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UNIFORM TIME AVERAGE CONSISTENCY

OF MONTE CARLO PARTICLE FILTERS

RAMON VAN HANDEL

Abstract. We prove that bootstrap type Monte Carlo particle filters approximate the optimal
nonlinear filter in a time average sense uniformly with respect to the time horizon when the signal is
ergodic and the particle system satisfies a tightness property. The latter is satisfied without further
assumptions when the signal state space is compact, as well as in the noncompact setting when the
signal is geometrically ergodic and the observations satisfy additional regularity assumptions.

1. Introduction

Consider a hidden Markov model of the form

Xn = f(Xn−1, ξn), Yn = h(Xn, ηn),

where (ξn)n≥1, (ηn)n≥0 are independent i.i.d. sequences. The signal Xn represents a dynamical
process of interest, but only the noisy observations Yn are available. More generally, (Xn)n≥0 may be
any Markov process and (Yn)n≥0 are assumed to be conditionally independent given (Xn)n≥0. Such
models appear in a wide variety of applications (see, e.g., [11]). As the signal is not directly observed,
one is generally faced with the problem of estimating the signal on the basis of the observations.
To this end, the nonlinear filtering problem aims to compute the conditional distribution πn of the
signal Xn given the observation history Y0, . . . , Yn in a recursive (on-line) fashion.

The theory of nonlinear filtering is a classic topic in probability [20] and statistics [2]. Unfortu-
nately, the theory suffers in practice from the fact that the conditional distribution πn is an infinite
dimensional object. With the exception of some special cases, the filtering recursion can not be
represented in a finite dimensional fashion and its direct implementation is therefore intractable.
For this reason, realistic applications have long remained limited.

This state of affairs was revolutionized in the early 1990s by the discovery [12] of a new class of ap-
proximate nonlinear filtering algorithms based on Monte Carlo simulation, which are known under
various names in the literature: bootstrap filters, interacting particle filters, sequential Monte Carlo
filters, etc. Such algorithms are simple to implement (even for complex models), are computation-
ally tractable, typically exhibit excellent performance, and can be rigorously proved to converge to
the exact nonlinear filter when the number of samples is large. These techniques have consequently
been applied in problems ranging from robotics to finance, and their theoretical properties have
been investigated by many authors; we refer to the collection [11] for a general introduction to
the theory and applications of Monte Carlo particle filters, while a detailed overview of theoretical
developments can be found in the recent monographs [6, 4].

Despite many advances in recent years, however, certain empirically observed properties of Monte
Carlo particle filters remain poorly understood theoretically. The aim of this paper is to study one
such property: the uniform nature of the particle filter approximation.
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Figure 1. The conditional mean E(Xn|Y0, . . . , Yn) (red) and approximations by the boot-
strap (blue) and naive (green) particle filter for a single sample path of the model described
in the text. The number of particles N used for the approximate filters varies in each plot.

1.1. A toy example. The uniform nature of particle filter approximations is most easily illustrated
by means of a simple but illuminating numerical example. Let us consider the filtering model

Xn = 0.9Xn−1 + ξn, X0 = 0, Yn = Xn + ηn,

where ξn, ηn are i.i.d. N(0, 1). As only the observations are available to us, we aim to compute the
conditional mean of the signal E(Xn|Y0, . . . , Yn). In this very special case, it is well known that
the latter can be computed exactly using a finite dimensional algorithm (the Kalman filter).

A numerical simulation of this example is shown in figure 1, where we have plotted the exact
conditional mean and its approximation obtained by means of the bootstrap particle filter. For sake
of illustration, we have plotted also a different ‘naive’ Monte Carlo approximation of the conditional
mean which, like the bootstrap filter, is easily proved to converge to the exact conditional mean
when the number of Monte Carlo particles is large. [The precise details of these algorithms will
be given in section 3 below, and are irrelevant to the present discussion.] Though both algorithms
converge, the difference in performance between the two algorithms is striking: the approximation
error of the naive algorithm grows rapidly in time, while the error of the bootstrap algorithm
appears to be independent of time (see [8] for further computations in this example).

Evidently the fact that both algorithms converge does not capture the key qualitative advantage
of the bootstrap filter over the naive algorithm: the bootstrap filter converges to the exact filter
uniformly in time, while the naive filter does not. Even if in practice the filter is only of interest
on a finite time horizon, the rapid growth of the error of the naive filter is a severe problem as
the filter becomes useless after relatively few time steps. In contrast, uniform convergence of the
bootstrap filter indicates that its approximation error does not accumulate over time, which is
essential for robust performance. It is therefore of considerable practical interest to establish under
what conditions approximate filtering algorithms converge uniformly in time.

The linear example considered here is very special in that the filter can be computed exactly.
One would therefore never use a particle filter in this setting. We have chosen an example which
admits an exact solution as this provides a benchmark with which we can compare the performance
of particle filter approximations. On the other hand, exactly the same phenomenon as is illustrated
in figure 1 is observed numerically in almost any ergodic filtering problem. A general understanding
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of this phenomenon is therefore essential in order to guarantee reliable performance of approximate
filtering algorithms in nonlinear filtering problems, which almost never admit an exact solution.
The aim of this paper is to establish uniform convergence of approximate filtering algorithms, and
in particular of particle filters, for a large class of ergodic filtering models.

In the following discussion we denote by πn the conditional distribution of Xn given the obser-
vation history, and by πN

n its particle filter approximation with N particles. Both are computed
recursively, which we denote as πn = F (Yn, πn−1) := Fnπn−1 and πN

n = FN (Yn, π
N
n−1) := FN

n πN
n−1.

1.2. Previous work. Much of what is known about uniform convergence of the particle filter has
its origins in the work of Del Moral and Guionnet [7], who established a fundamental connection
with filter stability. The basic idea of this approach is as follows. The difference between the
approximate and exact filter can be written as a telescoping sum (setting for simplicity πN

0 = π0)

πN
n − πn =

n
∑

k=1

{Fn · · ·Fk+1F
N
k πN

k−1 − Fn · · ·Fk+1Fkπ
N
k−1}.

Suppose the the filter is geometrically stable in the following sense:

(1) ‖Fn · · ·Fk+1µ− Fn · · ·Fk+1ν‖ ≤ C βn−k ‖µ− ν‖,
where ‖ · ‖ is a suitable norm on probability measures and C <∞, β < 1 are constants. Then

‖πN
n − πn‖ ≤

n
∑

k=1

C βn−k ‖FN
k πN

k−1 − Fkπ
N
k−1‖ ≤ C ′

√
N
,

where we have used the fact that one time step of the approximate filtering algorithm FN
k introduces

an approximation error of order O(N−1/2) and that the sum over βn−k is uniformly bounded. Thus,

evidently, the filter is uniformly convergent at a rate O(N−1/2).
In order to establish the geometric stability property (1) of the filter, Del Moral and Guionnet

impose the mixing assumption ε ρ(A) ≤ P(Xk ∈ A|Xk−1) ≤ ε−1ρ(A) on the signal transition
probabilities (for some constant ε > 0 and probability measure ρ) which was originally considered in
the filter stability context by Atar and Zeitouni [1]. This is a very strong assumption, more stringent
even than uniform ergodicity [21, theorem 16.0.2] of the signal process, and is very difficult to satisfy
in practice particularly when the signal state space is not compact. Though various methods
have been proposed to extend the class of models to which the mixing assumption is applicable,
essentially all subsequent work on uniform convergence of the particle filter [18, 19, 24, 16, 23, 22]
has ultimately relied on a form of this strong assumption. Unfortunately, the necessary assumptions
are not satisfied in many (if not most) models encountered in applications, so that the practical
applicability of the results established to date remains rather limited.

In a sense this conclusion is rather surprising, considering that significant progress has been
made in recent years in the understanding of the filter stability problem (see [5] for an extensive
review of this topic). For example, Kleptsyna and Veretennikov [15] have recently established
geometric stability ‖Fn · · ·Fk+1µ − Fn · · ·Fk+1ν‖ ≤ C(µ, ν, Y[0,∞[)β

n−k for a particular class of
non-uniformly ergodic filtering models (see also [9, 10] for further variations of this approach),
while it has been shown that qualitative stability ‖Fn · · ·Fk+1µ−Fn · · ·Fk+1ν‖ → 0 as n→ ∞ a.s.
already holds under minimal ergodicity assumptions on the signal [29] or under no assumptions at
all on the signal if the observations are informative [28]. The difficulty in applying such results to
the uniform convergence problem is that the constants in (1) are independent of both the initial
measures µ, ν and the observation path Y[0,∞[, which is generally not the case when the signal is
not uniformly ergodic. Despite the considerable progress on the filter stability problem, the results
cited above provide little control over the dependence of the constant on the initial measures. This
presents a significant hurdle in applying these results to the uniform convergence problem.
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An entirely different approach for proving uniform convergence properties of particle filters was
developed by Budhiraja and Kushner [3] by exploiting certain ergodic properties of nonlinear filters.
Filter stability still plays an important role in establishing the ergodic theory, but only qualitative
stability results are needed, in contrast with the quantitative control over the convergence rate
and constants needed in the approach of Del Moral and Guionnet. Using the recent filter stability
results established in [29], the necessary ergodic properties can now be established under extremely
mild ergodic assumptions on the signal process. In this paper we revisit the approach of Budhiraja
and Kushner and provide a new set of assumptions for the uniform time average convergence of
bootstrap-type particle filters in the following sense (‖ · ‖BL is the dual bounded-Lipschitz norm):

lim
N→∞

sup
T≥0

E

[

1

T

T
∑

k=1

‖πN
k − πk‖BL

]

= 0.

