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Abstract

The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state,
observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is
to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method
that uses a stochastic gradient algorithm to find optimal actions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the following continuous state hidden Markov
model (HMM):

Xn+1 = f (Xn, An+1, Wn), Yn = g(Xn, An, Vn), (1)

where Xn ∈ Rdx is the hidden system state, Yn ∈ Rdy the obser-
vation of the state and Wn and Vn are i.i.d. noise terms. Unlike
the classical HMM model, the evolution of the state and ob-
servation processes depends on an input parameter An ∈ Rda ,
which is the control or action. In HMM models, one is pri-
marily concerned with the problem of estimating the hidden
state, which is achieved by propagating the posterior distribu-
tion (or filtering density) �n(x) dx = P(Xn ∈ dx|A1:n, Y1:n).
By a judicious choice of action sequence {An}, the evolution
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of the state and observation processes can be ‘steered’ in order
to yield filtering densities that give more accurate estimates of
the state process. This problem is also known in the literature
as the sensor scheduling problem.

Sensor scheduling has been a topic of interest to the tar-
get tracking community for the some years now (Hernandez,
Kirubarajan, & Bar-Shalom, 2004; Kershaw & Evans, 1994;
Logothetis, Isaksson, & Evans, 1997; Meier, Perschon, &
Dressler, 1967; Singh, Kantas, Vo, & Doucet, 2005; Tremois &
Le Cadre, 1999). The classical setting is the problem of track-
ing a manoeuvring target over N epochs. Here Xn denotes the
state of the target at epoch n, Yn the observation provided by
the sensor and An some parameter of the sensor that may be
adjusted to improve the ‘quality’ of the observation. For exam-
ple, consider a non-moving platform with a finite number of
sensors, where each has different characteristics. In this case
An denotes the choice of sensor to be used at epoch n (Lee,
Teo, & Lim, 2001; Singh, Vo, Doucet, & Evans, 2004). Alterna-
tively, there may be only one sensor and An could denote some
tunable parameter of the sensor, as in the waveform selection
problem (Kershaw & Evans, 1994), or in the case of directing
an electronically scanned aperture (ESA) radar (Blackman &
Popoli, 1999). In contrast, consider the scenario in which a
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moving platform (or observer) is to be adaptively manoeuvred
to optimise the tracking performance of a manoeuvring target.
In this setting, An denotes the position of the observer at epoch
n and the problem is termed the optimal observer trajectory
planning (OTP) problem (Hernandez et al., 2004; Logothetis
et al., 1997; Tremois & Le Cadre, 1999). In all these sensor
scheduling problems, a measure of tracking performance is the
mean squared tracking error over the N epochs,

E

{
N∑

n=1

(�(Xn)− 〈�n, �〉)2

}
, (2)

where �: Rdx → R is a suitable test function that emphasises
the component (or components) of interest of the state vector
we wish to track. The aim is to minimise (2) w.r.t. the choice
of actions {A1, . . . , AN }.

When the dynamics of the state and the observation pro-
cesses are both linear and Gaussian, then the optimal solution
to the sensor scheduling problem (2) (when � gives a quadratic
cost) can be computed off line (Meier et al., 1967); this is not
surprising given that the Kalman filter covariance is also inde-
pendent of the actual realisation of observations. In the general
setting studied in this paper, the dynamics can be both non-
linear and non-Gaussian, which means that the filtering density
�n, and integration w.r.t. it, cannot be evaluated in closed form.
Hence, the tracking error performance criterion itself does not
admit a closed-form expression. To further complicate matters,
the actions sought are continuous valued, i.e., vectors in Rda .

To address the complications to do with the non-linear and
non-Gaussian dynamics, one could linearise the state and ob-
servation model (as in Logothetis et al. (1997)), i.e., using the
extended Kalman filter to propagate the filtering density �n.
However, dealing with the tracking error performance crite-
rion directly is the exception rather than the rule. The major-
ity of works (Hernandez et al., 2004; Paris & Le Cadre, 2002;
Tremois & Le Cadre, 1999, and references therein), while aim-
ing to minimise mean squared tracking error, do so indirectly
by defining a lower bound to the tracking error criterion and
minimising the lower bound instead. The bound in question
is the posterior Cramer–Rao lower bound (PCRLB), which is
the inverse of the Fisher information matrix (FIM). This ap-
proach hinges on the ability to propagate recursively the FIM
in closed form by a Ricatti-type equation for the non-linear
and non-Gaussian filtering problem. Unfortunately, the recur-
sion for the FIM involves evaluating the expectation of certain
derivatives of the transition probability density of the state dy-
namics, as well as the expectation of certain derivatives of the
observation likelihood (see (3) and (4) below). As these quan-
tities cannot be evaluated in general except for the linear and
Gaussian case, this assumption is either invoked or the authors
resort to simulation-based approximations.

As for the complications due to continuous valued actions,
the approach in the literature is to discretise Rda to a grid. There
have also been studies where the continuous state HMM (1) is
approximated by a discrete state HMM, and the latter solved
using dynamic programming (Tremois & Le Cadre, 1999).

The aim of this paper is to solve the sensor scheduling prob-
lem with continuous action space directly, and not a surrogate
problem defined through the PCRLB or otherwise. We make
no assumptions of linearity or Gaussianity for analytic conve-
nience, nor do we discretise the state, observation or action
space. We avoid these restrictive modelling assumptions on the
continuous state HMM by recourse to methods based on com-
puter simulation (simulation for short). As the action policy de-
rived will be a function of the filtering density, we will employ
simulation to approximate the posterior density by a finite sum
of weighted point–mass distributions (Doucet, De Freitas, &
Gordon, 2001). The main advantage of simulation over other
numerical integration methods is that it is typically very easy
to implement. Furthermore, it follows the strong law of large
numbers (Del Moral, 2004) and there is much literature on its
efficient implementation for approximating posterior densities
(Doucet et al., 2001).

In order to solve for the optimal sequence of continuous val-
ued actions, we will use an iterative stochastic gradient algo-
rithm. We derive the gradient of the performance criterion w.r.t.
the action trajectory and demonstrate how low-variance esti-
mates of it may be obtained using control variate (CV) (Glynn
& Szechtman, 2002) techniques. One major advantage of a
stochastic gradient-based method is that theoretical guarantees
are easily obtained. Under suitable regularity assumptions, one
can guarantee convergence to a local optimum of the perfor-
mance criterion, while it is difficult to make similar assertions
about the quality of the solutions obtained by other approxi-
mate methods proposed in the literature for sensor scheduling.

As an instance of the sensor scheduling problem, we study
the OTD problem for a bearings-only application. We state
theoretical results concerning the convergence of the observer
trajectory identified by our simulation-based algorithm. Han-
dling multiple observers simultaneously is easy in our proposed
framework, and numerical results are presented for cooperating
observers tracking a manoeuvring target.

The organisation of this paper is as follows. In Section 2,
we formulate the optimal sensor scheduling problem. We also
summarise some key points concerning several methods in the
literature that may be used to solve this problem. In Section 3,
we derive the gradient of the performance criterion being op-
timised, and detail the use of simulation and variance reduc-
tion techniques for its estimation. In Section 4.2, we present
the main algorithm of the paper, which is a two time-scale
stochastic gradient algorithm for solving the sensor schedul-
ing problem. General convergence results for this algorithm are
presented in the Appendix. In Section 5, we formulate the OTD
problem as an instance of the sensor scheduling problem and
apply the convergence results to this application. Numerical
examples are presented in Section 6, and concluding remarks
are presented in Section 7. All proofs appear in the technical
report (Singh et al., 2005), which is available online or may be
obtained by e-mailing any of the authors.

