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Abstract

Particle filters are Monte-Carlo methods that aim to approximate the op-
timal filter of a partially observed Markov chain. In this paper, we study the
case where the transition kernel of the Markov chain depends on unknown pa-
rameters: we construct a particle filter for the simultaneous estimation of the
parameter and the partially observed Markov chain (adaptive estimation) and
we prove the convergence of this filter to the correct optimal filter, as time and
the number of particles go to infinity. The filter presented here generalizes Del
Moral’s Monte-Carlo particle filter, presented in [5].
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1 Introduction

In stochastic filtering, the goal is to estimate the distribution of a stochastic process
at any time instant, given some partial information up to that time. This conditional
distribution is usually referred to as the optimal filter. The basic model consists of a
Markov chain X (also called the state variable) and possibly nonlinear observations
Y with observational noise V independent of the signal X. In this case, the optimal
filter is completely determined by the observations, the transition probability kernel,
the distribution of the noise, and the initial distribution.

The two most important problems in stochastic filtering are how to treat unknown
initial conditions or unknown parameters and how to compute the optimal filter. A
common approach for dealing with unknown parameters in the system is to treat them
as part of the state variable (see [13] for a historical perspective). In this case, the
Bayesian posterior distribution of the parameters is a marginal of the optimal filter.
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It turns out that under certain conditions on the transition kernels and the prior
distribution, the Bayesian estimator is asymptotically consistent and in addition, the
optimal filter of the augmented system, i.e. the one where the parameters are included
in the state variable, is asymptotically stable with respect to the initial conditions.
Thus, if we initialize the optimal filter with any prior distribution on the parameters,
this will eventually converge to the true optimal filter, as long as the prior distribution
satisfies some condition; namely, the mass put by the prior in the neighborhood of
the true value should not disappear “too quickly”. For a more detailed discussion
regarding the asymptotic stability of the optimal filter of the augmented system, see
[14].

In this paper, we discuss the problem of computing the optimal filter for the aug-
mented system. It is well known that with the exception of very few cases (for
example, linear Gaussian systems), an exact computation of the optimal filter is not
possible and we have to resort to numerical methods. One of the most efficient
schemes for the recursive computation of the optimal filter is the interacting particle
filter (or sequential Monte-Carlo method), first suggested in [9] and [10], indepen-
dently. The idea is to approximate the optimal filter by an empirical distribution of
particles that evolve in a way that imitates the evolution of the optimal filter. It has
been shown that as the number of particles grows, the empirical distribution on these
particles converges to the optimal filter, at every time instant (see, for example, [2],
[7] or [1]). Under suitable conditions, the uniform convergence of the particle filter
has also been shown (see [6]). However, the uniform convergence results assume some
ergodicity conditions on the transition kernel of the Markov chain, which will clearly
not hold for the augmented system. The only particle filter, to the best of the author’s
knowledge, that has been shown to converge uniformly and with no assumption on
the ergodicity of the transition kernel is the Monte-Carlo particle filter presented in
[5]. Unfortunately, this algorithm is not practical, since it requires the dense sampling
of the path space of the Markov chain.

In fact, in the case of adaptive estimation, the standard particle filters are not going
to converge to the true optimal filter: there is a positive probability that the particles
corresponding to the best estimate of the parameter will be lost and once they are
lost, they cannot be recovered. Several variations of the interacting particle filter
designed for the particular case of adaptive estimation have been proposed (see, for
example, [3], [8] or [16]). These algorithms try to avoid this degeneracy by combining
the particle filters with other methods of parameter estimation, or by introducing
some possibility for the ‘rebirth’ of a particle. Yet, there is no proof of convergence
for any of these filters. We study here a variation of the particle filter suggested in
[8] and prove its convergence, under suitable conditions.

As we mentioned above, most adaptive algorithms are based on the idea of treating
the estimation of the Markov chain and that of the parameter separately. We also
follow a two-layer approach: first, we use a particle filter for the computation of the
optimal filter for each fixed value of the parameter. Then, we use another particle
filter to compute the posterior distribution of the parameter given the observations,
for a given prior distribution on the parameter space. However, the computation of
the posterior distribution of the parameter also involves the previous layer of compu-
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tations, i.e. the optimal filters for fixed parameter values. Putting these together, we
end up computing the weighted average of the optimal filters as functions of the pa-
rameter, with respect to posterior distribution of the parameters (see also [8]). Note,
though, that in this case, pointwise convergence or convergence of pathwise average
approximation errors is not sufficient, since there is an additional error coming from
the inexact initialization of the parameter. We need particle filters that converge
uniformly with respect to time. Also note that while we can assume the ergodicity of
the transition kernel for the first layer of computations, this is not possible for the sec-
ond layer. These limitations led us into choosing an algorithm that is a combination
of the interacting particle filter (for the computation of the optimal filter for fixed
parameter value) and a variation of the Monte-Carlo particle filter described in [5]
(for the computation of the posterior distribution of the parameter). The computa-
tional inefficiency of the Monte-Carlo particle filter is not going to be of any concern
in this case, since it is applied to the particles corresponding to the parameters and
their paths are trivial (constant), since the parameters do not evolve. We prove that
this algorithm will converge uniformly, under certain stability conditions. When the
system is linear and Gaussian, we can actually take advantage of the existence of an
exact solution for fixed parameter values and construct a simpler particle filter that
is a combination of the Kalman-Bucy filter and the Monte-Carlo particle filter.