It should be noted that the time average convergence is weaker than uniform convergence established
by Del Moral and Guionnet; moreover, this approach does not supply a rate of convergence. On
the other hand, we are able to demonstrate convergence for a class of non-uniformly ergodic signals
which are presently still out of reach of the more quantitative theory.

1.3. Organization of the paper. In section 2 we introduce the basic nonlinear filtering problem.
We then develop a general framework for uniform time average approximation of the nonlinear
filter. In section 3 we introduce the bootstrap Monte Carlo filtering algorithm and discuss its
basic properties. We show that the theory of section 2 can be applied to the bootstrap filter,
provided that a suitable tightness property can be established. In section 4 we develop two classes
of sufficient conditions for the requisite tightness property to hold. Both presume that the signal
is geometrically ergodic, but different regularity assumptions on the observations are required in
the two cases to complete the proof. Finally, appendix A recalls some basic facts about weak
convergence, while most proofs in the text are postponed to appendix B.

2. A General Approximation Theorem

The purpose of this section is to introduce the nonlinear filtering problem, and to establish a
general framework for its approximation uniformly in time average (not necessarily by a particle
filter). The approach of this section follows closely the ideas of Kushner and Huang [17] and of
Budhiraja and Kushner [3], but here we have significantly simplified the proofs, generalized the
notion of convergence and eliminated some technical assumptions. Our treatment is mostly self-
contained, but we have postponed the proofs to appendix B.

2.1. The hidden Markov model and nonlinear filter. Let (E,B(E)) and (F,B(F )) be Polish
spaces endowed with their Borel σ-fields, let P : E × B(E) → [0, 1] and Φ : E × B(F ) → [0, 1] be
given transition probability kernels, and let µ : B(E) → [0, 1] be a given probability measure. We
will work with random variables (Xk, Yk)k≥0, defined on an underlying probability space (Ω,F,P),
such that (Xn)n≥0 is a Markov chain with initial measure X0 ∼ µ and transition probability P , and
such that (Yn)n≥0 are conditionally independent given (Xn)n≥0 with P(Yn ∈ A|Xn) = Φ(Xn, A).
Such a model can always be constructed in a canonical fashion, and is called a hidden Markov model
with initial measure µ, transition kernel P and observation kernel Φ.

We will make the following nondegeneracy assumption on the observation kernel.

Assumption 1 (Nondegeneracy). There is a σ-finite measure ϕ : B(F ) → R and a strictly positive
measurable function Υ : E × F → ]0,∞[ such that

Φ(x,A) =

∫

A
Υ(x, y)ϕ(dy) for all x ∈ E, A ∈ B(F ).
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We now define the probability kernels πk− : F k × B(E) → [0, 1] and πk : F k+1 × B(E) → [0, 1]
by the following recursion: for all y0, . . . , yk ∈ F and A ∈ B(E), we have

πk−(y0...k−1, A) =

∫

P (x,A)πk−1(y0...k−1, dx), πk(y0...k, A) =

∫

A Υ(x, yk)πk−(y0...k−1, dx)
∫

Υ(x, yk)πk−(y0...k−1, dx)

with the initial condition π0−(A) = µ(A). Then it is well known that by the Bayes formula,

P(Xk ∈ A|Y0, . . . , Yk−1) = πk−(Y0...k−1, A), P(Xk ∈ A|Y0, . . . , Yk) = πk(Y0...k, A).

For notational convenience we will simply write πk−(A) = πk−(Y0...k−1, A) and πk(A) = πk(Y0...k, A).
The kernel πk is called the nonlinear filter and πk− is the one step predictor associated with the hid-
den Markov model (Xk, Yk)k≥0. Unfortunately, these infinite dimensional quantities are typically
not explicitly computable. We aim to obtain a computationally tractable approximation.

2.2. Markov and ergodic properties. In the following, we denote by P(E) the space of probabil-
ity measures on (E,B(E)) endowed with the topology of weak convergence of probability measures
and the associated Borel σ-field. We define on P(E) the probability distances

‖ν − ν ′‖BL = sup
f∈Lip(E)

∣

∣

∣

∣

∫

f dν −
∫

f dν ′
∣

∣

∣

∣

, ‖ν − ν ′‖TV = sup
‖f‖∞≤1

∣

∣

∣

∣

∫

f dν −
∫

f dν ′
∣

∣

∣

∣

,

where we have defined Lip(E) = {f : ‖f‖∞ ≤ 1, ‖f‖L ≤ 1} and ‖f‖L is the Lipschitz constant of
f . The dual bounded-Lipschitz distance ‖ · ‖BL metrizes the weak convergence topology on P(E),
while the total variation distance ‖ · ‖TV is strictly stronger.

Let us recall that any probability kernel ν : Ω × B(E) → [0, 1] can equivalently be viewed as a
P(E)-valued random variable on the measure space Ω (see, e.g., [14, lemma 1.40]). In particular,
we may consider the filter (πk)k≥0 to be a P(E)-valued stochastic process adapted to the filtration
FY

k = σ{Y0, . . . , Yk}. It is well known that this process possesses the Markov property, see, e.g.,
[26], and the associated ergodic theory will play a key role in the following.

Assumption 2 (Ergodicity). (Xk)k≥0 is positive Harris recurrent and aperiodic, i.e., there is a

(unique) P -invariant measure λ ∈ P(E) such that ‖νP k −λ‖TV → 0 as k → ∞ for every ν ∈ P(E).

When assumption 1 holds, we may define the update map U : F × P(E) → P(E) as

U(y, π)(A) =

∫

IA(x)Υ(x, y)π(dx)
∫

Υ(x, y)π(dx)
.

The following result collects the various properties of the filter that will be used below.

Proposition 2.1. Suppose that assumption 1 holds. Then the E × P(E)-valued stochastic process
(Xk, πk)k≥0 is Markov with transition kernel Π : E × P(E) × B(E × P(E)) → [0, 1],

∫

f(x′, π′)Π(x, π, dx′, dπ′) =

∫

f(x′,U(y, πP ))Υ(x′, y)ϕ(dy)P (x, dx′),

and initial measure M ∈ P(E × P(E)),
∫

f(x, π)M(dx, dπ) =

∫

f(x,U(y, µ))Υ(x, y)ϕ(dy)µ(dx).

Moreover, if assumption 2 holds, then Π possesses a unique invariant measure Λ ∈ P(E × P(E)).

The proof is given in appendix B.1. Let us remark that the Markov property is elementary, while
uniqueness of the invariant measure hinges on recent progress on the filter stability problem [29].
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2.3. A general approximation theorem. As the filter πk can not be computed exactly in prac-
tice, we aim to approximate it by a sequence of computationally tractable approximate filters πN

k

(N ∈ N), such that πN
k → πk as N → ∞. The goal of this section is to investigate what assumptions

should be imposed on the filter approximations so that they converge to the exact filter uniformly
in time average. We will subsequently apply this result to the setting where πN

k is a bootstrap type
Monte Carlo particle filter with N particles. However, the results of this section are general and
could be applied to other types of filter approximation also.

We have seen in the previous section that (πk)k≥0 is a P(E)-valued FY
k -adapted process, such

that (Xk, πk)k≥0 is Markov. We will consider approximate filters πN
k of a similar type, but we allow

them to be adapted to a slighly larger filtration. This is needed to account for the random sampling
step in Monte Carlo particle filters, which introduces additional randomness into the algorithm.

Assumption 3 (Approximation). For every N ∈ N, the process (πN
k )k≥0 satisfies the following.

(1) (πN
k )k≥0 is a P(E)-valued FY

k ∨ G-adapted process, where G is independent of (Xk, Yk)k≥0.

(2) (Xk, π
N
k )k≥0 is Markov with transition kernel ΠN and initial measure MN .

We obtain the following general approximation theorem.

Theorem 2.2. Suppose that assumptions 1–3 hold. Moreover, we make the following one step
convergence and tightness assumptions on the approximating sequence.

