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Abstract

This work extends our recent work on proving that the particle �lter con-

verge for unbounded function to a more general case. More speci�cally, we

prove that the particle �lter converge for unbounded functions in the sense

of Lp-convergence, for an arbitrary p ≥ 2. Related to this, we also provide

proofs for the case when the function we are estimating is bounded. In

the process of deriving the main result we also established a new Rosenthal

type inequality.

Keywords: Convergence, particle �lter, nonlinear �ltering, dynamic sys-

tems
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Abstract

This work extends our recent work on proving that the particle �lter

converge for unbounded function to a more general case. More speci�cally,

we prove that the particle �lter converge for unbounded functions in the

sense of Lp-convergence, for an arbitrary p ≥ 2. Related to this, we

also provide proofs for the case when the function we are estimating is

bounded. In the process of deriving the main result we also established a

new Rosenthal type inequality.

1 Introduction

The main purpose of the present work is to extend our previous results on parti-
cle �ltering convergence [13] for unbounded functions to a more general setting.
More speci�cally, we will here prove Lp-convergence for an arbitrary p ≥ 2, of
the particle �lter. Hence, the main idea of the proof is present in [13]. How-
ever, to prove the Lp, p ≥ 2 case requires some nontrivial embellishments, which
forms the contribution of the present work. As a �rst step, we consider only the
most basic problem: for any �xed time instance t, under what conditions and
for what kind of function φ does the particle �ltering approximation converges
to the optimal �lter

E[φ(xt)|y1, . . . , yt]? (1)

Moreover, we also establish two convergence results related to bounded function,
which slightly extends the corresponding results in [2] in the sense that we
consider a more general particle �ltering algorithm.

The main contributions of this work are as follows,

• Convergence proof for the particle �lter, regarding unbound functions φ (in
E[φ(xt)|y1, . . . , yt]) under more general conditions compared our previous
work [13]. See Theorem 4.3.

• Convergence results for bounded function are also proposed, to slightly
extend the counterpart of [2]. See Theorem 4.1.

• A Rosenthal type inequality under more loose setting in Lemma 4.1 is
established during the theoretical preparation.
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In Section 2 we introduce the models and the optimal �lters that we are
trying approximate and in Sections 3 the particle �lter is introduced. However,
these sections are intentionally rather brief, since a more detailed background
using the same notation is already provided in [13]. The result are then presented
in Section 4 and the conclusions are given in Section 5. Hence, readers familiar
to the problem, can without problem directly jump to Section 4.

2 Model Setting and Optimal Filter

Let (Ω,F , P ) be a probability space on which two real vector-valued stochastic
processes X = {Xt, t = 0, 1, 2, . . .} and Y = {Yt, t = 1, 2, . . .} are de�ned. The
nx-dimensional process X usually describes the evolution of the hidden state
of a dynamic system, and the ny-dimensional process Y denotes the available
disturbed observation process of the same system. Roughly speaking, �ltering
the dynamic system is to estimate the state of the system based on observation
data.

The state process X is a Markov process with initial state X0 obeying dis-
tribution π0(dx0) and probability transition kernel K(dxt|xt−1) such that

P (Xt ∈ A|Xt−1 = xt−1) =
∫
A

K(dxt|xt−1), ∀A ∈ B(Rnx). (2)

The observations are conditionally independent of X and have marginal distri-
bution

P (Yt ∈ B|Xt = xt) =
∫
B

ρ(dyt|xt), ∀B ∈ B(Rny ). (3)

For convenience we assume that K(dxt|xt−1) and ρ(dyt|xt) have densities with
respect to Lebesgue measure. Hence, we can write

P (Xt ∈ dxt|Xt−1 = xt−1) = K(dxt|xt−1) = K(xt|xt−1)dxt, (4a)

P (Yt ∈ dyt|Xt = xt) = ρ(dyt|xt) = ρ(yt|xt)dyt. (4b)

A frequently used model in practice is as follows using the notations above.

Example 2.1 The state and observation of the model are described by

xt = f(xt−1) + vt, (5a)

yt = h(xt) + et, (5b)

where transformations f : Rnx × N → Rnx and h : Rnx × N → Rny , and vt
and et are process and observation noises with corresponding dimensions. The
probability density functions for vt and et are denoted by pv(·, t) and pe(·, t),
respectively. For model (5) we now have,

K(xt|xt−1) = pv(xt − f(xt−1), t), ρ(yt|xt) = pe(yt − h(xt), t).

Simply denote Zk:l
∆= (Zk, Zk+1, . . . , Zl) for two integers k ≤ l. De�ne the

concerned conditional probability distribution of the system by

πk:l|m(dxk:l)
∆= P (Xk:l ∈ dxk:l|Y1:m = y1:m).
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In practice, we typically care mostly about the marginal distribution πt|t(dxt),
since the main target is usually to estimate the standard optimal �lter E[Xt|y1:t]
and its conditional variance. We formulate the ideal form of πt|t(dxt) �rst.
By the total probability formula and Bayes' theorem, respectively, we have a
recursion form of the marginal distribution

πt|t−1(dxt) =
∫
Rnx

πt−1|t−1(dxt−1)K(dxt|xt−1) ∆= bt(πt−1|t−1), (6a)

πt|t(dxt) =
ρ(yt|xt)πt|t−1(dxt)∫
Rnx ρ(yt|xt)πt|t−1(dxt)

∆= at(πt|t−1), (6b)

where at and bt are transformations between probability measures on Rnx .
For convenience to represent the optimal �lter, let us introduce some more

notations. Given a measure ν, a function φ, and a Markov transition kernel K,
denote

(ν, φ) ∆=
∫
φ(x)ν(dx).

Hence,
E[φ(Xt)|y1:t] = (πt|t, φ).

Using this notation, by (6), for any function φ : Rnx → R, we have a recursive
form of the optimal �lter E[φ(Xt)|y1:t] according to

(πt|t−1, φ) = (πt−1|t−1,Kφ), (7a)

(πt|t, φ) =
(πt|t−1, φρ)
(πt|t−1, ρ)

. (7b)

Clearly, by (7), see also Lemma 2.1 of [7], we have

E[φ(Xt)|y1:t] = (πt|t, φ) =
∫
· · ·
∫
π0(x0)K1ρ1 · · ·Ktρtφ(xt)dx0:t∫

· · ·
∫
π0(x0)K1ρ1 · · ·Ktρtdx0:t

, (8)

where Ks
∆= K(xs|xs−1), ρs

∆= ρ(ys|xs), s = 1, . . . , t; dx0:t
∆= dx0 · · · dxt; and

with integral area all Rnx omitted.
Technically, it is di�cult to have an explicit solution for the optimal �lter

E[φ(Xt)|y1:t] by (8) in general setting. Hence, numerical methods, such as the
particle �lter are introduced to approximate the optimal �lter.

3 Particle Filtering

Roughly speaking, particle �ltering methods are numerical algorithms to ap-
proximate the conditional distribution πt|t(dxt) by an empirical distribution,
constituted by a cloud of particles at each time instant. One important feature
of the particle �lter is that the integral operator over the empirical distribution
turns to be a sum form. Hence, the di�cult integral operation is simpli�ed.
Since there are two integral operators in (6), a standard practical particle �lter
usually sample particles two times from time t− 1 to t for the estimates.

