may not observe any gain in efficiency in the prediction
step, while the reduction in variance may be significant. It
should also be noted that analytical results for continuous time
multiscale filtering problems have been obtained by Kushner
in [31].

The paper is organized as follows. Section II recalls the
well known particle filter construction for a general Markov
process which is observed with noise at a discrete set of
instants. Section III presents our particle filter construction
in the particular case of a multiscale stochastic differential
equation. Section III-A discusses how the presence of a
separation of time scales can lead to a construction of a
reduced model for the slow components of the system and
how it allows the Rao-Blackwellization of the filtering step.
It also includes a particle filter construction which is based

on the assumption that the reduced model can be constructed
analytically and the Rao-Blackwellization of the filtering step
can be performed analytically. Section III-B contains the main
algorithm, which approximates the particle filter presented
in Section III-A when the necessary calculations cannot be
performed analytically. Section IV-A contains numerical re-
sults for a system of stochastic differential equations. Section
IV-B contains numerical results for a pure jump type Markov
process motivated by multiscale chemical reactions. Finally,
Section V contains a discussion of the algorithm and of the
results.

II. THE FILTERING PROBLEM AND PARTICLE FILTERS

We start by formulating the filtering problem. Assume
that Xt is a d-dimensional Markov process with transition
probability Q∆s(x, dx′) where Q0(dx) is a known distribution
on Rd. We assume for notational convenience, that the process
is autonomous. The process Xt is usually called the hidden
signal. Assume, also, that we have noisy discrete observations
at N regularly spaced times of length ∆s = sk − sk−1 for
k = 1, . . . , N where s0 = 0 and sk the time of the i-th
observation. The observations satisfy,

Zk = G(Xsk , χk), k = 1, . . . , N

where the χk are i.i.d random variables, independent of Xt,
and for all x the variable Z = G(x, χ) admits a density
z → g(x, z) which is known. Let 1 : k denote the sequence
{1, . . . , k} for k = 1, . . . , N . The filtering problem consists
of computing the conditional expectations

Πkf = E [f(Xsk)|Z1:k] for k = 1, . . . , N,

where f belongs to some reasonable family of functions. The
quantities Πkf constitute the filter (called the analytical filter).

The conditional expectation Πkf can be written as

Πkf =
∫
Q0(dx0)Q∆s(x0, dxs1)g(xs1 , z1)∫
Q0(dx0)Q∆s(x0, dxs1)g(xs1 , z1)

· · ·
Q∆s(xsk−1 , dxsk)g(xsk , zk)f(xsk)

Q∆s(xsk−1 , dxsk)g(xsk , zk)
, (II.1)

where
∫

stands for integration over the variables
xs0 , xs1 , . . . , xsk . Let Hk be the kernels,

Hkf (xsk−1 , zk) =
∫
Q∆s(xsk−1 , dxsk)

× g(xsk , zk) f(xsk) dxsk . (II.2)

The filter (II.1) can be written recursively as

Π0f =
∫
f(x) Q0(dx), Πkf =

Πk−1Hk f

Πk−1Hk 1
. (II.3)

Usually, the integrals in (II.3) cannot be computed analytically.
A particle filter [32], [3] is an approximation to the analytical
filter (II.3). In its simplest form, a particle filter consists of the
following steps:

Algorithm II.1 Standard particle filter.
1) Sample n i.i.d. vectors (particles) Xj

0 , j = 1, . . . , n
from Q0(dx). Set k = 1.
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2) For j = 1, . . . , n evolve Xj
sk−1

according to
Q∆s(Xj

sk−1
, dx′) to get X ′jsk .

3) Calculate

Wn
k f =

1
n

n∑
j=1

f(X ′jsk) g(X ′jsk , zk),

Wn
k 1 =

1
n

n∑
j=1

g(X ′jsk , zk).

4) Define the probability measure Ψn
k on Rd with density

Ψn
k (dx) =

1
nWn

k 1

n∑
j=1

g(X ′jsk , zk) δX′jsk
(dx).

5) If k < N : Set k → k + 1. Sample n i.i.d. variables
Xj
sk
, j = 1, . . . , n from Ψn

k , and go to Step 2.
We stop at the end of iteration N , and our approximation of
Πk f is,

Ψn
k f =

Wn
k f

Wn
k 1

= EΨnk
f

III. FILTERING FOR SYSTEMS WITH TIME SCALE
SEPARATION

A. Scale separation and Rao-Blackwellization

Many problems in the natural sciences give rise to systems
with time scale separation. These systems represent a chal-
lenge for numerical simulations. For example in molecular
dynamics simulations femtoseconds timesteps are required
to integrate the fastest atomic motions, while the object of
interest is of orders of microseconds or longer. In the past
four decades systems with scale separation have been the focus
of extensive research within the framework of the averaging
principle. The separation of scales is utilized to derive an
effective model for the slow components of the system. While
the averaging principle and its resulting effective dynamics
provide a substantial simplification of the original system
it is often impossible or impractical to obtain the reduced
equations in closed form. This has motivated the development
of algorithms such as multiscale integration methods described
in the next section.

