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1. Introduction

1.1 What are Monte Carlo Methods?

This lecture course is concerned with Monte Carlo methods, which are sometimes referred to as stochastic

simulation (Ripley (1987) for example only uses this term).

Examples of Monte Carlo methods include stochastic integration, where we use a simulation-based

method to evaluate an integral, Monte Carlo tests, where we resort to simulation in order to compute the

p-value, and Markov-Chain Monte Carlo (MCMC), where we construct a Markov chain which (hopefully)

converges to the distribution of interest.

A formal definition of Monte Carlo methods was given (amongst others) by Halton (1970). He defined

a Monte Carlo method as “representing the solution of a problem as a parameter of a hypothetical

population, and using a random sequence of numbers to construct a sample of the population, from which

statistical estimates of the parameter can be obtained.”

1.2 Introductory examples

Example 1.1 (A raindrop experiment for computing π). Assume we want to compute an Monte Carlo es-

timate of π using a simple experiment. Assume that we could produce “uniform rain” on the square

[−1, 1] × [−1, 1], such that the probability of a raindrop falling into a region R ⊂ [−1, 1]2 is propor-

tional to the area of R, but independent of the position of R. It is easy to see that this is the case iff

the two coordinates X,Y are i.i.d. realisations of uniform distributions on the interval [−1, 1] (in short

X,Y
i.i.d.∼ U[−1, 1]).

Now consider the probability that a raindrop falls into the unit circle (see figure 1.1). It is

P(drop within circle) =
area of the unit circle

area of the square
=

∫ ∫
{x2+y2≤1}

1 dxdy

∫ ∫
{−1≤x,y≤1}

1 dxdy
=

π

2 · 2
=

π

4

In other words,

π = 4 · P(drop within circle),

i.e. we found a way of expressing the desired quantity π as a function of a probability.

Of course we cannot compute P(drop within circle) without knowing π, however we can estimate the

probability using our raindrop experiment. If we observe n raindrops, then the number of raindrops Z

that fall inside the circle is a binomial random variable:
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1−1

1

−1

Fig. 1.1. Illustration of the raindrop experiment for estimating π

Z ∼ B(n, p), with p = P(drop within circle).

Thus we can estimate p by its maximum-likelihood estimate

p̂ =
Z

n
,

and we can estimate π by

π̂ = 4p̂ = 4 · Z

n
.

Assume we have observed, as in figure 1.1, that 77 of the 100 raindrops were inside the circle. In this case,

our estimate of π is

π̂ =
4 · 77

100
= 3.08,

which is relatively poor.

However the law of large numbers guarantees that our estimate π̂ converges almost surely to π. Figure

1.2 shows the estimate obtained after n iterations as a function of n for n = 1, . . . , 2000. You can see that

the estimate improves as n increases.

We can assess the quality of our estimate by computing a confidence interval for π. As we have X ∼
B(100, p), we can obtain a 95% confidence interval for p using a Normal approximation:

[
0.77 − 1.96 ·

√
0.77 · (1 − 0.77)

100
, 0.77 + 1.96 ·

√
0.77 · (1 − 0.77)

100

]
= [0.6875, 0.8525],

As our estimate of π is four times the estimate of p, we now also have a confidence interval for π:

[2.750, 3.410]

In more general, let π̂n = 4p̂n denote the estimate after having observed n raindrops. A (1−2α) confidence

interval for p is then [
p̂n − z1−α

√
p̂n(1 − p̂n)

n
, p̂n + z1−α

√
p̂n(1 − p̂n)

n

]
,

thus a (1 − 2α) confidence interval for π is

[
π̂n − z1−α

√
π̂n(4 − π̂n)

n
, π̂n + z1−α

√
π̂n(4 − π̂n)

n

]
⊳
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Fig. 1.2. Estimate of π resulting from the raindrop experiment

Let us recall again the different steps we have used in the example:

– We have written the quantity of interest (in our case π) as an expectation.1

– Second, we have replaced this algebraic representation of the quantity of interest by a sample approx-

imation to it. The law of large numbers guaranteed that the sample approximation converges to the

algebraic representation, and thus to the quantity of interest. Furthermore we used the central limit

theorem to assess the speed of convergence.

It is of course of interest whether the Monte Carlo methods offer more favourable rates of convergence

than other numerical methods. We will investigate this in the case of Monte Carlo integration using the

following simple example.

Example 1.2 (Monte Carlo Integration). Assume we want to evaluate the integral
∫ 1

0

f(x) dx with f(x) =
1

27
·
(
−65536x8 + 262144x7 − 409600x6 + 311296x5 − 114688x4 + 16384x3

)

using a Monte Carlo approach.2 Figure 1.3 shows the function for x ∈ [0, 1]. Its graph is fully contained

in the unit square [0, 1]2.

Once more, we can resort to a raindrop experiment. Assume we can produce uniform rain on the unit

square. The probability that a raindrop falls below the curve is equal to the area below the curve, which

of course equals the integral we want to evaluate (the area of the unit square is 1, so we don’t need to

rescale the result).

A more formal justification for this is, using the fact that f(x) =
∫ f(x)

0
1 dt,

∫ 1

0

f(x) dx =

∫ 1

0

∫ f(x)

0

1 dt dx =

∫ ∫

{(x,t):t≤f(x)}

1dt dx =

∫ ∫
{(x,t):t≤f(x)}

1 dt dx

∫ ∫
{0≤x,t≤1}

1dt dx

1 A probability is a special case of an expectation as P(A) = E(IA).
2 As f is a polynomial we can obtain the result analytically, it is 4096

8505
= 212

35·5·7
≈ 0.4816.
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The numerator is nothing other than the dark grey area under the curve, and the denominator is the area

of the unit square (shaded in light grey in figure 1.3). Thus the expression on the right hand side is the

probability that a raindrop falls below the curve.

We have thus re-expressed our quantity of interest as a probability in a statistical model. Figure 1.3 shows

the result obtained when observing 100 raindrops. 52 of them are below the curve, yielding a Monte-Carlo

estimate of the integral of 0.52.

If after n raindrops a proportion p̂n is found to lie below the curve, a (1 − 2α) confidence interval for the

value of the integral is [
p̂n − z1−α

p̂n(1 − pn)

n
, p̂n + z1−α

p̂n(1 − pn)

n

]

Thus the speed of convergence of our (rather crude) Monte Carlo method is OP(n−1/2). ⊳

10

1

x

Fig. 1.3. Illustration of the raindrop experiment to compute
R 1

0
f(x)dx

When using Riemann sums (as in figure 1.4) to approximate the integral from example 1.2 the error

is of order O(n−1).3,4

Recall that our Monte Carlo method was “only” of order OP(n−1/2). However, it is easy to see that its

speed of convergence is of the same order, regardless of the dimension of the support of f . This is not the

case for other (deterministic) numerical integration methods. For a two-dimensional function f the error

made by the Riemann approximation using n function evaluations is O(n−1/2). 5

This makes the Monte Carlo methods especially suited for high-dimensional problems. Furthermore

the Monte Carlo method offers the advantage of being relatively simple and thus easy to implement on a

computer.

3 The error made for each “bar” can be upper bounded by ∆2

2
max |f ′(x)|. Let n denote the number evaluations

of f (and thus the number of “bars”). As ∆ is proportional to 1
n
, the error made for each bar is O(n−2). As

there are n “bars”, the total error is O(n−1).
4 The order of convergence can be improved when using the trapezoid rule and (even more) by using Simpson’s

rule.
5 Assume we partition both axes into m segments, i.e. we have to evaluate the function n = m2 times. The error

made for each “bar” is O(m−3) (each of the two sides of the base area of the “bar” is proportional to m−1, so

is the upper bound on |f(x)− f(ξmid)|, yielding O(m−3)). There are in total m2 bars, so the total error is only

O(m−1), or equivalently O(n−1/2).
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10

1

∆

ξmid

x

|f(x)− f(ξmid)| < ∆
2
·max |f ′(x)| for |x−ξmid|≤

∆
2

Fig. 1.4. Illustration of numerical integration by Riemann sums

1.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old Testament (1 Kings vii. 23 and 2 Chronicles iv.

2) contains a rough estimate of π (using the columns of King Solomon’s temple). Monte Carlo methods

are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Buffon’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate π.

Example 1.3 (Buffon’s needle). In 1733, the Comte de Buffon, George Louis Leclerc, asked the following

question (Buffon, 1733): Consider a floor with equally spaced lines, a distance δ apart. What is the

probability that a needle of length l < δ dropped on the floor will intersect one of the lines?

Buffon answered the question himself in 1777 (Buffon, 1777).

δ δ δ

l sin θ

θ

(a) Illustration of the geometry behind

Buffon’s needle

(b) Results of the Buffon’s needle ex-

periment using 50 needles. Dark nee-

dles intersect the thin vertical lines,

light needles do not.

Fig. 1.5. Illustration of Buffon’s needle

Assume the needle landed such that its angle is θ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin θ intersects a line. The probability
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of this happening is

P(intersect|θ) =
l sin θ

δ
.

Assuming that the angle θ is uniform on [0, π) we obtain

P(intersect) =

∫ π

0

P(intersect|θ) · 1

π
dθ =

∫ π

0

l sin θ

δ
· 1

π
dθ =

l

πδ
·
∫ π

0

sin θ dθ

︸ ︷︷ ︸
=2

=
2l

πδ
.

When dropping n needles the expected number of needles crossing a line is thus

2nl

πδ
.

Thus we can estimate π by

π ≈ 2nl

Xδ
,

where X is the number of needles crossing a line.

The Italian mathematician Mario Lazzarini performed Buffon’s needle experiment in 1901 using a needle

of length l = 2.5cm and lines d = 3cm apart (Lazzarini, 1901). Of 3408 needles 1808 needles crossed a

line, so Lazzarini’s estimate of π was

π ≈ 2 · 3408 · 2.5

1808 · 3
=

17040

5424
=

355

133
,

which is nothing other than the best rational approximation to π with at most 4 digits each in the

denominator and the numerator.6 ⊳

Historically, the main drawback of Monte Carlo methods was that they used to be expensive to carry

out. Physical random experiments were difficult to perform and so was the numerical processing of their

results.

This however changed fundamentally with the advent of the digital computer. Amongst the first to

realise this potential were John von Neuman and Stanis law Ulam, who were then working for the Manhat-

tan project in Los Alamos. They proposed in 1947 to use a computer simulation for solving the problem

of neutron diffusion in fissionable material (Metropolis, 1987). Enrico Fermi previously considered using

Monte Carlo techniques in the calculation of neutron diffusion, however he proposed to use a mechanical

device, the so-called “Fermiac”, for generating the randomness. The name “Monte Carlo” goes back to

Stanis law Ulam, who claimed to be stimulated by playing poker and whose uncle once borrowed money

from him to go gambling in Monte Carlo (Ulam, 1983). In 1949 Metropolis and Ulam published their re-

sults in the Journal of the American Statistical Association (Metropolis and Ulam, 1949). Nonetheless, in

the following 30 years Monte Carlo methods were used and analysed predominantly by physicists, and not

by statisticians: it was only in the 1980s — following the paper by Geman and Geman (1984) proposing

the Gibbs sampler — that the relevance of Monte Carlo methods in the context of (Bayesian) statistics

was fully realised.

1.4 Pseudo-random numbers

For any Monte-Carlo simulation we need to be able to reproduce randomness by a computer algorithm,

which, by definition, is deterministic in nature — a philosophical paradox. In the following chapters we

will assume that independent (pseudo-)random realisations from a uniform U[0, 1] distribution7 are readily

6 That Lazzarini’s experiment was that precise, however, casts some doubt over the results of his experiments

(see Badger, 1994, for a more detailed discussion).
7 We will only use the U(0, 1) distribution as a source of randomness. Samples from other distributions can be

derived from realisations of U(0, 1) random variables using deterministic algorithms.
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available. This section tries to give very brief overview of how pseudo-random numbers can be generated.

For a more detailed discussion of pseudo-random number generators see Ripley (1987) or Knuth (1997).

A pseudo-random number generator (RNG) is an algorithm for whose output the U[0, 1] distribution is

a suitable model. In other words, the number generated by the pseudo-random number generator should

have the same relevant statistical properties as independent realisations of a U[0, 1] random variable. Most

importantly:

– The numbers generated by the algorithm should reproduce independence, i.e. the numbers X1, . . . ,Xn

that we have already generated should not contain any discernible information on the next value Xn+1.

This property is often referred to as the lack of predictability.

– The numbers generated should be spread out evenly across the interval [0, 1].

In the following we will briefly discuss the linear congruential generator. It is not a particularly powerful

generator (so we discourage you from using it in practise), however it is easy enough to allow some insight

into how pseudo-random number generators work.

Algorithm 1.1 (Congruential pseudo-random number generator). 1. Choose a,M ∈ N, c ∈ N0,

and the initial value (“seed”) Z0 ∈ {1, . . . M − 1}.

2. For i = 1, 2, . . .

Set Zi = (aZi−1 + c) mod M , and Xi = Zi/M .

The integers Zi generated by the algorithm are from the set {0, 1, . . . ,M − 1} and thus the Xi are in

the interval [0, 1).

It is easy to see that the sequence of pseudo-random numbers only depends on the seed X0. Running

the pseudo-random number generator twice with the same seed thus generates exactly the same sequence

of pseudo-random numbers. This can be a very useful feature when debugging your own code.

Example 1.4. Cosider the choice of a = 81, c = 35, M = 256, and seed Z0 = 4.

Z1 = (81 · 4 + 35) mod 256 = 359 mod 256 = 103

Z2 = (81 · 103 + 35) mod 256 = 8378 mod 256 = 186

Z3 = (81 · 186 + 35) mod 256 = 15101 mod 256 = 253

. . .

The corresponding Xi are X1 = 103/256 = 0.4023438, X2 = 186/256 = 0.72656250, X1 = 253/256 =

0.98828120. ⊳

The main flaw of the congruential generator its “crystalline” nature (Marsaglia, 1968). If the sequence

of generated values X1,X2, . . . is viewed as points in an n-dimension cube8, they lie on a finite, and often

very small number of parallel hyperplanes. Or as Marsaglia (1968) put it: “the points [generated by a

congruential generator] are about as randomly spaced in the unit n-cube as the atoms in a perfect crystal

at absolute zero.” The number of hyperplanes depends on the choice of a, c, and M .

An example for a notoriously poor design of a congruential pseudo-random number generator is

RANDU, which was (unfortunately) very popular in the 1970s and used for example in IBM’s System/360

and System/370, and Digital’s PDP-11. It used a = 216 + 3, c = 0, and M = 231. The numbers generated

by RANDU lie on only 15 hyperplanes in the 3-dimensional unit cube (see figure 1.6).

8 The (k + 1)-th point has the coordinates (Xnk+1, . . . , Xnk+n−1).
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Fig. 1.6. 300,000 realisations of the RANDU pseudo-random number generator plotted in 3D. A point corresponds

to a triplet (x3k−2, x3k−1, x3k) for k = 1, . . . , 100000. The data points lie on 15 hyperplanes.
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Fig. 1.7. Results obtained using a congruential generator with a = 1229, c = 1, and M = 211
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Figure 1.7 shows another cautionary example (taken from Ripley, 1987). The left-hand panel shows a

plot of 1,000 realisations of a congruential generator with a = 1229, c = 1, and M = 211. The random

numbers lie on only 5 hyperplanes in the unit square. The right hand panel shows the outcome of the

Box-Muller method for transforming two uniform pseudo-random numbers into a pair of Gaussians (see

example 2.2).

Due to this flaw of the congruential pseudo-random number generator, it should not be used in Monte

Carlo experiments. For more powerful pseudo-random number generators see e.g. Marsaglia and Zaman

(1991) or Matsumoto and Nishimura (1998). GNU R (and other environments) provide you with a large

choice of powerful random number generators, see the corresponding help page (?RNGkind) for details.
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2. Fundamental Concepts: Transformation, Rejection,

and Reweighting

2.1 Transformation Methods

In section 1.4 we have seen how to create (pseudo-)random numbers from the uniform distribution U[0, 1].

One of the simplest methods of generating random samples from a distribution with cumulative distribu-

tion function (CDF) F (x) = P(X ≤ x) is based on the inverse of the CDF.

F−(u) x

1

u

F (x)

Fig. 2.1. Illustration of the definition of the generalised inverse F− of a CDF F

The CDF is an increasing function, however it is not necessarily continuous. Thus we define the

generalised inverse F−(u) := inf{x : F (x) ≥ u}. Figure 2.1 illustrates its definition. If F is continuous,

then F−(u) = F−1(u).

Theorem 2.1 (Inversion Method). Let U ∼ U[0, 1] and F be a CDF. Then F−(U) has the CDF F .

Proof. It is easy to see (e.g. in figure 2.1) that F−(u) ≤ x is equivalent to u ≤ F (x). Thus for U ∼ U[0, 1]

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x),

thus F is the CDF of X = F−(U). �

Example 2.1 (Exponential Distribution). The exponential distribution with rate λ > 0 has the CDF

Fλ(x) = 1 − exp(−λx) for x ≥ 0. Thus F−
λ (u) = F−1

λ (u) = − log(1 − u)/λ. Thus we can generate

random samples from Expo(λ) by applying the transformation − log(1−U)/λ to a uniform U[0, 1] random

variable U . As U and 1 − U , of course, have the same distribution we can use − log(U)/λ as well. ⊳
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The Inversion Method is a very efficient tool for generating random numbers. However very few distri-

butions possess a CDF whose (generalised) inverse can be evaluated efficiently. Take the example of the

Gaussian distribution, whose CDF is not even available in closed form.

Note however that the generalised inverse of the CDF is just one possible transformation and that

there might be other transformations that yield the desired distribution. An example of such a method is

the Box-Muller method for generating Gaussian random variables.

Example 2.2 (Box-Muller Method for Generating Gaussians). Using the transformation of density for-

mula one can show that X1,X2
i.i.d.∼ N(0, 1) iff their polar coordinates (R, θ) with

X1 = R · cos(θ), X2 = R · sin(θ)

are independent, θ ∼ U[0, 2π], and R2 ∼ Expo(1/2). Using U1, U2
i.i.d.∼ U[0, 1] and example 2.1 we can

generate R and θ by

R =
√
−2 log(U1), θ = 2πU2

and thus

X1 =
√

−2 log(U1) · cos(2πU2), X2 =
√

−2 log(U1) · sin(2πU2)

are a two independent realisations from a N(0, 1) distribution. ⊳

The idea of transformation methods like the Inversion Method was to generate random samples from a

distribution other than the target distribution and to transform them such that they come from the desired

target distribution. In many situations, we cannot find such a transformation in closed form. In these cases

we have to find other ways of correcting for the fact that we sample from the “wrong” distribution. The

next two sections present two such ideas: rejection sampling and importance sampling.

2.2 Rejection Sampling

The basic idea of rejection sampling is to sample from an instrumental distribution1 and reject samples

that are “unlikely” under the target distribution.

Assume that we want to sample from a target distribution whose density f is known to us. The simple

idea underlying rejection sampling (and other Monte Carlo algorithms) is the rather trivial identity

f(x) =

∫ f(x)

0

1 du =

∫ 1

0

10<u<f(x)︸ ︷︷ ︸
=f(x,u)

du

Thus f(x) can be interpreted as the marginal density of a uniform distribution on the area under the

density f(x)

{(x, u) : 0 ≤ u ≤ f(x)}.

Figure 2.2 illustrates this idea. This suggests that we can generate a sample from f by sampling from the

area under the curve.

Example 2.3 (Sampling from a Beta distribution). The Beta(a, b) distribution (a, b ≥ 0) has the density

f(x) =
Γ (a + b)

Γ (a)Γ (b)
xa−1(1 − x)b−1, for 0 < x < 1,

1 The instrumental distribution is sometimes referred to as proposal distribution.
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10

2.4

u

x

Fig. 2.2. Illustration of example 2.3. Sampling from the area under the curve (dark grey) corresponds to sampling

from the Beta(3, 5) density. In example 2.3 we use a uniform distribution of the light grey rectangle as proposal

distribution. Empty circles denote rejected values, filled circles denote accepted values.

where Γ (a) =
∫ +∞

0
ta−1 exp(−t) dt is the Gamma function. For a, b > 1 the Beta(a, b) density is unimodal

with mode (a − 1)/(a + b − 2). Figure 2.2 shows the density of a Beta(3, 5) distribution. It attains its

maximum of 1680/729 ≈ 2.305 at x = 1/3.

Using the above identity we can draw from Beta(3, 5) by drawing from a uniform distribution on the area

under the density {(x, u) : 0 < u < f(x)} (the area shaded in dark gray in figure 2.2).

In order to sample from the area under the density, we will use a similar trick as in examples 1.1 and 1.2.

We will sample from the light grey rectangle and and only keep the samples that fall in the area under

the curve. Figure 2.2 illustrates this idea.

Mathematically speaking, we sample independently X ∼ U[0, 1] and U ∼ U[0, 2.4]. We keep the pair

(X,U) if U < f(X), otherwise we reject it.

The conditional probability that a pair (X,U) is kept if X = x is

P(U < f(X)|X = x) = P(U < f(x)) = f(x)/2.4

As X and U were drawn independently we can rewrite our algorithm as: Draw X from U[0, 1] and accept

X with probability f(X)/2.4, otherwise reject X. ⊳

The method proposed in example 2.3 is based on bounding the density of the Beta distribution by

a box. Whilst this is a powerful idea, it cannot be directly applied to other distributions, as the density

might be unbounded or have infinite support. However we might be able to bound the density of f(x) by

M · g(x), where g(x) is a density that we can easily sample from.

Algorithm 2.1 (Rejection sampling). Given two densities f, g with f(x) < M · g(x) for all x, we can

generate a sample from f by

1. Draw X ∼ g

2. Accept X as a sample from f with probability

f(X)

M · g(X)
,

otherwise go back to step 1.

Proof. We have

P(X ∈ X and is accepted) =

∫

X

g(x)
f(x)

M · g(x)︸ ︷︷ ︸
=P(X is accepted|X=x)

dx =

∫
X f(x) dx

M
, (2.1)
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and thus2

P(X is accepted) = P(X ∈ E and is accepted) =
1

M
, (2.2)

yielding

P(x ∈ X |X is accepted) =
P(X ∈ X and is accepted)

P(X is accepted)
=

∫
X f(x) dx/M

1/M
=

∫

X

f(x) dx. (2.3)

Thus the density of the values accepted by the algorithm is f(·). �

Remark 2.1. If we know f only up to a multiplicative constant, i.e. if we only know π(x), where f(x) =

C · π(x), we can carry out rejection sampling using

π(X)

M · g(X)

as probability of rejecting X, provided π(x) < M · g(x) for all x. Then by analogy with (2.1) - (2.3) we

have

P(X ∈ X and is accepted) =

∫

X

g(x)
π(x)

M · g(x)
dx =

∫
X π(x) dx

M
=

∫
X f(x) dx

C · M ,

P(X is accepted) = 1/(C · M), and thus

P(x ∈ X |X is accepted) =

∫
X f(x) dx/(C · M)

1/(C · M)
=

∫

X

f(x) dx

Example 2.4 (Rejection sampling from the N(0, 1) distribution using a Cauchy proposal). Assume we want

to sample from the N(0, 1) distribution with density

f(x) =
1√
2π

exp

(
−x2

2

)

using a Cauchy distribution with density

g(x) =
1

π(1 + x2)

as instrumental distribution.3 The smallest M we can choose such that f(x) ≤ Mg(x) is M =
√

2π ·
exp(−1/2).

Figure 2.3 illustrates the results. As before, filled circles correspond to accepted values whereas open circles

correspond to rejected values.

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)

f(x)

Fig. 2.3. Illustration of example 2.3. Sampling from the area under the density f(x) (dark grey) corresponds to

sampling from the N(0, 1) density. The proposal g(x) is a Cauchy(0, 1).

2 We denote by E the set of all possible values X can take.
3 There is not much point is using this method is practise. The Box-Muller method is more efficient.



2.3 Importance Sampling 19

Note that it is impossible to do rejection sampling from a Cauchy distribution using a N(0, 1) distri-

bution as instrumental distribution: there is no M ∈ R such that

1

π(1 + x2)
< M · 1√

2πσ2
exp

(
−x2

2

)
;

the Cauchy distribution has heavier tails than the Gaussian distribution. ⊳

2.3 Importance Sampling

In rejection sampling we have compensated for the fact that we sampled from the instrumental distribution

g(x) instead of f(x) by rejecting some of the values proposed by g(x). Importance sampling is based on

the idea of using weights to correct for the fact that we sample from the instrumental distribution g(x)

instead of the target distribution f(x).

Importance sampling is based on the identity

P(X ∈ X ) =

∫

X

f(x) dx =

∫

X

g(x)
f(x)

g(x)︸ ︷︷ ︸
=:w(x)

dx =

∫

X

g(x)w(x) dx (2.4)

for all g(·), such that g(x) > 0 for (almost) all x with f(x) > 0. We can generalise this identity by

considering the expectation Ef (h(X)) of a measurable function h:

Ef (h(X)) =

∫
f(x)h(x) dx =

∫
g(x)

f(x)

g(x)︸ ︷︷ ︸
=:w(x)

h(x) dx =

∫
g(x)w(x)h(x) dx = Eg(w(X) · h(X)), (2.5)

if g(x) > 0 for (almost) all x with f(x) · h(x) 6= 0.

Assume we have a sample X1, . . . ,Xn ∼ g. Then, provided Eg|w(X) · h(X)| exists,

1

n

n∑

i=1

w(Xi)h(Xi)
a.s.

n→∞−→ Eg(w(X) · h(X))

and thus by (2.5)

1

n

n∑

i=1

w(Xi)h(Xi)
a.s.

n→∞−→ Ef (h(X)).

In other words, we can estimate µ := Ef (h(X)) by

µ̃ :=
1

n

n∑

i=1

w(Xi)h(Xi)

Note that whilst Eg(w(X)) =
∫

E
f(x)
g(x) g(x) dx =

∫
E

f(x) = 1, the weights w1(X), . . . , wn(X) do not

necessarily sum up to n, so one might want to consider the self-normalised version

µ̂ :=
1∑n

i=1 w(Xi)

n∑

i=1

w(Xi)h(Xi).

This gives rise to the following algorithm:

Algorithm 2.2 (Importance Sampling). Choose g such that supp(g) ⊃ supp(f · h).

1. For i = 1, . . . , n:

i. Generate Xi ∼ g.

ii. Set w(Xi) = f(Xi)
g(Xi)

.
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2. Return either

µ̂ =

∑n
i=1 w(Xi)h(Xi)∑n

i=1 w(Xi)

or

µ̃ =

∑n
i=1 w(Wi)h(Xi)

n

The following theorem gives the bias and the variance of importance sampling.

