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Chapter 1

Introduction

1.1 Accident risk assessment

Stochastic dynamical modelling of accident risk is of high interest for the safe
design of complex safety-critical systems and operations, such as in nuclear and
chemical industries, and advanced air traffic management, e.g. see (Smidts et al.,
1998; Labeau et al., 2000; Blom et al., 2003a) and their references. In comparison
with statistical analysis of collected data (Embrechts et al., 1997), stochastic
dynamical modelling approach has the advantage of enabling the use of stochastic
analysis and advanced Monte Carlo (MC) simulation approaches (Doucet et al.,
2001). In some simple cases it is possible to use analytical calculation methods
and these would normally be preferred. However, for complex situations, MC
simulation often represents the only useful alternative. The advantage of standard
MC simulation methods for accident risk assessment is that they do not require
any specific assumptions on the system under consideration.

We define the risk as the probability that a particular adverse event occurs
during a stated period of time. Usually this is the event when the system reaches
a particular critical state. The events with very small probability of occurrence
are called rare events . Obtaining accurate estimates of rare event probabilities,
say about 10−9 to 10−12, is not realistic just by using straightforward MC simu-
lation because most of the realizations of the system never reach the rare event
states. For example, in order to estimate the probabilities of order 10−9, about
1011 simulation runs are needed, which is very time consuming. This makes MC
simulation to be a practical alternative only when it is possible to realize a high
speed up.

The techniques used in (Smidts et al., 1998; Labeau et al., 2000; Blom et al.,
2003a) for speeding up MC simulation are model specific risk decompositions.
Hence there is a need for a more systematic and general approach.

A well known approach is importance sampling, which is based on a modifica-
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1.1. ACCIDENT RISK ASSESSMENT

tion of the underlying probability distribution in such a way that the rare events
occur much more frequently. The effectiveness of such method depends critically
on the ability to find the right change of measure. If it is done improperly, the
importance sampling may produce worse results than straightforward simulation.
Finding the right change of measure generally requires identifying at least the
rough asymptotics of a rare event probability. This type of analysis can be formi-
dable in complex dynamic models. See (Heidelberger, 1995; Shahabuddin, 1995;
Liu, 2003) and (Juneja and Shahabuddin, 2006) for surveys.

An alternative approach for rare event estimation, that requires little analysis
of system structure for its applicability, is to express the small probability of rare
event to be estimated as the product of a certain number of larger probabilities,
which can be efficiently estimated by the MC methods. This can be achieved by
introducing sets of intermediate states that are visited one set after the other, in
an ordered sequence, before reaching the final set of rare event states. The prob-
ability of rare event is then given by the product of the conditional probabilities
of reaching a set of intermediate states given that the previous set of intermediate
states have been reached. Each conditional probability is estimated by simulating
in parallel several copies of the process, i.e. each copy is considered as a particle
following the trajectory generated through the process dynamics. Each parti-
cle branches (i.e. the trajectory splits into a number of independent subpaths,
which subsequently evolve independently of each other) as soon as it enters the
intermediate states, which is usually characterized by crossing a threshold by a
control parameter. Reaching intermediate states is more likely than reaching the
rare event states, and by splitting at each threshold the chances to reach the rare
event states are increasing.

A number of techniques based on the above mentioned idea of state space
decomposition and splitting of trajectories are available in the literature: mul-
tilevel splitting techniques (for a complete review and detailed list of references
see (Glasserman et al., 1999; Lezaud et al., 2004)); empirical method RESTART
(Villén-Altamirano and Villén-Altamirano, 1991, 1994); and more recent Inter-
acting Particle Systems (IPS) approaches (Cérou et al., 2002; Del Moral, 2004;
Cérou et al., 2005). The IPS approach seems to be the most suitable for rare event
estimation in stochastic dynamical systems. This will become clear in Chapter 2,
where we give a brief overview of these splitting approaches.

In practice the IPS approach can be applied to any process. For the conver-
gence proof to hold true, however a strong Markov process is required. The IPS
approach works very well with diffusion processes (Krystul and Blom, 2004), but
needs to be improved in order to provide computationally efficient and reliable
estimates of rare event probabilities in stochastic dynamical systems that exhibit
regime-switching behavior, i.e. the systems evolving in a hybrid state space. In
this thesis we develop efficient model-independent IPS based MC simulation ap-
proaches for accident risk assessment in complex stochastic hybrid systems. This
will be done in Chapter 5.
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CHAPTER 1. INTRODUCTION

1.2 Stochastic dynamic modelling

Another essential part of the thesis deals with the modelling issues of dynamical
hybrid systems. Herein we explain which modelling approach is taken in this
thesis and the reasons of our choice.

While studying a wide variety of real-world phenomena we usually encounter
processes the course of which cannot be predicted beforehand. For example:
sudden deviation of the altitude of an aircraft from a prescribed flight-level; re-
production of bacteria in a favorable environment; movement of a stock price on
a stock exchange. We cannot predict in advance whether at a particular time
moment the altitude of the aircraft will be 19900 or 20100 feet, and what will be
the coordinates. Such processes can be represented by stochastic movement of a
point in a particular space specially selected for each problem. The proper choice
of the phase space turns physical, mechanical or any other real-world system into
dynamical system (it means that the current state of the system determines its
future evolution). Similarly, by a proper choice of the phase space (or state space)
an arbitrary stochastic process can be turned into a Markov process, i.e. a process
the future evolution of which depends on the past only through its present state.
This property is called the Markov property. From a whole set of stochastic
processes this Markov property singles out a class of Markov processes which are
a natural generalization of the dynamical system. In this thesis we deal only with
Markov processes.

There exist two directions in the development of theory of Markov processes:
an analytical and a stochastic direction. Transition densities or transition proba-
bilities are the starting point of the analytical Markov process theory. It studies
various classes of transition densities and transition probabilities, which are de-
scribed by equations (for example, by partial differential equations), which in most
cases can be solved only by numerical approximation methods. When proving the
existence of corresponding Markov processes, any obtained conditions and prop-
erties on transition densities and probabilities are simply interpreted as certain
properties of these processes. Broadly speaking, the approach taken by analyti-
cal Markov process theory could be compared with the analysis of the properties
of random variables on the basis of their distribution functions or densities. In
the stochastic Markov process theory a Markov process is constructed directly
as a solution to stochastic differential equation (SDE). The main advantage of
this approach is that it is easier to study a Markov process as a solution of a
particular equation than a Markov process that is implicitly defined through its
transition density or probability. In this thesis we consider only the stochastic
Markov processes approach for modelling real-world dynamical systems.

Currently, the theory of stochastic differential equations, widely using martin-
gale methods, has become a powerful tool for constructive description of various
classes of stochastic processes including the processes which are semimartingales.
Semimartingales form one of the most important and general class of stochastic
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1.3. NUMERICAL APPROXIMATION

processes which includes diffusion-type processes, point processes, and diffusion-
type processes with jumps that are widely used for stochastic modelling. Con-
sidering SDE with semimartingale solutions gives an advantage. It allows to use
the powerful stochastic calculus available for the semimartingale processes when
performing complex stochastic analysis.

Continuous time Markov processes such as diffusions, point processes and
diffusions with jumps have been successfully used for years in stochastic model-
ling of various continuous time real-world dynamical systems with the Euclidean
phase space. Recently, there is a great interest in more complex continuous time
stochastic processes with the hybrid state space containing both Euclidean and
discrete valued components. Such processes are called stochastic hybrid processes
. Euclidean and discrete valued components may interact, i.e. Euclidean valued
components may influence the dynamics of discrete valued component and vice
versa. This makes the modelling and the analysis of stochastic hybrid processes
quite involved and challenging. Several classes of stochastic hybrid processes
have been studied in the literature, e.g. counting processes with diffusion inten-
sity (Snyder, 1975; Marcus, 1978), diffusion processes with Markovian switching
parameters (Wonham, 1970; Mariton, 1990), switching diffusions (Ghosh et al.,
1993, 1997), piecewise deterministic Markov processes (Davis, 1984, 1993; Ja-
cod and Skorokhod, 1996), Markov decision drift processes (Duyn Schouten and
Hordijk, 1983), stochastic hybrid systems of (Hu et al., 2000; Pola et al., 2003) and
more recent SDE models on hybrid state spaces (Blom, 1990, 2003; Blom et al.,
2003b; Ghosh and Bagchi, 2004; Krystul et al., 2006). All these stochastic hybrid
processes arise in various kind of applications, have different degree of modelling
power and have different properties inherent to the problems that they have been
developed for. As we have already mentioned above, in this thesis we restrict our
attention to the stochastic approaches of modelling of stochastic hybrid systems,
i.e. modelling by Markov processes which are defined as solutions to SDE.

1.3 Numerical approximation

Most SDE do not admit closed form analytical solutions, the only alternative of
studying them is then numerical simulation. The sample paths (realizations) or
functionals of solutions of SDE are commonly simulated through discrete-time
approximations which are implementable on digital computers.

The discrete-time numerical schemes for Itô diffusions are well explained in
the literature (Kloeden and Platen, 1992). A discretization scheme for jump-
diffusion processes with state-dependent intensities was considered in (Glasserman
and Merener, 2004). Weak approximations of killed (or stopped) diffusions were
studied in (Gobet, 1999a,b, 2000, 2001) and (Moon, 2003). They develop and
prove the convergence of numerical schemes that approximate the expected value
of a given function depending on the solution of an Itô stochastic differential
equation and, in some cases, on the first exit time from a given domain. However,
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CHAPTER 1. INTRODUCTION

despite the availability in the literature of a large number of numerical techniques
for SDE, most of the focus has not been on SDE on hybrid state spaces. In this
thesis we study the discrete-time approximations of a class of stochastic hybrid
processes defined as solutions to SDE, namely the switching diffusions with state
dependent switching rates (Ghosh et al., 1993, 1997). We propose to approximate
the switching diffusion by strong Euler-type discretization scheme and prove its
convergence. Next, following the approach of Gobet (1999a) we prove that under
weak conditions the first passage times of the discretized process weakly converge
to the first passage times of the original process. These results are necessary in
order to implement the IPS simulation approaches for a switching diffusions on a
computer.

1.4 Layout and contributions

The thesis consists of six chapters. The contents of the remaining chapters are
briefly summarized as follows.

Chapter 2 This chapter is an introductory discussion concerning accident risk
assessment in stochastic dynamical systems. It starts with a simple mo-
tivating example from air traffic management domain. Two different risk
measures are discussed: the in-crossing risk versus the hitting probability.
Standard Monte Carlo, multilevel splitting and interacting particle systems
approaches for rare event estimation in stochastic dynamical systems are
explained. Interacting particle systems approach, as the most promising, is
tested on a special test example for which the exact analytical solution is
known. This chapter is mainly based on the following papers (Glasserman
et al., 1999; Cérou et al., 2002; Krystul et al., 2003; Krystul and Blom, 2004;
Lezaud et al., 2004), as well as other references in the chapter.

Chapter 3 This chapter deals with modelling of stochastic hybrid processes as
strong solutions to stochastic differential equations on hybrid state space.
A brief introduction to semimartingales is given. The existence and unique-
ness results for R

n-valued jump-diffusions are presented. Next, these results
are extended to a class of hybrid state processes with Poisson and hybrid
Poisson jumps. A general stochastic hybrid process which includes jumps at
the boundaries is characterized. Several classes of stochastic hybrid models
are discussed and compared. Finally, the Markov and the Strong Markov
properties for the general stochastic hybrid process are shown. This chap-
ter is based on (Blom, 2003; Blom et al., 2003b; Ghosh and Bagchi, 2004;
Krystul et al., 2006).

Chapter 4 This chapter addresses some issues concerning time discrete approxi-
mations of stochastic hybrid processes. The stochastic Euler scheme for the
switching diffusion with state dependent switching rates is presented. The
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proof of strong convergence of Euler scheme is given. The approximation of
first passage times is discussed and the convergence is proved. This chapter
is based on (Krystul and Bagchi, 2004).

Chapter 5 In this chapter new Hybrid IPS algorithm is being developed for the
efficient estimation of rare event probabilities in stochastic hybrid systems.
First, the IPS approach is formulated for a switching diffusion case and
subsequently extended to Hybrid IPS algorithm which is designed to cope
with large differences in mode probabilities and rare switchings. Numerical
evaluations and comparison of different versions of the IPS algorithms are
given. This chapter is mainly based on (Cérou et al., 2002; Krystul and
Blom, 2004, 2005b).

Chapter 6 This chapter presents conclusions and recommendations on the pos-
sible directions for future research.
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Chapter 2

Brief overview of Monte

Carlo techniques for

accident risk assessment

2.1 Introduction

The aim of this thesis is to develop a general framework for the modelling and
assessment of accident risks in complex stochastic dynamical systems. In par-
ticular, we are interested in developing the framework which would facilitate the
design of new advanced Air Traffic Management (ATM) concepts.

In the design of advanced ATM concepts, safety is recognized as a key fac-
tor. Traditional ATM design approaches tend first to design advanced ATM that
provides sufficient capacity, and next to extend the design with safety features.
The advantage of this approach is that ATM developments can be performed
separately for a range of clusters of individual elements, i.e., the communication
cluster, the navigation cluster, the human machine interfaces, the advanced pro-
cedures such as missed approaches, air traffic control sector transitions, overtake
manoeuvres in unmanaged airspace, etc. The disadvantage of this traditional
approach is that it fails to address the impact of interactions between ATM ele-
ments on the overall safety of the system and it is much more difficult to extend
the already-existing design so that it meets safety requirements (Blom et al.,
2003a). Today, modelling seems to be the only feasible and cost effective way
to develop new advanced ATM designs that are inherently safe at the capacity
level required. In our intended unified modelling framework all individual ATM
elements and interactions between them will be treated as one complex dynami-
cal system, the evolution of which is described by a set of stochastic differential
equations.
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2.2. MOTIVATING EXAMPLE

This chapter is organized as follows. Section 2.2 presents the motivating ex-
ample from ATM domain and a general discussion. Section 2.3 explains standard
Monte Carlo, multilevel splitting and interacting particle systems approaches for
rare events estimation in stochastic dynamical systems.

2.2 Motivating example

Let us consider a simple scenario where two aircraft are flying towards each other
on the parallel straight lanes on the same flight level. We assume that each
aircraft is represented as a box having a fixed orientation, and we also assume that
evolution of the pair of aircraft is represented by stochastic differential equations,
one for each aircraft, i.e. for i = 1, 2,

dXi
t = ai(Xt)dt+ bi(Xt)dW

i
t ,

with Xt = {X1
t ,X

2
t }T , Wt = {W 1

t ,W
2
t }, W i

t an n-dimensional standard Brownian
motion, {Xi

t} assumes values in R
n. Here the Brownian motion is used to model

the effects of random wind disturbances on aircraft trajectories. Some elements
of Xi

t form a 3D position si
t of aircraft i,

si
t = HXi

t ,

with H a 3× n-matrix. To avoid the Brownian motion behavior in positions, the
following assumption is adopted

Hbi(Xt) = 0 for i = 1, 2.

Hence

dsi
t = vi

tdt with vi
t
4
= Hai(Xt).

Next, let s1t and s2t represent the positions of centers of aircraft pair. Then by

st = s1t − s2t

we denote the relative position (separation process) . The relative velocity is
represented in a similar way

vt = v1
t − v2

t .

Hence
dst = vtdt.

These relative position/velocity equations were used in the previous studies by
Bakker and Blom (1993); Blom and Bakker (2002); Blom et al. (2003b). Of
course, in these references, the description of ATM scenarios involves much more
than these relative position/velocity equations alone. In general, descriptions of
real ATM scenarios are very complex. For example, an aircraft trajectory can
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be subdivided into distinct segments corresponding to different phases of flight
and operation modes. The aircraft can be in nominal mode, where it has small
deviations from the lane; in a non-nominal mode caused by hardware failure or
human error, where it exhibits large deviation from the predefined flight path; in
a sharp turn mode and so forth. Thus for a realistic modelling of ATM scenarios
it is more natural to use a hybrid state stochastic process {Xt, θt} where the
Euclidean valued component Xt, for example, can represent the aircraft position,
speed, acceleration, etc., and the discrete valued component θt can describe the
flight phase, the operation modes of the hardware, the stress level and workload
of the air traffic controller and pilots.

Let us continue with our relative position/velocity equations. We define a
collision domain D ≡ D1 × D2 × D3, (Dk = [−mk,mk]), as a box of a size of
two aircraft with center in the origin of axis. If the relative position process {st}
enters set D then it means that at moment t the physical volumes of two aircraft
are not separated any more, i.e. they have collided. Our aim is to assess the risk
of collision between a pair of aircraft. Now, the natural question arises: how to
measure the accident risk. Several safety metrics have been used in the literature
for accident risk assessment in ATM. Let us discuss them in detail.

Incrossing risk. First, let us consider a safety metric used by the Interna-
tional Civil Aviation Organization (ICAO) known as incrossing risk. This metric
arose from the studies of Rice (1945) and Reich (1964) and its development was
continued by Bakker and Blom (1993); Blom et al. (1994) and Blom and Bakker
(2002). The incrossing risk is defined as an expected number of incrossings of a
process into a particular critical domain (in our example it is a collision domain
D). Each time the separation process {st} enters the set D, we say an incrossing
occurs, and each time it leaves the set D, we say an outcrossing occurs. Following
(Bakker and Blom, 1993) the expected number of incrossings Rin(0, T ) between
a pair of aircraft in the time interval [0, T ] satisfies:

Rin(0, T ) =

∫ T

0

φ(t)dt (2.2.1)

with φ(t) the in-crossing rate, which is defined, if the limit exists, as

φ(t)
4
= lim

∆↓0

P (st−∆ /∈ D, st ∈ D)

∆
.

In (Bakker and Blom, 1993) and (Blom and Bakker, 2002) characterizations of
the in-crossing rate φ(t) have been derived under very general conditions. In
(Bakker and Blom, 1993) the following characterization for in-crossing rate has
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been developed:

φ(t) =

3∑

k=1

∫

Dk

(∫ ∞

0

vkpst,vk,t
(sk,−mk, vk)dvk

+

∫ 0

−∞

−vkpst,vk,t
(sk,mk, vk)dvk

)
dsk

where
D1 ≡ D2 ×D3, D2 ≡ D1 ×D3, D3 ≡ D1 ×D2,
s1 ≡ (s2, s3), s2 ≡ (s1, s3), s3 ≡ (s1, s2).

The above model, referred to as the generalized Reich model, assumes that the
process {st, vt} is Markov and admits a joint density function pst,vt

(s, v) which
satisfies the Chapman-Kolmogorov equation:

pst,vt
(s, v) =

∫

R3

∫

R3

pst,vt|s0,v0
(s, v|s′, v′)ps0,v0

(s′, v′)ds′dv′.

The initial density function ps0,v0
(s, v) is assumed to be known. Theoretically,

the time evolution of the transition density pst,vt|s0,v0
(s, v|s′, v′) can be character-

ized through appropriate forward or backward Kolmogorov equations (see (Bakker
and Blom, 1993; Krystul et al., 2003) for overview and discussion). Unfortunately,
solving these equations analytically or numerically is not realistic when the di-
mension of the process is as high as it is in ATM applications. For some of existing
ATM operations there is an alternative way in using the generalized Reich equa-
tions. This consists of drawing appropriate samples from the true operation, and
to use these samples as an empirical density in the evaluation of the generalized
Reich model (Blom et al., 2003b). This approach can only be applied to ATM
designs that are sufficiently long in operation, but not for advanced designs.

Another important issue is that, in fact, in the above model the incrossing of
collision domain D can happen more than once. The first incrossing is the actual
collision of the aircraft, thus, the successive incrossings have no real physical
meaning. Hence the incrossing risk is an upperbound of the collision probability.
An exact characterization of the difference has been provided by Blom et al.
(2003b). The upperbound approximation aspect has been identified for the first
time by Hsu (1981). By appropriate modelling of the aircraft evolution one can
achieve that the chances to have more than one incrossings, i.e. collisions, between
one pair of aircraft are extremely small.

Hitting probability. In stochastic analysis the collision probability is com-
monly referred to as hitting (sometimes also called first passage, or first exit)
probability. Define the hitting time of set D:

τ = inf{t > 0 : st ∈ D},
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i.e. the first incrossing time of set D. If {st, vt} is an adapted càdlàg (i.e. all its
paths are right-continuous with left limits) process and D is a closed set, then τ
is a stopping time, the event {ω : τ(ω) ≤ T} is well defined and its probability
can be estimated. The probability to hit the target set D within the time interval
[0, T ] is denoted as follows

Phit(0, T ) , P (τ ≤ T ). (2.2.2)

This risk metric agrees with the following definition of risk adopted by (RS, 1992).

Definition 2.2.1. We treat the risk as the probability that a particular adverse
event occurs during a stated period of time. As a probability in the sense of statis-
tical theory, risk obeys all the formal laws of combining probabilities. Explicitly
or implicitly, it must always relate to the risk of a specific event or set of events
and where appropriate must refer to an exposure to hazard specified in terms of
its amount or intensity, time of starting or duration.

For particular types of Markov processes the risk metric (2.2.2) can be nu-
merically evaluated through solving a backward Kolmogorov partial differential
equation (PDE) with Dirichlet type boundary conditions (Friedman, 1975, Theo-
rem 5.2, Chapter 6). However, the numerical evaluation of such PDEs is limited
to two- or at most three- dimensional problems.

Since the Monte Carlo simulation techniques are almost insensitive to the
dimensionality of the problem and do not require specific assumptions on the
system under consideration, they seem to be the perfect alternative to numerical
approximating techniques. In the following section we give a brief introduction
to Monte Carlo techniques and discuss their suitability for rare event probability
estimation in stochastic dynamical systems.

2.3 Monte Carlo and rare event estimation

Throughout this section, all stochastic processes are defined on a complete sto-
chastic basis (Ω,F , (Ft)t≥0, P ) with (Ft)t≥0 a right continuous filtration.

2.3.1 Standard Monte Carlo

In this section we explain the main issues concerning the MC simulation of SDE.
Most SDE do not admit closed form analytical solutions, the only alternative

then is numerical simulation. There are two types of problems connected with the
simulation of solutions of SDE. The first type is where a good pathwise approx-
imation is required, for instance in direct simulations or filtering problems. The
second type of problems is where one is interested in approximating expectations
of functionals of solution, such as its probability distribution and its moments.

13
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For example, consider an R
n-valued Ito process {Xt}, t ∈ [0, T ], satisfying the

following SDE:
dXt = a(Xt)dt+ b(Xt)dWt. (2.3.1)

If one were able to solve (2.3.1) explicitly, the generation of sample paths and
evaluation of functionals

E[f(X)], (2.3.2)

where a given function f depends on a solution X = {Xt, 0 ≤ t ≤ T}, would be
an easy task.

Remark 2.3.1. For accident risk assessment function f would be of the following
form:

f(X) = 1{
inf{t>0:Xt∈D}≤T

} = 1{τ≤T},

where a stopping time τ = inf{t > 0 : Xt ∈ D} is a hitting time of a closed
domain D. Then

E[f(X)] = P (τ ≤ T ) = Phit(0, T ). (2.3.3)

Unfortunately, very few specific SDE have explicitly known solutions. The well
known exceptions are linear Gaussian SDE. A widely applicable approach to eval-
uating functionals like (2.3.2) and to generating sample paths of solutions of SDE
is the simulation of sample paths of appropriate time discrete approximations.
Usually this is done as follows.

For a given time interval [0, T ] we take a discretization 0 = t0 < t1 < · · · <
tL = T with a constant step h = T/L. Then we should construct an appropriate
approximating process

{
Xh

t

}
for the process {Xt}. One of the simplest approxi-

mations is the explicit stochastic Euler approximation. This is a continuous time
stochastic process {Xh

t } =
{
Xh

t , 0 ≤ t ≤ T
}

satisfying the iterative scheme

Xh
tn+1

= Xh
tn

+ a(Xh
tn

)(tn+1 − tn) + b(Xh
tn

)(Wtn+1
−Wtn

), (2.3.4)

n = 0, 1, . . . , L − 1, with initial value Xh
0 = X0. This scheme provides us with a

method for pathwise approximation of the process {Xt}. Note that for a given
time discretization the recursive Euler scheme (2.3.4) determines values of the ap-
proximating process {Xh

t } at the discretization times only. If required, the values
at the intermediate instants can be determined by an appropriate interpolation
method.

Definition 2.3.2. We shall say that a time discrete approximation {Xh
t } with

maximum step size h ∈ (0, T ] converges strongly to {Xt} if for all t ∈ [0, T ]

lim
h→0

E[|Xh
t −Xt|] = 0.

We shall also say that a time discrete approximation {Xh
t } converges strongly with

order γ > 0 to {Xt} if there exist a positive constant C, which does not depend
on h, such that for all t ∈ [0, T ]

E[|Xh
t −Xt|] ≤ Chγ , 0 < h ≤ T.
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For computation of moments, probabilities or other functionals of the process
we do not need so strong form of convergence as in the case of pathwise approx-
imations. It is only required that the probability distribution of the processes
{Xt} and {Xh

t } are sufficiently close to each other, but not necessarily the actual
realizations of the random variables.

Definition 2.3.3. We shall say that a time discrete approximation {Xh
t } with

maximum step size h ∈ (0, T ] converges weakly to {Xt} with respect to a wide
class C of test functions f if for all t ∈ [0, T ]

lim
h→0

∣∣E[f(Xh
t )] − E[f(Xt)]

∣∣ = 0, for all f ∈ C .

We shall also say that a time discrete approximation {Xh
t } converges weakly with

order γ > 0 to {Xt} if there exist a positive constant C, which does not depend
on h, such that for all t ∈ [0, T ]

∣∣E[f(Xh
t )] − E[f(Xt)]

∣∣ ≤ Chγ , 0 < h ≤ T.

Remark 2.3.4. In classical literature, class C is usually a class of sufficiently
smooth functions. One can also consider a more general classes. For example,
Gobet (1999a) has studied weak approximations for killed (or stopped) diffusion
and he required functions f to be only bounded and measurable.

Recall that in our stochastic modelling framework the problem of accident risk
assessment is reduced to the problem of estimating the functional (2.3.3), i.e. the
probability that a process reaches a critical domain within a given time interval.
It can be approximated using an appropriate weak time discrete approximation.

The general discrete-time numerical schemes for Itô diffusions are well ex-
plained in (Kloeden and Platen, 1992). A discretization scheme for jump-diffusion
process with state-dependent intensities was considered in (Glasserman and Mere-
ner, 2004). Weak approximations of killed (or stopped) diffusions were studied in
(Gobet, 1999a,b, 2000, 2001) and (Moon, 2003).

Suppose we have chosen a particular weak approximation {Xh
t } (e.g. Euler)

and want to use it in order to estimate a functional E[f(X)]. We know that in
theory E[f(Xh)] ≈ E[f(X)] with a certain accuracy when h is “small”. Next,
generate a large number of independent realizations Xh,i, i = 1, 2, . . . , N , of
random process Xh = {Xh

tn
, n = 1, 2, . . . , L} and calculate the sample average

1

N

N∑

i=1

f(Xh,i). (2.3.5)

By Kolmogorov’s strong law of large numbers1

1

N

N∑

i=1

f(Xh,i) −→ E[f(Xh)] with probability 1, as N → ∞.

1provided that E[f(Xh)] < ∞.
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Hence, we can consider the sum (2.3.5) as an estimator of E[f(X)] with the
following error:

1

N

N∑

i=1

f(Xh,i) − E[f(X)]

=
( 1

N

N∑

i=1

f(Xh,i) − E[f(Xh)]
)

+
(
E[f(Xh)] − E[f(X)]

)

, εstat + εsys.

Here εsys = εsys(h) is the systematic error and depends only on the approximation
Xh. It tends to 0 as h → 0. The random variable εstat = εstat(ω, h,N) is called
the statistical error. If the number of independent simulations N is large then the
Central Limit Theorem says that the statistical error is asymptotically Gaussian
with mean zero and variance

V ar(εstat) =
1

N
V ar(f(Xh)).

Thus, if N tends to infinity the statistical error tends to 0.
For example, in order to obtain a reliable estimate of rare event probability of

order 10−9, we must run about 1011 independent simulations, which is very time
consuming. To overcome this problem different efficient techniques for speeding
up the simulations have been developed. In many applications the importance
sampling techniques proved to be useful in reducing the variance of the simulated
estimate and hence reducing the computational effort required to achieve a fixed
degree of relative accuracy. The effectiveness of such method depends critically
on the ability to find the right change of measure. If it is done improperly, the
importance sampling may produce worse results than straightforward simulation.
Finding the right change of measure generally requires identifying at least the
rough asymptotics of the quantity to be estimated. This type of analysis can be
formidable in complex dynamic models. See (Heidelberger, 1995; Shahabuddin,
1995; Liu, 2003) and (Juneja and Shahabuddin, 2006) for surveys.

2.3.2 Splitting techniques

In this subsection we discuss a class of splitting techniques for rare event esti-
mation. The simulation approaches that are based on a splitting of trajectories
require little analysis of the structure of the stochastic dynamic system under
consideration. The idea is to express the small probability of rare event to be
estimated as the product of a certain number of larger probabilities, which can
be efficiently estimated by the MC methods. This can be achieved by introducing
sets of intermediate states that are visited one after the other, in an ordered se-
quence, before reaching the final set of rare event states. The probability of rare
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event is then given by the product of the conditional probabilities of reaching a
set of intermediate states given that the previous set of intermediate states have
been reached. Each conditional probability is estimated by simulating in parallel
several copies of the system, i.e. each copy is considered as a particle following the
trajectory generated through the system dynamics. Each particle branches (i.e.
the trajectory splits into a number of independent subpaths, which subsequently
evolve independently of each other) as soon as it enters the intermediate states,
which is usually characterized by crossing a threshold by a control parameter.
Reaching intermediate states is more likely than reaching the rare event states,
and by splitting at each threshold the chances to reach the rare event states are
increasing.

For example, let us consider a multidimensional diffusion process which is
assumed to start in some Borel set D0 ⊂ R

n with a given initial probability
PX0

(·):

dXt = a(Xt)dt+ b(Xt)dWt, (2.3.6)

where a(x) : R
n → R

n, b(x) : R
n → R

n×n and {Wt} is a Wiener process in R
n

independent of X0. For a given target Borel set D ⊂ R
n (D ∩D0 = ∅), we define

the first time the process {Xt} hits D, namely

τD = inf{t ≥ 0 : Xt ∈ D}, τD = ∞ if this set is empty.

We would like to estimate the quantity

Phit(0, T ) = P (τD ≤ T ) (2.3.7)

for some T < ∞, i.e. the probability that diffusion {Xt} will hit the rare event
set D before time T .