Notation. The notation that is used in the paper is now
outlined. The norm of a scalar, vector or matrix is de-
noted by | · |. For a vector b, |b| denotes the vector 2-norm
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i |b(i)|2. For a matrix A, |A| denotes the matrix 2-

norm, maxb:|b|�=0 |Ab|/|b|. For convenience, we also denote
a vector b ∈ Rn by b = [b(i)]i=1,...,n, or the ith compo-
nent of a vector by [b]i . For scalars aj,i , j = 1, . . . , m,
i=1, . . . , n, let [[aj,i]j=1,...,m]i=1,...,n denote the stacked vector
[a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]T. For a vector b, let diag(b)
denote the diagonal matrix formed from b. For a function
f : Rn→ R with arguments z ∈ Rn, we denote (�f/�z(i))(z)

by ∇z(i)f (z) and ∇f (z) = [∇z(1)f (z), . . . ,∇z(n)f (z)]T. For
the vector-valued function F = [F1, . . . , Fn]T : Rn → Rn,
let ∇F denote the matrix [∇F1, . . . ,∇Fn]. For real-valued
integrable functions f and g, let 〈f, g〉 denote

∫
f (x)g(x) dx.

2. Problem formulation

At time n, let Xn and Yn be random vectors that model
the dx-dimensional state and its dy-dimensional observation,
respectively. Suppose that an action An ∈ Rda is applied at time
n. The state {Xn}n�0 is an unobserved Markov process with
initial distribution and transition law given by

X0 ∼ �0, Xn+1 ∼ p(·|Xn, An+1). (3)

(The symbol ‘∼’ means distributed according to.) The obser-
vation process {Yn}n�1 is generated according to the state- and
action-dependent probability density

Yn ∼ q(·|Xn, An). (4)

Given the sequence of actions a1:n := {a1, . . . , an} and mea-
surements y1:n := {y1, . . . , yn}, the filtering density at time n
is denoted by �n (or �(y1:n,a1:n)

n to emphasise the dependence on
y1:n and a1:n,) and satisfies the Bayes recursion

�n(x)= q(yn|x, an)
∫

p(x|x′, an)�n−1(x
′) dx′∫∫

q(yn|x, an)p(x|x′, an)�n−1(x′) dx′ dx
. (5)

Consider a suitable test function � : Rdx → R where, for exam-
ple, � could pick out a component of interest of the state vector
we wish to estimate. The optimal sensor scheduling problem is
to solve

min
A1:N∈�A

J (A1:N)

= E(�0,A1:N)

{
N∑

n=1

�N−n(�(Xn)− 〈�n, �〉)2

}
, (6)

where E(�0,A1:N) denotes expectation w.r.t. the random vari-
ables (X0:N, Y1:N) which are distributed according to the law
specified by (�0, A1:N). For any 1�n�N and integrable func-
tion h : (Rdx )n × (Rda )n × (Rdy )n→ R,

E(�0,A1:n){h(X1:n, A1:n, Y1:n)}
=
∫

h(x1:n, A1:n, y1:n)

×�n
i=1q(yi |xi, Ai)p(xi |xi−1, Ai)�0(x0) dx0:n dy1:n︸ ︷︷ ︸

P(�0,A1:N )

.

(7)

The set of actions �A ⊂ (Rda )N is open and � ∈ [0, 1] is
a discount factor to favour better tracking performance in the
later epochs if so desired.

Feedback control: The sensor scheduling problem stated in
(6) is an open-loop stochastic control problem. In order to utilise
feedback in implementation, we will use the open-loop feed-
back control (OLFC) approach, which is described as follows
(see Bertsekas, 1995 for a detailed account).

Path constraints: For trajectory planning application, the se-
quence of actions A∗1:N determined by solving (6) above may
not be realisable due to motion constraints on the observer. For
example, the sequence of possible accelerations in a linear mo-
tion model (see Section 5) may not be able to realise the de-
sired sequence of positions A∗1:N . Alternatively, we may seek
a sequence of positions that belong to some parametric class,
e.g., an observer doing a constant velocity turn where the turn
rate is to be determined. In some cases, we may summarise
observer motion constraints through a bounded mapping

F : (Rdu)N → (Rda )N , (8)

where the actions A1:N = F(U1, . . . , UN). For example, U1:N
could describe the sequence of accelerations of an observer;
see Section 5 for more details. We would then solve problem
(6) subject to the equality constraint

A1:N = F(U1:N), U1:N ∈ (Rdu)N , (9)

i.e., �A now corresponds to the range of the function F.
Simulation- and gradient-based methods: We do not have a

closed-form expression for J because the filtering density �n

and integration w.r.t. it cannot be evaluated in closed-form in
our general setting. To evaluate J (A1:N), we could revert to
state-space discretisation (see Hernandez-Lerma, 1989 for is-
sues on discretising general state-space HMMs). One could dis-
cretise Rdx , Rdy and derive the corresponding state evolution
and observation laws, i.e., (3) and (4), for the approximating
discrete problem. We may then calculate the approximation to
J (A1:N) for any choice of actions. This approach has its draw-
backs though. Firstly, assuming that Rdx and Rdy are discre-
tised to finite sets of cardinality Lx and Ly , respectively, then
the multiple integral in (6) (cf. (7)) is converted to a sum over
(Ly)

N × (Lx)
N+1 terms, which is computationally prohibitive.

Thus, we would be limited to a coarse discretisation and a small
horizon N at best. Secondly, it is not obvious how to choose the
grid in Rdx and Rdy , since for accuracy of the approximation,
the grid should be finer in the regions where density in (7) has
more mass. In Tremois and Le Cadre (1999), the HMM is dis-
cretised and a closed-loop formulation of problem (6) is solved.
A closed-loop formulation of (6) is known as a partially ob-
served Markov decision process (POMDP). However, solving
a POMDP exactly is computationally very demanding, specif-
ically PSPACE-hard, and various approximation schemes that
trade-off accuracy and speed have been devised (Hauskrecht,
2000).

We propose to use simulation with stochastic approximation
(SA) to minimise J (A1:N) when �A is an open (i.e., continu-
ous) set without resorting to discretising Rdx , Rdy or �A. SA is
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a gradient descent algorithm that only requires noisy estimates
of the cost function gradient, i.e.,

A1:N,k+1 = A1:N,k − �k(∇J (A1:N)|A1:N=A1:N,k
+ noise), (10)

where k�0 and∇J (A1:N) denotes the gradient of J w.r.t. A1:N .
The step-size �k is a non-increasing positive sequence tending
to zero. In Section 3, we derive the gradient ∇J . Once again,
we do not have a closed form expression for ∇J for the same
reasons as in J; the filtering density �n and integration w.r.t.
it cannot be evaluated in closed form in our general setting.
We will show instead how one may obtain an estimate of ∇J ,
namely ∇̂J . The noise in (10) arises precisely because we use
∇̂J instead of ∇J . The smaller the variance of the noise is, the
more quickly (10) converges to a minimising action sequence.
This motivates us to consider techniques such as CV (Glynn
& Szechtman, 2002) to reduce the noise variance. We propose
an adaptive CV method to reduce the variance of ∇̂J by cou-
pling with (10) a second SA iteration that estimates the optimal
control variates for ∇̂J . We then demonstrate in numerical ex-
amples that the variance of ∇̂J is reduced by several orders of
magnitude and that the convergence of (10) to the minimising
solution is accelerated. In Appendix A, we address the conver-
gence of the proposed method.