The structure of this paper is the following: we first describe the main assumptions
and some previous results we will be using, regarding the asymptotic stability of
the optimal filter. In section 3, we study the case where the system is linear and
Gaussian, but it depends on unknown parameters. We describe an algorithm that
is a combination of the Monte-Carlo particle filter and the Kalman-Bucy filter (or,
in fact, any method that gives an exact computation of the optimal filter for fixed
values of the parameter – if such a method exists). We show that this algorithm will
actually converge uniformly with respect to time.

In section 4, we describe the full algorithm, which is a combination of the inter-
acting and the Monte-Carlo particle filter – once again, any algorithm that converges
uniformly in time for fixed parameter values can replace the interacting particle filter.
Finally, in section 5, we show that such an algorithm will also converge uniformly with
respect to time.

2 Setting

Let E be a Polish space, i.e., a complete separable metric space and let us denote by
B(E) its Borel σ-field. We construct below a numerical scheme for the approximation
of the conditional distribution of a Markov chain {Xn} taking values in E, given some
noisy partial information, when the kernel depends on an unknown parameter θ. More
specifically, we want to approximate the optimal filter of the following system, which
we will refer to as:

System 1. Let {Xn} be a homogeneous Markov chain taking values in (E,B(E)).
Let µ be its initial distribution and Kθ its transition probability kernel depending on
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a parameter θ ∈ Θ. Furthermore, we assume that for each θ ∈ Θ, Kθ is Feller
and mixing, i.e. there exists a constant 0 < εθ ≤ 1 and a nonnegative measure
λθ ∈M+(E) (M+(E) being the set of finite nonnegative measures on E), such that

εθλθ(A) ≤ Kθ(x, A) ≤ 1

εθ

λθ(A), ∀x ∈ E and ∀A ∈ B(E). (1)

The observation process is defined by

Yn = h(Xn) + Vn,

where Vn are i.i.d. Gaussian(0,σ2) Rp-valued random variables independent of X
and h : E → Rp is a bounded continuous function. We denote by g the Gaussian
probability density function of the observational noise.

In practice, we usually take the parameter space Θ to be a compact subset of
Euclidean space. More generally, we assume that it is a compact Polish space, with
metric dΘ(·, ·).

Most problems are given in the form of System 1. Following a standard Bayesian
technique, we rewrite the system, so that the parameter becomes part of the Markov
chain, whose transition probability kernel is now completely known. Note, however,
that since we do not know the value of the parameter, we assign to it some prior
distribution u. The new system constructed in this way can be formally defined as
follows:

System 2. Suppose that {X̃n = (Xn, θn)} is an E × Θ-valued homogeneous Markov
chain, with transition probability

K̃((x′, θ′), dx⊗ dθ) = Kθ(x
′, dx)⊗ δθ′(dθ).

and initial distribution µ⊗ u, where Kθ is Feller and mixing in the sense of (1). The
observation process is defined by

Yn = h̃(X̃n) + Vn,

where h̃(x̃) = h(x) and x̃ = (x, θ).

System 2 can be thought of as a generalization of System 1 and will be the main
object of study in this paper: our goal is to construct a particle filter that converges
to the optimal filter of system 2 uniformly with respect to time.

The canonical space of the Markov chain X with kernel Kθ and initial distribution
µ is denoted by (Ω1 = EN, (F (X)

n )n≥0, Pµ,θ), where F (X)
n = σ(X0, X1, . . . , Xn) is the

σ-algebra constructed by the random variables X0, X1, . . . , Xn. Similarly, the obser-
vation process is defined on the canonical space (Ω2 = (Rp)N, (F (Y )

n )n≥0, Qµ,θ), where

F (Y )
n = σ(Y1, . . . , Yn). The law of the observation process Qµ,θ is given by

Qµ,θ(dyk1 , . . . , dykn) =

∫
E⊗n

n∏
i=1

g(yki
− h(xki

))Pµ,θ(dxk1 , . . . , dxkn)dyk1 . . . dykn ,
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for any n ≥ 0 and k1, . . . , kn ∈ R+, where E⊗n = E × · · · × E is the product
space of n copies of E. Then, we can define the pair process (X, Y ) on the space

(Ω = Ω1 × Ω2, (Fn = F (X)
n × F (Y )

n )n≥0, Pµ,θ), where the measure Pµ,θ is such that its
marginal distributions with respect to X and Y are Pµ,θ and Qµ,θ respectively. It is
not hard to show that this measure exists (see, for example, [5]). We will denote the
expectation with respect to Pµ,θ by Eµ,θ.