Let us introduce a sequence of nested Borel sets2

D = Dm ⊂ · · · ⊂ D1 (2.3.8)

where Dk is a closed Borel set of R
n, and D1 such that D1 ∩D0 = ∅. The first

moment that {Xt} hits a set Dk is defined as the stopping time:

τk
M
= inf{t ≥ 0 : Xt ∈ Dk},

τk = ∞ if this set is empty. Note that P (τD ≤ T ) = P (τm ≤ T ). The process
{Xt}, before hitting D, passes through a sequence of nested sets (2.3.8). An
implicit assumption is that set Dk+1 can not be reached from set Dk−1 without
reaching Dk, k = 1, 2, . . . ,m − 1. Reaching the intermediate sets Dk’s is more
likely than reaching the rare event set D. Next, one can express the probability

2we will also use the term “sequence of nested level sets” or just “level sets”
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of rare event Phit(0, T ) as a product of conditional probabilities of intermediate
“less rare” events leading to it (e.g. see Chapter 5):

Phit(0, T ) =
m∏

k=1

P (τk ≤ T |τk−1 ≤ T ). (2.3.9)

All splitting techniques have in common that they all use the same idea of
state space decomposition. The main differences lie in how the trajectories are
being split and in the existence of convergence proofs. In what follows we give
a brief description of the most interesting splitting approaches. For a complete
review and detailed list of references see (Glasserman et al., 1999; Lezaud et al.,
2004; Cérou et al., 2005).

Multilevel splitting and RESTART

The multilevel splitting approach proceeds as follows. From the initial state
X0 ∈ D0 we generate a trajectory until it reaches the setD1. If the setD1 is hit we
split the trajectory into R1 subtrajectories (trials) which independently continue
evolution until the next set D2 is hit. This procedure is repeated for all sets Dk,
k = 1, . . . ,m− 1, i.e. we split the trajectory into Rk subtrajectories (trials) each
time the set Dk is hit. If a trajectory can not reach the rare event set D during
the fixed time interval [0, T ] then we stop it. We independently repeat the whole
procedure R0 times, thus in total we consider R0R1 . . . Rm−1 trials. Note that
if the process failed to hit the set Dk at the k-th step then in total Rk . . . Rm−1

possible retrials have failed. Let ID denote the total number of trajectories having
reached the set D. Then, an unbiased estimator of Phit(0, T ) = P (τD ≤ T ) is
given by

Phit(0, T ) ≈ ID

R0

∏m−1
i=1 Ri

.

Villén-Altamirano and Villén-Altamirano (1991, 1994) describe a slightly dif-
ferent implementation of the multilevel splitting technique. In their empirical
method called RESTART, a trajectory splits every time it crosses a nested set
Dk, k = 1, . . . ,m − 1, even the one it has reached before. The RESTART ap-
proach can also be used to estimate rare transient events not only the probability
to reach the rare event set.

The central issue in implementing these methods is choosing the nested sets
(2.3.8) and choosing the number of subtrajectories (i.e. R0, R1, . . . , Rm−1) to
generate when a trajectory splits. Too many splittings results in explosive com-
putational requirements, and too few splittings eliminates any reduction in vari-
ance of the estimator, i.e. the resulting algorithm provides no speed up gains in
comparison with the standard Monte Carlo simulation. Glasserman et al. (1999)
analyzed the multilevel splitting method for a class of simple models. Under cer-
tain assumptions they identified the optimal degree of splitting of trajectories at
each level set Dk, as the rarity of the event increases: it should be set so that the

18



CHAPTER 2. BRIEF OVERVIEW OF MONTE CARLO TECHNIQUES

FOR ACCIDENT RISK ASSESSMENT

expected number of subtrajectories reaching each level set Dk remains roughly
constant. Among the restrictions they have imposed to obtain this result, the
most significant is the requirement that there be either only finitely many ways of
achieving each level set Dk or only one component of the process can take values
in space R and the other components can assume only a finite number of val-
ues. Similar results were also obtain by Villén-Altamirano and Villén-Altamirano
(1997) for their empirical method RESTART. Of course, these restricting require-
ments do not mean that the multilevel splitting and the RESTART techniques
can not be used for rare event estimation in complex high dimensional dynam-
ical systems. However, in this case we do not know anything about the choice
of number of splittings and we also do not know how the rate of convergence of
these approaches depends on the number of splittings. For RESTART we do not
even know if there is convergence at all. This is much worse than not knowing
the rate of convergence.

Interacting Particle Systems Approach

Another group of multilevel splitting techniques has been recently studied
by Cérou et al. (2002); Del Moral (2004); Cérou et al. (2005); Le Gland and
Oudjane (2005, 2006); Krystul and Blom (2005b, 2006); Del Moral and Lezaud
(2006). These new splitting techniques are based on the well developed theory of
branching and interacting particle systems (IPS) approximations of Feynman-Kac
formulae (see (Del Moral, 2004)). The advantage of the IPS based approaches is
that the existing precise and general results can be extended to the rare event
analysis. In what follows we describe the idea behind the classical IPS approach
of Cérou et al. (2002).

Let us denote E′ = R
n, and let E ′ be the Borel σ-algebra of E′. Recall

that we consider the diffusion process described by SDE (2.3.6). It starts in a
Borel set D0 and, like in classical multilevel splitting, before hitting the target
set D it has to pass through a sequence of nested Borel sets (2.3.8). To capture
how {Xt} enters each nested set D = Dm ⊂ · · · ⊂ D1 before finally hitting the
target set D, we introduce the discrete time process {ξk, k = 0, 1, . . . ,m} with
values in space E′ defined by ξk , (Xτk∧T ). By the strong Markov property of
{Xt}, the process {ξk, k = 0, 1, . . . ,m} is a Markov chain with transition kernel
Q(ξ, dξ′) = P (ξk ∈ dξ′|ξk−1 = ξ). Now let us define the following conditional
probabilities:

πk(B) , P (ξk ∈ B|τ1 ≤ T, . . . , τk ≤ T ),

pk(B) , P (ξk ∈ B|τ1 ≤ T, . . . , τk−1 ≤ T ),
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for any B ∈ E ′. It is easy to see that

pk(B) =

∫

E′

Q(ξ,B)πk−1(dξ) for all B ∈ E
′, (2.3.10)

πk(B) =

∫
B

1{ξ∈Dk}pk(dξ)∫
E′ 1{ξ′∈Dk}pk(dξ′)

for all B ∈ E
′, (2.3.11)

and

γk , P (τk ≤ T |τk−1 ≤ T ) =

∫

E′

1{ξ∈Dk}pk(dξ). (2.3.12)

Recall that we want to estimate

Phit(0, T ) =

m∏

k=1

γk. (2.3.13)

The evolution of the flow {πk, pk, γk; k = 0, 1, . . . ,m} is described by the following
diagram:

πk−1
prediction
−−−−−−−→ pk

conditioning
−−−−−−−−→ πky

γk

with initial condition π0(dξ) = Pξ0
(dξ) = P (ξ0 ∈ dξ). In that way, each of the

m terms γk in (2.3.13) is characterized as a solution of a sequence of Equations
(2.3.10)-(2.3.12).

The IPS approach is based on the idea to approximate the flow

{πk, pk, γk; k = 0, 1, . . . ,m} by an approximating sequence {πNp

k , p
Np

k , γ
Np

k ; k =
0, 1, . . . ,m} which is described by the following diagram

π
Np

k−1

prediction
−−−−−−−→ p

Np

k

conditioning
−−−−−−−−→ π

Np

ky
γ

Np

k

with initial condition

π0 ≈ π
Np

0 =
1

Np

Np∑

i=1

δ{ξi
0}
,

and approximations

pk ≈ p
Np

k =
1

Np

Np∑

i=1

δ{ξi
k
},

πk ≈ π
Np

k =
1

|INp

k |
∑

i∈I
Np

k

δ{ξi
k
},

γk ≈ γ
Np

k =
|INp

k |
Np

=
1

Np

Np∑

i=1

1{ξi
k
∈Dk},
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in the form of the empirical measures associated with the particle system {tik, ξi
k}

Np

i=1,

where Np denotes the number of particles, I
Np

k = {1 ≤ i ≤ Np : ξi
k ∈ Dk} is the

set of the labels of the particles having succeeded to reach the k-th level set Dk

and |INp

k | denotes the cardinal number of the set I
Np

k . Each particle is a pair

consisting of time index tk , τk ∧ T and state ξk.

The approximation procedure goes as follows. At t = 0 we start with the
empirical measure

π
Np

0 =
1

Np

Np∑

i=1

δ{ξi
0}
,

where {ξi
0}

Np

i=1 are independent samples from initial distribution Pξ0
(·). From

t = 0 to τ1, and from τk−1 to τk each particle evolves stochastically according
to Equation (2.3.6) with initial condition (tik−1, ξ

i
k−1) (prediction step) until it

reaches the next level set Dk or the final time T . Let {t̂ik, ξ̂i
k}

Np

i=1 denote the
values of the particles after the k-th prediction. Then the empirical distribution

p
Np

k associated with the predicted cloud of particles is:

p
Np

k =
1

Np

Np∑

i=1

δ{ξ̂i
k
}.

The particles which do not reach the set Dk before time T are deleted, and the

labels of particles that have reached Dk are saved in the set I
Np

k . Then

γ
Np

k =
|INp

k |
Np

.

If all particles become deleted, i.e. γ
Np

k = 0, then the algorithm is stopped and

Phit(0, T ) ≈ 0. The empirical distribution π
Np

k associated with the measurement
updated cloud of particles is:

π
Np

k =
1

|INp

k |
∑

i∈I
Np

k

δ{ξ̃i
k
}, (2.3.14)

with
ξ̃i
k = ξ̂i

k, i = 1, . . . , Np.

Particles having reached the set Dk are used for a resampling step. We resam-
ple with replacement Np independent particles according to empirical measure

(2.3.14). After this step we again have Np particles {tik, ξi
k}

Np

i=1 at level Dk. Next,
set k := k + 1 and repeat the same simulation procedure iteratively until the
target set D is reached. For k = m we have

Phit(0, T ) ≈
m∏

k=1

γ
Np

k .
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In (Cérou et al., 2002) it is proven that the particle estimates are unbiased,
i.e.

E
[ m∏

k=1

γ
Np

k

]
= P (τm ≤ T ) = Phit(0, T )

and the rate of convergence is of order
√
Np :

(
E

[∣∣
m∏

k=1

γ
Np

k −
m∏

k=1

γk

∣∣q
]) 1

q ≤ aqbm√
Np

,

finite constants aq and bm depend only on the parameters q and m respectively.
This means that by running the IPS algorithm many times (let us say N

times) and by taking the sample average of random independent realizations of

Z ,
∏m

k=1 γ
Np

k we obtain an unbiased and consistent estimator of Phit(0, T ):

Phit(0, T ) ≈ 1

N

N∑

i=1

Zi,

it converges a.s. to Phit(0, T ) as N → ∞, by the strong law of large numbers.

2.3.3 Numerical example: IPS for diffusion

To illustrate the whole potential of the IPS simulation method we apply it to a
special test example for which we know the exact analytical solution. We consider
the Geometric Brownian motion process driven by the following SDE:

dXt =
(
µ+

σ2

2

)
Xtdt+ σXtdWt, X0 = x (2.3.15)

where µ and σ are strictly positive constants. We want to estimate the probability

that process {Xt} will hit barrier d before time T , i.e. P (τd ≤ T ) where τd
4
=

inf{t > 0 : Xt ∈ [d,+∞); X0 = x}. Although the above model is rather simple,
it allows us to check the IPS method accuracy. This is possible thanks to the
following analytical formula (Tuckwell and Wan, 1984):

P (τd ≤ t) =

∫ t

0

ln(d/x)√
2πσ3s3

exp
{−(ln(d/x) − µs)2

2σ2s

}
ds. (2.3.16)

Before starting the simulations we should define the nested sequence of sets: D =
Dm ⊂ · · · ⊂ D1. For {Dj , j = 1, . . . ,m} we choose an increasing sequence of
real numbers {dj , j = 1, . . . ,m}, with 0 < d1 < · · · < dm−1 < dm = d and take
Dj = [dj ,+∞). In our example we choose numbers dj experimentally so that
approximately 40%−50% of particles started at level Dj−1 manage to reach level
Dj , j = 1, . . . ,m. In Figure 2.1(a) we see the probability P (τd ≤ T ) as a function
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of d. The blue curve with squares is the numerically computed theoretical value,
and the red curve with asterisks is the Monte-Carlo simulation result, with 1000
runs of 1000 particles each:

Phit(0, T ) ≈ 1

1000

1000∑

i=1

Zi,

where Zi denotes the i-th independent realization of random variable Z =
∏m

k=1 γ
Np

k .
We use the Euler scheme with 500 discretization time steps. The parameters of
Geometric Brownian motion process are µ = 1, σ = 1 and X0 = 1. The largest
value of d was 3550. This means that the probability for the process started at
X0 = 1 to reach the desired level is approximately 6.48 × 10−13, so a standard
Monte Carlo approach would not be practical. From Table 2.1 or Figure 2.1(b)
we can see that the method works quite well; the relative error is less than 60%.
We still get quite satisfactory results even with a fewer number of simulation runs.
We repeat the above example with the same parameters, but instead of 1000 runs
with 1000 particles now we run only 100 with 1000 particles. The results can be
seen in Figure 2.2 and in Table 2.2.
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Figure 2.1: Simulation results: (a) Probability to hit barrier d before time T = 1.
1000 runs with 1000 particles; (b) Relative error
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Table 2.1: Probability to hit barrier d before time T = 1. 1000 runs with 1000
particles

Target Level’s Probability to Probability to Relative
Level, number, hit barrier dj hit barrier dj Error
dj j Analytical IPS algorithm

5 2 0.38448 0.372872 0.03
70 12 0.00095 8.01E-04 0.16

215 19 1.05e-05 8.29E-06 0.21
295 21 2.38E-06 1.77E-06 0.26
490 26 1.78E-07 1.41E-07 0.21
740 31 1.80E-09 1.36E-08 0.25

1070 36 2.02E-09 1.32E-09 0.34
1415 40 3.51E-10 2.25E-10 0.36
1805 45 7.19E-11 3.92E-11 0.45
2515 51 7.55E-12 3.87E-12 0.49
2850 54 3.14E-12 1.55E-12 0.51
3550 58 6.48E-13 2.17E-13 0.67

Table 2.2: Probability to hit barrier d before time T = 1. 100 runs with 1000
particles

Target Level’s Probability to Probability to Relative
Level, number, hit barrier dj hit barrier dj Error
dj j Analytical IPS algorithm

5 2 0.38448 0.374263 0.03
70 12 0.00095 7.99E-04 0.16

215 19 1.05e-05 8.43E-06 0.20
295 21 2.38E-06 1.88E-06 0.21
490 26 1.78E-07 1.27E-07 0.28
740 31 1.80E-09 1.01E-08 0.44

1070 36 2.02E-09 1.21E-09 0.40
1415 40 3.51E-10 1.05E-10 0.70
1805 45 7.19E-11 7.30E-11 0.02
2515 51 7.55E-12 1.16E-11 0.54
2850 54 3.14E-12 4.67E-13 0.85
3550 58 6.48E-13 2.52E-13 0.61
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Figure 2.2: Simulation Results: (a) Probability to hit barrier d before time T = 1.
100 runs with 1000 particles; (b) Relative error
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2.4 Concluding Remarks

In this chapter we have discussed the problem of accident risk assessment in sto-
chastic dynamical systems, using relative position/velocity equations in ATM.
We have explained that collision risk in ATM coincides with hitting probability
in stochastic analysis. In case when the dimension of stochastic process describ-
ing the dynamical system is at most three, then the hitting probability can be
numerically evaluated through solving a backward Kolmogorov PDE with Dirich-
let type boundary conditions. For complex real-world applications Monte Carlo
simulation remains the only feasible approach. Of course, it is unrealistic to esti-
mate extremely small rare event probabilities just by using a naive Monte Carlo
simulation. When the extremely small probabilities are considered, one has to use
special techniques which allow to speed up the simulation. Importance sampling
and multilevel splitting methods have been used to obtain dramatic improvements
in efficiency in estimating small probabilities in queueing and reliability systems.
However, these two methods have serious drawbacks. The importance sampling
techniques, based on changing probability distributions to make rare events less
rare, depend critically on the ability to find the right change of measure. Finding
the right change of measure in complex dynamical models is practically impos-
sible. The efficiency of multilevel splitting techniques depends on the choice of
the level sets and especially on the optimal number of splittings. Too many
splittings results in explosive computational requirements, and too few splittings
provides no speed-up gains over straightforward Monte Carlo simulation. So far,
the theoretical results regarding the optimal choice of splittings have been ob-
tained only for very simple cases (Glasserman et al., 1999; Villén-Altamirano and
Villén-Altamirano, 1997). On the other hand, the IPS based approaches do not
have such restrictive limitations as do multilevel splitting techniques have. More-
over, the IPS approaches have the advantage of being based on sound theory with
many general results available such as proof of convergence and error estimates
(Del Moral, 2004). Our numerical test of IPS approach showed that it has a
great potential. In Chapter 5 we will extend it to a Hybrid IPS approach which
is aimed for efficient estimation of rare event probabilities in stochastic hybrid
systems with rare switches and large differences in mode probabilities.
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Chapter 3

Generalized stochastic

hybrid processes as strong

solutions to stochastic

differential equations

3.1 Introduction

In a series of recent studies by Blom (2003); Blom et al. (2003b); Ghosh and
Bagchi (2004) and Krystul et al. (2006), several distinct classes of stochastic
hybrid processes have been developed as solutions of SDE on hybrid state spaces.
These classes have different modelling power and cover a wide range of interesting
phenomena (see Table 3.1), though, all they contain, as a subclass, the switching
diffusion processes of Ghosh et al. (1997). The entries in Table 3.1 have the
following meaning:

• Switching diffusion: between the random switches of the discrete valued
component, the Euclidean valued component evolves as diffusion.

• Random hybrid jumps: simultaneous and dependent jumps and switches of
discrete and Euclidean valued components are driven by a Poisson random
measure.

• Boundary hybrid jumps: simultaneous and dependent jumps and switches
of discrete and Euclidean valued components are initiated by boundary hit-
tings.

• Martingale inducing jumps: the Euclidean valued components driven by a
compensated Poisson random measure may jump so frequently that it is no
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longer a process of finite variation.

• Mode dependent dimension: the dimension of the Euclidean state space
depends on the discrete valued component (i.e. the mode).

Table 3.1: Classes of stochastic hybrid processes

Switching Random Boundary Martingale Mode

Diffusion Hybrid Hybrid Inducing dependent

Jumps Jumps Jumps dimension

Blom (2003)
X X - - -

Ghosh and Bagchi (2004)

Blom et al. (2003b)
X X X - -

Krystul et al. (2006)

Ghosh and Bagchi (2004) X - X - X

Krystul et al. (2006) X X - X -

Blom (2003) studied the jump-diffusion SDE of Lepeltier and Marchal (1976)
driven by Brownian motion and Poisson random measure. He placed the SDE
of Lepeltier and Marchal (1976) on a hybrid state space and showed that strong
uniqueness and existence, semimartingale and Markov properties identified by Le-
peltier and Marchal (1976) carry over to the resulting stochastic hybrid process.
This process includes diffusion, independent random jumps and switches of Euclid-
ean valued and discrete valued components, and also the hybrid jumps. Hybrid
jumps are special types of jumps where discontinuity in the Euclidean valued
process components happens synchronous with a discontinuity in the discrete val-
ued process component. The proof of the strong Markov property by Lepeltier
and Marchal (1976) was sufficient to be carried over to the hybrid state space sit-
uation considered by Blom (2003), however it did not carry over to the stochastic
hybrid processes with instantaneous jumps at the boundaries considered by Blom
et al. (2003b).

Ghosh and Bagchi (2004) have developed two extensions to the switching dif-
fusion model of Ghosh et al. (1997). Their first model, just as the model of Blom
(2003), includes diffusion, hybrid jumps and independent jumps and switches
of Euclidean valued and discrete valued components. The second model is the
switching diffusion with instantaneous jumps at the boundaries and with possi-
bility to reset dimensions of the hybrid state space after the jump. To prove the
existence and uniqueness theorems for both models Ghosh and Bagchi (2004) used
the method from (Ikeda and Watanabe, 1989). However, it has not been clarified
if the strong Markov property holds and if the solutions are semimartingales or
not.

The aim of this chapter is to significantly further the study of SDE on a hy-
brid state space, including characterizations of their solutions in terms of pathwise
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uniqueness, semimartingale and strong Markov process properties. First, using
(Gihman and Skorohod, 1982; Jacod and Shiryaev, 1987), we identify and charac-
terize a very general class of jump-diffusions which are defined as semimartingale
solutions of SDE. From this point on we follow a similar path as taken by (Blom,
1990, 2003) in transferring this pathwise uniqueness and semimartingale under-
standing to the class of stochastic hybrid processes. This subsequently allows
to incorporate instantaneous jumps at a boundary within the same framework
including pathwise uniqueness and semimartingale property. Finally we prove
the strong Markov property for the stochastic hybrid process with instantaneous
jumps at a boundary by considering it as a concatenation of killed strong Markov
processes. To prove that this concatenation forms a strong Markov process we
follow a novel and mathematically constructive approach.

This chapter is organized as follows. Section 3.2 provides a brief introduction
to semimartingales. Section 3.3 presents the existence and uniqueness results
for R

n-valued jump-diffusions. Section 3.4 extends these results to hybrid state
processes with Poisson and hybrid Poisson jumps. In Section 3.5 we characterize
a general stochastic hybrid process which includes jumps at the boundaries. Sec-
tion 3.6 presents a comparison of different stochastic hybrid models. Finally, the
Markov and the Strong Markov properties for a general stochastic hybrid process
are shown in Sections 3.7 and 3.8.

3.2 Semimartingales and characteristics

In this section following (Jacod and Shiryaev, 1987) we provide basic results con-
cerning semimartingales, their canonical representation and their relation with
the large class of SDE to be studied in this chapter.

Throughout this chapter we assume that a probability space (Ω,F , P ) is
equipped with a right-continuous filtration (Ft)t≥0. The stochastic basis
(Ω,F , (Ft)t≥0, P ) is called complete if the σ-algebra F is P -complete and if every
Ft contains all P -null sets of F . Note that it is always possible to “complete” a
given stochastic basis, if it is not complete, by adding all subsets of P -null sets to
F and Ft. We will therefore assume throughout this chapter that the stochastic
basis (Ω,F , (Ft)t≥0, P ) is complete.

The predictable σ-algebra is the σ-algebra P on Ω × R+ that is generated by
all left-continuous adapted processes (considered as mappings from Ω × R+ into
some set E). A process or random set that is P-measurable is called predictable.

Definition 3.2.1. The canonical setting. Ω is the “canonical space” (also
denoted by D(Rn)) of all càdlàg (right-continuous and admit left hand limits)
functions ω : R+ → R

n; X is the “canonical process” defined by Xt(ω) = ω(t);
H = σ(X0); finally (Ft)t≥0 is generated by X and H , by which we mean:

(i) Ft =
⋂

s>t F 0
s and F 0

s = H ∨ σ(Xr : r ≤ s) (in other words, (Ft)t≥0 is
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the smallest filtration such that X is adapted and H ⊂ F0);

(ii) F = F∞−(=
∨

t Ft).

Throughout this chapter we assume that canonical setting of Definition 3.2.1
is in force. The R

n-valued càdlàg stochastic process {Xt} defined on a probability
space (Ω,F , (Ft)t≥0, P ) is a semimartingale if Xt admits a decomposition of the
form

Xt = X0 +At +Mt, t ≥ 0, (3.2.1)

where X0 is a finite-valued and F0-measurable, {At} ∈ V n is a process of bounded
variation, {Mt} ∈ M n

loc is an n-dimensional local martingale starting at 0, and
for each t ≥ 0, At and Mt are Ft-measurable. Recall that {Mt} ∈ M n

loc if and
only if there exists a sequence of (Ft)t≥0-stopping times (τk)k≥1 such that τk ↑ ∞
(P -a.s.) for k −→ ∞ and for each k ≥ 1, the stopped process

{Mτk

t } with Mτk

t = Mt∧τk
, k ≥ 1, (3.2.2)

is a martingale:

E|Mτk

t | <∞, E[Mτk

t | Fs] = Mτk
s (P − a.s.), s ≤ t. (3.2.3)

Denote by µ = µ(ω; ds, dx) the measure describing the jump structure of {Xt}:

µ(ω; (0, t] ×B) =
∑

0<s≤t

I{ω:∆Xs(ω)∈B}(ω), t > 0, (3.2.4)

where B ∈ B(Rn \ {0}), i.e. the σ-algebra of Borel sets on R
n \ {0}, ∆Xs =

Xs−Xs− and I{ω:∆Xs(ω)∈B}(ω) is the indicator function of set {ω : ∆Xs(ω) ∈ B}.
By ν = ν(ω; ds, dx) we denote a compensator of µ which is a predictable measure
(unique up to a P -null set) with the property that µ − ν is a local martingale
measure. This means that for each B ∈ B(Rn \ {0}) :

(µ(ω; (0, t] ×B) − ν(ω; (0, t] ×B))t>0 (3.2.5)

is a local martingale with value 0 for t = 0.

A semimartingale {Xt} is called special if there exists a decomposition (3.2.1)
with a predictable process {At}. Every semimartingale with bounded jumps
(|∆Xt(ω)| ≤ b < ∞, ω ∈ Ω, t > 0) is special (see Jacod and Shiryaev, 1987,
Chapter I, 4.24).

Let h be a truncation function, i.e. ∆Xs−h(∆Xs) 6= 0 if and only if |∆Xs| > b
for some b > 0. Hence

X̃t =
∑

0<s≤t

(∆Xs − h(∆Xs)) (3.2.6)
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denotes the jump part of {Xt} corresponding to large jumps. The number of the
large jumps is a.s. finite on [0, t], for all t > 0, because for all semimartingales
(Jacod and Shiryaev, 1987, Chapter I, 4.47)

∑

0<s≤t

(∆Xs)
2 <∞, P − a.s. (3.2.7)

The process {Xt − X̃t} is a semimartingale with bounded jumps and hence it is
special:

Xt − X̃t = X0 + B̃t + M̃t (3.2.8)

where {B̃t} is a predictable process and {M̃t} is a local martingale. The “tilde”
above the process denotes the dependence on the truncation function h.

Every local martingale M̃t can be decomposed as:

M̃t = M c
t + M̃d

t (3.2.9)

where M c
t is a continuous (martingale) part and M̃d

t is a purely discontinuous
(martingale) part which satisfies:

M̃d
t =

∫ t

0

∫
h(x)(µ(ds, dx) − ν(ds, dx)). (3.2.10)

Note that the continuous martingale part M c
t does not depend on h. By definition

of µ and {X̃t} we have

X̃t =

∫ t

0

∫
(x− h(x))µ(ds, dx). (3.2.11)

Consequently, substitution of (3.2.9) - (3.2.11) into (3.2.8) yields the following
canonical representation of semimartingale {Xt}:

Xt = X0+B̃t+M
c
t +

∫ t

0

∫
h(x)(µ(ds, dx)−ν(ds, dx))+

∫ t

0

∫
(x−h(x))µ(ds, dx).

(3.2.12)

Next we may assume h(x) = x ·I{x : |x|<1}(x) and replace B̃t by Bt. Then (3.2.12)
takes on the form:

Xt = X0 +Bt +M c
t +

∫ t

0

∫

|x|<1

x(µ(ds, dx) − ν(ds, dx)) +

∫ t

0

∫

|x|≥1

xµ(ds, dx).

(3.2.13)
We denote by 〈M c

t 〉 the predictable quadratic variation of {M c
t }, hence (M c

t )2 −
〈M c

t 〉 is a local martingale.
We call the characteristics associated with h of the semimartingale {Xt} (if

there may be an ambiguity on h) the triplet (Bt, Ct, ν) consisting of:
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(i) A predictable process Bt = (Bi
t)i≤n in V n, namely the process Bt = B̃t

appearing in (3.2.8);

(ii) A continuous process Ct = (Cij
t )i,j≤n in V n×n, namely Ct = 〈M c

t 〉;

(iii) A predictable random measure ν on R+ × R
n, namely the compensator of

random measure µ associated to the jumps of X by (3.2.4).

Definition 3.2.2. Jump diffusion. {Xt} is called a jump diffusion on
(Ω,F , (F )t≥0, P ) if it is a semimartingale with the following characteristics:





Bi
t(ω) =

∫ t

0
αi(s,Xs(ω))ds (= +∞ if the integral diverges)

Cij
t (ω) =

∫ t

0
βij(s,Xs(ω))ds (= +∞ if the integral diverges)

ν(ω; dt× dx) = dt×Kt(ω,Xt(ω), dx)

(3.2.14)
where:





α : R+ × R
n −→ R

n is Borel

β : R+ × R
n −→ R

n × R
n is Borel, β(s, x) is symmetric nonnegative

Kt(ω, x, dy) is a Borel transition kernel from Ω × R
n

into R
n,

with Kt(ω, x, {0}) = 0.

Next, we relate the above with stochastic differential equations, partially fol-
lowing (Jacod and Shiryaev, 1987).

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis endowed with:

(i) W = (W i)i≤m, an m-dimensional standard Wiener process (i.e., each W i is
a standard Wiener process, and the W i’s are independent);

(ii) pi are Poisson random measures on R+×U with intensity measure dt·mi(du),
i = 1, 2; here, (U,U ) is an arbitrary Blackwell space (one may take U = R

d

for practical applications), and mi, i = 1, 2, is a positive σ-finite measure on
U,U ; We denote the compensated Poisson random measure by qi(dt, du) =
pi(dt, du) − dt ·mi(du), i = 1, 2.

Let us also be given the coefficients:





a = (ai)i≤n, a Borel function: R+ × R
n −→ R

n

b = (bij)i≤n,j≤m, a Borel function: R+ × R
n −→ R

n × R
m

f1 = (f i
1)i≤n a Borel function: R+ × R

n × U −→ R
n,

f2 = (f i
2)i≤n a Borel function: R+ × R

n × U −→ R
n.

(3.2.15)
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Let the initial variable be an F0-measurable R
n-valued random variable X0. The

stochastic differential equation is as follows:

dXt = a(t,Xt)dt+ b(t,Xt)dWt +

∫

U

f1(t,Xt−, u)q1(dt, du)

+

∫

U

f2(t,Xt−, u)p2(dt, du), (3.2.16)

Define two stochastic sets:

D1 = {(ω, t) : p1(ω; {t} × U) = 1},
D2 = {(ω, t) : p2(ω; {t} × U) = 1}.