Speci�cally, at time t = 0, N initial particles {xi0}Ni=1 are independently
generated to obey the distribution π0(dx0). Then, we introduce the algorithm
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in a recursive form. Let us at time t− 1 assume that we have an approximation
of the distribution πt−1|t−1(dxt−1) constituted by an empirical distribution

πNt−1|t−1(dxt−1) ∆=
1
N

N∑
i=1

δxit−1
(dxt),

where δx(dxt) denotes a delta-Dirac mass located in x.
In order to include the two slightly di�erent kinds of particle �ltering meth-

ods typically introduced by [10] in practise and by [4] for theoretical analysis
respectively, we introduce weights for densities to sample particles. Denote

αi = (αi1, α
i
2, . . . , α

i
N ), αij ≥ 0,

N∑
j=1

αij = 1,
N∑
i=1

αij = 1.

Sample x̃it obeying
∑N
j=1 α

i
jK(dxt|xjt−1). Clearly,

1
N

N∑
i=1

N∑
j=1

αijK(dxt|xjt−1) =
1
N

N∑
j=1

(
N∑
i=1

αijK(dxt|xjt−1)

)

=
1
N

N∑
j=1

K(dxt|xjt−1)

= (πNt−1|t−1,K). (9)

When αij = 1 for j = i, and αij = 0 for j 6= i, the sampling method reduces

to a traditional way, as introduced by [10], see also [9, 18]. When αij = 1/N
for all i and j, it turns out to be a convenient form for theoretical treatment,
as introduced by nearly all existing theoretical analysis references, for example
[2, 4, 7, 8]. The empirical distribution of {x̃it}Ni=1

π̃Nt|t−1(dxt)
∆=

1
N

N∑
i=1

δx̃it(dxt)

constitutes an estimate of πt|t−1. When this estimate is substituted into (6b),
we have an approximation for πt|t

π̃Nt|t(dxt)
∆=

ρ(yt|xt)π̃Nt|t−1(dxt)∫
Rnx

ρ(yt|xt)π̃Nt|t−1(dxt)
=

∑N
i=1 ρ(yt|x̃it)δx̃it(dxt)∑N

i=1 ρ(yt|x̃it)
.

In practice, it is usually written using importance weights,

π̃Nt|t(dxt) =
N∑
i=1

witδx̃it(dxt), wit =
ρ(yt|x̃it)∑N
i=1 ρ(yt|x̃it)

.

A very important step in the particle �lter is the resampling step, which gen-
erates new equally weighted particles for the next step. So high dependence on
a few particles with large weights is excluded. Speci�cally, sample xit obeying
π̃Nt|t(dxt), then we get an equally weighted empirical distribution

πNt|t(dxt) =
1
N

N∑
i=1

δxit(dxt)
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to approximate πt|t.
Let us point out the transformations of probabilities in the particle �ltering

algorithm. Recall the generation of x̃it �rst. We have the following transforma-
tions between probability measures immediately:

πNt−1|t−1

projection−−−−−−→

 δx1
t−1

. . .
δxNt−1

 bt−→

 K(dxt|x1
t−1)

. . .
K(dxt|xNt−1)

 Λ−→


∑N
j=1 α

i
jK(dxt|x1

t−1)
. . .∑N

j=1 α
i
jK(dxt|xNt−1)

 ,
where Λ is an N × N matrix (αij)i,j . Denote the whole transformation above
as Λbt for simplicity. We further denote by cn(ν) the emperical distribution of
a sample of size n from a probability distribution ν. Then, we have

π̃Nt|t−1 = c(N)◦̄Λbt(πNt−1|t−1),

where c(N) ∆= 1
N [c1 . . . c1] and ◦̄ denotes composition of transformations in

a vector multiplying form. Hence, in the general version of particle �ltering
algorithm, we have

πNt|t = cN ◦ at ◦ c(N)◦̄Λbt(πNt−1|t−1),

where ◦ denotes composition of transformations. Therefore,

πNt|t = cN ◦ at ◦ c(N)◦̄Λbt ◦ · · · ◦ cN ◦ a1 ◦ c(N)◦̄Λb1 ◦ cN (π0).

While, in the existing theoretical version of particle �lter in [2, 4, 7, 8], as
stated in [2], the transformation between time t − 1 and t is somewhat in a
simple form:

πNt|t = cN ◦ at ◦ cN ◦ bt(πNt−1|t−1). (10)

Hence,
πNt|t = cN ◦ at ◦ cN ◦ bt ◦ · · · ◦ cN ◦ a1 ◦ cN ◦ b1 ◦ cN (π0).

The theoretical results and analysis in [15] are based on the following trans-
formation (in our notation):

πNt|t = at ◦ bt ◦ cN (πNt−1|t−1), (11)

which is the �rst formula in page 1999 at the begining of Section 4 in [15],
rather than (10). Thus, the theoretical results do not include the standard
particle �lter in the popular theoretical setting, as in [2, 4, 7, 8]. As pointed
at the beginning of this section, a standard particle �lter sample particles two
times from time t− 1 to t to simplify the two integral operators in (6).

The whole procedure of particle �ltering can be illustrated as in Figure 1.
While the transformations of probability measures are showed in Figure 2.
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πt−1|t−1

πNt−1|t−1

{xit−1}N1 {
∑N
j=1 α

i
jK(dxt|xit−1}Ni=1

{x̃it}N1 π̃Nt|t−1 π̃Nt|t

πt|t−1

{xit}N1

πNt|t-

πt|t- -

6

-

?
-

6

-

6

Figure 1. Illustration of the entire particle �ltering algorithm.

πt−1|t−1 πt|t−1 πt|tbt at

atc(N)

Λbt

cN

πNt−1|t−1 {
∑N
j=1 α

i
jK(dxt|xit−1}Ni=1

π̃Nt|t−1 π̃Nt|t

πNt|t

- -

-

� -

6

-

Figure 2. Transformation of probability measures in the particle �lter.

Let us write the traditional form of the algorithm mentioned above in brief.
(0) xi0 ∼ π0(dx0), i = 1, . . . , N .

(1) x̃it ∼
∑N
j=1 α

i
jK(dxt|xjt−1), i = 1, . . . , N .

(2) π̃Nt|t(dxt) =
∑N
i=1 w

i
tδx̃it(dxt), w

i
t = ρ(yt|x̃it)∑N

i=1 ρ(yt|x̃it)
.

(3) xit ∼ π̃Nt|t(dxt), i = 1, . . . , N . πNt|t(dxt) = 1
N

∑N
i=1 δxit(dxt).

However, in order to avoid the well-known degeneracy of particle weight (see
[2, 16]) and some di�culties of theoretical analysis for considering convergences
to the optimal �lter, we modify the particle �lter above a little.