One major advantage of a gradient-based method is that
theoretical guarantees are easily obtained. Under suitable as-
sumptions on the noise in (10), one can guarantee that A1:N,k

eventually converges to a local minimiser of J, while it is dif-
ficult to make similar assertions about the quality of the solu-
tion obtained by other approximate methods proposed in the
literature. However, the method we propose is not yet suitable
for real-time applications where decisions need to be made in
tens of seconds. Our main intention in this study is to propose
a simulation-based method for non-linear and non-Gaussian
systems that is both easy to implement and provably conver-
gent. We wish to avoid restrictive modelling assumptions so
that the proposed method is generally applicable. The conven-
tional approach in the literature is to linearise the non-linear
and non-Gaussian dynamics which is not always straightfor-
ward to implement from a numerical stability point. Also, one
cannot decrease the error in the approximation of the original
problem—note that linearising is an approximation. The same
is true for methods based on the PCRLB. In the method we
propose, however, one merely increases the number of parti-
cles or samples L, which could not be simpler. However, there
is a computational cost to pay. There is currently work being
done on the fast implementation of particle filters but we have
not investigated this aspect of the problem.

3. The cost gradient and its simulation-based
approximation

In this section, we derive the gradient of the cost function
(6) w.r.t. A1:N . We then propose a suitable simulation-based
approximation for optimising with SA. Because problem (6) is
solved for a fixed initial state distribution �0, henceforth, we
omit reference to �0 in the notation for E(�0,A1:N) and denote
the probability w.r.t. which this expectation is taken by PA1:N .

Keeping in mind that (�(Xn)−〈�n, �〉)2 is a function of the
form h(X1:n, A1:n, Y1:n), (7) implies

EA1:N {(�(Xn)− 〈�n, �〉)2} = EA1:n{(�(Xn)− 〈�n, �〉)2}.

For l > n, ∇Al
EA1:N {(�(Xn)− 〈�n, �〉)2} = 0. For l�n, using

(7), ∇Al
EA1:N {(�(Xn)− 〈�n, �〉)2} is∫

(�(xn)− 〈�(y1:n,A1:n)
n , �〉)2∇Al

PA1:N (x0:n, y1:n) dx0:n dy1:n

+
∫
∇Al
[(�(xn)− 〈�(y1:n,A1:n)

n , �〉)2]

× PA1:N (x0:n, y1:n) dx0:n dy1:n.

The first term of the gradient may be written as

EA1:N

{
(�(Xn)− 〈�n, �〉)2

×
[∇Al

q(Yl |Xl, Al)

q(Yl |Xl, Al)
+ ∇Al

p(Xl |Xl−1, Al)

p(Xl |Xl−1, Al)

]}
and the second term is, omitting the factor −2,

EA1:N {(�(Xn)− 〈�(Y1:n,A1:n)
n , �〉)∇Al

〈�(Y1:n,A1:n)
n , �〉},

which evaluates to zero upon conditioning on Y1:n. It follows
from the above derivation that to obtain an unbiased estimator
of ∇Al

J (A1:N) for a given A1:N , one samples a realisation of
states and observations (Y1:N, X0:N) ∼ PA1:N and forms the
following estimate:

̂∇Al
J (A1:N)

=
N∑

n=l

�N−nEA1:N

{
(�(Xn)− 〈�n, �〉)2

×
[∇Al

q(Yl |Xl, Al)

q(Yl |Xl, Al)
+ ∇Al

p(Xl |Xl−1, Al)

p(Xl |Xl−1, Al)

]∣∣∣∣Y1:n
}

,

(11)

where we have added the conditioning on Y1:n as it leads to a
lower variance gradient estimate.1 In sensor scheduling appli-
cations concerning target tracking, the state process Xn is the
state of the target to be tracked and often evolves independent of
the action. Henceforth, we assume this independence for sim-
plicity in presentation, i.e., p(Xn|Xn−1), and remark that the
work may also be extended to the more general case of state
evolution and action dependence.2 Define the vector-valued

1 The variance is reduced since, for two jointly distributed random vari-
ables X and Y, var(E(X|Y ))=var(X)−E(var(X|Y )), and E(var(X|Y )) > 0.

2 In methods that use the PCRLB (Hernandez et al., 2004; Paris & Le
Cadre, 2002; Tremois & Le Cadre, 1999), even after assuming that the state
process evolves independent of the actions, one still needs to evaluate the
expectation of derivatives of ln p(Xn|Xn−1) w.r.t. Xn and Xn−1, while this
is clearly not needed in (11).
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function called the score (Pflug, 1996),

S(y, x, a) := ∇aq(y|x, a)

q(y|x, a)
∈ Rda . (12)

We may also write ̂∇Al
J (A1:N) in (11) as

N∑
n=l

�N−n{〈�0:n, �2(·)S(Yl, ·, Al)〉

+ 〈�n, �〉2〈�0:n, S(Yl, ·, Al)〉
− 2〈�n, �〉〈�0:n, �(·)S(Yl, ·, Al)〉}. (13)

To implement (11), we see that we require both the marginal �n

and the full posterior �0:n for all N epochs, i.e., for 1�n�N .
We propose to approximate these densities using a mixture
Dirac delta-masses,

�̂0:n(x0:n) :=
L∑

j=1

w
(j)
n �

X
(j)
0:n

(x0:n), (14)

where �
X

(j)
0:n

denotes the Dirac delta-mass located at X
(j)
0:n and

the importance weights {w(j)
n }Lj=1 are non-negative scalars that

sum to one. The approximation to �n, namely �̂n, follows by
marginalising �̂0:n, which is nothing more than dropping X

(j)
0:n−1

in (14). There are a number of ways to define such a point–mass
approximation. For example, the simplest scheme would be
to sample L independent state trajectory realisations {X(j)

0:n}Lj=1
from (�n

i=1p(xi |xi−1))�0(x0). The importance weights would
then be

w
(j)
n := �n

i=1q(Yi |X(j)
i , Ai)∑L

j=1 �n
i=1q(Yi |X(j)

i , Ai)
. (15)

For any integrable function h,
∫

h(x0:n)�̂0:n(x0:n) dx0:n con-
verges to

∫
h(x0:n)�0:n(x0:n) dx0:n as L→∞ (see Doucet, De

Freitas et al., 2001, Chap. 2 for a precise statement of the mode
of convergence). Practically though, we would prefer a small
sample size L and this simple scheme of sampling from the
state transition model can result in the majority of the impor-
tance weights w

(j)
n being very small. There are a number of

remedies proposed for this in the sequential Monte Carlo, also
known as particle filtering (PF), literature (Doucet, De Freitas
et al., 2001, Chap. 1.3.2). For example, the importance sam-
pling step can be designed to minimise the conditional vari-
ance of the importance weights by sampling {X(j)

0:n}Lj=1 from a
Markov transition density that takes the observations into ac-
count, i.e., X

(j)
n |X(j)

n−1 ∼ k(xn|X(j)
n−1, Yn). We emphasise that

standard techniques from the sequential Monte Carlo literature
can be adopted in constructing an approximation of the form
(14) to the full posterior but we do not study this issue in detail
here.

