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Chapter 1

Introduction and Overview:
Mathematical Strategies for Filtering
Turbulent Systems

Filtering is the process of obtaining the best statistical estimate of a natural system from
partial observations of the true signal from nature. In many contemporary applications in
science and engineering, real time filtering of a turbulent signal from nature involving many
degrees of freedom is needed to make accurate predictions of the future state. This is obvi-
ously a problem with significant practical impact. Important contemporary examples involve
the real time filtering and prediction of weather and climate as well as the spread of hazardous
plumes or pollutants. Thus, an important emerging scientific issue is the real time filtering
through observations of noisy signals for turbulent nonlinear dynamical systems as well as
the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the
practical standpoint, the demand for operationally practical filtering methods escalates as
the model resolution is significantly increased. In the coupled atmosphere-ocean system, the
current practical models for prediction of both weather and climate involve general circula-
tion models where the physical equations for these extremely complex flows are discretized in
space and time and the effects of unresolved processes are parametrized according to various
recipes; the result of this process involves a model for the prediction of weather and climate
from partial observations of an extremely unstable, chaotic dynamical system with several
billion degrees of freedom. These problems typically have many spatio-temporal scales, rough
turbulent energy spectra in the solutions near the mesh scale, and a very large dimensional
state space yet real time predictions are needed.

Particle filtering of low-dimensional dynamical systems is an established discipline [14].
When the system is low dimensional or when it has a low dimensional attractor, Monte-
Carlo approaches such as the particle filter [25] with its various up-to-date resampling strate-
gies [35, 36, 119] provide better estimates in the presence of strong nonlinearity and highly
non-Gaussian distributions. However, with the above practical computational constraint in

11
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mind, these accurate nonlinear particle filtering strategies are not feasible since sampling
a high dimensional variable is computationally impossible for the foreseeable future. Re-
cent mathematical theory strongly supports this curse of dimensionality for particle filters
[15, 18]. Nevertheless some progress in developing particle filtering with small ensemble
size for non-Gaussian turbulent dynamical systems is discussed in Chapter 15. These ap-
proaches, including the new maximum entropy particle filter (MEPF) due to the authors,
all utilize judicious use of partial marginal distribution to avoid particle collapse. In the
second direction, Bayesian hierarchical modeling [17] and reduced order filtering strategies
[109, 56, 128, 8, 9, 25, 42, 43, 114, 70, 63] based on the Kalman filter [7, 27, 74] have been
developed with some success in these extremely complex high dimensional nonlinear systems.
There is an inherently difficult practical issue of small ensemble size in filtering statistical
solutions of these complex problems due to the large computational overload in generating
individual ensemble members through the forward dynamical operator [68]. Numerous en-
semble based Kalman filters [41, 19, 8, 126, 70] show promising results in addressing this issue
for synoptic scale midlatitude weather dynamics by imposing suitable spatial localization on
the covariance updates, however, all these methods are very sensitive to model resolution,
observation frequency, and the nature of the turbulent signals when a practical limited en-
semble size (typically less than 100) is used. They are also less skillful for more complex
phenomena like gravity waves coupled with condensational heating from clouds which are
important for the tropics and severe local weather.

Here is a list of fundamental new difficulties in the real-time filtering of turbulent signals
that need to be addressed as mentioned briefly above.

1.a) Turbulent Dynamical Systems to Generate the True Signal. The true signal
from nature arises from a turbulent nonlinear dynamical system with extremely complex
noisy spatio-temporal signals which have significant amplitude over many spatial scales.

1.b) Model Errors. A major difficulty in accurate filtering of noisy turbulent signals with
many degrees of freedom is model error; the fact that the true signal from nature is
processed for filtering and prediction through an imperfect model where by practical
necessity, important physical processes are parameterized due to inadequate numerical
resolution or incomplete physical understanding. The model errors of inadequate res-
olution often lead to rough turbulent energy spectra for the truth signal to be filtered
on the order of the mesh scale for the dynamical system model used for filtering.

1.c) Curse of Ensemble Size. For forward models for filtering, the state space dimen-
sion is typically large, of order 104 to 108, for these turbulent dynamical systems, so
generating an ensemble size with such direct approach of order 50 to 100 members is
typically all that is available for real-time filtering.