When we sample {x̃it}N1 in the step (1) of the algorithm above, we check if

(π̃Nt|t−1, ρ) =
N∑
i=1

ρ(yt|x̃it) ≥ γt > 0, (12)

where the real number γt is selected by experience, say γt = γ(πt|t−1, ρ) if
(πt|t−1, ρ) > 0 is known and 0 < γ < 1. If the inequality holds, the algorithm
proceeds as proposed, whereas if (12) does not hold, we regenerate {x̃it}N1 again
until (12) is satis�ed. That is, we change step (1) of the algorithm into the
following form:

(1′) x̃it ∼
∑N
j=1 α

i
jK(dxt|xjt−1), i = 1, . . . , N , with (12) satis�ed.

The modi�ed algorithm proceeds as: (0)(1′)(2)(3), and the following theo-
retical analyses are all based on this version. With help of Lemma 4.4 and (45)
in the proof of Theorem 4.3, we conclude the following:
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Proposition 3.1 The modi�ed algorithm will not run into an in�nite loop for
su�ciently large N under the conditions of Theorem 4.3.

Proof. We get formula (45) in the second step of the proof of Theorem 4.3.
Based on this formula, we �rst calculate the following probability:

P [(π̃Nt|t−1, ρ) < γt] = P [(π̃Nt|t−1, ρ)− (πt|t−1, ρ) < γt − (πt|t−1, ρ)]

≤ P [|(π̃Nt|t−1, ρ)− (πt|t−1, ρ)| > |γ − 1|(πt|t−1, ρ)]

≤ 1
(1− γ)p(πt|t−1, ρ)p

E|(π̃Nt|t−1, ρ)− (πt|t−1, ρ)|p

≤
C̃t|t−1

(1− γ)p(πt|t−1, ρ)p
·
‖ρ‖pt−1,p

Np−p/r −−−−→N→∞
0. (13)

We use (45) with φ replaced by ρ in the last step of (13). Hence, P [(π̃Nt|t−1, ρ) <
γt] < 1 for su�ciently large N . In view of Lemma 4.4, the modi�ed step (1′) is
impossible to run into in�nite loop. This proves the assertion.

By (13), P [(π̃Nt|t−1, ρ) ≥ γt] −−−−→
N→∞

1, which means the lower bound for

(π̃t|t−1, ρ) is almost always satis�ed, provided that N is su�ciently large. See
[13] for a numerical experiment, showing the relation between the sample times
and N .

It is worth noting that originally given {xit−1, i = 1, . . . , N} the joint density
of x̃it, i = 1, . . . , N is

P
[
x̃it = si, i = 1, . . . , N

]
=

N∏
i=1

N∑
j=1

αijK(si|xjt−1) ∆= ΠN
α1,...,αN . (14)

Yet, after the modi�cation it is changed to be

Π̄N
α1,...,αN =

ΠN
α1,...,αN I[ 1

N

∑N
i=1 ρ(yt|si)≥γt]∫

· · ·
∫

ΠN
α1,...,αN I[ 1

N

∑N
i=1 ρ(yt|si)≥γt]

ds1:N
, (15)

where the record yt is given. A related theoretical preliminary regarding this
fact has been proposed in Lemma 4.5.

4 Convergence to Optimal Filters

In this section we consider under what conditions the particle �ltering approx-
imation converges to the optimal �lters (8), with respect to bounded and un-
bounded function φ(·) respectively, when the number of the particles N tends
to in�nity. All the following convergence results are based on the assumption
that the observation process is �xed to a given observation record Ys = ys,
s = 1, . . . , t, which is a general theoretical setting for the existing convergence
results, see, for instance, [2, 4, 7, 8]. Thus, the expectation operators in the
Theorem 4.1, Theorem 4.3, and their proofs are in the sense of E[·|Y1:s = y1:s],
s = 1, . . . , t. Hence, the constants there may depend on y1:t.
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4.1 Auxiliary Lemmas

In order to establish some of the convergence results, the following powerful
Rosenthal type inequality is needed. This inequality hold in the sense of almost
sure, since it is in the form of a conditional expectation. However, in the interest
of readability, we omit the notation of almost sure in the following lemma and
its proof.

Lemma 4.1 Let p > 0, 1 ≤ r ≤ 2, and let {ξi, i = 1, . . . , n} be condition-
ally independent random variables, given a σ-algebra G such that E(ξi|G) = 0,
E(|ξi|p|G) < ∞ and E(|ξi|r|G) < ∞. Then there exists a constant C(p) that
depends only on p such that

E

[∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

|G

]
≤ C(p)

 n∑
i=1

E[|ξi|p|G] +

(
n∑
i=1

E[|ξi|r|G]

)p/r . (16)

Remark 4.1 When r = 2, (16) was �rst introduced in [17] for the special
case of independent random variables, and then extend to martingale di�erence
sequences in [1]. The best constants C(p) for both cases can be found in [14]
and [12], respectively. For a brief proof of the independent case we refer to the
Appendix C of [11]. However, all the references mentioned require that r = 2,
and so the order of integrability should be no less than 2. This restriction has
been relaxed to r ∈ [1, 2] in Lemma 4.1, and so the order need only not less than
1 here.

Remark 4.2 For 0 < p ≤ 2 and r = 2, by the classic convexity inequality, (16)
assumes a simpler form (see also Appendix C of [11])

E

[∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

|G

]
≤

E
∣∣∣∣∣

n∑
i=1

ξi

∣∣∣∣∣
2

|G

p/2

=

(
n∑
i=1

E
[
ξ2
i |G
])p/2

. (17)

Proof. Here, we only consider the case of 1 < r < 2, since the proof for
r = 2 is nearly the same as Appendix C of [11], and r = 1 is a trivial case with
C(p) = 1 and the �rst term in right hand side is omitted. We �rst prove a basic
inequality, and then prove (16).

Let {ηi, i = 1, . . . , n} be a sequence of independent random variables such
that Eηi ≤ 0, P [ηi ≤M ] = 1, 0 < M <∞, and denote σr(η) =

∑n
i=1E[|ηi|r|G],

for any λ ≥ λ(M) ∆= (e2 − 1)σr(η)/Mr−1 > 0, we prove the following Bennett-
type inequality

P

[
n∑
i=1

ηi > λ|G

]
≤ exp

(
−σr(η)
Mr

θ

(
λMr−1

σr(η)

))
, (18)

where θ(x) = (1 + x) log(1 + x)− x.
De�ne function ψ(x) = (ex− 1−x)/|x|r for x 6= 0, and ψ(0) = limx→0 ψ(x).

Clearly, ψ(x) is a positive and non-decreasing function on the interval [0,∞),
while it is still positive and has just one maximum, denoted by x0, on the interval
(−∞, 0]. Clearly, x0 satisfy ψ′(x) = 0, which is equivalent to

−x0e
x0 + x0 + rex0 − r − rx0 = 0.
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Hence,

ψ(x0) =
ex0 − 1− x0

(−x0)r
=

1− ex0

r(−x0)r−1
<

min{1,−x0}
r(−x0)r−1

< 1.