We summarise the discussion thus far with the following
algorithm.

Simulation-based sensor scheduling procedure:
0. Initialisation: Choose A1:N,0 ∈ �A, step-size
{�k}k �1, �k ↓ 0,

∑
k�k =∞, PF sample size L

For k�0, iterate
1. Sample (X0:N, Y1:N) ∼ PA1:N,k

2. Generate the particle filter �̂0:N according to
(15) or a more sophisticated scheme (Doucet, Gordon,
& Krishnamurthy, 2001)
3. Substitute (X0:N, Y1:N), A1:N,k and �̂0:N into (13)
to obtain ∇̂J (A1:N,k):

̂∇Al
J (A1:N,k)=

N∑
n=l

�N−n{〈�̂0:n, �2
n(·)S(Yl, ·, Al,k)〉

+ 〈�̂n, �n〉2〈�̂0:n, S(Yl, ·, Al,k)〉
− 2〈�̂n, �〉〈�̂0:n, �n(·)S(Yl, ·, Al,k)〉} (16)

4. Update trajectory: A1:N,k+1 = A1:N,k − �k∇̂J (A1:N,k)

5. Set k = k + 1 and repeat
One may use a constant step-size �k = � as was done in the

numerical implementation; see Section 6. In implementation we
found that the variance of the gradient estimate (16) was large.
The reason is that, for a large horizon N, we are approximating
high-dimensional integrals using simulation and, more so, with
a moderate sample size L. We propose a remedy in Section 4.1.

Computation complexity: The particle filter �̂0:N can be im-
plemented at a cost of O(LN) (Doucet, De Freitas et al., 2001)
with or without resampling (as in (15)). This cost dominates
the cost of sampling (X0:N, Y1:N) from PA1:N,k

. Thus, the total
cost per iteration k of the simulation-based sensor scheduling
procedure is still order O(LN).

4. A verifiably convergent particle implementation

Implementing the algorithm detailed in Section 3 with the
gradient estimate (16) is straightforward. However, to prove its
convergence we would not be able to use standard SA results.
Even though (16) is a noisy estimate of ∇Al

J (A1:N), the noise
is not zero-mean due to the bias of the simulation-based ap-
proximations to �n and �0:n. To assert convergence of (10) to
a minima of J, we would have to gradually increase the num-
ber of samples L to remove the bias. (Similar conditions are
required for convergence of SA driven by sample averages,
Pflug, 1996.) While this is fine theoretically, it is infeasible in
practice as the computational complexity of the SA recursion
increases with each iteration. In this section we propose an al-
ternate implementation whose convergence can be established
for a finite number of particles L. Moreover, in Section 5 we
show that the proposed implementation applied to the standard
OTP problem with bearings-only observations converges.

To simplify the presentation, we will only focus on the sim-
ple scheme of sampling from the state transition model as
in (15) and not the more sophisticated PF presented in the
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Appendix. To emphasise the dependence of �̂0:n on the reali-
sation of observations Y1:n and the sequence of actions A1:n,
we should use the notation �̂(Y1:n,A1:n)

0:n . However, we often do
not do so in order to unclutter the expressions. The reader is
reminded that �̂0:n should always be regarded as a function
of (Y1:n, A1:n). Henceforth, we fix the set of L state trajectory
samples {X(j)

0:N }Lj=1, i.e., they are sampled once at the start and
reused throughout to form �̂0:n.

By a conditioning argument, J (A1:N) can be written as∑N
n=1 �N−nEA1:N {〈�n, �

2〉 − 〈�n, �〉2} and we form the fol-
lowing approximation to J:

Ĵ (A1:N)=
N∑

n=1

�N−nEA1:N {〈�̂n, �
2〉 − 〈�̂n, �〉2}. (17)

Since the error in the approximation �̂0:n diminishes as the
sample size L increases, we would expect Ĵ to be a good ap-
proximation to J for sufficiently large L. We will then derive an
unbiased estimate of the gradient of Ĵ in a similar manner to
J above and minimise Ĵ via SA. This approach can be analysed
and we show that, under suitable assumptions, SA converges
to a local minima of Ĵ almost surely.

In the same way as gradient of J was derived in (11) we have

∇Al
Ĵ (A1:N)

=
N∑

n=1

�N−n∇Al
EA1:N {〈�̂n, �

2〉−〈�̂n, �〉2}

= EA1:N

{
N∑

n=l

�N−n(〈�̂n, �
2〉 − 〈�̂n, �〉2)S(Yl, Xl, Al)

}
(18)

+EA1:N

{
N∑

n=l

�N−n(∇Al
〈�̂n, �

2〉−2〈�̂n, �〉∇Al
〈�̂n, �〉)

}
,

(19)

where ∇Al
〈�̂n, �〉 evaluates to3

〈�̂0:n, �(·)S(Yl, ·, Al)〉 − 〈�̂n, �〉〈�̂0:n, S(Yl, ·, Al)〉.
It is now straightforward to obtain a simulation-based approx-
imation of ∇̂J (A1:N). For a given A1:N , one samples a real-
isation of states and observations (Y1:N, X0:N) ∼ PA1:N and
forms the following unbiased estimate of ∇Al

Ĵ (A1:N), for l =
1, . . . , N :

S(Yl, Xl, Al)

N∑
n=l

�N−n(〈�̂n, �
2〉 − 〈�̂n, �〉2)

+
N∑

n=l

�N−n(∇Al
〈�̂n, �

2〉 − 2〈�̂n, �〉∇Al
〈�̂n, �〉). (20)

3 It is possible to compute ∇Al
〈�̂n, �〉 when resampling is employed to

construct �̂n; see Poyiadjis, Singh, and Doucet (2002) for details.

4.1. Variance reduction by Control Variates

In implementation, we found that the variance of the gra-
dient estimate (20) (or (16)) was quite large. This is because
we are approximating high-dimensional integrals using simu-
lation and, more so, with a moderate sample size L. Naturally,
it would be possible to reduce the variance by simply increas-
ing the number of samples. As we do not wish to do so, our
aim is to extract the most accurate estimates of the quantities of
interest for a given set of samples. Control Variates are widely
used to reduce the variance in simulation-based approxima-
tions. The method involves collecting additional statistics from
the samples and is very simple to implement. Recently, it has
been shown that other popular variance reduction techniques
such as conditional Monte Carlo, antithetics, rotation sampling,
stratification can be viewed as various implementations of this
method (Glynn & Szechtman, 2002). We now describe how
control variates may be implemented for our problem.

For a random variable W, consider the problem of estimating
E(W) when we have access to a zero-mean random variable Z
correlated with W. Rather than using a realisation of W as an
unbiased estimate, we use W − bZ where b is a constant. The
estimator W − bZ is also unbiased. Furthermore, the function
of b

var(W − bZ)= var(W)− 2b cov(W, Z)+ b2 var(Z) (21)

is convex and is minimised at b∗ = cov(W, Z)/var(Z), which
implies that the variance of the estimate W − b∗Z of E(W) is
less than the variance of the estimate W. The random variable
Z is referred to as the control variate (CV) and we call b the
CV constant (Glynn & Szechtman, 2002).