If at least one of the Poisson random measures, p1 or p2, has a “jump” at point
(t, u), then

∆Xt(ω) = ID1
(ω, t) · f1(t,Xt−(ω), u) + ID2

(ω, t) · f2(t,Xt−(ω), u).

Next, let us assume that the following integrals make sense.

∫ t

0

|a(s,Xs)|ds <∞, P -a.s. (3.2.17)

∫ t

0

∫

U

|f1(s,Xs−, u)|2dsm1(du) <∞, P -a.s., (3.2.18)

∫ t

0

∫

U

|f2(s,Xs−, u)|p2(ds, du) <∞, P -a.s., (3.2.19)

∫ t

0

|bij(s,Xs)|2ds <∞, P -a.s. for any i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (3.2.20)

for every t ∈ R+. By a solution to the SDE (3.2.16) we mean a càdlàg Ft-adapted
process {Xt} such that the following equation is satisfied with probability one for
every t ∈ R+

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs +

∫ t

0

∫

U

f1(s,Xs−, u)q1(ds, du)

+

∫ t

0

∫

U

f2(s,Xs−, u)p2(ds, du). (3.2.21)

If such process {Xt} exists and conditions (3.2.17)-(3.2.20) are satisfied then it
is a semimartingale with the characteristics, associated with truncation function
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h = x · I{x : |x|<1}(x), given by (3.2.14), where

α(t,Xt(ω)) =
[
a(t,Xt(ω)) −

∫

|f1|≥1

f1(t,Xt−(ω), u)m1(du)

+

∫

|f2|<1

f2(t,Xt−(ω), u)m2(du)
]
,

β(t,Xt(ω)) = b(t,Xt(ω))bT (t,Xt(ω)),

Kt(ω,Xt(ω), A) = ID1
(ω, t) ·

∫

U

IA\{0}

(
f1(t,Xt−(ω), u)

)
m1(du)

+ ID2
(ω, t) ·

∫

U

IA\{0}

(
f2(t,Xt−(ω), u)

)
m2(du).

3.3 Semimartingale strong solution of SDE

3.3.1 Existence and uniqueness concepts

There are two important notions of the sense in which a solution to stochastic
differential equation can be said to exist and also two senses in which uniqueness
is said to hold.

Definition 3.3.1. Strong Existence. We say that strong existence holds if
given a probability space (Ω,F , P ), a filtration Ft, an Ft-Wiener process W ,
two Ft-Poisson random measures p1, p2, and an F0-measurable initial condition
X0, then an Ft-adapted process {Xt} exists satisfying (3.2.21) for all t ≥ 0.

Definition 3.3.2. Weak Existence. We say that weak existence holds if given
any probability measure η on R

n there exists a probability space (Ω,F , P ), a
filtration Ft, an Ft-Wiener process W , two Ft-Poisson random measures p1,
p2, and an Ft-adapted process {Xt} satisfying (3.2.21) for all t ≥ 0 as well as
P (X0 ∈ B) = η(B).

Strong existence of a solution requires that the probability space, filtration,
and driving terms (W,p1, p2) be given first and that the solution {Xt} then be
found for the given data. Weak sense existence allows these objects to be con-
structed together with the process {Xt}. Clearly, strong existence implies weak
existence.

Definition 3.3.3. Strong Uniqueness. Suppose that a fixed probability space
(Ω,F , P ), a filtration (Ft)t≥0, an Ft-Wiener process W , and two Ft-Poisson
random measures p1 and p2 are given. Let {Xt} and {X ′

t} be two solutions of
(3.2.16) for the given driving terms (W,p1, p2). We say that strong uniqueness
holds if

P (X0 = X ′
0) = 1 =⇒ P (Xt = X ′

t for all t ≥ 0) = 1, (3.3.1)

i.e. {Xt} and {X ′
t} are indistinguishable.
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Remark 3.3.4. Since solutions of (3.2.16) are càdlàg processes the requirement
(3.3.1) can be relaxed to:

P (X0 = X ′
0) = 1 =⇒ P (Xt = X ′

t) = 1, for every t ≥ 0. (3.3.2)

Definition 3.3.5. Weak Uniqueness. Suppose we are given weak sense solu-
tions

{(Ωi,Fi, Pi), (Fi,t)t≥0, {Xi,t}}, i = 1, 2,

to (3.2.16). We say that weak uniqueness holds if equality of the distributions
induced on R

n by Xi,0 under Pi, i = 1, 2, implies the equality of the distributions
induced on D(Rn) by {Xi,t} under Pi, i = 1, 2.

Strong uniqueness is also referred to as pathwise uniqueness, whereas weak
uniqueness is often called uniqueness in (the sense of probability) law. Strong
uniqueness implies weak uniqueness.

3.3.2 Strong Uniqueness

In what follows we will state and prove strong existence and strong uniqueness
theorems for SDE (3.2.16), following (Gihman and Skorohod, 1982, pp.223-245).

We assume that Wiener processW and Poisson random measures p1 and p2 are
mutually independent. Suppose {Wt}, p1 and p2 are adapted to the given filtration
(Ft)t≥0. If τ is a stopping time relative to Ft andXτ is an Fτ measurable random
variable, then we will be looking for an {Ft}-adapted process {Xt}, defined for
t > τ , for which the following equation holds with probability 1

Xt = Xτ +

∫ t

τ

a(s,Xs)ds+

∫ t

τ

b(s,Xs)dWs +

∫ t

τ

∫

U

f1(s,Xs−, u)q1(ds, du)

+

∫ t

τ

∫

U

f2(s,Xs−, u)p2(ds, du). (3.3.3)

If equality (3.3.3) holds for all t ∈ (τ, ζ), with ζ another stopping time, ζ > τ ,
then we will say that {Xt} is the solution of SDE (3.2.16) on interval (τ, ζ), if
started at Xτ .

Theorem 3.3.6. A solution of Equation (3.2.16) for any given X0 is strongly
unique if the coefficients of Equation (3.2.16) satisfy the following conditions:

(i) for each r > 0 there exist a constant lr, for which

|a(s, x) − a(s, y)|2 + |b(s, x) − b(s, y)|2

+

∫

U

|f1(s, x, u) − f1(s, y, u)|2m1(du) ≤ lr|x− y|2,

for all |x| ≤ r, |y| ≤ r, s ≤ r.

37



3.3. SEMIMARTINGALE STRONG SOLUTION OF SDE

(ii)

∫ t

0

∫

U

|f2(s,Xs−, u)|p2(ds, du) <∞, P -a.s.,

(iii) m2(Su) <∞, where Su is the projection on space U of the support of func-
tion f2(·, ·, ·).

Proof. We fix some admissible filtration {Ft} and consider only Ft-measurable
solutions. Suppose τ1 < τ2 < . . . are all jump moments of the Poisson process
p2(Su, [0, t]). Since it is a homogeneous process with parameter m2(Su) < ∞,
there will be only finite number of jumps on every finite interval. Let τ0 = 0.
Note, that it suffices to establish the uniqueness of a solution of Equation (3.2.16)
on interval [τk, τk+1], with assumption that Xτk

is given. Then we establish
by induction that a solution of (3.2.16) is unique on any interval [0, τk], and⋃

[0, τk] = R+. Suppose {Xt} and {Xt} are two solutions of (3.2.16) on [τk, τk+1),
for which Xτk

= Xτk
. For τk ≤ t < τk+1

Xt = Xτk
+

∫ t

τk

a(s,Xs)ds+

∫ t

τk

b(s,Xs)dWs +

∫ t

τk

∫

U

f1(s,Xs−, u)q1(ds, du),

(3.3.4)
since the last integral with respect to measure p2 in (3.3.3) will be equal to zero.
Similar equality holds for solution Xt. Let ζr = inf{t > τk, |Xt| + |Xt| ≥ r} ∧
r. Next, we provide the estimates of the right-hand side terms of the following
expression:

Xt∧ζr
−Xt∧ζr

=

∫ t∧ζr

τk

[a(s,Xs) − a(s,Xs)]ds

+

∫ t∧ζr

τk

[b(s,Xs) − b(s,Xs)]dWs

+

∫ t∧ζr

τk

[f1(s,Xs−, u) − f1(s,Xs−, u)]q1(ds, du). (3.3.5)

E

(∣∣∣
∫ t∧ζr

τk

[a(s,Xs) − a(s,Xs)]ds
∣∣∣
2

|Fτk

)

≤ lr(t− τk)E
(∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
,

E

(∣∣∣
∫ t∧ζr

τk

[b(s,Xs) − b(s,Xs)]dWs

∣∣∣
2

|Fτk

)

≤ lrnmE

(∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
,
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where n and m are the dimensionalities of Xs and Ws correspondingly,

E

(∣∣∣
∫ t∧ζr

τk

∫

U

(f1(s,Xs−, u) − f1(s,Xs−, u))q1(ds, du)
∣∣∣
2

|Fτk

)

≤ lrE

(∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
,

(we have made use of the properties of stochastic integrals and conditions of the
theorem), then for some L (it is a Fτk

-measurable quantity) we have the following
estimate for expression (3.3.5):

E(|Xt∧ζr
−Xt∧ζr

|2|Fτk
) ≤ LE

(∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
.

But then the following holds

E(|Xt −Xt|2I{ζr>t}|Fτk
) ≤ L

∫ t

τk

E(|Xs −Xs|2I{ζr>s}|Fτk
)ds. (3.3.6)

Hence, because of Gronwall’s lemma :

E|Xs −Xs|2I{ζr>t} = 0.

Since I{ζr>t} −→ 1 as r −→ ∞, Xt = Xt for τk ≤ t < τk+1. It remains to show

that Xτk+1
= Xτk+1

. Suppose X∗
t is a solution of (3.3.4). We have already shown

that it is unique. Now note, that solution of Equation (3.3.3) at point τk+1 can
be expressed in terms of X∗

t on [τk, τk+1) in the following way:

Xτk+1
= X∗

τk+1−
+ f2(τk+1,X

∗
τk+1−

, ûk+1),

where ûk+1 - such a point from U , that p2({ûk+1} × {τk+1}) = 1. From the
coincidence of Xτk+1− and Xτk+1− follows the coincidence Xτk+1

= Xτk+1
.

It is easy to see from the proof of Theorem 3.3.6 that not only two solutions
of one equation coincide, but also solutions of two different equations with equal
initial conditions coincide as long as their coefficients coincide. We formulate this
statement precisely, known as the theorem of local uniqueness.

Theorem 3.3.7. Suppose {Xt} is a solution of Equation (3.2.21), and {X̃t} is
a solution of equation

X̃t = X̃0 +

∫ t

0

ã(s, X̃s)ds+

∫ t

0

b̃(s, X̃s)dWs

+

∫ t

0

∫

U

f̃1(s, X̃s−, u)q1(ds, du) +

∫ t

0

∫

U

f̃2(s, X̃s−, u)p2(ds, du).

If the conditions of Theorem 3.3.6 are satisfied and X0 = X̃0, a(s, x) = ã(s, x),
b(s, x) = b̃(s, x), fk(s, x, u) = f̃k(s, x, u) given |x| ≤ N , then Xs = X̃s for s ≤ τ ,
where τ = inf{s : |Xs| ≥ N}.
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3.3.3 Strong Existence.

First, we state the classical existence results for the following equation (Gihman
and Skorohod, 1982):

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs +

∫ t

0

∫

U

f1(s,Xs−, u)q1(ds, du).

(3.3.7)

Theorem 3.3.8. Assume that the coefficients of Equation (3.3.7) satisfy the
following conditions:

(i) a(s, 0), b(s, 0),
∫
|f1(s, 0, u)|2m1(du) are locally bounded with respect to s,

(ii) there exists increasing function l(s) such that

|a(s, x) − a(s, y)|2 + |b(s, x) − b(s, y)|2

+

∫

U

|f1(s, x, u) − f1(s, y, u)|2m1(du) ≤ l(s)|x− y|2.

Let us denote by Ft the σ-algebra generated by X0, q1(ds, du), Ws with s ≤ t. If
X0 is independent of Ws, q1(ds, du) and E|X0|2 < ∞, then equation (3.3.7) has
Ft-measurable solution, moreover E|Xs|2 <∞.

Theorem 3.3.9. Assume that for the coefficients of Equation (3.3.7) the follow-
ing conditions hold:

|a(t, x)|2 + |b(t, x)|2 +

∫

U

|f1(t, x, u)|2m1(du) ≤ l(1 + |x|2),

and for any r > 0 one can specify constant lr such that

|a(s, x) − a(s, y)|2 + |b(s, x) − b(s, y)|2

+

∫

U

|f1(s, x, u) − f1(s, y, u)|2m1(du) ≤ lr|x− y|2

for s ≤ r, |x| ≤ r, |y| ≤ r. If X0 is independent of {Ws, q1(ds, du)}, and
σ-algebras Ft are constructed as in Theorem 3.3.8, then there exists an Ft-
measurable solution of (3.3.7) for every t ∈ R+.

Remark 3.3.10. Suppose {F̂t} is some admissible filtration, τ is a stopping time
relative to this filtration. Let us consider the SDE for t > τ :

Xt = Xτ +

∫ t

τ

a(s,Xs)ds+

∫ t

τ

b(s,Xs)dWs +

∫ t

τ

∫

U

f1(s,Xs−, u)q1(ds, du).

(3.3.8)
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Under conditions of Theorem 3.3.9, Equation (3.3.8) has F̂t-measurable solution,

no matter what the F̂τ -measurable variable Xτ is. To prove this, it suffices to
consider the process X̂t which is a solution of the following equation

X̂t = X̂0 +

∫ t

0

a(s+ τ, X̂s)ds+

∫ t

0

b(s+ τ, X̂s)dŴs

+

∫ t

0

∫

U

f1(s+ τ, X̂s−, u)q̂1(ds, du), (3.3.9)

where

Ŵs = W (s+ τ) −Wτ ; q̂1([s1, s2] × du) = q1([s1 + τ, s2 + τ ] × du). (3.3.10)

Obviously, Ŵ and q̂1 possess the same properties as W and q1, and are indepen-
dent of Fτ . Thus, for Equation (3.3.9), all derivations which were verified for
Equation (3.3.7), hold as well, if expectations and conditional expectations with

given X0 are substituted by conditional expectation with respect to σ-algebra F̂τ .
Obviously, then Xt = X̂t−τ will be the solution of Equation (3.3.8).

Now we prove the existence theorem for general SDE (3.2.16).

Theorem 3.3.11. Assume that for Equation (3.2.16) the following conditions
are satisfied:

(i) The coefficients a, b, f1 satisfy the conditions of Theorem 3.3.9.

(ii) X0 is independent of {Ws, q1(ds, du), p2(ds, du)}.

(iii) Conditions (ii) and (iii) of Theorem 3.3.6 are satisfied.

Let Ft denote the σ-algebra generated by X0 and {Ws, q1([0, s], du),
p2([0, s], du), s ≤ t}. Then there exists an Ft-measurable solution of equation
(3.2.16).

Proof. Let τ1 < τ2 < · · · < τn < . . . denote all jump moments of the process
p2(Su, [0, t]), (in other words these are the “growth” moments of the last in-
tegral term in (3.2.21)). Since p2(Su, [0, t]) is a homogeneous Poisson process
with parameter m2(Su) < ∞ (condition (iii)), then there will be only finite
number of jumps on every finite interval. It suffices to construct the solution
of Equation (3.2.16) on each interval [0, τ1), [τ1, τ2), . . . , [τn, τn+1), . . . Since∫ t

τn

∫
f2(s,Xs−, u)p2(ds, du) = 0 when t ∈ [τn, τn+1), then on each of the speci-

fied intervals equation (3.2.16) turns into equation of type (3.3.8), where τ equals
0, τ1, τ2, . . . and so on. As it was pointed out in remark 3.3.10, there exists a
solution of this equation if Xτ is Fτ -measurable. Let us prove that this is indeed
the case for the sequence of stopping times τ1, τ2, . . . . If τ = 0, then X0 is F0-
measurable by definition of σ-algebra Ft. Suppose, that Xτn

is Fτn
-measurable.
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We will show that then Xτn+1
will be Fτn+1

-measurable. Let Xn
t be the solution

of the following equation

Xn
t = Xn

τn
+

∫ t

τn

a(s,Xn
s )ds+

∫ t

τn

b(s,Xn
s )dWs+

∫ t

τn

∫

U

f1(s,X
n
s−, u)q1(ds, du)

for t ≥ τn. In consequence of Remark 3.3.10 such solution exists. Set Xt = Xn
t

for t < τn+1. Let un+1 be such a point in U that p2({τn+1}×{un+1}) = 1. Hence
un+1 is Fτn+1

-measurable. Now let us define Xτn+1
by the equality

Xτn+1
= Xn

τn+1− + f2(τn+1,X
n
τn+1−, un+1). (3.3.11)

Both summands in the right hand side of (3.3.11) are Fτn+1
-measurable, i.e.

Xτn+1
is Fτn+1

-measurable. Thus, we can successively construct Ft-measurable
process Xt. In order to make certain that it is indeed a solution of (3.2.16), it
suffices to see that

f2(τn+1,X
n
τn+1−, un+1) =

∫ τn+1

τn

∫

U

f2(t,Xt−, u)p2(dt, du).

Remark 3.3.12. The solution, whose existence was established in Theorem 3.3.11,
is unique. Indeed, by Theorem 3.3.6 we have that for any enlargement of the
initial probability space, any admissible filtration of σ-algebras F̃t, and any F0-
measurable initial variable X0, F̃t-measurable solution of Equation (3.2.16) is
unique. Since Ft ⊂ F̃t, the solution Xt constructed in Theorem 3.3.11 will be
also F̃t-measurable, and therefore, there will be no other F̃t-measurable solutions
of Equation (3.2.16).

Remark 3.3.13. The solution constructed in Theorem 3.3.11 is fully determined
by the initial condition, Wiener process W and Poisson random measures p1 and
p2, i.e. it is a “strong” solution (solution-process). Thus, Theorem 3.3.11 states
that there exists a strong solution of Equation (3.2.16) (strong existence), and
from the remark 3.3.12 it follows that under conditions of Theorem 3.3.11 any
solution of (3.2.16) is unique (strong uniqueness).

Remark 3.3.14. Under the conditions of Theorem 3.3.11 the solution of SDE
(3.2.16) admits the decomposition (3.2.1) with

At =

∫ t

0

a(s,Xs)ds+

∫ t

0

∫

U

f2(s,Xs−, u)p2(ds, du) ∈ V
n,

Mt =

∫ t

0

b(s,Xs)dWs +

∫ t

0

∫

U

f1(s,Xs−, u)q1(ds, du) ∈ M
n
loc,

hence it is a semimartingale.
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3.4 Stochastic Hybrid Processes as Solutions of

SDE

3.4.1 SDE on hybrid state space

In this section we construct a switching jump diffusion {Xt, θt} taking values
in R

n × M, where M = {e1, e2, . . . , eN} is a finite set. We assume that for each
i = 1, . . . , N , ei is the i-th unit vector, ei ∈ R

N . Let {Xt, θt} be an R
n×M-valued

process given by the following stochastic differential equation of Ito-Skorohod
type.

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt +

∫

Rd

g1(Xt−, θt−, u)q1(dt, du) (3.4.1)

+

∫

Rd

g2(Xt−, θt−, u)p2(dt, du),

dθt =

∫

Rd

c(Xt−, θt−, u)p2(dt, du). (3.4.2)

Here:

(i) for t = 0, X0 is a prescribed R
n-valued random variable.

(ii) for t = 0, θ0 is a prescribed M-valued random variable.

(iii) W is an m-dimensional standard Wiener process.

(iv) q1(dt, du) is a martingale random measure associated to a Poisson random
measure p1 with intensity dt×m1(du).

(v) p2(dt, du) is a Poisson random measure with intensity dt ×m2(du) = dt ×
du1 × µ̄(du), where µ̄ is a probability measure on R

d−1, u1 ∈ R, u refers to
all components of u ∈ R

d except the first one.

The coefficients are assumed to be measurable.

a : R
n × M → R

n

b : R
n × M → R

n×m

g1 : R
n × M × R

d → R
n

g2 : R
n × M × R

d → R
n

c : R
n × M × R

d → R
N .

Function c(·, ·, ·) is defined by

c(x, ei, u) =

{
ej − ei if u1 ∈ (Σj−1(x, ei),Σj(x, ei)],

0 otherwise .
(3.4.3)
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Function g2(·, ·, ·) is defined by

g2(x, ei, u) =

{
φ(x, ei, ej , u) if u1 ∈ (Σj−1(x, ei),Σj(x, ei)],

0 otherwise .
(3.4.4)

The measurable mappings Σk : R
n × M → R+, k = 1, 2, . . . , N determine the

actual switching and jump rates of {θt} and {Xt} components:

Σk(x, ei) =

{∑k
j=1 λ(x, ei, ej) k > 0,

0 k = 0,
(3.4.5)

here λ : R
n × M × M → R+ is a measurable mapping. Measurable function

φ : R
n × M × M × R

d−1 → R
n determines the size of jumps of {Xt}. Let Uθ

denote the projection of the support of function φ(·, ·, ·, ·) on space U = R
d−1.

The jump size of Xt and the new value of θt at the jump times generated by
Poisson random measure p2 are determined by the functions (3.4.3) and (3.4.4)
correspondingly. There are three different situations possible:

(i) Simultaneous jump of Xt and θt

{
c(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and j 6= i,

g2(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and u ∈ Uθ.

(ii) Switch of θt only
{
c(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and j 6= i,

g2(·, ·, u) = 0 if u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and u /∈ Uθ.

(iii) Jump of Xt only
{
c(·, ·, u) = 0 if u1 ∈ (Σj−1(x, ej),Σj(x, ej)], j = 1, . . . , N,

g2(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ej),Σj(x, ej)], j = 1, . . . , N, and u ∈ Uθ.

We make the following assumptions on the coefficients of SDE (3.4.1)-(3.4.2).

(A1) There exists a constant l such that for all i = 1, 2, . . . , N

|a(x, ei)|2 + |b(x, ei)|2 +

∫

Rd

|g1(x, ei, u)|2m1(du) ≤ l(1 + |x|2).

(A2) For any r > 0 one can specify constant lr such that for all i = 1, 2, . . . , N

|a(x, ei) − a(y, ei)|2 + |b(x, ei) − b(y, ei)|2

+

∫

Rd

|g1(x, ei, u) − g1(y, ei, u)|2m1(du) ≤ lr|x− y|2

for |x| ≤ r, |y| ≤ r.
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(A3) Function c satisfies (3.4.5), (3.4.3) and for i, j = 1, 2, . . . , N , λ(·, ei, ej) are
bounded and measurable, λ(·, ei, ej) ≥ 0.

(A4) Function g2 satisfies (3.4.5), (3.4.4) and for all t > 0, i, j = 1, . . . , N

∫ t

0

∫

Rd

|φ(x, ei, ej , u)|p2(ds, du) <∞, P -a.s.

3.4.2 Strong existence and uniqueness

Theorem 3.4.1. Assume (A1)-(A4). Let p1, p2,W,X0 and θ0 be independent.
Then SDE (3.4.1)-(3.4.2) has a unique strong solution which is a semimartingale.

Proof. The switching jump diffusion {Xt, θt} governed by Equations (3.4.1)-(3.4.2)

can be seen as the R
n+N -valued jump diffusion {ξt}

4
= {(Xt, θt)

T } governed by
the stochastic differential equation

dξt = ã(ξt)dt+ b̃(ξt)dWt +

∫

Rd

f̃1(ξt−, u)q1(dt, du) +

∫

Rd

f̃2(ξt−, u)p2(dt, du)

(3.4.6)
with the following coefficients:

ã : R
n+N → R

n+N ã(·) , [a(·), ON ]T

b̃ : R
n+N → R

(n+N)×m b̃(·) , [b(·), ON×m]T

f̃1 : R
n+N × R

d → R
n+N f̃1(·, ·) , [g1(·, ·), ON ]T

f̃2 : R
n+N × R

d → R
n+N f̃2(·, ·) , [g2(·, ·), c(·, ·)]T

where by Ok and Ok×s we denote the k-dimensional zero vector and k × s-
dimensional zero matrix correspondingly.

Next we show that conditions (A1)-(A4) together with (3.4.5), (3.4.3), (3.4.4)
imply the conditions of Theorems 3.3.6 and 3.3.11 thus the Equation (3.4.6) has
an a.s. unique strong solution which implies that SDE (3.4.1)-(3.4.2) has an a.s.
unique strong solution.

Let us verify all conditions.
Growth condition: by (A1) for every ξ = (x, ei)

T ∈ R
n+N i = 1, . . . , N we have

|ã(ξ)|2 + |b̃(ξ)|2 +

∫

Rd

|f̃1(ξ, u)|2m1(du)

= |ã(x, ei)|2 + |b̃(x, ei)|2 +

∫

Rd

|f̃1(x, ei, u)|2m1(du)

= |a(x, ei)|2 + |b(x, ei)|2 +

∫

Rd

|g1(x, ei, u)|2m1(du)

≤ l(1 + |x|2) ≤ l(1 + |x|2 + |ei|2) = l(1 + |ξ|2).
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Lipschitz condition: From (A1) and (A2) it follows that for any r > 0 one can
specify a constant Lr such that for all ξ = (x, ei)

T ∈ R
n+N , ζ = (y, ej)

T ∈ R
n+N

i, j = 1, . . . , N , and for |x| < r, |y| < r, i.e. |ξ| ≤
√
r2 + 1, |ζ| ≤

√
r2 + 1, we have

|ã(ξ) − ã(ζ)|2 + |b̃(ξ) − b̃(ζ)|2 +

∫

Rd

|f̃1(ξ, u) − f̃1(ζ, u)|2m1(du)

= |a(x, ei) − a(y, ej)|2 + |b(x, ei) − b(y, ej)|2

+

∫

Rd

|g1(x, ei, u) − g1(y, ej , u)|2m1(du)

≤ 2
(
|a(x, ei) − a(y, ei)|2 + |b(x, ei) − b(y, ei)|2

+

∫

Rd

|g1(x, ei, u) − g1(y, ei, u)|2m1(du)

+ |a(y, ei) − a(y, ej)|2 + |b(y, ei) − b(y, ej)|2

+

∫

Rd

|g1(y, ei, u) − g1(y, ej , u)|2m1(du)
)

≤ 2
(
lr|x− y|2 + 4

(
|a(y, ei)|2 + |b(y, ei)|2 +

∫

Rd

|g1(y, ei, u)|2m1(du)
))

≤ 2
(
lr|x− y|2 + 4l(1 + |y|2)

)
≤ 2
(
lr|x− y|2 + 4l(1 + r2)

)

= 2
(
lr|x− y|2 + 2l(1 + r2)|ei − ej |2

)
≤ Lr

(
|x− y|2 + |ei − ej |2

)
= Lr|ξ − ζ|2,

where Lr = max(2lr, 4l(1 + r2)).

Let S be the support of f̃2 and Su = Su1
× Su be the projection of S on

U = R
d. By (A3), (A4) and the fact that µ̄ is a probability measure, we have

that m2(Su) = mL(Su1
) · µ̄(Su) <∞, where mL is the Lebesgue measure.

By (A4) and definition of function c we have that for all t > 0, i = 1, . . . N

∫ t

0

∫

Rd

|f̃2(x, ei, u)|p2(ds, du) <∞, P -a.s.

We have shown that coefficients of Equation (3.4.6) satisfy the conditions of
Theorems 3.3.6 and 3.3.11, thus Equation (3.4.6) (correspondingly (3.4.1)-(3.4.2))
has an a.s. unique strong solution.

It is clear that under conditions of the theorem the solution {ξt} = {(Xt, θt)
T }

admits the decomposition (3.2.1) with

At =

∫ t

0

ã(ξs)ds+

∫ t

0

∫

U

f̃2(ξs−, u)p2(ds, du) ∈ V
n,

Mt =

∫ t

0

b̃(ξs)dWs +

∫ t

0

∫

U

f̃1(ξs−, u)q1(ds, du) ∈ M
n
loc,

hence it is a semimartingale.
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Following Blom (2003), one can show that solution of (3.4.1)-(3.4.2) is indis-
tinguishable from the solution of the following set of equations:

dθt =

N∑

i=1

(ei − θt−)p2

(
dt, (Σi−1(Xt−, θt−),Σi(Xt−, θt−)] × R

d−1
)
, (3.4.7)

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt +

∫

Rd

g1(Xt−, θt−, u)q1(dt, du) (3.4.8)

+

∫

Rd

φ(Xt−, θt−, θt, u)p2

(
dt,
(
0,ΣN (Xt−, θt−)

]
× du

)
.

Corollary 3.4.2. Assume (A1)-(A4). Let p1, p2,W,X0 and θ0 be independent.
Then SDE (3.4.7)-(3.4.8) has a unique strong solution which is a semimartingale.

Proof. The proof consists of showing that the solution of (3.4.7)-(3.4.8) is indis-
tinguishable from the solution of (3.4.1)-(3.4.2). Subsequently Corollary 3.4.2 is
the consequence of Theorem 3.4.1.

Indeed, rewriting of (3.4.7) yields (3.4.2):

dθt =

N∑

i=1

(ei − θt−)p2

(
dt, (Σi−1(Xt−, θt−),Σi(Xt−, θt−)] × R

d−1
)

=

∫

Rd

N∑

i=1

(ei − θt−)I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)p2(dt, du1 × du)

=

∫

Rd

c(Xt−, θt−, u)p2(dt, du).

Next, since the first three right hand terms of (3.4.8) and (3.4.1) are equal, it
remains to show that the fourth right hand term in (3.4.8) yields the fourth right
hand term in (3.4.1) up to indistinguishability:

∫

Rd

φ(Xt−, θt−, θt, u)p2

(
dt,
(
0,ΣN (Xt−, θt−)

]
× du

)

=

∫

(0,∞)

∫

Rd−1

φ(Xt−, θt−, θt, u)I(0,ΣN (Xt−,θt−)](u1)p2(dt, du1 × du)

=

∫

(0,∞)

∫

Rd−1

φ(Xt−, θt−, θt, u)×

×
N∑

i=1

I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)p2(dt, du1 × du)
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=

∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt, u)×

× I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)
]
p2(dt, du1 × du)

=

∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt− + ∆θt, u)×

× I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)
]
p2(dt, du1 × du)

=

∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt− + (ei − θt−), u)×

× I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)
]
p2(dt, du1 × du)

=

∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, ei, u)×

× I(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)
]
p2(dt, du1 × du)

=

∫

Rd

g2(Xt−, θt−, u)p2(dt, du).

This completes the proof.

Remark 3.4.3. We notice the interesting aspect that the presence of θt in φ (Equa-
tion (3.4.8)) explicitly shows that jump of {Xt} depends on the switch from θt−

to θt, i.e., it is a hybrid jump.