To make the presentation more concrete we will describe the
situation for a d-dimensional systems of stochastic differential
equations with multiple time scales (see [33] Chapter 7). As
mentioned in the introduction, the ideas that we will discuss
can be applied to filtering problems for any multiscale Markov
process for which multiscale integration methods are available.

Let (Xε
t , Y

ε
t ) be a solution of the system

dXε
t = a(Xε

t , Y
ε
t ) dt+ b(Xε

t ) dUt, Xε
0 = x0

(III.1a)

dY εt =
1
ε
α(Xε

t , Y
ε
t ) dt+

1√
ε
β(Xε

t , Y
ε
t ) dVt, Y ε0 = y0.

(III.1b)

where Ut and Vt are independent Brownian motions. The
hidden variable (Xε

t , Y
ε
t ) is a Markov process with transi-

tion probability Qε∆s((x, y), (dx′, dy′)) on Rdx × Rdy (with

dx + dy = d). The Xε
t variables evolve on a O(1) time scale

(the macro time scale), and the Y εt variables evolve on an
O(ε) time scale (the micro time scale). As above, we have
noisy discrete observations,

Zk = G(Xε
sk
, Y εsk , χk), k = 1, . . . , N

where the χk are i.i.d variables, independent of x, y, and for
all x, y the variable Z = G(x, y, χ) admits a density z →
g(x, y, z) which is known.

The standard approach to this filtering problem
(see [34]) is to use an easily sampled approximation
Qε,δt∆s ((x, y) , (dx′, dy′)) of the transition probability
Qε∆s((x, y), (dx′, dy′)) where the discrete time step δt
is of scale comparable to ε. If one is interested in the
evolution of the system over O(1) time scales then one
must evolve the system for O( 1

ε ) steps, which can be very
costly for systems with large scale separation. In addition to
simulation issues inherent to multiscale phenomena, particle
filters can suffer from all of the usual difficulties associated
with importance sampling in large dimensional spaces. That
is, in high dimensional systems, the variance of the particle
filter estimator can be difficult to control.

In this section we show how the averaging principle and
Rao-Blackwellization can be used to reduce the computational
effort for each particle and the number of required particles.
The method we discuss assumes that the Rao-Blackwellization
and the construction of the dimensionally reduced model
can be performed analytically. Unfortunately, this is rarely
the case. In the next section, we show how the multiscale
integration framework can be used to implement our approach
when we are not able to perform the Rao-Blackwellization and
the construction of the reduced model analytically.

Under appropriate assumptions (see [35], [5], [6], [33]), the
averaging principle dictates that as ε→ 0

Xε
t

D−→ X̄t for t ∈ [0, T ],

where X̄t satisfies

dX̄t = ā(X̄t) dt+ b(X̄t) dWt. (III.2)

The averaged coefficient ā is given by

ā(x) =
∫

Rdy
a(x, y)µx(dy) (III.3)

where µx(dy) is the invariant measure induced by (III.1b) with
the x variables fixed.

The key consequence of the time scale separation is that,
loosely speaking, for ε small enough and for ∆s� ε, the tran-
sition density Qε∆s ((x, y), (dx′, dy′)) can be approximately
factored as

Qε∆s ((x, y), (dx′, dy′)) ≈ Q̄∆s(x, dx′)µx′(dy) (III.4)

where Q̄∆s is the transition density for the averaged system,
(III.2). The factorization (III.4) above is the central tool in the
construction of the multiscale particle filter below and is not a
feature limited to multiscale stochastic differential equations.
The algorithms below apply to any problem for which this
approximation holds and for which some means of sampling



4

(or approximately sampling) Q̄∆s(x, dx′) and µx′(dy) are
available. This is the case for both of the examples in Section
IV.

The relation (III.4) suggests that an approximate particle
filter can be constructed by defining the kernel,

H̄kf (xsk−1 , zk) =
∫
Q̄∆s(xsk−1 , dxsk)

× µxsk (dy) g(xsk , y, zk) f(xsk , y). (III.5)

The corresponding particle filter would proceed as follows,

Algorithm III.1 Standard particle filter corresponding to
(III.5).