(1) For any bounded continuous F : E × P(E) → R and xN → x, νN ⇒ ν as N → ∞, we have
∫

F (x′, ν ′)ΠN (xN , νN , dx
′, dν ′)

N→∞−−−−→
∫

F (x′, ν ′)Π(x, ν, dx′, dν ′).

In addition, we have MN ⇒M as N → ∞.
(2) For any sequence TN ր ∞ as N → ∞,

the family of probability measures ΞN (A) = E

[

1

TN

TN
∑

k=1

πN
k (A)

]

, N ≥ 1 is tight.

Then the sequence (πN
k )k≥0 converges to (πk)k≥0 as N → ∞ uniformly in time average:

lim
N→∞

sup
T≥0

E

[

1

T

T
∑

k=1

‖πN
k − πk‖BL

]

= 0.

The proof of this theorem is given in appendix B.2.
Let us note that the uniform time average convergence guaranteed by the theorem allows us to

answer related convergence questions as well. For example, we can prove that the time average
mean square error of the estimates obtained from the approximate filter converges to the time
average mean square error of the estimates obtained from the exact filter, uniformly in time.

Corollary 2.3. Suppose that the assumptions of theorem 2.2 are satisfied. Then

lim
N→∞

sup
T≥0

E

[
∣

∣

∣

∣

∣

1

T

T
∑

k=1

(

f(Xk) −
∫

f dπN
k

)2

− 1

T

T
∑

k=1

(

f(Xk) −
∫

f dπk

)2
∣

∣

∣

∣

∣

]

= 0

for any bounded continuous function f .

The proof is given in appendix B.3.

Remark 2.4. The one step convergence assumption. The first condition of theorem 2.2 ensures that
the approximate filter converges to the exact filter on any finite time horizon (lemma B.3). This is
certainly a minimal requirement for convergence, and is typically easily verified in practice.
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Remark 2.5. The tightness assumption. The second condition of theorem 2.2 ensures, roughly
speaking, that the approximate filter does not lose mass to infinity after a long time (at least on
average with respect to time and the observations). This is certainly the case for the signal itself by
assumption 2, and this property is inherited by the exact filter by virtue of lemma A.2. Tightness
of the approximate filter is not automatic, however, and needs to be imposed separately. Though
this, too, is arguably a minimal assumption to ensure convergence of the approximate filters, the
tightness property appears to be much more difficult to demonstrate in practice. Indeed, this is
the main difficulty in applying theorem 2.2 to Monte Carlo particle filters.

An exception is the case where the signal state space E is compact; we state this as a lemma,
though the result is entirely obvious and requires no proof.

Lemma 2.6. If E is compact, then the second condition of theorem 2.2 is automatically satisfied.

In the compact setting, however, the generality of the ergodic assumption 2 is slightly misleading.
Indeed, note that the first condition of theorem 2.2 implies that the signal transition kernel P is
Feller. Therefore, under the mild assumption that the support of the signal invariant measure λ has
nonempty interior, compactness of the state space implies that the signal is even uniformly ergodic
[21, theorem 16.2.5 and theorem 6.2.9]. Moreover, if we assume that x 7→ Υ(x, y) is continuous
for every y (as we will do in order to prove the first condition of theorem 2.2), assumption 1 and
compactness of E implies that Υ(·, y) is bounded away from zero for every y. In this setting,
uniform convergence could be studied more directly using the techniques in [7].

When E is not compact, a sufficient condition for tightness is the following.

Lemma 2.7. If the family {EπN
k : k,N ≥ 1} is tight, the second condition of theorem 2.2 holds.

We omit the proof, which is straightforward.

3. The Bootstrap Particle Filter

The practical problem in implementing the exact filter is that the conditional distribution πk is
an infinite dimensional object. In applying the theory, one must therefore seek finite dimensional
approximations. The idea behind particle filters is to approximate the nonlinear filter by atomic
measures with a fixed number of particles N ∈ N, i.e., by measures in the space

PN (E) =

{

N
∑

i=1

wiδxi
: x1, . . . , xN ∈ E, w1, . . . , wN ≥ 0,

N
∑

i=1

wi = 1

}

⊂ P(E).

Note that the filtering recursion does not naturally leave the set PN (E) invariant; therefore, ap-
proximation is unavoidable. The bootstrap particle filter introduces an additional sampling step in
the filtering recursion to project the filter back into the set PN (E).

To be precise, define the sampling transition kernel RN : P(E) × B(P(E)) → [0, 1] as

∫

F (ν)RN (ρ, dν) =

∫

F

(

1

N

N
∑

i=1

δxi

)

ρ(dx1) · · · ρ(dxN ).

Then RN (ρ, ·) is the law of a P(E)-valued random variable ̺ that is generated as follows:

(1) Sample N i.i.d. random variables X1, . . . ,XN from ρ.
(2) Set ̺ = 1

N {δX1 + · · · + δXN }.
We now introduce the transition kernel for the bootstrap particle filter as

∫

f(x′, π′)ΠN (x, π, dx′, dπ′) =

∫

f(x′,U(y, π′))RN (πP, dπ′)Υ(x′, y)ϕ(dy)P (x, dx′),
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Algorithm 1: Bootstrap Filtering Algorithm

Sample i.i.d. xi
0, i = 1, . . . , N from the initial distribution µ;

Compute wi
0 = Υ(xi

0, Y0)/
∑N

ℓ=1 Υ(xℓ
0, Y0), i = 1, . . . , N ;

Set πN
0 =

∑N
i=1w

i
0δxi

0
;

for k=1,. . . ,n do

Sample i.i.d. x̃i
k−1, i = 1, . . . , N from the distribution πN

k−1;

Sample xi
k from P (x̃i

k−1, · ), i = 1, . . . , N ;

Compute wi
k = Υ(xi

k, Yk)/
∑N

ℓ=1 Υ(xℓ
k, Yk), i = 1, . . . , N ;

Set πN
k =

∑N
i=1 w

i
kδxi

k
;

end

and we define the initial measure for the bootstrap particle filter as
∫

f(x, π)MN (dx, dπ) =

∫

f(x,U(y, π))RN (µ, dπ)Υ(x, y)ϕ(dy)µ(dx).

Note, in particular, that by construction MN and ΠN (x, π, ·) are supported on E × PN (E) for any
x, π, so that the bootstrap particle filter is indeed finite dimensional in nature. Moreover, the law
of large numbers strongly suggests convergence to the exact filter as N → ∞ at least on finite time
intervals; we will make this precise below by verifying the first condition of theorem 2.2.

We have not yet introduced an explicit construction of the random variables (πN
k )k≥0 on the

probability space (Ω,F,P). However, as all our state spaces are Polish, it is a standard fact (e.g.,
along the lines of [14, proposition 8.6]) that the joint process (Xk, Yk, πk, π

N
k )k≥0 can be obtained

for any N ≥ 1 by a canonical construction, provided the probability space (Ω,F,P) carries a
countable family of i.i.d. Unif(0, 1)-random variables (ζk)k≥0 independent of (Xk, Yk)k≥0. The
random variables (ζk)k≥0 provide the additional randomness introduced by the sampling steps in
the bootstrap filtering algorithm, and the construction is such that πN

k is FY
k ∨ G-adapted with

G = σ{ζk : k ≥ 0}. As it will not be needed in what follows, the construction of (Xk, Yk, πk, π
N
k )k≥0

will be left implicit, but the details of the construction should be evident from the bootstrap filtering
algorithm 1 (which is clearly very straightforward to implement in practice).

Remark 3.1. A conceptually simpler naive particle filter could be constructed as follows. By the
Bayes formula, the exact filter at time k can be expressed as

πk(y0, . . . , yk, A) =
E(IA(Xk)Υ(Xk, yk) · · ·Υ(X0, y0))

E(Υ(Xk, yk) · · ·Υ(X0, y0))
.

Therefore, by the law of large numbers, we can approximate πk as follows:

πk(y0, . . . , yk, A) ≈
∑N

i=1 IA(Xi
k)Υ(Xi

k, yk) · · ·Υ(Xi
0, y0)

∑N
i=1 Υ(Xi

k, yk) · · ·Υ(Xi
0, y0)

,

where (Xi
0, . . . ,X

i
k), i = 1, . . . , N are i.i.d. samples from the law of (X0, . . . ,Xk). Indeed, by the

law of large numbers, this approximation is immediately seen to converge to the exact filter as
N → ∞. However, as can be seen in the numerical example in figure 1, the convergence is not
uniform in time, and in fact the performance is quite poor (see [8] for a theoretical perspective).

Our aim is to prove that the bootstrap particle filter converges uniformly in time average. We
will do this by verifying the conditions of theorem 2.2. Clearly assumption 3 holds by construction,
while assumptions 1 and 2 on the filtering model will be presumed from the outset. We now show
that the first condition of theorem 2.2 holds under a mild continuity assumption on the filtering
model. Tightness is a much more difficult problem, and will be tackled in the next section.
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Assumption 4 (Continuity). The following hold:

(1) P is Feller, i.e., x 7→ P (x, · ) is continuous;
(2) For every y ∈ F , the map x 7→ Υ(x, y) is continuous and bounded.