Similarly, we define the triplet (X, Y, θ) on the space (Ω̃ = Ω × Ω3, (F̃n = Fn ×
σ(θ))n≥0, P̃µ,u), where θ is a Θ-valued random variable defined on (Ω3, σ(θ), u) and
the marginals of P̃µ,u on (X, Y ) and θ respectively are

∫
Θ

Pµ,θu(dθ) and u. We will

denote the expectation with respect to P̃µ,u by Ẽµ,u.
Furthermore, we denote by Ψθ

n(µ) and Φn(µ ⊗ u) the optimal filters for Systems
1 and 2, with initial distributions µ and µ⊗ u, respectively, defined as the posterior
distribution of the state variable given the observations. The name “optimal filters” is
due to the fact that they are the best estimators adapted to the available information
(the σ-algebra constructed by the observations), with respect to the L2-norm. They
are random measures on the space E and E ×Θ respectively, defined as follows: for
every f ∈ Cb(E ×Θ),

Φn(µ⊗ u)(f) = Ẽµ,u[f(Xn, θ)|Yn, . . . , Y1] =

=

∫
Θ

∫
E⊗n f(xn, θ)

∏n
k=1 g(yk − h(xk))Pµ,θ(dx1, . . . dxn)u(dθ)∫

Θ

∫
E⊗n

∏n
k=1 g(yk − h(xk))Pµ,θ(dx1, . . . , dxn)u(dθ)

. (2)

Similarly, ∀f ′ ∈ Cb(E),

Ψθ
n(µ)(f ′) = Eµ,θ[f

′(Xn)|Yn, . . . , Y1] =

=

∫
E⊗n f ′(xn)

∏n
k=1 g(yk − h(xk))Pµ,θ(dx1, . . . , dxn)∫

E⊗n

∏n
k=1 g(yk − h(xk))Pµ,θ(dx1, . . . , dxn)

. (3)

Clearly, Ψα
n(µ) is the marginal of Φn(µ ⊗ δα) with respect to the state variable

X, since Φn(µ ⊗ δα)(f) = Ψα
n(µ)(fα), where we used the notation fα(x) = f(x, α).

Similarly, we define Ψu
n(µ) as the marginal of Φn(µ⊗ u) with respect to X, i.e.,

Ψu
n(µ)(dx) =

∫
Θ

Φn(µ⊗ u)(dx, dθ).

The mixing condition (1) implies the ergodicity of the signal. We denote by µθ the
limiting distribution of the Markov chain whose transition kernel is Kθ. The measure
µθ is uniquely defined in this way, as a result of the ergodic property of the signal.
This property is also transferred to the observation process: its limiting distribution
is uniquely defined by νθ = (µθ ◦ h−1) ∗ g.
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It has been shown that the optimal filters will be asymptotically stable with respect
to the initial conditions in the setting of system 2, under suitable conditions on the
prior distribution and the kernels (see [14]):

lim
n→∞

Eµ,α‖Ψu
n(µ′)−Ψα

n(µ)‖tv = 0.

In this paper, we will assume the slightly stronger result

lim
q→∞

sup
n≥q

Eµ,α‖Ψ̃u
n−q,n(µ′)−Ψu

n(µ)‖tv = 0, (4)

where Ψ̃u
n−q,n(µ′)(dx) =

∫
Θ

Ψθ
n(µ′)(dx)PΨθ

n−q(µ′),u(dθ|Yn, . . . , Yn−q+1). This definition

is consistent with the way we approximate the posterior distribution of the parameter
θ in (5) and (9). The proof of this is similar to the proof of asymptotic stability, once
we note that PΨθ

n−q(µ′),u(dθ|Yn, . . . , Yn−q+1) = Pµ′,u(dθ, Yn−q, . . . , Y1|Yn, . . . , Yn−q+1).

We construct below a particle filter that approximates Ψu
n(µ) uniformly with respect

to time. Then, it is an obvious corollary that the particle filter will converge to the
true one, as time n and the number of particles N go to infinity, i.e. (n, N) → (∞,∞).