1) Sample n i.i.d. vectors (Xj
0 , Y

j
0 ) j = 1, . . . , n from

Q0(dx, dy) distribution. Set k = 1.
2) For each j, use (III.3) to evolve Xj

sk−1
to X ′sk

j
, i.e.,

sample from Q̄∆s(Xj
sk−1

, dx′). For each sample X ′sk
j
,

generate an independent sample Y ′j from the measure
µX′sk

j .

3) Calculate,

Wn
k f =

1
n

n∑
j=1

f(X ′sk
j) g(X ′sk

j
, Y ′

j
, zk)

Wn
k 1 =

1
n

n∑
j=1

g(X ′sk
j
, Y ′

j
, zk).

4) Define the probability measure Ψn
k on Rd with density

Ψn
k (dx, dy) =

1
nWn

k 1

×
n∑
j=1

g(X ′sk
j
, Y ′

j
, zk) δX′sk j (dx) δY ′j (dy).

5) If k < N : Set k → k + 1. Sample n i.i.d. variables
Xj
sk
, j = 1, . . . , n from Ψn

k , and go to Step 2.
We stop at the end of iteration N , and our approximation of
Πk f is,

Ψn
k f =

Wn
k f

Wn
k 1

= EΨnk
f

There is no reason to hope that this algorithm should provide
any variance reduction. Indeed, in the ideal case that expres-
sion (III.4) is an equality, the variance of the particle filter
would be identical to the variance of the standard particle filter
II.3.

However, knowledge of µxsk (dy) allows one to integrate out
y in expression (III.5) and write this same kernel in another
form,

H̄kf (xsk−1 , zk) =
∫
Q̄∆s(xsk−1 , dxsk)

×
∫
µxsk (dy) g(xsk , y, zk) f(xsk , y). (III.6)

This suggests a different filtering algorithm:

Algorithm III.2 Rao-Blackwellized particle filter
corresponding to (III.6).

1) Sample n i.i.d. vectors (Xj
0 , Y

j
0 ) j = 1, . . . , n from

Q0(dx, dy) distribution. Set k = 1.
2) For each j, use (III.3) to evolve Xj

sk−1
to X ′sk

j
, i.e.,

sample from Q̄∆s(Xj
sk−1

, dx′).
3) Calculate the following quantities:

a)

[µfg] (X ′sk
j) =

∫
f(X ′sk

j
, y)

× g(X ′sk
j
, y, zk)µX′sk j (dy)

[µg] (X ′sk
j) =

∫
g(X ′sk

j
, y, zk)µX′sk j (dy).

b)

Wn
k f =

1
n

n∑
j=1

[µfg] (X ′sk
j)

Wn
k 1 =

1
n

n∑
j=1

[µg] (X ′sk
j).

4) Define the probability measure Ψn
k on Rd with density

Ψ̄n
k (dx, dy) =

1
nWn

k 1

×
n∑
j=1

g(X ′sk
j
, y, zk) δX′sk j (dx) µX′sk j (dy).

5) If k < N : Set k → k + 1. Sample n i.i.d. variables
Xj
sk
, j = 1, . . . , n from Ψ̄n

k , and go to Step 2.
We stop at the end of iteration N , and our approximation of
Πk f is,

Ψ̄n
k f =

Wn
k f

Wn
k 1

= EΨ̄nk
f (III.7)

Since the y components of the resampled particles after Step
4 are not used in Step 2, we can, in practice, resample from
the marginal density

Ψ̄n
k (dx) =

1
nWn

k 1

n∑
j=1

[µg]
(
X ′sk

j
)
δX′sk

j (dx). (III.8)

In order to illustrate the variance reduction aspects of
algorithm III.2 we will consider the asymptotic variance of
a pair of related but much simpler estimators. Define the
conditional expectations Π̄k recursively by,

Π̄0f =
∫
f(x) Q0(dx), Π̄kf =

Π̄k−1H̄k f

Π̄k−1H̄k 1
.

Let

Ink f =
1
n

∑n
j=1 f(Xj

k, Y
j
k ) g(Xj

k, Y
j
k , zk)

1
n

∑n
j=1 g(Xj

k, Y
j
k , zk)

and

Īnk f =
1
n

∑n
j=1 [µfg] (Xj

k)
1
n

∑n
j=1 [g] (Xj

k)

where (Xj
k, Y

j
k ) are i.i.d. samples from the measure

Πk−1Q̄∆sµ Notice that the only difference between Ink f
and Ψn

kf described in Algorithm (III.5) is that the samples
(Xj

k, Y
j
k ) are independently drawn from Π̄k−1Q̄∆sµ instead
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of its particle approximation Ψn
k−1Q̄∆sµ. A corresponding

relationship holds between Īnk f and Ψ̄n
kf.