3.5 Instantaneous hybrid jumps at a boundary

Up to now we have considered R
n × M-valued processes the jumps and switches

of which are driven by Poisson random measure. In this section we will consider
R

n ×M-valued processes which also have instantaneous jumps and switches when
hitting boundaries of some given sets. In order to simplify the analysis we assume
that the purely discontinuous martingale term is equal to zero (i.e. we take
g1 ≡ 0).

Suppose we have a collection of Nb open connected sets Ei ⊂ R
n, with bound-

aries ∂Ei, i = 1, 2, . . . , Nb. Let

E = {x |x ∈ Ei, for some i = 1, . . . , Nb} =

Nb⋃

i=1

Ei,

∂E = {x |x ∈ ∂Ei, for some i = 1, . . . , Nb} =

Nb⋃

i=1

∂Ei.
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The interior of the set E is the jump “destination” set. Similarly as in (Blom et
al., 2003b, pp. 38-39) we consider an increasing sequence of stopping times

τE
k , inf{t > τE

k−1 : Xk
t ∈ ∂E}, (3.5.1)

τE
0 , 0, (3.5.2)

k = 1, 2, . . . , (in order that this sequence of stopping times is well defined we need
additional conditions which we provide later) and a sequence of jump-diffusions
{Xn

t ; t ≥ τE
n−1}, n = 1, 2, . . . , governed by the following SDE (in integral form):

Xn
t = Xn

τE
n−1

+

∫ t

τE
n−1

a(Xn
s , θ

n
s )ds+

∫ t

τE
n−1

b(Xn
s , θ

n
s )dWs (3.5.3)

+

∫ t

τE
n−1

∫

Rd

g2(X
n
s−, θ

n
s−, u)p2(ds, du),

θn
t = θn

τE
n−1

+

∫ t

τE
n−1

∫

Rd

c(Xn
s−, θ

n
s−, u)p2(ds, du), (3.5.4)

Xn+1
τE

n
= gx(Xn

τE
n
, θn

τE
n
, βτE

n
), (3.5.5)

θn+1
τE

n
= gθ(Xn

τE
n
, θn

τE
n
, βτE

n
), (3.5.6)

gx : ∂E × M × V → R
n, (3.5.7)

gθ : ∂E × M × V → M, (3.5.8)

and {βt, t ∈ [0,∞)} is the sequence of V -valued (one may take V = R
d) i.i.d.

random variables distributed according to some given distribution. The initial
values X1

0 and θ10 are some prescribed random variables.
We define the process {Xt, θt} as follows





Xt(ω) =
∑∞

n=1X
n
t (ω)I[

τE
n−1(ω),τE

n (ω)
)(t)

θt(ω) =
∑∞

n=1 θ
n
t (ω)I[

τE
n−1(ω),τE

n (ω)
)(t) (3.5.9)

provided there exist solutions {Xn
t , θ

n
t } of SDE (3.5.3)-(3.5.6). On the open set E,

process {Xt, θt} (provided it exists) evolves as a switching jump diffusion (3.4.1)-
(3.4.2). At times τE

k jumps and switchings are determined by the mappings gx

and gθ correspondingly, i.e. XτE
k
6= XτE

k
− and possibly θτE

k
6= θτE

k
−.

In order that the sequence of stopping times (3.5.1) is well defined and τE
0 <

τE
1 < · · · < τE

k < . . . and τE
k ↑ ∞ a.s. as k ↑ ∞, we need the following assump-

tions.

(B1) Function g2, defined by (3.4.4), in addition to requirement (A4) has the
following property: (x + g2(x, θ, u)) ∈ Ei for each x ∈ Ei, θ ∈ M, u ∈ R

d,
i = 1, . . . , Nb.
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(B2) d(∂E, gx(∂E,M, V )) > 0, i.e. when {Xt} has reached the boundary ∂E it
always jumps inside of open set E.

(B3) Process (3.5.9) hits the boundary ∂E a.s. finitely many times on any finite
time interval.

Remark 3.5.1. Assumption (B1) means that if component {Xt} evolves inside
of set Ei, it can leave it only by hitting the boundary ∂Ei under the effect of
the continuous dynamics between the jumps and/or switching times generated by
Poisson random measure p2.

Theorem 3.5.2. Assume (A1)-(A4) and (B1)-(B3). Let W , p2, {βt, t ∈ [0,∞)},
X0 and θ0 be independent. Then process (3.5.9) exists for every t ∈ R+, it is
strongly unique and it is a semimartingale.

Proof. Let Ft be the σ-algebra generated by X0, Ws, p2(ds, du), and βs with
s ≤ t. Suppose τE

0 < τE
1 < . . . is the sequence of all instantaneous jumps at

the boundary ∂E. By assumptions (B1)-(B3) the number of these jumps is a.s.
finite on every finite time interval and τE

k ↑ ∞ a.s. Similarly as in the proofs
of Theorems 3.3.6 and 3.3.11 it suffices to establish uniqueness and existence of
the process (3.5.9) on interval [τE

k−1, τ
E
k ] with assumption that FτE

k−1
-measurable

random variable (XτE
k−1

, θτE
k−1

) is given. Then we establish by induction that

(3.5.9) exists and is unique on
⋃∞

k=1[τ
E
k−1, τ

E
k ] = R+.

Suppose (XτE
k−1

, θτE
k−1

) = (Xk
τE

k−1
, θk

τE
k−1

) is FτE
k−1

-measurable. Then under

conditions (A1)-(A4), and (3.4.5), (3.4.3), (3.4.4) and using the same arguments
as in Remark 3.3.10 it follows from Theorem 3.4.1 that for τE

k−1 ≤ t < τE
k there

exists strongly unique process

{
Xt = Xk

t ,
θt = θk

t .
(3.5.10)

It remains to show that (XτE
k
, θτE

k
) is FτE

k
-measurable and uniquely defined. By

definition of the process (3.5.9) we have:

{
XτE

k
= Xk+1

τE
k

= gx(Xk
τE

k

, θk
τE

k

, βτE
k

),

θτE
k

= θk+1
τE

k

= gθ(Xk
τE

k

, θk
τE

k

, βτE
k

).
(3.5.11)

From adaptedness and right continuity of (Xk
t , θ

k
t ) follows that it is progressively

measurable, hence (Xk
τE

k

, θk
τE

k

) is FτE
k

-measurable. βτE
k

is also FτE
k

-measurable.

Thus the right hand side of (3.5.11) is FτE
k

-measurable, i.e. (XτE
k
, θτE

k
) is FτE

k
-

measurable. From the strong uniqueness of {(Xt, θt) ; t ∈ [τE
k−1, τ

E
k )} follows

strong uniqueness of (XτE
k
, θτE

k
):

XτE
k

= gx(Xk
τE

k
, θk

τE
k
, βτE

k
) = gx(Xk

τE
k
−, θ

k
τE

k
−, βτE

k
) = gx(XτE

k
−, θτE

k
−, βτE

k
),
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CHAPTER 3. GENERALIZED STOCHASTIC HYBRID PROCESSES AS

STRONG SOLUTIONS TO SDE

θτE
k

= gθ(Xk
τE

k
, θk

τE
k
, βτE

k
) = gθ(Xk

τE
k
−, θ

k
τE

k
−, βτE

k
) = gθ(XτE

k
−, θτE

k
−, βτE

k
).

By induction we obtain that process (3.5.9) exists and is strongly unique on⋃∞
k=1[τ

E
k−1, τ

E
k ] = R+. Moreover, it is a semimartingale, since by the Theorem

3.4.1 each solution {Xk
t , θ

k
t }, k = 1, 2, . . . is a semimartingale.

3.6 Related SDE models on hybrid state spaces

In this section we first present stochastic hybrid models developed by Blom (2003);
Ghosh and Bagchi (2004) and then compare them with the models presented in
Sections 3.4 and 3.5. We will use the same notations and definitions of coefficients
as in Sections 3.4 and 3.5. Table 3.2 lists the models we are dealing within this
section.

Table 3.2: List of models and their main features
θ X1 X2 θ&X2 B

HB1, (Blom, 2003) X - X X -
HB2, (Blom et al., 2003b) X - X X X

GB1, (Ghosh and Bagchi, 2004) X - X X -
GB2, (Ghosh and Bagchi, 2004) X - - - X

KB1, (Krystul and Blom, 2005a) X X X X -
KB2, (Krystul and Blom, 2005a) X - X X X

The conventions used in Table 3.2 have the following meaning:

HB1 stands for switching hybrid-jump diffusion of Blom (2003);

HB2 stands for switching hybrid-jump diffusion with hybrid jumps at the bound-
ary of Blom et al. (2003b);

GB1 stands for switching jump diffusion of Ghosh and Bagchi (2004);

GB2 stands for switching diffusion with hybrid jumps at the boundary of Ghosh
and Bagchi (2004);

KB1 stands for switching hybrid-jump diffusion developed in Section 3.4;

KB2 stands for switching hybrid-jump diffusion with hybrid jumps at the bound-
ary developed in Section 3.5.

θ stands for independent random switching of θt;

X1 stands for independent random jump ofXt generated by compensated Poisson
random measure;
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X2 stands for independent random jump of Xt generated by Poisson random
measure;

θ&X2 stands for simultaneous jump of Xt and θt generated by Poisson random
measure;

B stands for simultaneous jump of Xt and θt at the boundary.

3.6.1 Stochastic hybrid model HB1 of Blom

First, we present the model HB1 (see Table 3.2). Blom (2003) placed the SDE of
Lepeltier and Marchal (1976) on a hybrid state space and showed that the strong
uniqueness and existence identified by Lepeltier and Marchal (1976) carry over to
the following resulting SDE of Itô-Skorohod type:

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt (3.6.1)

+

∫

Rd

φ(Xt−, θt−, θt, u)p2

(
dt,
(
0,ΣN (Xt−, θt−)

]
× du

)
,

dθt =

N∑

i=1

(ei − θt−)p2

(
dt, (Σi−1(Xt−, θt−),Σi(Xt−, θt−)] × R

d−1
)
. (3.6.2)

The solution {Xt, θt} governed by SDE (3.6.1)-(3.6.2) is an R
n × M valued sto-

chastic process, the set M = {e1, . . . , eN} is defined as in Section 3.4, and

(i) X0 is an R
n-valued random variable;

(ii) θ0 is an M-valued random variable;

(iii) W is an m-dimensional standard Wiener process;

(iv) p2(dt, du) is a Poisson random measure with intensity dt ×m2(du) = dt ×
du1 × µ̄(du), where µ̄ is a probability measure on R

d−1, u1 ∈ R, u refers to
all components of u ∈ R

d except the first one.

The coefficients are defined in the same way as in Section 3.4.

Let Su ⊂ R
d−1 denote the projection of the support of function

φ : R
n × M × M × R

d−1 −→ R
n on R

d−1. There are three different combinations
of jumps and/or switches possible:

(i) If u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and j 6= i, and u ∈ Su then
simultaneous jumps of Xt and switches of θt are possible.

(ii) If u1 ∈ (Σj−1(x, ei),Σj(x, ei)], i, j = 1, . . . , N and j 6= i, and u /∈ Su then
only random switches of θt are possible.

(iii) If u1 ∈ (Σj−1(x, ej),Σj(x, ej)], j = 1, . . . , N , and u ∈ Su then only random
jumps of Xt are possible.
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Blom (2003) showed that under the following assumptions there exists an a.s.
unique strong solution of SDE (3.6.1)-(3.6.2).

(C1) There exists a constant l such that for each i = 1, 2, . . . , N

|a(x, ei)|2 + |b(x, ei)|2 ≤ l(1 + |x|2).

(C2) for any r > 0 one can specify constant lr such that for each i = 1, 2, . . . , N

|a(x, ei) − a(y, ei)|2 + |b(x, ei) − b(y, ei)|2 ≤ lr|x− y|2

for |x| ≤ r, |y| ≤ r.

(C3) Measurable mappings Σi, i = 1, . . . , N , are defined by (3.4.5) and for i, j =
1, 2, . . . , N , λ(·, ei, ej) are bounded and measurable, λ(·, ei, ej) ≥ 0.

(C4) For any k > 0 one can specify constantNk such that for each i, j = 1, 2, . . . N

sup
|x|≤k

∫

Rd−1

|φ(x, ei, ej , u)|µ̄(du) ≤ Nk.

The stochastic model HB2 was first presented in (Blom et al., 2003b). It is
constructed in quite the same way as the model KB2 in Section 3.5. Actually HB2
and KB2 fall into one class of SDE. So we omit the description of model HB2 and
refer the reader to (Blom et al., 2003b) or Section 3.5. It is worth to mention
that the difference between these two SDE is in the way the strong existence and
uniqueness of the solution was proved.

3.6.2 Stochastic hybrid model GB1 of Ghosh and Bagchi

Now, let us consider the model GB1 of Ghosh and Bagchi (2004).

The evolution of R
n × M-valued Markov process {Xt, θt} is governed by the

following equations:

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt +

∫

R

g(Xt−, θt−, u)p(dt, du), (3.6.3)

dθt =

∫

R

h(Xt−, θt−, u)p(dt, du). (3.6.4)

Here:

(i) For t = 0, X0 is a prescribed R
n-valued random variable.

(ii) For t = 0, θ0 is a prescribed M-valued random variable, M = {e1, . . . , eN}.

(iii) W is an n-dimensional standard Wiener process.
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(iv) p(dt, du) is a Poisson random measure with intensity dt×m(du), where m
is the Lebesgue measure on R. p is assumed to be independent of W .

The coefficients are defined as:

a : R
n × M → R

n

b : R
n × M → R

n×n

g : R
n × M × R → R

n

h : R
n × M × R → R

N .

Function h is defined as:

h(x, ei, u) =

{
ej − ei if u ∈ ∆ij(x)

0 otherwise,
(3.6.5)

where for i, j ∈ {1, . . . , N}, i 6= j, x ∈ R
n, ∆ij(x) are the intervals of the real line

defined as:

∆12(x) = [0, λ12(x))
∆13(x) = [λ12(x), λ12(x) + λ13(x))

...

∆1N (x) =
[∑N−1

j=2 λ1j(x),
∑N

j=2 λ1j(x)
)

∆21(x) =
[∑N

j=2 λ1j(x),
∑N

j=2 λ1j(x) + λ21(x)
)

and so on. In general,

∆ij(x) =
[ i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j−1∑

j′=1
j′ 6=i

λij′(x),

i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j∑

j′=1
j′ 6=i

λij′(x)
)
.

For fixed x these are disjoint intervals, and the length of ∆ij(x) is λij(x),
λij : R

n → R, i, j = 1, . . . , N , i 6= j.
Let K1 be the support of g(·, ·, ·) and let U1 be the projection of K1 on R. It

is assumed that U1 is bounded. Let K2 denote the support of h(·, ·, ·) and U2 the
projection of K2 on R. By definition of c, U2 is a bounded set. One can define
function g(·, ·, ·) so that the sets U1 and U2 form three nonempty sets: U1 \ U2,
U1 ∩ U2 and U2 \ U1 (see Figure 3.1). Then, we have the following:

(i) For u ∈ U1 ∩ U2 {
g(·, ·, u) 6= 0

h(·, ·, u) 6= 0

i.e., simultaneous jumps of Xt and switches of θt are possible.
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Figure 3.1: U1 ∪ U2 is the projection of set K1 ∪K2 on R

(ii) For u ∈ U2 \ U1 {
g(·, ·, u) = 0

h(·, ·, u) 6= 0

i.e., only random switches of θt are possible.

(iii) For u ∈ U1 \ U2 {
g(·, ·, u) 6= 0

h(·, ·, u) = 0

i.e., only random jumps of Xt are possible.

Ghosh and Bagchi (2004) proved that under the following conditions there
exists an a.s. unique strong solution of SDE (3.6.3)-(3.6.4).

(D1) For each ei ∈ M, i = 1, . . . , N , a(·, ei) and b(·, ei) are bounded and Lipschitz
continuous.

(D2) For all i, j ∈ {1, . . . , N}, i 6= j, functions λij(·) are bounded and measurable,

λij(·) ≥ 0 for i 6= j and
∑N

j=1 λij(·) = 0 for any i ∈ {1, . . . , N}.

(D3) U1, the projection of support of g(·, ·, ·) on R, is bounded.

3.6.3 Stochastic hybrid model GB2 of Ghosh and Bagchi

Next, we present the GB2 model of Ghosh and Bagchi (2004). The state of the
system at time t, denoted by (Xt, θt), takes values in

⋃∞
n=1(Sn×Mn), where Mn =

{e1, e2, . . . , eNn
} and Sn ⊂ R

dn . Between the jumps of Xt the state equations are
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of the form

dXt = an(Xt, θt)dt+ bn(Xt, θt)dW
n
t , (3.6.6)

dθt =

∫

R

hn(Xt−, θt−, u)p(dt, du), (3.6.7)

where for each n ∈ N

an : Sn × Mn → R
dn

bn : Sn × Mn → R
dn×dn

hn : Sn × Mn × R → R
Nn .

Function hn is defined in a similar way as (3.6.5) with rates λn
ij : Sn → R, λn

ij ≥ 0

for i 6= j, and
∑Nn

j=1 λ
n
ij(·) = 0 for any i ∈ {1, . . . , N}. Wn is a standard dn-

dimensional Wiener process, p is a Poisson random measure on R+ × R with the
intensity dt×m(du) as in the previous section.

For each n ∈ N, let An ⊂ Sn, Dn ⊂ Sn. The set An is the set of instantaneous
jumps, whereas Dn is the destination set. It is assumed that for each n ∈ N,
An and Dn are closed sets, An ∩ Dn = ∅ and infn d(An,Dn) > 0, where d(·, ·)
denotes the distance between two sets. If at some random time Xt hits An, then
it executes an instantaneous jump. The destination of (Xt, θt) at this juncture is
determined by a map

gn : An × Mn → ∪m∈N(Dm × Mm).

After reaching the destination, the process {Xt, θt} follows the same evolutionary
mechanism over and over again.

Let {ηt} be an N valued process defined by

ηt = n if (Xt, θt) ∈ Sn × Mn. (3.6.8)

The {ηt} is a piecewise constant process that changes from n to m when (Xt, θt)
jumps from the regime Sn ×Mn to the regime Sm ×Mm. Thus ηt is an indicator
of a regime and a change in ηt means a switching in the regimes in which {Xt, θt}
evolves.

Let

S̃ = {(x, ei, n)|x ∈ Sn, ei ∈ Mn},
Ã = {(x, ei, n)|x ∈ An, ei ∈ Mn},
D̃ = {(x, ei, n)|x ∈ Dn, ei ∈ Mn}.

Then {Xt, θt, ηt} is an S̃-valued process, the set Ã is the set where jumps occur
and D̃ is the destination set for this process. The sets ∪n(Sn×Mn), ∪n(An×Mn)
and ∪n(Dn × Mn) can be embedded in S̃, Ã and D̃ respectively.
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Let d0 denote the injection map of ∪n(Dn × Mn) into D̃. Define three maps

g̃i : Ã→ D̃, i = 1, 2,

h̃ : Ã→ N.

g̃1(x, ei, n) = the first component in d0(gn(x, ei)),

g̃2(x, ei, n) = the second component in d0(gn(x, ei)),

h̃(x, ei, n) = the third component in d0(gn(x, ei)).

Let τm+1 be the stopping time defined by

τm+1 = inf{t > τm|Xt−, θt−, ηt− ∈ Ã}.

The equations for {Xt, θt, ηt} may thus be summarized as follows:

dXt =
(
a(Xt, θt, ηt) +

∞∑

m=0

[g̃1(Xτm−, θτm−, ητm−) −Xτm−)]δ(t− τm)
)
dt (3.6.9)

+ b(Xt, θt, ηt)dW
ηt

t ,

dθt =

∫

R

h(Xt−, θt−, ηt−, u)p(dt, du) (3.6.10)

+

∞∑

m=0

[g̃2(Xτm−, θτm−, ητm−) − θτm−)]δ(t− τm)dt,

dηt =
∞∑

m=0

[h̃(Xτm−, θτm−, ητm−) − ητm−)]I{τm≤t}, (3.6.11)

where δ is the Dirac measure and a(x, ei, n) = an(x, ei), b(x, ei, n) = bn(x, ei),
h(x, ei, n, u) = hn(x, ei, u).

To ensure the existence of an a.s. unique strong solution of SDE (3.6.9)-
(3.6.11), Ghosh and Bagchi (2004) adopted the following assumptions:

(E1) For each n ∈ N and ei ∈ Mi, a
n(·, ei) and bn(·, ei) are bounded and Lipschitz

continuous.

(E2) For each n ∈ N, i, j = 1, . . . ,Mn, i 6= j, functions λn
ij(·) are bounded and

measurable, λn
ij(·) ≥ 0 for i 6= j and

∑N
j=1 λ

n
ij(·) = 0 for any i ∈ {1, . . . , N}.

(E3) The maps gn, n ∈ N, are bounded and uniformly continuous.

(E4) infn d(An,Dn) > 0.
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3.6.4 Hierarchy between stochastic hybrid models

In this subsection we discuss the differences between the models and determine
the relative hierarchy of these models.

First, let us consider models HB1 and GB1 (see Sections 3.6.1 and 3.6.2).
Both models allow either independent or simultaneous jumps and switches of
Xt and θt. However, there are some differences in assumptions imposed on the
coefficients and in construction of the jump and switching coefficients. The first
two terms (i.e. the drift and the diffusion term) in (3.6.1) and in (3.6.3) are
identical. However, when proving the existence of strong unique solution of SDE
(3.6.3)-(3.6.4) Ghosh and Bagchi (2004) assume that the drift and the diffusion
coefficients are bounded, i.e. condition (D1). To prove the similar result for SDE
(3.6.1)-(3.6.2) more general growth condition (C1) is adopted. The construction
of the “switching” terms (3.6.2) and (3.6.4) is almost identical with some minor
differences in defining the “rate” intervals. The conditions on the “rate” functions
λ(·, ei, ej) and λij(·) are the same, i.e. these functions are assumed to be bounded
and measurable for all i, j = 1, . . . , N , i.e. conditions (C3) and (D2).

There is a substantial difference in the construction of the jump part of Xt in
the HB1 and GB1 models. In GB1 the jumps of Xt are described by a stochastic
integral of function g with respect to a Poisson random measure p(dt, du) with
intensity dt ×m(du), where m is the Lebesgue measure on U = R. In order to
satisfy the existence and uniqueness of solution, U1, the projection of support of
function g on U = R, must be bounded, i.e. condition (D3). In HB1 the jumps
of Xt are also defined by a stochastic integral driven by Poisson random measure
p2(dt, du) but with intensity dt×m(du1)×µ̄(u), where m is the Lebesgue measure
on U1 = R and µ̄ is a probability measure on U = R

d−1. The integrand function
g2, which determines the jump size of Xt, compared to function g, has an extra
argument u ∈ U = R

d−1, and, since the intensity of p2 with respect to u is a
probability measure µ̄ (which is always finite), the projection of support of g2 on
U = R

d−1 can be unbounded. This gives some extra freedom in modelling the
jumps of Xt component. It is only required that function g2 must satisfy condition
(C4). From this follows that model HB1 includes model GB1 as a special case
(GB1 ⊂ HB1).

Now, let us look at models HB1 and KB1 (see Sections 3.6.1 and 3.4). At a
first glance, one can see that KB1 has an extra integral term with respect to a
compensated Poisson random measure q1. This term represents a purely discon-
tinuous martingale part of the Xt component. Conditions (A1)-(A3) adopted to
SDE (3.4.1)-(3.4.2) are equivalent to conditions (C1)-(C3) in SDE (3.6.1)-(3.6.2).
But condition (A4) is weaker than condition (C4). Using the same derivations as
in Theorem 3.4.2 one can show that the solution of SDE (3.6.1)-(3.6.2) is indis-
tinguishable from the solution of SDE (3.4.1)-(3.4.2) with g1 ≡ 0. That means,
model HB1 can be seen as a special case of KB1 (HB1 ⊂ KB1).
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Next, we compare HB2 and KB2 (see Sections 3.6.1 and 3.5). HB2 contains
all models of HB1 extended with hybrid jumps at a boundary. The model KB2
is same as KB1 without integral term with respect to the compensated Poisson
random measure q1, but with hybrid jumps at the boundary. All together, KB2
and HB2 are the same class of SDE (HB2 = KB2).

Models KB2 and GB2 have some similarities (see Sections 3.5 and 3.6.3).
Let us see what are the main differences between SDE (3.5.3)-(3.5.6) and SDE
(3.6.9)-(3.6.11). Solutions of SDE (3.6.9)-(3.6.11) are the

⋃∞
n=1(Sn ×Mn)-valued

switching diffusions with hybrid jumps at the boundary. Before hitting the bound-
ary {Xt, θt} evolves as an (Sn × Mn)-valued switching diffusion in some regime
ηt = n ∈ N. The drift and the diffusion coefficients and the mapping determining
a new starting point of the process after the hitting the boundary can be dif-
ferent for every different regime n ∈ N. Solutions of SDE (3.5.3)-(3.5.6) are the
(Rn × M)-valued switching-jump diffusions with hybrid jumps at the boundary.
The dimension of the state space and the coefficients of SDE are fixed. Hence, on
this specific point, model GB2 is more general. However the jump term in KB2,
see Equation (3.5.3), is more general than the jump term in GB2, see Equation
(3.6.9).

Now let us have a look at conditions (E1)-(E4). Condition (E1) implies that
our local conditions (A1) and (A2) for SDE (3.4.1)-(3.4.2) are definitely satisfied.
Conditions (E2) and (E3) imply that conditions (A3) and (A4) for SDE (3.4.1)-
(3.4.2) are satisfied. Condition (E4) implies that (B1) and (B2) adopted to SDE
(3.5.3)-(3.5.6) are satisfied. It ensures that after the jump the process starts inside
of some open set, but not on a boundary. Condition (B3) of SDE (3.5.3)-(3.5.6)
is missing for GB2 (Ghosh and Bagchi, 2004).

In general GB2 is not a subclass of KB2 (or HB2) since in GB2 the state of
the system (Xt, θt) takes values in

⋃∞
k=1(Sk ×Mk), where Mk = {e1, e2, . . . , eNk

}
and Sk ⊂ R

dk may be different for different k’s. If (Sk × Mk) = (Rn × M) for all
k ∈ N then obviously GB2 ⊂ KB2 (=HB2).

We summarize the “hierarchy” of models in Figure 3.2. The “hierarchy” is
organized on the basis of the behaviors of the processes, e.g. different types of
jumps, and not on the assumptions applied to the models.
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Figure 3.2: The hierarchy between stochastic hybrid models; the sets HB2=KB2
and GB2 fall within the set of Generalized Stochastic Hybrid Processes (Bujorianu
and Lygeros, 2004). KB1 provides complementary modelling power in allowing
processes that have infinite variation in jumps on a finite time interval.

3.7 Markov Property

In the following two sections we prove Markov and Strong Markov properties for
model KB2 (Section 3.5). These results are crucial for developing efficient rare
event simulation techniques as we will see in Chapter 5.

Assume we are given the following objects:

• a measurable space (S,S );

• a measurable space (Ω,G ) and a family of σ-algebras {G s
t , 0 ≤ s ≤ t ≤ ∞},

such that G s
t ⊂ G u

v ⊂ G provided 0 ≤ u ≤ s ≤ t ≤ v; G s
t denotes a σ-algebra

of events on time interval [s, t]; we write Gt in place of G 0
t and G s in place

of G s
∞;

• a probability measure Ps,x for each pair (s, x) ∈ [0,∞) × S on G s;

• a function (stochastic process) ξt(ω) = ξ(t, ω) defined on [0,∞) × Ω with
values in S.

The system consisting of these four objects will be denoted by {ξt,G s
t , Ps,x} (Gih-

man and Skorohod, 1975).

Definition 3.7.1. A system of objects {ξt,G s
t , Ps,x} is called a Markov process

provided:

(i) for each t ∈ [0,∞) ξt(ω) is measurable mapping of (Ω,G ) into (S,S );
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(ii) for arbitrary fixed s, t and B (0 ≤ s ≤ t, B ∈ S ) the function P (s, x, t, B) =
Ps,x(ξt ∈ B) is S -measurable with respect to x;

(iii) Ps,x(ξs = x) = 1 for all s ≥ 0 and x ∈ S;

(iv) Ps,x(ξu ∈ B | G s
t ) = Pt,ξt

(ξu ∈ B) for all s, t, u, 0 ≤ s ≤ t ≤ u < ∞, x ∈ S
and B ∈ S .

The measure Ps,x should be considered as a probability law which determines
the probabilistic properties of the process ξt(ω) given that it starts at point x at
the time s. Condition (iv) in Definition 3.7.1 expresses the Markov property of
the processes. Let Es,x denote the expectation with respect to measure Ps,x. For
G s-measurable random variable ξ(ω)

Es,x[ξ(ω)] =

∫
ξ(ω)Ps,x(dω).

It is not difficult to show that the Markov property (iv) in Definition 3.7.1 can be
rewritten in terms of expectations as follows:

Es,x[f(ξu) | G
s
t ] = Et,ξt

[f(ξu)], 0 ≤ s ≤ t ≤ u <∞,

where f is an arbitrary S -measurable bounded function.

Next, let us show that process





Xt(ω) =
∑∞

n=1X
n
t (ω)I[

τE
n−1(ω),τE

n (ω)
)(t)

θt(ω) =
∑∞

n=1 θ
n
t (ω)I[

τE
n−1(ω),τE

n (ω)
)(t) (3.7.1)

defined as a concatenation of solutions {Xn
t , θ

n
t } of the system of SDE (3.5.3)-

(3.5.6) (see Sections 3.4 and 3.5), is Markov. We follow the approach used in

(Gihman and Skorohod, 1982). Let ξs,η
t = (Xs,x

t , θs,θ
t ) denote the process (3.7.1)

on [s,∞) satisfying initial condition ξs,η
s = η = (Xs,x

s , θs,θ
s ). Note that now

S = R
n ×M and S = BRn×M is the σ-algebra of Borel sets on R

n ×M. Assume
that conditions of Theorem 3.5.2 are satisfied. Let F s

t , s < t be the σ-algebras
generated by {Wu −Ws, p2([s, u], dz), βu, u ∈ [s, t]}, F 0

t = Ft, F s
∞ = F s. For

s ≤ t the σ-algebras Fs and F s are independent. Process ξs,η
t is F s-measurable,

hence, it is independent of σ-algebra Fs. Let ηs be an arbitrary R
n×M-valued Fs

measurable random variable. Then ξs,ηs

t , t ≥ s, is unique Ft-measurable process
on [s,∞) satisfying the initial condition ξs,ηs

s = ηs. Since for u < s process ξu,y
t

is Ft-measurable on [s,∞) with initial condition ξu,y
s then the following equality

holds
ξu,y
t = ξ

s,ξu,y
s

t , u < s < t. (3.7.2)

Let ϕ be a bounded measurable function on R
n×M, let ζs be an arbitrary bounded

Fs-measurable quantity. The independence of Fs and F s and the Fubini theorem
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imply that measure P on F∞ is a product of measures Ps and P s, where Ps is a
restriction of P on Fs, where P s is a restriction of P on F s, and

E[ϕ(ξu,y
t )ζs] = E[ϕ(ξ

s,ξu,y
s

t )ζs] = E
[
ζs(E[ϕ(ξs,x

t )])x=ξu,y
s

]
.