In the context of the gradient estimate in (20), we found
in implementation that reducing the variance of the estimate
of (18) was sufficient. The score in (18) is zero-mean, i.e.,
EA1:N {S(Yl, Xl, Al)} = 0, and we use it as the CV. Doing
so yields the following unbiased estimator of ∇Al

Ĵ instead
of (20):

diag(S(Yl, Xl, Al))

(
N∑

n=l

�N−n(〈�̂n, �
2〉 − 〈�̂n, �〉2)1− bl

)

+
N∑

n=l

�N−n(∇Al
〈�̂n, �

2〉 − 2〈�̂n, �〉∇Al
〈�̂n, �〉), (22)

where 1 ∈ Rda and the CV constant (vector) bl ∈ Rda is to be
determined in order to minimise the variance of the estimate.
Noting that the optimal CV constant is a solution of the min-
imisation problem (21), we may employ the following SA al-
gorithm to converge to it:

bl ←− bl − 	 diag (S(Yl, Xl, Al))(diag(S(Yl, Xl, Al))bl

−
N∑

n=l

�N−n(〈�̂n, �
2〉 − 〈�̂n, �〉2)1), (23)
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where 	 is the step-size. Under suitable assumptions stated in
Appendix A, we will have bl converging to

EA1:N {diag (S(Yl, Xl, Al))
2}−1EA1:N

{
diag(S(Yl, Xl, Al))

2

×
N∑

n=l

�N−n(〈�̂n, �
2〉 − 〈�̂n, �〉2)1

}
. (24)

The same approach applies when minimising the variance of
the gradient estimate (16) with CV.

4.2. The main algorithm

We now state the main algorithm of the paper whose con-
vergence we subsequently prove. It is a two time-scale SA al-
gorithm to minimise Ĵ using the reduced variance estimate of
∇̂J given by (22) and (23). We do so for the case with action
path constraints as specified in (9). We can also derive a similar
two time-scale version of the algorithm presented in Section 3.

Solving problem (6) with (9) is equivalent to minimising
Ĵ ◦ F (which is the composite function Ĵ (F (·))) over (Rdu)N .
The appropriate modification to (10) for this case is

U1:N,k+1 = U1:N,k − �k(∇̂J ◦ F(U1:N)|U1:N=U1:N,k
+ noise),

where ∇̂J ◦ F(U1:N)= ∇F(U1:N)∇̂J (F (U1:N)).
We introduce the following functions to make the presenta-

tion of the main algorithm concise. For each A1:N , define the
functions hi,A1:N : (Rdx )N+1 × (Rdy )N → (Rda )N , i = 1, 2 as
follows:

h1,A1:N (X0:N, Y1:N)

:=
[
S(Yl, Xl, Al)

N∑
n=l

�N−n(〈�̂n, �
2〉−〈�̂n, �〉2)

]
l=1,...,N

,

(25)

h2,A1:N (X0:N, Y1:N)

:=
[

N∑
n=l

�N−n(∇Al
〈�̂n, �

2〉−2〈�̂n, �〉∇Al
〈�̂n, �〉)

]
l=1,...,N

.

(26)

Note that

∇̂J (A1:N)= EA1:N {h1,A1:N (X0:N, Y1:N)

+ h2,A1:N (X0:N, Y1:N)} ∈ (Rda )N .

For technical reasons concerning the convergence of the two
time-scale SA algorithm below, we introduce the positive
scalar-valued function 
 : (Rda )N → (0,∞),


(b) := (1+ |b|)−1C, (27)

where C is a positive constant. The function 
 is needed to
ensure that the CV constants remain bounded almost surely

(more details in Appendix A). However, we set 
(b) = 1 in
implementation.

The two time-scale SA algorithm for solving the
sensor scheduling problem:
For conciseness, let �= U1:N , �̃= A1:N(=F(�)),�=
(X0:N, Y1:N).

�k+1 = �k − �k+1
(bk)∇F(�k)(h1,�̃k
(�k+1)

+ h2,�̃k
(�k+1)− S�̃k

(�k+1)bk), (28)

bk+1 = bk − 	k+1S
2
�̃k

(�k+1)bk

+ 	k+1S�̃k
(�k+1)h1,�̃k

(�k+1), (29)

�k+1 ∼ P�̃k
, �̃k = F(�k), k�0, (30)

Note that �k = U1:N,k , �̃k = A1:N,k , �k+1= (X0:N,k+1,

Y1:N,k+1) and

SA1:N,k
(X0:N,k+1,Y1:N,k+1)

= diag([S(Yl,k+1, Xl,k+1, Al,k)]l=1,...,N ). (31)

As for the algorithm presented in Section 3, the cost of sampling
�k+1 and computing �̂0:N is O(NL). The only difference is
that we sample the state trajectories that form the approximate
posterior density �̂0:N (which also gives us {�̂n}Nn=0) at the start
and do not change them thereafter. Also, no resampling is em-
ployed. The storage requirement does, however, increase. Com-
puting h2,�̃k

is the most expensive step, specifically O(N2L),
and subsumes all other costs, matrix multiplications included.
Thus the total cost of the algorithm is O(N2L). Note that the
cost is still linear in L, which is the most important point since
the horizon is typically very small compared to the number of
state trajectory samples L.

Assumption 1. The step-size sequences {�k} and {	k} are non-
negative, sum to infinity, are squared summable and for some
p > 0 satisfy

∑
k (�k/	k)

p <∞.

Typically, the step-sizes are

�k = k−�, 	k = k−	, (32)

where � > 	 > 0.5. Thus,
∑

k (�k/	k)
p <∞ may only be satis-

fied for a large positive p. Since �k tends to zero more quickly
than 	k , the recursion for actions (28) is said to evolve on a
slower time-scale than that for the CV constants (29). By having
U1:N,k evolve more slowly than bk , we allow bk to ‘track’ the
optimal CV constants, which depend on the point at which the
gradient ∇̂J is evaluated (see (24)). In the Appendix, we will
establish the convergence of algorithm (28)–(30) for the choice
of step-sizes in Assumption 1. However, in the numerical ex-
ample presented in Section 6, we set function 
(b) = 1, use
constant step-sizes �k=� and 	k=	 and still demonstrate con-
vergence. For SA in general, decreasing step-sizes are essential
for almost sure convergence. If fixed step-sizes are used, then
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we may still have convergence but now the iterates ‘oscillate’
about their limiting values with variance proportional to the
step-size.

The convergence of a two time-scale SA algorithm related to
(28)–(30) was studied in Konda and Tsitsiklis (2003). We may
write the slow time-scale process in a more general form than
(28) as �k+1 = �k + �k+1Hk+1. If the parameter �k does not
change, say �k=� for all k, the process {bk} would converge to
some b̄(�). When �k varies slowly, we would like the process
{bk} to track b̄(�k). Under certain regularity assumptions on
the process {Hk} (Konda & Tsitsiklis, 2003), it can be shown
that this would be the case when �k did change. As for the
convergence of {�k}, we may use the line of proof in Bertsekas
and Tsitsiklis (2000) to show lim infk|∇(Ĵ ◦F)(�k)|=0. Details
are in the Appendix.