The estimators Ink f and Īnk f satisfy Central Limit Theo-
rems, i.e. √

n
(
Ink f − Π̄kf

) D−→ N
(
0, σ2

)
(III.9)

and √
n
(
Īnk f − Π̄kf

) D−→ N
(
0, σ̄2

)
. (III.10)

An application of the delta method (see [36]) yields that

σ2 = Π̄k−1Q̄∆sµ

[(
f(X,Y )− Π̄kf

)2( g(X,Y )
Π̄k−1H̄k1

)2
]

and

σ̄2 = Π̄k−1Q̄∆s

[(
[µfg] (X)
[µg] (X)

− Π̄kf

)2( [µg] (X)
Π̄k−1H̄k1

)2
]
.

σ̄2 can be rewritten as

Π̄k−1Q̄∆s

[[
µ

(
fg − gΠ̄kf

Π̄k−1H̄k1

)]2

(X)

]
.

Therefore, by Jensen’s inequality, we have that

σ̄2 ≤ Π̄k−1Q̄∆s

[
µ

(
fg − gΠ̄kf

Π̄k−1H̄k1

)2
]

= σ2.

It is important to note that the variance reduction offered by
Algorithm III.2 does not require any Gaussian or degenerate
measure approximations. The main assumptions are that the
system have a multiscale structure and that one can sample
from Q̄∆s(x, dx′) and evaluate averages with respect to the
ergodic measure µx (which we assume exists). In many cases,
for example those in Section IV, the first assumption can be
easily verified. For most general systems, Q̄∆s(x, dx′) is not
available in closed form. In practice, we must replace Q̄∆s by
some approximation. For example in the case of x̄t above
we can use the transition probability kernel for the Euler-
Maruyama scheme with step size ∆t, Q̄∆t

∆s. Of course to apply
the Euler approximation to (III.2) we must be able to exactly
evaluate averages with respect to µx. The removal of this
assumption will be addressed in the next section.

B. Implementation of the multiscale integration for the re-
duced particle filter

In the particle filter construction of the previous section we
used the fact that we can average over the invariant measure
induced by the fast variables. This is usually impossible
since the invariant measure is unknown or because integration
cannot be performed analytically. We will demonstrate that
this problem can be overcome by using multiscale integration
schemes (see [8], [9], [10], [11], [12], [13], [14]). In the
following description we will be discussing specifically the
multiscale integration schemes of the form analyzed in [10]
and [11]. The system studied in section IV-B is a pure jump
Markov process and therefore requires a different multiscale
integration scheme (see [12], [13]). Let ∆t be a fixed time
step, and Xk,l be the numerical approximation to the coarse
variable, X̄ from the previous section, at time tk,l = sk + l∆t

(recall sk is the k-th observation time). Assume for simplicity
that L = ∆s

∆t is an integer. Inspired by the limiting equation
(III.2), Xk,l is evolved in time by an Euler-Maruyama step,

Xk,l+1 = Xk,l +A(Xk,l) ∆t+ b(Xk,l) ∆Wtk,l (III.11)

for l = 0, . . . , L − 1, where ∆Wtk,l are Brownian displace-
ments over a time interval ∆t. We refer to (III.11) as the
macro-solver, or macro integrator, and we denote its transition
probability by Q̄∆t,δt,M

∆s (x, dx′). Notice that with this notation
Xk,0 = Xk−1,L.

The function A(x) approximates ā(x), introduced in the
previous section, which is the average of a over an ergodic
measure. The ergodic property implies that instead of ensem-
ble averaging we can use time averaging over trajectories of
the rapid variables with fixed x. Since, by assumption, this
average cannot be performed analytically, it is approximated
by an empirical average over short runs of the fast dynamics.
These “short runs” are over time intervals that are sufficiently
long for empirical averages to be close to their limiting en-
semble averages, yet sufficiently short for the entire procedure
to be efficient compared to the direct solution of the coupled
system.

Thus, given the coarse variable at the k, l-th time step, Xk,l,
we take some initial value for the fast component Yk,l,0, and
solve (III.1b) numerically with step size δt and x = Xk,l

fixed. We denote the discrete variables associated with the fast
dynamics at the k, l-th coarse step by Yk,l,m, m = 0, 1, . . . ,M.
The numerical solver used to generate the sequence Yk,l,m
is called the micro-solver, or micro-integrator. The simplest
choice is again the Euler-Maruyama scheme,

Yk,l,m+1 = Yk,l,m +
1
ε
α(Xk,l, Yk,l,m) δt

+
1√
ε
β(Xk,l, Yk,l,m)∆Vk,l,m, (III.12)

where ∆Vk,l,m are Brownian displacements over a time inter-
val δt. In this equation Xk,l is a parameter in Yk,l,m though
this will not be explicitly written. Since we assume that
the dynamics of the y variables is ergodic, we may choose
Yk,l,0 = Yk,l−1,m for all k and l. For convenience however,
we will set Yk,l,0 = 0. As for the X variables, our notation
implies Yk,0,m = Yk−1,L,m for all m.