Proposition 3.2. Suppose that assumptions 1 and 4 hold. Then the first condition of theorem 2.2
holds true for the bootstrap particle filter. In particular, E(‖πN

k − πk‖BL) −−−−→
N→∞

0 for any k <∞.

The proof of this result is given in appendix B.4. From theorem 2.2, we immediately obtain:

Corollary 3.3. Suppose that assumptions 1, 2, and 4 hold, and that

the family of probability measures ΞN (A) = E

[

1

TN

TN
∑

k=1

πN
k (A)

]

, N ≥ 1 is tight

for any sequence TN ր ∞ as N → ∞. Then

lim
N→∞

sup
T≥0

E

[

1

T

T
∑

k=1

‖πN
k − πk‖BL

]

= 0

holds true for the bootstrap particle filter.

4. Sufficient Conditions for Tightness

By corollary 3.3, all that remains to prove in order to establish uniform time average consistency
of the boostrap particle filter is the tightness of particle system generated by the algorithm—i.e.,
we must rule out the possibility that the particle system loses mass to infinity after running for a
long time. It seems intuitively plausible that this can be proved under rather general conditions,
as both the signal and filter are already ergodic (see assumption 2 and [29]) and the sampling step
in the bootstrap algorithm does not change the center of mass of the filter.

Unfortunately, the tightness problem appears to be much more difficult than one might expect.
A rather ominous counterexample in a different setting [25] shows that, contrary to intuition,
arbitrarily small perturbations may cause a Markov chain to become transient (and hence lose
its tightness property) even when the unperturbed chain is geometrically ergodic. Though the
implications to the present setting are unclear, such examples suggest that the problem may be
delicate and that tightness can not be taken for granted. In this section, we will provide two sets of
general sufficient conditions under which tightness can be verified for the bootstrap particle filter.
Both sets of conditions require geometric ergodicity of the signal (which is stronger than assumption
2), and each imposes a different set of restrictions on the observation structure.

Remark 4.1. Assumptions 1, 2, and 4 are very mild and are satisfied by the majority of ergodic
filtering problems. In contrast, the sufficient conditions for tightness below are rather restrictive,
and in this sense our results are not entirely satisfactory—establishing tightness under minimal
ergodicity and observation assumptions remains an open problem. Nonetheless, the tightness prop-
erty is purely qualitative and thus appears to be significantly more tractable than the quantitative
controls required in other approaches to the uniform convergence problem (indeed, the general con-
ditions imposed below are still out of reach of other approaches). Another interesting possibility
is that tightness might be achieved by introducing suitable modifications to the bootstrap filtering
algorithm, e.g., by means of a periodic resampling scheme or using some form of regularization.

Let us briefly recall the relevant notion of geometric ergodicity. A function V : E → [1,∞[ is
said to possess compact level sets if the set {x ∈ E : V (x) ≤ r} is compact for every r ≥ 1. Given
such a function V , we define the V -total variation distance between µ, ν ∈ P(E) as

‖µ− ν‖V = sup
|f |≤V

∣

∣

∣

∣

∫

f dµ−
∫

f dν

∣

∣

∣

∣

=

∫

V d|µ− ν|.
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We will call the Markov chain (Xk)k≥0 geometrically ergodic if there is a function V : E → [1,∞[
with compact level sets, a P -invariant measure λ, and constants C <∞ and β < 1 such that

‖P k(x, ·) − λ‖V ≤ C V (x)βk for all x ∈ E.

Note that geometric ergodicity is strictly stronger than assumption 2. Geometric ergodicity is often
easily verified in terms of Lyapunov-type conditions on the transition kernel and is satisfied in many
practical applications; see the monograph [21] for an extensive development of this theory.

4.1. Case I: bounded observations. We will first consider the following assumptions.

Assumption 5 (Tightness: Case I). The following hold.

(1) The signal is geometrically ergodic (‖P k(x, ·)−λ‖V ≤ C V (x)βk, V has compact level sets).
(2) There exist strictly positive functions u+, u− : F → ]0,∞[ such that

u−(y) ≤ Υ(x, y) ≤ u+(y) for all x ∈ E,

∫

u+(y)2

u−(y)
ϕ(dy) <∞.

Assumption 5 is typically satisfied when the observations are of the additive noise type with a
bounded observation function. As an example, consider the observation model Yk = h(Xk) + ξk
on the observation state space F = R

d, where ξk are i.i.d. N(0,Σ)-random variables independent
of (Xk)k≥0 for some strictly positive covariance matrix Σ, and h : E → R

d is a continuous and
bounded observation function. Then we can set

ϕ(dy) =
1

(2π)d/2 |Σ|1/2
exp

(

−1

2
y∗Σ−1y

)

dy, Υ(x, y) = exp

(

y∗Σ−1h(x) − 1

2
h(x)∗Σ−1h(x)

)

,

and assumptions 1 and 4 are clearly satisfied for this observation model. Moreover, evidently

u−(y) = exp

(

−
[

‖y‖ +
1

2
‖h‖∞

]

‖Σ−1‖ ‖h‖∞
)

, u+(y) = exp
(

‖y‖ ‖Σ−1‖ ‖h‖∞
)

,

where ‖h‖∞ = supx∈E ‖h(x)‖, satisfy the requirement in assumption 5.

4.2. Case II: strongly unbounded observations. To satisfy assumption 5, the observation
function h will generally need to be bounded. Our second set of assumptions is essentially the
opposite scenario: we consider an observation model where h is strongly unbounded, i.e., converges
to infinity in every direction (the requirement below that ‖h‖ has compact level sets).

Assumption 6 (Tightness: Case II). Let F = R
d, and suppose that Yk = h(Xk)+σ(Xk) ξk where

ξk are i.i.d. random variables independent of (Xk)k≥0. We assume the following:

(1) The signal is geometrically ergodic (‖P k(x, ·)−λ‖V ≤ C V (x)βk, V has compact level sets).
(2) h : E → R

d, σ : E → R
d×d are continuous, ε‖v‖ ≤ ‖σ(x)v‖ ≤ ε−1‖v‖ ∀x, v for some ε > 0.

(3) The law of the observation noise ξk has a strictly positive, bounded and continuous density
qξ : R

d → ]0,∞[ with respect to the Lebesgue measure on R
d.

(4) There is a nonincreasing q : [0,∞[ → ]0,∞[, a norm | · | on R
d, and a1, a2 > 0 such that

a1 q(|z|) ≤ qξ(z) ≤ a2 q(|z|) for all z ∈ R
d.

(5) There are constants b1, b3 > 0, b2, b4 ∈ R, and p > 0 with E(‖ξk‖p) <∞, such that

b1‖h(x)‖p + b2 ≤ V (x) ≤ b3‖h(x)‖p + b4 for all x ∈ E.

Remark 4.2. Note that when assumption 6 is satisfied, we may always choose ϕ to be the Lebesgue
measure and Υ(x, y) = qξ(σ(x)−1{y−h(x)}), which is strictly positive and x 7→ Υ(x, y) is bounded
and continuous for every y. We therefore automatically satisfy assumption 1 and the observation
part of assumption 4. Moreover, geometric ergodicity implies that assumption 2 holds also. Finally,
note that as V is by definition presumed to have compact level sets, the assumption implies that
x 7→ ‖h(x)‖ has compact level sets also, i.e., h(x) is strongly unbounded.
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A typical example where assumption 6 is satisfied is the following. Let E = F = R
d, and consider

the observation model Yk = h(Xk) + ξk where ξk ∼ N(0,Σ) for some strictly positive covariance
matrix Σ, and h(x) = h0(x) + h1(x) where h0 is bi-Lipschitz (i.e., it is Lipschitz, invertible, and its
inverse is Lipschitz) and h1 is a bounded continuous function. Moreover, assume that the signal is
geometrically ergodic where V satisfies the growth condition b′1‖x‖p + b′2 ≤ V (x) ≤ b′3‖x‖p + b′4 for
some p, b′1, b

′
3 > 0. Let us verify the requirements of assumption 6 in this setting.