5. Application to Observer Trajectory Planning (OTP)

In OTP, we wish to track a manoeuvring target for N epochs.
At epoch n, Xn denotes the state of the target, An the position
of the observer and Yn the partial observation of the target
state, i.e., Yn=g(Xn, An, Vn), where Vn is measurement noise.
Typically, the observer has its own motion model and we let
Xo

n denote state of the observer. The observer state descriptor
usually includes its position and therefore An corresponds to
certain components of Xo

n. The aim of OTP is to adaptively
manoeuvre the observer to optimise the tracking performance
of the target.

In this section, we formalise the OTP problem for a bearings-
only observation model as an instance of the sensor scheduling
problem in Section 2. We also give results concerning conver-
gence of algorithm (28)–(30) for this application. As we show
below, while most existing work in the literature concerns OTP
for one observer only, our proposed framework can handle mul-
tiple observers simultaneously. There are some convergence
issues though, as we point out in the numerical examples in
Section 6. Adding more observers can result in an increased
number of local minima of the cost function J while gradient-
based algorithms are only guaranteed to converge to a local
minimum. Also, J can be increasingly flat at the minima, which
means varying the trajectory of the observers at any minima
will result in only small changes to J. In practice, this can slow
down the convergence of SA.

We do not need to specify the target model explicitly. Our
only concern is that we can sample from the model. Manou-
vring targets are often modelled as a jump Markov linear system
(JMLS) (Doucet, Gordon et al., 2001). The state of the target
is comprised of continuous and discrete valued variables, i.e.,
Xn=[rx,n, vx,n, ry,n, vy,n, 
n]T ∈ R4×�, where (rx,n, ry,n) de-
notes the target’s (Cartesian) coordinates at time n, (vx,n, vy,n)

denotes the target velocity in the x and y directions and 
n

denotes the mode of the target, which belongs to a finite set
�. The target switches discontinuously, as indicated by 
n, be-
tween constant velocity manoeuvres. In Section 6, we consider
a manoeuvring target in the examples.

As indicated in (9), we require an observer model of the
form A1:N =F(U1:N), where we exert control on the observer

positions A1:N through the variables U1:N . For instance, the
accelerations of the observer could be determined from the
input U1:N , which will in turn determine the observer trajectory.
The convergence results of Propositions 2 and 3 below do not
depend on the specific form of F but only that this function
is sufficiently regular. We now give an example of F which is
adopted in the numerical section.

Example 1. Let the state of the observer be Xo
n = [ro

x,n, v
o
x,n,

ro
y,n, v

o
y,n]T, with An=[ro

x,n, r
o
y,n]T. Assume a kinematic model

for the evolution of the state,

Xo
n+1 =

⎡⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

⎤⎥⎦
︸ ︷︷ ︸

=:G

Xo
n

+
⎡⎢⎣

T 2/2 0
T 0
0 T 2/2
0 T

⎤⎥⎦
︸ ︷︷ ︸

=:H

C atan (Un+1), (33)

where the initial state Xo
0 is fixed, T is the sampling interval,

and Un+1 ∈ R2 determines the acceleration in the x and y di-
rections. We have included the function arctan and the positive
diagonal matrix C. The function arctan and its first two deriva-
tives are bounded. Also, arctan is linear around zero and makes
a nice choice of saturating function for the acceleration; natu-
rally the acceleration cannot be unbounded. The matrix C alters
the saturation behaviour of the acceleration. The observer tra-
jectory is completely determined once Xo

0 and U1:N are given,

An =
[

1 0 0 0
0 0 1 0

]
×
(

GnXo
0 +

n∑
i=1

Gn−iHC atan (Ui)

)
. (34)

The function F in (8) is now implicitly defined by (34).

In the bearings-only model, the observation process {Yn}n�0
(⊂ R) is generated according to

Yn = atan

(
rx,n − An(1)

ry,n − An(2)

)
+ Vn, (35)

where Vn
i.i.d.∼ N(0, �2

Y ). In our simulation-based framework,
we require the observation process density to be known and
differentiable w.r.t. An. The bearings-only case is one such
example. To present the convergence results of Proposition 2
and 3 below, we will assume that the x and y position of the
target corresponds to the first and third component of the state
descriptor Xn,

Xn = [rx,n, ·, ry,n, . . . ]T, (36)
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which is usual convention in the literature. The score
S(y, x, a)T is then given by (12)

�−2
Y

y − atan((x(1)− a(1))/(x(3)− a(2)))

1+ ((x(1)− a(1))/(x(3)− a(2)))2

×
[ −1

x(3)− a(2)
,

x(1)− a(1)

(x(3)− a(2))2

]
.

For the case of multiple observers, say p of them, let the po-
sition of observer l at epoch n be denoted by A

(l)
n . Also, as-

sume that each observer measures a bearings angle according
to (35) independent of the other observers, i.e., observer l re-
ceives the measurement Y

(l)
n generated according to model (35)

based on its own position A
(l)
n . We stack these observations to-

gether as a vector-valued observation Yn = [Y (1)
n , . . . , Y

(p)
n ]T.

Likewise, we stack the positions to form the effective position
An=[(A(1)

n )T, . . . , (A
(p)
n )T]T. The observation density for this

multiple observer case is q(Yn|Xn, An) = q(Y
(1)
n |Xn, A

(1)
n ) ×

· · · × q(Y
(p)
n |Xn, A

(p)
n ). It is apparent that we are now effec-

tively in the original single observer setting and may proceed to
solve the multiple OTP problem as above. Note that we are now
optimising the tracking performance criterion over the space of
possible trajectories for p observers, which implies that the ob-
servers cooperate. In the examples of Section 6, we study the
two observer case.

5.1. Convergence for bearings-only tracking

For the bearings-only observation model, we have the follow-
ing sufficient conditions for the convergence of the slow and fast
time-scale. The sufficient conditions (37)–(40) are only restric-
tions on the target state transition model, and the range of the
function F that is used to map the sequence U1:N (which could
be accelerations) to the observer positions for all N epochs. The
proof of this proposition involves verifying the assumptions of
Lemmas 4 and 5 in the Appendix. All proofs appear in the tech-
nical report (Singh et al., 2005), which is available online or
may be obtained by e-mailing any of the authors. The follow-
ing result concerns the cost function (17) with � = 0 and can
be generalised to any � ∈ [0, 1].

Proposition 2. Consider algorithm (28)–(30) for the bearings-
only observation model (35). Suppose the following assump-
tions hold:

sup
A1:N∈range(F )

EA1:N {|Xn(3)− An(2)|−p}<∞,

1�n�N, p > 0, (37)

sup
A1:N∈range(F )

max
l
|X(l)

n (3)− An(2)|−1 <∞,

1�n�N , (38)

inf
1 �n�N

A1:N∈range(F )

EA1:N

{
1/(Xn(3)−An(2))2

[1+((Xn(1)−An(1))/(Xn(3)−An(2)))2]2
}

>0, (39)

inf
1 �n�N

A1:N∈range(F )

EA1:N

{
[(Xn(1)−An(1))/(Xn(3)−An(2))2]2
[1+((Xn(1)−An(1))/(Xn(3)−An(2)))2]2

}
>0. (40)

Then, almost surely, supk|bk|<∞ and

lim
k
|bk − S2(A1:N,k)

−1S × h1(A1:N,k)| = 0.