Since ξu,y
s is Fs-measurable then E[ϕ(ξu,y

t ) | Fs] =
[
E[ϕ(ξs,x

t )]
]
x=ξu,y

s
. Let

P (s, x, t, B) = P (ξs,x
t ∈ B), B ∈ BRn×M, (3.7.3)

here BRn×M is the σ-algebra of Borel sets on R
n × M. Then, by taking ϕ = IB,

we obtain

P (ξu,y
t ∈ B | Fs) = P (s, ξu,y

s , t, B). (3.7.4)

If ξt is an arbitrary process defined by (3.7.1), by the same reasoning with help
of which equalities (3.7.2) and (3.7.4) have been obtained, one can show that

ξt = ξs,ξs

t for s < t and that

P (ξt ∈ B | Fs) = P (s, ξs, t, B).

Hence, the process defined by (3.7.1) is a Markov process with transition probabil-
ity P (s, x, t, B) defined by (3.7.4). To be precise, we have shown that the system of
objects {(Xt, θt),F

s
t , Ps,(x,θ)} , where Ps,(x,θ)

(
(Xt, θt) ∈ B

)
= P (s, (x, θ), t, B) =

P
(
(Xs,x

t , θs,θ
t ) ∈ B

)
, B ∈ BRn×M, is a Markov process.

3.8 Strong Markov property

In this section we prove the Markov property

Ps,x(ξu ∈ B|G s
t ) = Pt,ξt

(ξu ∈ B), s ≤ t ≤ u

remains valid also when a fixed time moment t is replaced by a stopping time.
Let {ξt(ω),G s

t , Ps,x} be a Markov process in the space (S,S ). Let T denote
the σ-algebra of Borel sets on [0,∞).

Definition 3.8.1. A Markov process is called strong Markov if:

(i) the transition probability P (s, x, t, B) for a fixed B is a T × S × T -
measurable function of (s, x, t) on the set 0 ≤ s ≤ t <∞, x ∈ S;

(ii) it is progressively measurable;

(iii) for any s ≥ 0, t ≥ 0, S -measurable function f(x) and arbitrary stopping
time τ ,

Es,x[f(ξt+τ ) | G
s
τ ] = Eτ,ξτ

[f(ξt+τ )]. (3.8.1)
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Remark 3.8.2. For Equation (3.8.1) to be satisfied, it is necessary that the ran-
dom variable g(ξτ , τ, t + τ) = Eτ,ξτ

[f(ξt+τ )] be G s
τ -measurable. For this reason

assumptions (i) and (ii) make part of the definition of the strong Markov property
(Gihman and Skorohod, 1975).

Now we return to the process ξt = (Xt, θt) defined in Section 3.5. We have
shown that it is a Markov process. The following proposition proves that it is a
Strong Markov process also.

Proposition 3.8.3. Assume (A1)-(A4) and (B1)-(B3). Let W , p2, µ
E, X0

and θ0 be independent. Let F s
t , s < t be the σ-algebras generated by {Wu −

Ws, p2(dz, [s, u]), βu, u ∈ [s, t]}. For any bounded Borel function f : R
n × M → R

and any F s
t -stopping time τ

Es,x[f(ξt+τ ) | F
s
τ ] = Eτ,ξτ

[f(ξt+τ )].

Proof. Let {σk, k = 0, 1, . . . } denote the ordered set of the stopping times {τE
k , k =

1, 2, . . . } and {τk, k = 0, 1, . . . }. The latter set is the set of the stopping times
generated by Poisson random measure p2. Then on each time interval [σk−1, σk),
k = 1, 2, . . . process ξt evolves as a diffusion starting at point ξσk−1

at the time
σk−1. It is known that for diffusions the strong Markov property holds (see
(Øksendal, 2002)). This means that on each time interval [σk−1, σk) the Strong
Markov property for {Xt, θt} holds. Let F s

τ be the σ-algebra generated by the
F s

t -stopping time τ . The sets {ω : τ(ω) ∈ [σk−1(ω), σk(ω))}, k = 1, 2, ... are
F s

τ -measurable. Hence

Es,x[f(ξt+τ ) | F
s
τ ] =

∞∑

k=0

I[σk−1,σk)(τ)Es,x

[
f(ξt+τ ) | F

s
τ

]

=

∞∑

k=0

Es,x

[
I[σk−1,σk)(τ)f(ξt+τ ) | F

s
τ

]

=

∞∑

k=0

Eτ,ξτ

[
I[σk−1,σk)(τ)f(ξt+τ )

]

= Eτ,ξτ

[ ∞∑

k=0

I[σk−1,σk)(τ)f(ξt+τ )
]

= Eτ,ξτ

[
f(ξt+τ )

]
.

This completes the proof.

3.9 Concluding Remarks

The aim of this chapter was to significantly further the study of SDE on a hybrid
space, including characterizations of its solutions in terms of pathwise uniqueness,

63



3.9. CONCLUDING REMARKS

semimartingale and strong Markov process properties. We have used (Gihman
and Skorohod, 1982) and (Jacod and Shiryaev, 1987) to identify and character-
ize the most general class of jump-diffusions which are defined as semimartingale
solutions of SDE. This yielded a valuable improvement over the (Lepeltier and
Marchal, 1976) regarding the understanding of semimartingale property and path-
wise uniqueness of jump-diffusions. Next we have followed a similar path as taken
by (Blom, 1990, 2003) in transferring this pathwise uniqueness and semimartin-
gale understanding to the class of stochastic hybrid processes. This subsequently
allowed to incorporate instantaneous jumps at a boundary within the same frame-
work including pathwise uniqueness and semimartingale property. Finally we have
introduced a novel approach in showing strong Markov property for general sto-
chastic hybrid process, i.e. model KB2. The strong Markov property will prove to
be very important in Chapter 5 for development of efficient rare event simulation
techniques.
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Chapter 4

Approximation of first

passage times of switching

diffusion

4.1 Introduction

In this chapter we study the problem of estimating the probability that a stochas-
tic hybrid system reaches a given target set within some time horizon. This type
of problems arise in numerous applications, e.g. reliability analysis of complex
dynamical systems (Aldemir et al., 1994), computer and communication systems,
advanced air traffic management (Blom and Bakker, 2002), finance applications
(Glasserman and Li, 2005) etc. An analytical solution to this problem is available
only in some special simple cases. A widely applicable approach to estimation
of expectations of functionals of a stochastic process, such as its probability dis-
tribution and its moments, is the simulation of sample paths of a corresponding
discrete-time approximations. We refer the reader to Chapter 2 for an introduc-
tion to Monte Carlo simulation techniques and definitions of the concepts of weak
and strong discrete-time approximations of stochastic processes.

Five distinct classes of stochastic hybrid processes, all containing the class
of switching diffusions of Ghosh et al. (1997), have been studied in Chapter 3.
In this chapter we select the stochastic hybrid model of Ghosh et al. (1997) in
order to give a general insight on the specifics of discrete-time approximations
and Monte Carlo simulations of the stochastic hybrid processes with non-trivial
state dependent switching rates.

Let {Xt, θt} be the switching diffusion taking its values in R
n ×M defined by
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dXt = a(θt,Xt)dt+ b(θt,Xt)dWt, (4.1.1)

Pθt+δ|θt,Xt
(θ|η, x) = ληθ(x)δ + o(δ), η 6= θ, (4.1.2)

where M is a finite set of modes and (Wt)t≥0 is a Brownian motion in R
n (Ghosh

et al., 1997). We set τ , inf{t > 0 : Xt ∈ D} for the first passage time to the set
D × M, where D ⊂ R

n is a closed connected set. We want to estimate

P (τ ≤ T ) (4.1.3)

where T is a fixed time. We propose to approximate the switching diffusion (4.1.1)-
(4.1.2) by a discrete-time strong Euler approximation (Xh

ti
, θh

ti
)ti∈I (where I is

a time discretization), and approximate probability (4.1.3) by

P (τh ≤ T ), (4.1.4)

where τh , inf{t > 0 : Xh
t ∈ D}. Using the Monte Carlo simulation method, the

probability of first passage time (4.1.4) can be then approximated by a sample
average of 1{τh≤T} where τh is the Euler approximation of the stopping time τ .

Discrete-time approximations of an Itô diffusion are well explained in (Kloe-
den and Platen, 1992). A discretization scheme for jump-diffusion process with
state-dependent intensities was considered in (Glasserman and Merener, 2004).
Weak approximations of killed (or stopped) diffusions were studied in (Gobet,
1999a,b, 2000, 2001) and (Moon, 2003). They develop and prove the convergence
of numerical schemes that approximate the expected value E[g(x(τ), τ)] of a given
function g depending on the solution x of an Itô stochastic differential equation
and on the first exit time τ from a given domain. In this chapter we develop
an Euler-type discretization scheme for hybrid model (4.1.1)-(4.1.2) and prove its
convergence. Following the approach of Gobet (1999a), we then show that

P (τ ≤ T ) − P (τh ≤ T ) −→ 0

as the discretization step tends to zero.
The organization of this chapter is the following. Section 4.2 provides impor-

tant details on switching diffusion model. The strong approximation scheme and
its convergence proof are presented in Section 4.3. The approximation of first
passage time is discussed in Section 4.4.

4.2 Switching diffusion

The switching diffusion SDE (4.1.1)-(4.1.2) can be rewritten in a form of Itô-
Skorohod SDE which is just the same as the SDE of Ghosh and Bagchi (2004)
only without the jump part of Xt, i.e. g ≡ 0 (see Ch.III, Sec.3.6.2 in this thesis).
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In order to keep this chapter self-contained, we briefly recall the main features of
the model.

The discrete valued component {θt} is assumed to take its values in a space
M = {e1, e2, . . . , eN} defined as a finite set of unit vectors, i.e. ei ∈ M is a i-th
unit vector in R

N . The coefficients of SDE (4.1.1)-(4.1.2) are defined as follows:

a : R
n × M → R

n

b : R
n × M → R

n×n

λij : R
n → R, i, j = 1, 2, . . . , N

For each θ ∈ M , a(·, θ) and b(·, θ) are assumed to be bounded, continuous and
Lipschitz. For all i, j ∈ {1, . . . , N} λij(·) is assumed to be bounded, continuous

and Lipschitz, λij(·) ≥ 0 for i 6= j and
∑N

j=1 λij(·) = 0 for any i ∈ {1, . . . , N}.
These conditions ensure the existence of a unique strong solution to SDE (4.1.1)-
(4.1.2) (Ghosh and Bagchi, 2004).

The transformation of SDE (4.1.1)-(4.1.2) into an Itô-Skorohod type SDE is
done by replacing Equation (4.1.2) by an equivalent SDE driven by a Poisson
random measure. For that, one first needs to define proper “rate” intervals, the
meaning of which will soon become clear.

For i, j ∈ {1, . . . , N}, i 6= j, x ∈ R
n we construct the intervals ∆ij(x) of the

real line in the following manner (Ghosh et al., 1993, 1997):

∆12(x) = [0, λ12(x))

∆13(x) = [λ12(x), λ12(x) + λ13(x))

...

∆1N (x) =
[N−1∑

j=2

λ1j(x),

N∑

j=2

λ1j(x)
)

∆21(x) =
[ N∑

j=2

λ1j(x),

N∑

j=2

λ1j(x) + λ21(x)
)

and so on. Thus, in general,

∆ij(x) =
[ i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j−1∑

j′=1
j′ 6=i

λij′(x),
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j∑

j′=1
j′ 6=i

λij′(x)
)
.

For fixed x these are disjoint intervals, and the length of ∆ij(x) is λij(x). Now
we define a function c : R

n × M × R → R
N :

c(x, ei, z) =

{
ej − ei if z ∈ ∆ij(x)
0 otherwise.

(4.2.1)
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Then the (Rn × M)-valued switching diffusion process (4.1.1)-(4.1.2) can be rep-
resented as a solution of the following SDE (Ghosh et al., 1993, 1997):

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt, (4.2.2)

dθt =

∫

R

c(Xt, θt−, z)p(dt, dz), (4.2.3)

for t ≥ 0, with (X0, θ0) a prescribed (Rn×M)-valued random variable; p(dt, dz) is
a Poisson random measure with intensity dt ·dz; (Wt) is an n-dimensional Wiener
process independent of (X0, θ0) and p(dt, dz).

Define the following interval:

U(x) ,

N⋃

i=1

( N⋃

j=1
j 6=i

∆ij(x)
)
,

it includes all intervals ∆ij(x), i, j = 1, . . . , N, i 6= j. Since the length of each
interval ∆ij(x) is λij(x), and this is continuous and bounded function for i, j =
1, . . . , N, i 6= j, it follows that the length of interval U(x) (we denote it by l(U(x)))
is bounded and is a continuous function of x. Therefore, it has a maximum at
some point x?:

l(U(y)) ≤ l(U(x?)) for all y ∈ R
n.

Let Umax , U(x?) denote the interval of maximum length and let λmax , l(Umax)
denote its length. Then, Equation (4.2.3) can be written as follows:

dθt =

∫

Umax

c(Xt, θt−, z)p(dt, dz).

One can think of a Poisson random measure p(dt, dz) as assigning unit mass to
(τn, zn) if there is a jump at time τn of size zn. Let N(t) be a standard Poisson
process with intensity λmax. We denote by τn, n = 1, 2, . . . the jump times of
N(t). Let Umax be the ”mark” space, and (Zn)n≥1 be a sequence of i.i.d. random
variables with uniform distribution on Umax, independent of N(t). In this special
case we can represent the random Poisson measure p(dt, dz) with intensity dt·dz as
a random counting measure associated to the marked point process (τn, Zn)n≥0,
i.e. for each Lebesgue measurable A ⊂ Umax

p((0, t], A) =
∑

n≥1

1{τn≤t} · 1{Zn∈A}. (4.2.4)

We check that

E[p((0, t], A)] = λmax · t · P(Zn ∈ A) = λmax · t · l(A)

λmax
= t · l(A).

The representation (4.2.4) is very convenient for practical problems. We see
that p(dt, dz) can be generated just by sampling independent random variables
τn and Zn, n = 1, 2, . . . .
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4.3 Strong approximation of switching diffusion

4.3.1 Discretization Scheme

Now we turn our attention to numerical solution of SDE (4.2.2)-(4.2.3). We
develop an Euler type discretization scheme which allows to obtain a strong ap-
proximation process to the solution of switching diffusion precess. To start with,
we should define the appropriate discretization of time interval [0, T ]. Let us de-
note by Id =

{
tdn : n = 0, 1, . . . , L

}
the usual equidistant time discretization of a

bounded interval [0, T ] with discretization step h = T/L. Suppose τ1, τ2, . . . are
the jump times of the discrete valued component θt. Then we take a new time
discretization I = {tn : n = 0, 1, . . . } which is the union of the random jump
times τn of the component θt on interval [0, T ] and the deterministic grid Id.

For a given time discretization I an Euler type approximation is a continuous
time stochastic process {Xh

t , θ
h
t } satisfying the following equation with “delayed”

coefficients1:

Xh
t = X0 +

∫ t

0

ah(s,Xh, θh)ds+

∫ t

0

bh(s,Xh, θh)dWs, (4.3.1)

θh
t = θ0 +

∫ t

0

∫

Umax

ch(s−,Xh, θh, z)p(ds, dz), (4.3.2)

here

ah(s,Xh, θh) , a(Xtk
, θtk

), s ∈ [tk, tk+1),

bh(s,Xh, θh) , b(Xtk
, θtk

), s ∈ [tk, tk+1),

ch(s−,Xh, θh, z) , c(Xtk
, θtk−, z), s ∈ [tk, tk+1).

The corresponding recursive discretization scheme

Xh
ti

= Xh
ti−1

+ a(Xh
ti−1

, θh
ti−1

)(ti − ti−1) + b(Xh
ti−1

, θh
ti−1

)(Wti
−Wti−1

), (4.3.3)

θh
ti

= θh
ti−1

+

∫

Umax

c(Xh
ti
, θh

ti−1
, z)p({ti}, dz), (4.3.4)

determines values of the approximating process (4.3.1)-(4.3.2) at discretization
times only. Thus, approximation (Xh

ti
, θh

ti
) is iteratively computed starting from

the initial condition (X0, θ0) using the scheme (4.3.3)-(4.3.4). At the grid point,
(4.3.4) computes the jump of θh exactly, conditional on (Xh

ti
, θh

t−i
) = (Xh

ti
, θh

ti−1
),

if ti is indeed a point of the Poisson random measure. Otherwise, the jump term
is zero. The integral in (4.3.4) entails at most a single evaluation of the function
c because p({ti}, dz) is a point mass at the mark z that arrives at time ti if it is
a jump time.

1Here h denotes the dependence on the time discretization step h.
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4.3.2 Convergence

Theorem 4.3.1. Suppose, functions a, b, c and λij are defined as in Section 4.2
and the Euler type approximating process {Xh

t , θ
h
t } is defined as in Section 4.3.1.

We assume, that

(i) functions λij(·) (i, j = 1, . . . N) are bounded and Lipschitz

|λij(x) − λij(y)| ≤ Cλ|x− y|, for all x, y ∈ R
n; (4.3.5)

(ii) for all x, y ∈ R
n and θ, η ∈ M

|a(x, θ) − a(y, η)|2 + |b(x, θ) − b(y, η)|2 ≤ Cab(|x− y|2 + 1) (4.3.6)

for θ 6= η and

|a(x, θ) − a(y, η)|2 + |b(x, θ) − b(y, η)|2 ≤ Cab(|x− y|2) (4.3.7)

for θ = η.

Then

sup
s≤T

E(|Xh
s −Xs|2 + |θh

s − θs|2) ≤ e−λmaxTK2
∞∑

k=0

h2−k · (λmaxTK)k

k!
, (4.3.8)

sup
s≤T

E(|Xh
s −Xs|2 + |θh

s − θs|2) −→ 0, as h −→ 0, (4.3.9)

and

E[sup
s≤T

|Xh
s −Xs|] ≤

(
2T (T + 4)Cab · e−λmaxTK2

∞∑

k=0

h2−k · (λmaxTK)k

k!

)1/2

,

(4.3.10)

E[sup
s≤T

|Xh
s −Xs|] −→ 0, as h −→ 0. (4.3.11)

Here the constant K does not depend on h.

To prove the Theorem 4.3.1 one needs the following lemmas.

Let Ft denote the σ-algebra generated by all random variablesWs, p((0, s], Umax),
s ≤ t (see Section 4.2). Let L 2

T denote the space of all Ft-adapted stochastic
processes that are square integrable:

||f ||L 2
T

=

∫ T

0

∫

Ω

f2(t, ω)P(dω)dt <∞.
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Remark 4.3.2. In order to shorten expressions we introduce the following notation:

E
i[·] , E[· | N(T ) = i].

Recall that in Section 4.2 by N(t) we denoted the standard Poisson process with
intensity λmax. Event {N(T ) = i} means that there were i switches of component
{θt} in the time interval [0, T ].

Lemma 4.3.3. Suppose, Wt is independent of p(dt, dz). Then for every f ∈ L 2
T ,

E
i
[( ∫ T

0

f(t, ω)dWt(ω)
)2]

= E
i
[ ∫ T

0

f2(t, ω)dt
]
. (4.3.12)

Proof. First we consider the step processes, and then extend the result to arbitrary
processes.

Let φ be a bounded step process in L 2
T :

φ(t, ω) =
n−1∑

j=0

cj(ω)1[tj ,tj+1)(t). (4.3.13)

By adaptedness, ci in (4.3.13) is independent of ∆Wj , Wtj+1
−Wtj

for i ≤ j.
Therefore

E
i
[( ∫ T

0

φ(t)dWt

)2]
= E

i
[( n−1∑

j=0

cj∆Wj

)2]

=
n−1∑

i=0

n−1∑

j=0

E
i[cicj∆Wi∆Wj ]

=
n−1∑

j=0

E
i[c2j∆W

2
j ] + 2

∑

i<j

E
i[cicj∆Wi]E[∆Wj ]

=
n−1∑

j=0

E
i[c2j ]E[∆W 2

j ] =
n−1∑

j=0

E
i[c2j ]∆tj

= E
i
[ n−1∑

j=0

c2j∆tj

]
= E

i
[ ∫ T

0

φ2(t)dt
]
.

To go from step processes to arbitrary processes we use the known fact that every
process φ ∈ L 2

T can be approximated arbitrarily well by step processes in L 2
T

(e.g. see (Øksendal, 2002)). Now, suppose φ ∈ L 2
T is an arbitrary process. We

can approximate it by step processes φn ∈ L 2
T , i.e. φn −→ φ in L 2

T . To get the
claim (4.3.12) we pass to the limit in the following equality, n −→ ∞

E
i
[ ∫ T

0

φn
t dWt

]2
= E

i
[ ∫ T

0

(φn
t )2dt

]
, n ∈ N.
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Indeed, since Y n ,
∫ T

0
φn

t dWt
L2−→ Y ,

∫ T

0
φtdWt, then

∣∣(Ei[(Y n)2])1/2 − (Ei[Y 2])1/2
∣∣ ≤ (Ei[(Y n − Y )2])1/2

≤
(

E[(Y n − Y )2]

P(N(T ) = i)

)1/2

−→ 0, n −→ ∞,

and

∣∣∣
(
E

i[

∫ T

0

(φn
t )2dt]

)1/2 −
(
E

i[

∫ T

0

(φt)
2dt]

)1/2
∣∣∣ ≤

(
E

i
[ ∫ T

0

(φn
t − φt)

2dt
])1/2

≤
(

E[
∫ T

0
(φn

t − φt)
2dt]

P(N(T ) = i)

)1/2

−→ 0, n −→ ∞,

Thus

E
i
[ ∫ T

0

φtdWt

]2
= E

i
[ ∫ T

0

(φt)
2dt
]
.

Lemma 4.3.4. Suppose functions λij(·) i, j = 1, . . . , N satisfy the conditions of
Theorem 4.3.1. Then there exist a constant Cc such that

∫

R

|c(x, ei, z) − c(y, ek, z)|2dz ≤ Cc(|x− y| + 1) for i 6= k (4.3.14)

and ∫

R

|c(x, ei, z) − c(y, ek, z)|2dz ≤ Cc(|x− y|) for i = k (4.3.15)

for all x, y ∈ R
n and ei, ek ∈ M.

Proof.

∫

R

|c(x, ei, z) − c(y, ek, z)|2dz

=

∫

R

∣∣∣
N∑

j=1
j 6=i

1∆ij(x)(z) · ej − ei −
( N∑

j=1
j 6=k

1∆kj(y)(z) · ej − ek

)∣∣∣
2

dz

=

∫

Umax

∣∣∣(ek − ei) +
( N∑

j=1
j 6=i

1∆ij(x)(z) · ej −
N∑

j=1
j 6=k

1∆kj(y)(z) · ej

)∣∣∣
2

dz

≤ 2λmax|ek − ei|2 + 2

∫

Umax

∣∣∣
N∑

j=1
j 6=i

1∆ij(x)(z) · ej −
N∑

j=1
j 6=k

1∆kj(y)(z) · ej

∣∣∣
2

dz.
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Let us consider two cases:
1) suppose i = k, then

∫

R

|c(x, ei, z) − c(y, ek, z)|2dz

≤ 2

∫

Umax

∣∣∣
N∑

j=1
j 6=i

1∆ij(x)(z) · ej −
N∑

j=1
j 6=k

1∆kj(y)(z) · ej

∣∣∣
2

dz

= 2

∫

Umax

∣∣∣
N∑

j=1
j 6=i

(1∆ij(x)(z) − 1∆ij(y)(z)) · ej

∣∣∣
2

dz

≤ 2N

∫

Umax

N∑

j=1
j 6=i

|1∆ij(x)(z) − 1∆ij(y)(z)|2dz

= 2N

N∑

j=1
j 6=i

∫

Umax

|1∆ij(x)(z) − 1∆ij(y)(z)|2dz

= 2N

N∑

j=1
j 6=i

(∫

∆ij(x)\∆ij(y)

1dz +

∫

∆ij(y)\∆ij(x)

1dz
)
. (4.3.16)

(1a) suppose ∆ij(x) ∩ ∆ij(y) 6= ∅. Then

∫

∆ij(x)\∆ij(y)

1dz +

∫

∆ij(y)\∆ij(x)

1dz

=
∣∣∣

i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j−1∑

j′=1
j′ 6=i

λij′(x) −
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(y) −
j−1∑

j′=1
j′ 6=i

λij′(y)
∣∣∣

+
∣∣∣

i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j∑

j′=1
j′ 6=i

λij′(x) −
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(y) −
j∑

j′=1
j′ 6=i

λij′(y)
∣∣∣

≤ 2N2Cλ|x− y|.

(1b) now suppose ∆ij(x) ∩ ∆ij(y) = ∅. We denote by ∆x,y
ij the interval that is
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contiguous to intervals ∆ij(x) and ∆ij(y). Then

∫

∆ij(x)

1dz +

∫

∆ij(y)

1dz ≤
∫

∆ij(x)∪∆x,y
ij

1dz +

∫

∆ij(y)∪∆x,y
ij

1dz

=
∣∣∣

i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j−1∑

j′=1
j′ 6=i

λij′(x) −
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(y) −
j−1∑

j′=1
j′ 6=i

λij′(y)
∣∣∣

+
∣∣∣

i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +

j∑

j′=1
j′ 6=i

λij′(x) −
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(y) −
j∑

j′=1
j′ 6=i

λij′(y)
∣∣∣

≤ 2N2Cλ|x− y|.

Now we can proceed with expression (4.3.16):

2N
N∑

j=1
j 6=i

(∫

∆ij(x)\∆ij(y)

1dz +

∫

∆ij(y)\∆ij(x)

1dz
)

≤ 2N
N∑

j=1
j 6=i

(2N2Cλ|x− y|) ≤ 4N4Cλ|x− y|.

2) suppose i 6= k, then

∫

R

|c(x, ei, z) − c(y, ek, z)|2dz

≤ 4λmax + 2

∫

Umax

∣∣∣
N∑

j=1
j 6=i

1∆ij(x)(z) · ej −
N∑

j=1
j 6=k

1∆kj(y)(z) · ej)
∣∣∣
2

dz

≤ 4λmax + 2 · 4N2λmax ≤ λmax(4 + 8N2) + |x− y|.

From the above estimations follows that there exists a constant Cc such that
∫

R

|c(x, ei, z) − c(y, ek, z)|2dz ≤ Cc(|x− y| + 1) for i 6= k,

and ∫

R

|c(x, ei, z) − c(y, ek, z)|2dz ≤ Cc(|x− y|) for i = k.

Lemma 4.3.5. Suppose all conditions of Theorem 4.3.1 are satisfied. Then

sup
s≤T

E
i[|Xh

s −Xs|2 + |θh
s − θs|2] ≤ Ki+2h2−i

,

as h −→ 0, for some constant K depending only on T .
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Proof. Let estimate the difference of the coefficients. For all h > 0 take s ∈
[tk, tk+1), then applying conditions (4.3.6)-(4.3.7) and Lemma 4.3.4, and since
θs = θtk

for any tk ∈ I, and θh
t , θt ∈ M (unit vectors), we obtain

|ah(s,Xh, θh) − a(Xs, θs)|2 + |bh(s,Xh, θh) − b(Xs, θs)|2

= |a(Xh
tk
, θh

tk
) − a(Xs, θs)|2 + |b(Xh

tk
, θh

tk
) − b(Xs, θs)|2

≤ Cab(|Xh
tk

−Xs|2 + |θh
tk

− θs|2)
≤ 2Cab(|Xh

tk
−Xtk

|2 + |Xtk
−Xs|2 + |θh

tk
− θtk

|2)

∫

R

∣∣ch(tk−,Xh, θh, z) − c(Xtk
, θtk−, z)

∣∣2dz

=

∫

R

∣∣c(Xh
tk
, θh

tk−
, z) − c(Xtk

, θtk−, z)
∣∣2dz

≤ Cc(|Xh
tk

−Xtk
| + |θh

tk−
− θtk−|2).

Denote C , max(2Cab, Cc). Taking conditional expectation given N(T ) = i, we
obtain

E
i[|ah(s,Xh, θh) − a(Xs, θs)|2 + |bh(s,Xh, θh) − b(Xs, θs)|2]

≤ C(Ei[|Xh
tk

−Xtk
|2] + E

i[|Xtk
−Xs|2] + E

i[|θh
tk

− θtk
|2]), (4.3.17)

E
i
[ ∫

R

|ch(tk−,Xh, θh, z) − c(Xtk
, θtk−, z)|2dz

]

≤ C(Ei[|Xh
tk

−Xtk
|] + E

i[|θh
tk−

− θtk−
|2]). (4.3.18)

Denote




ϕh
i (t) , sup

u≤t
E

i[|Xh
u −Xu|2], t ∈ [0, T ],

ψi(h) , sup
|s−u|≤h

E
i[|Xs −Xu|2], h > 0,

γh
i (t) , sup

u≤t
E

i[|θh
u − θu|2], t ∈ [0, T ].

(4.3.19)

Then, using (4.3.19) and the inequality (4.3.17) we have

E
i[|ah(s,Xh, θh) − a(Xs, θs)|2 + |bh(s,Xh, θh) − b(Xs, θs)|2]

≤ 2C(ϕh
i (s) + ψi(h) + γh

i (s)),

s ∈ [0, T ], h > 0.
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Thus, for t < τk+1, k < i (i.e. less then (k + 1)-th jump time)

ϕh
i (t) = sup

s≤t
E

i[|Xh
s −Xs|2]

= sup
s≤t

E
i
[( ∫ s

0

(ah(u,Xh, θh) − a(Xu, θu))du

+

∫ s

0

(bh(u,Xh, θh) − b(Xu, θu))dWu

)2]

≤ sup
s≤t

E
i
[
2T

∫ s

0

(ah(u,Xh, θh) − a(Xu, θu))2du

+

∫ s

0

(bh(u,Xh, θh) − b(Xu, θu))2du
]

≤ K1

∫ t

0

(ϕh
i (u) + ψi(h) + γh

i (u))du

≤ K1

∫ t

0

ϕh
i (u)du+K1T

(
ψi(h) + γh

i (τk)
)

here K1 = max(1, 2T, 2C).
By Gronwall’s lemma:

ϕh
i (t) ≤ K1T (ψi(h)+γh

i (τk))eK1t ≤ K1T (ψi(h)+γh
i (τk))eK1T , for t < τk+1.