First, the law of ξk has a density qξ(z) = exp(−z∗Σ−1z/2)/(2π)d/2 |Σ|1/2 with respect to the
Lebesgue measure. Therefore qξ is bounded, continuous, and strictly positive, and we may evidently
set |z|2 = z∗Σ−1z (which defines a norm), q(v) = exp(−v2/2) (which is nonincreasing), and a1 =

a2 = (2π)−d/2|Σ|−1/2. Moreover, it is easily established that

l1‖x‖ − ‖h0(0)‖ − ‖h1‖∞ ≤ ‖h(x)‖ ≤ l2‖x‖ + ‖h0(0)‖ + ‖h1‖∞,
where we have used that l1‖x − z‖ ≤ ‖h0(x) − h0(z)‖ ≤ l2‖x − z‖ for some l1, l2 > 0 by the
bi-Lipschitz property of h0. We may therefore estimate

b′1
Cpl

p
2

‖h(x)‖p − b′1α
p

lp2
+ b′2 ≤ V (x) ≤ Cpb

′
3

lp1
‖h(x)‖p +

Cpb
′
3α

p

lp1
+ b′4,

where we have written (a+ b)p ≤ Cp(a
p + bp) for a, b ≥ 0 (one can choose Cp = max(1, 2p−1)) and

α = ‖h0(0)‖ + ‖h1‖∞. Finally, as any Gaussian has finite moments, E(‖ξk‖p) <∞.

4.3. Uniform time average consistency. We have now introduced two sets of assumptions on
the filtering model. Our main result states that either of these assumptions is sufficient for uniform
time average consistency of the bootstrap particle filter.

Theorem 4.3. Suppose that either assumptions 1, 4 and 5 hold, or that the signal transition kernel
P is Feller and that assumption 6 holds. In addition, suppose that µ(V ) < ∞. Then the tightness
assumption of corollary 3.3 holds, and in particular

lim
N→∞

sup
T≥0

E

[

1

T

T
∑

k=1

‖πN
k − πk‖BL

]

= 0

holds true for the bootstrap particle filter.

The proof is given in appendix B.5.

Appendix A. Some Basic Facts on Weak Convergence

The purpose of this appendix is to recall some basic facts on weak convergence of probability
measures and transition kernels that are particularly useful in the setting of this paper.

A.1. Weak convergence of kernels. We begin by showing that weak convergence of transition
probability kernels, in a sufficiently strong sense, can be iterated.

Lemma A.1. Let KN : E × B(E) → [0, 1], N ∈ N be a sequence of transition kernels on a Polish
space E, and let K be another such kernel. Then for every bounded continuous f : E → R

∫

f(z)KN (xN , dz)
N→∞−−−−→

∫

f(z)K(x, dz) whenever xN
N→∞−−−−→ x

if and only if for any j ≥ 1, we have νNK
j
N ⇒ νKj as N → ∞ whenever νN ⇒ ν.

Proof. The if part follows trivially by choosing νN = δxN
, ν = δx, and j = 1. To prove the only

if part, suppose we have established that the result holds for j ≤ k. Then it clearly holds also for
j ≤ k + 1. By induction, it therefore suffices to consider the case j = 1.

As νN ⇒ ν, we can construct using the Skorokhod representation theorem a sequence of random
variablesXN → X a.s. such thatXN ∼ νn, X ∼ ν. Let f be bounded and continuous, and note that



UNIFORM TIME AVERAGE CONSISTENCY OF MONTE CARLO PARTICLE FILTERS 12

νNKNf = E(KNf(XN )) and νKf = E(Kf(X)). But by our assumption KNf(XN ) → Kf(X)
a.s., so the claim follows immediately using dominated convergence. �

A.2. Tightness of random measures. As many of the stochastic processes in this paper are
measure-valued, we require a simple condition for tightness of a family of measure-valued random
variables. The following necessary and sufficient condition is quoted from [13, corollary 2.2]. As
usual, if ̺ is a P(E)-valued random variable, we denote by ρ = E̺ ∈ P(E) the probability measure
defined by ρ(A) = E(̺(A)) for all A ∈ B(E). Note that this is the barycenter of Law(̺) ∈ P(P(E)).

Lemma A.2. Let {̺i : i ∈ I} be a family of P(E)-valued random variables on (Ω,F,P). Then this
family is tight if and only if the family of probability measures {E̺i : i ∈ I} ⊂ P(E) is tight.

A.3. Tightness in product spaces. The following elementary lemma will be used repeatedly.

Lemma A.3. Let {Ξi : i ∈ I} be a family of probability measures on E× Ẽ, where E, Ẽ are Polish.

Then this family is tight iff its marginals {Ξi(· × Ẽ) : i ∈ I} and {Ξi(E × ·) : i ∈ I} are tight.

The proof is straightforward and follows along the lines of [27, lemma 1.4.3].

Appendix B. Proofs

This appendix contains the proofs that were omitted from the main text.

B.1. Proof of Proposition 2.1. Note that πk−1 is a function of Y0, . . . , Yk−1 only. Therefore

E(f(Xk, πk)|X0, . . . ,Xk, Y0, . . . , Yk−1) =

∫

f(Xk,U(y, πk−1P ))Υ(Xk, y)ϕ(dy),

where we have used the hidden Markov property and πk = U(Yk, πk−1P ). Using the Markov
property of (Xk)k≥0 and the tower property of the conditional expectation, we obtain

E(f(Xk, πk)|X0, . . . ,Xk−1, Y0, . . . , Yk−1) =

∫

f(x′,U(y, πk−1P ))Υ(x′, y)ϕ(dy)P (Xk−1, dx
′).

As σ{X0, . . . ,Xk−1, π0, . . . , πk−1) ⊂ σ{X0, . . . ,Xk−1, Y0, . . . , Yk−1}, the expression for Π follows
immediately. The expression for the initial measure M follows along similar lines.

Ergodic property: We begin by proving existence of the invariant measure. Consider a copy
(X̃k, Ỹk)k≥0 of the hidden Markov model started at the stationary distribution X̃0 ∼ λ. Using

stationarity, the process can be extended to negative times (X̃k, Ỹk)k∈Z also. Now consider the

measure-valued process (X̃k,P(X̃k ∈ ·|Ỹk, Ỹk−1, . . .)) (the regular conditional probability always
exists in a Polish state space). It is easily seen that this is a stationary Markov process with

transition kernel Π. Thus the law of (X̃0,P(X̃0 ∈ ·|Ỹ0, Ỹ−1, . . .)) is an invariant measure for Π.
It remains to establish uniqueness of the invariant measure. Endow the Polish space E × P(E)

with the Polish metric D((x, ν), (x′, ν ′)) = d(x, x′) + ‖ν − ν ′‖BL, where d is a Polish metric on E.
In lemma B.1 below, it is shown that assumption 2 implies that

∣

∣

∣

∣

∫

F (z, α)Π
j(x, ν, dz, dα) −

∫

F (z, α)Π
j(x, ν ′, dz, dα)

∣

∣

∣

∣

j→∞−−−→ 0

whenever F is D-Lipschitz. Let Λ and Λ′ be two Π-invariant measures. Then the marginals of Λ
and Λ′ on the signal state space are invariant measures for P . But assumption 2 implies that λ is
the unique invariant measure for the signal, so we must have Λ(A×P(E)) = Λ′(A×P(E)) = λ(A).
By the Polish assumption, we therefore have the disintegrations

Λ(A×B) =

∫

IA(x) IB(ν)Λx(dν)λ(dx), Λ′(A×B) =

∫

IA(x) IB(ν)Λ′
x(dν)λ(dx).
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It follows that
∣

∣

∣

∣

∫

F dΛ −
∫

F dΛ′

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Π
jF (x, ν)Λ(dx, dν) −

∫

Π
jF (x, ν)Λ′(dx, dν)

∣

∣

∣

∣

≤
∫

|ΠjF (x, ν) − Π
jF (x, ν ′)|Λx(dν)Λ′

x(dν ′)λ(dx)
j→∞−−−→ 0

whenever F is uniformly bounded and D-Lipschitz. But this class of functions is measure deter-
mining, so Λ and Λ′ must coincide. The proof is complete. �

Lemma B.1. Let D((x, ν), (x′, ν ′)) = d(x, x′)+‖ν−ν ′‖BL, where d is a Polish metric on E. Then
∣

∣

∣

∣

∫

F (z, α)Π
j(x, ν, dz, dα) −

∫

F (z, α)Π
j(x, ν ′, dz, dα)

∣

∣

∣

∣

j→∞−−−→ 0

whenever F is D-Lipschitz, provided assumptions 1 and 2 hold.

Proof. Consider a copy (X̂k, Ŷk)k≥0 of the hidden Markov model started at the initial measure

X̂0 ∼ P (x, ·), and define recursively π̂k = U(Ŷk, π̂k−1P ) and π̂′k = U(Ŷk, π̂
′
k−1P ), k ≥ 1 with

π̂0 = U(Ŷ0, νP ) and π̂′0 = U(Ŷ0, ν
′P ). Then for j ≥ 1, the measure Π

j(x, ν, dz, dα) coincides with

the law of (X̂j−1, π̂j−1), and similarly Π
j(x, ν ′, dz, dα) coincides with the law of (X̂j−1, π̂

′
j−1). Thus

∣

∣

∣

∣

∫

F (z, α)Π
j(x, ν, dz, dα) −

∫

F (z, α)Π
j(x, ν ′, dz, dα)

∣

∣

∣

∣

= |E(F (X̂j−1, π̂j−1) − F (X̂j−1, π̂
′
j−1))|

≤ ‖F‖L E(‖π̂j−1 − π̂′j−1‖BL) ≤ ‖F‖L E(‖π̂j−1 − π̂′j−1‖TV).