The existence, under appropriate assumptions, of an invari-
ant measure, µδtx , of the numerical scheme (III.12), follows
from results in [37], [38]. The measure µδtx is an approximation
to µx. This suggests estimating the function ā by

A(Xk,l) =
1
M

M∑
m=1

a(Xk,l, Yk,l,m). (III.13)

Since we will frequently encounter this form of trajectory
averaging in the sequel, we define the symbol

[
SMh

]
(y1, . . . , ym) =

1
M

M∑
m=1

h(ym),

where h is some function defined on Rdy . We will henceforth
omit from our notation, the dependence of SMh on the
variables (y1, . . . , ym). Equations (III.11), (III.12), and (III.13)
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define the multiscale integration scheme. We note here that,
in fact, since for our filtering application of the multiscale
integration scheme we are interested in reproducing the dis-
tribution of the process (III.1) and not actual trajectories, we
can replace the average in (III.13) by evaluation at the single
point Yk,l,M . Since expression (III.13) is only marginally more
expensive and corresponds more naturally to the method of
averaging, we will not bother with this simplification.

Suppose that the joint distribution of Yk,l,m given that
Xk,l = x and Yk,l,0 = 0 is Q̃δt,Mx (dy1, . . . , dyM ). We can
define the measure µMx by,

µMx h = Q̃δt,MSMh(ym) =
1
M

M∑
m=1

Exh(Yk,l,m).

where the subscript x on the expectation emphasizes the
dependence of the random variables Yk,l,m on the parameter
x.

By using trajectory averages over the fast dynamics to
approximate integrals over µx of the observation density as
well as the coefficient ā we can define a particle filter which
approximates the Rao-Blackwellization step of the previous
section. The following kernel is an approximation of expres-
sion (III.6),

H̄∆t,δt,M
k f (xsk−1 , zk) =

∫
Q̄∆t,δt,M

∆s (xsk−1 , dxsk)

× µMxsk (dy) f(xsk , y) g(xsk , y, zk). (III.14)

The next particle filter, defined in the following algorithm,
corresponds to (III.14) and differs from Algorithm III.2 in that
we evolve the particles according to Q̄∆t,δt,M

∆s instead of Q̄∆s

and, in the update Step, instead averaging over the measure
µx we average over a trajectory of Y jk,l,m.

Algorithm III.3 Multiscale particle filter
1) Sample n i.i.d. vectors Xj

0 j = 1, . . . , n from
Q0(dx, dy). Set k = 1.

2) For each j = 1, . . . , n evolve X ′k−1,0 = Xj
k−1

according to Equations III.11, III.12, and III.13 to
generate samples X ′k

j = X ′
j
k−1,L, i.e. sample from

Q̄∆t,δt,M
4s (Xj

k−1, dx
′). We use Y ′jk−1,l,m to denote the

fast variables evolved according to Eq. (III.12) with
parameter X ′

j
k−1,l. To initialize the Y ′

j variables at
each time Step of Eq. (III.11) we choose, Y ′jk,l,0 = 0.

3) For each j = 1, . . . , n :
a) Evolve Y ′

j
k,0,0 = 0 according to (III.12) with

parameter X ′k
j to get Y ′jk,0,m where 1 ≤ m ≤M .

b) Calculate

[
SMfg

]
(X ′k

j) =
1
M

M∑
m=1

f(X ′k
j
, Y jk,0,m)

× g(X ′jk, Y
j
k,0,m, zk)[

SMg
]

(X ′k
j) =

1
M

M∑
m=1

g(X ′k
j
, Y jk,0,m, zk).

c) Calculate

Wn
k f =

1
n

n∑
j=1

[
SMfg

]
(X ′k

j)

Wn
k 1 =

1
n

n∑
j=1

[
SMg

]
(X ′k

j).

4) Define the probability measure Ψn
k on Rd with density

Ψ̄∆t,δt,M,n
k (dx, dy) =

1
MnWn

k 1

×
n∑
j=1

M∑
m=1

g(X ′k
j
, Y jk,0,m, zk) δX′kj (dx) δY jk,0,m(dy)

5) If k < N : Set k → k+ 1. Sample n i.i.d. variables Xj
k,

j = 1, . . . , n from Ψn
k , and go to Step 2.