1.d) Sparse, Noisy, Spatio-Temporal Observations for only a Partial Subset of the
Variables. In systems with multiple spatio-temporal scales, the sparse observations
of the truth signal might automatically couple many spatial scales, as shown below



13

in Chapter 7 [65], while the observation of a partial subset of variables might mix
together temporal slow and fast components of the system [53, 54] as discussed in
Chapter 10. For example observations of pressure or temperature in the atmosphere
mix slow vortical and fast gravity waves processes.

This book is an introduction to filtering with an emphasis on the central new issues in 1.a),
b), c), d) for filtering turbulent dynamical systems through the “modus operandi” of the
modern applied mathematics paradigm [93] where rigorous mathematical theory, asymptotic
and qualitative models, and novel numerical algorithms are all blended together interactively
to give insight into central “cutting edge” practical science problems. In the last several
years, the authors have utilized the synergy of modern applied mathematics to address the
following

2.a) How to develop simple off-line mathematical test criteria as guidelines for filtering
extremely stiff multiple space-time scale problems that often arise in filtering turbulent
signals through plentiful and sparse observations? [100, 24, 57, 65]

2.b) For turbulent signals from nature with many scales, even with mesh refinement the
model has inaccuracies from parametrization, under-resolution, etc. Can judicious
model error help filtering and simultaneously overcome the curse of dimension? [24,
65, 64, 66]

2.c) Can new computational strategies based on stochastic parameterization algorithms be
developed to overcome the curse of dimension, to reduce model error and improve the
filtering as well as the prediction skill? [52, 51, 67]

2.d) Can exactly solvable models be developed to elucidate the central issues in 1.d) for
turbulent signals, to develop unambiguous insight into model errors, and to lead to
efficient new computational algorithms? [53, 54]

The main goals of this book are the following: first, to introduce the reader to filtering
from this viewpoint in an elementary fashion where no prior background on these topics is
assumed (Chapters 2, 3, 4 below); secondly, to describe in detail, the recent and ongoing
developments emphasizing the remarkable new mathematical and physical phenomena that
emerge from the modern applied mathematics modus operandi applied to filtering turbulent
dynamical systems. Next, in this introductory chapter, we provide an overview of turbulent
dynamical systems and basic filtering followed by an overview of the basic applied mathe-
matics motivation which leads to the new developments and viewpoint emphasized in this
book.
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1.1 Turbulent Dynamical Systems and Basic Filtering

The large dimensional turbulent dynamical systems which define the true signal from na-
ture to be filtered in the class of problems studied here have fundamentally different statistical
character than in more familiar low dimensional chaotic dynamical systems. The most well
known low dimensional chaotic dynamical system is Lorenz’s famous three equation model
[89] which is weakly mixing with one unstable direction on an attractor with high symmetry.
In contrast, realistic turbulent dynamical systems have a large phase space dimension, a large
dimensional unstable manifold on the attractor, and are strongly mixing with exponential
decay of correlations. The simplest prototype example of a turbulent dynamical system is
also due to Lorenz and is called the L-96 model [91, 92]. It is widely used as a test model for
algorithms for prediction, filtering, and low frequency climate response [96, 108]. The L-96
model is a discrete periodic model given by the following system

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F, j = 0, . . . , J − 1, (1.1)

with J = 40 and with F the forcing parameter. The model is designed to mimic baroclinic
turbulence in the midlatitude atmosphere with the effects of energy conserving nonlinear
advection and dissipation represented by the first two terms in (1.1). For sufficiently strong
forcing values such as F = 6, 8, 16, the L-96 is a prototype turbulent dynamical system which
exhibits features of weakly chaotic turbulence (F = 6), strong chaotic turbulence (F = 8),
and strong turbulence (F = 16) [96]. In order to quantify and compare the different types of
turbulent chaotic dynamics in the L-96 model as F is varied, it is convenient to rescale the
system to have unit energy for statistical fluctuations around the constant mean statistical
state, ū [96]; thus, the transformation uj = ū + E