3 Adaptive Estimation of Linear Gaussian Systems

We will first construct a particle filter for the adaptive estimation of a linear Gaussian
system, i.e. a system of the form{

Xn = F (θ)Xn−1 + c(θ) + G(θ)Wn

Yn = HXn + d + Vn
,

where for every θ ∈ Θ, the coefficients F (θ), c(θ), G(θ), H, and d are deterministic
and they belong to the Euclidean spaces Rp×p, Rp, Rp×p, Rq×p, Rq respectively. In
addition, both the state and the observation noises, Wn ∈ Rp and Vn ∈ Rq, are mean
zero i.i.d. Gaussian sequences, with covariance Cov(Wn) = Q and Cov(Vn) = Σ,
independent of each other and of the initial distribution L(X0) of X0. Moreover, we
assume that initial distribution of X0 is also Gaussian, with mean E(X0) = X̄0 and
covariance Q0.

Then, for fixed θ, the optimal filter of this system is the Kalman-Bucy filter which
can be computed exactly. However, once we enter the parameter in the system (as
in system 2), the linearity is lost and the Kalman-Bucy filter cannot be applied.
Below, we construct an algorithm which is a combination of the Kalman-Bucy filter
for the state variables and the Monte-Carlo particle filter for the parameters and we
show that this filter will converge uniformly with respect to time. In fact, both the
algorithm and the theorem are given in the more general formulation of system 1,
under the assumption that for each fixed value of the parameter θ, the optimal filter
can be computed exactly.
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3.1 The Algorithm

The following algorithm is based on the Monte-Carlo particle filter presented in [5],
where the role of the state variable is played by the optimal filters.

At time n=0 (Initialization):

The particle system consists of M independent particles {θj}j=1,...,M with common

law u. The weights W j,M
0,0 of the parameters are set to be equal to 1

M
, i.e. W j,M

0,0 = 1
M

.
Then, the particle filter is defined as

Ψu,M
0 (µ) :=

M∑
j=1

W j,M
0,0 Ψ

θj

0 (µ) =
1

M

M∑
j=1

µ = µ,

where µ is the initial distribution of the Markov chain (a Gaussian, in the case where
Ψθ

n is the Kalman-Bucy filter).

For n ≥ 0 (Evolution):

We compute the new weights W j,M
(n−q(M))+,n, for q a non-decreasing function such

that limM↑∞ q(M) = ∞, as follows:

W j,M
(n−q(M))+,n =

Z(n−q(M))+,n(Ψ̂θj(µ), Y )∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

, (5)

where Ψ̂θ
n(µ)(dx) := Pµ,θ(Xn ∈ dx|yn−1, . . . , y1) is the optimal one-step predictor for

fixed θ (the Kalman-Bucy predictor, in the case of the linear Gaussian system); for
each j = 1, . . . ,M

Z(n−q(M))+,n(Ψ̂θj(µ), Y ) :=
n∏

k=(n−q(M))++1

∫
E

(
√

(2π)σ)g(Yk − h(zk))Ψ̂
θj

k (µ)(dzk) (6)

and we used the notation a+ = max{a, 0} for all a ∈ R.
The particle filter is defined by

Ψu,M
n (µ) :=

M∑
j=1

W j,M
(n−q(M))+,nΨθj

n (µ). (7)

It is crucial for the convergence of the algorithm to consider a finite window of
information: even though the denominator is always positive, it converges to zero
very fast since it is a product of numbers less than one. Note here that multiplying
g with

√
2πσ in (6) only simplifies notation, since it cancels out in the computation

of the weights (5). Thus, considering a window of information of length q(M) allows
us to control the way this converges to zero (see also [5]).

In practice, things are even worse: numbers below some threshold are treated as
equal to zero in computer arithmetic and consequently, just a series of ‘unlikely’
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observations with respect to some θ can set the corresponding weight equal to zero.
This weight will of course stay zero for ever, so we are back to the problem of ‘losing’
particles. To remedy that, one can set the weights to be max{W j,M

(n−q(M))+,n, ε} for
some very small ε.

In order to account for the additional randomness in the choice of θ̄M = (θ1, . . . , θM),
we define a new probability space (Ω̃′ = Ω̃×ΩM

3 , (F̃ ′
n = F̃n×σ(θ1, . . . , θM))n≥0, P̃′µ,u =

P̃µ,u ⊗ uM) and the corresponding expectation will be denoted by Ẽ′µ,u. Similarly, we
define the probability space (Ω′ = Ω × ΩM

3 , (F ′
n = Fn × σ(θ1, . . . , θM))n≥0, P′µ,θ,u =

Pµ,θ ⊗ uM) and we denote by E′µ,θ,u the respective expectation.
The following theorem extends the main theorem in [5]:

Theorem 3.1. Suppose that (4) holds and that

supn Eµ,αh(Xn)2 < ∞ and

supn,θ Eµ,αEµ,θ(h(Xn)|Yn, . . . , Y1)
2 < ∞.