We stop at the end of iteration N , and our approximation of
Πk f is,

Ψ̄∆t,δt,M,n
k f =

Wn
k f

Wn
k 1

= EΨ̄∆t,δt,M,n
k

f

Since the y components of the resampled particles after Step
4 are not used in Step 2, we can, in practice, resample from
the marginal density

Ψ̄∆t,δt,M,n
k (dx) =

1
nWn

k 1

n∑
j=1

[
SMg

] (
X ′k

j
)
δX′k

j (dx).

(III.15)
The two procedures give equivalent estimates and differ only
in that the work required for the resampling Step using
(III.15) will scale with n instead of nM (of course calculating
the averaged weights requires O(nM) work). In practice to
initialize Y ′j variables at each time Step of Eq. (III.11) we set,
Y ′

j
k,l,0 = Y ′

j
k,l−1,m. This choice results in faster equilibration

of the Y ′ process.
While the details of the multiscale integration scheme do

depend on the particular Markov process under study, algo-
rithm III.3 can be applied in the same form to a wide variety
of multiscale Markov processes (for example the system in
section IV-B).

IV. NUMERICAL RESULTS

A. A stochastic differential equation

We present a simple numerical example which demonstrates
the variance reduction obtained through our algorithm. Con-
sider the system given by,

dXε
t =

(
Y εt − (Xε

t )
3
)
dt+ dUt Xε

0 ∼ N (0, 1)

dY εt =
2
ε

(
(Xε

t )
2 − (Y εt )2

)
Y εt dt+

1√
ε
dVt Y ε0 ∼ N (0, 1).

(IV.1)
The parameter ε in this example is set to 10−4. A trajectory of
the system is shown in Figure 1. The ergodic measure of the
fast dynamics for this system is known and has the bimodal
density

µx(y) =
e−(x2−y2)2∫
e−(x2−y2)2dy

.
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Fig. 1. Trajectory of system (IV.1).
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Fig. 2. The density µx for x = 1.

A plot of µx for x = 1 is shown in Figure 2.
The observations are given by,

Zk = Y εk + χk,

where χ are independent Gaussian random variables with
mean 0 and standard deviation 0.1. In the experiment below we
take as the realization of the observations, zk, the trajectory
shown in Figure 1 sampled at every one unit of time. We
will compare the standard particle filtering algorithm with
Algorithm III.3. Both methods are run with 1000 particles.
System (IV.1) is discretized by the Euler-Maruyama method
with time step δt = 10−6. The multiscale integration scheme
uses a time steps of size 4t = 10−2 to evolve the reduced
system (III.11) and of size δt in the microscopic system
(III.12). With this choice of parameters Algorithm III.3 runs
in about half of the time of the standard particle filter.

As in the definitions of the particle filters above, for any
function f define

W1f (k) =
n∑
j=1

f(Xε
k
′j , Y ε′

j) g(Xε
k
′j , Y ε′

j
, zk)
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Fig. 3. Trajectories of e1 and e2.

and

W2f (k) =

1
n104

n∑
j=1

104∑
m=1

f(X ′k
j
, Y jk,0,m) g(X ′k

j
, Y jk,0,m, zk).

In Figure 3 we compare the pairs of estimators,

e1
x(k) =

W1x (k)
W11 (k)

, e1
y(k) =

W1y (k)
W11 (k)

and
e2
x(k) =

W2x (k)
W21 (k)

, e2
y(k) =

W2y (k)
W21 (k)

Notice that the poor quality of the reconstruction of Xε
t is

not due to an error. The symmetry of the observation model
and of the Y εt dynamics, implies that, in the limit ε→ 0, the
true condition expectation of Xε

t , given any observations of
Y εt alone, will be identically zero. Therefore, both estimators
appear to be accurate.

In order to compare the quality of the samples generated
by the two methods we compute the effective sample sizes of
the empirical measures produced by both methods,

ess1(k) =
1000

1 + C2
1 (k)

and ess2(k) =
1000

1 + C2
2 (k)

where

C1(k) =
1

W11 (k)

√√√√ 1
n

n∑
j=1

(
g(Xε

k
′j , Y ε′

j
, zk)−W11 (k)

)2

and

C2(k) =
1

W21 (k)

√
1

n104

×

√√√√ n∑
j=1

104∑
m=0

(
g(X ′k

j
6
(l), Y jk,0,m, zk)−W21 (k)

)2

.

The effective sample size is a common measure of the quality
of a weighted empirical measure produced by an importance
sampling scheme (see [39]). Very roughly, the effective sample
size gives the number of independent samples from the target
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Fig. 4. Trajectories of ess1 and ess2.

measure that would produce an unweighted empirical measure
of equal quality. When all of the weights are equal (i.e. the
samples are drawn from the target measure itself) the effective
sample size is the total number of samples (in our case 1000).