Theorem 2.2 (Bias and Variance of Importance Sampling). (a) Eg(µ̃) = µ

(b) Varg(µ̃) =
Varg(w(X) · h(X))

n

(c) Eg(µ̂) = µ +
µVarg(w(X)) − Covg(w(X), w(X) · h(X))

n
+ O(n−2)

(d) Varg(µ̂) =
Varg(w(X) · h(X)) − 2µCovg(w(X), w(X) · h(X)) + µ2Varg(w(X))

n
+ O(n−2)

Proof. (a) Eg

(
1

n

n∑

i=1

w(Xi)h(Xi)

)
=

1

n

n∑

i=1

Eg(w(Xi)h(Xi)) = Ef (h(X))

(b) Varg

(
1

n

n∑

i=1

w(Xi)h(Xi)

)
=

1

n2

n∑

i=1

Varg(w(Xi)h(Xi)) =
Varg(w(X)h(X))

n

(c) and (d) see (Liu, 2001, p. 35) �

Note that the theorem implies that contrary to µ̃ the self-normalised estimator µ̂ is biased. The self-

normalised estimator µ̂ however might have a lower variance. In addition, it has another advantage: we

only need to know the density up to a multiplicative constant, as it is often the case in hierarchical

Bayesian modelling. Assume f(x) = C · π(x), then

µ̂ =

∑n
i=1 w(Xi)h(Xi)∑n

i=1 w(Xi)
=

∑n
i=1

f(Xi)
g(Xi)

h(Xi)
∑n

i=1
f(Xi)
g(Xi)

w(Xi)
=

∑n
i=1

C·π(Xi)
g(Xi)

h(Xi)
∑n

i=1
C·π(Xi)

g(Xi)
w(Xi)

=

∑n
i=1

π(Xi)
g(Xi)

h(Xi)
∑n

i=1
π(Xi)
g(Xi)

w(Xi)
,

i.e. the self-normalised estimator µ̂ does not depend on the normalisation constant C.4 On the other hand,

as we have seen in the proof of theorem 2.2 it is a lot harder to analyse the theoretical properties of the

self-normalised estimator µ̂.

Although the above equations (2.4) and (2.5) hold for every g with supp(g) ⊃ supp(f · h) and the

importance sampling algorithm converges for a large choice of such g, one typically only considers choices

of g that lead to finite variance estimators. The following two conditions are each sufficient (albeit rather

restrictive) for a finite variance of µ̃:

– f(x) < M · g(x) and Varf (h(X)) < ∞.

– E is compact, f is bounded above on E, and g is bounded below on E.

So far we have only studied whether an g is an appropriate instrumental distribution, i.e. whether the

variance of the estimator µ̃ (or µ̂) is finite. This leads to the question which instrumental distribution is

optimal, i.e. for which choice Var(µ̃) is minimal. The following theorem answers this question:

Theorem 2.3 (Optimal proposal). The proposal distribution g that minimises the variance of µ̃ is

g∗(x) =
|h(x)|f(x)∫

E
|h(t)|f(t) dt

.

4 By complete analogy one can show that is enough to know g up to a multiplicative constant.
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Proof. We have from theroem 2.2 (b) that

n·Varg(µ̃) = Varg (w(X) · h(X)) = Varg

(
h(X) · f(X)

g(X)

)
= Eg

((
h(X) · f(X)

g(X)

)2
)
−
(

Eg

(
h(X) · f(X)

g(X)

)

︸ ︷︷ ︸
=Eg(µ̃)=µ

)2

.

Thus we only have to minimise Eg

((
h(X)·f(X)

g(X)

)2
)

. When plugging in g⋆ we obtain:

Eg⋆

((
h(X) · f(X)

g⋆(X)

)2
)

=

∫

E

h(x)2 · f(x)2

g⋆(x)
dx =

(∫

E

h(x)2 · f(x)2

|h(x)|f(x)
dx

)
·
(∫

E

|h(t)|f(t) dt

)

=

(∫

E

|h(x)|f(x) dx

)2

On the other hand, we can apply the Jensen inequality to Eg

((
h(X)·f(X)

g(X)

)2
)

yielding

Eg

((
h(X) · f(X)

g(X)

)2
)

≥
(

Eg

( |h(X)| · f(X)

g(X)

))2

=

(∫

E

|h(x)|f(x) dx

)2

�

An important corollary of theorem 2.3 is that importance sampling can be super-efficient, i.e. when

using the optimal g⋆ from theorem 2.3 the variance of µ̃ is less than the variance obtained when sampling

directly from f :

n · Varf

(
h(X1) + . . . + h(Xn)

n

)
= Ef (h(X)2) − µ2

≥ (Ef |h(X)|)2 − µ2 =

(∫

E

|h(x)|f(x) dx

)2

− µ2 = n · Varg⋆(µ̃)

by Jensen’s inequality. Unless h(X) is (almost surely) constant the inequality is strict. There is an intuitive

explanation to the super-efficiency of importance sampling. Using g⋆ instead of f causes us to focus on

regions of high probability where |h| is large, which contribute most to the integral Ef (h(X)).

Theorem 2.3 is, however, a rather formal optimality result. When using µ̃ we need to know the nor-

malisation constant of g⋆, which is exactly the integral we are looking for. Further we need to be able

to draw samples from g⋆ efficiently. The practically important corollary of theorem 2.3 is that we should

choose an instrumental distribution g whose shape is close to the one of f · |h|.

Example 2.5 (Computing Ef |X| for X ∼ t3). Assume we want to compute Ef |X| for X from a t-distribution

with 3 degrees of freedom (t3) using a Monte Carlo method. Three different schemes are considered

– Sampling X1, . . . ,Xn directly from t3 and estimating Ef |X| by

1

n

∑

i=1

n|Xi|.

– Alternatively we could use importance sampling using a t1 (which is nothing other than a Cauchy

distribution) as instrumental distribution. The idea behind this choice is that the density gt1(x) of a t1

distribution is closer to f(x)|x|, where f(x) is the density of a t3 distribution, as figure 2.4 shows.

– Third, we will consider importance sampling using a N(0, 1) distribution as instrumental distribution.

Note that the third choice yields weights of infinite variance, as the instrumental distribution (N(0, 1))

has lighter tails than the distribution we want to sample from (t3). The right-hand panel of figure 2.5

illustrates that this choice yields a very poor estimate of the integral
∫
|x|f(x) dx.
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Fig. 2.4. Illustration of the different instrumental distributions in example 2.5.

Sampling directly from the t3 distribution can be seen as importance sampling with all weights wi ≡ 1,

this choice clearly minimises the variance of the weights. This however does not imply that this yields

an estimate of the integral
∫
|x|f(x) dx of minimal variance. Indeed, after 1500 iterations the empirical

standard deviation (over 100 realisations) of the direct estimate is 0.0345, which is larger than the empirical

standard deviation of µ̃ when using a t1 distribution as instrumental distribution, which is 0.0182. So using

a t1 distribution as instrumental distribution is super-efficient (see figure 2.5).

Figure 2.6 somewhat explains why the t1 distribution is a far better choice than the N(0, 1) distributon. As

the N(0, 1) distribution does not have heavy enough tails, the weight tends to infinity as |x| → +∞. Thus

large |x| get large weights, causing the jumps of the estimate µ̃ shown in figure 2.5. The t1 distribution

has heavy enough tails, so the weights are small for large values of |x|, explaining the small variance of

the estimate µ̃ when using a t1 distribution as instrumental distribution. ⊳
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3. Markov Chains

What is presented here is no more than a very brief introduction to certain aspects of stochastic processes,

together with those details which are essential to understanding the remainder of this course. If you are

interested in further details then a rigorous, lucid and inexpensive reference which starts from the basic

principles is provided by (Gikhman and Skorokhod, 1996). We note, in particular, that a completely

rigorous treatment of this area requires a number of measure theoretic concepts which are beyond the

scope of this course. We will largely neglect these issues here in the interests of clarity of exposition, whilst

attempting to retain the essence of the concepts which are presented. If you are not familiar with measure

theory then please ignore all references to measurability.

3.1 Stochastic Processes

For our purposes we can define an E-valued process as a function ξ : I → E which maps values in some

index set I to some other space E. The evolution of the process is described by considering the variation

of ξ(i) with i. An E-valued stochastic process (or random process) can be viewed as a process in which,

for each i ∈ I, ξ(i) is a random variable taking values in E.

Although a rich literature on more general situations exists, we will consider only the case of discrete

time stochastic processes in which the index set I is N (of course, any index set isomorphic to N can be

used in the same framework by simple relabeling). We will use the notation ξi to indicate the value of the

process at time i (note that there need be no connection between the index set and real time, but this

terminology is both convenient and standard).

We will begin with an extremely brief description of a general stochastic process, before moving on to

discuss the particular classes of process in which we will be interested. In order to characterise a stochastic

process of the sort in which we are interested, it is sufficient to know all of its finite dimensional distribu-

tions, the joint distributions of the process at any collection of finitely many times. For any collection of

times i1, i2, . . . , it and any measurable collection of subsets of E, Ai1 , Ai2 , . . . , Ait
we are interested in the

probability:

P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit
∈ Ait

) .

For such a collection of probabilities to define a stochastic process, we require that they meet a certain

consistency criterion. We require the marginal distribution of the values taken by the process at any

collection of times to be the same under any finite dimensional distribution which includes the process at

those time points, so, defining any second collection of times j1, . . . , js with the property that jk 6= il for
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any k ≤ t, l ≤ s, we must have that:

P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit
∈ Ait

)

=P (ξi1 ∈ Ai1 , ξi2 ∈ Ai2 , . . . , ξit
∈ Ait

, ξj1 ∈ E, . . . , ξjt
∈ E) .

This is just an expression of the intuitive concept that any finite dimensional distribution which describes

the process at the times of interest should provide the same description if we neglect any information it

provides about the process at other times. Or, to put it another way, they must all be marginal distributions

of the same distribution.

In the case of real-valued stochastic processes, in which E = R, we may express this concept in terms

of the joint distribution functions (the multivariate analogue of the distribution function). Defining the

joint distribution functions according to:

Fi1,...,it
(x1, x2, . . . , xt) = P (ξi1 ≤ x1, ξi2 ≤ x2, . . . , ξit

≤ xt) ,

our consistency requirement may now be expressed as:

Fi1,...,it,j1,...,jt
(x1, x2, . . . , xt,∞, . . . ,∞) = Fi1,...,it

(x1, x2, . . . , xt).

Having established that we can specify a stochastic process if we are able to specify its finite dimensional

distributions, we might wonder how to specify these distributions. In the next two sections, we proceed to

describe a class of stochastic processes which can be described constructively and whose finite dimensional

distributions may be easily established. The Markov processes which we are about to introduce represent

the most widely used class of stochastic processes, and the ones which will be of most interest in the

context of Monte Carlo methods.

3.2 Discrete State Space Markov Chains

3.2.1 Basic Notions

We begin by turning our attention to the discrete state space case which is somewhat easier to deal with

than the general case which will be of interest later. In the case of discrete state spaces, in which |E|
is either finite, or countably infinite, we can work with the actual probability of the process having a

particular value at any time (you’ll recall that in the case of continuous random variables more subtlety

is generally required as the probability of any continuous random variable defined by a density (with

respect to Lebesgue measure, in particular) taking any particular value is zero). This simplifies things

considerably, and we can consider defining the distribution of the process of interest over the first t time

points by employing the following decomposition:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt)

=P (ξ1 = x1, ξ2 = x2, . . . , ξt−1 = xt−1) P (ξt = xt|ξ1 = x1, . . . , ξt−1 = xt−1) .

Looking at this decomposition, it’s clear that we could construct all of the distributions of interest from an

initial distribution from which ξ1 is assumed to be drawn and then a sequence of conditional distributions

for each t, leading us to the specification:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt) = P (ξ1 = x1)

t∏

i=2

P (ξi = xi|ξ1 = x1, . . . , ξi−1 = xi−1) . (3.1)
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From this specification we can trivially construct all of the finite dimensional distributions using no more

than the sum and product rules of probability.

So, we have a method for constructing finite distributional distributions for a discrete state space

stochastic process, but it remains a little formal as the conditional distributions seem likely to become

increasingly complex as the time index increases. The conditioning present in decomposition (3.1) is needed

to capture any relationship between the distribution at time t and any previous time. In many situations

of interest, we might expect interactions to exist on only a much shorter time-scale. Indeed, one could

envisage a memoryless process in which the distribution of the state at time t + 1 depends only upon its

state at time t, ξt, regardless of the path by which it reached ξt. Formally, we could define such a process

as:

P (ξ1 = x1, ξ2 = x2, . . . , ξt = xt) =P (ξ1 = x1)

t∏

i=2

P (ξi = xi|ξi−1 = xi−1) . (3.2)

It is clear that (3.2) is a particular case of (3.1) in which this lack of memory property is captured

explicitly, as:

P (ξt = xt|ξ1 = x1, . . . , ξt−1 = xt−1) = P (ξt = xt|ξt−1 = xt−1) .

We will take this as the defining property of a collection of processes which we will refer to as discrete time

Markov processes or, as they are more commonly termed in the Monte Carlo literature, Markov chains.

There is some debate in the literature as to whether the term “Markov chain” should be reserved for those

Markov processes which take place on a discrete state space, those which have a discrete index set (the

only case we will consider here) or both. As is common in the field of Monte Carlo simulation, we will use

the terms interchangeably.

When dealing with discrete state spaces, it is convenient to associate a row vector1 with any probability

distribution. We assume, without loss of generality, that the state space, E, is N. Now, given a random

variable X on E, we say that X has distribution µ, often written as X ∼ µ for some vector µ with the

property that:

∀x ∈ E : P (X = x) = µx.

Homogeneous Markov Chains. The term homogeneous Markov Chain is used to describe a Markov

process of the sort just described with the additional caveat that the conditional probabilities do not

depend explicitly on the time index, so:

∀m ∈ N : P (ξt = y|ξt−1 = x) ≡ P (ξt+m = y|ξt+m−1 = x) .

In this setting, it is particular convenient to define a function corresponding to the transition probability

(as the probability distribution at time i + 1 conditional upon the state of the process at time i) or kernel

as it is often known, which may be written as a two argument function or, in the discrete case as a matrix,

K(i, j) = Kij = P (ξt = j|ξt−1 = i).

Having so expressed things, we are able to describe the dynamic structure of a discrete state space,

discrete time Markov chain in a particularly simple form. If we allow µt to describe the distribution of

the chain at time t, so that µt,i = P (ξt = i), then we have by applying the sum and product rules of

probability, that:

µt+1,j =
∑

i

µt,iKij .

1 Formally, much of the time this will be an infinite dimensional vector but this need not concern us here.
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We may recognise this as standard vector-matrix multiplication and write simply that µt+1 = µtK and,

proceeding inductively it’s straightforward to verify that µt+m = µtK
m where Km denotes the usual mth

matrix power of K. We will make some use of this object, as it characterises the m-step ahead condition

distribution:

Km
ij := (Km)ij = P (ξt+m = j|ξt = i) .

In fact, the initial distribution µ1, together with K tells us the full distribution of the chain over any finite

time horizon:

P (ξ1 = x1, . . . , ξt = xt) = µ1,x1

t∏

i=2

Kxi−1xi
.

A general stochastic processes is said to possess the weak Markov property if, for any deterministic

time, t and any finite integers p, q, we may write that for any integrable function ϕ : Eq → R:

E [ϕ(ξt+1, . . . , ξt+q)|ξ1 = x1, . . . ξt = xt] = E [ϕ(ξ2, . . . , ξq+1)|ξ1 = xt] .

Inhomogeneous Markov Chains. Note that it is perfectly possible to define Markov Chains whose

behaviour does depend explicitly upon the time index. Although such processes are more complex to

analyse than their homogeneous counterparts, they do play a rôle in Monte Carlo methodology – in both

established algorithms such as simulated annealing and in more recent developments such as adaptive

Markov Chain Monte Carlo and the State Augmentation for Maximising Expectations (SAME) algorithm

of Doucet et al. (2002). In the interests of simplicity, what follows is presented for homogeneous Markov

Chains.

Examples. Before moving on to introduce some theoretical properties of discrete state space Markov

chains we will present a few simple examples. Whilst there are innumerable examples of homogeneous

discrete state space Markov chains, we confined ourselves here to some particular simple cases which will

be used to illustrate some properties below, and which will probably be familiar to you.

We begin with an example which is apparently simple, and rather well known, but which exhibits some

interesting properties

Example 3.1 (the simple random walk over the integers). Given a process ξt whose value at time t + 1 is

ξt +1 with probability p+ and ξt−1 with probability p− = 1−p+, we obtain the familiar random walk. We

may write this as a Markov chain by setting E = Z and noting that the transition kernel may be written

as:

Kij =





p− if j = i − 1

p+ if j = i + 1

0 otherwise.

p+p+p+p+

p−p−p−p−

t− 2 t− 1 t t + 1 t + 2

Fig. 3.1. A simple random walk on Z.

⊳

Example 3.2. It will be interesting to look at a slight extension of this random walk, in which there is some

probability p0 of remaining in the present state at the next time step, so p++p− < 0 and p0 = 1−(p++p−).

In this case we may write the transition kernel as:
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Kij =





p− if j = i − 1

p0 if j = i

p+ if j = i + 1

0 otherwise.

p+p+p+p+

p−p−p−p−

p0p0p0p0p0

t− 2 t− 1 t t + 1 t + 2

Fig. 3.2. A random walk on Z with Ktt > 0.

⊳

Example 3.3 (Random Walk on a Triangle). A third example which we will consider below could be

termed a “random walk on a triangle”. In this case, we set E = {1, 2, 3} and define a transition ker-

nel of the form:

K =




0 p+ p−

p− 0 p+

p+ p− 0


 .

p+

p+p+

p−p−

p−

1

2

3

Fig. 3.3. A random walk on a triangle.

⊳

Example 3.4 (One-sided Random Walk). Finally, we consider the rather one-sided random walk on the

positive integers, illustrated in figure 3.4, and defined by transition kernel:

Kij =





p0 if j = i

p+ = 1 − p0 if j = i + 1

0 otherwise.

⊳
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p+p+p+p+

p0p0p0p0p0

t t + 1 t + 2 t + 3 t + 4

Fig. 3.4. A random walk on the positive integers.

3.2.2 Important Properties

In this section we introduce some important properties in the context of discrete state space Markov

chains and attempt to illustrate their importance within the field of Monte Carlo simulation. As is the

usual practice when dealing with this material, we will restrict our study to the homogeneous case. As

you will notice, it is the transition kernel which is most important in characterising a Markov chain.

We begin by considering how the various states that a Markov chain may be reached from one another.

In particular, the notion of states which communicate is at the heart of the study of Markov chains.

Definition 3.1 (Accessibility). A state y is accessible from a state x, sometimes written as x → y if,

for a discrete state space Markov chain,

inf {t : P (ξt = y|ξ1 = x) > 0} < ∞.

We can alternatively write this condition in terms of the transition matrix as inf
{
t : Kt

xy > 0
}

< ∞.

This concept tells us which states one can reach at some finite time in the future, if one starts from a

particular state and then moves, at each time, according to the transition kernel, K. That is, if x → y,

then there is a positive probability of reaching y at some finite time in the future, if we start from a state

x and then “move” according to the Markov kernel K. It is now useful to consider cases in which one can

traverse the entire space, or some subset of it, starting from any point.

Definition 3.2 (Communication). Two states x, y ∈ E are said to communicate (written, by some

authors as x ↔ y) if each is accessible from the other, that is:

x ↔ y ⇔ x → y and y → x.

We’re now in a position to describe the relationship, under the action of a Markov kernel, between two

states. This allows us to characterise something known as the communication structure of the associated

Markov chain to some degree, noting which points its possible to travel both to and back from. We now

go on to introduce a concept which will allow us to describe the properties of the full state space, or

significant parts of it, rather than individual states.

Definition 3.3 (Irreducibility). A Markov Chain is said to be irreducible if all states communicate,

so ∀x, y ∈ E : x → y. Given a distribution φ on E, the term φ-irreducible is used to describe a Markov

chain for which every state with positive probability under φ communicates with every other such state:

∀x, y ∈ supp(φ) : x → y

where the support of the discrete distribution φ is defined as supp(φ) = {x ∈ E : φ(x) > 0}. It is said to

be strongly irreducible if any state can be reached from any point in the space in a single step and strongly

φ-irreducible if all states (except for a collection with probability 0 under φ) may be reached in a single

step.
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This will prove to be important for the study of Monte Carlo methods based upon Markov chains as a

chain with this property can somehow explore the entire space rather than being confined to some portion

of it, perhaps one which depends upon the initial state.

It is also important to consider the type of routes which it is possible to take between a state, x, and

itself as this will tell us something about the presence of long-range correlation between the states of the

chain.

Definition 3.4 (Period). A state x in a discrete state space Markov chain has period d(x) defined as:

d(x) = gcd {s ≥ 1 : Ks
xx > 0} ,

where gcd denotes the greatest common denominator. A chain possessing such a state is said to have a

cycle of length d.

Proposition 3.1. All states which communicate have the same period and hence, in an irreducible Markov

chain, all states have the same period.

Proof. Assume that x ↔ y. Let there exist paths of lengths r, s and t, respectively from x → y, y → x

and y → y, respectively.

There are paths of length r + s and r + s + t from x to x, hence d(x) must be a divisor of r + s and

r + s + t and consequently of their difference, t. This holds for any t corresponding to a path from y → y

and so d(x) is a divisor of the length of any path from y → y: as d(y) is the greatest common divisor of

all such paths, we have that d(x) ≤ d(y).

By symmetry, we also have that d(y) ≤ d(x), and this completes the proof. �

In the context of irreducible Markov chains, the term periodic is used to describe those chains whose states

have some common period great than 1, whilst those chains whose period is 1 are termed aperiodic.

One further quantity needs to be characterised in order to study the Markov chains which will arise

later. Some way of describing how many times a state is visited if a Markov chain is allowed to run for

infinite time still seems required. In order to do this it is useful to define an additional random quantity,

the number of times that a state is visited:

ηx :=

∞∑

k=1

Ix(ξk).

We will also adopt the convention, common in the Markov chain literature that, given any function of the

path of a Markov chain, ϕ, Ex [ϕ] is the expectation of that function under the law of the Markov chain

initialised with ξ1 = x. Similarly, if µ is some distribution over E, then Eµ [ϕ] should be interpreted as the

expectation of φ under the law of the process initialised with ξ1 ∼ µ.

Definition 3.5 (Transience and Recurrence). In the context of discrete state space Markov chains,

we describe a state, x, as transient if:

Ex [ηx] < ∞

whilst, if we have that,

Ex [ηx] = ∞,

then that state will be termed recurrent.

In the case of irreducible Markov chains, transience and recurrence are properties of the chain itself,

rather than its individual states: if any state is transient (or recurrent) then all states have that property.

Indeed, for an irreducible Markov chain either all states are recurrent or all are transient.
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We will be particularly concerned in this course with Markov kernels which admit an invariant distri-

bution.

Definition 3.6 (Invariant Distribution). A distribution, µ is said to be invariant or stationary for a

Markov kernel, K, if µK = µ.

If a Markov chain has any single time marginal distribution which corresponds to it’s stationary distri-

bution, ξt ∼ µ, then all of its future time marginals are the same as, ξt+s ∼ µKs = µ. A Markov chain

is said to be in its stationary regime once this has occurred. Note that this tells us nothing about the

correlation between the states or their joint distribution. One can also think of the invariant distribution

µ of a Markov kernel, K as the left eigenvector with unit eigenvalue.

Definition 3.7 (Reversibility). A stationary stochastic process is said to be reversible if the statistics

of the time-reversed version of the process match those of the process in the forward distribution, so that

reversing time makes no discernible difference to the sequence of distributions which are obtained, that

is the distribution of any collection of future states given any past history must match the conditional

distribution of the past conditional upon the future being the reversal of that history.

Reversibility is a condition which, if met, simplifies the analysis of Markov chains. It is normally verified

by checking the detailed balance condition, (3.3). If this condition holds for a distribution, then it also

tells us that this distribution is the stationary distribution of the chain, another property which we will

be interested in.

Proposition 3.2. If a Markov kernel satisfies the detailed balance condition for some distribution µ,

∀x, y ∈ E : µxKxy = µyKyx (3.3)

then:

1. µ is the invariant distribution of the chain.

2. The chain is reversible with respect to µ.

Proof. To demonstrate that K is µ-invariant, consider summing both sides of the detailed balance equation

over x:

∑

x∈E

µxKxy =
∑

x∈E

µyKyx

(µK)y = µy,

and as this holds for all y, we have µK = µ.

In order to verify that the chain is reversible we proceed directly:

P (ξt = x|ξt+1 = y) =
P (ξt = x, ξt+1 = y)

P (ξt+1 = y)

=
P (ξt = x) Kxy

P (ξt+1 = y)

=
µxKxy

µy
=

µyKyx

µy

= Kyx = P (ξt = x|ξt−1 = y) ,

in the case of a Markov chain it is clear that if the transitions are time-reversible then the process must

be time reversible. �
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3.3 General State Space Markov Chains

3.3.1 Basic Concepts

The study of general state space Markov chains is a complex and intricate business. It requires a degree of

technical sophistication which lies somewhat outside the scope of this course to do so rigorously. Here, we

will content ourselves with explaining how the concepts introduced in the context of discrete state spaces

in the previous section might be extended to continuous domains via the use of probability densities. We

will not consider more complex cases – such as mixed continuous and discrete spaces, or distributions over

uncountable spaces which may not be described by a density. Nor will we provide proofs of results for this

case, but will provide suitable references for the interested reader.

Although the guiding principles are the same, the study of Markov chains with continuous state spaces

requires considerably more subtlety as it is necessary to introduce concepts which correspond to those

which we introduced in the discrete case, describe the same properties and are motivated by the same

intuition but which remain meaningful when we are dealing with densities rather than probabilities. As

always, the principle complication is that the probability of any random variable distributed according to

a non-degenerate density on a continuous state space taking any particular value is formally zero.

We will begin by considering how to emulate the decomposition we used to define a Markov chain on

a discrete state space, (3.2), when E is a continuous state space. In this case, what we essentially require

is that the probability of any range of possible values, given the entire history of the process depends only

upon its most recent value in the sense that, for any measurable A ⊂ E:

P (ξt ∈ At|ξ1 = x1, . . . , ξt−1 = xt−1) = P (ξt ∈ At|ξt−1 = xt−1) .

In the case which we are considering, it is convenient to describe the distribution of a random variable

over E in terms of some probability density, µ : E → R which has the property that, if integrated over

any measurable set, it tells us the probability that the random variable in question lies within that set,

i.e. if X ∼ µ, we have that for any measurable set A that:

P (X ∈ A) =

∫

A

µ(x)dx.

We will consider only the homogeneous case here, although the generalisation to inhomogeneous Markov

chains follows in the continuous setting in precisely the same manner as the discrete one. In this context,

we may describe the conditional probabilities of interest as a function K : E × E → R which has the

property that for all measurable sets A ⊂ E and all points x ∈ E:

P (ξt ∈ A|Xt−1 = x) =

∫

A

K(x, y)dy.

We note that, as in the discrete case the law of a Markov chain evaluated at any finite number of

points may be completely specified by the initial distribution, call it µ, and a transition kernel, K. We

have, for any suitable collection of sets A1, . . . , that the following holds:

P (ξ1 ∈ A1, . . . , ξt ∈ At) =

∫

A1×···×At

µ(x1)

t∏

k=2

Kk(xk−1, xk)dx1 . . . dxt.

And, again, it is useful to be able to consider the s-step ahead conditional distributions,

P (ξt+s ∈ A|ξt = xt) =

∫

Em−1×A

k=t+s∏

k=t+1

K(xk−1, xk)dxt+1 . . . dxt+s,
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and it is useful to define an s-step ahead transition kernel in the same manner as it is in the discrete case,

here matrix multiplication is replaced by a convolution operation but the intuition remains the same.

Defining

Ks(xt, xt+s) :=

∫

Es−1

k=t+s∏

k=t+1

K(xk−1, xk)dxt+1 . . . dxt+s−1,

we are able to write

P (ξt+s ∈ A|ξt = xt) =

∫

A

Ks(xt, xt+s)dxt+s.

3.3.2 Important Properties

In this section we will introduce properties which fulfill the same rôle in context of continuous state spaces

as those introduced in section 3.2.2 do in the discrete setting.

Whilst it is possible to define concepts similar to communication and accessibility in a continuous state

space context, this isn’t especially productive. We are more interested in the property of irreducibility : we

want some way of determining what class of states are reachable from one another and hence what part of

E might be explored, with positive probability, starting from a point within such a class. We will proceed

directly to a continuous state space definition of this concept.