Furthermore, if F has bounded second order derivatives then,
almost surely, lim infk|∇(Ĵ ◦ F)(U1:N,k)| = 0.

Recall that the expectation operator EA1:N {·} above is an ab-
breviation for E(X0:N ,Y1:N)∼PA1:N {·}. Condition (38) relates to the
samples used to approximate the posterior density in (14)–(15).
Also, the first and third component of the target state is its x and
y component, respectively. Note that the proposition does not
limit the specific form of function F that relates inputs U1:N to
actions A1:N . It only restricts range(F) and requires F to be suf-
ficiently regular as specified by the last assumption concerning
bounded second order derivatives. For F defined implicitly by
(34), this assumption is satisfied.

The next result gives the conditions under which (37)–(40)
hold. This result basically says that if the support of X0:N and
the range of function F do not intersect, then the assumptions
hold and we have the desired convergence of two time-scale SA
for OTP. It is interesting to note that the scenario in which the
support of X0:N and the range of F do not intersect is a standard
setting studied by previous works on OTP for bearings-only
observations (see references in the Introduction) and hence the
conditions of Proposition 2 are not restrictive for the applica-
tion.

Proposition 3. Write the mapping F : R2N → R2N as F =
[F1,1, F1,2, . . . , FN,1, FN,2]T. (Note that An(j)=Fn,j (U1:N).)
Suppose that the density of X0:N , f (x0:N), has a compact
support Kf ⊂ R4(N+1). Furthermore, suppose that for each
1�n�N , the compact set Kf,n := {xn(3)|x0:N ∈Kf } does
not intersect with the closure of the set range(Fn,2), i.e., there
exists a compact set KA,n such that range(Fn,2) ⊂KA,n, and
Kf,n ∩KA,n =�. Then, conditions (37)–(40) are satisfied.

6. Numerical example

The aim of this section is to demonstrate the utility of the
proposed simulation-based algorithm for the OTP problem. We
demonstrate various convergence aspects of the algorithm and
solve for the optimal open-loop observer trajectory under a va-
riety of tracking scenarios, namely, with a single observer and
cooperating observers. OLFC is implemented for the cooperat-
ing observers.

All examples below for OLFC concern a manoeuvring target
where the target follows a linear Gaussian model between ma-
noeuvres. However, when solving for the open-loop trajectory
we assume a linear Gaussian model Xn+1=GXn+HWn with
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Fig. 1. (a) Single observer open-loop trajectory. Particle clouds are trajectory samples from the target’s dynamical model in (3). Shown are many trajectory
samples (X1, X2, . . . , XN ) where the various X1 samples are the blue cloud, the red cloud is X2, lime is X3, black X4 and so on. Target moving northeast
and observer moves southwest while doing a hook-turn. (b) Two cooperating observers open-loop trajectory; one moving northeast and the other southwest.
Particle cloud as in part (a). (c) Two cooperating observers OLFC trajectory with a manoeuvring target. Particle cloud are samples from the target’s filtering
density {̂�n}Nn=0. (d) Magnification of the OLFC trajectory of the observers. All slow observers commence from coordinate (250,−250). The open-loop
trajectories of (a) and (b) took several hours to compute with a 2.8 GHz Pentium 4 CPU.

increased acceleration noise to account for the unmodelled ma-
noeuvres. This is more robust in practice as one usually knows
little about the target’s precise model. The particle cloud in
Fig. 1(a) are independent samples from the target’s dynamic
model (3) to help visualise it. The target starts at (0, 0) and
moves northeast. Shown in Fig. 1(c) is the actual manoeuvring
target when the OLFC trajectory is constructed. The manoeu-
vring target also starts at (0, 0) and moves northeast. For the
manoeuvring target, at time t = 3, the velocity of the target in
the y direction is increased to induce the manoeuvre. Note that
the target manoeuvre was intentionally chosen to be far more
drastic than that predicted by its model. This was done to con-
trast the constructed open-loop and OLFC trajectories. In all
the examples below, the problem horizon N is 7 and we choose

function � to be �(Xn)=w1Xn(1)+w2Xn(3) where weights
w1, w2 ∈ [0, 1] are selected to trade-off accuracy in tracking
the x and y coordinates. The setting for this example is a ma-
noeuvring target that is to be tracked by a single observer and
two cooperating observers. The observer motion model is given
by as in Ex. 1 Fig. 1(a) shows the optimal open-loop trajectory
of one slow observer, and Fig. 1(b) that of two cooperating slow
observers. All observers commence at coordinate (250,−250).
Note that a single slow observer is obliged to do more manoeu-
vres to improve the tracking performance since it is signifi-
cantly more constrained in motion. Fig. 1(c) shows the OLFC
trajectory obtained for two cooperating slow observers. A more
detailed plot of the OLFC trajectory is shown in Fig. 1(d).
Fig. 1(c) also shows the actual target manoeuvre and the
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particle cloud surrounding it are samples from the filter-
ing density at each time, which is implemented using a
particle filter. We note that the OLFC trajectory performs
more manoeuvresthan the equivalent open-loop one in or-
der to respond to the actual manoeuvrs of the target. Also,
the open-loop trajectory of a single observer differs greatly
from that of two cooperating observers. Fig. 2 shows a
running plot of the performance criterion, as the (open-
loop) trajectories are computed by algorithm (28)–(30), for
the single and two cooperating slow observers of Fig. 1(a)
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Cost plot per iteration for one or two slow observers
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iteration k×103

two slow observers tracking
one slow observer tracking

Fig. 2. Plot of performance criterion as actions are iterated by algorithm
(28)–(30), for the single and two cooperating observers of Fig. 1(a) and (b).
Performance criterion was estimated using Monte Carlo simulation.
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Fig. 3. The convergence of the trajectories A1:N,k computed using algorithm (28)–(30) for the two cooperating observers of Fig. 1(b) is shown. (a) shows the
convergence of the x coordinate of the trajectory for observer 1. The blue line is the x position for epoch 1, green for epoch 2, red for epoch 3, cyan for
epoch 4 and so on. There are seven epochs in total. (b) shows the convergence of the y coordinate of the trajectory for observer 1. The blue line is the y
position for epoch 1, green for epoch 2, red for epoch 3, cyan for epoch 4 and so on. Plots for observer 2’s trajectory computed using Algorithm (28)–(30)
look similar. (a) Observer 1, x-axis trajectory. (b) Observer 1, y-axis trajectory.

and (b). The cost was estimated using Monte Carlo simulation.
As Fig. 2 indicates, two observers cooperating during track-
ing outperforms one. In Fig. 3, the convergence of the trajec-
tory A1:N,k computed using algorithm (28)–(30) for the two
slow cooperating observers of Fig. 1(b) is shown. Note that al-
though it converges slowly, there is little gain in performance
beyond iteration 1.5×106 as indicated by the running cost plot
in Fig. 2.

6.1. Variance reduction

Here we illustrate the importance of using the control CV
variance reduction scheme. In algorithm (28)–(30), we do not
update the actions, i.e., A1:N,k=A1:N,0 for all k. In Fig. 4(a) we
show the gradient estimates without the CV while in Fig. 4(b)
we show the gradient estimate as the CV iterated by (29) con-
verges. The convergence of the CV iterated by (29) is shown
in Fig. 4(c). Note the significant variance reduction achieved
which will speed up the convergence of the actions iterated by
(28). The plots only show the gradient of the performance cri-
terion w.r.t. x coordinate of the action at time 1, i.e., A1(1).
The effect of the CV on the remaining components of the per-
formance criterion gradient is similar.