Note, that

E
i[|Xs −Xu|2] = E

i
[∣∣
∫ s

u

a(Xv, θv)dv +

∫ s

u

b(Xv, θv)dWv

∣∣2
]

≤ 2(s− u)

∫ s

u

E
i[|a(Xv, θv)|2]dv + 2

∫ s

u

E
i[|b(Xv, θv)|2]dv

≤ K2(s− u), 0 ≤ u ≤ s,

and thus
ψi(h) = sup

|s−u|≤h

E
i[|Xs −Xu|2] ≤ K2h, h→ 0.

From here
ϕh

i (t) ≤ K1T (K2h+ γh
i (τk))eK1T , (4.3.20)

for t < τk+1, 1 ≤ k < i, and using the fact that (Xh
s −Xs) = (Xh

s− −Xs−), (i.e.
continuity from the left) we get

ϕh
i (τk+1) ≤ K1T (K2h+ γh

i (τk))eK1T , 1 ≤ k < i. (4.3.21)

Denote
q(dt, dz) = p(dt, dz) − dtdz.
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Now we will derive the similar recurrent formula for γh
i (τk+1):

γh
i (τk+1) = sup

s≤τk+1

E
i[|θh

s − θs|2]

= sup
s≤τk+1

E
i
[∣∣
∫ s

0

∫

Umax

(ch(u−,Xh, θh, z) − c(Xu, θu−, z))p(du, dz)
∣∣2
]

= sup
s≤τk+1

E
i
[∣∣
∫ s

0

∫

Umax

(ch(u−,Xh, θh, z) − c(Xu, θu−, z))q(du, dz)

+

∫ s

0

∫

Umax

(ch(u−,Xh, θh, z) − c(Xu, θu−, z))dudz)
∣∣2
]

≤ sup
s≤τk+1

2E
i
[ ∫ s

0

∫

Umax

|ch(u−,Xh, θh, z) − c(Xu, θu−, z)|2dudz

+ (

∫ s

0

∫

Umax

(ch(u−,Xh, θh, z) − c(Xu, θu−, z))dudz)
2
]

≤ sup
s≤τk+1

2E
i
[ ∫ s

0

∫

Umax

|ch(u−,Xh, θh, z) − c(Xu, θu−, z)|2dudz

+ Tλmax

∫ s

0

∫

Umax

|ch(u−,Xh, θh, z) − c(Xu, θu−, z)|2dudz
]

≤ 2C(1 + Tλmax)

∫ τk+1

0

E
i[|Xh

u −Xu| + |θh
u− − θu−|2]du

≤ 2CT (1 + Tλmax)
(√

ϕh
i (τk+1) + γh

i (τk)
)
, for 1 ≤ k < i. (4.3.22)

Assume τ0 , 0. Then γh
i (τ0) = 0 and ϕh

i (τ0) = 0. Define

K3 , 2eK1TK1K2CT (1 + Tλmax).

Then, using the recurrent formulas (4.3.20), (4.3.21) and (4.3.22) for ϕh
i (τk+1)

and γh
i (τk+1) we obtain:

ϕh
i (τ1) ≤ 2K2

3h γh
i (τ1) ≤ 2K2

3

√
h

ϕh
i (τ2) ≤ 4K3

3

√
h γh

i (τ2) ≤ 4K3
3h

1
4

. . . . . .

ϕh
i (τk) ≤ K3(2K3)

kh21−k

γh
i (τk) ≤ K3(2K3)

kh2−k

. . . . . .

ϕh
i (T ) ≤ K3(2K3)

i+1h2−i

γh
i (T ) ≤ K3(2K3)

ih2−i
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Denote K = 2K3. From the above estimates follows that

sup
s≤T

E
i[|Xh

s −Xs|2 + |θh
s − θs|2] ≤ ϕh

i (T ) + γh
i (T )

≤ K3(2K3)
i+1h2−i

+K3(2K3)
ih2−i

≤ Ki+2h2−i

, h −→ 0.

Proof of Theorem 4.3.1. Using the results of Lemma 4.3.5 we have

sup
s≤T

E[|Xh
s −Xs|2 + |θh

s − θs|2]

= sup
s≤T

∞∑

k=0

E
k[|Xh

s −Xs|2 + |θh
s − θs|2] · P(N(T ) = k)

≤
∞∑

k=0

(
sup
s≤T

E
k[|Xh

s −Xs|2 + |θh
s − θs|2]

)
· P(N(T ) = k)

≤ e−λmaxTK2
∞∑

k=0

h2−k · (λmaxTK)k

k!
.

Denote

Sm(h) ,

m∑

k=0

h2−k · (λmaxTK)k

k!
,

and

S(h) , lim
m→∞

Sm(h) =
∞∑

k=0

h2−k · (λmaxTK)k

k!
.

Since ∣∣∣∣h
2−k · (λmaxTK)k

k!

∣∣∣∣ ≤
(λmaxTK)k

k!
, h ∈ [0, 1]

and
∞∑

k=0

(λmaxTK)k

k!
= eλmaxTK <∞,

then, by Weierstrass M-Test, S(h) <∞ and the convergence is uniform on [0, 1],
furthermore, function S(h) is continuous on [0, 1]. Thus

lim
h→0

S(h) = lim
h→0

lim
m→∞

Sm(h) = lim
m→∞

lim
h→0

Sm(h) = 0.

Hence, we have proven that

sup
s≤T

E[|Xh
s −Xs|2 + |θh

s − θs|2] ≤ e−λmaxTK2
∞∑

k=0

h2−k · (λmaxTK)k

k!
, (4.3.23)
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and
sup
s≤T

E[|Xh
s −Xs|2 + |θh

s − θs|2] −→ 0, as h −→ 0.

Using Jensen’s inequality we obtain

E[sup
s≤T

|Xh
s −Xs|] ≤

(
E[sup

s≤T
|Xh

s −Xs|2]
)1/2

. (4.3.24)

Next, using Doob’s maximal martingale inequality, conditions (4.3.6)-(4.3.7) and
(4.3.23) we show that

E[sup
s≤T

|Xh
s −Xs|2] = E

[
sup
s≤T

∣∣∣
∫ s

0

(ah(u,Xh, θh) − a(Xu, θu))du

+

∫ s

0

(bh(u,Xh, θh) − b(Xu, θu))dWu

∣∣∣
2]

≤ 2E

[
sup
s≤T

(
T

∫ s

0

|ah(u,Xh, θh) − a(Xu, θu)|2du

+
∣∣
∫ s

0

(bh(u,Xh, θh) − b(Xu, θu))dWu

∣∣2
)]

≤ 2E

[
T

∫ T

0

|ah(u,Xh, θh) − a(Xu, θu)|2du

+ 4
∣∣∣
∫ T

0

(bh(u,Xh, θh) − b(Xu, θu))dWu

∣∣∣
2]

≤ 2(T + 4)CabE

[ ∫ T

0

(|Xh
u −Xu|2 + |θh

u − θu|2)du
]

≤ 2T (T + 4)Cab sup
s≤T

E[|Xh
s −Xs|2 + |θh

s − θs|2]

≤ 2T (T + 4)Cab · e−λmaxTK2
∞∑

k=0

h2−k · (λmaxTK)k

k!
.

Hence

E[sup
s≤T

|Xh
s −Xs|]

≤
(
2T (T + 4)Cab · e−λmaxTK2

∞∑

k=0

h2−k · (λmaxTK)k

k!

)1/2

, (4.3.25)

and
E[sup

s≤T
|Xh

s −Xs|] −→ 0, as h −→ 0. (4.3.26)
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Remark 4.3.6. Expression (4.3.26) ensures that approximating process {Xh
t } strongly

converges to {Xt} as h → 0, i.e. we have that for all t ∈ [0, T ] limh→0 E[|Xh
t −

Xt|] = 0 (see Definition 2.3.2).

4.4 Approximation of first passage times

Our aim is to show that first passage times of discretized switching diffusion
converge in distribution to first passage times of original process, i.e.

P (τ ≤ T ) − P (τh ≤ T ) = E[1{T<τh}] − E[1{T<τ}] −→ 0, h→ 0,

as the maximal discretization step h tends to zero. A similar problem was studied
by Gobet (1999a,b), only in his case he was studying the approximations of ex-
pected value E[g(x(τ), τ)] of a given function g depending on the Itô diffusion x
and on its first exit time τ from a given domain. In our case g(x(τ), τ) = 1{T<τ}

and the evolution of x is more complex. Now it is a Euclidean valued compo-
nent of the switching diffusion (4.1.1)-(4.1.2). Nevertheless, we still can follow
the approach of Gobet (1999a,b), altering it where needed.

Theorem 4.4.1. Suppose all conditions of Theorem 4.3.1 are satisfied. Assume
that a and b are globally Lipschitz functions, and set D = R

n\Dc is defined by
Dc = {x ∈ R

n : F (x) > 0} , ∂Dc = {x ∈ R
n : F (x) = 0} for some globally Lip-

schitz function F . Provided that the condition (C) below is satisfied

(C): P (∃t ∈ [0, T ] Xt /∈ Dc; ∀t ∈ [0, T ] Xt ∈ Dc ∪ ∂Dc) = 0,

then we have

lim
h→0

|P (τ ≤ T ) − P (τh ≤ T )| = 0,

Remark 4.4.2. If D is of class C2 with a compact boundary, the existence of such
a function F holds.

Remark 4.4.3. Condition (C) rules out the pathological situation where with
probability non-zero the paths may reach boundary ∂Dc without leavingDc∪∂Dc.
If this condition is not satisfied, then the approximation may not converge to the
exact solution.

Remark 4.4.4. If a and b are bounded and Dc is of class C3 with a compact
boundary, then an uniform ellipticity condition on the diffusion implies condition
(C).2

Proof. Obviously, we have

|P (τ ≤ T ) − P (τh ≤ T )| = |P (T < τh) − P (T < τ)| ≤ E[|1{T<τh} − 1{T<τ}|].
2For more detail on this remarks see Gobet (1999a).
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Fix δ > 0. Then, elementary arguments lead to

|1{T<τh} − 1{T<τ}| = |1{inft∈[0,T ] F (Xh
t )>0} − 1{inft∈[0,T ] F (Xt)>0}|

× (1{| inft∈[0,T ] F (Xt)|<δ} + 1{| inft∈[0,T ] F (Xt)|≥δ})

≤ 1{| inft∈[0,T ] F (Xt)|<δ} + 1{| inft∈[0,T ] F (Xt)−inft∈[0,T ] F (Xh
t )|≥δ}.

Thus,

E[|1{T<τh} − 1{T<τ}|]
≤ P (| inf

t∈[0,T ]
F (Xt)| < δ) + P (| inf

t∈[0,T ]
F (Xt) − inf

t∈[0,T ]
F (Xh

t )| ≥ δ). (4.4.1)

Set

δ ∝
(
2T (T + 4)Cab · e−λmaxTK2

∞∑

k=0

h2−k · (λmaxTK)k

k!

) 1
4

.

Then the first term in the r.h.s. of (4.4.1) converges to

P ( inf
t∈[0,T ]

F (Xt) = 0), as h→ 0,

which equals 0 using condition (C). The second one can be easily bounded by

(
2T (T + 4)Cab · e−λmaxTK2

∞∑

k=0

h2−k · (λmaxTK)k

k!

) 1
4

.

using the Markov inequality and the estimate (4.3.10). This proves that
limh−→+0 |P (τ ≤ T ) − P (τh ≤ T )| = 0.

4.5 Concluding Remarks

The aim of this chapter was to study the problem of approximation of first passage
times in stochastic hybrid processes with state dependent switching rates. We
took a switching diffusion of Ghosh et al. (1997) as a non-trivial example of a
stochastic hybrid process with state dependent switching rates; developed for
it a strong Euler-type discretization scheme and proved its convergence. Then,
following the approach of Gobet (1999a,b) we have shown that the first passage
time of discretized switching diffusion converges in distribution to the first passage
time of continuous time switching diffusion process, as the maximal discretization
step h tends to zero. Using our Euler-type discretization scheme one can easily
generate sample paths of switching diffusion and by taking a sample average of
1{τh≤T} one can obtain the estimate of the probability of reaching a given target
set within the time interval (0, T ].

The results of this chapter will be important in the following chapter where we
develop efficient Monte Carlo simulation techniques for estimation of probabilities
of rare events in stochastic hybrid systems.
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Chapter 5

Sequential Monte Carlo

simulation of rare event

probability in stochastic

hybrid systems

5.1 Introduction

In Chapter 2 we have discussed the problem of rare event estimation in stochastic
dynamical systems and came to a conclusion that the IPS based MC simulation
approaches are very promising and suitable for this task. The numerical test in
Chapter 2 has shown that the IPS approach of Cérou et al. (2002) works very
well for a diffusion example. While in theory the IPS approach is applicable vir-
tually to any strong Markov process, in practice the straightforward application
of this approach to stochastic hybrid processes fails to produce reasonable esti-
mates within a reasonable amount of simulation time. The aim of this chapter
is to extend this IPS approach for estimation of the rare event probabilities in
stochastic hybrid systems. We choose a switching diffusion with state dependent
switching rates as a non-trivial example of stochastic hybrid system.

What are the reasons why the IPS approach may not work well for hybrid
processes and how it can be improved? Suppose the stochastic hybrid system is
modelled by a switching diffusion process and suppose that initial probabilities
of starting in certain modes are very small. Then it is highly unlikely to draw
particles in these “light” modes, and the bulk of the particles will be sampled
in the “heavy” modes, i.e. the modes with higher probabilities. Subsequently,
most, if not all, of the few particles in the “light” modes, most likely, will be lost
after several resampling steps. We do not want this happening as it affects the
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accuracy of estimate. To avoid this, at the initial sampling step we can sample
a fixed number of particles for each mode separately and assign to each particle
its “importance” weight in accordance with the initial probability. Note that
introduction of weights will require instead of empirical measures in the form
1

Np

∑Np

i=1 δ{ξi
k
} to use weighted empirical measures in the form

∑Np

i=1 ω
i
kδ{ξi

k
}. In

the classical IPS approach all particles actually have the same weights equal to
1/Np, where Np is the number of particles. Now suppose at the initial sampling
step, using the conditional sampling per mode, we sample a sufficient number of
particles for “light” and for “heavy” modes and assign the weights. During the
successive resampling steps the particles with larger weights have higher chances
to be selected, and the particles with small weights in “light” modes tend to be
discarded. Again, this can be avoided by resampling per mode and adjusting the
weights appropriately.

The second problem is the problem of rare switches. If the probability of some
mode transitions (switches) is very small, then it is highly unlikely to observe
even one switch during a simulation run. In such cases, the possible switchings
between the modes are not properly taken into account. Together with the prob-
lem of losing “light” particles this badly affects IPS estimator performance. By
increasing the number of particles the IPS estimates should improve, but only at
the cost of substantially increased simulation time. In order to avoid the need
to increase the number of particles when the switching rates are decreasing we
introduce a sequential importance switching technique.

The chapter is organized as follows. In Section 5.2 the IPS approach is for-
mulated for a switching diffusion case and subsequently extended to Hybrid IPS
algorithm which is designed to cope with large differences in mode probabilities
and rare switchings. Numerical evaluations and comparison of different versions
of the IPS algorithms are given in Section 5.3. Section 5.4 draws conclusions.

5.2 Rare event Monte Carlo simulation for

switching diffusion

5.2.1 Factorization approach

Throughout this and the next sections, all stochastic processes are defined on
a complete stochastic basis (Ω,F , (Ft)t≥0, P ) with (Ft)t≥0 a right continuous
filtration.

Let {Xt, θt} be a switching diffusion taking its values in R
n ×M according to

dXt = a(Xt, θt)dt+ b(Xt, θt)dWt, (5.2.1)

dθt =

∫

R

c(Xt, θt−, z)p(dt, dz), (5.2.2)
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M is a finite set of modes and (Wt)t≥0 is a Brownian motion in R
n independent

of {θt} and of initial condition (X0, θ0), a prescribed (Rn × M)−valued random
variable. The questions of existence and uniqueness and numerical approxima-
tions for the solutions of SDE (5.2.1)-(5.2.2) have been studied in Chapters 3 and
4 correspondingly.

Let us assume that switching diffusion (5.2.1)-(5.2.2) starts at t = 0 in a
Borel set D̄0 ⊂ R

n × M with a known initial probability distribution PX0,θ0
(·).

We set τD̄
4
= inf{t > 0 : (Xt, θt) ∈ D × M}, i.e. the first passage time of

{Xt} to a closed connected Borel set D. The problem addressed in this chapter
is to develop an efficient Monte Carlo simulation method for estimation of the

probability Phit(0, T )
4
= P (τD̄ ≤ T ), i.e. the probability that {Xt} will hit the

set D on the time interval (0, T ], T < ∞. Similarly as in (Cérou et al., 2002)
we will represent the probability of a rare event as a product of probabilities
of intermediate “less rare” events and then use particle system approaches to
estimate this product.

We assume a sequence of nested Borel sets, D̄ = D̄m ⊂ · · · ⊂ D̄1 which are
defined as follows:

D̄k
M
= Dk × M, k = 1, . . . ,m (5.2.3)

where Dk is a closed Borel set of R
n, and D̄1 such that D̄1 ∩ D̄0 = ∅ (see Figure

5.2.1). The first moment that {Xt, θt} hits a set D̄k is defined as the stopping

R
n

M

D
0

D
2

D
1

D
1

D
2

D

D

Figure 5.1: Schematic illustration of the hybrid space R
n × M and the nested

sequence of level sets D̄ = D̄m ⊂ · · · ⊂ D̄1 (m = 3).
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time:

τk
M
= inf{t ≥ 0 : (Xt, θt) ∈ D̄k} = inf{t ≥ 0 : Xt ∈ Dk},

τk = ∞ if this set is empty. Note that τD̄ = τm. The process {Xt, θt}, before
hitting D̄, passes through a sequence of nested sets (5.2.3). Following (Cérou et
al., 2002) we introduce the {0, 1}-valued variables {yk, k = 1, . . . ,m} defined as
follows:

yk(ω)
M
= 1{ω:Xτk∧T (ω)∈Dk} = 1{ω:τk(ω)≤T}. (5.2.4)

Hence, for each k we have

yk(ω) = 1{ω:τk(ω)≤T} =

k∏

i=1

1{ω: τi(ω)≤T} =

k∏

i=1

yi(ω). (5.2.5)

Next we characterize Phit(0, T ) in terms of the sequence {yk}. By its definition,

Phit(0, T ) = P (τm ≤ T ) = E[1{τm≤T}]

Subsequent substitution of (5.2.4) and (5.2.5) yields:

Phit(0, T ) = E[ym] = E[

m∏

k=1

yk]. (5.2.6)

Since yk assumes values from {0, 1},

E[

m∏

k=1

yk] =

m∏

k=1

E[yk|yk−1 = 1, . . . , y1 = 1]

Substituting this into (5.2.6) yields

Phit(0, T ) =

m∏

k=1

E[yk|yk−1 = 1, . . . , y1 = 1]

=

m∏

k=1

P (τk ≤ T |τk−1 ≤ T, . . . , τ1 ≤ T )

=

m∏

k=1

P (τk ≤ T |τk−1 ≤ T ) (5.2.7)

This means that (5.2.7) characterizes the probability Phit(0, T ) of the rare
event as a product of conditional probabilities of intermediate ”less rare” events
leading to it. Thus, if we define the conditional probabilities

γk
M
= P (τk ≤ T |τk−1 ≤ T ) for k = 1, . . . ,m
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and insert this in (5.2.7) then we get for Phit(0, T ):

Phit(0, T ) =
m∏

k=1

γk (5.2.8)

The estimation of the probabilities γk’s is subsequently accomplished by the nu-
merical approximation in terms of interacting particle system (IPS) (Cérou et al.,
2002).

5.2.2 IPS algorithm for switching diffusion

In this section we apply the IPS approach of Cérou et al. (2002) with some minor
changes to the estimation of probability (5.2.8). We try to keep mathematical
manipulations as simple as possible, thus we avoid complicated mathematical
apparatus used in (Cérou et al., 2002). However, the idea and the final result in
principle remain the same.

Let us denote E′ = R
n×M, and let E ′ be the Borel σ-algebra of E′. Recall that

the switching diffusion (5.2.1)-(5.2.2) starts in a Borel set D̄0 and before hitting
the target set D̄ it has to pass through a sequence of nested Borel sets (5.2.3). To
capture how process {Xt, θt} enters each nested set D̄ = D̄m ⊂ · · · ⊂ D̄1 before
hitting finally the target set D̄, we introduce the discrete time process {ξk, k =
0, 1, . . . ,m} with values in space E′ defined by ξk , (Xτk∧T , θτk∧T ). By the strong
Markov property of {Xt, θt} (see Section 3.8), the process {ξk, k = 0, 1, . . . ,m} is
a Markov chain with transition kernel Q(ξ, dξ′) = P (ξk ∈ dξ′|ξk−1 = ξ). Observe
also that

yk(ω) = 1{ω:Xτk∧T (ω)∈Dk} = 1{ω:ξk(ω)∈D̄k} = 1{ω:τk(ω)≤T}.

Now let us define the following conditional probabilities:

πk(B) , P (ξk ∈ B|y1 = 1, . . . , yk = 1), (5.2.9)

pk(B) , P (ξk ∈ B|y1 = 1, . . . , yk−1 = 1), (5.2.10)

for any B ∈ E ′. It is easy to see that

pk(B) =

∫

E′

Q(ξ,B)πk−1(dξ) for all B ∈ E
′, (5.2.11)

πk(B) =

∫
B

1{ξ∈D̄k}pk(dξ)∫
E′ 1{ξ′∈D̄k}pk(dξ′)

for all B ∈ E
′, (5.2.12)

and

γk = E[yk|y1 = 1, . . . , yk−1 = 1] =

∫

E′

1{ξ∈D̄k}pk(dξ). (5.2.13)
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Thus, the evolution of the flow {πk, pk, γk; k = 0, 1, . . . ,m} is described by the
following diagram:

πk−1
prediction
−−−−−−−→ pk

conditioning
−−−−−−−−→ πky

γk

with initial condition π0(dξ) = Pξ0
(dξ) = P (ξ0 ∈ dξ). In that way, each of the

m terms γk in (5.2.8) is characterized as a solution of a sequence of Equations
(5.2.11)-(5.2.13).

The IPS approach is based on the idea to approximate the flow

{πk, pk, γk; k = 0, 1, . . . ,m} by an approximating sequence {πNp

k , p
Np

k , γ
Np

k ; k =
0, 1, . . . ,m} which is described by the following diagram

π
Np

k−1

prediction
−−−−−−−→ p

Np

k

conditioning
−−−−−−−−→ π

Np

ky
γ

Np

k

with initial condition

π0 ≈ π
Np

0 =

Np∑

i=1

ωi
0δ{ξi

0}
,

and approximations

pk ≈ p
Np

k =

Np∑

i=1

ωi
kδ{ξi

k
},

πk ≈ π
Np

k =

Np∑

i=1

1{ξi
k
∈D̄k}ω

i
k∑Np

j=1 ω
j
k1{ξj

k
∈D̄k}

δ{ξi
k
},

γk ≈ γ
Np

k =

Np∑

i=1

ωi
k1{ξi

k
∈D̄k},

in the form of the weighted empirical distributions associated with the particle

system {tik, ξi
k, ω

i
k}

Np

i=1, where Np denotes the number of particles. Each particle

is a triplet consisting of time index tk , τk ∧ T , state ξk and weight ωk.
The approximation procedure goes as follows. At t = 0 we start with the

empirical measure

π
Np

0
M
=

Np∑

i=1

ωi
0δ{ξi

0}
,

where ωi
0 = 1/Np are initial weights, and {ξi

0}
Np

i=1 are independent samples from
initial distribution Pξ0

(·). See Figure 5.2(a). From t = 0 to τ1, and from τk−1
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to τk each particle evolves stochastically according to Equations (5.2.1)-(5.2.2)
with initial condition (tik−1, ξ

i
k−1) (prediction step) until it reaches the next level

set D̄k or the final time T . Let {t̂ik, ξ̂i
k, ω

i
k}

Np

i=1 denote the values of the particles
after the k-th prediction with ωi

k = ωi
k−1 (see Figure 5.2(b)). Then the empirical

distribution p
Np

k associated with the predicted cloud of particles is:

p
Np

k =

Np∑

i=1

ωi
kδ{ξ̂i

k
}.

The particles which do not reach the set D̄k before time T are deleted, i.e. we set
ω̂i

k = 0 if ξ̂i
k /∈ D̄k and t̂ik = T , else we set ω̂i

k = ωi
k. See Figure 5.2(c). Then

γk ≈ γ
Np

k =

Np∑

i=1

ω̂i
k.

If all particles become deleted, i.e. γ
Np

k = 0, then the algorithm is stopped and

Phit(0, T ) ≈ 0. The empirical distribution π
Np

k associated with the measurement
updated cloud of particles is:

π
Np

k =

Np∑

i=1

ω̃i
kδ{ξ̃i

k
}. (5.2.14)

with

ω̃i
k =

ω̂i
k∑Np

j=1 ω̂
j
k

, ξ̃i
k = ξ̂i

k, i = 1, . . . , Np,

Particles having reached the set D̄k are used for a resampling step. We resam-
ple with replacement Np independent particles according to empirical measure

(5.2.14). After this step we again have Np particles {tik, ξi
k, ω

i
k}

Np

i=1 at level D̄k.
See Figure 5.3(a). Next, set k := k+1 and repeat the same simulation procedure
iteratively until the target set D̄ is reached (see Figures 5.3(b)-5.3(c)). For k = m

we have Phit(0, T ) ≈∏m
k=1 γ

Np

k .
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(a) Step 1: Initial sampling
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(b) Step 2: Prediction π
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(c) Step 2: Evaluation of γ
Np

k
. The squares represent

the particles with zero weight

Figure 5.2: IPS algorithm. Steps 1 and 2
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(a) Step 3: After resampling from π
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k
we again obtain

Np particles at level D̄k
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(b) Set k := k+1. Repeat steps 2 and 3. Particles move
from one level set to the next
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(c) Final stage: Particles reach the target set D̄

Figure 5.3: IPS algorithm. Iterations of steps 2 and 3
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In (Cérou et al., 2002) it is proven that the particle estimates are unbiased,
i.e.

E
[ m∏

k=1

γ
Np

k

]
= P (τm ≤ T ) = Phit(0, T )

and the rate of convergence is of order
√
Np :

(
E

[∣∣
m∏

k=1

γ
Np

k −
m∏

k=1

γk

∣∣q
]) 1

q ≤ aqbm√
Np

,

finite constants aq and bm depend only on the parameters q and m respectively.
This means that by running the IPS algorithm many times (let us say N

times) and by taking the sample average of random independent realizations of

Z ,
∏m

k=1 γ
Np

k we obtain an unbiased and consistent estimator of Phit(0, T ):

Phit(0, T ) ≈ 1

N

N∑

i=1

Zi,

it converges a.s. to Phit(0, T ) as N → ∞, by the strong law of large numbers.

Let us summarize the above and write down the algorithm step by step.

IPS algorithm for switching diffusion:

IPS Step 0. Level sets

• Choose appropriate nested sequence of closed subsets of R
n: D = Dm ⊂

Dm−1 ⊂ · · · ⊂ D1, and define D̄k = Dk × M, k = 1, . . . ,m.

IPS Step 1. Initial sampling; k = 0.

• For i = 1, . . . , Np generate initial state value outside D̄1:
(Xi

0, θ
i
0) ∼ PX0,θ0

(·) and set ξi
0 = (Xi

0, θ
i
0)

• For i = 1, . . . , Np set the initial weights and initial time indexes:
ωi

0 = 1/Np, t
i
0 = 0.

• Then

π
Np

0 =

Np∑

i=1

ωi
0δ{ξi

0}
.

Iteration k; k = 1, . . . ,m over step 2 (prediction) and step 3 (resampling)

IPS Step 2. Prediction step: πk−1 −→ pk;

• For i = 1, . . . , Np simulate a new path (see Chapter 4) starting at ξi
k−1 until

the k-th set D̄k is hit, or till time index t̂ik = T .
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• This yields new particles {t̂ik, ξ̂i
k, ω

i
k}

Np

i=1. The weights are not changed: ωi
k =

ωi
k−1.

• p
Np

k is the empirical distribution associated with the new cloud of particles:

p
Np

k =

Np∑

i=1

ωi
kδ{ξ̂i

k
}.

• The particles which do not reach the set D̄k are killed, i.e. we set ω̂i
k = 0 if

t̂ik = T and ξ̂i
k /∈ D̄k, else ω̂i

k = ωi
k.

• The new set of particles is {t̂ik, ξ̂i
k, ω̂

i
k}

Np

i=1.

• Approximation of γk:

γk ≈ γ
Np

k =

Np∑

i=1

ω̂i
k.

If all particles are killed, i.e. γ
Np

k = 0, then the algorithm stops and
Phit(0, T ) ≈ 0.

IPS Step 3. Resampling step: pk −→ πk

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k and

ω̃i
k =

ω̂i
k∑Np

j=1 ω̂
j
k

, i = 1, . . . , Np,

• Resample with replacement Np particles ξi
k according to the empirical mea-

sure

π
Np

k =

Np∑

i=1

ω̃i
kδ{ξ̃i

k
}.

• The new set of particles is {tik, ξi
k, ω

i
k}

Np

i=1, with weights ωi
k = 1/Np.

• If k < m then repeat steps 2, 3 for k := k + 1.

• Otherwise, stop with Phit(0, T ) ≈∏m
k=1 γ

Np

k .

5.2.3 Hybrid IPS

While in theory the IPS approach is applicable virtually to any strong Markov
process, in practice the straightforward application of this approach to stochastic
hybrid processes fails to produce reasonable estimates within a reasonable amount
of simulation time. First, there will be few if any particles in modes with small
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probabilities (i.e. “light” modes). This happens because after several resampling
steps more and more “heavy” particles are being sampled from modes with higher
probabilities, thus, “light” particles in the “light” modes become discarded. Sec-
ond, if the switching rate is small then it is highly unlikely to observe even one
switch during a simulation run. In such cases, the possible switching between
modes is not properly taken into account. Together with the first problem this
badly affects IPS estimator performance. By increasing the number of particles
the IPS estimates should improve but only at the cost of substantially increased
simulation time which makes the performance of IPS approach similar to one of
the standard Monte Carlo.