1/2
p ũj, t = t̃E

−1/2
p is utilized where Ep is

the energy fluctuations [96]. After this normalization, the mean state becomes zero and the
energy fluctuations are unity for all values of F . The dynamical equation in terms of the new
variables, ũj, becomes

dũj

dt̃
= (ũj+1 − ũj−2)ũj−1 + E−1/2

p ((ũj+1 − ũj−2)ū− ũj) + E−1
p (F − ū). (1.2)

Table 1.1 lists in the non-dimensional coordinates, the leading Lyapunov exponent , λ1, the
dimension of the unstable manifold, N+, the sum of the positive Lyapunov exponents (the
KS entropy), and the correlation time, Tcorr, of any ũj variable with itself as F is varied
through F = 6, 8, 16. Note that λ1, N

+, and KS increase significantly as F increases while
Tcorr decreases in these non-dimensional units; furthermore, the weakly turbulent case with
F = 6 already has twelve dimensional unstable manifold in the forty dimensional phase space.
Snapshots of the time series for (1.1) with F = 6, 8, 16, as depicted in Fig. 1.1, qualitatively
confirm the above quantitative intuition with weakly turbulent patterns for F = 6, strongly
chaotic wave turbulence for F = 8, and fully developed wave turbulence for F = 16. It
is worth remarking here that smaller values of F around F = 4 exhibit the more familiar
low-dimensional weakly chaotic behavior associated with the transition to turbulence.
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Figure 1.1: Space-time of numerical solutions of L-96 model for weakly chaotic (F = 6),
strongly chaotic (F = 8), and fully turbulent (F = 16) regime.

Table 1.1: Dynamical properties of L-96 model for regimes with F = 6, 8, 16. λ1 denotes
the largest Lyapunov exponent, N+ denotes the dimension of the expanding subspace of the
attractor, KS denotes the Kolmogorov-Sinai entropy, and Tcorr denotes the decorrelation
time of energy-rescaled time correlation function.

F λ1 N+ KS Tcorr

Weakly chaotic 6 1.02 12 5.547 8.23
Strongly chaotic 8 1.74 13 10.94 6.704
Fully turbulent 16 3.945 16 27.94 5.594
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In regimes to realistically mimic properties of nature, virtually all atmosphere, ocean,
and climate models with sufficiently high resolution are turbulent dynamical systems with
features as described above. The simplest paradigm model of this type is the two-layer
quasigeostrophic (QG) model in doubly periodic geometry that is externally forced by a
mean vertical shear [121], which has baroclinic instability [120]; the properties of the turbulent
cascade have been extensively discussed in this setting, e.g., see [120] and citations in [121].
The governing equations for the two-layer QG model with a flat bottom, rigid lid and equal
depth layers H can be written as

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + k2
dU)

∂ψ1

∂x
+ ν∇8q1 = 0, (1.3)

∂q2
∂t

+ J(ψ2, q2)− U
∂q2
∂x

+ (β − k2
dU)

∂ψ2

∂x
+ κ∇2ψ2 + ν∇8q2 = 0, (1.4)

where subscript 1 denotes the top layer and 2 the bottom layer; ψ is the perturbed stream
function; J(ψ, q) = ψxqy − ψyqx is the jacobian term representing nonlinear advection; U
is the zonal mean shear; β is the meridional gradient of the Coriolis parameter; q is the
perturbed quasigeostropic potential vorticity, defined as follows

qi = βy +∇2ψi +
k2

d

2
(ψ3−i − ψi), i = 1, 2, (1.5)

where kd =
√

8/Ld is the wavenumber corresponding to the Rossby radius Ld; κ is the Ekman
bottom drag coefficient; ν is the hyperviscosity coefficient. Note that Eqns. (1.3)-(1.4) are
the prognostic equations for perturbations around a uniform shear with stream function
Ψ1 = −Uy,Ψ2 = Uy as the background state and the hyperviscosity term, ν∇8q, is added
to filter out the energy buildup on the smaller scales.

This is the simplest climate model for the poleward transport of heat in the atmosphere
or ocean and with a modest resolution of 128 × 128 × 2 grid points has a phase space of
more than 30,000 variables. Again for modeling the atmosphere and ocean, this model in
the appropriate parameter regimes is a strongly turbulent dynamical system with strong
cascades of energy [120, 121, 84]; it has been utilized recently as a test model for algorithms
for filtering sparsely observed turbulent signals in the atmosphere and ocean [67].