Definition 3.8 (Irreducibility). Given a distribution, µ, over E, a Markov chain is said to be µ-

irreducible if for all points x ∈ E and all measurable sets A such that µ(A) > 0 there exists some t

such that: ∫

A

Kt(x, y)dy > 0.

If this condition holds with t = 1, then the chain is said to be strongly µ-irreducible.

This definition has the same character as that employed in the discrete case, previously, but is well defined

for more general state spaces. It still tells us whether a chain is likely to be satisfactory if we are interested

in approximation of some property of a measure µ by using a sample of the evolution of that chain: if it is

not µ-irreducible then there are some points in the space from which we cannot reach all of the support

of µ, and this is likely to be a problem. In the sequel we will be interested more of less exclusively with

Markov chains which are irreducible with respect to some measure of interest.

We need a little more subtlety in extending some of the concepts introduced in the case of discrete

Markov chains to the present context. In order to do this, it will be necessary to introduce the concept of

the small set ; these function as a replacement for the individual states of a discrete space Markov chain

as we will see shortly.

A first attempt might be to consider the following sets which have the property that the distribution of

taken by the Markov chain at time t+ 1 is the same if it starts at any point in this set – so the conditional

distribution function is constant over this set.

Definition 3.9 (Atoms). A Markov chain with transition kernel K is said to have an atom, α ⊂ E, if

there is some probability distribution, ν, such that:

∀x ∈ α,A ⊂ E :

∫

A

K(x, y)dy =

∫

A

ν(y)dy.

If the Markov chain in question is ν-irreducible, then α is termed an accessible atom.
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Whilst the concept of atoms starts to allow us to introduce some sort of structure similar to that seen

in discrete chains – it provides us with a set of positive probability which, if the chain ever enters it, we

know the distribution of the subsequent state2 – most interesting continuous state spaces do not possess

atoms. The condition that the distribution in the next state is precisely the same, wherever the current

state is rather strong. Another approach would be to require only that the conditional distribution has a

common component, and that is the intuition behind a much more useful concept which underlies much

of the analysis of general state space Markov chains.

Definition 3.10 (Small Sets). A set, C ⊂ E, is termed small for a given Markov chain (or, when one

is being precise, (ν, s, ǫ)-small) if there exists some positive integer m, some ǫ > 0 and some non-trivial

probability distribution, ν, such that:

∀x ∈ α,A ⊂ E :

∫

A

Ks(x, y)dy ≥ ǫ

∫

A

ν(y)dy.

This tells us that the distribution m-steps after the chain enters the small set has a component of

size at least ǫ of the distribution ν, wherever it was within that set. In this sense, small sets are not

“too big”: there is potentially some commonality of all paths emerging from them. Although we have not

proved that such sets exist for any particular class of Markov chains it is, in fact, the case that they do for

many interesting Markov chain classes and their existence allows for a number of sophisticated analytic

techniques to be applied

In order to define cycles (and hence the notion of periodicity) in the general case, we require the

existence of a small set. We need some group of “sufficiently similar” points in the state space which have

a finite probability of being reached. We then treat this collection of points in the same manner as an

individual state in the discrete case, leading to the following definitions.

Definition 3.11 (Cycles). A µ-irreducible Markov chain has a cycle of length d if there exists a small

set C, an associated integer M and some probability distribution νs which has positive mass on C (i.e.
∫

C
νs(x)dx > 0) such that:

d = gcd {s ≥ 1 : C is small for some νs ≥ δsνs with δs > 0} .

This provides a reasonable concept of periodicity within a general state space Markov chain as it gives

us a way of characterising the existence of regions of the space with the property that, wherever you start

within that region you have positive probability of returning to that set after any multiple of d steps and

this does not hold for any number of steps which is not a multiple of d. We are able to define periodicity

and aperiodicity in the same manner as for discrete chains, but using this definition of a cycle. As in the

discrete space, all states within the support of µ in a µ-irreducible chain must have the same period (see

proposition 3.1) although we will not prove this here.

Considering periodicity from a different viewpoint, we are able to characterise it in a manner which is

rather easier to interpret but somewhat difficult to verify in practice. The following definition of period

is equivalent to that given above (Nummelin, 1984): a Markov chain has a period d if there exists some

partition of the state space, E1, . . . , Ed with the properties that:

– ∀i 6= j : Ei ∩ Ej = ∅
–

d⋃
i=1

Ei = E

2 Note that this is much stronger than knowledge of the transition kernel, K, as in general all points in the space

have zero probability.
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–

∀i, j, t, s : P (Xt+s ∈ Ej |Xt ∈ Ei) =

{
1 j = i + s mod d

0 otherwise.

What this actually tells us is that a Markov chain with a period of d has associated with it a disjoint

partition of the state space, E1, . . . , Ed and that we know that the chain moves with probability 1 from

set E1 to E2, E2 to E3, Ed−1 to Ed and Ed to E1 (assuming that d ≥ 3, of course). Hence the chain will

visit a particular element of the partition with a period of d.

We also require some way of characterising how often a continuous state space Markov chain visits

any particular region of the state space in order to obtain concepts analogous to those of transience and

recurrence in the discrete setting. In order to do this we define a collection of random variables ηA for any

subset A of E, which correspond to the number of times the set A is visited, i.e. ηA :=
∑∞

l=1 IA(ξk) and,

once again we use Ex to denote the expectation under the law of the Markov chain with initial state x.

We note that if a chain is not µ-irreducible for some distribution µ, then there is no guarantee that it is

either transient or recurrent, however, the following definitions do hold:

Definition 3.12 (Transience and Recurrence). We begin by defining uniform transience and recur-

rence for sets A ⊂ E for µ-irreducible general state space Markov chains. Such a set is recurrent if:

∀x ∈ A : Ex [ηA] = ∞.

A set is uniformly transient if there exists some M < ∞ such that:

∀x ∈ A : Ex [ηA] ≤ M.

The weaker concept of transience of a set may then be introduced. A set, A ⊂ E, is transient if it may be

expressed as a countable union of uniformly transient sets, i.e.:

∃ {Bi ⊂ E}∞i=1 : A ⊂
∞⋃

i=1

Bi

∀i ∈ N : ∀x ∈ Bi : Ex [ηBi
] ≤ Mi < ∞.

A general state space Markov chain is recurrent if the following two conditions are satisfied:

– The chain is µ-irreducible for some distribution µ.

– For every measurable set A ⊂ E such that
∫

A
µ(y)dy > 0, Ex [ηA] = ∞ for every x ∈ A.

whilst it is transient if it is µ-irreducible for some distribution µ and the entire space is transient.

As in the discrete setting, in the case of irreducible chains, transience and recurrence are properties of

the chain rather than individual states: all states within the support of the irreducibility distribution are

either transient or recurrent. It is useful to note that any µ-irreducible Markov chain which has stationary

distribution µ is positive recurrent (Tierney, 1994).

A slightly stronger form of recurrence is widely employed in the proof of many theoretical results which

underlie many applications of Markov chains to statistical problems, this form of recurrence is known as

Harris recurrence and may be defined as follows:

Definition 3.13 (Harris Recurrence). A set A ⊂ E is Harris recurrent if Px (ηA = ∞) = 1 for every

x ∈ A.

A Markov chain is Harris recurrent if there exists some distribution µ with respect to which it is

irreducible and every set A such that
∫

A
µ(x)dx > 0 is Harris recurrent.
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The concepts of invariant distribution, reversibility and detailed balance are essentially unchanged

from the discrete setting. It’s necessary to consider integrals with respect to densities rather than sums

over probability distributions, but no fundamental differences arise here.

3.4 Selected Theoretical Results

The probabilistic study of Markov chains dates back more than fifty years and comprises an enormous

literature, much of it rather technically sophisticated. We don’t intend to summarise that literature here,

nor to provide proofs of the results which we present here. This section serves only to motivate the material

presented in the subsequent chapters.

These two theorems fill the rôle which the law of large numbers and the central limit theorem for

independent, identically distributed random variables fill in the case of simple Monte Carlo methods.

They tell us, roughly speaking, that if we take the sample averages of a function at the points of a Markov

chain which satisfies suitable regularity conditions and possesses the correct invariant distribution, then

we have convergence of those averages to the integral of the function of interest under the invariant

distribution and, furthermore, under stronger regularity conditions we can obtain a rate of convergence.

There are two levels of strength of law of large numbers which it is useful to be aware of. The first

tells us that for most starting points of the chain a law of large numbers will hold. Under slightly stronger

conditions (which it may be difficult to verify in practice) it is possible to show the same result holds for

all starting points.

Theorem 3.1 (A Simple Ergodic Theorem). If (ξi)i∈N
is a µ-irreducible, recurrent R

d-valued Markov

chain which admits µ as a stationary distribution, then the following strong law of large numbers holds

(convergence is with probability 1) for any integrable function f : E → R:

lim
t→∞

1

t

t∑

i=1

f(ξi) →
∫

f(x)µ(x)dx.

for almost every starting value x. That is, for any x except perhaps for some set N which has the property

that
∫
N µ(x)dx = 0.

An outline of the proof of this theorem is provided by (Roberts and Rosenthal, 2004, Fact 5.).

Theorem 3.2 (A Stronger Ergodic Theorem). If (ξi)i∈N
is a µ-invariant, Harris recurrent Markov

chain, then the following strong law of large numbers holds (convergence is with probability 1) for any

integrable function f : E → R:

lim
t→∞

1

t

t∑

i=1

f(ξi) →
∫

f(x)µ(x)dx.

A proof of this result is beyond the scope of the course. This is a particular case of (Robert and Casella,

2004, p. 241, Theorem 6.63), and a proof of the general theorem is given there. The same theorem is also

presented with proof in (Meyn and Tweedie, 1993, p. 433, Theorem 17.3.2).

Theorem 3.3 (A Central Limit Theorem). Under technical regularity conditions (see (Jones, 2004)

for a summary of various combinations of conditions) it is possible to obtain a central limit theorem for

the ergodic averages of a Harris recurrent, µ-invariant Markov chain, and a function f : E → R which

has at least two finite moments (depending upon the combination of regularity conditions assumed, it may

be necessary to have a finite moment of order 2 + δ).



38 3. Markov Chains

lim
t→∞

√
t

[
1

t

t∑

i=1

f(ξi) −
∫

f(x)π(x)dx

]
d→ N(0, σ2(f)),

σ2(f) = E
[
(f(ξ1) − f̄)2

]
+ 2

∞∑

k=2

E
[
(f(ξ1) − f̄)(f(ξk) − f̄)

]
,

where f̄ =
∫

f(x)π(x)dx.

3.5 Further Reading

We conclude this chapter by noting that innumerable tutorials on the subject of Markov chains have been

written, particularly with reference to their use in the field of Monte Carlo simulation. Some which might

be of interest include the following:

– (Roberts, 1996) provides an elementary introduction to some Markov chain concepts required to under-

stand their use in Monte Carlo algorithms.

– In the same volume, (Tierney, 1996) provides a more technical look at the same concepts; a more

in-depth, but similar approach is taken by the earlier paper Tierney (1994).

– An alternative, elementary formulation of some of the material presented here together with some

additional background material, aimed at an engineering audience, can be found in Johansen (2008).

– (Robert and Casella, 2004, chapter 6). This is a reasonably theoretical treatment intended for those

interest in Markov chain Monte Carlo; it is reasonably technical in content, without dwelling on proofs.

Those familiar with measure theoretic probability might find this a reasonably convenient place to start.

– Those of you interested in technical details might like to consult (Meyn and Tweedie, 1993). This is the

definitive reference work on stability, convergence and theoretical analysis of Markov chains and it is

now possible to download it, free of charge from the website of one of the authors.

– A less detailed, but more general and equally rigorous, look at Markov chains is provided by the seminal

work of (Nummelin, 1984). This covers some material outside of the field of probability, but remains a

concise work and presents only a few of the simpler results. It is perhaps a less intimidating starting

point than (Meyn and Tweedie, 1993), although opinions on this vary.

– A recent survey of theoretical results relevant to Monte Carlo is provided by (Roberts and Rosenthal,

2004). Again, this is necessarily somewhat technical.



4. The Gibbs Sampler

4.1 Introduction

In section 2.3 we have seen that, using importance sampling, we can approximate an expectation Ef (h(X))

without having to sample directly from f . However, finding an instrumental distribution which allows us

to efficiently estimate Ef (h(X)) can be difficult, especially in large dimensions.

In this chapter and the following chapters we will use a somewhat different approach. We will discuss

methods that allow obtaining an approximate sample from f without having to sample from f directly.

More mathematically speaking, we will discuss methods which generate a Markov chain whose stationary

distribution is the distribution of interest f . Such methods are often referred to as Markov Chain Monte

Carlo (MCMC) methods.

Example 4.1 (Poisson change point model). Assume the following Poisson model of two regimes for n

random variables Y1, . . . , Yn.1

Yi ∼ Poi(λ1) for i = 1, . . . ,M

Yi ∼ Poi(λ2) for i = M + 1, . . . , n

A suitable (conjugate) prior distribution for λj is the Gamma(αj , βj) distribution with density

f(λj) =
1

Γ (αj)
λ

αj−1
j β

αj

j exp(−βjλj).

The joint distribution of Y1, . . . , Yn, λ1, λ2, and M is

f(y1, . . . , yn, λ1, λ2,M) =

(
M∏

i=1

exp(−λ1)λyi

1

yi!

)
·
(

n∏

i=M+1

exp(−λ2)λyi

2

yi!

)

· 1

Γ (α1)
λα1−1

1 βα1
1 exp(−β1λ1) · 1

Γ (α2)
λα2−1

2 βα2
2 exp(−β2λ2).

If M is known, the posterior distribution of λ1 has the density

f(λ1|Y1, . . . , Yn,M) ∝ λ
α1−1+

PM
i=1 yi

1 exp(−(β1 + M)λ1),

so

1 The probability distribution function of the Poi(λ) distribution is p(y) = exp(−λ)λy

y!
.
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λ1|Y1, . . . Yn,M ∼ Gamma

(
α1 +

M∑

i=1

yi, β1 + M

)
(4.1)

λ2|Y1, . . . Yn,M ∼ Gamma

(
α2 +

n∑

i=M+1

yi, β2 + n − M

)
. (4.2)

Now assume that we do not know the change point M and that we assume a uniform prior on the set

{1, . . . ,M − 1}. It is easy to compute the distribution of M given the observations Y1, . . . Yn, and λ1 and

λ2. It is a discrete distribution with probability density function proportional to

p(M) ∝ λ
PM

i=1 yi

1 · λ
Pn

i=M+1 yi

2 · exp((λ2 − λ1) · M) (4.3)

The conditional distributions in (4.1) to (4.3) are all easy to sample from. It is however rather difficult to

sample from the joint posterior of (λ1, λ2,M). ⊳

The example above suggests the strategy of alternately sampling from the (full) conditional distribu-

tions ((4.1) to (4.3) in the example). This tentative strategy however raises some questions.

– Is the joint distribution uniquely specified by the conditional distributions?

– Sampling alternately from the conditional distributions yields a Markov chain: the newly proposed

values only depend on the present values, not the past values. Will this approach yield a Markov chain

with the correct invariant distribution? Will the Markov chain converge to the invariant distribution?

As we will see in sections 4.3 and 4.4, the answer to both questions is — under certain conditions —

yes. The next section will however first of all state the Gibbs sampling algorithm.

4.2 Algorithm

The Gibbs sampler was first proposed by Geman and Geman (1984) and further developed by Gelfand

and Smith (1990). Denote with x−i := (x1, . . . , xi−1, xi+1, . . . , xp).

Algorithm 4.1 ((Systematic sweep) Gibbs sampler). Starting with (X
(0)
1 , . . . ,X

(0)
p ) iterate for t =

1, 2, . . .

1. Draw X
(t)
1 ∼ fX1|X−1

(·|X(t−1)
2 , . . . ,X

(t−1)
p ).

. . .

j. Draw X
(t)
j ∼ fXj |X−j

(·|X(t)
1 , . . . ,X

(t)
j−1,X

(t−1)
j+1 , . . . ,X

(t−1)
p ).

. . .

p. Draw X
(t)
p ∼ fXp|X−p

(·|X(t)
1 , . . . ,X

(t)
p−1).

Figure 4.1 illustrates the Gibbs sampler. The conditional distributions as used in the Gibbs sampler

are often referred to as full conditionals. Note that the Gibbs sampler is not reversible. Liu et al. (1995)

proposed the following algorithm that yields a reversible chain.

Algorithm 4.2 (Random sweep Gibbs sampler). Starting with (X
(0)
1 , . . . ,X

(n)
p ) iterate for t =

1, 2, . . .

1. Draw an index j from a distribution on {1, . . . , p} (e.g. uniform)

2. Draw X
(t)
j ∼ fXj |X−j

(·|X(t−1)
1 , . . . ,X

(t−1)
j−1 ,X

(t−1)
j+1 , . . . ,X

(t−1)
p ), and set X

(t)
ι := X

(t−1)
ι for all ι 6= j.
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Fig. 4.1. Illustration of the Gibbs sampler for a two-dimensional distribution

4.3 The Hammersley-Clifford Theorem

An interesting property of the full conditionals, which the Gibbs sampler is based on, is that they fully

specify the joint distribution, as Hammersley and Clifford proved in 19702. Note that the set of marginal

distributions does not have this property.

Definition 4.1 (Positivity condition). A distribution with density f(x1, . . . , xp) and marginal densi-

ties fXi
(xi) is said to satisfy the positivity condition if f(x1, . . . , xp) > 0 for all x1, . . . , xp with fXi

(xi) > 0.

The positivity condition thus implies that the support of the joint density f is the Cartesian product

of the support of the marginals fXi
.

Theorem 4.1 (Hammersley-Clifford). Let (X1, . . . ,Xp) satisfy the positivity condition and have joint

density f(x1, . . . , xp). Then for all (ξ1, . . . , ξp) ∈ supp(f)

f(x1, . . . , xp) ∝
p∏

j=1

fXj |X−j
(xj |x1, . . . , xj−1, ξj+1, . . . , ξp)

fXj |X−j
(ξj |x1, . . . , xj−1, ξj+1, . . . , ξp)

Proof. We have

f(x1, . . . , xp−1, xp) = fXp|X−p
(xp|x1, . . . , xp−1)f(x1, . . . , xp−1) (4.4)

and by complete analogy

f(x1, . . . , xp−1, ξp) = fXp|X−p
(ξp|x1, . . . , xp−1)f(x1, . . . , xp−1), (4.5)

thus

2 Hammersley and Clifford actually never published this result, as they could not extend the theorem to the case

of non-positivity.



42 4. The Gibbs Sampler

f(x1, . . . , xp)
(4.4)
= f(x1, . . . , xp−1)︸ ︷︷ ︸

(4.5)
= f(x1,...,,xp−1,ξp)/fXp|X−p

(ξp|x1,...,xp−1)

fXp|X−p
(xp|x1, . . . , xp−1)

= f(x1, . . . , xp−1, ξp)
fXp|X−p

(xp|x1, . . . , xp−1)

fXp|X−p
(ξp|x1, . . . , xp−1)

= . . .

= f(ξ1, . . . , ξp)
fX1|X−1

(x1|ξ2, . . . , ξp)

fX1|X−1
(ξ1|ξ2, . . . , ξp)

· · · fXp|X−p
(xp|x1, . . . , xp−1)

fXp|X−p
(ξp|x1, . . . , xp−1)

The positivity condition guarantees that the conditional densities are non-zero. �

Note that the Hammersley-Clifford theorem does not guarantee the existence of a joint probability

distribution for every choice of conditionals, as the following example shows. In Bayesian modeling such

problems mostly arise when using improper prior distributions.

Example 4.2. Consider the following “model”

X1|X2 ∼ Expo(λX2)

X2|X1 ∼ Expo(λX1),

for which it would be easy to design a Gibbs sampler. Trying to apply the Hammersley-Clifford theorem,

we obtain

f(x1, x2) ∝ fX1|X2
(x1|ξ2) · fX2|X1

(x2|x1)

fX1|X2
(ξ1|ξ2) · fX2|X1

(ξ2|x1)
=

λξ2 exp(−λx1ξ2) · λx1 exp(−λx1x2)

λξ2 exp(−λξ1ξ2) · λx1 exp(−λx1ξ2)
∝ exp(−λx1x2)

The integral
∫ ∫

exp(−λx1x2) dx1 dx2 however is not finite, thus there is no two-dimensional probability

distribution with f(x1, x2) as its density. ⊳

4.4 Convergence of the Gibbs sampler

First of all we have to analyse whether the joint distribution f(x1, . . . , xp) is indeed the stationary dis-

tribution of the Markov chain generated by the Gibbs sampler3. For this we first have to determine the

transition kernel corresponding to the Gibbs sampler.

Lemma 4.1. The transition kernel of the Gibbs sampler is

K(x(t−1),x(t)) = fX1|X−1
(x

(t)
1 |x(t−1)

2 , . . . , x(t−1)
p ) · fX2|X−2

(x
(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p ) · . . .
·fXp|X−p

(x(t)
p |x(t)

1 , . . . , x
(t)
p−1)

Proof. We have

P(X(t) ∈ X |X(t−1) = x(t−1)) =

∫

X

f(Xt|X(t−1))(x
(t)|x(t−1)) dx(t)

=

∫

X

fX1|X−1
(x

(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )

︸ ︷︷ ︸
corresponds to step 1. of the algorithm

· fX2|X−2
(x

(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p )
︸ ︷︷ ︸

corresponds to step 2. of the algorithm

· . . .

· fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
corresponds to step p. of the algorithm

dx(t)
�

3 All the results in this section will be derived for the systematic scan Gibbs sampler (algorithm 4.1). Very similar

results hold for the random scan Gibbs sampler (algorithm 4.2).
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Proposition 4.1. The joint distribution f(x1, . . . , xp) is indeed the invariant distribution of the Markov chain (X(0),X(1), . . .) generated by the Gibbs sampler.

Proof. Assume that X(t−1) ∼ f , then

P(X(t) ∈ X ) =

∫

X

∫
f(x(t−1))K(x(t−1),x(t)) dx(t−1) dx(t)

=

∫

X

∫
· · ·
∫

f(x
(t−1)
1 , . . . , x(t−1)

p ) dx
(t−1)
1

︸ ︷︷ ︸
=f(x

(t−1)
2 ,...,x

(t−1)
p )

fX1|X−1
(x

(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )

︸ ︷︷ ︸
=f(x

(t)
1 ,x

(t−1)
2 ,...,x

(t−1)
p )

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)dx

(t−1)
2 . . . dx(t−1)

p dx(t)

=

∫

X

∫
· · ·
∫

f(x
(t)
1 , x

(t−1)
2 , . . . , x(t−1)

p ) dx
(t−1)
2

︸ ︷︷ ︸
=f(x

(t)
1 ,x

(t−1)
3 ,...,x

(t−1)
p )

fX2|X−2
(x

(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p )

︸ ︷︷ ︸
=f(x

(t)
1 ,x

(t)
2 ,x

(t−1)
3 ,...,x

(t−1)
p )

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)dx

(t−1)
3 . . . dx(t−1)

p dx(t)

= . . .

=

∫

X

∫
f(x

(t)
1 , . . . , x

(t)
p−1, x

(t−1)
p ) dx(t−1)

p

︸ ︷︷ ︸
=f(x

(t)
1 ,...,x

(t)
p−1)

fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
=f(x

(t)
1 ,...,x

(t)
p )

dx(t)

=

∫

X

f(x
(t)
1 , . . . , x(t)

p ) dx(t)

Thus f is the density of X(t) (if X(t−1) ∼ f). �



44 4. The Gibbs Sampler

So far we have established that f is indeed the invariant distribution of the Gibbs sampler. Next, we have

to analyse under which conditions the Markov chain generated by the Gibbs sampler will converge to f .

First of all we have to study under which conditions the resulting Markov chain is irreducible4. The

following example shows that this does not need to be the case.

Example 4.3 (Reducible Gibbs sampler). Consider Gibbs sampling from the uniform distribution on C1 ∪
C2 with C1 := {(x1, x2) : ‖(x1, x2) − (1, 1)‖ ≤ 1} and C2 := {(x1, x2) : ‖(x1, x2) − (−1,−1)‖ ≤ 1}, i.e.

f(x1, x2) =
1

2π
IC1∪C2

(x1, x2)

Figure 4.2 shows the density as well the first few samples obtained by starting a Gibbs sampler with

X
(0)
1 < 0 and X

(0)
2 < 0. It is easy to that when the Gibbs sampler is started in C1 it will stay there

-2

-2

-1

-1

0

0

1

1

2

2

X
(t)
1

X
(t

)
2

Fig. 4.2. Illustration of a Gibbs sampler failing to sample from a distribution with unconnected support (uniform

distribution on {(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1|} ∪ {(x1, x2) : ‖(x1, x2)− (−1,−1)‖ ≤ 1|})

and never reach C2. The reason for this is that the conditional distribution X2|X1 (X1|X2) is for X1 < 0

(X2 < 0) entirely concentrated on C1. ⊳

The following proposition gives a sufficient condition for irreducibility (and thus the recurrence) of

the Markov chain generated by the Gibbs sampler. There are less strict conditions for the irreducibility

and aperiodicity of the Markov chain generated by the Gibbs sampler (see e.g. Robert and Casella, 2004,

Lemma 10.11).

Proposition 4.2. If the joint distribution f(x1, . . . , xp) satisfies the positivity condition, the Gibbs sam-

pler yields an irreducible, recurrent Markov chain.

Proof. Let X ⊂ supp(f) be a set with
∫
X f(x

(t)
1 , . . . , x

(t)
p )d(x

(t)
1 , . . . , x

(t)
p ) > 0.

4 Here and in the following we understand by “irreducibilty” irreducibility with respect to the target distribution

f .
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∫

X

K(x(t−1),x(t))dx(t) =

∫

X

fX1|X−1
(x

(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )

︸ ︷︷ ︸
>0 (on a set of non-zero measure)

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
>0 (on a set of non-zero measure)

dx(t) > 0

Thus the Markov Chain (X(t))t is strongly f -irreducible. As f is the invariant distribution of the Markov

chain, it is as well recurrent (see the remark on page 36). �

If the transition kernel is absolutely continuous with respect to the dominating measure, then recurrence

even implies Harris recurrence (see e.g. Robert and Casella, 2004, Lemma 10.9).

Now we have established all the necessary ingredients to state an ergodic theorem for the Gibbs

sampler, which is a direct consequence of theorems 3.1 and 3.2.

Theorem 4.2. If the Markov chain generated by the Gibbs sampler is irreducible and recurrent (which is

e.g. the case when the positivity condition holds), then for any integrable function h : E → R

lim
n→∞

1

n

n∑

t=1

h(X(t)) → Ef (h(X))

for almost every starting value X(0). If the chain is Harris recurrent, then the above result holds for every

starting value X(0).

Theorem 4.2 guarantees that we can approximate expectations Ef (h(X)) by their empirical counter-

parts using a single Markov chain.

Example 4.4. Assume that we want to use a Gibbs sampler to estimate P(X1 ≥ 0,X2 ≥ 0) for a

N2

((
µ1

µ2

)
,

(
σ2

1 σ12

σ12 σ2
2

))
distribution.5 The marginal distributions are

X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2)

In order to construct a Gibbs sampler, we need the conditional distributions Y1|Y2 = y2 and Y2|Y1 = y1.