7. Conclusion

In this paper we proposed a novel simulation-based method
to solve the sensor scheduling problem for the case in which
the state, observation and action spaces are continuous valued
vectors. This general continuous state-space case is impor-
tant as it is the natural framework for many applications, like
OTP. We avoided restrictive modelling assumptions on the
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Fig. 4. Variance reduction by control variate: (a) shows gradient estimate without control variate. (b) shows the gradient estimate variance decreasing as the
control variate in (c) converges.

continuous state HMM, such as a linear and (or) Gaussian
system, by recourse to simulation-based methods. This paper
solved the sensor scheduling problem with continuous action
space directly, and not a surrogate problem defined through the
PCRLB or otherwise, which is the approach adopted in other
works. The novel simulation-based method presented used a
two time-scale SA algorithm to find the optimal actions. We
presented general convergence results for convergence to a local
minima of the cost function.

As an application we studied the OTP problem with bearings-
only measurements. We established that in the standard sce-
nario where the observer and the target are well separated,
our simulation-based algorithm converged to a local minimum
of the cost function. In future work we plan to apply our
simulation-based method to related problems in robotics and
sensor networks.

Appendix A. Convergence

In this section, we study the convergence of the two time-
scale SA algorithm (28)–(30). We will first present a result
asserting the convergence (or tracking performance) of CV

constants iteration (29), in the sense that bk will follow the
optimal CV constants given in (24). We then present a result that
concerns the convergence of the iterates A1:N,k to the minimiser
of Ĵ . The convergence results presented below will be then
specialised to the OTP problem in Section 5.

The convergence of a two time-scale SA algorithm related to
(28)–(30) was studied in Konda and Tsitsiklis (2003). The key
to studying convergence is to write the slow time-scale process
in a more general form than (28) as

�k+1 = �k + �k+1Hk+1.

If the parameter �k does not change, say �k=� for all k, the pro-
cess {bk} would converge to some b̄(�). When �k varies slowly,
we would like the process {bk} to ‘track’ b̄(�k). Under certain
regularity assumptions on the process {Hk}, it can be shown that
this would be the case (Konda & Tsitsiklis, 2003). As for the
convergence of {�k}, we will use the line of proof in Bertsekas
and Tsitsiklis (2000) to show lim infk |∇(Ĵ ◦F)(�k)| = 0. De-
tails now follow.

Let � ∈ Rd and the mapping

F = [F1, . . . , Fd ]T : Rd → Rd
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be bounded with bounded partial derivatives, i.e.,

sup
�∈Rd

|F(�)|<∞, (A.1)

sup
�∈Rd

|∇F(�)| = |[∇F1(�), . . . ,∇Fd(�)]|<∞. (A.2)

Note that ∇Fi = [�Fi/��1, . . . , �Fi/��d ]T and that implicit in
the definition of F is the assumption that Rda=Rdu . Denote the
range of the function F by range(F). For algorithm (28)–(30),
define the �-algebra

Fk = �{�0}, Fk = �{�0, �1, . . . ,�k}, k�1.

We have �k, bk being Fk-measurable. Let Ek(·) denote
E(·|Fk). For each � ∈ Rd , define

h̄i (�)= E�∼P�(hi,�(�)), i = 1, 2, (A.3)

h�(�)= h1,�(�)+ h2,�(�), (A.4)

h̄(�)= h̄1(�)+ h̄2(�). (A.5)

A.1. Convergence of the fast time-scale

The assumptions below to establish the convergence of pro-
cess {bk} are essentially the same as in Konda and Tsitsiklis
(2003), with some omissions. These are due to the Markov
structure of �k+1 in Konda and Tsitsiklis (2003), i.e., �k+1 de-
pends on �k and �k , while in our case, there is no dependence
on �k .

Assumption 2. Define the following functions:

S2(�)= E�∼P�(S
2
�(�)),

S × h1(�)= E�∼P�(S�(�)h1,�(�)).

(a) There exists some constant C such that for all � ∈ range(F),
we have max(|S2(�)|, S × h1(�)|)�C.

(b) There exists some constant C such that for all �, �′ ∈
range(F), we have

max(|S2(�)− S2(�′)|, |S × h1(�)− S × h1(�
′)|)

�C|�− �′|.
(c) For each p > 0, there exists a constant Cp > 0 such that

sup
k

E(|S2
�̃k

(�k+1)|p) < Cp,

sup
k

E(|S�̃k
(�k+1)h1,�̃k

(�k+1)|p) < Cp.

Assumption 3. Rewriting the iteration for �k in (28) as �k+1=
�k + �k+1Hk+1, we require sup

k

E(|Hk|p) <∞ for all p > 0.

Assumption 4 (Uniform positive definiteness). The re exists
some constant a > 0 such that for all b ∈ Rd , � ∈ range(F),

bTS2(�)b�a|b|2.

The following result follows from Konda and Tsitsiklis
(2003, Theorem 7).

Lemma 4 (Konda and Tsitsiklis, 2003, Theorem 7). Consider
algorithm (28)–(30) under Assumptions 1–4. Then, almost
surely, supk |bk|<∞ and lim

k
|bk − S2(�̃k)

−1S × h1(�̃k)| = 0.

A.2. Convergence of the slow time-scale

We now present a result concerning the convergence of
∇̂J (�k). The proof of this result can be established using the
same ideas in Bertsekas and Tsitsiklis (2000) and we refer the
reader to the technical report (Singh et al., 2005), which is
available online, for details.

Lemma 5. Consider the recursion for �k in (28) re-written as
�k+1 = �k + �k+1Hk+1 where

Hk+1 =−
(bk)∇F(�k)h̄(�k)+Wk+1,

and noise term

Wk+1 = − 
(bk)∇F(�k)(h1,F (�k)(�k+1)− h̄1(F (�k)))

− 
(bk)∇F(�k)(h2,F (�k)(�k+1)− h̄2(F (�k)))

+ 
(bk)∇F(�k)SF(�k)(�k+1)bk

satisfies Ek(Wk+1)= 0. Assume:

(a) ∇F(�)h̄(F (�)) (= ∇(Ĵ ◦ F)(�)) satisfies sup� |∇(Ĵ ◦
F)(�)|<∞, and, for some constant C and all �, �′,

|∇(Ĵ ◦ F)(�)− ∇(Ĵ ◦ F)(�′)|< C|�− �′|.
(b) That supk E(|Hk|2) <∞ and almost surely,

sup
k

E{|∇F(�k)(h1,F (�k)(�k+1)− h̄1(F (�k)))|2|Fk}
<∞, (A.6)

sup
k

E{|∇F(�k)(h2,F (�k)(�k+1)− h̄2(F (�k)))|2|Fk}
<∞, (A.7)

sup
k

E{|∇F(�k)SF(�k)(�k+1)|2|Fk}<∞. (A.8)

(c) supk|bk|<∞ almost surely. Then, if Ĵ ◦ F is bounded
below,

lim inf
k
|∇(Ĵ ◦ F)(�k)| = 0 almost surely.
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