But assumptions 1 and 2 allow us to apply the filter stability result [29, corollary 5.5], which implies
that E(‖π̂j−1 − π̂′j−1‖TV) → 0 as j → ∞. This completes the proof. �

B.2. Proof of Theorem 2.2. The proof of theorem 2.2 proceeds in several steps. Throughout this
section (appendix B.2) we always presume that the assumptions of theorem 2.2 are in force.

We begin by proving that the convergence holds on every finite time horizon.

Lemma B.2. E({πN
k (f) − πk(f)}2)

N→∞−−−−→ 0 for any k <∞ and bounded continuous f : E → R.

Proof. As G is independent of (Xk, Yk)k≥0, we can write πk(f) = E(f(Xk)|FY
k ∨ G). Therefore

E({πN
k (f) − πk(f)}2) = E(πN

k (f)2 − 2 f(Xk)πN
k (f)) + E(πk(f)2),

where we have used assumption 3 and the tower property of the conditional expectation. Define
the bounded continuous function F : E × P(E) → R as F (x, ν) = ν(f)2 − 2 f(x) ν(f). By lemma
A.1 and the first condition of theorem 2.2, we have MNΠ

k
NF →MΠ

kF as N → ∞. Therefore

E(πN
k (f)2 − 2 f(Xk)π

N
k (f))

N→∞−−−−→ E(πk(f)2 − 2 f(Xk)πk(f)) = −E(πk(f)2).

Substituting in the above expression completes the proof. �

We now strengthen this lemma to prove ‖ · ‖BL-convergence.

Lemma B.3. E(‖πN
k − πk‖BL)

N→∞−−−−→ 0 for any k <∞.

Remark B.4. The quantity E(‖πN
k − πk‖BL) is well defined, as ‖πN

k − πk‖BL is measurable by [30,
corollary A.2]. We will therefore employ such expressions in the following without further comment.

Proof. Fix ε > 0. As Xk takes values in the Polish space E, there exists a compact subset K̃ ⊂ E
such that P(Xk ∈ K̃) > 1 − ε. Moreover, by the Arzelà-Ascoli theorem, there is an m < ∞ and
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f1, . . . , fm ∈ Lip(E) such that minℓ supx∈K̃ |f(x) − fℓ(x)| < ε whenever f ∈ Lip(E). Define the
open set K = {x ∈ E : d(x,K) < ε}. Then minℓ supx∈K |f(x) − fℓ(x)| < 3ε for any f ∈ Lip(E), so

E(‖πN
k − πk‖BL) ≤ E

(

sup
f∈Lip(E)

|πN
k (fIK) − πk(fIK)|

)

+ E

(

sup
f∈Lip(E)

|πN
k (fIKc) − πk(fIKc)|

)

≤ 6ε+ E
(

max
ℓ

|πN
k (fℓIK) − πk(fℓIK)|

)

+ E(πN
k (Kc)) + P(Xk ∈ Kc)

≤ 6ε+ E
(

max
ℓ

|πN
k (fℓ) − πk(fℓ)|

)

+ 2E(πN
k (Kc)) + 2P(Xk ∈ Kc)

≤ 6ε+

m
∑

ℓ=1

√

E({πN
k (fℓ) − πk(fℓ)}2) + 2E(πN

k (Kc)) + 2P(Xk ∈ Kc).

As Kc is closed and MNΠ
k
N ⇒MΠ

k by lemma A.1 and the first condition of theorem 2.2, applying
the Portmanteau theorem to the second term and lemma B.2 to the first term gives

lim sup
N→∞

E(‖πN
k − πk‖BL) ≤ 6ε+ 4P(Xk ∈ Kc) ≤ 6ε+ 4P(Xk ∈ K̃c) ≤ 10ε.

But ε > 0 was arbitrary, so the proof is complete. �

We have now established convergence of the filters as N → ∞ for a fixed time k. The idea is
now to repeat the proofs for the case where we let the number of particles and time go to infinity
simultaneously. We will repeat almost identically the steps used in the last two lemmas, where
the finite time weak convergence MNΠ

k
N ⇒ MΠ

k used in the proofs is replaced by the following
ergodic lemma (recall that Λ is the unique invariant measure of Π).

Lemma B.5. For any sequence TN ր ∞ as N → ∞, define the probability measures

∫

F (x, ν)ΛN (dx, dν) := E

[

1

TN

TN
∑

k=1

F (Xk, π
N
k )

]

,

for every N ∈ N. Then ΛN ⇒ Λ as N → ∞.

Proof. We first show that the family {ΛN : N ∈ N} is tight. It suffices to show that the marginals

are tight by lemma A.3. But the first marginal of ΛN is T−1
N

∑TN

k=1 µP
k, which converges to the

signal invariant measure λ by assumption 2. This establishes tightness of the first marginal. By
lemma A.2, tightness of the second marginal follows from the second condition of theorem 2.2.

Having established tightness, it remains to show that every convergent subsequence of {ΛN :
N ∈ N} converges to Λ. In fact, it suffices to show that the limit of every convergent subsequence
must be an invariant measure of Π, as the latter is unique by proposition 2.1.

Let ΛQ(N) be a weakly convergent subsequence of {ΛN : N ∈ N} and denote its limit as Λ̃. By

the first condition of theorem 2.2 and lemma A.1, we have ΛQ(N)ΠQ(N) ⇒ Λ̃Π. But note that

ΛQ(N)ΠQ(N) =
1

TQ(N)

TQ(N)
∑

k=1

MQ(N)Π
k+1
Q(N) = ΛQ(N) +

1

TQ(N)
{MQ(N)Π

TQ(N)+1

Q(N) −MQ(N)ΠQ(N)}.

We therefore have

‖Λ̃ − Λ̃Π‖BL = lim
N→∞

‖ΛQ(N) − ΛQ(N)ΠQ(N)‖BL ≤ lim sup
N→∞

2

TQ(N)
= 0,

so Λ̃ is an invariant measure for Π. �

We now repeat the arguments of lemmas B.2 and B.3 with the necessary modifications.
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Lemma B.6. For any sequence TN ր ∞ as N → ∞,

E

[

1

TN

TN
∑

k=1

{πN
k (f) − πk(f)}2

]

N→∞−−−−→ 0

for any bounded continuous function f : E → R.

Proof. As in the proof of lemma B.2, we can write

E

[

1

TN

TN
∑

k=1

{πN
k (f) − πk(f)}2

]

= E

[

1

TN

TN
∑

k=1

F (Xk, π
N
k )

]

+ E

[

1

TN

TN
∑

k=1

πk(f)2

]

,

where F (x, ν) = ν(f)2 − 2 f(x) ν(f). By lemma B.5

E

[

1

TN

TN
∑

k=1

F (Xk, π
N
k )

]

N→∞−−−−→ −E(E(f(X̃0)|Ỹ0, Ỹ−1, . . .)
2),

where we have used the expression for Λ in terms of the stationary copy (X̃k, Ỹk)k∈Z given in the
proof of proposition 2.1. The proof would evidently be complete if we can show that

lim sup
k→∞

E(πk(f)2) ≤ E(E(f(X̃0)|Ỹ0, Ỹ−1, . . .)
2).

To this end, we proceed as follows. First, note that

E(πk+ℓ(f)2) = E(E(f(Xk+ℓ)|Y0, . . . , Yk+ℓ)
2) ≤ E(E(f(Xk+ℓ)|X0, . . . ,Xℓ, Y0, . . . , Yk+ℓ)

2),

where we have used the tower property of the conditional expectation and Jensen’s inequality. But
by the Markov property of (Xk, Yk)k≥0, we can write

E(f(Xk+ℓ)|X0, . . . ,Xℓ, Y0, . . . , Yk+ℓ) = E(f(Xk+ℓ)|Xℓ, Yℓ, . . . , Yk+ℓ) := Gk(Xℓ, Yℓ, . . . , Yk+ℓ),

where the function Gk does not depend on ℓ. Using assumption 2, it follows easily that

lim sup
ℓ→∞

E(πℓ(f)2) = lim sup
ℓ→∞

E(πk+ℓ(f)2) ≤ E(Gk(X̃−k, Ỹ−k, . . . , Ỹ0)
2).