De�ne x+
0 > 0 which satis�ers ψ(x+

0 ) = ψ(x0). Notice that

ψ(x+
0 ) < 1 <

e2 − 1− 2
4

<
e2 − 1− 2

2r
= ψ(2),

we have 0 < x+
0 < 2 by the monotonicity of ψ on [0,∞). Thus, for any x1 < x2

and x2 ≥ x+
0 , we have ψ(x1) < ψ(x2).

Clearly, for any t > 0, using the Markov inequality and conditional indepen-
dence we have

P

[
n∑
i=1

ηi > λ|G

]
≤ exp(−λt)E

[
exp

(
n∑
i=1

tηi

)
|G

]

= exp

(
−λt+

n∑
i=1

logE[etηi |G]

)
. (19)

Notice that E[ηi|G] ≤ 0, log(1+x) ≤ x for x > −1, and the property of function
ψ, for tM ≥ 1 we have

logE[etηi |G] = logE[etηi − 1− tηi + 1 + tηi|G]

≤ log(E[etηi − 1− tηi|G] + 1)
= log(1 + E[|tηi|rψ(tηi)|G])
≤ E[|ηi|rtrψ(tηi)|G]
≤ ψ(tM)trE[|ηi|r|G].

Hence, (19) turns to be

P

[
n∑
i=1

ηi > λ|G

]
≤ exp (−[λt− trσr(η)ψ(tM)])

= exp
(
−[λt− σr(η)(etM − 1− tM)/Mr]

)
.

The optimal selection of tM ≥ 2 is

t =
1
M

log
(

1 +
λMr−1

σr(η)

)
,

which yields (18) and requires that λ ≥ (e2 − 1)σr(η)/Mr−1.
Now we are in a position to prove (16). For simplicity, we use the function

x log x(1 + x) − x, which is smaller than θ(x), in the inequality (18). Let us
de�ne an upper bounded function �rst. For M > 0, de�ne ηi = ξiI[|ξi|≤M ].
Thus E[ηi|G] ≤ E[ξi|G] = 0, ηi ≤M , and

σr(η) ∆=
n∑
i=1

E[|ηi|r|G] ≤
n∑
i=1

E[|ξi|r|G] ∆= σr.

Putting M = λ/κ, κ ≥ 1. By (18), for

λ ≥ λ0
∆= [(e2 − 1)κr−1σr]1/r ≥ [(e2 − 1)κr−1σr(η)]1/r,
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we have

P

[
n∑
i=1

ηi > λ|G

]
≤ exp

{
−κ
[
log
(

1 +
λr

κr−1σr

)
− 1
]}

.

Hence, for λ ≥ λ0, we have

P

[
n∑
i=1

ξi > λ|G

]
= P

[
n∑
i=1

ξi > λ, ξi < M, i = 1, . . . , n|G

]
+ P

[
n∑
i=1

ξi > λ, max
1≤i≤n

ξi ≥M |G

]

≤ P

[
n∑
i=1

ηi > λ|G

]
+ P

[
max

1≤i≤n
ξi ≥M |G

]

≤ exp
{
−κ
[
log
(

1 +
λr

κr−1σr

)
− 1
]}

+
n∑
i=1

P [ξi ≥M |G] .

(20)

Similarly, we can obtain an inequality in the same form as (20) for
∑n
i=1(−ξi).

Therefore,

P

[∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣ > λ|G

]
≤ 2 exp

{
−κ
[
log
(

1 +
λr

κr−1σr

)
− 1
]}

+
n∑
i=1

P [κ|ξi| ≥ λ|G] .

(21)

Now, using (21), we have

E

∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

= E

(∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣ I[|∑n
i=1 ξi|<λ0]

)p
+ E

(∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣ I[|∑n
i=1 ξi|≥λ0]

)p

< λp0 +
∫ ∞
λ0

ptp−1P

[∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣ > t|G

]
dt

≤ λp0 + 2p
∫ ∞
λ0

tp−1 exp
{
−κ
[
log
(

1 +
tr

κr−1σr

)
− 1
]}

dt

+
n∑
i=1

∫ ∞
λ0

ptp−1P [κ|ξi| ≥ t|G] dt

≤ (κr−1σr)p/r
[

(e2 − 1)1/r + 2peκ
∫ ∞

(e2−1)1/r
sp−1(1 + sr)−κds

]
+

n∑
i=1

E|κξi|p,

where the variable substitution t = (κr−1σr)1/rs has been used. For the con-
vergence of the integral on right hand side, we select κ > max{1, p/r}. Then
the proof of the lemma is completed with

C(p) = max

{
κp(r−1)/r

[
(e2 − 1)1/r + 2peκ

∫ ∞
(e2−1)1/r

sp−1(1 + sr)−κds

]
, κp

}
.

Below we provide two Lemmas which will become useful in the following.
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Lemma 4.2 If E|ξ|p <∞, then E|ξ − Eξ|p ≤ 2pE|ξ|p, for any p ≥ 1.

Proof. By Jensen's inequality, for p ≥ 1, (E|ξ|)p ≤ E|ξ|p. Hence, E|ξ| ≤
(E|ξ|p)1/p. Then by Minkowski's inequality,

(E|ξ − Eξ|p)1/p ≤ (E|ξ|p)1/p + |Eξ| ≤ 2(E|ξ|p)1/p,

which derives the desired inequality.

Lemma 4.3 If 0 < r1 ≤ r2 and E|ξ|r2 <∞, then E1/r1 |ξ|r1 ≤ E1/r2 |ξ|r2 .

Proof. Simply by Hölder's inequality: E [|ξ|r1 · 1] ≤ Er1/r2
[
(|ξ|r1)r2/r1

]
. Then

the lemma follows.

Lemma 4.4 Assume that a random variable ξ satis�es P [ξ < γ] < 1, where γ is
a known constant. Independently generate a sample ξ1 with the same distribution
as ξ. If ξ1 < γ, then independently generate ξ2 and check again; otherwise, stop.
This procedure cannot run into an in�nite loop.

The proof is quite straightforward. Suppose the converse, i.e., there exist a
sequence of i.i.d. random variables {ξi} such that ξi < γ for any i. Then,

P [ξi < γ, i = 1, 2, . . .] = Π∞i=1P [ξ < γ] = 0,

which means the probability is 0.

Lemma 4.5 Let A is a Borel measurable subset of Rm and sample random
vector ξ obey a probability density d(t) until the relization belong to A, t ∈ Rm.
Suppose that

P [η ∈ Ω−A] ≤ ε < 1, (22)

where the random vector η obey the density d(t) and ψ is a measurable function
satisfying Eψp(η) <∞, p > 1. Then, we have

|Eψ(ξ)− Eψ(η)| ≤ 2E1/p|ψ(η)|p

1− ε
ε
p−1
p . (23)

In the case E|ψ(η)| <∞,

E|ψ(ξ)| ≤ E|ψ(η)|
1− ε

. (24)

Proof. Notice that the density of ξ is

d(t)IA∫
d(t)IAdt

,

11



It is trivial for (24). While

|Eψ(ξ)− Eψ(η)| =
∣∣∣∣∫ ψ(t)d(t)IAdt∫

d(t)IAdt
−
∫
ψ(t)d(t)dt

∣∣∣∣
≤ 1

1− ε

∣∣∣∣∫ ψ(t)d(t)IAdt−
∫
ψ(t)d(t)dt · (1− ε)

∣∣∣∣
≤ 1

1− ε

[∫
|ψ(t)|d(t)IΩ−Adt+

∫
|ψ(t)|d(t)dt · ε

]
≤ 1

1− ε

[(∫
|ψ(t)|pd(t)dt

) 1
p

·
(∫

d(t)IΩ−Adt
) p−1

p

+ E|ψ(η)| · ε

]

≤ 1
1− ε

[
E1/p|ψ(η)|p · ε

p−1
p + E|ψ(η)| · ε

]
≤ 2E1/p|ψ(η)|p

1− ε
ε
p−1
p ,

which derives (23).