1.1.1 Basic Filtering

We assume that observations are made at uniform discrete times, m∆t, with m =
1, 2, 3, . . . For example in global weather prediction models, the observations are given as
inputs in the model every six hours and for large dimensional turbulent dynamical systems,
it is a challenge to implement continuous observations, practically. As depicted in Fig. 1.2,
filtering is a two-step process involving statistical prediction of a probability distribution for
the state variable u through a forward operator on the time interval between observations
followed by an analysis step at the next observation time which corrects this probability
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distribution on the basis of the statistical input of noisy observations of the system. In the
present applications, the forward operator is a large dimensional dynamical system perhaps
with noise written in the Ito sense as

du

dt
= F (u, t) + σ(u, t)Ẇ (t) (1.6)

for u ∈ RN , where σ is an N ×K noise matrix and Ẇ ∈ RK is K-dimensional white noise.
The Fokker-Planck equation for the probability density, p(u, t), associated with (1.6) is

pt = −∇u · (F (u, t)p) +
1

2
∇u · ∇u(Qp) ≡ LFPp (1.7)

pt|t=t0 = p0(u)

with Q(t) = σσT . For simplicity in exposition, here and throughout the remainder of the
book we assume M linear observations, ~vm ∈ RM of the true signal from nature given by

~vm = Gu(m∆t) + ~σo
m, m = 1, 2, . . . (1.8)

where G maps RN into RM while the observational noise. ~σo
m ∈ RM , is assumed to be a zero

mean Gaussian random variable with M ×M covariance matrix,

Ro = 〈~σo
m ⊗ (~σo

m)T 〉. (1.9)

Gaussian random variables are uniquely determined by their mean and covariance; here
and below, we utilize the standard notation N ( ~X,R) to denote a vector Gaussian random

variable with mean ~X and covariance matrix R. With these preliminaries, we describe the
two-step filtering algorithm with the dynamics in (1.6), (1.7) and the noisy observations in
(1.8), (1.9). Start at time step m∆t with a posterior probability distribution, pm,+(u), which
takes into account the observations in (1.8) at time m∆t. Calculate a prediction or forecast
probability distribution, pm+1,−(u), by using (1.7), in other words, let p be the solution of
the Fokker-Planck equation,

pt = LFPp, m∆t < t ≤ (m+ 1)∆t (1.10)

p|t=m∆t = pm,+(u).

Define pm+1,−(u), the prior probability distribution before taking observations at time m+ 1
into accounts, by

pm+1,−(u) ≡ p(u, (m+ 1)∆t) (1.11)

with p determined by the forward dynamics in (1.10). Next, the analysis step at time
(m+1)∆t which corrects this forecast and takes the observations into account is implemented
by using Bayes theorem

pm+1,+(u)p(vm+1) = pm+1(u|vm+1)p(vm+1) = pm+1(u, v) = pm+1(vm+1|u)pm+1,−(u). (1.12)
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um+1|m (prior)

um+1|m+1 (posterior)

2. Analysis (Correction)

Figure 1.2: Filtering: Two-steps predictor corrector method.

With Bayes formula in (1.12), we calculate the posterior distribution

pm+1,+(u) ≡ pm+1(u|vm+1) =
pm+1(vm+1|u)pm+1,−(u)

∫

pm+1(vm+1|u)pm+1,−(u)du
. (1.13)

The two steps described in (1.10), (1.11), (1.13), define the basic nonlinear filtering al-
gorithm which forms the theoretical basis for practical designing algorithms for filtering
turbulent dynamical systems [72, 14]. While this is conceptually clear, practical implemen-
tation of (1.10), (1.11), (1.13), directly in turbulent dynamical systems is impossible due to
large state space, N ≫ 1, as well as the fundamental difficulties elucidated in 1.a), b), c),
d) from the introduction.