In this section we propose two improvements over the IPS method: sampling
per mode to cope with large differences in mode weights, and importance switching
to cope with rare mode switching.

Sampling per Mode

We propose to replace the initial sampling step 1 and the resampling step 3 of the
IPS algorithm by alternative steps which use conditional “sampling per mode”.

If the initial probabilities of some particular modes are very small then it is
highly unlikely to draw particles in these modes. To avoid this, at the initial
sampling step we start with a fixed number of particles in each mode whatever
small the initial probability is and adjust the weights appropriately. Let N i

p

denote number of particles in mode ei ∈ M = {e1, . . . , eN}. In total the system of

particles will consist of Np =
∑N

i=1N
i
p particles. Let J i denote the set of indices

of particles which are in mode ei (J i ∩Jj = ∅ for i 6= j). The whole set of indices
is defined by

J ,

N⋃

i=1

J i = {1, 2, . . . , Np}, |J | = Np.

At the initial sampling step we take:

J i =
{ i−1∑

k=0

Nk
p + 1, . . . ,

i−1∑

k=0

Nk
p +N i

p

}
, N0

p = 0, |J i| = N i
p.

As particles evolve and switch from one mode to another one the numbers of
particles in different modes will change, so will the index sets J i’s. But at each
resampling step we will again sample N i

p particles for each mode ei from a condi-
tional empirical distribution.

For i = 1, . . . , N define the following probabilities:

πk(B|ei) , P (ξk ∈ B|y1 = 1, . . . , yk = 1, θτk∧T = ei),

πk(B, ei) , πk(B|ei) · P (θτk∧T = ei|y1 = 1, . . . , yk = 1).
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Then the following holds:

πk(B) =

N∑

i=1

πk(B, ei).

Similarly for empirical approximation we have:

π
Np

k =

Np∑

j=1

w̃j
kδ{ξ̃j

k
} =

N∑

i=1

( ∑

j∈Ji

w̃j
kδ{ξ̃j

k
}

)
,

i.e.

πk(B, ei) ≈ π
i,Np

k ,
∑

j∈Ji

w̃j
kδ{ξ̃j

k
}.

The idea behind the “sampling per mode” is to sample N i
p particles for each mode

ei (i = 1, . . . , N) from the unnormalized conditional empirical measure π
i,Np

k =∑
j∈Ji w̃

j
kδ{ξ̃j

k
} instead of sampling Np particles from the empirical measure π

Np

k =
∑Np

j=1 w̃
j
kδ{ξ̃j

k
}. The weights of the particles in each mode ei, i.e the particles with

indices j ∈ J i, are adjusted as follows:

ωj
k =

∑
s∈Ji ω̃s

k

N i
p

.

It may happen that
∑

j∈Ji ω̃
j
k = 0, i.e. there are no particles left in mode ei.

But as long as there are particles left in other modes we still can continue the
simulation. Below we present steps 1 and 3 of our new Hybrid IPS algorithm. In
the following section we discuss how to improve step 2.

Step 1H. Initial sampling; k = 0.

• Choose for each mode ei ∈ M = {e1, . . . , eN}, i = 1, . . . , N an integer N i
p,

so that Np =
∑N

i=1N
i
p.

• Set the initial index sets

J i =
{ i−1∑

k=0

Nk
p + 1, . . . ,

i−1∑

k=0

Nk
p +N i

p

}
, N0

p = 0.

• For each i = 1, . . . , N sample N i
p initial state values outside D̄1:

Xj
0 ∼ PX0|θ0

(·|ei). Set θj
0 = ei, then ξj

0 = (Xj
0 , θ

j
0), j ∈ J i.

Assign initial weights and initial time indexes:
ωj

0 = Pθ0
(ei)
/
N i

p, t
j
0 = 0, j ∈ J i.
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• Then

π
Np

0 =

Np∑

i=1

ωi
0δ{ξi

0}
.

Step 3H. Resampling step: pk −→ πk

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k and

ω̃i
k =

ω̂i
k∑Np

s=1 ω̂
s
k

, i = 1, . . . , Np,

• For each mode ei ∈ M, (i = 1, . . . , N), resample with replacement N i
p values

of ξk from the unnormalized conditional empirical measure

π
i,Np

k =
∑

j∈Ji

ω̃j
kδ{ξ̃j

k
}

and adjust the weights as follows:

ωj
k =

∑
s∈Ji ω̃s

k

N i
p

.

• The new set of particles is {tik, ξi
k, ω

i
k}

Np

i=1.

• If k < m then repeat steps 2 and 3H for k := k + 1.

• Otherwise stop, with Phit(0, T ) ≈
∏m

k=1 γ
Np

k .

Importance Switching

The possibility of small mode probabilities is covered well by resampling per
mode. However there remains another problem to be solved; the problem of rare
transitions (switches) of switching diffusion (5.2.1-5.2.2).

In the IPS approach during prediction step we generate random paths

(ξi
k−1:k)

Np

i=1 = (xi
τk−1∧T :τk∧T , θ

i
τk−1∧T :τk∧T )

Np

i=1 to approximate the distribution pk

(k = 1, . . . ,m). If the probability of some transitions (switches) is very small
then, most probably, there will be few switches observed during the generation of
these random paths. This may affect the accuracy of estimation of pk and thus
the accuracy of estimation of Phit(0, T ) as well. To improve the quality of our
estimates we will change the way the random trajectories are being generated.
The idea is to use a kind of sequential importance sampling technique. We briefly
explain the idea.
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Let us consider a random trajectory ut0:tN
= (ut0 , . . . , utN

) with the density

put0
,...,utN

(u0, . . . , uN )

= put0
(u0)put1

|ut0
(u1|u0) . . . putN

|ut0
,...,utN−1

(uN |u0, . . . , uN−1).

The utk
is a state of some studied system at time tk. The standard sequential sam-

pling Monte Carlo works as follows: we pick ut0 = u0 according to the density put0

and sequentially generate quantities utk
= uk according to the conditional density

putk
|ut0

,...,utk−1
. In order to provoke more rare events during simulation we replace

the original conditional densities putk
|ut0

,...,utk−1
by some known conditional den-

sities qutk
|ut0

,...,utk−1
, (k = 2, . . . N), with respect to which the rare events are

more likely to occur. In such a way the new density of random trajectory ut0:tN

is given by

qut0
,...,utN

(u0, . . . , uN )

= qut0
(u0)qut1

|ut0
(u1|u0) . . . qutN

|ut0
,...,utN−1

(uN |u0, . . . , uN−1).

To compensate for this change (i.e. to keep the estimates unbiased) the impor-
tance weight for each random i-th realization of random path should be evaluated:

ωi
N =

put0
,...,utN

(ui
0, . . . , u

i
N )

qut0
,...,utN

(ui
0, . . . , u

i
N )
.

This can be done recursively in time:

ωi
k = ωi

k−1

putk
|ut0

,...,utk−1
(ui

k|ui
0, . . . , u

i
k−1)

qutk
|ut0

,...,utk−1
(ui

k|ui
0, . . . , u

i
k−1)

, k = 1, . . . , N.

Now, we are going to apply the above sequential importance sampling tech-
nique to switching diffusion. But before this, we would like to remind that in
order to conduct simulations the continuous time stochastic processes are com-
monly approximated by certain approximating continuous time processes which
are easy to simulate (for example Euler or Milstein approximations) and then the
values of the approximating process are determined recursively from the corre-
sponding discretization schemes at discretization time points. In our case we use
the Euler scheme (4.3.3-4.3.4). Therefore, all further derivations are done for the
approximating stochastic process {Xh

t , θ
h
t } (see Chapter 4).

Remark 5.2.1. It is important to point out that on the time interval [0, T ] the
process {θh

t } is a continuous time Markov chain with piecewise constant switch-
ing rates, i.e. on each individual interval [tk−1, tk) (where tk, k = 0, 1, . . . are
the discretization points) it is the homogeneous continuous time Markov chain
with constant switching rate matrix Λ(Xh

tk−1
) = (λij(X

h
tk−1

))N
i,j=1, and on each

discretization interval [tk−1, tk) evolution of {θh
t } is independent of {Xh

t }.
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Functions λij(·) define the rates of switchings. To make the rare switches more

frequent we replace λij(·) with functions λ̂ij(·) which provide higher switching

rates. The changed process is denoted by {X̂h
t , θ̂

h
t } and its values at discretization

points are evaluated from the following discretization scheme:

X̂h
ti

= X̂h
ti−1

+ a(X̂h
ti−1

, θ̂h
ti−1

)(ti − ti−1) + b(X̂h
ti−1

, θ̂h
ti−1

)(Wti
−Wti−1

), (5.2.15)

θ̂h
ti

= θ̂h
ti−1

+

∫

Umax

ĉ(X̂h
ti
, θ̂h

ti−1
, z)p({ti}, dz), (5.2.16)

where ti ∈ I, i = 1, 2, . . . , and coefficient ĉ corresponds to the new switching
rate matrix Λ̂(·) = (λ̂ij(·))N

i,j (see the definition (4.2.1) of coefficient c in Chapter

4). In order to keep the estimates {πNp

k , p
Np

k , γ
Np

k , k = 0, 1, . . . ,m} unbiased, we
should calculate the appropriate importance weights. We find these weights from
the following derivations. For n > k, n, k = 1, 2, . . . :

PXh
tn

,θh
tn

|Xh
tk

,θh
tk

(A,B|xk, θk) =

=
∑

θn∈B

∫

A

∑

θn−1∈M

∫

Rn

· · ·
∑

θk+1∈M

∫

Rn

n∏

i=k+1

PXh
ti

,θh
ti
|Xh

ti−1
,θh

ti−1
(dxi, θi|xi−1, θi−1)

=
∑

θn∈B

∫

A

∑

θn−1∈M

∫

Rn

· · ·
∑

θk+1∈M

∫

Rn

n∏

i=k+1

PXh
ti

,θh
ti
|Xh

ti−1
,θh

ti−1
(dxi, θi|xi−1, θi−1)

PX̂h
ti

,θ̂h
ti
|X̂h

ti−1
,θ̂h

ti−1

(dxi, θi|xi−1, θi−1)
×

× PX̂h
ti

,θ̂h
ti
|X̂h

ti−1
,θ̂h

ti−1

(dxi, θi|xi−1, θi−1)

=
∑

θn∈B

∫

A

∑

θn−1∈M

∫

Rn

· · ·
∑

θk+1∈M

∫

Rn

n∏

i=k+1

PXh
ti
|θh

ti
,Xh

ti−1
,θh

ti−1
(dxi|θi, xi−1, θi−1)

PX̂h
ti
|θ̂h

ti
,X̂h

ti−1
,θ̂h

ti−1

(dxi|θi, xi−1, θi−1)
×

×
Pθh

ti
|Xh

ti−1
,θh

ti−1
(θi|xi−1, θi−1)

Pθ̂h
ti
|X̂h

ti−1
,θ̂h

ti−1

(θi|xi−1, θi−1)
PX̂h

ti
,θ̂h

ti
|X̂h

ti−1
,θ̂h

ti−1

(dxi, θi|xi−1, θi−1) =

=
∑

θn∈B

∫

A

∑

θn−1∈M

∫

Rn

· · ·
∑

θk+1∈M

∫

Rn

n∏

i=k+1

Lti|ti−1
(θi|xi−1, θi−1)×

× PX̂h
ti

,θ̂h
ti
|X̂h

ti−1
,θ̂h

ti−1

(dxi, θi|xi−1, θi−1),

(5.2.17)
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where

Lt|s(θ|x′, θ′) M
=
P

θh
t
|Xh

s ,θh
s

(θ|x′, θ′)
Pθ̂h

t |X̂h
s ,θ̂h

s
(θ|x′, θ′) (5.2.18)

denotes the likelihood ratio (i.e. the importance weights). The last equality in
derivation (5.2.17) follows from Remark 5.2.1, i.e.

PXh
ti
|θh

ti
,Xh

ti−1
,θh

ti−1
(dxi|θi, xi−1, θi−1) = PX̂h

ti
|θ̂h

ti
,X̂h

ti−1
,θ̂h

ti−1

(dxi|θi, xi−1, θi−1)

for i = 1, 2, . . . . Hence, during the prediction step the unbiased estimates of
distribution pk (k = 1, . . . ,m) can be obtained by generating random trajectories
of the process (5.2.15)-(5.2.16) (i.e. sampling according to Px̂t,θ̂t|x̂s,θ̂s

(·|x′, θ′),
t > s) and adjusting the weight of each particle recursively in time:

ωi
tj

= ωi
tj−1

· Ltj |tj−1
(θi

j |xi
j−1, θ

i
j−1). (5.2.19)

The key is picking a good importance switching distribution
PX̂h

t ,θ̂h
t |X̂h

s ,θ̂h
s
(·|x′, θ′), i.e. the switching rate matrix Λ̂(·). Roughly speaking, we

should pick it so as to make the rare switch more likely to occur.

Before we present the complete version of our new Hybrid IPS (HIPS) algo-
rithm, we need to explain how the likelihood ratios are evaluated.

Evaluation of likelihood ratios

In HIPS algorithm, for each discretization interval [tj−1, tj ] we need to evaluate the
likelihood ratios (5.2.18), i.e. the conditional transition probabilities of continuous

time pure jump components {θh
t } and {θ̂h

t }. Recall that the infinitesimal jump

rate matrices of {θh
t } and {θ̂h

t }, i.e. Λ = (λij(X
h
t ))N

i,j=1 and Λ̂ = (λ̂ij(X̂
h
t ))N

i,j=1

depend on fixed state values Xh
t and X̂h

t respectively, and are constant on each
discretization interval. This simply means that one should be able to estimate the
transition probability Pyt|y0

(j|i), of some homogeneous continuous time Markov
chain {yt} with constant rate matrix Q = (qij)

N
i,j=1. In practice this is usually

done using Jensen’s method, also known as uniformization (Jensen, 1953). The
idea behind this method is to convert the continuous time Markov chain (CTMC)
{yt} to a probabilistically equivalent discrete time Markov chain (DTMC) {y∗k,
k = 0, 1, . . . }, with transition probability matrix P ∗ = 1

rQ + I, (I is the unit
matrix), and jump times defined by a Poisson counting process {Nt}, with rate r,
such that {yt} and {y∗Nt

} are probabilistically identical. Indeed, for the transition

probability matrix Pt = (Pyt|y0
(j|i))N

i,j=1 the following holds

Pt = exp (tQ) = exp
(
rt(I +

1

r
Q)
)
e−rt =

∞∑

n=0

(rt)n

n!
e−rt(P ∗)n,

99



5.2. RARE EVENT MONTE CARLO SIMULATION FOR

SWITCHING DIFFUSION

hence we obtain the following expression for the (i, j)-entry

Pyt|y0
(j|i) = P (yt = j|y0 = i) =

∞∑

n=0

(rt)n

n!
e−rt((P ∗)n)ij (5.2.20)

=

∞∑

n=0

P (y∗n = j|y∗0 = i)P (Nt = n)

=
∞∑

n=0

P (y∗n = j, Nt = n|y∗0 = i)

=
∞∑

n=0

P (y∗Nt
= j,Nt = n|y∗0 = i)

= P (y∗Nt
= j|y∗0 = i),

i.e. yt = y∗Nt
, where {Nt} is a Poisson counting process with rate r, independent

of the discrete time Markov chain {y∗n}. If r > maxi |qii|, then the convergence of
the above power series (5.2.20) is guaranteed. In practice, only finite number of
terms are used to evaluate the sum in (5.2.20). Truncation to the right takes place
since the Poisson probabilities are negligible beyond a certain n. Truncation to
the left takes place because the Poisson probabilities are negligible until a certain
n for a large values of rt. Therefore, we approximate this sum as (Fox and Glynn,
1988):

∞∑

n=0

(rt)n

n!
e−rt((P ∗)n)ij ≈

R∑

n=L

((P ∗)n)ijfp(n, rt), (5.2.21)

where

fp(n, s) = fp(n− 1, s)
s

n
, and fp(0, s) = e−s,

L and R are left and right truncation points respectively. The truncation error is
bounded by 10−d (d digits of precision) if

L = max
k∈N

{ k∑

n=0

fp(n, rt) ≤
10−d

2

}
, (5.2.22)

R = min
k∈N

{
1 −

k∑

n=L

fp(n, rt) ≤
10−d

2

}
. (5.2.23)

In this way, on each discretization interval [tj−1, tj ] the likelihood ratio (5.2.18)
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can be approximated as follows:

Ltj |tj−1
(θj |xj−1, θj−1) =

Pθh
tj

|Xh
tj−1

,θh
tj−1

(θ|x′, θ′)
Pθ̂h

tj
|X̂h

tj−1
,θ̂h

tj−1

(θ|x′, θ′)

≈
∑R

n=L((P ∗)n)ijfp(n, rt)
∑R̂

n=L̂((P̂ ∗)n)ijfp(n, r̂t)
, (5.2.24)

where

P ∗ =
1

r
Λ + I, P̂ ∗ =

1

r̂
Λ̂ + I,

r = max
i=1,...,N

x∈R
n

∣∣
N∑

j=1
j 6=i

λij(x)
∣∣+ ε, r̂ = max

i=1,...,N
x∈R

n

∣∣
N∑

j=1
j 6=i

λ̂ij(x)
∣∣+ ε,

ε > 0 is a small constant and L̂, R̂ are defined as L,R in (5.2.22)-(5.2.23) with r̂
used instead of r.

In HIPS algorithm the likelihood ratios (5.2.18) must be evaluated repeatedly
during simulation. In order to avoid repeating the necessary arithmetic operations
we can perform some computations before simulation and store the obtained data
in memory for further use. We precompute the quantities L, R, L̂, R̂ and all
terms of approximating series, i.e. fp(n, rt)) and fp(n, r̂t), and store these data
in memory. Then, performing the simulation, these precomputed values are used,
thus reducing computations to simple summations of numbers. However, the
matrix powers (P ∗)n, (P̂ ∗)n have to be evaluated each time again, because the
transition probability matrices P ∗ = 1

r Λ+I and P̂ ∗ = 1
r Λ̂+I depend on matrices

Λ and Λ̂ which are different after each discretization step h if the switching rates
(λij(·))N

ij=1 and (λ̂ij(·))N
ij=1 are not constant. In case if these switching rates are

constant then the likelihood ratio (5.2.18) can be evaluated only once on each
interval [τk−1, τk], thus significantly increasing the speed of the algorithm.
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HIPS algorithm

Next we present two versions of our new HIPS algorithm.

The case where the jump rates are constant

The following HIPS algorithm is applicable to the case where the jump rates
are constants, i.e. the discrete valued component {θh

t } is independent of {Xh
t }.

The particle is defined as a triplet {t, ξ, ω} - (current time, state and weight). In
this special case the likelihood ratios are evaluated not on discretization intervals
[tj , tj+1] but on stochastic intervals [τk, τk+1].

HIPS Step 0. Initial setup

• Choose appropriate nested sequence of closed subsets Di, (i = 1, . . . ,m), of
R

n such that D = Dm ⊂ Dm−1 ⊂ · · · ⊂ D1, and define D̄k = Dk × M,
k = 1, . . . ,m.

• Choose small ε > 0 and compute

r = max
i=1,...,N

∣∣
N∑

j=1
j 6=i

λij

∣∣+ ε, r̂ = max
i=1,...,N

∣∣
N∑

j=1
j 6=i

λ̂ij

∣∣+ ε,

here λ̂ij are the jump rates of {θ̂h
t }.

HIPS Step 1H. Initial sampling; k = 0.

• Choose for each mode ei ∈ M = {e1, . . . , eN}, i = 1, . . . , N an integer N i
p,

so that Np =
∑N

i=1N
i
p.

• Set the initial index sets

J i =
{ i−1∑

k=0

Nk
p + 1, . . . ,

i−1∑

k=0

Nk
p +N i

p

}
, N0

p = 0.

• For each i = 1, . . . , N sample N i
p initial state values outside D̄1:

Xj
0 ∼ PX0|θ0

(·|ei). Set θj
0 = ei, then ξj

0 = (Xj
0 , θ

j
0), j ∈ J i.

Assign initial weights and initial time indexes:
ωj

0 = Pθ0
(ei)
/
N i

p, t
j
0 = 0, j ∈ J i.

• Then

π
Np

0 =

Np∑

i=1

ωi
0δ{ξi

0}
.
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Iteration k; k = 1, . . . ,m over step 2 (prediction) and step 3 (resampling)

HIPS Step 2H. Prediction step: πk−1 −→ pk

• For i = 1, . . . , Np use (5.2.15)-(5.2.16) to simulate a new path (see Chapter
4) starting at ξi

k−1 until the k-th set D̄k is hit, or till time index t̂ik = T .

• This yields new particles {t̂ik, ξ̂i
k, ω

i
k−1}

Np

i=1. The weights are not changed
yet.

• Evaluate the likelihood ratios and adjust the weights:

Find the truncation points

L = max
k∈N

{ k∑

n=0

fp(n, r(t̂
i
k − tik−1)) ≤

10−d

2

}
,

R = min
k∈N

{
1 −

k∑

n=L

fp(n, r(t̂
i
k − tik−1)) ≤

10−d

2

}

L̂ = max
k∈N

{ k∑

n=0

fp(n, r̂(t̂
i
k − tik−1)) ≤

10−d

2

}
,

R̂ = min
k∈N

{
1 −

k∑

n=L̂

fp(n, r̂(t̂
i
k − tik−1)) ≤

10−d

2

}
.

Evaluate the likelihood ratio

Lt̂k|tk−1
(θi

k|θi
k−1) ≈

∑R
n=L((P ∗)n)θi

k−1θi
k
fp(n, r(t̂

i
k − tik−1))

∑R̂
n=L̂((P̂ ∗)n)θi

k−1θi
k
fp(n, r̂(t̂ik − tik−1))

here P ∗ = 1
r Λ + I, P̂ ∗ = 1

r̂ Λ̂ + I, and Λ = (λij)
N
i,j=1, Λ̂ = (λ̂ij)

N
i,j=1 are the

corresponding infinitesimal jump rate matrices of {θh
t } and {θ̂h

t }.
Update the weights:

ωi
k = ωi

k−1 · Lt̂k|tk−1
(θi

k|θi
k−1).

• p
Np

k is the empirical distribution associated with the new cloud of particles:

p
Np

k =

Np∑

i=1

ωi
kδ{ξ̂i

k
}.

• The particles which do not reach the set D̄k are killed, i.e. we set ω̂i
k = 0 if

t̂ik = T and ξ̂i
k /∈ D̄k, else ω̂i

k = ωi
k.
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• The new set of particles is {t̂ik, ξ̂i
k, ω̂

i
k}

Np

i=1.

• Approximation of γk:

γk ≈ γ
Np

k =

Np∑

i=1

ω̂i
k.

If all particles are killed, i.e. γ
Np

k = 0, then the algorithm stops and
Phit(0, T ) ≈ 0.

HIPS Step 3H. Resampling step: pk −→ πk

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k and

ω̃i
k =

ω̂i
k∑Np

s=1 ω̂
s
k

, i = 1, . . . , Np,

• For each mode ei ∈ M, (i = 1, . . . , N), resample with replacement N i
p values

of ξk from the unnormalized conditional empirical measure

π
i,Np

k =
∑

j∈Ji

ω̃j
kδ{ξ̃j

k
}

and adjust the weights as follows:

ωj
k =

∑
s∈Ji ω̃s

k

N i
p

.

• The new set of particles is {tik, ξi
k, ω

i
k}

Np

i=1.

• If k < m then repeat steps 2 and 3 for k := k + 1.

• Otherwise stop, with Phit(0, T ) ≈∏m
k=1 γ

Np

k .

The case where the jump rates are functions of state

The following HIPS algorithm is applicable to the case where the switching
rates of discrete valued component may depend on state.

HIPS Step 0. Initial setup

• Choose appropriate nested sequence of closed subsets Di, (i = 1, . . . ,m), of
R

n such that D = Dm ⊂ Dm−1 ⊂ · · · ⊂ D1, and define D̄k = Dk × M,
k = 1, . . . ,m.
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• Choose small ε > 0 and compute

r = max
i=1,...,N

x∈R
n

∣∣
N∑

j=1
j 6=i

λij

∣∣+ ε, r̂ = max
i=1,...,N

x∈R
n

∣∣
N∑

j=1
j 6=i

λ̂ij

∣∣+ ε,

here λ̂ij are the jump rates of {θ̂h
t }.

• Precompute the truncation points

L = max
k∈N

{ k∑

n=0

fp(n, rh) ≤
10−d

2

}
,

R = min
k∈N

{
1 −

k∑

n=L

fp(n, rh) ≤
10−d

2

}
.

L̂ = max
k∈N

{ k∑

n=0

fp(n, r̂h) ≤
10−d

2

}
,

R̂ = min
k∈N

{
1 −

k∑

n=L̂

fp(n, r̂h) ≤
10−d

2

}
.

and the following quantities

fp(n, rh) = fp(n− 1, rh)
rh

n
, and fp(0, rh) = e−rh.

fp(n, r̂h) = fp(n− 1, r̂h)
r̂h

n
, and fp(0, r̂h) = e−r̂h.

• Then store the following data in memory for further use in the subsequent
steps: r, r̂, L,R, L̂, R̂, fp(n, rh) and fp(n, r̂h).

HIPS Step 1H. Initial sampling: k = 0

• Choose for each mode ei ∈ M = {e1, . . . , eN}, i = 1, . . . , N an integer N i
p,

so that Np =
∑N

i=1N
i
p.

• Set the initial index sets

J i =
{ i−1∑

k=0

Nk
p + 1, . . . ,

i−1∑

k=0

Nk
p +N i

p

}
, N0

p = 0.
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• For each i = 1, . . . , N sample N i
p initial state values outside D̄1:

Xj
0 ∼ PX0|θ0

(·|ei). Set θj
0 = ei, then ξj

0 = (Xj
0 , θ

j
0), j ∈ J i.

Assign initial weights and initial time indexes:
ωj

0 = Pθ0
(ei)
/
N i

p, t
j
0 = 0, j ∈ J i.

• Then

π
Np

0 =

Np∑

i=1

ωi
0δ{ξi

0}
.

Iteration k; k = 1, . . . ,m over step 2 (prediction) and step 3 (resampling)

HIPS Step 2H. Prediction step:1 πk−1 −→ pk

• For i = 1, . . . , Np use (5.2.15)-(5.2.16) to simulate a new path (see Chapter
4) starting at ξi

k−1 until the k-th set D̄k is hit, or till time index t̂ik = T .

Path simulation is done iteratively per time discretization interval [t̃j , t̃j−1]
by performing the following substeps2:

Compute the matrices P ∗ = 1
r Λ + I and P̂ ∗ = 1

r̂ Λ̂ + I, where Λ =

(λi′j′(Xi
j−1))

N
i′,j′=1 and Λ̂ = (r̂i′j′(Xi

j−1))
N
i′,j′=1 are the corresponding infin-

itesimal jump rate matrices of processes {θh
t } and{θ̂h

t }.

If t̃j − t̃j−1 = h, i.e. t̃j and t̃j−1 are fixed equidistant determinis-
tic discretization points with distance h, then using the precomputed data
evaluate the likelihood ratio:

Lt̃j |t̃j−1
(θi

j |Xi
j−1, θ

i
j−1) ≈

∑R
n=L((P ∗)n)θi

j−1θi
j
fp(n, rh)

∑R̂
n=L̂((P̂ ∗)n)θi

j−1θi
j
fp(n, r̂h)

If t̃j − t̃j−1 < h, i.e. one of these discretization points is a random
switch time, then we can not use the precomputed data, thus we perform

1each prediction step consists of a sequence of local subsets; one local subset for each dis-
cretization interval [t̃j , t̃j−1], here j = 1, 2, . . .

2to simplify notations we use: Xi
j , Xi

t̃j
and θi

j , θi
t̃j
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the computation of likelihood ratio in full:

L = max
k∈N

{ k∑

n=0

fp(n, r(t̃j − t̃j−1)) ≤
10−d

2

}
,

R = min
k∈N

{
1 −

k∑

n=L

fp(n, r(t̃j − t̃j−1) ≤
10−d

2

}
,

L̂ = max
k∈N

{ k∑

n=0

fp(n, r̂(t̃j − t̃j−1) ≤
10−d

2

}
,

R̂ = min
k∈N

{
1 −

k∑

n=L̂

fp(n, r̂(t̃j − t̃j−1) ≤
10−d

2

}
,

Lt̃j |t̃j−1
(θi

j |Xi
j−1, θ

i
j−1) ≈

∑R
n=L((P ∗)n)θi

j−1θi
j
fp(n, r(t̃j − t̃j−1))

∑R̂
n=L̂((P̂ ∗)n)θi

j−1θi
j
fp(n, r̂(t̃j − t̃j−1))

.

Update the weights:

ωi
t̃j

= ωi
t̃j−1

· Lt̃j |t̃j−1
(θi

j |Xi
j−1, θ

i
j−1).

• This yields new particles {t̂ik, ξ̂i
k, ω

i
k}

Np

i=1.

• p
Np

k is the empirical distribution associated with the new cloud of particles:

p
Np

k =

Np∑

i=1

ωi
kδ{ξ̂i

k
}.

• The particles which do not reach the set D̄k are killed, i.e. we set ω̂i
k = 0 if

t̂ik = T and ξ̂i
k /∈ D̄k, else ω̂i

k = ωi
k.

• The new set of particles is {t̂ik, ξ̂i
k, ω̂

i
k}

Np

i=1.

• Approximation of γk:

γk ≈ γ
Np

k =

Np∑

i=1

ω̂i
k.

If all particles are killed, i.e. γ
Np

k = 0, then the algorithm stops and
Phit(0, T ) ≈ 0.
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HIPS Step 3H. Resampling step: pk −→ πk

• For i = 1, . . . , Np set ξ̃i
k = ξ̂i

k and

ω̃i
k =

ω̂i
k∑Np

s=1 ω̂
s
k

, i = 1, . . . , Np,

• For each mode ei ∈ M, (i = 1, . . . , N), resample with replacement N i
p values

of ξk from the unnormalized conditional empirical measure

π
i,Np

k =
∑

j∈Ji

ω̃j
kδ{ξ̃j

k
}

and adjust the weights as follows:

ωj
k =

∑
s∈Ji ω̃s

k

N i
p

.

• The new set of particles is {tik, ξi
k, ω

i
k}

Np

i=1.

• If k < m then repeat steps 2 and 3 for k := k + 1.

• Otherwise stop, with Phit(0, T ) ≈∏m
k=1 γ

Np

k .