But Gk(X̃−k, Ỹ−k, . . . , Ỹ0) = E(f(X̃0)|Ỹ0, . . . , Ỹ−k, X̃−k), so by the Markov property of (X̃k, Ỹk)k≥0

lim sup
ℓ→∞

E(πℓ(f)2) ≤ E(Gk(X̃−k, Ỹ−k, . . . , Ỹ0)
2) = E(E(f(X̃0)|σ{Ỹℓ : ℓ ≤ 0} ∨ σ{X̃ℓ : ℓ ≤ −k})2)

for all k. Letting k → ∞ in this expression and using that
⋂

k≥0

σ{Ỹℓ : ℓ ≤ 0} ∨ σ{X̃ℓ : ℓ ≤ −k} = σ{Ỹℓ : ℓ ≤ 0} P-a.s.

by [29, theorem 4.2] (which holds by virtue of assumptions 1 and 2), the proof is complete. �

Lemma B.7. For any sequence TN ր ∞ as N → ∞,

E

[

1

TN

TN
∑

k=1

‖πN
k − πk‖BL

]

N→∞−−−−→ 0.

Proof. Fix ε > 0, and choose a compact subset K̃ ⊂ E such that λ(K̃) > 1 − ε. Construct
f1, . . . , fm ∈ Lip(E) and K as in the proof of lemma B.3. Then we can estimate

E

[

1

TN

TN
∑

k=1

‖πN
k − πk‖BL

]

≤ 6ε+

m
∑

ℓ=1

E

[

1

TN

TN
∑

k=1

{πN
k (fℓ) − πk(fℓ)}2

]1/2

+ 2E

[

1

TN

TN
∑

k=1

πN
k (Kc)

]

+
1

TN

TN
∑

k=1

2P(Xk ∈ Kc).
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Applying lemma B.6 to the first term, lemma B.5 and the Portmanteau theorem to the second
term, and assumption 2 to the third term, we find that

lim sup
N→∞

E

[

1

TN

TN
∑

k=1

‖πN
k − πk‖BL

]

≤ 6ε+ 4λ(Kc) ≤ 6ε+ 4λ(K̃c) ≤ 10ε.

But ε > 0 was arbitrary, so the proof is complete. �

We can now complete the proof of theorem 2.2.

Proof of Theorem 2.2. Suppose that

lim sup
N→∞

sup
T≥0

E

[

1

T

T
∑

k=1

‖πN
k − πk‖BL

]

= ε > 0.

Then we can find subsequences Q(N) ր ∞ and TQ(N) such that

E





1

TQ(N)

TQ(N)
∑

k=1

‖πQ(N)
k − πk‖BL



 >
ε

2
for all N.

Suppose first that TQ(N) ≤ Tmax is a bounded sequence. Then lemma B.3 gives

E





1

TQ(N)

TQ(N)
∑

k=1

‖πQ(N)
k − πk‖BL



 ≤ max
k≤Tmax

E(‖πQ(N)
k − πk‖BL)

N→∞−−−−→ 0,

so we have a contradiction. But if TQ(N) is an unbounded sequence, we can find a further subse-
quence R(N) ր ∞ such that TR(N) ր ∞, and by lemma B.7

E





1

TR(N)

TR(N)
∑

k=1

‖πR(N)
k − πk‖BL





N→∞−−−−→ 0

which is again a contradiction. The proof is complete. �

B.3. Proof of Corollary 2.3. Note that we can estimate

E

[
∣

∣

∣

∣

∣

1

T

T
∑

k=1

(

f(Xk) −
∫

f dπN
k

)2

− 1

T

T
∑

k=1

(

f(Xk) −
∫

f dπk

)2
∣

∣

∣

∣

∣

]

≤ 4 ‖f‖∞ E

[

1

T

T
∑

k=1

|πN
k (f) − πk(f)|

]

≤ 4 ‖f‖∞ E

[

1

T

T
∑

k=1

{πN
k (f) − πk(f)}2

]1/2

.

The result is now easily obtained by following the same steps as in the proof of theorem 2.2. �

B.4. Proof of Proposition 3.2. We begin by proving a general continuity result for RN .

Lemma B.8. RN (νN , ·) ⇒ δν as N → ∞ whenever νN ⇒ ν as N → ∞.

Proof. It follows immediately from the definition that the barycenter of RN (ρ, ·) is ρ for any ρ ∈
P(E). Therefore, by lemma A.2, the sequence {RN (νN , ·) : N ∈ N} is tight. It thus suffices to
prove that every convergent subsequence converges to δν . Let Q(N) be any subsequence such that
RQ(N)(νQ(N), ·) ⇒ R for some R ∈ P(P(E)). Note that for any probability measure ρ

∫

|ρ′(f) − ρ(f)|RN (ρ, dρ′) ≤
[
∫

{ρ′(f) − ρ(f)}2
RN (ρ, dρ′)

]
1
2

=

√

ρ(f2) − ρ(f)2

N
≤ ‖f‖2

∞√
N

.
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In particular, this shows that
∫

|ν ′(f) − ν(f)|R(dν ′) = lim
N→∞

∫

|ν ′(f) − ν(f)|RQ(N)(νQ(N), dν
′)

≤ lim
N→∞

∫

|ν ′(f) − νQ(N)(f)|RQ(N)(νQ(N), dν
′) + lim

N→∞
|νQ(N)(f) − ν(f)| = 0

for any bounded continuous function f : E → R. Thus we must have R = δν . �

We can now complete the proof.

Proof of Proposition 3.2. As Υ(·, y) is bounded and continuous (assumption 4), we have
∫

f(x)Υ(x, y) νn(dx) →
∫

f(x)Υ(x, y) ν(dx)

for every y whenever f : E → R is bounded and continuous and νn ⇒ ν. This implies that
U(y, νn) ⇒ U(y, ν) for every y, so in particular (x′, ν ′) 7→ F (x′,U(y, ν ′))Υ(x′, y) is bounded and
continuous for every y whenever F : E × P(E) → R is a bounded continuous function. Using the
Feller property of P and lemma B.8, it follows that whenever xN → x and νN ⇒ ν
∫

F (x′,U(y, ν ′))Υ(x′, y)RN (νNP, dν
′)P (xN , dx

′)
N→∞−−−−→

∫

F (x′,U(y, νP ))Υ(x′, y)P (x, dx′)

for every y and bounded continuous function F . But then we obtain by dominated convergence
∫

F (x′, ν ′)ΠN (xN , νN , dx
′, dν ′) =

∫

F (x′,U(y, ν ′))Υ(x′, y)RN (νNP, dν
′)P (xN , dx

′)ϕ(dy)

N→∞−−−−→
∫

F (x′,U(y, νP ))Υ(x′, y)P (x, dx′)ϕ(dy) =

∫

F (x′, ν ′)Π(x, ν, dx′, dν ′).

It remains to show that MN ⇒ M . This follows immediately, however, from lemma B.8, the fact
that π 7→ U(y, π) is continuous, and dominated convergence. The finite time convergence now
follows from lemma B.3 (which does not rely on assumption 2), and the proof is complete. �

B.5. Proof of Theorem 4.3. As both assumptions require geometric ergodicity, we fix throughout
the corresponding function V (which, by definition, is presumed to have compact level sets). To
complete the proof, it only remains to prove the tightness assumption of corollary 3.3. We will in
fact verify the simpler sufficient condition in lemma 2.7 through the following elementary result.

Lemma B.9. Suppose that supk,N EπN
k (V ) <∞. Then the tightness assumption holds.

Proof. The level sets Cr = {x ∈ E : V (x) ≤ r} are compact. But as

sup
k,N

EπN
k (Cc

r) = sup
k,N

EπN
k (V > r) ≤

supk,N EπN
k (V )

r

r→∞−−−→ 0,

evidently the family {EπN
k : k,N ≥ 1} is tight, and we may invoke lemma 2.7. �

In the following, it is convenient to introduce the measure-valued process

πN
k−(A) :=

∫

IA(x)Υ(x, Yk)
−1 πN

k (dx)
∫

Υ(x, Yk)−1 πN
k (dx)

,

so that πN
k = U(Yk, π

N
k−). Note that πN

k− is the bootstrap particle filter approximation to the one
step predictor πk− (in fact, our main results are easily adapted to establish uniform time average
convergence of πN

k− to πk−). The following result is the key tool that allows us to establish tightness.

The condition of this lemma—essentially, the requirement that the update step πN
k− 7→ πN

k does
not ‘expand’ too much—will be verified separately under the assumptions 5 and 6.
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Lemma B.10. Suppose the signal is geometrically ergodic and µ(V ) <∞. If there exist constants
c1, c2 ≥ 0 such that EπN

k (V ) ≤ c1 EπN
k−(V ) + c2 for all k, then supk,N EπN

k (V ) <∞.

Proof. Note that Eπk−(f) = µ(P kf) = EπN
0−(P kf) for all |f | ≤ V . Therefore

EπN
k−(f) − Eπk−(f) =

k
∑

ℓ=1

{EπN
ℓ−(P k−ℓf) − EπN

(ℓ−1)−(P k−ℓ+1f)}.