The result of Lemma 4.5 is easily to extend to condtional expectaion case.

4.2 Convergence for Bounded Functions

Let us �rst consider convergence issues regarding bounded function φ in the op-
timal �lter E[φ(xt)|y1:t]. Although this topic has been studied in many existing
references, see, for instance, [2, 4, 7, 8], yet, as stated in Section 3, to the authors'
knowledge all existing theoretical convergence results are based on a theoretical
setting of particle �lter and unable to include the most frequently used form of
the particle �lter, as proposed in [9, 10, 18]. Moreover, the following Theorem
4.1 and Theorem 4.2 slightly extend the results of [2].

De�ne the norm ‖f(x)‖ ∆= maxx |f(x)|. Denote B(Rnx) all bounded func-
tions on Rnx .

H0. ρ(yt|xt) is a bounded and positive function for given y1:t.

Theorem 4.1 If H0 holds then, for any φ ∈ B(Rnx) and p > 0, there exists a
constant ct|t independent of N such that

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ ct|t ‖φ‖p
Np/2

. (25)

Proof. The proof is in the form of a mathematical induction.
1: Initialization

Let {xi0}Ni=1 be independent random variables with the same distribution π0(dx0).

12



Then, for p > 2 using Lemmas 4.1 with r = 2 it is clear that

E
∣∣(πN0 , φ)− (π0, φ)

∣∣p =
1
Np

E

∣∣∣∣∣
N∑
i=1

(φ(xi0)− E[φ(xi0)])

∣∣∣∣∣
p

≤ C(p)
Np

 N∑
i=1

E|φ(xi0)− E[φ(xi0)]|p +

[
N∑
i=1

E|φ(xi0)− E[φ(xi0)]|2
]p/2

≤ 2pC(p)
[
‖φ‖p

Np−1
+
‖φ‖p

Np/2

]
≤ 2p+1C(p)

‖φ‖p

Np/2

∆= c0|0
‖φ‖p

Np/2
. (26)

For 0 < p ≤ 2, using (17) we also have an inequality in the same form as (26).
2: Prediction

Based on (26), assume that for t− 1 and ∀φ ∈ B(Rnx)

E
∣∣∣(πNt−1|t−1, φ)− (πt−1|t−1, φ)

∣∣∣p ≤ ct−1|t−1
‖φ‖p

Np/2
(27)

holds. In this step we analyse E
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p. The fact that
|Kφ| =

∣∣∣∣∫ K(dxt|xt−1)φ(xt)
∣∣∣∣ ≤ ‖φ‖

will be frequently used in the rest of this proof.
Notice that

(π̃Nt|t−1, φ)− (πt|t−1, φ) ∆= Π1 + Π2,

where

Π1
∆=

[
(π̃Nt|t−1, φ)− 1

N

N∑
i=1

(πN,αit−1|t−1,Kφ)

]
,

Π2
∆=

[
1
N

N∑
i=1

(πN,αit−1|t−1,Kφ)− (πt|t−1, φ)

]
,

and πN,αit−1|t−1 =
∑N
j=1 α

i
jδxjt−1

. We will now investigate Π1 and Π2 more closely.

Let Ft−1 denote the σ-algebra generated by {xit−1, i = 1, . . . , N}. From the
generation of x̃it, we have,

E[φ(x̃it−1)|Ft−1] = (πN,αit−1|t−1,Kφ),

and hence,

Π1 =
1
N

N∑
i=1

(φ(x̃it−1)− E[φ(x̃it−1)|Ft−1]).

Thus, for p > 2 by Lemmas 4.1 with r = 2 and (9),

E [|Π1|p|Ft−1] =
1
Np

E

[∣∣∣∣∣
N∑
i=1

(φ(x̃it−1)− E[φ(x̃it−1)|Ft−1])

∣∣∣∣∣
p ∣∣∣Ft−1

]

≤ 2pC(p)

[
(πNt−1|t−1,K|φ|

p)

Np−1
+

(πNt−1|t−1,K|φ|
2)p/2

Np/2

]
.
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For 0 < p ≤ 2, using (17) we have an inequality similar to the one above.

E|Π1|p ≤ 2p+1C(p)
‖φ‖p

Np/2
. (28)

By (9),

1
N

N∑
i=1

(πN,αit−1|t−1,Kφ) = (πNt−1|t−1,Kφ).

Notice the assumption (27),

E|Π2|p ≤ ct−1|t−1
‖φ‖p

Np/2
. (29)

Then, by Minkowski's inequality, (27), (28) and (29),

E1/p
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ E1/p|Π1|p + E1/p|Π2|p

≤
(

[2p+1C(p)]1/p + c
1/p
t−1|t−1

) ‖φ‖
N1/2

∆= c̃
1/p
t|t−1

‖φ‖
N1/2

.

That is

E
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ c̃t|t−1
‖φ‖p

Np/2
. (30)

3: Update In this step we go one step further to analyse E
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p
based on (30). Clearly,

(π̃Nt|t, φ)− (πt|t, φ) =
(π̃Nt|t−1, ρφ)

(π̃Nt|t−1, ρ)
−

(πt|t, ρφ)
(πt|t, ρ)

= Π̃1 + Π̃2,

where

Π̃1
∆=

(π̃Nt|t−1, ρφ)

(π̃Nt|t−1, ρ)
−

(π̃Nt|t−1, ρφ)

(πt|t−1, ρ)
, Π̃2

∆=
(π̃Nt|t−1, ρφ)

(πt|t−1, ρ)
−

(πt|t−1, ρφ)
(πt|t−1, ρ)

.

Note that φ, ρ are bounded functions and that ρ is a positive function. Then
we have,

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃Nt|t−1, ρ)
·

[(πt|t−1, ρ)− (π̃Nt|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖φ‖

(πt|t−1, ρ)
·
∣∣∣(πt|t−1, ρ)− (π̃Nt|t−1, ρ)

∣∣∣
By Minkowski's inequality and (30),

E1/p
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̃1|p + E1/p|Π̃1|p ≤
2‖ρ‖c̃1/pt|t−1

(πt|t−1, ρ)
· ‖φ‖
N1/2

,
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which implies,

E
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ 2p‖ρ‖pc̃t|t−1

(πt|t−1, ρ)p
· ‖φ‖
Np/2

∆= c̃t|t
‖φ‖p

Np/2
. (31)

4: Resampling Finally, we analyse E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p based on (31).