(This holds trivially in the case h is bounded, but we include this condition to also
cover linear Gaussian systems with unknown parameters). Then, there exists a non-
decreasing function q : N → N (for example, q(M) = 1

2

√
log(M)) for which the error

made by the particle filter Ψu,M
n (µ) given by (7) will converge to zero uniformly with

respect to time:

lim
M↑∞

sup
n≥0

E′µ,α,u|
M∑

j=1

W j,M
(n−q(M))+,nΨθj

n (µ)(f)−Ψu
n(µ)(f)| = 0. (8)

Proof. The theorem can be proved by following the arguments of the proof of uniform
convergence for the Monte-Carlo particle filter (see [5]).

4 The Full Algorithm

In [6], Del Moral and Guionnet show the uniform convergence of the interacting
particle filter, but under some strong ergodicity conditions that are not satisfied by
system 2. In [5], Del Moral proves the uniform convergence of the Monte Carlo
particle filter under weaker conditions. However, the Monte-Carlo particle filter is
not very efficient computationally; it is a weighted sum over independent paths and
thus, it requires a dense sampling of the path space.

We present below a combination of the interacting particle filter and the Monte-
Carlo particle filter: we use the interacting particle filter to compute the posterior
distribution of the first component of system 2, the Markov chain {Xn}, while we fix
the second component, the parameter. Since for each fixed value of the parameter
the kernels Kθ are mixing, we expect that the interacting particle filter will converge
uniformly to the marginal of the optimal filter with respect to the first component.

In order to compute the posterior distribution of the parameter, we use the Monte-
Carlo particle filter. Since the parameters do not evolve, their path space is trivial
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and its dimension is the dimension of the parameter space. Thus, in this case, the
two filters are computationally equivalent. On the other hand, it is crucial that we
relax the ergodicity assumptions on the transition kernel – in this case, the kernel
for the evolution of the parameter is δθ′(dθ) which is obviously not ergodic! We have
already seen in theorem 3.1 that the Monte-Carlo particle filter on the parameters
will converge uniformly with respect to time, given the posterior distribution of {Xn}.
We will show that this will also be the case for the combination of the two particle
filters: they will converge uniformly with respect to time.

Intuitively, the reasoning is the following. The interacting particle filter resamples
the particles. Thus, an unlikely observation can result in the loss of the ‘good particles’
on the parameters, i.e. the ones close to the correct value of the parameter. Instead,
the Monte-Carlo particle filter computes the weighted average. So, no particle is lost
and the weight depends on several past observations rather than just the last one.

Below, we give a detailed description of the algorithm (q: a non-decreasing function,
such that limN↑∞ q(N) = ∞).

At time n=0 (Initialization):

The particle system consists of M independent particles {θj}j=1,...,M with common
law u and N ∗M independent particles {ξ0

i (θj)}i=1,...,N ;j=1,...,M with common law µ.

The weights of the parameters are set to be equal, i.e. W j,M,N
0,0 = 1

M
. Then,

Ψu,M,N
0 (µ) :=

M∑
j=1

W j,M,N
0,0 Ψ

θj ,N
0 (µ) =

1

NM

N,M∑
i,j=1

δξ0
i (θj),

where Ψ
θj ,N
0 (µ) is the interacting particle filter at time n = 0, corresponding to

parameter value θj, i.e.

Ψ
θj ,N
0 (µ) =

1

N

N∑
i=1

δξ0
i (θj).

For n ≥ 0 (Evolution):

1. Each particle ξn
i (θj), i = 1, . . . , N evolves according to the kernel Kθj

, for
j = 1, . . . ,M , i.e.

ξ̂n
i (θj) ∼ Kθj

(ξn
i (θj), ·).

We set

Ψ̂θj ,N
n (µ) :=

1

N

N∑
i=1

δξ̂n
i (θj)

.

2. We compute the new weights W j,M,N
(n−q(M))+,n, as follows:

W j,M,N
(n−q(M))+,n =

Z(n−q(M))+,n(Ψ̂θj ,N(µ), Y )∑M
k=1 Z(n−q(M))+,n(Ψ̂θk,N(µ), Y )

, (9)
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where a+ = max{a, 0},∀a ∈ R and for each j = 1, . . . ,M ,

Z(n−q(M))+,n(Ψ̂θj ,N(µ), Y ) :=
n∏

k=(n−q(M))++1

∫
E

g(Yk − h(zk))Ψ̂
θj ,N
k (µ)(dzk) =

=
n∏

k=(n−q(M))++1

(
1

N

N∑
i=1

g(Yk − h(ξ̂k
i (θj)))). (10)

3. For each j = 1, . . . ,M , we resample the particles {ξ̂n
i (θj)}i=1,...,N according to

weights
g(Yn−h(ξ̂n

i (θj)))∑N
i=1 g(Yn−h(ξ̂n

i (θj)))
to get {ξn+1

i (θj)}i=1,...,N .