The trajectories of ess1 and ess2 are plotted in Figure 4. As
can be seen in the plot, the effective sample sizes generated by
Algorithm III.3 are nearly 10 times as large as those generated
by the standard particle filter. This indicates that there is some
improvement in the quality of the empirical measure generated
by Algorithm III.3.

It is important to note while the cost of the two methods
in this experiment are comparable, in the limit ε → 0 a
discretization of the system (IV.1) would require smaller and
smaller time steps. Thus the computational advantage for the
multiscale particle filter would become extreme in this limit.
The next example features a larger time scale separation and
a correspondingly larger gain in efficiency due to multiscale
integration.

B. A pure jump type Markov process

We now demonstrate our algorithm with a numerical ex-
ample motivated by chemical reactions. The stochastic dy-
namical behavior of a well stirred mixture of N molecular
species that chemically interact through M reaction channels
is accurately described by the chemical master equation. The
master equation is usually simulated using the Stochastic
Simulation Algorithm of Gillespie [40]. In cellular systems
where the small number of molecules of a few reactant species
sometimes necessitates a stochastic description of the system’s
temporal behavior, chemical reactions often take place on
vastly different time scales. An exact stochastic simulation
of such a system will necessarily spend most of its time
simulating the more numerous fast reaction events.

For N molecular species the state of the system S =
(S1(t), . . . , SN (t)) is the number of molecules of each species
present at time t. The molecular populations Si, i = 1, . . . , N
are random variables. For each reaction channel Rj , j =
1, . . . ,M we define the propensity function aj(S) and the
state change vector vj . The propensity function is such that
aj(S)dt is the probability given S(t) = S that one Rj reaction
will occur in the next infinitesimal time interval [t, t+ dt].

The state change vector vj is the change in the number of Si
molecules produced by one Rj reaction.

The pathwise evolution law for the master equation is a
jump type Markov process on the non negative N -dimensional
integer lattice given by dS1

...
dSN

 =

 v1,1 . . . v1,M

...
...

vN,1 . . . vN,M


×

 dP1(a1(S))
...

dPM (aM (S))

 , (IV.2)

where Pj is a Poisson process with state dependent intensity
parameter aj(S).

In our system we choose N = 6 species and M = 5 reaction
channels. Variables S1, . . . , S5 are the fast variables and S6 is
the slow variable. For the evolution of the fast variables we
choose a simple fast biomolecular (reversible) reaction

S1 + S2 →k1 S3

S3 + S6 →k2 S1 + S2 + S6,

and a fast (reversible) dimerization

S4 + S4 →k3 S5

S5 + S6 →k4 S4 + S4 + S6.

The propensity functions are given by
a1(S)
a2(S)
a3(S)
a4(S)

 =


k1S1S2

k2S3S6

k3S4(S4 − 1)
k4S5S6


where the reaction rates k1, . . . , k5 are specified below. We
will use the shorthand

Sf = (S1, . . . , S5) .

For the slow variable S6 we choose an external source (spon-
taneous creation)

S3 + S4 →k5 S3 + S4 + S6,

which is coupled to the fast variables through the slow
reaction’s propensity function

a5(S) = k5S3S4.

The state change vectors for the system just described are
given by the matrix,

 v1,1 . . . v1,5

...
...

v6,1 . . . v6,5

 =


−1, 1, 0, 0, 0
−1, 1, 0, 0, 0
1,−1, 0, 0, 0
0, 0,−2, 2, 0
0, 0, 1,−1, 0
0, 0, 0, 0, 1


Finally the reaction constants vector is given by

(k1, . . . , k5) =
(
1000, 1000, 1000, 1000, 5× 10−5

)
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Fig. 5. A trajectory of the jump process with initial condition
(700,700,1300,900,1050,400).

A trajectory of this system is plotted in Figure 5. One can
clearly see the separation in time scale between the slow and
fast variables. By examination of the propensities, ai, above
one can see that the Sf variables evolve on a time scale of
roughly 10−9 while S6 evolves on a time scale of roughly
10−2.

The initial populations, S1(0), . . . , S6(0) are drawn accord-
ing to

(S1(0), . . . , S6(0)) = (700, 700, 1300, 900, 1050, 400) + η

where η is a vector of independent uniformly distributed
random variables in the interval [−10, 10]. The observations
are taken every 1 unit of time from time 0 to time 10 and are
modeled by

Z(l) = S(l) + χ(l)

where the χ(l) are independent vectors of independent, mean
0, standard deviation 5, Gaussian random variables. While this
noise model is somewhat arbitrary, it can be considered to
model measurement error. In our experiments we take z(l) to
be equal to the particular trajectory shown in Figure 5 at time
l for l = 0, . . . , 10.