The most important and famous example of filtering is the Kalman filter where the
analysis step in (1.6) is associated with linear dynamics which can be integrated between
observation time steps m∆t and (m+ 1)∆t to yield the forward operator

um+1 = Fum + f̄m+1 + σm+1. (1.14)

Here F is the N ×N system operator matrix and σm is the system noise assumed to be zero
mean and Gaussian with N ×N covariance matrix

R = 〈σm ⊗ σT
m〉, ∀m, (1.15)

while f̄m is a deterministic forcing. Next, we present the simplified Kalman filter equations for
the linear case. First assume the initial probability density p0(u) is Gaussian, i.e., p0(u) =
N (ū0, Ro) and assume by recursion that the posterior probability distribution, pm,+(u) =
N (ūm,+, Rm,+), is also Gaussian. By using the linear dynamics in (1.14), the forecast or
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prediction distribution at time (m+ 1)∆t is also Gaussian,

pm+1,−(u) = N (ūm+1,−, Rm+1,−)

ūm+1,− = F ūm,+ + f̄m+1 (1.16)

Rm+1,− = FRm,+F
T +R.

With the assumptions in (1.8), (1.9) and (1.14),(1.16), the analysis step in (1.13) becomes
an explicit regression procedure for Gaussian random variables [27, 7] so that the posterior
distribution, pm+1,+(u), is also Gaussian yielding the Kalman Filter,

pm+1,+(u) = N (ūm+1,+, Rm+1,+)

ūm+1,+ = (I −Km+1G)ūm+1,− +Km+1vm+1 (1.17)

Rm+1,+ = (I −Km+1G)Rm+1,−

Km+1 = Rm+1,−G
T (GRm+1,−G

T +Ro)−1.

The N × M matrix, Km+1, is the Kalman gain matrix. Note that the posterior mean
after processing the observations is a weighted sum of the forecast and analysis contribu-
tions through the Kalman gain matrix and also that the observations reduce the covariance,
Rm+1,+ ≤ Rm+1,−. In this Gaussian case with linear observations, the analysis step going
from (1.16) to (1.17) is a standard linear least squares regression. An excellent treatment of
this can be found in Chapter 3 of [74]. There is a huge literature on Kalman filtering; two
excellent basic texts are [27, 7] where more details and references can be found. Our inten-
tion in the introductory parts in this book in Chapters 2, 3 is not to repeat the well-known
material in (1.16), (1.17) in detail; instead we introduce this elementary material in a fashion
to set the stage for the mathematical guidelines developed in Part II (Chapters 5, 6, 7, 8)
and the applications to filtering turbulent nonlinear dynamical systems presented in Part III
(Chapters 9, 10, 11, 12, 13, 14, 15).

Naively, the reader might expect that everything is known about filtering linear systems;
however, when the linear system is high dimensional, i.e., N ≫ 1, the same issues elucidated
in 1.a), b), c), d) occur for linear systems in a more transparent fashion. This is the
viewpoint emphasized and developed in Part II of the book (Chapters 5, 6, 7, 8) which is
motivated next. For linear systems without model errors, the recursive Kalman filter is an
optimal estimator but the recursive nonlinear filter in (1.8)-(1.13) may not be an optimal
estimator for the nonlinear stochastic dynamical system without model error in (1.6).

1.2 Mathematical Guidelines for Filtering Turbulent

Dynamical Systems

How can useful mathematical guidelines be developed in order to elucidate and ameliorate
the central new issues in 1 from the introduction for turbulent dynamical systems? This is
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the topic of this section. Of course to be useful, such mathematical guidelines have to be
general yet still involve simplified models with analytical tractability. Such criteria have been
developed recently [100, 24, 65] through the modern applied mathematics paradigm and the
goal here is to outline this development and discuss some of the remarkable phenomena which
occur. The starting point for this developments for filtering turbulent dynamical systems in-
volves the symbiotic interaction of three different disciplines in applied mathematics/physics
as depicted in Fig. 1.3: stochastic modeling of turbulent signals, numerical analysis of PDE’s,
and classical filtering theory outlined in (1.14)-(1.17) of Section 2. Here is the motivation
from the three legs of the triangle.

Numerical Analysis

Classical Von-Neumann

stability analysis for 

frozen coefficient linear PDE's

Stiff ODE's

Modeling Turbulent Signals

Stochastic Langevin Models

Complex Nonlinear

Dynamical Systems

Filtering

Extended Kalman Filter

Classical Stability Criteria:

Observability

Controllability

Figure 1.3: Modern Applied Math Paradigm for filtering.