We have6

f(x1, x2) ∝ exp


−1

2

((
x1

x2

)
−
(

µ1

µ2

))′(
σ2

1 σ12

σ12 σ2
2

)−1((
x1

x2

)
−
(

µ1

µ2

))


∝ exp

(
− (x1 − (µ1 + σ12/σ2

22(x2 − µ2)))2

2(σ2
1 − (σ12)2/σ2

2)

)
,

5 A Gibbs sampler is of course not the optimal way to sample from a Np(µ, Σ) distribution. A more efficient way

is: draw Z1, . . . , Zp
i.i.d.∼ N(0, 1) and set (X1, . . . , Xp)′ = Σ1/2(Z1, . . . , Zp)′ + µ

6 We make use of
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!
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1σ2

2 − (σ12)2
`
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´

+ const

=
1
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1σ2

2 − (σ12)2
`

σ2
2x2

1 − 2σ2
2x1µ1 − 2σ12x1(x2 − µ2)

´

+ const

=
1

σ2
1 − (σ12)2/σ2
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`
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1 − 2x1(µ1 + σ12/σ2

2(x2 − µ2))
´

+ const

=
1

σ2
1 − (σ12)2/σ2

2

`

x1 − (µ1 + σ12/σ2
2(x2 − µ2)

´2
+ const
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i.e.

X1|X2 = x2 ∼ N(µ1 + σ12/σ2
2(x2 − µ2), σ2

1 − (σ12)2/σ2
2)

Thus the Gibbs sampler for this problem consists of iterating for t = 1, 2, . . .

1. Draw X
(t)
1 ∼ N(µ1 + σ12/σ2

2(X
(t−1)
2 − µ2), σ2

1 − (σ12)2/σ2
2)

2. Draw X
(t)
2 ∼ N(µ2 + σ12/σ2

1(X
(t)
1 − µ1), σ2

2 − (σ12)2/σ2
1).

Now consider the special case µ1 = µ2 = 0, σ2
1 = σ2

2 = 1 and σ12 = 0.3. Figure 4.4 shows the sample paths

of this Gibbs sampler.

Using theorem 4.2 we can estimate P(X1 ≥ 0,X2 ≥ 0) by the proportion of samples (X
(t)
1 ,X

(t)
2 ) with

X
(t)
1 ≥ 0 and X

(t)
2 ≥ 0. Figure 4.3 shows this estimate. ⊳
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Fig. 4.3. Estimate of the P(X1 ≥ 0, X2 ≥ 0) obtained using a Gibbs sampler. The area shaded in grey corresponds

to the range of 100 replications.

Note that the realisations (X(0),X(1), . . .) form a Markov chain, and are thus not independent, but

typically positively correlated. The correlation between the X(t) is larger if the Markov chain moves only

slowly (the chain is then said to be slowly mixing). For the Gibbs sampler this is typically the case if the

variables Xj are strongly (positively or negatively) correlated, as the following example shows.

Example 4.5 (Sampling from a highly correlated bivariate Gaussian). Figure 4.5 shows the results ob-

tained when sampling from a bivariate Normal distribution as in example 4.4, however with σ12 = 0.99.

This yields a correlation of ρ(X1,X2) = 0.99. This Gibbs sampler is a lot slower mixing than the one con-

sidered in example 4.4 (and displayed in figure 4.4): due to the strong correlation the Gibbs sampler can

only perform very small movements. This makes subsequent samples X
(t−1)
j and X

(j)
j highly correlated

and thus yields to a slower convergence, as the plot of the estimated densities show (panels (b) and (c) of

figures 4.4 and 4.5). ⊳
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4.5 Data Augmentation

Gibbs sampling is only feasible when we can sample easily from the full conditionals. However, this does

not need to be the case. A technique that can help achieving full conditionals that are easy to sample

from is demarginalisation: we introduce a set of auxiliary random variables Z1, . . . , Zr such that f is the

marginal density of (X1, . . . ,Xp, Z1, . . . , Zr), i.e.

f(x1, . . . , xp) =

∫
f(x1, . . . , xn, z1, . . . , zr) d(z1, . . . , zr).

In many cases there is a “natural choice” of the completion (Z1, . . . , Zr), as the following example shows.

Example 4.6 (Mixture of Gaussians). Consider data Y1, . . . , Yn, each of which might stem for one of K

populations. The distribution of Yi in the k-th population is N(µk, 1/τ). The probability that an observa-

tion is from the k-th population is πk. If we cannot observe which population the i-th observation is from,

it is from a mixture distribution:

f(yi) =

K∑

k=1

πkφ(µk,1/τ)(yi). (4.6)

In a Bayesian framework a suitable prior distribution for the mean parameters µk is the N(µ0, 1/τ0)

distribution. A suitable prior distribution for (π1, . . . , πK) is the Dirichlet distribution7 with parameters

α1, . . . , αK > 0 with density

f(α1,...,αK)(π1, . . . , πK) =
Γ (
∑K

k=1 αk)
∏K

k=1 Γ (αk)

K∏

k=1

παk−1
k

for π ≥ 0 and
∑K

k=1 πk = 1. For the sake of simplicity we assume that the dispersion τ is known8, as well

as the number populations K.9

It is however difficult to sample from the posterior distribution of µ and π given data Y1, . . . Yn using a

Gibbs sampler. This is due to the mixture nature of (4.6). This suggests introducing auxiliary variables

Z1, . . . Zn which indicate which population the i-th individual is from, i.e.

P(Zi = k) = πk and Yi|Zi = k ∼ N(µk, 1/τ).

It is easy to see that the marginal distribution of Yi is given by (4.6), i.e. the Zi are indeed a completion.

Now we have that

f(y1, . . . , yn, z1, . . . , zn, µ1, . . . , µK , π1, . . . , πK)

∝
(

n∏

i=1

πzi
exp

(
−τ(yi − µzi

)2/2
)
)

·
(

K∏

k=1

exp
(
−τ0(µk − µ0)2/2

)
)

·
(

K∏

k=1

παk−1
k

)
. (4.7)

Thus the full conditional distributions given Y1, . . . , Yn are

P(Zi = k|Y1, . . . , Yn, µ1, . . . , µK , π1, . . . , πK) =
πkφ(µk,1/τ)(yi)∑K
ι=1 πιφ(µι,1/τ)(yi)

(4.8)

µk|Y1, . . . , Yn, Z1, . . . , Zn, π1, . . . , πK ∼ N

(
τ
(∑

i: Zi=k Yi

)
+ τoµ0

|{: Zi = k}|τ + τ0
,

1

|{i : Zi = k}|τ + τ0

)

π1, . . . , πK |Y1, . . . , Yn, Z1, . . . , Zn, µ1, . . . , µK ∼ Dirichlet (α1 + |{i : Zi = 1}|, . . . , αK + |{I : Zi = K}|) .

7 The Dirichlet distribution is a multivariate generalisation of the Beta distribution.
8 Otherwise, a Gamma distribution would be a suitable choice.
9 For a model where the number of components is variable, see section 6.
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To derive the full conditional of µk we have used that the joint density (4.7) is proportional to

K∏

k=1

exp


−|{i : Zi = k}|τ + τ0

2

(
µk −

τ
(∑

i: Zi=k Yi

)
+ τ0µ0

|{i : Zi = k}|τ + τ0

)2

 ,

as

τ
∑

Zi=k

(Yi − µk)2 + τ0(µk − µ0)2 = (|{i : Zi = k}|τ + τ0)µ2
K + 2µK

(
τ

(
∑

i: Zi=k

Yi

)
+ τ0µ0

)
+ const

= (|{i : Zi = k}|τ + τ0)

(
µK −

τ
(∑

i: Zi=k Yi

)
+ τoµ0

|{i : Zi = K}|τ + τ0

)2

+ const.

Thus we can obtain a sample from the posterior distribution of µ1, . . . , µK and π1, . . . , πK given ob-

servations Y1, . . . , Yn using the following auxiliary variable Gibbs sampler: Starting with initial values

µ
(0)
1 , . . . , µ

(0)
K , π

(0)
1 , . . . , π

(0)
K iterate the following steps for t = 1, 2, . . .

1. For i = 1, . . . , n:

Draw Z
(t)
i from the discrete distribution on {1, . . . ,K} specified by (4.8).

2. For k = 1, . . . ,K:

Draw µ
(t)
k ∼ N




τ
(∑

i: Z
(t)
i =k

Yi

)
+ τoµ0

|{i : Z
(t)
i = k}|τ + τ0

,
1

|{i : Z
(t)
i = k}|τ + τ0


 .

3. Draw (π
(t)
1 , . . . , π

(t)
K ) ∼ Dirichlet

(
α1 + |{i : Z

(t)
i = 1}|, . . . , αK + |{i : Z

(t)
i = K}|

)
. ⊳
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5. The Metropolis-Hastings Algorithm

5.1 Algorithm

In the previous chapter we have studied the Gibbs sampler, a special case of a Monte Carlo Markov Chain

(MCMC) method: the target distribution is the invariant distribution of the Markov chain generated by

the algorithm, to which it (hopefully) converges.

This chapter will introduce another MCMC method: the Metropolis-Hastings algorithm, which goes

back to Metropolis et al. (1953) and Hastings (1970). Like the rejection sampling algorithm 2.1, the

Metropolis-Hastings algorithm is based on proposing values sampled from an instrumental distribution,

which are then accepted with a certain probability that reflects how likely it is that they are from the

target distribution f .

The main drawback of the rejection sampling algorithm 2.1 is that it is often very difficult to come up

with a suitable proposal distribution that leads to an efficient algorithm. One way around this problem is

to allow for “local updates”, i.e. let the proposed value depend on the last accepted value. This makes it

easier to come up with a suitable (conditional) proposal, however at the price of yielding a Markov chain

instead of a sequence of independent realisations.

Algorithm 5.1 (Metropolis-Hastings). Starting with X(0) := (X
(0)
1 , . . . ,X

(0)
p ) iterate for t = 1, 2, . . .

1. Draw X ∼ q(·|X(t−1)).

2. Compute

α(X|X(t−1)) = min

{
1,

f(X) · q(X(t−1)|X)

f(X(t−1)) · q(X|X(t−1))

}
. (5.1)

3. With probability α(X|X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

Figure 5.1 illustrates the Metropolis-Hasting algorithm. Note that if the algorithm rejects the newly

proposed value (open disks joined by dotted lines in figure 5.1) it stays at its current value X(t−1). The

probability that the Metropolis-Hastings algorithm accepts the newly proposed state X given that it

currently is in state X(t−1) is

a(x(t−1)) =

∫
α(x|x(t−1))q(x|x(t−1)) dx. (5.2)

Just like the Gibbs sampler, the Metropolis-Hastings algorithm generates a Markov chain, whose properties

will be discussed in the next section.
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Fig. 5.1. Illustration of the Metropolis-Hastings algorithm. Filled dots denote accepted states, open circles rejected

values.

Remark 5.1. The probability of acceptance (5.1) does not depend on the normalisation constant, i.e. if

f(x) = C · π(x), then

f(x) · q(x(t−1)|x)

f(x(t−1)) · q(x|x(t−1))
=

Cπ(x) · q(x(t−1)|x)

Cπ(x(t−1)) · q(x|x(t−1))
=

π(x) · q(x(t−1)|x)

π(x(t−1)) · q(x|x(t−1))

Thus f only needs to be known up to normalisation constant.1

5.2 Convergence results

Lemma 5.1. The transition kernel of the Metropolis-Hastings algorithm is

K(x(t−1),x(t)) = α(x(t)|x(t−1))q(x(t)|x(t−1)) + (1 − a(x(t−1)))δx(t−1)(x(t)), (5.3)

where δx(t−1)(·) denotes Dirac-mass on {x(t−1)}.

Note that the transition kernel (5.3) is not continuous with respect to the Lebesgue measure.

Proof. We have

1 On a similar note, it is enough to know q(x(t−1)|x) up to a multiplicative constant independent of x(t−1) and x.
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P(X(t) ∈ X |X(t−1) = x(t−1)) = P(X(t) ∈ X , new value accepted|X(t−1) = x(t−1))

+P(X(t) ∈ X , new value rejected|X(t−1) = x(t−1))

=

∫

X

α(x(t)|x(t−1))q(x(t)|x(t−1)) dx(t)

+ IX (x(t−1))︸ ︷︷ ︸
=

R
X

δ
x
(t−1) (dx(t))

P(new value rejected|X(t−1) = x(t−1))︸ ︷︷ ︸
=1−a(x(t−1))

︸ ︷︷ ︸
=

R
X

(1−a(x(t−1)))δ
x
(t−1) (dx(t))

=

∫

X

α(x(t)|x(t−1))q(x(t)|x(t−1)) dx(t) +

∫

X

(1 − a(x(t−1)))δx(t−1)(dx(t))

�

Proposition 5.1. The Metropolis-Hastings kernel (5.3) satisfies the detailed balance condition

K(x(t−1),x(t))f(x(t−1)) = K(x(t),x(t−1))f(x(t))

and thus f(x) is the invariant distribution of the Markov chain (X(0),X(1), . . .) generated by the Metropolis-

Hastings sampler. Furthermore the Markov chain is reversible.

Proof. We have that

α(x(t)|x(t−1))q(x(t)|x(t−1))f(x(t−1)) = min

{
1,

f(x(t))q(x(t−1)|x(t))

f(x(t−1))q(x(t)|x(t−1))

}
q(x(t)|x(t−1))f(x(t−1))

= min
{

f(x(t−1))q(x(t)|x(t−1)), f(x(t))q(x(t−1)|x(t))
}

= min

{
f(x(t−1))q(x(t)|x(t−1))

f(x(t))q(x(t−1)|x(t))
, 1

}
q(x(t−1)|x(t))f(x(t))

= α(x(t−1)|x(t))q(x(t−1)|x(t))f(x(t))

and thus

K(x(t−1),x(t))f(x(t−1)) = α(x(t)|x(t−1))q(x(t)|x(t−1))f(x(t−1))︸ ︷︷ ︸
=α(x(t−1)|x(t))q(x(t−1)|x(t))f(x(t))

+ (1 − a(x(t−1))) δx(t−1)(x(t))︸ ︷︷ ︸
=0 if x

(t) 6= x
(t−1)

f(x(t−1))

︸ ︷︷ ︸
(1−a(x(t)))δ

x
(t) (x(t−1))

= K(x(t),x(t−1))f(x(t))

The other conclusions follow by proposition 3.2, suitably adapted to the continuous case (i.e. replacing

the sums by integrals). �

Next we need to examine whether the Metropolis-Hastings algorithm yields an irreducible chain. As

with the Gibbs sampler, this does not need to be the case, as the following example shows.

Example 5.1 (Reducible Metropolis-Hastings). Consider using a Metropolis-Hastings algorithm for sam-

pling from a uniform distribution on [0, 1] ∪ [2, 3] and a U(x(t−1) − δ, x(t−1) + δ) distribution as proposal

distribution q(·|x(t−1)). Figure 5.2 illustrates this example. It is easy to see that the resulting Markov

chain is not irreducible if δ ≤ 1: in this case the chain either stays in [0, 1] or [2, 3]. ⊳

Under mild assumptions on the proposal q(·|x(t−1)) one can however establish the irreducibility of the

resulting Markov chain:

– If q(x(t)|x(t−1)) is positive for all x(t−1),x(t) ∈ supp(f), then it is easy to see that we can reach any

set of non-zero probability under f within a single step. The resulting Markov chain is thus strongly

irreducible. Even though this condition seems rather restrictive, many popular choices of q(·|x(t−1)) like

multivariate Gaussians or t-distributions fulfil this condition.
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Fig. 5.2. Illustration of example 5.1

– Roberts and Tweedie (1996) give a more general condition for the irreducibility of the resulting Markov

chain: they only require that

∀ ǫ ∃ δ : q(x(t)|x(t−1)) > ǫ if ‖x(t−1) − x(t)‖ < δ

together with the boundedness of f on any compact subset of its support.

The Markov chain (X(0),X(1), . . .) is further aperiodic, if there is positive probability that the chain

remains in the current state, i.e. P(X(t) = X(t−1)) > 0, which is the case if

P

(
f(X(t−1))q(X|X(t−1)) > f(X)q(X(t−1)|X)

)
> 0.

Note that this condition is not met if we use a “perfect” proposal which has f as invariant distribution:

in this case we accept every proposed value with probability 1 (see e.g. remark 5.2).

Proposition 5.2. The Markov chain generated by the Metropolis-Hastings algorithm is Harris-recurrent

if it is irreducible.

Proof. Recurrence follows (using the result stated on page 36) from the irreducibility and the fact that f

is the invariant distribution. For a proof of Harris recurrence see (Tierney, 1994). �

As we have now established (Harris-)recurrence, we are now ready to state an ergodic theorem (using

theorems 3.1 and 3.2).

Theorem 5.1. If the Markov chain generated by the Metropolis-Hastings algorithm is irreducible, then

for any integrable function h : E → R

lim
n→∞

1

n

n∑

t=1

h(X(t)) → Ef (h(X))

for every starting value X(0).

As with the Gibbs sampler the above ergodic theorem allows for inference using a single Markov chain.

5.3 The random walk Metropolis algorithm

In this section we will focus on an important special case of the Metropolis-Hastings algorithm: the random

walk Metropolis-Hastings algorithm. Assume that we generate the newly proposed state X not using the

fairly general

X ∼ q(·|X(t−1)), (5.4)

from algorithm 5.1, but rather
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X = X(t−1) + ε, ε ∼ g, (5.5)

with g being a symmetric distribution. It is easy to see that (5.5) is a special case of (5.4) using

q(x|x(t−1)) = g(x − x(t−1)). When using (5.5) the probability of acceptance simplifies to

min

{
1,

f(X) · q(X(t−1)|X)

f(X(t−1)) · q(X|X(t−1))

}
= min

{
1,

f(X)

f(X(t−1))

}
,

as q(X|X(t−1)) = g(X − X(t−1)) = g(X(t−1) − X) = q(X(t−1)|X) using the symmetry of g. This yields

the following algorithm which is a special case of algorithm 5.1, which is actually the original algorithm

proposed by Metropolis et al. (1953).

Algorithm 5.2 (Random walk Metropolis). Starting with X(0) := (X
(0)
1 , . . . ,X

(0)
p ) and using a sym-

metric distributon g, iterate for t = 1, 2, . . .

1. Draw ε ∼ g and set X = X(t−1) + ε.

2. Compute

α(X|X(t−1)) = min

{
1,

f(X)

f(X(t−1))

}
. (5.6)

3. With probability α(X|X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

Example 5.2 (Bayesian probit model). In a medical study on infections resulting from birth by Cesarean

section (taken from Fahrmeir and Tutz, 2001) three influence factors have been studied: an indicator

whether the Cesarian was planned or not (zi1), an indicator of whether additional risk factors were present

at the time of birth (zi2), and an indicator of whether antibiotics were given as a prophylaxis (zi3). The

response Yi is the number of infections that were observed amongst ni patients having the same influence

factors (covariates). The data is given in table 5.1.

Number of births planned risk factors antibiotics

with infection total

yi ni zi1 zi2 zi3

11 98 1 1 1

1 18 0 1 1

0 2 0 0 1

23 26 1 1 0

28 58 0 1 0

0 9 1 0 0

8 40 0 0 0

Table 5.1. Data used in example 5.2

The data can be modeled by assuming that

Yi ∼ Bin(ni, πi), π = Φ(z′iβ),

where zi = (1, zi1, zi2, zi3) and Φ(·) being the CDF of the N(0, 1) distribution. Note that Φ(t) ∈ [0, 1] for

all t ∈ R.

A suitable prior distribution for the parameter of interest β is β ∼ N(0, I/λ). The posterior density

of β is

f(β|y1, . . . , yn) ∝
(

N∏

i=1

Φ(z′iβ)yi · (1 − Φ(z′iβ))ni−yi

)
· exp


−λ

2

3∑

j=0

β2
j
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We can sample from the above posterior distribution using the following random walk Metropolis algo-

rithm. Starting with any β(0) iterate for t = 1, 2, . . .:

1. Draw ε ∼ N(0,Σ) and set β = β(t−1) + ε.

2. Compute

α(β|β(t−1)) = min

{
1,

f(β|Y1, . . . , Yn)

f(β(t−1)|Y1, . . . , Yn)

}
.

3. With probability α(β|β(t−1)) set β(t) = β, otherwise set β(t) = β(t−1).

To keep things simple, we choose the covariance Σ of the proposal to be 0.08 · I.

Figure 5.3 and table 5.2 show the results obtained using 50,000 samples2. Note that the convergence of the

Posterior mean 95% credible interval

intercept β0 -1.0952 -1.4646 -0.7333

planned β1 0.6201 0.2029 1.0413

risk factors β2 1.2000 0.7783 1.6296

antibiotics β3 -1.8993 -2.3636 -1.471

Table 5.2. Parameter estimates obtained for the Bayesian probit model from example 5.2

β
(t)
j is to a distribution, whereas the cumulative averages

∑t
τ=1 β

(τ)
j /t converge, as the ergodic theorem

implies, to a value. For figure 5.3 and table 5.2 the first 10,000 samples have been discarded (“burn-in”). ⊳

5.4 Choosing the proposal distribution

The efficiency of a Metropolis-Hastings sampler depends on the choice of the proposal distribution

q(·|x(t−1)). An ideal choice of proposal would lead to a small correlation of subsequent realisations X(t−1)

and X(t). This correlation has two sources:

– the correlation between the current state X(t−1) and the newly proposed value X ∼ q(·|X(t−1)), and

– the correlation introduced by retaining a value X(t) = X(t−1) because the newly generated value X has

been rejected.

Thus we would ideally want a proposal distribution that both allows for fast changes in the X(t) and yields

a high probability of acceptance. Unfortunately these are two competing goals. If we choose a proposal

distribution with a small variance, the probability of acceptance will be high, however the resulting Markov

chain will be highly correlated, as the X(t) change only very slowly. If, on the other hand, we choose a

proposal distribution with a large variance, the X(t) can potentially move very fast, however the probability

of acceptance will be rather low.

Example 5.3. Assume we want to sample from a N(0, 1) distribution using a random walk Metropolis-

Hastings algorithm with ε ∼ N(0, σ2). At first sight, we might think that setting σ2 = 1 is the optimal

choice, this is however not the case. In this example we examine the choices: σ2 = 0.1, σ2 = 1, σ2 = 2.382,

and σ2 = 102. Figure 5.4 shows the sample paths of a single run of the corresponding random walk

Metropolis-Hastings algorithm. Rejected values are drawn as grey open circles. Table 5.3 shows the average

correlation ρ(X(t−1),X(t)) as well as the average probability of acceptance α(X|X(t−1)) averaged over 100

runs of the algorithm. Choosing σ2 too small yields a very high probability of acceptance, however at

2 You might want to consider a longer chain in practise.
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Fig. 5.3. Results obtained for the Bayesian probit model from example 5.2
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the price of a chain that is hardly moving. Choosing σ2 too large allows the chain to make large jumps,

however most of the proposed values are rejected, so the chain remains for a long time at each accepted

value. The results suggest that σ2 = 2.382 is the optimal choice. This corresponds to the theoretical results

of Gelman et al. (1995). ⊳

Autocorrelation ρ(X(t−1), X(t)) Probability of acceptance α(X, X(t−1))

Mean 95% CI Mean 95% CI

σ2 = 0.12 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)

σ2 = 1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)

σ2 = 2.382 0.6225 (0.6162,0.6289) 0.4426 (0.4401,0.4452)

σ2 = 102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Table 5.3. Average correlation ρ(X(t−1), X(t)) and average probability of acceptance α(X|X(t−1)) found in ex-

ample 5.3 for different choices of the proposal variance σ2.

Finding the ideal proposal distribution q(·|x(t−1)) is an art.3 This is the price we have to pay for the

generality of the Metropolis-Hastings algorithm. Popular choices for random walk proposals are multivari-

ate Gaussians or t-distributions. The latter have heavier tails, making them a safer choice. The covariance

structure of the proposal distribution should ideally reflect the expected covariance of the (X1, . . . ,Xp).

Gelman et al. (1997) propose to adjust the proposal such that the acceptance rate is around 1/2 for one-

or two dimensional target distributions, and around 1/4 for larger dimensions, which is in line with the

results we obtained in the above simple example and the guidelines which motivate them. Note however

that these are just rough guidelines.

Example 5.4 (Bayesian probit model (continued)). In the Bayesian probit model we studied in example

5.2 we drew

ε ∼ N(0,Σ)

with Σ = 0.08 · I, i.e. we modeled the components of ε to be independent. The proportion of accepted

values we obtained in example 5.2 was 13.9%. Table 5.4 (a) shows the corresponding autocorrelation. The

resulting Markov chain can be made faster mixing by using a proposal distribution that represents the

covariance structure of the posterior distribution of β.

This can be done by resorting to the frequentist theory of generalised linear models (GLM): it suggests

that the asymptotic covariance of the maximum likelihood estimate β̂ is (Z′DZ)−1, where Z is the matrix

of the covariates, and D is a suitable diagonal matrix. When using Σ = 2 · (Z′DZ)−1 in the algorithm

presented in section 5.2 we can obtain better mixing performance: the autocorrelation is reduced (see table

5.4 (b)), and the proportion of accepted values obtained increases to 20.0%. Note that the determinant of

both choices of Σ was chosen to be the same, so the improvement of the mixing behaviour is entirely due

to a difference in the structure of the the covariance. ⊳

5.5 Composing kernels: Mixtures and Cycles

It can be advantageous, especially in the case of more complex distributions, to combine different

Metropolis-Hastings updates into a single algorithm. Each of the different Metropolis-Hastings updates

3 The optimal proposal would be sampling directly from the target distribution. The very reason for using a

Metropolis-Hastings algorithm is however that we cannot sample directly from the target!
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(a) Σ = 0.08 · I
β0 β1 β2 β3

Autocorrelation ρ(β
(t−1)
j , β

(t)
j ) 0.9496 0.9503 0.9562 0.9532

(b) Σ = 2 · (Z′DZ)−1

β0 β1 β2 β3

Autocorrelation ρ(β
(t−1)
j , β

(t)
j ) 0.8726 0.8765 0.8741 0.8792

Table 5.4. Autocorrelation ρ(β
(t−1)
j , β

(t)
j ) between subsequent samples for the two choices of the covariance Σ.

corresponds to a transition kernel K(j). As with the substeps of Gibbs sampler there are two ways of

combining the transition kernels K(1), . . . ,K(r):

– As in the systematic scan Gibbs sampler, we can cycle through the kernels in a deterministic order, i.e.

first carry out the Metropolis-Hastings update corresponding the the kernel K(1), then carry out the

one corresponding to K(2), etc. until we start again with K(1). The transition kernel of this composite

chain is

K◦(x(t−1),x(t)) =

∫
· · ·
∫

K(1)(x(t−1), ξ(1))K(2)(ξ(1), ξ(2)) · · ·K(r)(ξ(r−1),x(t)) dξ(r−1) · · · dξ(1)

If each of the transition kernels K(j) has the invariant distribution f (i.e.
∫

f(x(t−1))K(x(t−1),x(t)) dx(t−1) =

f(x(t))), then K◦ has f as invariant distribution, too, as
∫

f(x(t−1))K◦(x(t−1),x(t)) dx(t−1)

=

∫
· · ·
∫ ∫

K(1)(x(t−1), ξ(1))f(x(t−1))dx(t−1)

︸ ︷︷ ︸
=f(ξ(1))

K(2)(ξ(1), ξ(2))dξ(1)

︸ ︷︷ ︸
f(ξ(2))

· · · dξ(r−2)

︸ ︷︷ ︸
=f(ξ(r−1))

K(r)(ξ(r−1),x(t))dξ(r−1)

= f(x(t))

– Alternatively, we can, as in the random scan Gibbs sampler, choose each time at random which of

the kernels should be used, i.e. use the kernel K(j) with probability wj > 0 (
∑r

ι=1 wι = 1). The

corresponding kernel of the composite chain is the mixture

K+(x(t−1),x(t)) =

r∑

ι=1

wιK
(ι)(x(t−1),x(t))

Once again, if each of the transition kernels K(j) has the invariant distribution f , then K+ has f as

invariant distribution:

∫
f(x(t−1))K+(x(t−1),x(t)) dx(t−1) =

r∑

ι=1

wι

∫
f(x(t−1))K(ι)(x(t−1),x(t)) dx(t−1)

︸ ︷︷ ︸
=f(x(t))

= f(x(t)).