Let us start by noticing that

(πNt|t, φ)− (πt|t, φ) = Π̄1 + Π̄2,

where
Π̄1

∆= (πNt|t, φ)− (π̃Nt|t, φ), Π̄2
∆= (π̃Nt|t, φ)− (πt|t, φ).

Let Gt denote the σ-algebra generated by {x̃it, i = 1, . . . , N}. From the
generation of xit, we have,

E[φ(xit)|Gt] = (π̃Nt|t, φ),

and then

Π̄1 =
1
N

N∑
i=1

(φ(xit)− E[φ(xit)|Gt]).

Now, for p > 2 by Lemmas 4.1 with r = 2, we have

E
[
|Π̄1|p|Gt

]
=

1
Np

E

[∣∣∣∣∣
N∑
i=1

(φ(xit)− E[φ(xit)|Gt])

∣∣∣∣∣
p ∣∣∣Gt]

≤ 2pC(p)
[

1
Np−1

E
[
|φ(xit)|p|Gt

]
+

1
Np/2

Ep/2
[
|φ(xit)|2|Gt

]]
.

For 0 < p ≤ 2, using (17) we have an inequality similar to the one above. Hence,

E|Π̄1|p ≤ 2p+1C(p)
‖φ‖p

Np/2
. (32)

Then, by Minkowski's inequality, (31) and (32),

E1/p
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̄1|p + E1/p|Π̄2|p

≤
(

[2p+1C(p)]1/p + c̃
1/p
t|t

) ‖φ‖
N1/2

∆= c
1/p
t|t
‖φ‖
N1/2

.

That is,

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ ct|t ‖φ‖p
Np/2

,

which completes the proof of Theorem 4.1.

Remark 4.3 One can also use a Marcinkiewicz-Zygmund type inequality (see
Lemma 7.3.3 of [8]) to prove the result of Theorem 4.1 for p ≥ 1.
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For p > 2 in Theorem 4.1, by Borel-Cantelli Lemma we have a weak conver-
gence result as follow.

Theorem 4.2 If H0 holds, then for any �xed t, πNt|t converges weakly to πt|t
almost surely, i.e., for any bounded continuous function φ on Rnx ,

lim
N→∞

(πNt|t, φ) = (πt|t, φ)

almost surely.

Remark 4.4 For the algorithm (0)(1′)(2)(3), Theorems 4.1 and 4.2 hold for
the simpli�ed version of condition H0:

H0′. ρ(yt|xt) is a bounded function for given y1:t such that (πs|s−1, ρ) > 0,
s = 1, 2, . . . , t.

4.3 Convergence for Unbounded Functions

In this section we consider convergences to the optimal �lter E[φ(xt)|y1:t] in
the case where φ is an unbounded function, based on the modi�ed version of
particle �lter proposed in Section 3.

Below we list conditions that we need for further considerations of conver-
gences with respect to unbounded function φ.

H0. For given y1:s, s = 1, 2, . . . , t, (πs|s−1, ρ) > 0, and the constant used in
the modi�ed algorithm satis�es

0 < γs < (πs|s−1, ρ), s = 1, 2, . . . , t,

equivalently, γs = γ(πs|s−1, ρ) with 0 < γ < 1, s = 1, 2, . . . , t.
H1. ρ(ys|xs) <∞; K(xs|xs−1) <∞ for given y1:s, s = 1, 2, . . . , t.
H2. For some p > 1, function φ(·) satisfy |φ(xs)|pρ(ys|xs) < ∞ for given

y1:s, s = 1, . . . , t.

Remark 4.5 In view of (7b), clearly, (πs|s−1, ρ) > 0 in H0 is a basic require-
ment of the Bayesian philosophy, under which the optimal �lter E[φ(xt)|y1:t],
as showed in (8), can exist.

Remark 4.6 By the conditions (πs|s−1, ρ) > 0 and |φ(xs)|pρ(ys|xs) < ∞, we
have

(πs|s, |φ|p) =
(πs|s−1, ρ|φ|p)

(πs|s−1, ρ)
<∞.

Remark 4.7 We list two typical one dimensional noises, i.e., nx = ny = 1,
and analyze the corresponding unbounded functions satisfying condition H2 as
follows:

(i) pw(z, s) = O(exp(−|z|ν)) as z →∞ with ν > 0; and lim inf |x|→∞
|h(x,s)|
|x|ν1 >

0 with ν1 > 0, s = 1, . . . , t. Then it is easy to check that H2 holds for any func-
tion φ satisfying φ(z) = O(|z|q) as z → ∞, where q ≥ 0. Hence, Theorem 4.3
holds for the underlying model with any �nite p > 1.

(ii) pw(z, s) = 1
b−aI[a,b] with a < 0 < b; and function h(x, s) ∆= hs satisfying

that the set h−1
s ([y − a, y − b]) is bounded for any given y, s = 1, . . . , t. Then

it is easy to check that H2 holds for any function φ. Hence, Theorem 4.3 holds
for the underlying model with any �nite p > 1.
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In the multidimensional cases we need only view the absolute value as certain
norms in (i) and (ii), and with all variables being corresponding vectors. Then
same results still hold.

Denote the set of functions φ satisfying H2 by Lpt (ρ).

Theorem 4.3 If H0-H2 hold, then for any φ ∈ Lpt (ρ) and p ≥ 2, 1 ≤ r ≤ 2,
and su�ciently large N , there exists a constant Ct|t independent of N such that

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ Ct|t ‖φ‖pt,p
Np−p/r , (33)

where ‖φ‖t,p
∆= max

{
1, (πs|s, |φ|p)1/p, s = 0, 1, . . . , t

}
.

Proof. The proof is carried out using a framework similar to the one used
in proving Theorem 4.1.

1: Initialization

Let {xi0}Ni=1 be independent random variables with the same distribution π0(dx0).
Then, with the use of Lemmas 4.1, 4.2, 4.3 it is clear that

E
∣∣(πN0 , φ)− (π0, φ)

∣∣p =
1
Np

E

∣∣∣∣∣
N∑
i=1

(φ(xi0)− E[φ(xi0)])

∣∣∣∣∣
p

≤ C(p)
Np

 N∑
i=1

E|φ(xi0)− E[φ(xi0)]|p +

[
N∑
i=1

E|φ(xi0)− E[φ(xi0)]|r
]p/r

≤ 2pC(p)
[
E|φ(xi0)|p

Np−1
+
Ep/r|φ(xi0)|r

Np(1−1/r)

]
≤ 2p+1C(p)

E|φ(xi0)|p

Np(1−1/r)

∆= C0|0
‖φ‖p0,p

Np(1−1/r)
. (34)

Similarly,

E
∣∣(πN0 , |φ|p)− (π0, |φ|p)

∣∣ ≤ 1
N
E

∣∣∣∣∣
N∑
i=1

(|φ(xi0)|p − E|φ(xi0)|p)

∣∣∣∣∣ ≤ 2E|φ(xi0)|p.