Then, the particle filter is defined by

Ψu,M,N
n (µ) :=

M∑
j=1

W j,M,N
(n−q(M))+,nΨθj ,N

n (µ), (11)

where Ψ
θj ,N
n (µ) is the interacting particle filter corresponding to parameter value θj,

i.e.

Ψθj ,N
n (µ) =

1

N

N∑
i=1

δξn
i (θj). (12)

Once again, we have to consider a new probability space that will also capture
the additional randomness in the evolution of the particle filters. We denote by
(Ωξ,F ξ

n, Pξ
µ,u) the canonical space for the particle system {(ξi,N

n (θj), θj)}i=1...,N,j=1,...,M,n>0,
which is assumed to be independent of the state-observation pair (X, Y ). Then, the
new probability space will be (Ω̂, (F̂n)n≥0, P̂µ,θ,u), where Ω̂ = Ω× Ωξ, F̂n = Fn × F ξ

n

and P̂µ,θ,u = Pµ,θ ⊗ Pξ
µ,u. Similarly, the expectation with respect to P̂µ,θ,u will be

denoted by Êµ,θ,u. To keep notation simpler, we will often drop the u when it is clear
what it is.

5 Uniform Convergence of the Full Algorithm

The following lemma describes the conditions for the uniform convergence of the
interacting particle filter. The proof can be found in [6] or [7]. We alter the statement,
though, to fit it in the setting of this paper.

Lemma 5.1. Suppose that ∀θ ∈ Θ, the following holds ∀f ∈ Cb(E):

lim
q→∞

sup
µ,µ′∈P(E)

sup
n≥q

|Ψθ
n−q,n(µ)(f)−Ψθ

n−q,n(µ′)(f)| = 0, (13)

where Ψθ
n−q,n(µ) = Pµ,θ(Xn|Yn, . . . , Yn−q+1). Then, ∀f ∈ Cb(E)

lim
N→∞

sup
n≥0

Êµ,α|Ψθ,N
n (µ)(f)−Ψθ

n(µ)(f)| = 0,
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where Ψθ,N
n is the interacting particle filter applied to system 1, for fixed parameter

value θ.
In fact, if for each θ ∈ Θ, system 1 is exponentially asymptotically stable, i.e.

∃γθ > 0 and q0,θ > 0 such that,

∀µ, µ′ ∈ P(E), ∀q ≥ q0,θ, sup
n≥q

|Ψθ
n−q,n(µ)(f)−Ψθ

n−q,n(µ′)(f)| ≤ e−γθq,

then ∃N0,θ > 0 such that ∀N ≥ N0,θ

sup
n≥0

Êµ,α|Ψθ,N
n (µ)(f)−Ψθ

n(µ)(f)| ≤ Cθe
γ′

N
aθ
2

,

where Cθ is some constant, γ′ = 1− log(2πσ2) and aθ = γθ

γθ+γ
> 0.

We will prove the following result, under the general assumption that the particle
filter approximating the optimal filter for fixed parameter value converges uniformly
with respect to time and parameter, with rate p(N). Such a particle filter could
be the interacting particle filter, under the appropriate conditions described above,
or some other particle filter (for example, the regularized particle filter described in
[12]), if, in addition, the parameter space is compact and the optimal filters uniformly
continuous with respect to the parameter.

Theorem 5.2. Suppose that (4) holds and, in addition, that the interacting particle
filter used to approximate the optimal filter for any fixed parameter value converges
uniformly with rate p(N), i.e. it satisfies

sup
n≥0

Êµ,α‖Ψθ,N
n (µ)−Ψθ

n(µ)‖tv ≤ p(N), ∀θ ∈ Θ, (14)

where p(N) is independent of θ and limN↑∞ p(N) = 0. Then, there exists a function
M = M(N) such that limN↑∞M(N) = ∞ and the following holds for all f ∈ Cb(E):

lim
N↑∞

sup
n≥0

Êµ,α|Ψu,M(N),N
n (µ)(f)−Ψu

n(µ)(f)| = 0. (15)

Proof. For simplicity of notation, we assume that p = 1, i.e. the observations take
values in R. We first show that ∀f ∈ Cb(E),

lim
N↑∞

sup
M>0

sup
n≥0

Êµ,α|Ψu,M,N
n (µ)(f)−

M∑
j=1

W j,M,N
(n−q(M))+,nΨθj

n (µ)(f)| = 0 (16)