Example 5.5 (One-at-a-time Metropolis-Hastings). One example of a method using composite kernels is

the so-called one-at-a-time Metropolis-Hastings algorithm. Consider the case of a p-dimensional random

variable X = (X1, . . . ,Xp). The Metropolis-Hastings algorithms 5.1 and 5.2 update all components at a

time. It can, however, be difficult to come up with a suitable proposal distribution q(·|x(t−1)) (or g) for all

variables. Alternatively, we could, as in the Gibbs sampler, update each component separately. For this
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we need p proposal distributions q1, . . . , qp for updating each of the Xj . The j-th proposal qj (and thus

the j-th kernel K(j)) corresponds to updating the Xj .

As mentioned above we can cycle deterministically through the kernels (corresponding to the kernel K◦),

yielding the following algorithm. Starting with X(0) = (X
(0)
1 , . . . ,X

(0)
p ) iterate

1. i. Draw X1 ∼ q1(·|X(t−1)
2 , . . . ,X

(t−1)
p ).

ii. Compute α1 = min

{
1,

f(X1,X
(t−1)
2 ,...,X(t−1)

p )·q1(X
(t−1)
1 |X1,X

(t−1)
2 ,...,X(t−1)

p )

f(X
(t−1)
1 ,X

(t−1)
2 ,...,X

(t−1)
p )·q1(X1|X

(t−1)
1 ,X

(t−1)
2 ,...,X

(t−1)
p )

}
.

iii. With probability α1 set X
(t)
1 = X1, otherwise set X

(t)
1 = X

(t−1)
1 .

. . .

j. i. Draw Xj ∼ qj(·|X(t)
1 , . . . ,X

(t)
j−1,X

(t−1)
j , . . . ,X

(t−1)
p ).

ii. Compute αj = min

{
1,

f(X
(t)
1 ,...,X

(t)
j−1,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )·qj(X
(t−1)
j |X

(t)
1 ,...,X

(t)
j−1,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )

f(X
(t)
1 ,...,X

(t)
j−1,X

(t−1)
j ,X

(t−1)
j+1 ,...,X

(t−1)
p )·qj(Xj |X

(t)
1 ,...,X

(t)
j−1,X

(t−1)
j ,X

(t−1)
j+1 ,...,X

(t−1)
p )

}
.

iii. With probability αj set X
(t)
j = Xj , otherwise set X

(t)
j = X

(t−1)
j .

. . .

p. i. Draw Xp ∼ qp(·|X(t)
1 , . . . ,X

(t)
p−1,X

(t−1)
p ).

ii. Compute αp = min

{
1,

f(X
(t)
1 ,...,X

(t)
p−1,Xp)·qp(X(t−1)

p |X
(t)
1 ,...,X

(t)
p−1,Xp)

f(X
(t)
1 ,...,X

(t)
p−1,X

(t−1)
p )·qp(Xp|X

(t)
1 ,...,X

(t)
p−1,X

(t−1)
p )

}
.

iii. With probability αp set X
(t)
p = Xp, otherwise set X

(t)
p = X

(t−1)
p .

The corresponding random sweep algorithm (corresponding to K+) is: Starting with X(0) = (X
(0)
1 , . . . ,X

(0)
p )

iterate

1. Draw an index j from a distribution on {1, . . . , p} (e.g. uniform)

2. Draw Xj ∼ qj(·|X(t−1)
1 , . . . ,X

(t−1)
p ).

3. Compute αj = min

{
1,

f(X
(t−1)
1 ,...,X

(t−1)
j−1 ,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )·qj(X
(t−1)
j |X

(t−1)
1 ,...,X

(t−1)
j−1 ,Xj ,X

(t−1)
j+1 ,...,X(t−1)

p )

f(X
(t−1)
1 ,...,X

(t−1)
j−1 ,X

(t−1)
j ,X

(t−1)
j+1 ,...,X

(t−1)
p )·qj(Xj |X

(t−1)
1 ,...,X

(t−1)
j−1 ,X

(t−1)
j ,X

(t−1)
j+1 ,...,X

(t−1)
p )

}
.

4. With probability αj set X
(t)
j = Xj , otherwise set X

(t)
j = X

(t−1)
j .

5. Set X
(t)
ι := X

(t−1)
ι for all ι 6= j.

Note the similarity to the Gibbs sampler. Indeed, the Gibbs sampler is a special case of a one-at-a-time

Metropolis-Hastings algorithm as the following remark shows. ⊳

Remark 5.2. The Gibbs sampler for a p-dimensional distribution is a special case of a one-at-a-time

Metropolis-Hasting algorithm: the (systematic scan) Gibbs sampler (algorithm 4.1) is a cycle of p kernels,

whereas the random scan Gibbs sampler (algorithm 4.2) is a mixture of these kernels. The proposal qj

corresponding to the j-th kernel consists of drawing X
(t)
j ∼ fXj |X−j

. The corresponding probability of

acceptance is uniformly equal to 1.

Proof. The update of the j-th component of the Gibbs sampler consists of sampling from Xj |X−j , i.e. it

has the proposal

qj(xj |x(t−1)) = fXj |X−j
(xj |x(t)

1 , . . . , x
(t)
j−1, x

(t−1)
j+1 , . . . , x(t−1)

p ).

We obtain for the j-th kernel that
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f(x
(t)
1 , . . . , x

(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )qj(x

(t−1)
j |x(t)

1 , . . . , x
(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x
(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )qj(xj |x(t)

1 , . . . , x
(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )

=
f(x

(t)
1 , . . . , x

(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )fXj |X−j

(x
(t−1)
j |x(t)

1 , . . . , x
(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x
(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )fXj |X−j

(xj |x(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
p )

=

f(x
(t)
1 , . . . , x

(t)
j−1, xj , x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x
(t)
1 ,...,x

(t)
j−1,x

(t−1)
j ,x

(t−1)
j+1 ,...,x(t−1)

p )

f(x
(t)
1 ,...,x

(t)
j−1,x

(t−1)
j+1 ,...,x

(t−1)
p )

f(x
(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j , x

(t−1)
j+1 , . . . , x

(t−1)
p )

f(x
(t)
1 ,...,x

(t)
j−1,xj ,x

(t−1)
j+1 ,...,x

(t−1)
p )

f(x
(t)
1 ,...,x

(t)
j−1,

(t−1)
j+1 ,...,x

(t−1)
p )

= 1,

thus αj ≡ 1. �

As explained above, the composite kernels K+ and K◦ have the invariant distribution f , if all kernels

K(j) have f as invariant distribution. Similarly, it is sufficient for the irreducibility of the kernels K+ and

K◦ that all kernels K(j) are irreducible. This is however not a very useful condition, nor is it a necessary

condition. Often, some of the kernels K(j) focus on certain subspaces, and thus cannot be irreducible for

the entire space. The kernels K(j) corresponding to the Gibbs sampler are not irreducible themselves: the

j-th Gibbs kernel K(j) only updates Xj , not the other Xι (ι 6= j).
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6.1 Bayesian multi-model inference

Examples 4.1, 4.6, and 5.2 illustrated how MCMC techniques can be used in Bayesian modeling. In both

examples we have only considered a single model. In many real word situations however there is (a priori)

more than one plausible model.

Assume that we consider a finite or countable set of models {M1,M2, . . .}. Each model is characterised

by a density fk and the associated parameter space Θ, i.e. Mk := {fk(·|θ),θ ∈ Θk}, where fk is the density

and Θk the parameter space of the k-th model.

Using a hierarchical Bayesian setup we first place a prior distribution of the set of models, i.e.

P(Mk) = pk

with
∑

k pk = 1. The prior distribution on the model space can for example be used to express our prior

belief in simple models. Further we need to place a prior on each parameter space Θk, i.e.

θ|Mk ∼ fprior
k (θ).

Assume now that we have observed data y1, . . . ,yn. When considering model Mk the likelihood is

lk(y1, . . . ,yn|θ) :=

n∏

i=1

fk(yi|θ),

and the posterior density of θ is

fpost
k (θ) =

fprior
k (θ)lk(y1, . . . ,yn|θ)∫

Θk
fprior

k (ϑ)lk(y1, . . . ,yn|ϑ)dϑ
.

Now we can use Bayes formula to compute the posterior probability that the data was generated by

model Mk

P(Mk|y1, . . . ,yn) =
pk

∫
Θk

fprior
k (θ)lk(y1, . . . ,yn|θ) dθ

∑
κ pκ

∫
Θκ

fprior
κ (θ)lκ(y1, . . . ,yn|θ) dθ

The comparison between two models Mk1
and Mk2

can be summarised by the posterior odds

P(Mk1
|y1, . . . ,yn)

P(Mk2
|y1, . . . ,yn)

=
pk1

pk2

·
∫

Θk1
fprior

k1
(θ)lk1

(y1, . . . ,yn|θ) dθ
∫

Θk2
fprior

k2
(θ)lk2

(y1, . . . ,yn|θ) dθ
︸ ︷︷ ︸

“Bayes factor”

.
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Having computed the posterior distribution on the models we can now either consider the model with

the highest posterior probability P(Mk|y1, . . . ,yn) or perform model averaging using P(Mk|y1, . . . ,yn)

as weights.

In order to compute the above probabilities we could run a separate MCMC algorithm for each model

(“within model simulation”). Alternatively we could construct a single algorithm that can jump between

the different models (“transdimensional simulation”). In order to do this we have to sample from the joint

posterior

fpost(k,θ) =
pkfprior

k (θ)lk(y1, . . . ,yn|θ)
∑

κ pκ

∫
Θκ

fprior
κ (ϑ)lκ(y1, . . . ,yn|ϑ) dϑ

defined on

Θ :=
⋃

k

({k} × Θk) .

Unfortunately, we cannot use the techniques presented in chapters 4 and 5 to sample from Θ, as Θ

is not as well-behaved as the Θk: Θ is a union of spaces of different dimensions, to which — due to

measure-theoretic subtleties — the theory of chapters 4 and 5 fails to apply.

Bayesian multi-model inference is an example of a variable dimension model. A variable dimension

model is a model “where one of the things you do not know is the number of things you do not know”

(Green, 2003). In the following two sections we will try to extend the Metropolis-Hastings method to this

more general setting.

6.2 Another look at the Metropolis-Hastings algorithm

Recall the random walk Metropolis-Hastings algorithm (algorithm 5.2) where we set X := X(t−1) +ε with

ε ∼ g. In this section we will generalise this to

X = τ (X(t−1),U(t−1)), with U(t−1) ∼ g1→2.

For our further developments it will be necessary that the transformation is a bijective map, which requires

that the image and the domain of the transformation have the same dimension. Thus we consider

T1→2 : (X(t−1),U(t−1)) 7→ (X,U),

such that X = τ (X(t−1),U(t−1)). Furthermore we shall assume that T1→2 is a diffeomorphism1 with

inverse T2→1 = T−1
1→2.

If we generate a newly proposed value X as mentioned above, how do we have to choose the probability

of acceptance α(X|X(t−1)) such that the resulting MCMC algorithm fulfils the detailed balance condition?

If we set the probability of acceptance to2

α(x(t)|x(t−1)) = min

{
1,

f(x(t))g2→1(u(t))

f(x(t−1))g1→2(u(t−1))

∣∣∣∣
∂T1→2(x(t−1),u(t−1))

∂(x(t−1),u(t−1))

∣∣∣∣
}

,

then we can establish that detailed balance holds, as we will see below. Assume that for the corresponding

backward move we draw U(t) ∼ g2→1 and set (X(t−1),U(t−1)) = T2→1(X(t),U(t)). Then the probability

of accepting the backward move is

α(x(t−1)|x(t)) = min

{
1,

f(x(t−1))g1→2(u(t−1))

f(x(t))g2→1(u(t))

∣∣∣∣
∂T2→1(x(t),u(t))

∂(x(t),u(t))

∣∣∣∣
}

,

We then obtain that
1 i.e. T1→2 is has as inverse T2→1, and both T1→2 and T−1

1→2 are differentiable.
2 In this lecture course we use the convention |A| = | det(A)|.
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5

∫

x(t−1)∈A

∫

{u(t−1): x(t)∈B}

α(x(t)|x(t−1))g1→2(u(t−1))f(x(t−1)) du(t−1)dx(t−1)

=

∫

x(t−1)∈A

∫

{u(t−1): x(t)∈B}

min

{
1,

f(x(t))g2→1(u(t))

f(x(t−1))g1→2(u(t−1))

∣∣∣∣
∂T1→2(x(t−1),u(t−1))

∂(x(t−1),u(t−1))

∣∣∣∣
}

g1→2(u(t−1))f(x(t−1)) du(t−1)dx(t−1)

=

∫

x(t−1)∈A

∫

{u(t−1): x(t)∈B}

min

{
f(x(t−1))g1→2(u(t−1)), f(x(t))g2→1(u(t))

∣∣∣∣
∂T1→2(x(t−1),u(t−1))

∂(x(t−1),u(t−1))

∣∣∣∣
}

du(t−1)dx(t−1)

=

∫

{u(t): x(t−1)∈A}

∫

x(t)∈B

min

{
f(x(t−1))g1→2(u(t−1)), f(x(t))g2→1(u(t))

∣∣∣∣
∂T1→2(x(t−1),u(t−1))

∂(x(t−1),u(t−1))

∣∣∣∣
} ∣∣∣∣

∂T2→1(x(t),u(t))

∂(x(t),u(t))

∣∣∣∣ dx(t)du(t)

=

∫

{u(t): x(t−1)∈A}

∫

x(t)∈B

min

{
f(x(t−1))g1→2(u(t−1))

f(x(t))g2→1(u(t))

∣∣∣∣
∂T2→1(x(t),u(t))

∂(x(t),u(t))

∣∣∣∣ , 1

}
g2→1(u(t))f(x(t)) dx(t)du(t)

=

∫

{u(t): x(t−1)∈A}

∫

x(t)∈B

α(x(t−1)|x(t))g2→1(u(t))f(x(t)) dx(t)du(t)

The fourth row is obtained from the third row by using the change of variable formula. Note that
∣∣∣∂T1→2(x

(t−1),u(t−1))
∂(x(t−1),u(t−1))

∣∣∣ ·
∣∣∣∂T2→1(x

(t),u(t))
∂(x(t),u(t))

∣∣∣ = 1. Equation 6.1 implies

by analogy with proposition 5.1 detailed balance3, i.e. the Markov chain generated by the above method has indeed f as invariant distribution.

3 In a general state space detailed balance holds if

Z

x(t−1)∈A

Z

x(t)∈B

π(dx(t−1))K(x(t−1), dx(t)) =

Z

x(t−1)∈A

Z

x(t)∈B

π(dx(t))K(x(t), dx(t−1))

for all Borel sets A, B, where K(x(t−1), B) = P(X(t) ∈ B|X(t−1) = x(t−1)). Now we have that

Z

x(t)∈B

K(x(t−1), dx(t)) = K(x(t−1), B) = P(X(t) ∈ B|X(t−1) = x(t−1)) =

Z

{u(t−1): x(t)∈B}

α(x(t)|x(t−1))g1→2(u
(t−1)) du(t−1) + IB(x(t−1))(1− a(x(t−1))).

As
Z

x(t−1)∈A

IB(x(t−1))(1− a(x(t−1))) π(dx(t−1)) =

Z

x∈A∩B

(1− a(x)) π(dx) =

Z

x(t)∈B

IA(x(t))(1− a(x(t))) π(dx(t))

detailed balance is equivalent to

Z

x(t−1)∈A

Z

{u(t−1): x(t)∈B}

α(x(t)|x(t−1))g1→2(u
(t−1))f(x(t−1)) du(t−1)dx(t−1) =

Z

{u(t): x(t−1)∈A}

Z

x(t)∈B

α(x(t−1)|x(t))g2→1(u
(t))f(x(t)) dx(t)du(t)

which is what we have shown in (6.1). (On the left hand side x(t) := x(t)(x(t−1),u(t−1)) is defined implicitly such that (x(t),u(t)) = T1→2(x
(t−1),u(t−1)). On the right hand

side x(t−1) := x(t−1)(x(t),u(t)) is defined implicitly such that (x(t−1),u(t−1)) = T2→1(x
(t),u(t)).)
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Example 6.1 (Random walk Metropolis-Hastings). In order to clarify what we have just derived we will

state the random walk Metropolis Hastings algorithm in terms of this new approach.

In the random walk Metropolis-Hastings algorithm with a symmetric proposal g1→2 we considered

X = X(t−1) + ε, ε ∼ g1→2,

which corresponds to using

(X,U) = T1→2(X(t−1),U(t−1)) = (X(t−1) + U(t−1),U(t−1)), U(t−1) ∼ g1→2.

For the backward move we generate U ∼ g1→2 as well, i.e. we have g1→2 = g2→1. Further T2→1(X(t),U(t)) =

(X(t) − U(t),U(t)).4

We accept the newly proposed X with probability

α(X|X(t−1)) = min

{
1,

f(X)g2→1(U)

f(X(t−1))g1→2(U(t−1))

∣∣∣∣
∂T1→2(X(t−1),U(t−1))

∂(X(t−1),U(t−1))

∣∣∣∣
}

= min

{
1,

f(X)

f(X(t−1))

}
,

as g1→2 = g2→1, U = U(t−1), and

∣∣∣∣
∂T1→2(X(t−1),U(t−1))

∂(X(t−1),U(t−1))

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 1

0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1.

⊳

Note that the above holds even if x(t−1) and x(t) have different dimension, as long as the joint vectors

(x(t−1),u(t−1)) and (x(t),u(t)) have the same dimension. Thus we can use the above approach for sampling

from variable dimension models, as the next section shows.

6.3 The Reversible Jump Algorithm

Coming back to the developments of section 6.1 we need to draw an MCMC sample from the joint posterior

distribution

fpost(k,θ) =
pkfprior

k (θ)lk(y1, . . . ,yn|θ)
∑

κ pκ

∫
Θκ

lprior
κ (ϑ)lκ(y1, . . . ,yn|ϑ) dϑ

(6.1)

defined on

Θ :=
⋃

k

({k} × Θk)

A slight modification of the approach discussed in 6.2 allows us to draw samples from fpost(k,θ) by

jumping between the models. This lea s to the reversible jump algorithm proposed by Green (1995):

4 Due to the symmetry of g1→2 this is equivalent to setting X(t) + U(t), and the forward move (based on T1→2)

and backward move (based on T2→1) are identical.
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Algorithm 6.1 (Reversible jump). Starting with k(0) and θ(0) iterate for t = 1, 2, . . .

1. Select new model Mk with probability ρk(t−1)→k.5

(With probability ρk(t−1)→k(t−1) update the parameters of Mk(t−1) and skip the remaining steps.)

2. Generate u(t−1) ∼ gk(t−1)→k

3. Set (θ,u) := Tk(t−1)→k(θ(k−1),u(k−1)).

4. Compute

α := min

{
1,

fpost(k,θ)ρk→k(t−1)gk→k(t−1)(u)

fpost(k(t−1),θ(t−1))ρk(t−1)→kgk(t−1)→k(u(t−1))

∣∣∣∣∣
∂Tk(t−1)→k(θ(t−1),u(t−1))

∂(θ(t−1),u(t−1))

∣∣∣∣∣

}

5. With probability α set k(t) = k and θ(k) = θ, otherwise keep k(t) = k(t−1) and θ(k) = θ(k−1).

Note that as in section 6.2 we need that Tk→l is a diffeomorphism with Tl→k = T−1
k→l. Note that

this implies that (θ,u) has the same dimension as (θ(t−1),u(t−1)) (“dimension matching”). It is possible

(and a rather popular choice) that u or u(t−1) is zero-dimensional, as long as the dimensions of (θ,u) and

(θ(t−1),u(t−1)) match. Often ρk→l is only positive if the models Mk and Ml are close in some sense. Note

however that ρk→l = 0 implies ρl→k = 0. In general, the transdimensional moves should be designed such

that they yield a high probability of acceptance.

Remark 6.1. The probability of acceptance of the reversible jump algorithm does not depend on the

normalisation constant of the joint posterior f (post)(k,θ) (i.e. the denominator of (6.1)).

Proposition 6.1. The joint posterior fpost(k,θ) is under the above conditions the invariant distribution

of the reversible jump algorithm.

5 P

k ρk(t−1)→k = 1.
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Proof. From the footnote on page 65 we have using x := (k,θ) and the fact that k is discrete (i.e. an integral with respect to k is a sum) that detailed balance

holds, as

∑

k(t−1)∈A

∫

θ(t−1)∈A
k(t−1)

∑

k(t)∈B

∫

{u(t−1): θ(t)∈B
k(t)}

α((k(t),θ(t))|(k(t−1),θ(t−1)))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1))fpost(k(t−1),θ(t−1)) du(t−1)dθ(t−1)

=
∑

k(t−1)∈A

∫

θ(t−1)∈A
k(t−1)

∑

k(t)∈B

∫

{u(t−1): θ(t)∈B
k(t)}

min

{
1,

fpost(k(t),θ(t))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))

fpost(k(t−1),θ(t−1))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1))

∣∣∣∣∣
∂Tk(t−1)→k(t)(θ(t−1),u(t−1))

∂(θ(t−1),u(t−1))

∣∣∣∣∣

}

ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1))fpost(k(t−1),θ(t−1)) du(t−1)dθ(t−1)

=
∑

k(t−1)∈A

∫

θ(t−1)∈A
k(t−1)

∑

k(t)∈B

∫

{u(t−1): θ(t)∈B
k(t)}

min
{

fpost(k(t−1),θ(t−1))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1)) ,

fpost(k(t),θ(t))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))

∣∣∣∣∣
∂Tk(t−1)→k(t)(θ(t−1),u(t−1))

∂(θ(t−1),u(t−1))

∣∣∣∣∣

}
du(t−1)dθ(t−1)

=
∑

k(t−1)∈A

∫

{u(t): θ(t−1)∈A
k(t−1)}

∑

k(t)∈B

∫

θ(t)∈B
k(t)

min
{

fpost(k(t−1),θ(t−1))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1)) ,

fpost(k(t),θ(t))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))

∣∣∣∣∣
∂Tk(t−1)→k(t)(θ(t−1),u(t−1))

∂(θ(t−1),u(t−1))

∣∣∣∣∣

} ∣∣∣∣∣
∂Tk(t)→k(t−1)(θ(t),u(t))

∂(θ(t),u(t))

∣∣∣∣∣ dθ(t)du(t)

=
∑

k(t−1)∈A

∫

{u(t): θ(t−1)∈A
k(t−1)}

∑

k(t)∈B

∫

θ(t)∈B
k(t)

min

{
fpost(k(t−1),θ(t−1))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1))

∣∣∣∣∣
∂Tk(t)→k(t−1)(θ(t),u(t))

∂(θ(t),u(t))

∣∣∣∣∣ ,

fpost(k(t),θ(t))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))
}

dθ(t)du(t)

=
∑

k(t−1)∈A

∫

{u(t): θ(t−1)∈A
k(t−1)}

∑

k(t)∈B

∫

θ(t)∈B
k(t)

min

{
fpost(k(t−1),θ(t−1))ρk(t−1)→k(t)gk(t−1)→k(t)(u(t−1))

fpost(k(t),θ(t))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))

∣∣∣∣∣
∂Tk(t)→k(t−1)(θ(t),u(t))

∂(θ(t),u(t))

∣∣∣∣∣ , 1

}

ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))fpost(k(t),θ(t)) dθ(t)du(t)

=
∑

k(t−1)∈A

∫

{u(t): θ(t−1)∈A
k(t−1)}

∑

k(t)∈B

∫

θ(t)∈B
k(t)

α((k(t−1),θ(t−1))|(k(t),θ(1)))ρk(t)→k(t−1)gk(t)→k(t−1)(u(t))fpost(k(t),θ(t)) dθ(t)du(t)

for all A =
⋃

k∈A{k} × Ak ⊂ Θ, B =
⋃

k∈B{k} × Ak ⊂ Θ �
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Example 6.2. Consider a problem with two possible models M1 and M2. The model M1 has a single

parameter θ1 ∈ [0, 1]. The model M2 has two parameters θ1, θ2 ∈ D with triangular domain D = {(θ1, θ2) :

0 ≤ θ2 ≤ θ1 ≤ 1}. The joint posterior of (k,θ) is

fpost(k,θ) ∝ pkfprior
k (θ)lk(y1, . . . ,yn|θ)

We need to propose two moves T1→2 and T2→1 such that T1→2 = T−1
2→1. Assume that we want to get

from model M2 to model M1 by dropping θ2, i.e.

T2→1(θ1, θ2) = (θ1, ⋆)

A move that is compatible6 with T2→1 is

T1→2(θ, u) = (θ, uθ).

When setting ⋆ to θ2/θ1 we have that T1→2 = T−1
2→1. If we draw U ∼ U[0, 1] we have that T1→2(θ, U) ∈ D.

The Jacobian is ∣∣∣∣
∂T1→2(θ, u)

∂(θ, u)

∣∣∣∣ =

∣∣∣∣∣
1 0

u θ

∣∣∣∣∣ = |θ| = θ.

Using the formula for the derivative of the inverse we obtain that

∣∣∣∣
∂T2→1(θ1, θ2)

∂(θ1, θ2)

∣∣∣∣ =

∣∣∣∣∣∣

(
∂T1→2(θ, u)

∂(θ, u)

∣∣∣∣
(θ,u)=T2→1(θ1,θ2)

)−1
∣∣∣∣∣∣

= 1/

∣∣∣∣∣
∂T1→2(θ, u)

∂(θ, u)

∣∣∣∣
(θ,u)=T2→1(θ1,θ2)

∣∣∣∣∣ = 1/θ1

The moves between the models M1 and M2 (and vice versa) keep θ1 constant. An algorithm based only

on these two moves will not yield an irreducible chain. Thus we need to include fixed-dimensional moves.

In this simple example it is enough to include a single fixed-dimensional move:7 If we are in model M1

then with probability 1/2 we carry out a Metropolis update (e.g. using an independent proposal from

U[0, 1]).

This setup corresponds to ρ1→1 = 1/2, ρ1→2 = 1/2, ρ2→1 = 1, ρ2→2 = 0.

The reversible jump algorithm specified above consists of iterating for t = 1, 2, 3, . . .

– If the current model is M1 (i.e. k(t−1) = 1):

∗ With probability 1/2 perform an update of θ(t−1) within model M1, i.e.

1. Generate θ1 ∼ U[0, 1].

2. Compute the probability of acceptance

α = min

{
1,

fprior
1 (θ1)l1(y1, . . . ,yn|θ1)

fprior
1 (θ

(t−1)
1 )l1(y1, . . . ,yn|θ(t−1)

1 )

}

3. With probability α set θ(t) = θ, otherwise keep θ(t) = θ(t−1).

∗ Otherwise attempt a jump to model M2, i.e.

1. Generate u(t−1) ∼ U[0, 1]

2. Set (θ1, θ2) := T1→2(θ(t−1), u(t−1)) = (θ(t−1), u(t−1)θ(t−1)).

3. Compute

α = min

{
1,

p2 · fprior
2 (θ1, θ2)l2(y1, . . . ,yn|θ1, θ2) · 1

p1 · fprior
1 (θ

(t−1)
1 )l1(y1, . . . ,yn|θ(t−1)

1 ) · 1/2 · 1
· θ(t−1)

1

}

6 in the sense that T1→2 = T
(−1)
2→1

7 In order to obtain an irreducible and fast mixing chain in more complex models, it is typically necessary to

allow for fixed-dimensional moves in all models.
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4. With probability α set k(t) = 2 and θ(t) = (θ1, θ2), otherwise keep k = 1 and θ(t) = θ(t−1).