Hence,

E
∣∣(πN0 , |φ|p)∣∣ ≤ 3E|φ(xi0)|p ∆= M0|0‖φ‖p0,p. (35)

2: Prediction

Based on (34) and (35), we assume that for t− 1 and ∀φ ∈ Lpt (ρ)

E
∣∣∣(πNt−1|t−1, φ)− (πt−1|t−1, φ)

∣∣∣p ≤ Ct−1|t−1

‖φ‖pt−1,p

Np(1−1/r)
(36)

and

E
∣∣∣(πNt−1|t−1, |φ|

p)
∣∣∣ ≤Mt−1|t−1‖φ‖pt−1,p (37)

hold for su�ciently large N , where Ct−1|t−1 > 0 and Mt−1|t−1 > 0. We analyse

E
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p and E ∣∣∣(π̃Nt|t−1, |φ|
p)
∣∣∣ in this step.
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Let Ft−1 denote the σ-algebra generated by {xit−1, i = 1, . . . , N}. Notice
that

(π̃Nt|t−1, φ)− (πt|t−1, φ) ∆= Π1 + Π2 + Π3,

where

Π1
∆= (π̃Nt|t−1, φ)− 1

N

N∑
i=1

E
[
φ(x̃it)|Ft−1

]
,

Π2
∆=

1
N

N∑
i=1

E
[
φ(x̃it)|Ft−1

]
− 1
N

N∑
i=1

(πN,αit−1|t−1,Kφ),

Π3
∆=

1
N

N∑
i=1

(πN,αit−1|t−1,Kφ)− (πt|t−1, φ),

and πN,αit−1|t−1 =
∑N
j=1 α

i
jδxjt−1

. We consider the three terms Π1, Π2 and Π3

separately in the following.
For given {xit−1, i = 1, . . . , N} and yt, sample x̄it obeying (πN,αit−1|t−1,K),

i = 1, . . . , N . Naturally,

E[φ(x̄it)|Ft−1] = (πN,αit−1|t−1,Kφ). (38)

This means that {x̄it, i = 1, . . . , N} are particles normally generated without
any modi�cation. Clearly, the term Π2 denotes the di�erence between the two
series of particles. In order to use Lemma 4.5, we analyze a probability �rst.

In view of (38) and (9), we have

E

[
1
N

N∑
i=1

ρ(yt|x̄it)
∣∣∣Ft−1

]
= (πNt−1|t−1,Kρ).

Thus,

P

[
1
N

N∑
i=1

ρ(yt|x̄it) < γt

∣∣∣Ft−1

]
= P

[
(πNt−1|t−1,Kρ) < γt

]
. (39)

By (36), we have

P
[
(πNt−1|t−1,Kρ) < γt

]
= P

[
(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ) < γt − (πt−1|t−1,Kρ)

]
≤ P

[
|(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ)| > |γt − (πt−1|t−1,Kρ)|

]
≤
E|(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ)|p

|γt − (πt−1|t−1,Kρ)|p

≤
Ct−1|t−1‖K‖p

|γt − (πt−1|t−1,Kρ)|p
·
‖ρ‖pt−1,p

Np(1−1/r)

∆= Cγt ·
‖ρ‖pt−1,p

Np(1−1/r)
.

(40)

Obviously, the probability in (40) tends to 0 as N → ∞. Thus, for given
εt ∈ (0, 1) and su�ciently large N , we have

P

[
1
N

N∑
i=1

ρ(yt|x̄it) < γt

∣∣∣Ft−1

]
< εt < 1. (41)
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By Lemmas 4.1, 4.2, 4.5 (conditional case), (38) and (9),

E [|Π1|p|Ft−1] =
1
Np

E

[∣∣∣∣∣
N∑
i=1

[φ(x̃it)− E(φ(x̃it)|Ft−1)

∣∣∣∣∣
p ∣∣∣Ft−1

]

≤ 2p

Np

 N∑
i=1

E
[∣∣φ(x̃it)

∣∣p ∣∣Ft−1

]
+

(
N∑
i=1

E
[∣∣φ(x̃it)

∣∣r ∣∣Ft−1

])p/r
≤ 2p

Np(1− εt)p/r

 N∑
i=1

E
[∣∣φ(x̄it)

∣∣p ∣∣Ft−1

]
+

(
N∑
i=1

E
[∣∣φ(x̄it)

∣∣r ∣∣Ft−1

])p/r
≤ 2p

Np(1− εt)p/r

 N∑
i=1

(
πN,αit−1|t−1,K|φ|

p
)

+

(
N∑
i=1

(
πN,αit−1|t−1,K|φ|

r
))p/r

≤ 2p

(1− εt)p/r

[
(πNt−1|t−1,K|φ|

p)

Np−1
+

(πNt−1|t−1,K|φ|
r)p/r

Np−p/r

]
.

Hence, by Lemma 4.3 and (37),

E|Π1|p ≤
2p+1‖K‖pMt−1|t−1

(1− εt)p/r
·
‖φ‖pt−1,p

Np−p/r
∆= CΠ1 ·

‖φ‖pt−1,p

Np−p/r . (42)

By (38), Lemma 4.5 and (9),

|Π2|p =

∣∣∣∣∣ 1
N

N∑
i=1

E
[
φ(x̃it)|Ft−1

]
− 1
N

N∑
i=1

E
[
φ(x̄it)|Ft−1

]∣∣∣∣∣
p

=

∣∣∣∣∣ 1
N

N∑
i=1

(
E
[
φ(x̃it)|Ft−1

]
− E

[
φ(x̄it)|Ft−1

])∣∣∣∣∣
p

≤ 1
N

N∑
i=1

∣∣E [φ(x̃it)|Ft−1

]
− E

[
φ(x̄it)|Ft−1

]∣∣p
≤ 2p

(1− εt)p

(
Cγt‖ρ‖

p
t−1,p

Np(1−1/r)

)p−1

· 1
N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)

≤
2p
(
Cγt‖ρ‖

p
t−1,p

)p−1

(1− εt)p
·

(πNt−1|t−1,K|φ|
p)

Np−p/r

∆= CΠ2 ·
(πNt−1|t−1,K|φ|

p)

Np−p/r .

Hence,

E|Π2|p ≤ CΠ2‖K‖ ·
‖φ‖pt−1,p

Np−p/r . (43)

By (9) and (36),

E|Π3|p ≤ Ct−1|t−1‖K‖p ·
‖φ‖pt−1,p

Np−p/r
∆= CΠ3 ·

‖φ‖pt−1,p

Np−p/r . (44)
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Then, using Minkowski's inequality, (42), (43) and (44), we have

E1/p
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ E1/p|Π1|p + E1/p|Π2|p + E1/p|Π3|p

≤
(
C

1/p
Π1

+ [CΠ2‖K‖]1/p + C
1/p
Π3

) ‖φ‖t−1,p

N1−1/r

∆= C̃
1/p
t|t−1

‖φ‖t−1,p

N1−1/r
.

That is

E
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ C̃t|t−1

‖φ‖pt−1,p

Np−p/r . (45)

Based on (45), we know from Proposition 3.1 that the modi�ed algorithm will
not run into a in�nite loop.