But note that EπN
ℓ−(f) = EπN

ℓ−1(Pf), as we may average over the last sampling step. Therefore

EπN
k−(f) − Eπk−(f) =

k
∑

ℓ=1

{EπN
ℓ−1(P

k−ℓ+1f) − EπN
(ℓ−1)−(P k−ℓ+1f)}.

As the signal is assumed geometrically ergodic, we have λ(V ) <∞ and

‖P k(x, · ) − λ‖V ≤ c3 V (x)βk for all x ∈ E, k ≥ 0,

for some constants c3 <∞, β < 1. In particular, we find that for any measures ν1, ν2

‖ν1P
k − ν2P

k‖V = sup
|f |≤V

|{ν1 − ν2}(P kf − λ(f))| ≤ c3 β
k |ν1 − ν2|(V ) = c3 β

k ‖ν1 − ν2‖V .

Therefore we can estimate

‖EπN
k−−Eπk−‖V ≤

k
∑

ℓ=1

‖EπN
ℓ−1P

k−ℓ+1−EπN
(ℓ−1)−P

k−ℓ+1‖V ≤
k
∑

ℓ=1

c3 β
k−ℓ+1 ‖EπN

ℓ−1 −EπN
(ℓ−1)−‖V .

In particular, we find that

EπN
k−(V ) ≤ Eπk−(V ) + ‖EπN

k− − Eπk−‖V ≤ µP k(V ) +

k
∑

ℓ=1

c3 β
k−ℓ+1 {EπN

ℓ−1(V ) + EπN
(ℓ−1)−(V )}.

By the assumption of the lemma we now obtain

EπN
k−(V ) ≤ µP k(V ) +

k
∑

ℓ=1

c3 β
k−ℓ+1 {(c1 + 1)EπN

(ℓ−1)−(V ) + c2}.

But µP k(V ) → λ(V ) as k → ∞, so c4 = supk µP
k(V ) + c2c3β/(1−β) <∞. By lemma B.11 below

EπN
k−(V ) ≤ c4 exp

(

k
∑

ℓ=1

(c1 + 1)c3 β
k−ℓ+1

)

≤ c4 exp

(

β(c1 + 1)c3
1 − β

)

.

But as EπN
k (V ) ≤ c1 EπN

k−(V ) + c2, the proof is evidently complete. �

In the previous proof, we needed the following.

Lemma B.11 (Discrete Grönwall). Suppose (A,αk, Bk), k ≥ 0 are nonnegative scalars such that

αk ≤ A+

k
∑

ℓ=1

Bℓ αℓ−1 for all k ≥ 0.

Then it must be the case that

αk ≤ A exp

(

k
∑

ℓ=1

Bℓ

)

for all k ≥ 0.
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Proof. As log(1 + x) ≤ x, it suffices to prove the first inequality in

αk ≤ A
k
∏

ℓ=1

(1 +Bℓ) = A exp

(

k
∑

ℓ=1

log(1 +Bℓ)

)

≤ A exp

(

k
∑

ℓ=1

Bℓ

)

.

We proceed by induction. Clearly the statement is true for k = 0. Now suppose we have verified
the statement for all ℓ < k. Then by assumption

αk ≤ A+A

k
∑

ℓ=1

Bℓ

ℓ−1
∏

r=1

(1 +Br) = A+A

k
∑

ℓ=1

{

(1 +Bℓ)

ℓ−1
∏

r=1

(1 +Br) −
ℓ−1
∏

r=1

(1 +Br)

}

.

But the rightmost expression is evidently a telescoping sum which reduces to

αk ≤ A+A

{

k
∏

r=1

(1 +Br) − 1

}

= A

k
∏

r=1

(1 +Br).

The proof is complete. �

It remains to show that EπN
k (V ) ≤ c1 EπN

k−(V ) + c2. Here we distinguish between the two
separate cases of assumptions 5 and 6. The results below complete the proof of theorem 4.3.

B.5.1. Case I. In the setting of assumption 5, the result is straightforward.

Lemma B.12. Suppose that assumptions 1 and 5 hold. Then EπN
k (V ) ≤ c1 EπN

k−(V ) + c2.

Proof. Note that

πN
k (V ) =

∫

V (x)Υ(x, Yk)πN
k−(dx)

∫

Υ(x, Yk)π
N
k−(dx)

≤ u+(Yk)

u−(Yk)

∫

V (x)πN
k−(dx).

We may therefore estimate

E(πN
k (V )|Y0, . . . , Yk−1) ≤ πN

k−(V )E

[

u+(Yk)

u−(Yk)

∣

∣

∣

∣

Y0, . . . , Yk−1

]

= πN
k−(V )

∫

u+(y)

u−(y)
Υ(x, y)ϕ(dy)πk−(dx) ≤ πN

k−(V )

∫

u+(y)2

u−(y)
ϕ(dy).

Taking the expectation of both sides completes the proof. �

B.5.2. Case II. In the setting of assumption 6 we will need the following result, whose proof we
recall for the reader’s convenience, to control the growth of the update step.

Lemma B.13 (Chebyshev’s covariance inequality). Let ψ, φ : R → R be nondecreasing functions
and let ν be any probability measure on (R,B(R)). Then

∫

ψ(x)φ(x) ν(dx) −
∫

ψ(x) ν(dx)

∫

φ(x) ν(dx) ≥ 0,

i.e., the covariance of ψ and φ is always nonnegative.

Proof. Note that
∫

ψ(x)φ(x) ν(dx) −
∫

ψ(x) ν(dx)

∫

φ(x) ν(dx) =
1

2

∫

{ψ(x) − ψ(x′)} {φ(x) − φ(x′)} ν(dx) ν(dx′).

But by our assumptions the integrand is nonnegative, and the result follows. �

We obtain the following result.

Lemma B.14. Suppose that assumption 6 holds and µ(V ) <∞. Then EπN
k (V ) ≤ c1 EπN

k−(V )+c2.
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Proof. We choose ϕ to be the Lebesgue measure and Υ(x, y) = qξ(σ(x)−1{y − h(x)}). Note that

a1 q(|σ(x)−1{y − h(x)}|) ≤ Υ(x, y) ≤ a2 q(|σ(x)−1{y − h(x)}|).
As all finite dimensional norms are equivalent, we have κ−1‖v‖ ≤ |v| ≤ κ‖v‖ for all v and some
κ > 0. Using (a+ b)p ≤ Cp(a

p + bp) where Cp = max(1, 2p−1), we can therefore estimate

‖h(x)‖p ≤ {‖Yk − h(x)‖ + ‖Yk‖}p

≤ {ε−1‖σ(x)−1{Yk − h(x)}‖ + ‖Yk‖}p

≤ Cpε
−pκp|σ(x)−1{Yk − h(x)}|p + Cp‖Yk‖p.

In particular, using that V (x) ≤ b3‖h(x)‖p + b4, we find

πN
k (V ) ≤ Cpκ

pa2b3
εpa1

∫

|σ(x)−1{Yk − h(x)}|p q(|σ(x)−1{Yk − h(x)}|)πN
k−(dx)

∫

q(|σ(x)−1{Yk − h(x)}|)πN
k−(dx)

+ Cpb3‖Yk‖p + b4.

But q is nonincreasing and v 7→ vp is nondecreasing, so by lemma B.13

πN
k (V ) ≤ Cpκ

pa2b3
εpa1

∫

|σ(x)−1{Yk − h(x)}|p πN
k−(dx) + Cpb3‖Yk‖p + b4.

Now note that

|σ(x)−1{Yk − h(x)}|p ≤ Cpε
−pκp‖Yk‖p + Cpε

−pκp‖h(x)‖p

≤ Cpε
−pκp‖Yk‖p + Cpε

−pκp{V (x) − b2}/b1.
Substituting in the above expression, we obtain

πN
k (V ) ≤

C2
pκ

2pa2b3

ε2pa1b1

∫

V (x)πN
k−(dx) + Cpb3

[

1 +
Cpκ

2pa2

ε2pa1

]

‖Yk‖p + b4 −
C2

pκ
2pa2b2b3

ε2pa1b1
.

Finally, note that

E(‖Yk‖p) ≤ Cp{E(‖h(Xk)‖p) + E(‖σ(Xk) ξk‖p)}
≤ Cp{E(V (Xk))/b1 − b2/b1 + ε−pE(‖ξk‖p)},

which is bounded uniformly in k by our assumptions. Therefore

EπN
k (V ) ≤

C2
pκ

2pa2b3

ε2pa1b1
EπN

k−(V ) + Cpb3

[

1 +
Cpκ

2pa2

ε2pa1

]

sup
k≥0

E(|Yk|p) + b4 −
C2

pκ
2pa2b2b3

ε2pa1b1
,

which completes the proof. �
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