– Otherwise, if the current model is M2 (i.e. k(t−1) = 2) attempt a jump to M1:

1. Set (θ, u) := T2→1(θ
(t−1)
1 , θ

(t−1)
2 ) = (θ

(t−1)
1 , θ

(t−1)
2 /θ

(t−1)
1 ).

2. Compute

α = min

{
1,

p1 · fprior
1 (θ1)l1(y1, . . . ,yn|θ1) · 1/2 · 1

p2 · fprior
2 (θ

(t−1)
1 , θ

(t−1)
2 )l2(y1, . . . ,yn|θ(t−1)

1 , θ
(t−1)
2 ) · 1

· 1

θ
(t−1)
1

}

3. With probability α set k(t) = 1 and θ(t) = θ, otherwise keep k = 2 and θ(t) = (θ
(t−1)
1 , θ

(t−1)
2 ). ⊳

Example 6.3 (Mixture of Gaussians with a variable number of components). Consider again the Gaussian

mixture model from example 4.6, in which we assumed that the density of yi is from a mixture of Gaussians

f(yi|π1, . . . , πk, µ1, . . . , µk, τ1, . . . , τk) =

k∑

κ=1

πκφ(µκ,1/τκ)(yi).

Suitable prior distributions are a Dirichlet distribution for (π1, . . . , πk), a Gaussian for µκ and a Gamma

distribution for τκ.8 In example 4.6 we assumed that the number of components k is known. In this example

we assume that we want to estimate the number of components k as well. Note that the dimension of the

parameter vector θ = (π1, . . . , πk, µ1, . . . , µk, τ1, . . . , τk) depends on k, so we need to use the reversible

jump algorithm to move between models with different numbers of components. Denote with pk the prior

distribution of the number of components.

The easiest way of moving between models, is to allow for two simple transdimensional moves: adding

one new component (“birth move”, k → k + 1) and dropping one component (“death move”, k + 1 → k).

Consider the birth move first. We draw the mean and precision parameters of the new component,

which we will call µk+1 and τk+1 for convenience, from the corresponding prior distributions. Furthermore

we draw the prior probability of the new component πk+1 ∼ Beta(1, k). As we need that the sum of the

prior probabilities
∑k+1

κ=1 πκ = 1, we have to rescale the other prior probabilities to πκ = π
(t−1)
κ (1 − πk+1)

(κ = 1, . . . , k). Putting this into the notation of the reversible jump algorithm, we draw

u
(t−1)
1 ∼ g1, u

(t−1)
2 ∼ g2, u

(t−1)
3 ∼ g3,

and set

πk+1 = u
(t−1)
1 , µk+1 = u

(t−1)
2 , τk+1 = u

(t−1)
3

with g1 being the density of the Beta(1, k) distribution, g2 being the density of the prior distribution on

the µκ, and g3 being the density of the prior distribution on τκ. The corresponding transformation Tk→k+1

is 


π1

...

πk

πk+1

...

µk+1

...

τk+1




= Tk→k+1




π
(t−1)
1

...

π
(t−1)
k

...

u
(t−1)
1

u
(t−1)
2

u
(t−1)
3




=




π
(t−1)
1 (1 − u

(t−1)
1 )

...

π
(t−1)
k (1 − u

(t−1)
1 )

u
(t−1)
1

...

u
(t−1)
2

...

u
(t−1)
3




The determinant of the Jacobian of Tk→k+1 is

8 In order to ensure identifiability we assume the µκ are ordered, i.e. µ1 < . . . < µk.
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(1 − u
(t−1)
1 )k

Next we consider the death move, which is the move in the opposite direction. Assume that we drop

the κ-th component. To keep the notation simple we assume κ = k+1. In order to maintain the constraint
∑k

ι=1 πι = 1 we need to rescale the prior probabilities to πι = πι/(1 − π
(t−1)
k+1 ) (ι = 1, . . . , k). The

corresponding transformation is




π1

...

πk

...

u1

u2

u3




= Tk+1→k




π
(t−1)
1

...

π
(t−1)
k+1

...

µ
(t−1)
k+1

...

τ
(t−1)
k+1




=




π
(t−1)
1 /(1 − π

(t−1)
k+1 )

...

π
(t−1)
k /(1 − π

(t−1)
k+1 )

...

π
(t−1)
k+1

µ
(t−1)
k+1

τ
(t−1)
k+1




It is easy to see that Tk+1→k = T−1
k→k+1, and thus the modulus of the Jacobian of Tk+1→k is

1

(1 − π
(t−1)
k+1 )k

Now that we have specified both the birth move and the complementary death move, we can state the

probability of accepting a birth move from a model with k components to a model with k +1 components.

It is

min

{
1,

pk+1f
prior
k+1 (θ)l(y1, . . . , yn|θ)

pkfprior
k (θ(t−1))l(y1, . . . , yn|θ(t−1))

· (k + 1)!

k!
· ρk+1→k/(k + 1)

ρk→k+1g1(u
(t−1)
1 )g2(u

(t−1)
2 )g3(u

(t−1)
3 )

· (1 − u
(t−1)
1 )k

}

The factors (k+1)! and k! are required to account for the fact that the model is not uniquely parametrised,

and any permutation of the indexes of the components yields the same model. 1/(k + 1) in the probability

of picking one of the k + 1 components in the death step.

The probability of accepting the death step is the reciprocal of the above probability of acceptance of

the birth step.

There are other (and more efficient) possibilities of moving between models of different orders. A very

efficient pair of moves corresponds to splitting and (in the opposite direction) merging components. For a

more detailed review of this model see (Richardson and Green, 1997). ⊳
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7. Diagnosing convergence

7.1 Practical considerations

The theory of Markov chains we have seen in chapter 3 guarantees that a Markov chain that is irreducible

and has invariant distribution f converges to the invariant distribution. The ergodic theorems 4.2 and 5.1

allow for approximating expectations Ef (h(X)) by their the corresponding means

1

T

T∑

t=1

h(X(t)) −→ Ef (h(X))

using the entire chain. In practise, however, often only a subset of the chain (X(t))t is used:

Burn-in Depending on how X(0) is chosen, the distribution of (X(t))t for small t might still be far from the

stationary distribution f . Thus it might be beneficial to discard the first iterations X(t), t = 1, . . . , T0.

This early stage of the sampling process is often referred to as burn-in period. How large T0 has to

be chosen depends on how fast mixing the Markov chain (X(t))t is. Figure 7.1 illustrates the idea of

a burn-in period.

burn-in period (discarded)

Fig. 7.1. Illustration of the idea of a burn-in period.

Thinning Markov chain Monte Carlo methods typically yield a Markov chain with positive autocorrela-

tion, i.e. ρ(X
(t)
k ,X

(t+τ)
k ) is positive for small τ . This suggests building a subchain by only keeping

every m-th value (m > 1), i.e. we consider a Markov chain (Y(t))t with Y(t) = X(m·t) instead of

(X(t))t. If the correlation ρ(X(t),X(t+τ)) decreases monotonically in τ , then

ρ(Y
(t)
k , Y

(t+τ)
k ) = ρ(X

(t)
k ,X

(t+m·τ)
k ) < ρ(X

(t)
k ,X

(t+τ)
k ),
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i.e. the thinned chain (Y(t))t exhibits less autocorrelation than the original chain (X(t))t. Thus thinning

can be seen as a technique for reducing the autocorrelation, however at the price of yielding a chain

(Y(t))t=1,...⌊T/m⌋, whose length is reduced to (1/m)-th of the length of the original chain (X(t))t=1,...,T .

Even though thinning is very popular, it cannot be justified when the objective is estimating Ef (h(X)),

as the following lemma shows.

Lemma 7.1. Let (X(t))t=1,...,T be a sequence of random variables (e.g. from a Markov chain) with

X(t) ∼ f and (Y(t))t=1,...,⌊T/m⌋ a second sequence defined by Y(t) := X(m·t). If Varf (h(X(t))) < +∞,

then

Var

(
1

T

T∑

t=1

h(X(t))

)
≤ Var


 1

⌊T/m⌋

⌊T/m⌋∑

t=1

h(Y(t))


 .

Proof. To simplify the proof we assume that T is divisible by m, i.e. T/m ∈ N. Using

T∑

t=1

h(X(t)) =
m−1∑

τ=0

T/m∑

t=1

h(X(t·m+τ))

and

Var




T/m∑

t=1

h(X(t·m+τ1))


 = Var




T/m∑

t=1

h(X(t·m+τ2))




for τ1, τ2 ∈ {0, . . . ,m − 1}, we obtain that

Var

(
T∑

t=1

h(X(t))

)
= Var




m−1∑

τ=0

T/m∑

t=1

h(X(t·m+τ))




= m · Var




T/m∑

t=1

h(X(t·m))


+

m−1∑

η 6=τ=0

Cov




T/m∑

t=1

h(X(t·m+η)),

T/m∑

t=1

h(X(t·m+τ))




︸ ︷︷ ︸
≤Var

“PT/m
t=1 h(X(t·m))

”

≤ m2 · Var




T/m∑

t=1

h(X(t·m))


 = m2 · Var




T/m∑

t=1

h(Y(t))


 .

Thus

Var

(
1

T

T∑

t=1

h(X(t))

)
=

1

T 2
Var

(
T∑

t=1

h(X(t))

)
≤ m2

T 2
Var




T/m∑

t=1

h(Y(t))


 = Var


 1

T/m

T/m∑

t=1

h(Y(t))


 .

�

The concept of thinning can be useful for other reasons. If the computer’s memory cannot hold the

entire chain (X(t))t, thinning is a good choice. Further, it can be easier to assess the convergence of

the thinned chain (Y(t))t as opposed to entire chain (X(t))t.

7.2 Tools for monitoring convergence

Although the theory presented in the preceding chapters guarantees the convergence of the Markov chains

to the required distributions, this does not imply that a finite sample from such a chain yields a good

approximation to the target distribution. As with all approximating methods this must be confirmed in

practise.
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This section tries to give a brief overview over various approaches to diagnosing convergence. A more

detailed review with many practical examples can be diagnofound in (Guihennec-Jouyaux et al., 1998)

or (Robert and Casella, 2004, chapter 12). There is an R package (CODA) that provides a vast selection

of tools for diagnosing convergence. Diagnosing convergence is an art. The techniques presented in the

following are nothing other than exploratory tools that help you judging whether the chain has reached

its stationary regime. This section contains several cautionary examples where the different tools for

diagnosing convergence fail.

Broadly speaking, convergence assessment can be split into the following three tasks of diagnosing

different aspects of convergence:

Convergence to the target distribution. The first, and most important, question is whether (X(t))t yields

a sample from the target distribution? In order to answer this question we need to assess . . .

– whether (X(t))t has reached a stationary regime, and

– whether (X(t))t covers the entire support of the target distribution.

Convergence of the averages. Does
∑T

t=1 h(X(t))/T provide a good approximation to the expectation

Ef (h(X)) under the target distribution?

Comparison to i.i.d. sampling. How much information is contained in the sample from the Markov chain

compared to i.i.d. sampling?

7.2.1 Basic plots

The most basic approach to diagnosing the output of a Markov Chain Monte Carlo algorithm is to plot

the sample path (X(t))t as in figures 4.4 (b) (c), 4.5 (b) (c), 5.3 (a), and 5.4. Note that the convergence

of (X(t))t is in distribution, i.e. the sample path is not supposed to converge to a single value. Ideally, the

plot should be oscillating very fast and show very little structure or trend (like for example figure 4.4).

The smoother the plot seems (like for example figure 4.5), the slower mixing the resulting chain is.

Note however that this plot suffers from the “you’ve only seen where you’ve been” problem. It is

impossible to see from a plot of the sample path whether the chain has explored the entire support of the

distribution.

Example 7.1 (A simple mixture of two Gaussians). In this example we sample from a mixture of two well-

separated Gaussians

f(x) = 0.4 · φ(−1,0.22)(x) + 0.6 · φ(2,0.32)(x)

(see figure 7.2 (a) for a plot of the density) using a random walk Metropolis algorithm with proposed

value X = X(t−1) + ε with ε ∼ N(0, Var(ε)). If we choose the proposal variance Var(ε) too small, we

only sample from one population instead of both. Figure 7.2 shows the sample paths of for two choices of

Var(ε): Var(ε) = 0.42 and Var(ε) = 1.22. The first choice of Var(ε) is too small: the chain is very likely to

remain in one of the two modes of the distribution. Note that it is impossible to tell from figure 7.2 (b)

alone that the chain has not explored the entire support of the target. ⊳

In order to diagnose the convergence of the averages, one can look at a plot of the cumulative averages

(
∑t

τ=1 h(X(τ))/t)t. Note that the convergence of the cumulative averages is — as the ergodic theorems

suggest — to a value (Ef (h(X)). Figures 4.3, and 5.3 (b) show plots of the cumulative averages. An

alternative to plotting the cumulative means is using the so-called CUSUMs ( ¯h(X) −∑t
τ=1 h(X

(τ)
j )/t)t

with X̄j =
∑T

τ=1 h(X
(τ)
j )/T , which is nothing other than the difference between the cumulative averages

and the estimate of the limit Ef (h(X)).
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Fig. 7.2. Density of the mixture distribution with two random walk Metropolis samples using two different

variances Var(ε) of the proposal.

Example 7.2 (A pathological generator for the Beta distribution). The following MCMC algorithm (for

details, see Robert and Casella, 2004, problem 7.5) yields a sample from the Beta(α, 1) distribution.

Starting with any X(0) iterate for t = 1, 2, . . .

1. With probability 1 − X(t−1), set X(t) = X(t−1).

2. Otherwise draw X(t) ∼ Beta(α + 1, 1).

This algorithm yields a very slowly converging Markov chain, to which no central limit theorem applies.

This slow convergence can be seen in a plot of the cumulative means (figure 7.3 (b)). ⊳
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Fig. 7.3. Sample paths and cumulative means obtained for the pathological Beta generator.

Note that it is impossible to tell from a plot of the cumulative means whether the Markov chain has

explored the entire support of the target distribution.

7.2.2 Non-parametric tests of stationarity

This section presents the Kolmogorov-Smirnov test, which is an example of how nonparametric tests can

be used as a tool for diagnosing whether a Markov chain has already converged.
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In its simplest version, it is based on splitting the chain into three parts: (X(t))t=1,...,⌊T/3⌋,

(X(t))t=⌊T/3⌋+1,...,2⌊T/3⌋, and (X(t))t=2⌊T/3⌋+1,...,T . The first block is considered to be the burn-in pe-

riod. If the Markov chain has reached its stationary regime after ⌊T/3⌋ iterations, the second and third

block should be from the same distribution. Thus we should be able to tell whether the chain has con-

verged by comparing the distribution of (X(t))t=⌊T/3⌋+1,...,2⌊T/3⌋ to the one of (X(t))t=2⌊T/3⌋+1,...,T using

suitable nonparametric two-sample tests. One such test is the Kolmogorov-Smirnov test.

As the Kolmogorov-Smirnov test is designed for i.i.d. samples, we do not apply it to the (X(t))t directly,

but to a thinned chain (Y(t))t with Y(t) = X(m·t): the thinned chain is less correlated and thus closer to

being an i.i.d. sample. We can now compare the distribution of (Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋ to the one

of (Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋ using the Kolmogorov-Smirnov statistic 1

K = sup
x∈R

∣∣∣F̂(Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋
(x) − F̂(Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋

(x)
∣∣∣ .

As the thinned chain is not an i.i.d. sample, we cannot use the Kolmogorov-Smirnov test as a formal

statistical test (besides we would run into problems of multiple testing). However, we can use it as an

informal tool by monitoring the standardised statistic
√

tKt as a function of t.2 As long as a significant

proportion of the values of the standardised statistic are above the corresponding quantile of the asymptotic

distribution, it is safe to assume that the chain has not yet reached its stationary regime.

Example 7.3 (Gibbs sampling from a bivariate Gaussian (continued)). In this example we consider sam-

pling from a bivariate Gaussian distribution, once with ρ(X1,X2) = 0.3 (as in example 4.4) and once

with ρ(X1,X2) = 0.99 (as in example 4.5). The former leads a fast mixing chain, the latter a very slowly

mixing chain. Figure 7.4 shows the plots of the standardised Kolmogorov-Smirnov statistic. It suggests

that the sample size of 10,000 is large enough for the low-correlation setting, but not large enough for the

high-correlation setting. ⊳

Note that the Kolmogorov-Smirnov test suffers from the “you’ve only seen where you’ve been” problem,

as it is based on comparing (Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋ and (Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋. A plot of the

Kolmogorov-Smirnov statistic for the chain with Var(ε) = 0.4 from example 7.1 would not reveal anything

unusual.

7.2.3 Riemann sums and control variates

A simple tool for diagnosing convergence of a one-dimensional Markov chain can be based on the fact that

1 The two-sample Kolmogorov-Smirnov test for comparing two i.i.d. samples Z1,1, . . . , Z1,n and Z2,1, . . . , Z2,n is

based on comparing their empirical CDFs

F̂k(z) =
1

n

n
X

i=1

I(−∞,z](Zk,i).

The Kolmogorov-Smirnov test statistic is the maximum difference between the two empirical CDFs:

K = sup
z∈R

|F̂1(z)− F̂2(z)|.

For n→∞ the CDF of
√

n ·K converges to the CDF

R(k) = 1−
+∞
X

i=1

(−1)i−1 exp(−2i2k2).

2 Kt is hereby the Kolmogorov-Smirnov statistic obtained from the sample consisting of the first t observations

only.
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(b) ρ(X1, X2) = 0.99

Fig. 7.4. Standardised Kolmogorov-Smirnov statistic for X
(5·t)
1 from the Gibbs sampler from the bivariate Gaussian

for two different correlations.

∫

E

f(x) dx = 1.

We can estimate this integral by the Riemann sum

T∑

t=2

(X [t] − X [t−1])f(X [t]), (7.1)

where X [1] ≤ . . . ≤ X [T ] is the ordered sample from the Markov chain. If the Markov chain has explored all

the support of f , then (7.1) should be around 1. Note that this method, often referred to as Riemann sums

(Philippe and Robert, 2001), requires that the density f is known inclusive of normalisation constants.

Example 7.4 (A simple mixture of two Gaussians (continued)). In example 7.1 we considered two random-

walk Metropolis algorithms: one (Var(ε) = 0.42) failed to explore the entire support of the target distri-

bution, whereas the other one (Var(ε) = 1.22) managed to. The corresponding Riemann sums are 0.598

and 1.001, clearly indicating that the first algorithm does not explore the entire support. ⊳

Riemann sums can be seen as a special case of a technique called control variates. The idea of control

variates is comparing several ways of estimating the same quantity. As long as the different estimates

disagree, the chain has not yet converged. Note that the technique of control variates is only useful if the

different estimators converge about as fast as the quantity of interest — otherwise we would obtain an

overly optimistic, or an overly conservative estimate of whether the chain has converged. In the special

case of the Riemann sum we compare two quantities: the constant 1 and the Riemann sum (7.1).

7.2.4 Comparing multiple chains

A family of convergence diagnostics (see e.g. Gelman and Rubin, 1992; Brooks and Gelman, 1998) is based

on running L > 1 chains — which we will denote by (X(1,t))t, . . . , (X(L,t))t — with overdispersed3 starting

values X(1,0), . . . ,X(L,0), covering at least the support of the target distribution.

All L chains should converge to the same distribution, so comparing the plots from section 7.2.1 for

the L different chains should not reveal any difference. A more formal approach to diagnosing whether

the L chains are all from the same distribution can be based on comparing the inter-quantile distances.

3 i.e. the variance of the starting values should be larger than the variance of the target distribution.
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We can estimate the inter-quantile distances in two ways. The first consists of estimating the inter-

quantile distance for each of the L chain and averaging over these results, i.e. our estimate is
∑L

l=1 δ
(L,·)
α /L,

where δ
(L,·)
α is the distance between the α and (1−α) quantile of the l-th chain(X

(l,t)
k )t. Alternatively, we

can pool the data first, and then compute the distance between the α and (1 − α) quantile of the pooled

data. If all chains are a sample from the same distribution, both estimates should be roughly the same,

so their ratio

Ŝinterval
α =

∑L
l=1 δ

(l)
α /L

δ
(·)
α

can be used as a tool to diagnose whether all chains sampled from the same distribution, in which case

the ratio should be around 1.

Alternatively, one could compare the variances within the L chains to the pooled estimate of the

variance (see Brooks and Gelman, 1998, for more details).

Example 7.5 (A simple mixture of two Gaussians (continued)). In the example of the mixture of two

Gaussians we will consider L = 8 chains initialised from a N(0, 102) distribution. Figure 7.5 shows the

sample paths of the 8 chains for both choices of Var(ε). The corresponding values of Ŝinterval
0.05 are:

Var(ε) = 0.42 : Ŝinterval
0.05 =

0.9789992

3.630008
= 0.2696962

Var(ε) = 1.22 : Ŝinterval
0.05 =

3.634382

3.646463
= 0.996687.

⊳
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Fig. 7.5. Comparison of the sample paths for L = 8 chains for the mixture of two Gaussians.

Note that this method depends crucially on the choice of initial values X(1,0), . . . ,X(L,0), and thus can

easily fail, as the following example shows.

Example 7.6 (Witch’s hat distribution). Consider a distribution with the following density:

f(x1, x2) ∝
{

(1 − δ)φ(µ,σ2·I)(x1, x2) + δ if x1, x2 ∈ (0, 1)

0 else,
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which is a mixture of a Gaussian and a uniform distribution, both truncated to [0, 1] × [0, 1]. Figure 7.6

illustrates the density. For very small σ2, the Gaussian component is concentrated in a very small area

around µ.

The conditional distribution of X1|X2 is

f(x1|x2) =

{
(1 − δx2

)φ(µ,σ2·I)(x1, x2) + δx2
for x1 ∈ (0, 1)

0 else.

with δx2
=

δ

δ + (1 − δ)φ(µ2,σ2)(x2)
.

Assume we want to estimate P(0.49 < X1,X2 ≤ 0.51) for δ = 10−3, µ = (0.5, 0.5)′, and σ = 10−5

using a Gibbs sampler. Note that 99.9% of the mass of the distribution is concentrated in a very small

area around (0.5, 0.5), i.e. P(0.49 < X1,X2 ≤ 0.51) = 0.999.

Nonetheless, it is very unlikely that the Gibbs sampler visits this part of the distribution. This is due

to the fact that unless x2 (or x1) is very close to µ2 (or µ1), δx2
(or δx1

) is almost 1, i.e. the Gibbs

sampler only samples from the uniform component of the distribution. Figure 7.6 shows the samples

obtained from 15 runs of the Gibbs sampler (first 100 iterations only) all using different initialisations.

On average only 0.04% of the sampled values lie in (0.49, 0.51) × (0.49, 0.51) yielding an estimate of

P̂(0.49 < X1,X2 ≤ 0.51) = 0.0004 (as opposed to P(0.49 < X1,X2 ≤ 0.51) = 0.999).

It is however close to impossible to detect this problem with any technique based on multiple initial-

isations. The Gibbs sampler shows this behaviour for practically all starting values. In figure 7.6 all 15

starting values yield a Gibbs sampler that is stuck in the “brim” of the witch’s hat and thus misses 99.9%

of the probability mass of the target distribution. ⊳
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(b) First 100 values from 15 samples using different

starting values.

(δ = 10−3, µ = (0.5, 0.5)′, and σ = 10−5)

Fig. 7.6. Density and sample from the witch’s hat distribution.

7.2.5 Comparison to i.i.d. sampling and the effective sample size

MCMC algorithms typically yield a positively correlated sample (X(t))t=1,...,T , which contains less infor-

mation than an i.i.d. sample of size T . If the (X(t))t=1,...,T are positively correlated, then the variance of

the average
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Var

(
1

T

T∑

t=1

h(X(t))

)
(7.2)

is larger than the variance we would obtain from an i.i.d. sample, which is Var(h(X(t)))/T .

The effective sample size (ESS) allows to quantify this loss of information caused by the positive

correlation. The effective sample size is the size an i.i.d. would have to have in order to obtain the same

variance (7.2) as the estimate from the Markov chain (X(t))t=1,...,T .

In order to compute the variance (7.2) we make the simplifying assumption that (h(X(t)))t=1,...,T is

from a second-order stationary time series, i.e. Var(h(X(t))) = σ2, and ρ(h(X(t)), h(X(t+τ))) = ρ(τ). Then

Var

(
1

T

T∑

t=1

h(X(t))

)
=

1

T 2




T∑

t=1

Var(h(X(t)))︸ ︷︷ ︸
=σ2

+2
∑

1≤s<t≤T

Cov(h(X(s)), h(X(t)))︸ ︷︷ ︸
=σ2·ρ(t−s)




=
σ2

T 2

(
T + 2

T−1∑

τ=1

(T − τ)ρ(τ)

)
=

σ2

T

(
1 + 2

T−1∑

τ=1

(
1 − τ

T

)
ρ(τ)

)
.

If
∑+∞

τ=1 |ρ(τ)| < +∞, then we can obtain from the dominated convergence theorem4 that

T · Var

(
1

T

T∑

t=1

h(X(t))

)
−→ σ2

(
1 + 2

+∞∑

τ=1

ρ(τ)

)

as T → ∞. Note that the variance would be σ2/TESS if we were to use an i.i.d. sample of size TESS. We can

now obtain the effective sample size TESS by equating these two variances and solving for TESS, yielding

TESS =
1

1 + 2
∑+∞

τ=1 ρ(τ)
· T.

If we assume that (h(X(t)))t=1,...,T is a first-order autoregressive time series (AR(1)), i.e. ρ(τ) =

ρ(h(X(t)), h(X(t+τ))) = ρ|τ |, then we obtain using 1 + 2
∑+∞

τ=1 ρτ = (1 + ρ)/(1 − ρ) that

TESS =
1 − ρ

1 + ρ
· T.

Example 7.7 (Gibbs sampling from a bivariate Gaussian (continued)). In examples 4.4) and 4.5 we ob-

tained for the low-correlation setting that ρ(X
(t−1)
1 ,X

(t)
1 ) = 0.078, thus the effective sample size is

TESS =
1 − 0.078

1 + 0.078
· 10000 = 8547.

For the high-correlation setting we obtained ρ(X
(t−1)
1 ,X

(t)
1 ) = 0.979, thus the effective sample size is

considerably smaller:

TESS =
1 − 0.979

1 + 0.979
· 10000 = 105. ⊳

4 see e.g. Brockwell and Davis (1991, theorem 7.1.1) for details.
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8. Simulated Annealing

8.1 A Monte-Carlo method for finding the mode of a distribution

So far we have studied various methods that allow for appoximating expectations E(h(X)) by ergodic aver-

ages 1
T

∑T
t=1 h(X

(t)
i ). This section presents an algorithm for finding the (global) mode(s) of a distribution1.

In section 8.2 we will extend this idea to finding global extrema of arbitrary functions.

We could estimate the mode of a distribution by the X(t) with maximal density f(X(t)), this is however

a not very efficient strategy. A sample from a Markov chain with f(·) samples from the whole distribution

and not only from the mode(s).

This suggests modifying the distribution such that it is more concentrated around the mode(s). One

way of achieving this is to consider

f(β)(x) ∝ (f(x))
β

for very large values of β.

Example 8.1 (Normal distribution). Consider the N(µ, σ2) distribution with density

f(µ,σ2)(x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
∝ exp

(
− (x − µ)2

2σ2

)
.

It is easy to see that the mode of the N(µ, σ2) distribution is µ. We have that

(
f(µ,σ2)(x)

)β ∝
(

exp

(
− (x − µ)2

2σ2

))β

= exp

(
− (x − µ)2

2σ2/β

)
∝ f(µ,σ2/β)(x).