By Lemma 4.2 and (37)

E

(
E

∣∣∣∣∣(π̃Nt|t−1, |φ|
p)− 1

N

N∑
i=1

E
[
|φ(x̃it)|p|Ft−1

] ∣∣Ft−1

∣∣∣∣∣
)

=
1
N
E

(
E

∣∣∣∣∣
N∑
i=1

[|φ(x̃it)|p − E(|φ(x̃it)|p|Ft−1)]

∣∣∣∣∣
)

≤ 1
(1− εt)N

E

(
E

[
N∑
i=1

[|φ(x̄it)|p + E(|φ(x̄it)|p|Ft−1)]

])

≤ 2
1− εt

E(πNt−1|t−1,K|φ|
p) ≤ 2

1− εt
‖K‖pMt−1|t−1‖φ‖pt−1,p. (46)

By (38), Lemma 4.5 and (9),∣∣∣∣∣ 1
N

N∑
i=1

E
[
|φ(x̃it)|p|Ft−1

]
− 1
N

N∑
i=1

E
[
|φ(x̄it)|p|Ft−1

]∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N∑
i=1

(
E
[
|φ(x̃it)|p|Ft−1

]
− E

[
|φ(x̄it)|p|Ft−1

])∣∣∣∣∣
≤ 1
N

N∑
i=1

(
E
[
|φ(x̃it)|p|Ft−1

]
+ E

[
|φ(x̄it)|p|Ft−1

])
≤
(

1
1− εt

+ 1
)
· 1
N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)

=
2− εt
1− εt

· (πNt−1|t−1,K|φ|
p)

≤ 2− εt
1− εt

· ‖K‖pMt−1|t−1‖φ‖pt−1,p. (47)

By (37),∣∣∣∣∣ 1
N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)− (πt|t−1, |φ|p)

∣∣∣∣∣ ≤ 2‖K‖pMt−1|t−1‖φ‖pt−1,p. (48)
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Then, by (46) (47) (48), we have

E
∣∣∣(π̃Nt|t−1, |φ|

p)− (πt|t−1, |φ|p)
∣∣∣ ≤ (4− εt

1− εt
+ 2
)
‖K‖pMt−1|t−1‖φ‖pt−1,p

∆= M̃t|t−1‖φ‖pt−1,p.

(49)

3: Update

In this step we go step further to analyse E
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p and E(π̃Nt|t, |φ|
p)

based on (45) and (49). Here, we still use the separation (π̃Nt|t, φ) − (πt|t, φ) =
Π̃1 + Π̃2, which was introduced in the step (3) in the proof of Theorem 4.1. By
condition H1 and the modi�ed version of the algorithm we have,

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃Nt|t−1, ρ)
·

[(πt|t−1, ρ)− (π̃Nt|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣ ≤ ‖ρφ‖
γt(πt|t−1, ρ)

∣∣∣(πt|t−1, ρ)− (π̃Nt|t−1, ρ)
∣∣∣ .

Thus, by Minkowski's inequality and (45),

E1/p
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̃1|p + E1/p|Π̃2|p

≤
C̃

1/p
t|t−1‖ρ‖ (‖ρφ‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖t−1,p

N1−1/r

∆= C̃
1/p
t|t
‖φ‖t−1,p

N1−1/r
,

which implies

E
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ C̃t|t ‖φ‖pt−1,p

Np−p/r . (50)

Using a separation similar to the one mentioned above, by (49),

E
∣∣∣(π̃Nt|t, |φ|p)− (πt|t, |φ|p)

∣∣∣ ≤ E ∣∣∣∣∣(π̃Nt|t, |φ|p)− (π̃Nt|t−1, ρ|φ|
p)

(πt|t−1, ρ)

∣∣∣∣∣
+ E

∣∣∣∣∣ (π̃
N
t|t−1, ρ|φ|

p)

(πt|t−1, ρ)
− (πt|t, |φ|p)

∣∣∣∣∣
≤
M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖pt−1,p,

Observe that ‖φ‖s,p is increasing with respect to s,

E
∣∣∣(π̃Nt|t, |φ|p)∣∣∣ ≤ M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖pt−1,p + (πt|t, |φ|p),

≤

(
M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
+ 1

)
· ‖φ‖pt,p

∆= M̃t|t‖φ‖pt,p. (51)

4: Resampling

Finally, we analyse E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p and E(πNt|t, |φ|
p) based on (50) and (51).
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Again, we use the separation (πNt|t, φ)− (πt|t, φ) = Π̄1 +Π̄2 and the σ-algebra

Gt, which was introduced in step (4) in the proof of Theorem 4.1.
Then, by Lemmas 4.1, 4.2,

E
[
|Π̄1|p|Gt

]
=

1
Np

EGt

∣∣∣∣∣
N∑
i=1

(φ(xit)− E[φ(xit)|Gt])

∣∣∣∣∣
p

≤ 2pC(p)
[

1
Np−1

E
[
|φ(xit)|p|Gt

]
+

1
Np(1−1/r)

Ep/r
[
|φ(xit)|r|Gt

]]
.

Thus, by Lemma 4.3 and (51),

E|Π̄1|p ≤ 2p+1C(p)M̃t|t
‖φ‖pt,p

Np(1−1/r)
. (52)

Then by Minkowski's inequality, (50) and (52)

E1/p
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̄1|p + E1/p|Π̄2|p

≤
(

[2p+1C(p)M̃t|t]1/p + C̃
1/p
t|t

) ‖φ‖t,p
N1−1/r

∆= C
1/p
t|t
‖φ‖t,p
N1−1/r

.

That is

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ Ct|t ‖φ‖pt,p
Np−p/r . (53)

Using a separation similar to the one mentioned above, by (51),

E
∣∣∣(πNt|t, |φ|p)− (πt|t, |φ|p)

∣∣∣ ≤ E ∣∣∣(πNt|t, |φ|p)− (π̃Nt|t, |φ|
p)
∣∣∣+ E

∣∣∣(π̃Nt|t, |φ|p)− (πt|t, |φ|p)
∣∣∣

≤ [2M̃t|t + (M̃t|t + 1)]‖φ‖pt,p
≤ (3M̃t|t + 1)‖φ‖pt,p.

Hence,

E
∣∣∣(πNt|t, |φ|p)∣∣∣ ≤ (3M̃t|t + 2)‖φ‖pt,p

∆= Mt|t‖φ‖pt,p. (54)

Therefore, the proof of Theorem 4.3 is completed, since (36) and (37) are suc-
cessfully replaced by (53) and (54).

Similar to Theorem 4.2, by Borel-Cantelli Lemma, we have a weak conver-
gence result as follow.

Theorem 4.4 In addition to H1 and H2, if p > 2, then for any function φ ∈
Lpt (ρ), limN→∞(πNt|t, φ) = (πt|t, φ) almost surely.

5 Conclusions

The main contribution of this work is the proof that the particle �lter converge
for unbounded functions in the sense of Lp-convergence, for p ≥ 2. Besides this
we also derived a new Rosenthal type inequality and provided slightly extended
convergence results when it comes to bounded functions.
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