5.3 Numerical evaluations

5.3.1 Switching diffusion example

This section illustrates the performance of the Monte Carlo (MC) approach, the
IPS algorithm of Cérou et al. (2002) and the effect of the alternative steps 1H, 2H
and 3H of HIPS algorithm for a switching diffusion. Table 5.1 presents the list of
tested algorithms. There IPS stands for the algorithm of Cérou et al. (2002) in
case of a switching diffusion (Section 5.2.2); HIPS 1 is IPS with improved initial
sampling step 1H and with resampling per mode step 3H (Section 5.2.3); and
HIPS 2 is HIPS 1 plus importance switching (Section 5.2.3).

Table 5.1: Tested Algorithms

Algorithm Particle Initial sampling Resampling Importance
system per mode per mode switching

MC − Yes (1H) − −
IPS Yes − − −
HIPS1 Yes Yes (1H) Yes (3H) −
HIPS2 Yes Yes (1H) Yes (3H) Yes (2H)
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We use the following stochastic hybrid process as a test example. We extend
the diffusion (2.3.15) to an R × {e1, e2, e3}-valued Markovian switching diffusion
{Xt, θt} which is described by the following SDE

dXt =
(
µ(θt) +

σ(θt)
2

2

)
Xtdt+ σ(θt)XtdWt,

dθt =

∫

R

c(θt−, z)p(dt, dz).

Initial conditions:

P (X0 = 1) = 1; P (θ0 = e1) = 1 − 10−7 − 10−9;

P (θ0 = e2) = 10−7; P (θ0 = e3) = 10−9;

Parameters:

µ(e1) = 1, µ(e2) = 4, µ(e3) = 3,
σ(e1) = 1, σ(e2) = 0.9, σ(e3) = 1.7.

c(ei, z) =

{
ej − ei if z ∈ ∆ij

0 otherwise.

|∆ij | = λij (see Chapter 4) and the switching rates are:

λ12 = 1 · 10−4, λ13 = 1 · 10−6,
λ21 = 5 · 10−5, λ23 = 1 · 10−5,
λ31 = 5 · 10−5, λ32 = 1 · 10−4.

Let σ1 be the first jump time of continuous time Markov chain {θt}. The proba-
bility that {θt} will stay in initial state θ0 = ei for more than t time units is given
by

P (σ1 > t|θ0 = ei) = exp
{
−

3∑

j=1
j 6=i

λijt
}
≈ 1 for t ∈ [0, 1],

i = 1, 2, 3. Actually

P (σ1 > 1|θ0 = e1) = 0.99990, (5.3.1)

P (σ1 > 1|θ0 = e2) = 0.99994, (5.3.2)

P (σ1 > 1|θ0 = e3) = 0.99985, (5.3.3)

i.e. probabilities that {θt} will switch within time interval [0, T ], T = 1 are very
small.

As in the preceding example, we want to estimate the probability that con-
tinuous valued component {Xt} will hit level d before time T = 1, i.e. P (τd ≤ 1)

109



5.3. NUMERICAL EVALUATIONS

where τd , inf{t > 0 : Xt ∈ [d,+∞)}. We are also interested in estimating the
probabilities of hitting the barrier in particular modes:

P (τd ≤ 1, θτd
= ei), ei ∈ M. (5.3.4)

Unfortunately, there is no analytical solution available for our switching diffusion
example to compare with the results of simulation algorithms. The evolution of
continuous component Xt is more complicated now. It switches from one diffusion
path to another as the discrete component θt jumps from one state to another.
Luckily, we can use the analytical formula (2.3.16) to evaluate the conditional
probabilities of hitting the barrier d within time interval (0, T ] given that the
switching diffusion started in a particular mode and never switched (i.e. Xt

evolves just as diffusion (2.3.15) only with different coefficients):

P (τd ≤ 1, θτd
= ei|θs = ei, s ∈ [0, τd ∧ 1)), ei ∈ M. (5.3.5)

Figure 5.4 illustrates the conditional probabilities (5.3.5) as functions of d. We
see that reaching the target level d is more likely in mode 2 or 3 and less likely in
mode 1. It is also obvious that higher number of particles will survive in modes
2 and 3 than in mode 1, but their weights can be relatively small because of
initial conditions. Using (5.3.1)-(5.3.3), (5.3.5) and the initial conditions we can
analytically evaluate close approximations of the following probabilities (see Table
5.2):

P (τd ≤ 1, θs = ei, s ∈ [0, τd])

= P (τd ≤ 1, θτd
= ei|θs = ei, s ∈ [0, τd ∧ 1))×

× P (θs = ei, s ∈ (0, τd ∧ 1)|θ0 = ei)P (θ0 = ei)

≈ P (τd ≤ 1, θτd
= ei|θs = ei, s ∈ [0, τd ∧ 1))×

× P (σ1 > 1|θ0 = ei)P (θ0 = ei), (5.3.6)

i = 1, 2, 3.
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Figure 5.4: Probabilities P (τd ≤ 1, θτd
= ei|θs = ei, s ∈ [0, τd ∧ 1)), i = 1, 2, 3.

Table 5.2: Analytical estimates of probabilities P (τd ≤ 1, θs = ei, s ∈ [0, τd])

.

Target Level, Sum of Probability P (τd ≤ 1, θs = ei, s ∈ [0, τd])

d three Modes Mode 1 Mode 2 Mode 3

5 3.84E-01 3.84E-01 9.98E-08 8.88E-10

70 9.50E-04 9.50E-04 4.33E-08 2.99E-10

215 1.05E-05 1.05e-05 7.58E-09 1.11E-10

295 2.38E-06 2.38E-06 3.68E-09 7.86E-11

490 1.79E-07 1.78E-07 9.17E-10 4.23E-11

740 1.83E-08 1.80E-08 2.40E-10 2.42E-11

1070 2.09E-09 2.02E-09 6.11E-11 1.40E-11

1415 3.79E-10 3.51E-10 1.95E-11 8.97E-12

1805 8.46E-11 7.19E-11 6.70E-12 5.97E-12

2515 1.23E-11 7.55E-12 1.39E-12 3.33E-12

2850 6.53E-12 3.14E-12 7.46E-13 2.64E-12

3550 2.64E-12 6.48E-13 2.38E-13 1.75E-12
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These values provide insight into evolution of the process in different modes.
We can use these analytical estimates as a reference for interpretation of our
simulation results.

In the following sections the performance of several algorithms is demonstrated
and their relative merits are discussed.

For the IPS, HIPS1 and HIPS2 we use same sequence of nested sets D =
Dm ⊂ · · · ⊂ D1, Dj = [dj ,+∞), d = dm > · · · > d1 > 0, as in example for
diffusion (Section 2.3.3). We run 1000 simulations with 1000 particles (N1

p = 500
for Mode 1, N2

p = 300 for Mode 2 and N3
p = 200 for Mode 3). For algorithm

HIPS2 the importance switching rates are λ̂ij = 1
30 for i 6= j.

Standard Monte Carlo

To begin with, we want to present the results obtained by running weighted
standard Monte Carlo simulation. The simulation starts with 5000000 particles
in Mode 1, 3000000 in Mode 2 and 2000000 in Mode 3 (in total 107 particles),
and each particle is assigned its weight according to initial conditions (see step
1H in Section 5.2.3). Then, each trial is independently simulated until it reaches
barrier d or the end time T = 1. Table 5.3 presents the results of 107 runs.

Table 5.3: Probability to hit barrier d. Standard Monte Carlo, 107 runs.

Target Level, Total Probability P (τd ≤ 1, θτd
= ei)

d probability Mode 1 Mode 2 Mode 3

P (τd ≤ 1)

5 3.74E-01 3.74E-01 6.35E-05 1.40E-06

70 8.39E-04 8.29E-04 9.64E-06 2.89E-10

215 1.02E-05 9.00E-06 1.21E-06 1.05E-10

295 2.60E-06 2.20E-06 4.03E-07 7.38E-11

490 4.01E-07 4.00E-07 7.82E-10 3.91E-11

740 2.18E-10 0.00E+00 1.96E-10 2.20E-11

1070 5.87E-11 0.00E+00 4.62E-11 1.25E-11

1415 2.17E-11 0.00E+00 1.38E-11 7.94E-12

1805 1.01E-11 0.00E+00 4.80E-12 5.27E-12

2515 3.38E-12 0.00E+00 5.00E-13 2.88E-12

2850 2.60E-12 0.00E+00 3.00E-13 2.30E-12

3550 1.58E-12 0.00E+00 6.67E-14 1.51E-12

The results show that standard Monte Carlo (MC) method does not allow
to obtain reasonable estimates of rare events by running reasonable number of
simulations (compare Tables 5.2 and 5.3). 107 runs of MC enable reasonable
estimates to be made for events with probabilities of order 10−6. The probability
to reach the highest barrier d = 3550 in modes 2 and 3, given that the process
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starts in one of these modes and never switches, is higher than 10−6 (see Figure
5.4). That is why MC shows rather better performance in these modes than in
mode 1. However, when switching rates are low, an MC simulation also needs
numerous trials to achieve reliable estimate. We conclude that MC method is very
time consuming and not appropriate for estimating event probabilities of orders
less than 10−6.

IPS

Table 5.4 presents the results obtained by running IPS algorithm for switching
diffusion. As we have expected, the IPS algorithm fails to keep enough particles
in “light” modes 2 and 3. After several resampling steps more and more “heavy”
particles are being sampled from mode 1 with the highest probability, and the
“light” particles from modes 2 and 3 become discarded. The sampling per mode
can help to solve this problem.

Table 5.4: Probability to hit barrier d. IPS approach, 1000 simulations of 1000
particles.

Target Level, Total Probability P (τd ≤ 1, θτd
= ei)

d probability Mode 1 Mode 2 Mode 3

P (τd ≤ 1)

5 3.74E-01 3.74E-01 5.24E-05 0.00E+00

70 8.18E-04 8.15E-04 3.45E-06 1.57E-08

215 8.78E-06 8.57E-06 2.08E-07 6.23E-10

295 1.99E-06 1.92E-06 6.98E-08 1.90E-10

490 1.42E-07 1.34E-07 8.47E-09 6.28E-11

740 1.34E-08 1.27E-08 6.74E-10 1.26E-11

1070 1.34E-09 1.31E-09 2.66E-11 1.75E-12

1415 2.17E-10 2.15E-10 1.28E-12 2.34E-13

1805 3.33E-11 3.31E-11 9.11E-14 1.89E-14

2515 3.15E-12 3.15E-12 3.10E-15 8.74E-18

2850 1.21E-12 1.21E-12 7.06E-16 0.00E+00

3550 2.85E-13 2.85E-13 3.01E-17 0.00E+00

HIPS1

Our next results show how the situation can be improved by using “sampling per
mode” for the initial sampling step and for the resampling step. Resampling per
mode allows us to avoid loss of “light” particles in “light” modes, e.g. in mode 3,
and helps to maintain fixed number of particles in each mode. Compare Tables
5.2 and 5.5. The results for mode 1 and 3 are almost the same as analytical
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estimates in Table 5.2. However, the probability to hit barrier d, especially for
low values of d, in mode 2 differs from the analytical estimates of probability
P (τd ≤ 1, θs = e2, s ∈ [0, τd]]) presented in Table 5.2. This means there were some
switches from mode 1 to mode 2, i.e. heavy particles from mode 1 “arrived” to
mode 2 before they have hit the level. It is important to understand that even rare
switches may have considerable effect on final result. In our example switching
rates are very low, so we should not expect many switches during simulation. We
therefore believe that the probabilities of hitting the target barrier in some modes
are underestimated.

Table 5.5: Probability to hit barrier d. HIPS1 approach, 1000 simulations of 1000
particles.

Target Level, Total Probability P (τd ≤ 1, θτd
= ei)

d probability Mode 1 Mode 2 Mode 3

P (τd ≤ 1)

5 3.73E-01 3.73E-01 7.75E-05 8.86E-10

70 8.13E-04 8.03E-04 9.49E-06 2.27E-08

215 9.26E-06 8.60E-06 6.55E-07 3.21E-10

295 2.16E-06 1.94E-06 2.16E-07 1.15E-10

490 1.76E-07 1.38E-07 3.81E-08 4.06E-11

740 1.83E-08 1.27E-08 5.57E-09 2.18E-11

1070 1.88E-09 1.31E-09 5.61E-10 1.23E-11

1415 3.16E-10 2.17E-10 9.11E-11 7.78E-12

1805 5.68E-11 3.68E-11 1.52E-11 4.77E-12

2515 7.99E-12 3.85E-12 1.54E-12 2.60E-12

2850 3.97E-12 1.51E-12 5.13E-13 1.95E-12

3550 1.78E-12 3.54E-13 1.15E-13 1.31E-12

HIPS2

Next, we will see how the results change if we use algorithm HIPS2, i.e. HIPS1
with the combination of Importance Switching technique. Table 5.6 presents the
results of HIPS2 algorithm. The increase of the frequencies of switches has a
considerable effect on probabilities of all modes and thus on total probability.
This is what one should expect. First of all, at the beginning heavy particles
from mode 1 can switch to mode 2 or mode 3, and thus, to increase the weights
of these modes, which in turn increases the hitting probabilities in these modes.
Second, particles in modes 2 and 3 approach the rare set faster than in mode 1,
and if the switching to mode 1 occurs, then there is high chance that the particle
is close to the target level and there is high chance that it will hit that level. Thus,
there is no big surprise that we observe higher hitting probabilities in modes 1,2
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and 3 after increasing frequencies of switchings.
This example shows how it is important to take care of rare switches, since it

may have a substantial effect on total result. But it is not obvious how much we
can change the frequencies (rates of θ’s) without introducing perceptible distortion
of the results. The tests of the HIPS2 algorithm had shown that it is stable with
different choices of switching rates λ̂ij .

Table 5.6: Probability to hit barrier d. HIPS2 approach, 1000 simulations of 1000
particles.

Target Level, Total Probability P (τd ≤ 1, θτd
= ei)

d probability Mode 1 Mode 2 Mode 3

P (τd ≤ 1)

5 4.04E-01 4.04E-01 4.82E-05 4.32E-07

70 1.47E-03 1.45E-03 1.23E-05 1.27E-07

215 2.34E-05 2.14E-05 1.93E-06 4.78E-08

295 6.52E-06 5.51E-06 9.74E-07 3.59E-08

490 8.14E-07 5.22E-07 2.70E-07 2.18E-08

740 1.63E-07 6.58E-08 8.25E-08 1.46E-08

1070 4.35E-08 8.65E-09 2.46E-08 1.02E-08

1415 1.87E-08 1.72E-09 9.29E-09 7.70E-09

1805 1.00E-08 3.96E-10 3.67E-09 5.94E-09

2515 5.55E-09 7.53E-11 1.18E-09 4.29E-09

2850 4.75E-09 4.04E-11 8.57E-10 3.85E-09

3550 3.67E-09 1.41E-11 4.75E-10 3.18E-09
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5.3.2 Discussion of numerical results

Figures 5.5(a), 5.5(b) and 5.6(a) present the estimated values of probabilities
P (τd ≤ 1, θτd

= ei), ei ∈ M, obtained by running algorithms listed in Table 5.1.
The estimated values of total hitting probability P (τd ≤ 1) are given in Figure
5.6(b). The results in Figure 5.5(a) show that MC stops at d = 490 in mode 1.
This implies the same for the total probability in Figure 5.6(b).

IPS algorithm looses most of the “light” particles in modes 2 and 3 (see Figures
5.5(b) and 5.6(a)).

The HIPS1 algorithm allows to avoid loss of light particles in “light” modes,
e.g. in mode 3, and helps to maintain fixed number of particles in each mode.
However, it is not able to cope with rare switches. It may happen that the switch
itself is a rare event but it may have a significant influence on the total result.
If this is the case (as in our example), then it is unlikely that there will be any
switches during the simulation.

Algorithm HIPS2 copes well with both the problem of rare switches and prob-
lem of “light” modes. It forces interaction between the modes by making rare
switches more frequent and properly adjusting the weights of particles. The re-
sults in Figures 5.5(a), 5.5(b) and 5.6(a) show that the increase of the frequencies
of switches has a considerable effect on probabilities of mode 2 and 3 and thus
on total probability (Figure 5.6(b)). This is what one should expect because the
heavy particles can leave mode 1, although very rarely, and have a great influence
on modes 2 and 3. The interaction between modes 2 and 3 is not really noticeable
but these modes have an influence on mode 1.
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(a) Probability to hit barrier d in mode 1. MC stops at d = 490.
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(b) Probability to hit barrier d in mode 2.

Figure 5.5: Comparison of algorithms
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(a) Probability to hit barrier d in mode 3.
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(b) Total hitting probability of barrier d. MC stops at d = 490.

Figure 5.6: Comparison of algorithms
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5.4 Concluding Remarks

This chapter aimed to extend the sequential Monte Carlo approach of Cérou et al.
(2002) to estimating rare events of rarely switching diffusions. We have formulated
the approach of Cérou et al. (2002) to explicitly include the switching diffusion
situation. Then we have developed two extensions: sampling per mode to cope
with large differences in mode weights, and importance switching to cope with
rare mode switching. Next, we evaluated the algorithms for a switching diffusion
example. Table 5.1 lists the tested algorithms. The obtained results show that
all the proposed extensions are in fact needed for estimating rare events for a
rarely switching diffusion. The best performing HIPS2 algorithm is able to cope
with differences in weights (sampling per mode), rare switches of discrete valued
component (importance switching) and rare visits of Euclidean valued component
to the target set (decomposition of rare event probability).
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Chapter 6

Conclusions and Future

Research

This chapter summarizes the main contributions of this thesis. Afterwards, we
present a few directions regarding future research.

6.1 Conclusions

In this thesis we develop a general framework for the modelling and assessment
of accident risks in complex stochastic dynamical systems. In particular, our
modelling framework is aimed to facilitate the design of new advanced Air Traffic
Management (ATM) concepts.

In Chapter 2 we have discussed the problem of accident risk assessment in
stochastic dynamical systems, using the simple example from ATM. We have
chosen to express the risk as a hitting probability, i.e. the probability that the
system under consideration will reach a certain critical state within a given time
frame. In case when the dimension of a stochastic process describing the dynam-
ical system is at most three, the hitting probability can be numerically evaluated
through solving a backward Kolmogorov PDE with Dirichlet type boundary con-
ditions. For complex real-world applications Monte Carlo simulation remains the
only feasible approach. Of course, it is unrealistic to estimate extremely small
rare event probabilities just by using a naive Monte Carlo simulation. When
the extremely small probabilities are considered one has to use special techniques
which allow the speeding of the simulation. Importance sampling and multilevel
splitting methods have been used to obtain dramatic improvements in efficiency
in estimating small probabilities in queueing and reliability systems. However,
these two methods have serious drawbacks. The importance sampling techniques,
based on changing probability distributions to make rare events less rare, depend
critically on the ability to find the right change of measure. Finding the right
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change of measure in complex dynamical models is practically impossible. The
efficiency of multilevel splitting techniques depends on the choice of the level sets
and especially on the optimal number of splittings. Too many splittings results in
explosive computational requirements, and too few splittings provides no speed-
up gains over straightforward Monte Carlo simulation. So far, the theoretical
results regarding the optimal choice of splittings have been obtained only for very
simple cases. On the other hand, the IPS based approaches do not have such
restrictive limitations as the multilevel splitting techniques. Moreover, the IPS
approaches have the advantage of being based on sound theory with many general
results available. Our numerical tests in Chapter 2 showed that IPS approach has
a great potential for accident risk assessment in stochastic dynamical systems.

Chapter 3 deals with the modelling issues of stochastic hybrid systems. We
restrict our attention to the stochastic approach of modelling, i.e. modelling by
Markov processes which are defined as solutions to SDE. In addition, we require
the solutions to be semimartingale processes. Considering SDE with semimartin-
gale solutions gives an advantage. It allows to use the powerful stochastic calculus
available for the semimartingale processes when performing complex stochastic
analysis. We have used (Gihman and Skorohod, 1982) and (Jacod and Shiryaev,
1987) to identify and characterize a very general class of jump-diffusions which
are defined as semimartingale solutions of SDE. Next we have followed a similar
path as taken by (Blom, 1990, 2003) in transferring these results to the class of
stochastic hybrid processes. As a result, we have obtained two stochastic models:
KB1 and KB2. These two models cover a range of interesting phenomena:

(i) Switching diffusion: between the random switches of the discrete valued
component, the Euclidean valued component evolves as diffusion.

(ii) Random hybrid jumps: simultaneous and dependent jumps and switches of
discrete and Euclidean valued components are driven by a Poisson random
measure.

(iii) Boundary hybrid jumps: simultaneous and dependent jumps and switches
of discrete and Euclidean valued components are initiated by boundary hit-
tings.

(iv) Martingale inducing jumps: the Euclidean valued components driven by
a compensated Poisson random measure may jump so frequently that it
is no longer a process of finite variation. These jumps represent the pure
discontinuous martingale part of the process.

To be precise, model KB1 combines the features (i), (ii) and (iv), and model KB2
combines the features (i), (ii) and (iii). We have shown that the Markov and the
strong Markov properties hold true for the stochastic hybrid model KB2. The
strong Markov property is required for the development of efficient IPS based rare
event simulation techniques.
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Most SDE do not admit closed form analytical solutions, the only alternative
of studying them is then numerical simulation. The sample paths (realizations)
or functionals of solutions of SDE are commonly simulated through discrete-time
approximations which are implementable on digital computers. Despite the avail-
ability in the literature of a large number of numerical techniques for SDE, there
is hardly any focus on SDE on hybrid state spaces. In Chapter 4 we study the
problem of approximation of first passage times in stochastic hybrid processes
with state dependent switching rates. We took a switching diffusion of Ghosh et
al. (1997) as a non-trivial example of a stochastic hybrid process with state depen-
dent switching rates; developed for it a strong Euler-type discretization scheme
and proved its convergence. Then, following the approach of Gobet (1999a,b) we
have shown that the first passage time of discretized switching diffusion converges
in distribution to the first passage time of continuous time switching diffusion
process as the maximal discretization step h tends to zero. Using our Euler-type
discretization scheme one can easily generate sample paths of switching diffusion
and by taking a sample average of 1{τh≤T}, where τh is the Euler approximation
of the stopping time τ (i.e. the first passage time), one can obtain the estimate
of the probability of reaching a given target set within the time interval (0, T ].
These results are necessary in order to implement the IPS simulation approaches
for a switching diffusions on a computer.

In Chapter 5 we extend the IPS approach of Cérou et al. (2002) to estimating
rare event probabilities in stochastic hybrid systems. While in theory the IPS
approach is applicable virtually to any strong Markov process, in practice the
straightforward application of this approach to stochastic hybrid processes fails
to produce good estimates within a reasonable amount of time. First of all, if
the initial probabilities of starting in certain modes are very small, it is highly
unlikely that one would draw particles in these “light” modes, and the bulk of the
particles is being sampled in the “heavy” modes, i.e. the modes with higher prob-
abilities. Subsequently, most, if not all, of the few particles in the “light” modes,
most likely, will be lost after several resampling steps. To avoid this, at the initial
sampling step we sample a fixed number of particles for each mode separately
and assign to each particle its “importance” weight in accordance with the ini-
tial probability. During the successive resampling steps the particles with larger
weights have higher chances to be selected, and the particles with small weights
in “light” modes tend to be discarded. We solve this problem by sampling fixed
number of particles for each mode separately and adjusting the weights appropri-
ately. Introduction of weights requires the use of weighted empirical measures in

the form
∑Np

i=1 ω
i
kδ{ξi

k
}, instead of empirical measures in the form 1

Np

∑Np

i=1 δ{ξi
k
}.

In the classical IPS approach all particles actually have the same weights equal to
1/Np, where Np is the number of particles. The second important problem is the
problem of rare switches. If the probability of some mode transitions (switches)
is very small, it is highly unlikely to observe even one switch during a simulation
run. In such cases, the possible switchings between the modes are not properly
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taken into account. Together with the problem of losing “light” particles, this
severely affects IPS estimator performance. By increasing the number of particles
the IPS estimates should improve, but only at the cost of substantially increased
simulation time. In order to avoid the need to increase the number of particles
when the switching rates are decreasing, we introduce a sequential importance
switching technique. Our numerical studies have shown that all the proposed
extensions are significantly contributing to efficient estimation of rare event prob-
abilities in stochastic hybrid systems. The best performing HIPS2 algorithm is
able to cope with differences in weights (sampling per mode), rare switches of
discrete valued component (importance switching) and rare visits of Euclidean
valued component to the target set (decomposition of rare event probability).

6.2 Future Research

In this section we review several issues which need attention in the near future.

6.2.1 Extension of SDE models on hybrid state space

In Chapter 3 of this thesis we have studied the question of existence and unique-
ness of semimartingale strong solutions to SDE on a hybrid state space (models
KB1 and KB2). We have also reviewed several related SDE models of Blom (2003)
and Ghosh and Bagchi (2004) (models HB1, HB2, GB1 and GB2). The hierarchy
between these stochastic hybrid models is depicted in Figure 3.2. The next step
is to develop even more general stochastic hybrid model which will combine the
most interesting features of models KB1, KB2=HB2 and GB2:

• switching hybrid-jump diffusion as in KB1;

• instantaneous jump reflection at the boundary as in KB2=HB2 and GB2;

• Mode dependent dimension as in GB2.

It will be important to enquire whether the extended model would retain the
strong Markov property.

6.2.2 Estimating rare event probabilities in large scale

stochastic hybrid systems

In Chapter 5 hybrid versions of the IPS algorithm have been developed. Our new
HIPS algorithms are able to cope with large differences in discrete state (mode)
probabilities or with rare mode switchings. However, these hybrid versions would
need impractically many particles when the state space of the discrete valued
component is very large. Such situation typically occurs when the stochastic hy-
brid process considered is highly distributed and incorporates many local discrete

124



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

valued switching processes. In such cases, the large number of interacting sto-
chastic hybrid processes makes the size of the state space of the total discrete
valued component exponentially large. Future research should aim at extending
the HIPS algorithm for estimation of extremely small rare event probabilities in
large scale stochastic hybrid systems. Currently, we are already working on the
development of the Hierarchical version of HIPS algorithm. The effectiveness of
the approach is initially tested on an advanced ATM scenario (Blom et al., 2006).
This showed that the speed up was very good for such a complex Monte Carlo
simulation model. However it also appeared necessary to develop another factor
10 to 100 of additional speed up factor. Several directions to accomplish this
already have been identified:

• Develop an effective combination of Interacting Particle System based rare
event simulation with Markov Chain Monte Carlo speed up technique;

• Develop a method to assess the sensitivity of multiple aircraft encounter
geometries to collision risk, and develop importance sampling approaches
which take advantage of these sensitivities;

• Develop novel ways how Interacting Particle System speed up techniques
that apply to a pair of aircraft can effectively be extended to situations of
multiple aircraft;

• Find a way for optimal selection of importance sampling (switching) distri-
butions in Hybrid Interacting Particle System based rare event simulation
approach;

• Develop a technique for optimal choice of nested level sets D = Dm ⊂ · · · ⊂
D2 ⊂ D1 in high-dimensional hybrid state spaces.
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Summary

Stochastic dynamical modelling of accident risk is of high interest for the safe
design of complex safety-critical systems and operations, such as in nuclear and
chemical industries, and advanced air traffic management. In comparison with
statistical analysis of collected data, stochastic dynamical modelling approach
has the advantage of enabling the use of stochastic analysis and advanced Monte
Carlo simulation approaches.

Currently, the theory of stochastic differential equations has become a power-
ful tool for modelling real-world dynamical systems. In this thesis the stochastic
approach to modelling of stochastic hybrid systems by Markov processes is pre-
sented. A very general class of jump-diffusions, which are defined as strongly
unique semimartingale solutions of stochastic differential equations, is identified
and characterized. These results are extended to two classes of stochastic hybrid
processes which cover a range of interesting phenomena: switching diffusion, ran-
dom hybrid jumps, boundary hybrid jumps and martingale inducing jumps. The
Markov and the strong Markov properties are shown.

The numerical issues concerning time discrete approximations of stochastic
hybrid processes are discussed. The stochastic Euler scheme for the switching
diffusion with state dependent switching rates is presented. The proof of strong
convergence of Euler scheme is given. The approximation of first passage times
is discussed and the convergence is proved.

New version of Interacting Particle System (IPS) algorithm, called Hybrid IPS,
is developed for the efficient estimation of rare event probabilities in stochastic
hybrid systems. The HIPS approach is designed to cope with large differences in
mode probabilities and rare switchings. Numerical evaluations on a test problem
confirm the advantage of new HIPS algorithm over the standard Monte Carlo and
the IPS simulation approaches.



Samenvatting

Stochastische dynamische modellering van risico van ongelukken is van groot be-
lang voor het ontwerp van complexe veiligheids-kritische systemen zoals in de
nucleaire en chemische industrie en geavanceerde luchtverkeersmanagement. In
vergelijking met statistische analyse van vergaarde data heeft stochastische dy-
namische modellering als voordeel dat het stochastische analyse en geavanceerde
Monte-Carlosimulatie mogelijk maakt.

De theorie van stochastische differentiaalvergelijkingen heeft zich ontwikkeld
tot een krachtig gereedschap voor het modelleren van dynamische systemen uit de
praktijk. Dit proefschrift presenteert een probabilistische benadering van model-
lering van stochastische hybride systemen d.m.v. Markov processen. Een zeer al-
gemene klasse van sprong-diffusies, gedefinieerd als sterk-unieke semimartingaalo-
plossingen van stochastische differentiaalvergelijkingen, wordt gëıdentificeerd en
gekarakteriseerd. De resultaten zijn uitgebreid met twee klassen van stochastische
hybride systemen die verscheidene interessante fenomenen bevatten: schakelende
diffusies, random hybride sprongen, rand-hybride sprongen en martingaal-gëıin-
duceerde sprongen. De Markoveigenschappen en sterke Markoveigenschappen zijn
aangetoond.

Numerieke kwesties van tijddiscrete benaderingen van stochastische hybride
processen worden beschouwd. Het stochastische Eulerschema voor schakelende
diffusies met toestandsafhankelijke schakelingfrequenties wordt gepresenteerd. Een
bewijs van sterke convergentie van het Eulerschema wordt gegeven. De benader-
ing van de eerste passagetijd wordt bediscussieerd en de convergentie ervan is
aangetoond.

Een nieuwe versie van het interacterende-deeltjessysteemalgoritme, hybride
IPS-algoritme genoemd, is ontwikkeld voor efficiënte schatting van zeldzame
gebeurtenissen in stochastische hybride systemen. Het hybride IPS-algoritme
is ontworpen om overweg te kunnen met grote verschillen in geschatte condi-
tionele kansen en zeldzame schakelingen. Numerieke evaluatie van een testprob-
leem bevestigt het voordeel het nieuwe hybride IPS-algoritme vergeleken met de
standaard IPS-simulatie en Monte-Carlosimulatie.
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