In other words, the larger β is chosen, the more concentrated the distribution will be around the mode µ.

Figure 8.1 illustrates this idea. ⊳

The result we have obtained of the Gaussian distribution in the above example actually holds in

general. For β → ∞ the distribution defined by the density f(β)(x) converges to a distribution that has

all mass on the mode(s) of f (see figure 8.2 for an example). It is instructive to see informally why this

is the case when considering a discrete random variable with probability density function p(·) and finite

support E. Denote with E∗ the set of modes of p, i.e. p(ξ) ≥ p(x) for all ξ ∈ E∗ and x ∈ E, and with

m := p(ξ) with ξ ∈ E∗. Then

p(β)(x)=
(p(x))β

∑
x∈E∗(p(x))β +

∑
x∈E\E∗(p(x))β

=
(p(x)/m)β

∑
x∈E∗ 1 +

∑
x∈E\E∗(p(x)/m)β

β→+∞−→
{

1/|E∗| if x ∈ E∗

0 ifx 6∈ E∗

1 In this chapter we define the mode(s) of a distribution to be the set of global maxima of the density, i.e.

{ξ : f(ξ) ≥ f(x) ∀x}
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Fig. 8.1. Density of the N(0, 1) raised to increasing powers. The areas shaded in grey represent 90% of the

probability mass.

-2-2-2-2 -1-1-1-1 1111 0000 2222

f(x) (f(x))3 (f(x))9 (f(x))27

xxxx

Fig. 8.2. An arbitrary multimodal density raised to increasing powers. The areas shaded in grey reach from the

5% to the 95% quantiles.
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In the continuous case the distribution is not uniform on the nodes (see Hwang, 1980, for details).

We can use a random-walk Metropolis algorithm to sample from f(β)(·). The probability of accepting

a move from X(t−1) to X would be

min

{
1,

f(β)(X)

f(β)(X(t−1))

}
= min

{
1,

(
f(X)

f(X(t−1))

)β
}

.

Note that this probability does not depend on the (generally unknown) normalisation constant of f(β)(·).
It is however difficult to directly sample from f(β) for large values of β: for β → ∞ the probability of

accepting a newly proposed X becomes 1 if f(X) > f(X(t−1)) and 0 otherwise. Thus X(t) converges to a

local extrema of the density f , however not necessarily a mode of f (i.e. a global extremum of the density).

Whether X(t) gets caught in a local extremum or not, depends on whether we can reach the mode from

the local extrema of the density within one step. The following example illustrates this problem.

Example 8.2. Consider the following simple optimisation problem of finding the mode of the distribution

defined on {1, 2, . . . , 5} by

p(x) =





0.4 for x = 2

0.3 for x = 4

0.1 for x = 1, 3, 5.

Figure 8.3 visualises this distribution. Clearly, the (global) mode of p(x) is at x = 2. Assume we want

to sample from p(β)(x) ∝ p(x)β using a random walk Metropolis algorithm with proposed value X =

X(t−1) + ε with P(ε = ±1) = 0.5 for X(t−1) ∈ {2, 3, 4}, P(ε = +1) = 1 for X(t−1) = 1, and P(ε = −1) = 1

for X(t−1) = 5. In other words, we can either move one to the left, stay in the current value (when the

proposed value is rejected), or move one to the right. Note that for β → +∞ the probability for accepting

a move from 4 to 3 converges to 0, as p(4) > p(3). As the Markov of chain can only move from 4 to 2 only

via 3, it cannot escape the local extremum at 4 for β → +∞. ⊳

1 2 3 4 5

0.1

0.3

0.4

x

p(x)

Fig. 8.3. Illustration of example 8.2

For large β the distribution f(β)(·) is concentrated around the modes, however at the price of being

difficult to sample from: the resulting Markov chain has very poor mixing properties: for large β the

algorithm can hardly move away from a local extremum surrounded by areas of low probability2.

2 The density of such a distribution would have many local extrema separated by areas where the density is

effectively 0.
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The key idea of simulated annealing3 (Kirkpatrick et al., 1983) is to sample from a target distribution

that changes over time: f(βt)(·) with βt → +∞. Before we consider different strategies for choosing the

sequence (βt), we generalise the framework developed so far to finding the global extrema of arbitrary

functions.

8.2 Minimising an arbitrary function

Consider that we want to find the global minimum of a function h : E → R. Finding the global minimum

of H(x) is equivalent to finding the mode of a distribution

f(x) ∝ exp(−H(x)) for x ∈ E,

if such a distribution exists.4. As in the previous section we can raise f to large powers to obtain a

distribution

f(βt)(x) = (f(x))
βt ∝ exp(−βt · H(x)) for x ∈ E.

We hope to find the (global) minimum of H(x), which is the (global) mode of the distribution defined

by fβt
(x), by sampling from a Metropolis-Hastings algorithm. As suggested above we let βt → +∞. This

yields the following algorithm:

Algorithm 8.1 (Simulated Annealing). Starting with X(0) := (X
(0)
1 , . . . ,X

(0)
p ) and β(0) > 0 iterate

for t = 1, 2, . . .

1. Increase β(t−1) to β(t) (see below for different annealing schedules)

2. Draw X ∼ q(·|X(t−1)).

3. Compute

α(X|X(t−1)) = min

{
1, exp

(
−βt(H(X) − H(X(t−1)))

)
· q(X(t−1)|X)

q(X|X(t−1))

}
.

4. With probability α(X|X(t−1)) set X(t) = X, otherwise set X(t) = X(t−1).

If a random walk Metropolis update is used (i.e. X = X(t−1) + ε with ε ∼ g(·) for a symmetric g),

then the probability of acceptance becomes

α(X|X(t−1)) = min
{

1, exp
(
−βt(H(X) − H(X(t−1)))

)}
.

Using the same arguments as in the previous section, it is easy to see that the simulated annealing

algorithm converges to a local minimum of H(·). Whether it will be able to find the global minimum

depends on how slowly we let the inverse temperature β go to infinity.

Logarithmic tempering When choosing βt = log(1+t)
β0

, the inverse temperature increases slow enough that

global convergence results can be established for certain special cases. Hajek (1988) established global

convergence when H(·) is optimised over a finite set and logarithmic tempering with a suitably large

β0 is used.

Assume we choose β0 = ∆H with ∆H := maxx,x′∈E |H(x)−H(x′)|. Then the probability of reaching

state x in the t-th step is

3 The term annealing comes from metallurgy and refers to the technique of letting metal cool down slowly in

order to produce a tougher metal. Taking up this analogy, 1/β is typically referred to as temperature, β as

inverse temperature.
4 In this framework, finding the mode of a density f corresponds to finding the minimum of − log(f(x))
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P(X(t) = x) =
∑

ξ

P(X(t) = x|X(t−1) = ξ)︸ ︷︷ ︸
≥exp(−βt−1∆H)/|E|

P(X(t−1) = ξ) ≥ exp(−βt−1∆H)/|E|

Using the logarithmic tempering schedule we obtain P(X(t) = x) ≥ t/|E| and thus the expected

number of visits to state x is

∞∑

t=0

P(X(t) = x) ≥
∞∑

t=0

t/|E| = +∞.

Thus every state is recurrent. As β increases we however spend an ever increasing amount of time in

the global minima of x.

On the one hand visiting very state x infinitely often implies that we can escape from local minima.

On the other hand, this implies as well that we visit every state x (regardless of how large H(x)

is) infinitely often. In other words, the reason why simulated annealing with logarithmic tempering

works, is that it still behaves very much like an exhaustive search. However the only reason why we

consider simulated annealing is that exhaustive search would be too slow! For this reason, logarithmic

tempering has little practical relevance.

Geometric tempering A popular choice is βt = αt · β0 for some α > 1.

Example 8.3. Assume we want to find the maximum of the function

H(x) =
(
(x − 1)2 − 1

)2
+ 3 · s(11.56 · x2), with s(x) =

{
|x| mod 2 for 2k ≤ |x| ≤ 2k + 1

2 − |x| mod 2 for 2k + 1 ≤ |x| ≤ 2(k + 1)

for k ∈ N0. Figure 8.4 (a) shows H(x) for x ∈ [−1, 3]. The global minimum of H(x) is at x = 0.

We simulated annealing with a geometric tempering with β0 = 1 and βt = 1.001βt−1 and a random

walk Metropolis algorithm with ε ∼ Cauchy(0,
√

0.1). Figure 8.4 (b) shows the first 1,000 iterations of the

Markov chain yielded by the simulated annealing algorithm. Note that when using a Gaussian distribution

with small enough a variance the simulated annealing algorithm is very likely to remain in the local

minimum at x ≈ 1.8. ⊳

Note that there is no guarantee that the simulated annealing algorithm converges to the global mini-

mum of H(x) in finite time. In practise, it would unrealistic to expect simulated annealing to converge to

a global minimum, however in most cases it will find a “good” local minimum.

8.3 Using annealing strategies for imporving the convergence of MCMC

algorithms

As we have seen in the previous chapter, Markov chains sampling form distributions whose components are

separated by areas of low probability typically have very poor mixing properties. We can use strategies very

much like the ones used in the simulated annealing algorithm to bridge these “barriers” of low probability.

The basic idea is to consider distributions f(β)(x) = (f(x))
(β)

for small β (0 < β < 1), as opposed to large

β as with simulated annealing. Choosing β < 1 makes the distribution more “spread out” and thus makes

it easier to move from one part of the domain to another.

Whilst it might be easier to sample from f(β)(·) for β < 1, we are actually not interested in this sample,

but in a sample from f(·) itself (i.e. β = 1). One way to accommodate this is to consider an ensemble of

distributions (f(β1)(·), . . . , f(βr)(·)) with β1 ≤ . . . ≤ βr = 1, and draw Markov chains from each member

of the ensemble. The key idea is to let these chains “interact” by swapping values between neighbouring
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Fig. 8.4. Objective function H(x) from example 8.3 and first 1,000 iterations of the Markov chain yielded by

simulated annealing.
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members, which can be formalised as a Metropolis Hastings algorithm on the augmented distribution

f(x1, . . . , xr) =
∏r

ρ=1 f(βρ)(xρ). The distribution of interest is the marginal distribution of Xr, which has

f(·) as distribution. This setups allows members with small β to “help” members with large β to cross

barriers of low probability, and thus can considerably improve the mixing properties. Chapter 10 of (Liu,

2001) gives a more detailed overview over such approaches.
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9. Hidden Markov Models

Hidden Markov Models (HMMs) are a broad class of models which have found wide applicability in fields

as diverse as bioinformatics and engineering. We introduce them briefly here as a broad class of Monte

Carlo algorithms have been developed to deal with inference in models of this sort. HMMs will be covered

in detail in the Graphical Models lecture course; this introduction is far from complete and is intended only

to provide the background essential to understand those Monte Carlo techniques. An enormous amount

of research has gone into inference in models of this sort, and is ongoing today. Indeed, an extensive

monograph summarising the field was published recently (Cappé et al., 2005).

We shall take HMMs to be a class of models in which an underlying Markov process, (Xt) (usually

termed either the state or signal process) forms the object of inference, whilst a related process, (Yn)

(usually known as the observation process), is observed and provides us with information about the

process of interest. In order for such a pair of processes to form an HMM, they must have the conditional

independence properties illustrated in figure 9.1. That is, the state process is a Markov chain so the

distribution of Xn is, conditional upon Xn−1 independent of all previous values of X and the distribution

of each element of the observation process depends only upon the value of the state process at that time

(more formally, P(Yn ∈ A|X1:n, Y1:n−1) ≡ P(Yn ∈ A|Xn)).

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Fig. 9.1. The conditional independence structure of the first few states and observations in a Hidden Markov

Model.

The term State-Space Model (SSM) is more popular in some application areas. Sometimes a distinction

is made between the two, with HMMs being confined to the class of models in which the hidden states

take values in a discrete set and SSMs including the case in which the hidden process takes values in
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a continuous space (that is, whether the underlying Markov chain lies in a discrete or continuous state

space); we will not make this distinction here.

It seems clear that a great many different problems in statistics, signal processing and related areas

can be cast into a form based upon the HMM. Essentially, whenever one has a problem in which one

wishes to perform inference as observations arrive (typically in real time) this is the first class of models

which one considers using. It is a tribute to the flexibility and descriptive power of such models that it

is relatively unusual for a more complex model to be required in order to capture the key properties of

imperfectly-observed discrete time processes.

Before considering the particular inferential problems which occur most frequently when dealing with

such models, it is worth noticing the particular feature of these models which distinguishes estimation

and inference tasks from those considered more generally in the statistics literature, and which makes the

application of standard techniques such as MCMC inappropriate much of the time. That feature is the

particular temporal character of the models, and those things which are typically inferred in them. The

model is designed to capture the essence of systems which move from one state to another, generating an

observation after each move. Typically, one receives the observations generated by these systems in real

time and wishes to estimate the state or other quantities in real time: and this imposes the particular

requirement that the computational cost of the estimates remains fixed and is not a function of the size

of the data set (otherwise increasing computational power will be required every time an observation is

received). It is for this reason that the HMM is considered here, and a collection of popular Monte Carlo

techniques for performing inference in systems of this type will be introduced in chapter 10.

In order to illustrate the broad applicability of this framework, and to provide some intuition into the

nature of the model, it is interesting to consider some examples.

9.1 Examples

9.1.1 Tracking

Arguably the canonical example of the HMM is tracking. The states in the HMM comprise a vector of

coordinates (which may include information such as velocity and acceleration as well as physical position,

or additional information such as which type of object it is) for some object. The transitions of the Markov

chain correspond to a dynamic model for that object, and the distribution of the observations conditional

upon the state vector correspond to the measurement model encompassing systematic and random errors.

As a definite example, consider something known as the the two dimensional (almost) constant velocity

model. The state vector contains the position and velocity of an object in two dimension:

Xt =




sx

sy

ux

uy




Xt+1 =




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1




Xt + Wt

where ∆t is the measurement interval and Wt is an independent random variable which allows for variation

in velocity. An additive error model is typically assumed in this type of application, so, Yt = Xt +Vt where

Vt is an independent random variable with a distribution appropriate to describe measurement noise.
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9.1.2 Statistical Signal Processing

Much of modern signal processing is model based, and estimates of signal parameters are obtained using

statistical methods rather than more traditional signal processing techniques. One example might be

attempting to infer an audio signal given a model for the time sequence Xt corresponding to audio

amplitude and a measurement model which allows for a number of forms of noise. There are innumerable

occurrences of models of this type.

9.2 State Estimation: Optimal Filtering, Prediction and Smoothing

Perhaps the most common inference problem which occurs with HMMs is the estimation of the current

state value (or the sequence of states up to the present time) based upon the sequence of observations

observed so far.

Bayesian approaches are typically employed as they provide a natural and flexible approach to the

problem. In such an approach, one attempts to obtain the conditional distribution of the state variables

given the observations. It is convenient to assume that both the state transition (i.e. the Markov kernel)

and the conditional distributions of the measurements (the likelihood) admit densities with respect to

a suitable version of Lebesgue measure. Writing the density of Xt+1 conditional upon knowledge that

Xt = xt as ft+1(·|xt) and that of the likelihood as gt+1(yt+1|·), and interpreting p(x1:1|y1:0) as some prior

distribution p(x1), we may write the density of the distribution of interest via Bayes rule in the following

form:

p(x1:t|y1:t) ∝ p(x1:t|y1:t−1)gt(yt|xt)

= p(x1:t−1|y1:t−1)ft(xt|xt−1)gt(yt|xt)

This problem is known as filtering and p(x1:t|y1:t) is known as the smoothing distribution. In some

literature this distribution is known as the filtering distribution, here that term is reserved for the final

time marginal p(xt|y1:t). It is usual to decompose this recursive solution into two parts. The first is termed

prediction and corresponds to the estimation of the distribution of the first n states given only n − 1

observations. The second is usually termed the update step (or sometimes, the data update step) and it

involves correcting the predicted distribution to take into account the next observation:

p(x1:t|y1:t−1) = p(x1:t−1|y1:t−1)ft(xt|xt−1) Prediction

p(x1:t|y1:t) =
p(x1:t|y1:t−1)gt(yt|xt)∫

p(x1:t|y1:t−1)gt(yt|xt)dx1:t
Update.

Certain other distributions are also of interest. These can be divided into smoothing distributions, in

which one wishes to estimate the distribution of some sequence of states conditional on knowledge of the

observation sequence up to some stage in the future, and prediction distributions, in which one wishes to

estimate the distribution of some group of future states conditional on knowledge of the observations up

to the present.

Formally, smoothing can be considered to be the estimation of p(xl:k|y1:t) when l ≤ k ≤ n and such

estimates can all be obtained from the principle smoothing distribution:

p(xl:k|y1:t) =

∫
p(x1:t|y1:t)dx1:l−1dxk+1:t.
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Similarly, prediction can be viewed as the estimation of p(xl:k|y1:t) when n ≤ k and l ≤ k. Noticing that

when k ≥ n,

p(x1:k|y1:t) = p(x1:t|y1:t)

k∏

j=t+1

fj(xj |xj−1)

it is analytically straightforward to obtain any prediction density by marginalisation (that is integration

over the variables which are not of interest) of these densities.

Whilst this appears to be a solution to the problem of estimating the distributions of the state variables,

and hence of estimating those parameters using either the posterior mean or the maximum a posteriori

estimator, in practice the problem is far from being solved. The integrals which appear in the update step

in particular is generally intractable.

In the linear Gaussian case (in which the distribution of Xt|Xt−1 and Yt|Xt can both be treated as

Gaussian distributions centred at a point obtained by a linear transformation of the conditioning variable)

it is possible to perform the integral analytically and hence to obtain closed form expressions for the

distribution of interest. This leads to the widely used Kalman filter which is applicable to an important

but restricted collection of problems. Various approaches to obtain approximate solutions by extensions of

this approach in various ways (propagating mixtures of Gaussians or using local linearisation techniques,

for example) are common in the engineering literature. In small discrete state spaces the integral is replaced

with a summation and it becomes formally possible to exactly evaluate the distributions of interest. Indeed,

a number of algorithms for performing inference efficiently in discrete HMMs do exist, but these tend to

become impractical when the state space is large.

The most common approach to dealing with this estimation problem in general models is via a Monte

Carlo technique which is often termed the particle filter but which is referred to in this course by the more

general term of sequential Monte Carlo. These techniques will be introduced in the next chapter. The

approach has a simple motivation. We wish to calculate, recursively in time, a sequence of distributions

each of which can be obtained from the previous distribution if it is possible to carry out particular integrals

with respect to that distribution. In order to approximate the recursion, it is possible to approximate each

distribution with a collection of weighted samples and, using this collection to calculate the necessary

integrals, to propagate this collection of samples through time in such a way that it approximates each of

the distributions of interest one after another.

9.3 Static Parameter Estimation

Thus far, it has been assumed that the system dynamics and the measurement system are both exactly

characterised. That is, it has been assumed that given xt, the distributions of Xt+1 and Yt are known. In

practice, in many situations this will not be the case. As in any inference problem, it is necessary to have

some idea of the structure of the system in which inference is being performed, and the usual approach to

incorporating some degree of uncertainty is the introduction of some unknown parameters. If the system

dynamics or measurement distributions depend upon some collection of unknown parameters θ, then the

problem of state estimation, conditional upon a particular value of those parameters is precisely that

introduced in section 9.2.

If θ is not known then Bayesian inference is centred around the approximation of the sequence of

distributions:

p(x1:t, θ|y1:t) ∝ p(θ)p(x1:t|θ)p(y1:t|x1:t, θ).
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In some instances, the latent state sequence is not of statistical interest and one is really interested in

approximation of the marginal distributions:

p(θ|y1:t) =

∫
p(x1:t, θ|y1:t)dx1:t,

however, this integral is generally intractable and it is typically necessary to obtain Monte Carlo estimates

of p(x1:t, θ|y1:t) and to use the approximation to p(θ|y1:t) provided by these samples.

Estimation of static parameters appears a relatively simple problem, and one which does not much

increase the dimensionality of the space of interest. Indeed, in scenarios in which one is presented with a

fixed quantity of data MCMC algorithms are able to provide approximation to the distribution of interest

this is the case – numerous algorithms for estimating parameters in latent variable models by various

mechanisms exist and can be shown to work well. The difficulty is that inference problems of practical

interest generally involve sequential estimation of the value of the parameters based upon the collection of

observations available at that time. In order to do this, it is necessary to develop an efficient mechanism

for updating the estimate of p(θ, x1:t−1|y1:t) to provide an estimate of p(θ, x1:t|y1:t).
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10. Sequential Monte Carlo

This chapter is concerned with techniques for iteratively obtaining samples from sequences of distribu-

tions by employing importance sampling, and resampling, techniques. The principle application of these

techniques is the approximate solution of the filtering, prediction and smoothing problems in HMMs (see

chapter 9).

10.1 Importance Sampling Revisited

Recall from section 2.3, that importance sampling is a technique for approximating integrals under one

probability distribution using a collection of samples from another, instrumental distribution. This was

presented using the importance sampling identity that, given a distribution of interest π, and some sam-

pling distribution µ, over some space E, and any integrable function h : E → R

Eπ(h(X)) =

∫
π(x)h(x) dx =

∫
µ(x)

π(x)

µ(x)︸ ︷︷ ︸
=:w(x)

h(x) dx =

∫
µ(x)w(x)h(x) dx = Eµ(w(X) · h(X)), (10.1)

if µ(x) > 0 for (almost) all x with π(x) · h(x) 6= 0.

The strong law of large numbers was then employed to verify that, given a collection of iid samples,

{Xi}N
i=1, distributed according to µ, the empirical average of w · h evaluated at the sampled values Xi

converges, with probability 1, to the integral of h under the target distribution, π.

10.1.1 Empirical Distributions

It is convenient to introduce the concept of random distributions in order to consider some of these things

in further detail and to motivate much of the material which follows. If we have a collection of points

{xi}N
i=1, in E, then we may associated the following distribution over E with those points:

ηN (x) =
1

N

N∑

i=1

δxi
(x),

where, for any point x ∈ E, δx is the singular distribution which places all of its mass at that point. A

rigorous treatment requires measure-theoretic arguments, but is is possible – albeit not entirely rigorous

– to define this distribution in terms of its integrals: for any bounded measurable function:, h : E → R,
∫

h(y)δx(y) = h(x).
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Given a collection of points and associated positive, real-valued weights, {xi, wi}N
i=1, we can also define

another empirical distribution:

η̃N (x) =

N∑
i=1

wiδxi
(x)

N∑
i=1

wi

,

where the normalising term may be omitted if the collection of weights is, itself, properly normalised.

When those collections of points are actually random samples, and the weights are themselves random

variables (typically deterministic functions of the points with which they are associated), one obtains a

random distribution (or random measure). These are complex structures, a full technical analysis of which

falls somewhat outside the scope of this course, but we will make some limited use of them here.

Within this framework, one could consider, for example, the importance sampling identity which was

introduced above in terms of the empirical measure µN (x) associated with the collection of samples from

µ; we can approximate integrals with respect to µ by integrals with respect to the associated empirical

measure: ∫
h(x)µ(x)dx ≈

∫
h(x)µN (x)dx.

This approximation is justified by asymptotic results which hold as the number of samples tends to

infinity, particularly the law of large numbers and related results, including variants of the Glivenko-

Cantelli theorem.

If we consider propagating this approximation through (10.1), then we find that:

Eπ(h(X)) =

∫
π(x)h(x) dx =

∫
µ(x)

π(x)

µ(x)
h(x) dx =

∫
µ(x)w(x)h(x) dx ≈ EµN (w(X) · h(X))

Eπ(h(X)) =

∫
π(x)h(x) dx =

∫
µ(x)

π(x)

µ(x)
h(x) dx ≈

∫
µN (x)w(x)h(x) dx = EµN (w(X) · h(X))

Eπ(h(X)) =

∫
π(x)h(x) dx ≈

∫
µN (x)

π(x)

µ(x)︸ ︷︷ ︸
=:πN (x)

h(x) dx =

∫
µN (x)w(x)h(x) dx = EµN (w(X) · h(X)).

Perhaps unsurprisingly, the approximation amounts, precisely, to approximating the target distribution,

π, with the random distribution

πN (x) =
N∑

i=1

WiδXi
(x),

where Wi := w(Xi) = π(Xi)/µ(Xi) are importance weights. Note that we have assumed that the impor-

tance weights are properly normalised here; the self-normalised version of importance sampling can be

represented in essentially the same way.

This illustrates a particularly useful property of the empirical distribution approach: it is often possible

to make precise the nature of the approximation which is employed at one step of an algorithm and then

to simply employ the empirical distribution in place of the true distribution which it approximates and in

so doing to obtain the corresponding approximation at the next step of the algorithm. This property will

become clearer later, when some examples have been seen.

10.1.2 HMMs

The remainder of this chapter is concerned with inference in HMMs, carried out by propagating forward

an approximation to the distributions of interest using techniques based upon importance sampling. As

with many Monte Carlo methods, it is often simpler to interpret the methods presented here as techniques
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for approximating distributions of interest, rather than particular integrals. That is, we shall view these

approaches as algorithms which approximate the filtering distributions p(xn|y1:n) directly, rather than

approaches to approximate
∫

h(xn)p(xn|y1:n)dxn. These algorithms will have a common character: they

will each involve propagating a weighted empirical distribution forward through time according to some

sampling scheme in such a way that at each time it provides an approximation to the distributions of

interest.

Although many of the techniques which follow are traditionally presented as being related but distinct

methods, it should be understood that it is typically straightforward to combine elements of the various

different approaches to obtain a single cohesive algorithm which works well in a particular setting. Indeed,

it is only in relatively simple settings that any one of the basic techniques presented below work well, and

it is the combination of elements of each of these approaches which is essential to obtain algorithms which

perform well in interesting problems.

It will be convenient to refer to the smoothing and filtering distributions of interest using the notation:

πt(x1:t) := p(x1:t|y1:t−1)

π̂t(x1:t) := p(x1:t|y1:t)

πt(xt) := p(xt|y1:t−1) =

∫
πt(x1:t)dx1:t−1

π̂t(xt) := p(xt|y1:t) =

∫
π̂t(x1:t)dx1:t−1.

10.2 Sequential Importance Sampling

The basis of sequential importance sampling techniques, is the following idea which allows importance

samples to be obtained from a sequence of distributions defined on increasing spaces to be obtained

iteratively using a single collection of samples, which are termed particles. Given a sequence of spaces,

E1, E2, . . . and a sequence of distributions π1 on E1, π2 on E1×E2, . . . each of which is to be approximated

via importance sampling, it is useful to make use of the following. Consider only the first two distributions

in the first instance. Given a function h2 : E1×E2 → R, beginning with the standard importance sampling

identity:

∫
h(x1, x2)π2(x1, x2)dx1dx2 =

∫
h(x1, x2)

π2(x1, x2)

µ(x1, x2)
µ(x1, x2)dx1dx2

=

∫
h(x1, x2)

π2(x1, x2)

µ(x2|x1)µ(x1)
µ(x1)µ(x2|x1)dx1dx2

=

∫
h(x1, x2)

π2(x1, x2)

µ(x2|x1)π1(x1)

π1(x1)

µ(x1)
µ(x1)µ(x2|x1)dx1dx2

The last equality illustrates the key point: by decomposing the importance weight into two components

in this manner, we are able to perform our calculations sequentially. We first draw a collection of samples

{X(i)
1 }N

i=1 according to a distribution µ and then set their importance weights W
(i)
1 ∝ π1(X

(i)
1 )/µ(X

(i)
1 )

and thus obtain a weighted collection of particles which target the distribution π1. In order to obtain a

weighted collection of particles which target π2, we simply extend each of these particles according to the

conditional distribution implied by µ:

X
(i)
2 ∼ µ(·|X(i)

1 ),
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and then set the importance weights taking advantage of the above decomposition:

W
(i)
2 ∝ W

(i)
1 W̃

(i)
2 W̃

(i)
2 =

π2((X
(i)
1 ,X

(i)
2 ))

π1(X
(i)
1 )µ(X

(i)
2 |X(i)

1 )
.