We note that

Êµ,α|Ψu,M,N
n (µ)(f)−

∑M
j=1 W j,M,N

(n−q(M))+,nΨ
θj
n (µ)(f)| =

= Êµ,α|
∑M

j=1 W j,M,N
(n−q(M))+,nΨ

θj ,N
n (µ)(f)−

∑M
j=1 W j,M,N

(n−q(M))+,nΨ
θj
n (µ)(f)| ≤

≤ Êµ,α

∑M
j=1(W

j,M,N
(n−q(M))+,n|Ψ

θj ,N
n (µ)(f)−Ψ

θj
n (µ)(f)|) =

= supj Êµ,α|Ψ
θj ,N
n (µ)(f)−Ψ

θj
n (µ)(f)| ≤ ‖f‖∞p(N). (17)
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Thus, (16) follows from (14). Note that in order to simplify the notation, the
dependence of M = M(N) to N has been suppressed and will only be shown when
relevant. Next, we show that

lim
N↑∞

sup
n≥0

Êµ,α|
M∑

j=1

W j,M,N
(n−q(M))+,nΨθj

n (µ)(f)−
M∑

j=1

W j,M
(n−q(M))+,nΨθj

n (µ)(f)| = 0, (18)

where W j,M
(n−q(M))+,n is the likelihood function for parameter value θj, i.e.

W j,M
(n−q(M))+,n =

Z(n−q(M))+,n(Ψ̂θj(µ), Y )∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

= P̃µ,uM (θj|Yn, . . . , Y(n−q(M))++1),

where Z(n−q(M))+,n is defined in (10). Clearly,

Êµ,α|
∑M

j=1 W j,M,N
(n−q(M))+,nΨ

θj
n (µ)(f)−

∑M
j=1 W j,M

(n−q(M))+,nΨ
θj
n (µ)(f)| ≤

≤ Êµ,α

∑M
j=1(|W

j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n| · |Ψ
θj
n (µ)(f)|) ≤

≤ ‖f‖∞Êµ,α

∑M
j=1 |W

j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|.

Thus, it is sufficient to show that

lim
N↑∞

sup
n≥0

Êµ,α

M∑
j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n| = 0.

We follow the same approach as in [5], in order to bound the denominator away from
zero. We define the following quantities:

V q(M)
n (Y, θ) =

1

2σ2

n∑
k=(n−q(M))++1

Ēµ,θ[(Yk − h(Xk))
2] =

=
1

2σ2

n∑
k=(n−q(M))++1

[(Yk − Ēµ,θh(Xk))
2 + Ēµ,θ(h(Xk)− Ēµ,θh(Xk))

2],

where the expectation Ēµ,θ is with respect to measure Ψ̂θ(µ) = ⊗∞k=0Ψ̂
θ
k(µ). By the

boundedness of h we get that ∀θ ∈ Θ,

sup
n≥0

[(h(Xn)− Ēµ,θh(Xn))2] ≤ 4‖h‖2
∞ < ∞.

Then

Eµ,αV q(M)
n (Y, θ) ≤ 1

2σ2
q(M)[sup

k
Eµ,α(Vk + h(Xk)− Ēµ,θh(Xk))

2 + 4‖h‖2
∞] ≤

≤ 1

2σ2
q(M)(8‖h‖2

∞ + 4σ‖h‖∞ + σ2) = V (h)q(M) < +∞,
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where we used the notation V (h) = 8‖h‖2∞+4σ‖h‖∞+σ2

2σ2 . Now consider the set

ΩY (n, r, q(M)) = {ω ∈ Ω2 : sup
θ∈Θ

V q(M)
n (Y (ω), θ) ≤ r(q(M))},

for some non-decreasing function r : N → R+, to be identified later. Then

Pµ,α(Ω2 − ΩY (n, θ, q(M))) ≤ V (h)
q(M)

r(q(M))
,

(see [5]) and consequently

Êµ,α{
M∑

j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|(1ΩY (n,θ,q(M))+ 1Ω2−ΩY (n,θ,q(M)))} ≤

Êµ,α{
M∑

j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|1ΩY (n,θ,q(M))} +2V (h) q(M)
r(q(M))

.

The second term in the right hand side is going to vanish as M ↑ ∞, for any choice
of r, so that limq↑∞

q
r(q)

= 0. It remains to show that

lim
N↑∞

sup
n≥0

Êµ,α{
M∑

j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|1ΩY (n,θ,q(M))} = 0.

We define UM,N
n as

UM,N
n =

∑M
i=1 Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

.