Because the standard particle filter is too expensive to run
(almost 1000 times the cost of the multiscale particle filter) it is
not available for comparison. However, we can still investigate
the variance reduction aspect of the method by comparing
two filters that both use the multiscale integration scheme
during the prediction step, but that handle the update step
in different ways. These two procedures are described in the
next paragraph. For the details of the implementation of the
multiscale integration scheme applied here please see [12],
[13].

The two particle filters applied here correspond roughly
to algorithms III.1 and III.2. In the first, at iteration l, we
apply the multiscale integration scheme during the prediction
step (thereby generating an approximate sample, S′j6(l) from
Q̄∆s) then we choose one sample S′jf approximately from the
measure µS′j6(l) and proceed as in the rest of algorithm III.1.
The latter sampling step is accomplished by sampling the end
point from a long (10−4 time units) equilibrated trajectory of
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Fig. 6. a. Trajectory of estimate e1. b. Trajectory of estimate e2. In both
figures the observations are overlaid with diamonds connected by dashed lines.

the fast dynamics with the value S′j6(l) set as a parameter. The
second method (corresponding to III.2) proceeds in exactly
the same way except that in the second step we sample 104

points S′jf,m, at equal time intervals, from a long (again 10−4

time units) equilibrated trajectory of the fast dynamics with
the value S′j6(l) set as a parameter. The points S′jf,m are then
used to approximate the two averages appearing in Step 3 of
algorithm III.2. With the severe scale separation present in this
problem, the variance of the first method just described (no
likelihood weight averaging) is an accurate representation of
the variance of the standard particle filter. The increased cost
of the averaging in the second method is negligible.

Both particle filters are tested with 1000 particles. The
resulting estimators,

e1
i (l) =

W1si (l)
W11 (l)

and e2
i (l) =

W2si (l)
W21 (l)

where, for any function f,

W1f (l) =
1
n

n∑
j=1

f(S′j6(l), S′jf ) g(S′j6(l), S′jf , zl),

and

W2f (l) =

1
n104

n∑
j=1

104∑
m=1

f(S′j6(l), S′jf,m) g(S′j6(l), S′jf,m, zl).

of Si are plotted in Figure 6 along with the hidden trajectory
of S6. Clearly both methods accurately reconstruct the path
of S. Upon close inspection one can see that the estimate e2

is slightly closer to the actual trajectory (which is the same
as the observations in this example). However Figure 6 is by
no means conclusive evidence that that e2 provides a better
estimate.
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Fig. 7. Trajectories of ess1 and ess2.

The gain in efficiency of the empirical measure generated
using the averaged weights does become clear when we
compare the effective sample sizes of the empirical measures
produced by both methods,

ess1 =
1000

1 + C2
1

and ess2 =
1000

1 + C2
2

where

C1(l) =
1

W11 (l)

√√√√ 1
n

n∑
j=1

(
g(S′j(l), S′jf , zl)−W11 (l)

)2

and

C2(l) =
1

W21 (l)

√
1

n104

×

√√√√ n∑
j=1

104∑
m=0

(
g(S′j6(l), S′jf,m, zl)−W21 (l)

)2

.

The trajectories of ess1 and ess2 are plotted in Figure 7. As
can be seen in the plot, the effective sample sizes generated
by the particle filter with averaging are as much as 100 times
greater than those generated by the particle filter without the
averaging step. This indicates that the improvement in the
quality of the empirical measure generated by the particle filter
with likelihood weight averaging is significant. It is also clear
that, due to the large time scale separation in this system,
any filtering method that does not explicitly address this in
the prediction stage of the filter (by, for example, multiscale
integration) will be extremely slow.

V. CONCLUSIONS

We have presented an algorithm that combines dimensional
reduction and approximate Rao-Blackwellization to create
an efficient reduced variance particle filter for systems that
exhibit time scale separation. We tested the algorithm on two
systems with large time scale separations and the results are
encouraging.

Our method does not require that any of the distributions
involved are nearly Gaussian or degenerate. Furthermore, the
cost of our method does not increase as the time scale

separation is increased. We are not aware of any competitive
alternative with these features.

With minor modifications our particle filter can be applied in
a slightly more general setting. Occasionally one is interested
in multiscale systems for which it is impossible to explicitly
fix the slow variable during evolution. For example, one may
not know the laws governing the evolution of the system but
can generate sample trajectories (by laboratory experiment).
In these cases our particle filter remains valid. Roughly, the
fact that the slow variable does not deviate much on the time
scale of the fast variables allows one to replace evolution of
the fast dynamics by evolution of the full system (see [41]).
Note also, that the variance reduction technique discussed here
applies to any importance sampling problem for a multiscale
Markov process.
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