First, the simplest stochastic models for modeling turbulent fluctuations consist of re-
placing the nonlinear interaction at these modes by additional dissipation and white noise
forcing to mimic rapid energy transfer [120, 104, 106, 103, 37, 97]. Conceptually, we view
this stochastic model for a given turbulent (Fourier) mode as given by the linear Langevin
SDE or Ornstein-Uhlenbeck for the complex scalar

du(t) = λu(t)dt+ σdW (t), (1.18)

λ = −γ + iω, γ > 0,

with W (t), complex Wiener process, and σ its noise strength. Of course, the amplitude
and strength of these coefficients, γ, σ vary widely for different Fourier modes and depend
empirically on the nonlinear nature of the turbulent cascade, the energy spectrum, etc.
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These simplest turbulence models are developed in detail in Chapter 5 and an important
extension with intermittent instability at large scales is developed in Chapter 8. Quantitative
illustration of this modelling process for the L-96 model in (1.1) in a variety of regimes and
the two-layer model in (1.3)-(1.4) are developed in Part III in Chapters 12 and 13, together
with cheap stochastic filters with judicious model errors based on these linear stochastic
models.

Secondly, the most successful mathematical guideline for numerical methods for deter-
ministic nonlinear systems of PDE’s is von Neumann stability analysis [118]: The nonlinear
problem is linearized at a constant background state, Fourier analysis is utilized for this
constant coefficient PDE, and resulting in discrete approximations for a complex scalar test
model for each Fourier mode,

du(t)

dt
= λu(t), λ = −γ + iω, γ > 0. (1.19)

All the classical mathematical phenomena such as for example, the CFL stability condition
on the time step ∆t and spatial mesh h, |c|∆t/h < 1 for various explicit schemes for the
advection equation ut + cux = −du, occur because, at high spatial wave numbers, the scalar
test problem in (1.19) is a stiff ODE, i.e.,

|λ| ≫ 1. (1.20)

For completeness, Chapter 4 provides a brief introduction to this analysis.

The third leg of the triangle involves classical linear Kalman filtering as outlined in (1.14)-
(1.17). In conventional mathematical theory for filtering linear systems, one checks algebraic
observability and controllability conditions [27, 7] and is automatically guaranteed asymptotic
stability for the filter; this theory applies for a fixed state dimension and is a very useful
mathematical guideline for linear systems that are not stiff in low dimensional state space.
Grote and Majda [57] developed striking examples involving unstable differencing of the
stochastic heat equation where the state space dimension, N = 42 with ten unstable modes
where the classical observability [28] and controllability conditions were satisfied yet the filter
covariance matrix had condition number 1013 so there is no practical filtering skill! This
suggested that there were new phenomena in filtering turbulent signals from linear stochastic
systems which are suitably stiff with multiple spatio-temporal scales.

Chapter 2 both provides an elementary self-contained introduction to filtering the complex
scalar test problem in (1.18) and in Section 2.3 describes the new phenomena that can occur
in stiff regimes with model error as a prototype for the developments in Part II. In Chapters
6 and 7, the analogue of von Neumann stability analysis for filtering turbulent dynamical
systems is developed. The new phenomena that occur and the robust mathematical guidelines
that emerge are studied for plentiful observations, where the number of observations equals
the number of mesh points in Chapter 6, and for the practically important and suitable case
of sparse regular observations in Chapter 7.
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Clearly, successful guidelines for filtering turbulent dynamical systems need to depend on
many interacting features for these turbulent signals with complex multiple spatio-temporal
structure:

3.a) The specific underlying dynamics.

3.b) The energy spectrum at spatial mesh scales of the observed system and the system
noise, i.e. decorrelation time, on these scales.

3.c) The number of observations and the strength of the observational noise.

3.d) The time scale between observations relative to 3.a), b).

Example of what are two typical practical computational issues for the filtering in the above
context to avoid the “curse of ensemble size” from (1.1) are the following:

4.a) When is it possible to use for filtering the standard explicit scheme solver of the original
dynamic equations by violating the CFL stability condition with a large time step equal
(proportional) to the observation time to increase ensemble size yet retain statistical
accuracy?

4.b) When is it possible to use for filtering a standard implicit scheme solver for the original
dynamic equations by using a large time step equal to the observation time to increase
ensemble size yet retain statistical accuracy?