Then, we observe the following:

Êµ,α {
M∑

j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|U
M,N
n 1ΩY (n,θ,q(M))} =

= Êµ,α {
∑M

j=1 |Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θi(µ), Y )UM,N
n |∑M

k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )
1ΩY (n,θ,q(M))} ≤

≤ Êµ,α {
∑M

j=1 |Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θi(µ), Y )|∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

1ΩY (n,θ,q(M))}+

+ Êµ,α{|1− UM,N
n |1ΩY (n,θ,q(M))} ≤

≤ 2Êµ,α {
∑M

j=1 |Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θi(µ), Y )|∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

1ΩY (n,θ,q(M))}.

Similarly

Êµ,α {
M∑

j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|(1− UM,N
n )1ΩY (n,θ,q(M))} =

≤ 2Êµ,α {
∑M

j=1 |Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θi(µ), Y )|∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y )

1ΩY (n,θ,q(M))}.



14

However, ∀ω ∈ ΩY (n, θ, q(M)) we see that

1
M

∑M
k=1 Z(n−q(M))+,n(Ψ̂θk(µ), Y (ω)) =

= 1
M

∑M
k=1 Ēθk

(exp{− 1
2σ2

∑n
j=(n−q(M))++1(Yj(ω)− h(Xj))

2}) ≥

≥ 1
M

∑M
k=1 exp[−V

q(M)
n (Y (ω), θk)] ≥ exp[− 1

M

∑M
k=1 V

q(M)
n (Y (ω), θk)] ≥ exp(−r(q(M)))

by applying Jensen’s inequality twice. Putting everything together, we get that

Êµ,α{
∑M

j=1 |W
j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n|1ΩY (n,θ,q(M))} ≤

4er(q(M))Êµ,α
1
M

∑M
j=1 |Z(n−q(M))+,n(Ψ̂θi,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θi(µ), Y )| ≤

≤ 4er(q(M)) supθ∈Θ Êµ,α|Z(n−q(M))+,n(Ψ̂θ,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θ(µ), Y )|. (19)

We set gj(x) = exp(− 1
2σ2 (Yj − h(x))2). Then

|Z(n−q(M))+,n(Ψ̂θ,N(µ), Y )− Z(n−q(M))+,n(Ψ̂θ(µ), Y )| =
= |

∏n
j=(n−q(M))++1 Ψ̂θ,N

n (µ)(gj)−
∏n

j=(n−q(M))++1 Ψ̂θ
n(µ)(gj)| ≤

≤
∑n

j=(n−q(M))++1 |Ψ̂θ,N
n (µ)(gj)− Ψ̂θ

n(µ)(gj)| ≤ q(M) supn>0 |Ψ̂θ,N
n (µ)(gj)− Ψ̂θ

n(µ)(gj)|,

which follows from the fact that ‖gj‖∞ ≤ 1, ∀j > 0. Consequently

sup
n≥0

Êµ,α

M∑
j=1

|W j,M,N
(n−q(M))+,n −W j,M

(n−q(M))+,n| ≤ 4er(q(M))q(M)p(N) + 2V (h)
q(M)

r(q(M))
.

(20)
The above estimate will converge to zero as N ↑ ∞, for the appropriate choice of

r = r(q), q = q(M) and M = M(N). For example, take r(q) = q2, q(M) =
√

1
2
log M

and M(N) = p(N)−1.
Finally, we have to show that

lim
M↑∞

sup
n≥0

Êµ,α|
M∑

j=1

W j,M
(n−q(M))+,nΨθj

n (µ)(f)−Ψu
n(µ)(f)| = 0. (21)

But this is exactly the result of theorem 3.1. Thus, the proof is complete.

One can also get an estimate for the rate of convergence of (15). However, this will
depend on the rate of convergence of (4). Let’s say that this is o(q), i.e.

sup
n≥q

Eµ,α‖Ψ̃u
n−q,n(µ′)−Ψu

n(µ)‖tv ≤ o(q),

where limq→∞ o(q) = 0. Then, one can actually work out the rate of convergence of
(8) by similar arguments to these in [5]:

supn≥0 E′µ,α,u|
∑M

j=1 W j,M
(n−q(M))+,nΨ

θj
n (µ)(f)−Ψu

n(µ)(f)| ≤

≤ 6‖f‖∞ er(q(M))
√

M
+ 2‖f‖∞V (h) q(M)

r(q(M))
+ ‖f‖∞o(q(M)).
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The above, together with (17) and (20) give us an estimate for the rate of convergence
of the full algorithm, i.e. (15).

We have described an algorithm for the adaptive computation of the optimal filter
of a partially observed Markov Chain whose transition kernel depends on an unknown
parameter θ. This can be also seen as a uniformly convergent particle filter for an
non ergodic system, where the interacting particle filters converge uniformly within
every ergodic class.
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