Clearly resolving the practical issues in 4 involves the understanding of 3 in a given context
and this is emphasized in Part II of the book. In particular, the role of model error in filtering
stochastic systems with intermittent large scale instability is emphasized in Chapter 8 and
Chapter 13.

1.3 Filtering Turbulent Dynamical Systems

Part III of the book (Chapters 9, 10, 11, 12, 13) is devoted to contemporary strategies
for filtering turbulent dynamical systems as described earlier in Section 1.1 and coping with
the difficult issues in 1 mentioned earlier. In Chapter 9, contemporary strategies for filtering
nonlinear dynamical systems with a perfect model are surveyed and their relative skill and
merits are discussed for the three mode, Lorenz 63 model. The application of the finite
ensemble filters from Chapter 9 to high dimensional turbulent dynamical system such as the
L-96 model and the two-layer QG model are described in Chapter 11.

Given all the complexity in filtering turbulent signals described in 1, an important topic
is to develop nonlinear models with exactly solvable nonlinear statistics which provide un-
ambiguous benchmarks for these various issues in 1 for more general turbulent dynamical
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systems. Of course, it is a challenge for applied mathematicians to develop such types of
test models which are simple enough for tractable mathematical analysis yet capture key
features of complex physical processes which they try to mimic. Once such exactly solvable
test models have been developed, all of the issues regarding model error in 1.b) as well as
new nonlinear algorithms for filtering can be studied in an unambiguous fashion. Many im-
portant problems in science and engineering have turbulent signals with multiple time scales,
i.e., slow-fast systems. The development of such a test model for prototype slow-fast systems
is the topic in Chapter 10.

With the mathematical guidelines for filtering turbulent dynamical systems based on
linear stochastic models with multiple spatio-temporal scales as discussed in Part II, we
discuss the real-time filtering of nonlinear turbulent dynamical systems by such an approach
in Chapter 12. The mathematical guidelines and phenomena in Part II suggest the possibility
that there might be cheap skillful alternative filter algorithms which can cope with the issues
in 1.c),d) where suitable linear stochastic models with judicious model error are utilized to
filter true signals from nonlinear turbulent dynamical systems like the two models discussed in
Section 1.1 above. We discuss this radical approach to filtering turbulent signals in Chapter
12. In Chapter 13, we show how exactly solvable test models can be utilized to develop
new algorithms for filtering turbulent signals which correct the model errors for the linear
stochastic models developed in Chapter 12 by updating the damping and forcing “on the fly”
through a stochastic parameterized extended Kalman filter (SPEKF) algorithm [52, 51, 67].
Chapter 14 is devoted to the development and filtering of exactly solvable test models for
turbulent diffusion. In particular, we emphasize the recovery of detailed turbulent statistics
including energy spectrum and non-Gaussian probability distributions from sparse space time
observations through generalization of the specific nonlinear extended Kalman filter (NEKF)
which we introduced earlier in Chapter 10. Finally, in Chapter 15, we describe the search for
efficient skillful particle filters for high dimensional turbulent dynamical systems; this requires
successful particle filtering with small ensemble sizes in non-Gaussian statistical settings. In
this context, trying to filter the L-63 model with temporally sparse partial observations with
small noise with only 3 to 10 particles is a challenging toy problem. We introduce a new
maximum entropy particle filter (MEPF) with exceptional skill on this toy model and discuss
the strengths and limitations of current particles filters with small ensemble size for the L-96
model.
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3D-Var: Three-Dimensional Variational Ap-
proach, 162

additive model, 274
adjoint linear model, 161
advection-diffusion equation, 79
aliasing, 63
aliasing set, 116
analysis, 26
asymptotic filter covariance, 33
asymptotic Kalman gain, 33

background state, see prior state
Bayesian, 15, 26, 27

CFL condition, 71
climatological

mean state, 30
variance, 30

combined model, 273
complex conjugate, 77
complex Gaussian noise, 26, 29
Continuous time Markov process, 138
controllable, 30, 43, 45
correction, see analysis
correlation time, see decorrelation time

damping, 75, 77
determinant, 45
difference scheme, 36

symmetric, 70
algebraic condition, 69
backward, 71
backward Euler, 36
consistency, 69, 71
convergence, 69
forward Euler, 36

stability, 69
trapezoidal, 36
upwind, 71

differential and difference operators, 66
dispersion relation, 76
dissipative, see damping
dynamic range, 359

EAKF: Ensemble Adjustment Kalman Filter,
167

earth angular speed of rotation, 83
EKF: Extended Kalman Filter, 160
Ekman friction, 77
energy spectrum, 77
EnKF: Ensemble Kalman Filter, 162
EnSRF: Ensemble Square-Root Filter, 165
ETKF: Ensemble Transform Kalman Filter,

165
expansion theory

continuous, 62
discrete, 63

expectation, 26
exponential distribution, 140
extreme event, 79

FDKF: Fourier Domain Kalman Filter, 122
filter divergence, 51
filter stability, 30, 43
Fokker-Planck equation, 15, 357
forecast, 26
Froude number, 77
full rank matrix, 45
function

periodic, 61
trigonometric, 61
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GLS-SRF: Generalized Least Square- Square
Root Filter, 165

gravity absorption, 77
gravity waves, 79

incompressible, 314
information criteria, 37
Initial Value Problem, 67
Ito isometry, 276

Jacobian matrix, 170

Kalman filter, 26
formula, 28

Kalman gain, 28, 42
Kolmogorov spectrum, 78

L-63: Lorenz 63 model, 169
Langevin equation, 18
Laplacian, 67
Lax Equivalence Theorem, 69
LEKF: Local Ensemble Kalman Filter, 165
linear stochastic model, 249
Liouville equation, 357
Lorenz 96 model, 12, 248
Lyapunov exponent, 12, 170

Markov property, 138
maximum entropy principle, 358
mean model error, 34
mean radius of the earth, 83
Mean Stochastic Model 1, 250
MEPF: Maximum Entropy Particle Filter, 356
midlatitude β-plane approximation, 83
model error, 34
model error covariance, 35
model error variance, see system variance
Monte-Carlo simulation, 9, 82
MSM: Mean Stochastic Model, 273
multiplicative model, 274

natural frequency, 83
Navier-Stokes, 169
NEKF: Nonlinear Extended Kalman Filter,

182, 314

nudging, 363

observable, 30, 44, 45
observation error covariance, 26, 41
observation error distribution, 26
observation model, 26, 41
OI: Optimal Interpolation, 162
Ornstein-Uhlenbeck process, 18, 28, 44

Parseval’s identity, 63
particle filter, 9, 355
passive tracer, 313
perfect model, 26
plentiful observation, 90, 92
posterior distribution, 41
posterior error covariance, 27, 28, 42
posterior mean state, 42
posterior state, 42
power law spectrum, 78
Prandl number, 169
prediction, see forecast
prior distribution, 27, 41
prior error covariance, 27
prior state, 27, 42

quasi-geostrophic, 77
Quasi-Geostrophic model, 14

radiative damping, 77
Rayleigh number, 169
reduced filters, 55
regularly spaced sparse observation, 114
relative entropy, 37
resonant periodic forcing, 79
RFDKF: Reduced Fourier Domain Kalman

Filter, 126
RHF: Rank Histogram Filter, 356
RK4: Runge-Kutta 4, 169
root-mean-square (RMS), 30
Rossby number, 77
Rossby waves, 79, 82

SDAF: Strongly Damped Approximate Filter,
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sequential importance resampling, 357
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Sequential Monte-Carlo, 355
Shannon entropy, 360
shear flow, 314
spatial correlation, 82
spatio-temporal correlation function, 80, 87
SPEKF-A, 280
SPEKF-C, 280
SPEKF-M, 280
SPEKF: Stochastic Parameterized Extended

Kalman Filter, 21, 272, 277
stationary correlation in physical space, 82
statistical equilibrium distribution, 77
stochastic advection equation, 76
system variance, 26

tangent linear model, 161
temporal correlation function, 78, 82, 86
time-homogeneity, 138
trigonometric interpolation, 94
true filter, see perfect model
true signal, 27, 42
turbulent signal, 75

uniform damping, 77, 82

Vandermonde matrix, 120
VSDAF: Variance Strong Damping Approxi-

mate Filter, 123

white noise, 29, 43
white noise spectrum, 78
Wiener process, 29