It is usual to refer to the W̃
(i)
2 as incremental weights in this context. Thus we obtain a weighted sample

which targets π1, {X(i)
1 ,W1}N

i=1} and subsequently one which targets π2, with the minimum amount of ad-

ditional sampling, {(X
(i)
1 ,X

(i)
2 ),W

(i)
2 }N

i=1 in which π1(X1)×µ(X2|X1) is essentially used as an importance

distribution for approximating π2.

This procedure can be applied iteratively, leading to a sequence of weighted random samples which can

be used to approximate a sequence of distributions on increasing state spaces. This scenario is precisely

that faced in the smoothing scenario and is closely related to the filtering problem. In what follows,

techniques for sequentially approximating the filtering and smoothing distributions will be presented.

10.2.1 The Natural SIS Filter

The first approach which one might consider is to use only samples from the prior distribution and the state

transition densities together with importance sampling techniques in order to approximate the filtering,

smoothing and one-step-ahead prediction distributions of interest. This approach is particularly natural

and easy to understand, although we shall subsequently see that it has a number of shortcomings and

more sophisticated techniques are generally required in practice.

As with all sequential importance sampling algorithms, the principle underlying this filter is that the

empirical measure associated with a collection of weights and samples which approximates the filtering

distribution at time t may be propagated forward in a particularly simple manner in order to obtain

approximations to the predictive and filtering distributions at time t + 1.

Given a collection of samples and associated weights, which we shall term particles at time t,

{X(i)
1:t , Ŵ

(i)
t } the associated empirical measure,

π̂N
NSIS,t(x1:t) =

N∑

i=1

ŴiδX
(i)
1:t

(x1:t),

provides an approximation to π̂t, an approximation to πt+1 can be obtained. We know that,

πt+1(x1:t+1) = π̂t(x1:t)ft+1(xt+1|xt),

and so one would like to use the approximation

π̂N
NSIS,t(x1:t)ft+1(xt+1|xt) =

N∑

i=1

δ
X

(i)
1:t

(x1:t)ft+1 (xt+1|xt) .

However, this would present us with a distribution which it is difficult to propagate forward further, and

with respect to which it is difficult to calculate integrals. Instead, one might consider sampling from this

distribution. As we will see later, this is the approach which is employed in some algorithms. In the present

algorithm, a little more subtlety is employed: we have a mixture representation and so could use stratified

sampling techniques to reduce the variance. Taking this to its logical conclusion, the simplest approach is

to retain the mixture weights and sample a single value from each mixture component:

X
(i)
t+1 ∼ ft+1

(
·|X(i)

t

)
,

leading to the empirical measure,
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πN
NSIS,t+1(x1:t+1) =

N∑

i=1

W
(i)
t δ

X
(i)
1:t+1

(x1:t+1).

We can obtain an approximation to π̂t+1 by substituting πN
NSIS,t+1 directly into the recursion:

π̂t+1(x1:t+1) =
πt+1(x1:t+1)gt+1(yt+1|xt+1)∫

πt+1(x′
1:t+1)gt+1(yt+1|x′

t+1)dx′
1:t+1

⇒ π̂N
NSIS,t+1(x1:t+1) =

πN
NSIS,t+1(xt+1)gt+1(yt+1|xt+1)∫

πN
NSIS,t+1(x′

t+1)gt+1(yt+1|x′
t+1)dx′

t+1

=

N∑
i=1

W
(i)
t gt+1(yt+1|X(i)

t+1)δ
X

(i)
t+1

(x)

N∑
i=1

W
(i)
t gt+1(yt+1|X(i)

t+1)

=

N∑

i=1

W
(i)
t+1δ

(i)
Xt+1

(x),

where the updated importance weights are:

W
(i)
t+1 =

W
(i)
t gt+1(yt+1|X(i)

t+1)
N∑

j=1

W
(j)
t gt+1(yt+1|X(j)

t+1)

.

Note, that in practice these weights can be updated efficiently by setting Ŵ
(i)
t+1 = W

(i)
t gt+1(yt+1|X(i)

t+1)

and then setting W
(i)
t+1 = Ŵ

(i)
t+1/

∑N
j=1 Ŵ

(j)
t+1.

If one can obtain a collection of weighted particles which target π1 – which can typically be achieved

by sampling from π1 and setting all of the weights equal to 1/N – then this filter provides, recursively,

weighted collections of particles from the smoothing distribution. As a byproduct, the filtering distribution,

π̂t(Xt), and the one-step-ahead predictive distribution, πt(Xt) can also be approximated using the same

particle set:

πN
NSIS,t(xt) =

N∑

i=1

Wt−1δX
(i)
t

(xt)

π̂N
NSIS,t(xt) =

N∑

i=1

WtδX
(i)
t

(xt).

Algorithm 1 provides a formal algorithm specification.

Algorithm 1 A Natural SIS Filter
1: Set t = 1.

2: For i = 1 : N , sample X
(i)
1 ∼ π1(·).

3: For i = 1 : N , set W
(i)
1 ∝ g1(y1|X(i)

1 ). Normalise such that
N
P

i=1

W
(i)
1 = 1.

4: t← t + 1

5: For i = 1 : N , sample X
(i)
t ∼ ft(·|X(i)

t=1).

6: For i = 1 : N , set W
(i)
t ∝W

(i)
t−1gt(yt|X(i)

t ). Normalise such that
N
P

i=1

W
(i)
t = 1.

7: The smoothing, filtering and predictive distributions at time t may be approximated with

π̂N
NSIS,t =

N
X

i=1

WtδX
(i)
1:t

, π̂N
NSIS,t =

N
X

i=1

WtδX
(i)
t

and πN
NSIS,t =

N
X

i=1

Wt−1δX
(i)
t

, respectively.

8: Go to step 4.
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By way of illustration, we consider applying the filter to a particularly simple HMM, in which Xt ∈ R,

and:

X1 ∼ N(0, 1)

Xt|Xt−1 = xt−1 ∼ N(0.9xt−1 + 0.7, 0.25)

Yt|Xt = xt ∼ N(xt, 1).

This system is so simple that it can be solved analytically (in the sense that the distributions of interest

are all Gaussian and a recursive expression for the parameters of those Gaussians may be derived straight-

forwardly), however, it provides a simple illustration of a number of important phenomena when the filter

is applied to it.

24 states and their associated observations were generated by sampling directly from the model. Figure

10.1 shows the true states, the observations and the mean an 90% confidence interval for the state estimate

obtained by using the filtering distribution obtained at each time in order to estimate the state at that

time. While figure 10.2 shows the true states, the observations and the mean and 90% confidence interval

associated with each state using the approximate smoothing distribution at time t = 24.

These two figures appear to illustrate the behaviour that would be expect, and to show good perfor-

mance. In both instances, these graphs suggest that the empirical measures appear to provide a reasonable

description of the distribution of the state sequence. It is also apparent that, by incorporating information

from future observations as well as the past, the smoother is able to reduce the influence of occasional

outlying observations.
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90% Confidence Bounds

Fig. 10.1. Toy example: the true state and observation sequence, together with natural SIS filtering estimates.
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Fig. 10.2. Toy example: the true state and observation sequence, together with natural SIS smoothing estimates.

However, it is always important to exercise caution when considering simulation output. In order to

illustrate how the filter is actually behaving, it is useful to look at a graphical representation of the approx-

imate filtering and prediction distributions produced by the algorithm. Figure 10.3 shows the location and

weights of the particles at for values of t. Note that this type of plot, which is commonly used to illustrate

the empirical measure associated with a weighted collection of samples, does not have quite the same

interpretation as a standard density plot. One must consider the number of particles in a region as well as

their weights in order to associate a probability with that region. The first few plots show the behaviour

that would be expected: the system is initialised with a collection of unweighted samples which are then

weighted to produce an updated, weighted collection. For the first few time-steps everything continues as

it should. The bottom half of the figure illustrates the empirical measures obtained during the twelfth and

twenty-fourth iterations of the algorithm, and here there is some cause for concern. It appears that, as

time passes, the number of particles whose weight is significantly above zero is falling with each iteration,

by the twenty-fourth iteration there are relatively few samples contributing any significant mass to the

empirical measure.

In order to investigate these phenomenon, it is useful to consider a very similar model in which the

observations are more informative, and there is a greater degree of variability in the system trajectory:

X1 ∼ N(0, 1)

Xt|Xt−1 = xt−1 ∼ N(0.9xt−1 + 0.7, 1)

Yt|Xt = xt ∼ N(xt, 0.1).
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Fig. 10.3. Some predictive and filtering measures obtained via the natural SIS filter.
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Fig. 10.4. Toy example: the true state and observation sequence, together with natural SIS filtering estimates.
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Fig. 10.5. Toy example: the true state and observation sequence, together with natural SIS smoothing estimates.



106 10. Sequential Monte Carlo

Figure 10.4 shows the filtering estimate of the trajectory of this system, while figure 10.5 illustrates

the smoothed estimate. A selection of the associated empirical distributions are shown in figure 10.6. In

the case of this example, it is clear that there is a problem.

10.2.2 Weight Degeneracy

The problems which are observed with the natural SIS filter are an example of a very general phenomenon

known as weight degeneracy. Direct importance sampling on a very large space is rarely efficient as the

importance weights exhibit very high variance. This is precisely the phenomenon which was observed in

the case of the SIS filter presented in the previous section.

In order to understand this phenomenon, it is useful to introduce the following technical lemma which

relates the variance of a random variable to its conditional variance and expectation (for any conditioning

variable). Throughout this section, any expectation or variance with a subscript corresponding to a random

variable should be interpreted as the expectation or variance with respect to that random variable.

Lemma 10.1 (Law of Total Variance). Given two random variables, A and B, on the same probability

space, such that Var (A) < ∞, then the following decomposition exists:

Var (A) = EB [VarA (A|B)] + VarB (EA [A|B]) .

Proof. By definition, and the law of total probability, we have:

Var (A) = E
[
A2
]
− E [A]

2

= EB

[
EA

[
A2|B

]]
− EB [EA [A|B]]

2
.

Considering the definition of conditional variance, and then variance, it is clear that:

Var (A) = EB

[
VarA (A|B) + EA [A|B]

2
]
− EB [EA [A|B]]

2

= EB [VarA (A|B)] + EB

[
EA [A|B]

2
]
− EB [EA [A|B]]

2

= EB [VarA (A|B)] + VarB (EA [A|B]) .

�

For simplicity, consider only the properly normalised importance sampling approach in which the

normalising constant is known and used, rather than using the sum of the weights to renormalise the

empirical measure. Consider a target distribution on E = E1 × E2, and some sampling distribution µ on

the same space. We may decompose the importance weight function as:

W2(x1, x2) =
π(x1, x2)

µ(x1, x2)

=
π(x1)

µ(x1)︸ ︷︷ ︸
=:W1(x1)

π(x2|x1)

µ(x2|x1)︸ ︷︷ ︸
=:fW2(x2|x1)

We are now in a position to show that the variance of the importance weights over E is greater

than that which would be obtained by considering only the marginal distribution over E1. The following

variance decomposition, together with lemma 10.1 provide the following equality:

Var (W2) = Var
(
W1(X1)W̃2(X2|X1)

)

= VarX1

(
EX2

[
W1(X1)W̃2(X2|X1)|X1

])
+ EX1

[
VarX2

(
W1(X1)W̃2(X2)|X1

)]
.
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Fig. 10.6. Some predictive and filtering measures obtained via the natural SIS filter.
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Noting that W1(X1) is a deterministic function of X1, we obtain:

Var (W2) = VarX1


W1(X1) EX2

[
W̃2(X2|X1)|X1

]

︸ ︷︷ ︸
1


+ EX1

[
W1(X1)2VarX2

(
W̃2(X2)|X1

)]

= VarX1
(W1(X1)) + EX1

[
W1(X1)2VarX2

(
W̃2(X2)|X1

)]
≥ Var (W1(X1)) .

The final inequality holds as W1(X1)2 and VarX2

(
W̃2(X2)|X1

)
non-negative functions. Indeed, equal-

ity is achieved only if the weight function is constant over the support of X2, a situation which is somewhat

uncommon.

This tells us, then, that there is a problem with the sequential importance sampling approach proposed

above: the variance of the importance weights will increase with every iteration1 and consequently, the

quality of the estimators which the empirical measure provides will decrease as time progresses.

10.2.3 A More General Approach

The first approach to solving the problem of weight degeneracy or, at least, reducing its severity is to

directly reduce the variance of the incremental importance weights. In order to attempt to do this, it

is first necessary to consider a more general formulation of sequential importance sampling than the

“natural” approach considered thus far.

Whilst there is a pleasing simplicity in iteratively approximating first the predictive and then the

filtering/smoothing distributions, there is no need to do this in practice. It is often sufficient to obtain a

sequence of measures which approximate the filtering/smoothing distributions – indeed, from these one

can also form an estimate of the predictive distribution if one is required. With this perspective, the

sequential importance sampling approach is this: given a weighted collection of samples {W (i)
t ,X

(i)
1:t}N

i=1,

which target the distribution π̂t, how can we obtain a collection of particles which target π̂t+1?

The answer to this question becomes apparent very quickly if the problem is looked at from the right

angle. We have a collection of samples {X(i)
1:t}N

i=1 from some distribution µ
(i)
t , and a collection of importance

weights, W
(i)
t = π̂t(X1:t)/µt(X1:t). If we extend these samples, by sampling X

(i)
t+1 ∼ qt+1(·|Xt), and wish

to weight the collection {X(i)
1:t+1}N

i=1 such that it targets π̂t+1, we have:

W
(i)
t+1 =

π̂t+1(X
(i)
1:t+1)

µt(X
(i)
1:t)qt+1(X

(i)
t+1|X

(i)
t )

,

and this leads immediately to the iterative decomposition

W
(i)
t+1 =

π̂t(X
(i)
1:t)

µt(X
(i)
1:t)

π̂t+1(X
(i)
1:t+1)

π̂t(X
(i)
1:t)qt+1(X

(i)
t+1|X

(i)
t )

=W
(i)
t

π̂t+1(X
(i)
1:t+1)

π̂t(X
(i)
1:t)qt+1(X

(i)
t+1|X

(i)
t )

=W
(i)
t

π̂t+1(X
(i)
t )

π̂t(X
(i)
t )

ft+1(X
(i)
t+1|X

(i)
t )gt+1(yt+1|X(i)

t+1)

qt+1(X
(i)
t+1|X

(i)
t )

1 Actually, this is not quite true. We have not considered the effect of renormalising importance weights here.

It is evident that, at least asymptotically (in the number of particles) such normalisation has no effect on the

outcome. A detailed analysis lends little additional intuition.
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It is immediately clear that using a proposal distribution qt+1(xt+1|xt−1) ∝ ft+1(xt+1|xt)gt+1(yt+1|xt)

will minimise the variance of the importance weights. Thus, this is clearly the proposal distribution which

minimises the variance of the incremental importance weights and hence, in that sense, is optimal.

All that this result tells us is that better performance will be expected if we take observations into

account via the proposal distribution rather than solely via importance weighting. This is consistent with

what we know about standard importance sampling: the best results are obtained when the proposal

distribution matches the target distribution as closely as possible.

Initially, this result may seem rather formal: in general, it will not be possible to sample from this

optimal proposal distribution. However, knowledge of its form may be used to guide the design of tractable

distributions from which samples can easily be obtained and it is often possible to obtain good approxima-

tions of this distribution in quite complex realistic problems. Furthermore, this more general method has

another substantial advantage over the natural approach considered above: it is only necessary to be able

to evaluate the density of the transition probabilities pointwise up to a normalising constant whilst in the

natural case it was necessary to be able to sample from that density. When using an approximation to the

optimal importance variance, of course, the variance of the incremental importance weights is non-zero and

the variance of the weights still increases over time. Unsurprisingly, using a better importance distribution

reduces the variance but does not eliminate it. In the context of filtering, this means that using a close to

optimal proposal distribution increases the time-scale over which the distributions of interest remain well

characterised: eventually, degeneracy still occurs.

Algorithm 2 A General SIS Filter
1: Set t = 1.

2: For i = 1 : N , sample X
(i)
1 ∼ q1(·).

3: For i = 1 : N , set W
(i)
1 ∝ π1(X

(i)
1 )g1(y1|X(i)

1 )/q1(X
(i)
1 ). Normalise such that

N
P

i=1

W
(i)
1 = 1.

4: t← t + 1

5: For i = 1 : N , sample X
(i)
t ∼ qt(·|X(i)

t−1).

6: For i = 1 : N , set W
(i)
t ∝W

(i)
t−1ft(X

(i)
t |X(i)

t−1)gt(yt|X(i)
t )/qt(X

(i)
t |X(i)

t−1). Normalise such that
N
P

i=1

W
(i)
t = 1.

7: The smoothing and filtering distributions at time t may be approximated with

π̂N
SIS,t =

N
X

i=1

WtδX
(i)
1:t

, and π̂N
SIS,t =

N
X

i=1

WtδX
(i)
t

, respectively.

8: Go to step 4.

10.3 Sequential Importance Resampling

Having established that there is a fundamental problem with SIS, the question of how to deal with that

problem arises. The difficulty is that the variance of the importance weights increases over time; eventually,

the associated particle system and empirical measure provide an inadequate description of the distributions

of interest.

The variance in the importance weights is something which accumulates over a number of iterations:

this suggests that that what is required is a mechanism for resetting the importance weights regularly to

prevent this accumulation of variance. It is not immediately apparent that there is a mechanism by which

this can be accomplished given that we are unable to sample directly from the distributions of interest
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in any degree of generality. However, when concerned with approximating only the filtering distributions,

(Gordon et al., 1993) developed the following approach. Under suitable regularity conditions, the law of

large numbers tells us that for importance sampling:

lim
N→∞

∫
ϕ(xt)π̂

N
SIS,t(xt)dxt →

∫
ϕ(xt)π̂t(xt)dxt,

for any suitably regular test function ϕ and so, any consistent estimator of the left hand side will provide

a consistent estimate of the integral of interest.

We wish to obtain an unweighted collection of particles which approximate the distribution π̂N
SIS,t(xt)

in some sense: this is exactly what we do in simple Monte Carlo. In order to approximate the integral

on the left hand side, we can apply a crude Monte Carlo approximation, sampling, for i = 1 to N ′,

X̃
(i)
t ∼ π̂N ′

SIS,t and then using the simple Monte Carlo estimate of the integral. It is then straightforward

to employ the law of large numbers to verify that:

lim
N ′→∞

1

N ′

N ′∑

i=1

ϕ(X̃
(i)
t ) →

∫
ϕ(xt)π̂

N
SIS,t(xt)dxt

For simplicity, we assume that we sample N times from the empirical distribution in order to obtain our

new distribution: N ′ = N – this simplifies the computational implementation as well as analysis. Note

that it is not possible to simply increase the number of particle samples at every iteration, although it

initially seems advisable to do so to compensate for the additional Monte Carlo error introduced by the

additional sampling step. Whilst it would, indeed, reduce the variance it would also lead to an exponen-

tially increasing computational cost with the number of particles used rapidly exceeding the number that

available computing facilities are able to deal with. Instead, it is generally recommended that one should

use as many particles as computational resources permit from the outset.

Algorithm 3 A General SIR Filter
1: Set t = 1.

2: For i = 1 : N , sample X̃
(i)
1,1 ∼ q1(·).

3: For i = 1 : N , set W
(i)
1 ∝ π1(X

(i)
1,1)g1(y1|X̃(i)

1,1)/q1(X̃
(i)
1 ). Normalise such that

N
P

i=1

W
(i)
1 = 1.

4: Resample: for i = 1 : N , sample

X
(i)
1,1, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
1,1

N
P

j=1

W
(j)
1

.

5: t← t + 1

6: For i = 1 : N , set X̃
(i)
t,1:t−1 = X

(i)
t−1,1:t−1 and sample X̃

(i)
t,t ∼ qt(·|X̃(i)

t,t−1).

7: For i = 1 : N , set W
(i)
t ∝ ft(X̃

(i)
t,t |X̃(i)

t,t−1)gt(yt|X̃(i)
t,t )/qt(X̃

(i)
t,t |X̃(i)

t,t−1). Normalise such that
N
P

i=1

W
(i)
t = 1.

8: Resample: for i = 1 : N , sample

X
(i)
t,1:t, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
t,1:t

N
P

j=1

W
(j)
1

.

9: The smoothing and filtering distributions at time t may be approximated with

π̂N
SIR,t(x1:t) =

1

N

N
X

i=1

δ
X

(i)
t,1:t

(x1:t), and π̂N
SIR,t(xt) =

1

N

N
X

i=1

δ
X

(i)
t,t

(xt), respectively.

10: Go to step 5.
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As algorithm 3 demonstrates, this technique can formally be generalised (in the obvious way) to

provide an approximation to the smoothing distributions; however, as will be made clear shortly, there are

difficulties with this approach and there is a good reason for concentrating on the filtering distribution.

The generalisation is simply to resample the entire path followed by each particle through time, rather

than only its terminal state. Note that doing this makes it necessary to introduce an additional subscript

to account for the fact that the location of the jth coordinate of the ith particle changes through time (as

we resample the full trajectory associated with each particle). Hence X
(i)
t,j is used to refer to this quantity

at time t, and X
(i)
t,1:t refers to the full trajectory of the ith particle at time t.

10.3.1 Sample Impoverishment

The motivation behind the resampling step introduced in the bootstrap filter and its generalisation was

that it provides a method for eliminating particles with very low weights whilst replicating those with

large weights. Doing this allows all of the particles to contribute significantly to the approximation of

the distributions of interest. When considering the filtering distributions it is clear, loosely speaking, that

resampling at the previous time step does lead to a better level of sample diversity as those particles

which it was already extremely improbable at time t − 1 are likely to have been eliminated and those

which remain have a better chance of representing the situation at time t accurately.

There is, however, a difficulty. The resampling step does homogenize the particle weights but it can only

do this by replicating particle values: we typically obtain several particles with particular values after each

resampling step. This is not of itself a problem, providing that we retain a reasonable number of distinct

particles and, in a reasonably well designed algorithm, this can be true for the filtering distribution. Con-

sidering the smoothing distribution makes it clear that there is a problem: the algorithm only ever reduces

the number of distinct values taken at any time in the past. As the sampling mechanism only appends new

values to the particle trajectories and the resampling mechanism eliminates some trajectories with every

iteration, we ultimately end up with a degeneracy problem. The beginning of every particle trajectory will

ultimately become the same. The reduction of the number of distinct samples within a collection by this

mechanism, particularly when the reduction is pronounced is termed sample impoverishment.

Resampling is a more than cosmetic activity and it does more than eliminating direct evidence of sample

degeneracy. However, it works by maintaining a good degree of sample diversity at the end of the particle

trajectories at any given time: it does nothing to improve diversity in the past and the accumulation of

degeneracy consequently remains a problem if one is interested in the full history.

Resampling at any given time simply increases the Monte Carlo variance of the estimator at that

time. However, it can reduce the variance of estimators at later times and it is for that reason that it is

widely used. For simplicity, in the algorithms presented in this course the estimator at time t is often given

immediately after the resampling step. However, lower variance estimates would be obtained by employing

the weighted sample available immediately before resampling and this is what should be done in practice

except in situations in which it is essential to have an unweighted sample.

10.3.2 Effective Sample Sizes

It is clear that resampling must increase the immediate Monte Carlo variance (it is used because it will

hopefully reduce the variance in the future and hence the variance cost of resampling may be offset by the

reduction in variance obtained by having a more diverse collection of samples available). Consequently, it

would be preferable not to resample during every iteration of the algorithm.
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There competing requirements which must somehow be balanced: we must resample often enough to

prevent sample degeneracy but we wish to do so sufficiently infrequently that sample impoverishment does

not become a serious problem, at least for the filtering estimator. It would be useful to have a method for

quantifying the quality of the current sample or, perhaps, to determine whether the current collection of

weights is acceptable.

It is, of course, difficult to quantify the quality of a weighted sample which targets a distribution

which is not known analytically. This is the problem which must be addressed when dealing with iterative

algorithms of the sort described within this chapter. One figure of merit which could be used if it were

available would be the ratio of the variance of an estimator obtained from this sample to that of an

estimator obtained using crude Monte Carlo to sample from the target distribution itself (were that

possible). Noting that the variance of the crude Monte Carlo estimator is proportional to the inverse of

the sample size, N times this quantity corresponds to the effective sample size in the sense that this is the

number of iid samples from the target distribution which would be required to obtain an estimator with

the same variance.

It is useful to consider an abstract scenario. Let π denote a target distribution and µ an instrumental

distribution. Assume that N samples from each are available, {Xi}N
i=1 are iid samples from µ, whilst

{Yi}N
i=1 are distributed according to π. Letting W (x) ∝ π(x)/µ(x), and allowing ϕ to be a real-valued

function whose integral we wish to estimate, we have two natural estimators:

ĥCMC =
1

N

N∑

i=1

ϕ(Yi)

ĥIS =

N∑
i=1

W (Xi)ϕ(Xi)

N∑
j=1

W (Xi)

.

The effective sample size mentioned above may be written as:

NESS = N
Var

(
ĥCMC

)

Var
(
ĥIS

) .

Whilst this quantity might provide a reasonable measure of the quality of the weighted sample, it remains

impossible to calculate it in any degree of generality. In order to make further progress it is necessary to

make use of some approximations. It is shown in (Kong et al., 1994) that the quantity of interest may

be approximated by Var
(
ĥIS

)
/Var

(
ĥCMC

)
≈ 1 + Varµ

(
W̄
)
, where W̄ is the normalised version of the

importance weights, W̄ (x) = π(x)/µ(x) ≡ W (x)/
∫

W (y)µ(y)dy. This approximation may be obtained

via the delta method (which may be viewed as a combination of a suitable suitable central limit theorem

and a Taylor expansion).

Considering this approximation:

1 + Varµ

(
W̄
)

= 1 + Eµ

[
W̄ 2
]
− Eµ

[
W̄
]2

= 1 + Eµ

[
W̄ 2
]
− 1 = Eµ

[
W̄ 2
]
,

which allows us to write NESS ≈ 1/Eµ

[
W̄ 2
]
. It isn’t typically possible to evaluate even this approximation,

but looking at the expression we see that we need only evaluate an integral under the sampling distribution.

This is precisely what is normally done in Monte Carlo simulation, and the approach which is usually

used is to make use of the sample approximation of the expectation in place of the truth, so, we set:
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N̂ESS :=N




1

N

N∑

i=1

W (Xi)
2

/
 1

N

N∑

j=1

W (Xj)




2



−1

=




N∑

j=1

W (Xj)




2/ N∑

i=1

W (Xi)
2.

This quantity can readily be calculated to provide an estimate of the quality of the sample at any iteration

in a particle filtering algorithm. It is common practice to choose a threshold value for the effective sample

size and to resample after those iterations in which the effective sample size falls below that threshold.

Doing this provides a heuristic method for minimising the frequency of resampling subject to the constraint

that it is necessary to retain a sample in which weight degeneracy is not too severe.

Whilst good results are obtained by using this approach when the proposal distribution is adequate,

caution must be exercised in interpreting this approximation as an effective sample size. The use of the

collection of samples itself to evaluate the integral which is used to assess its quality poses an additional

problem. If the sample if particularly poor then it might provide a poor estimate of that integral and

consequently, suggest that the sample is rather better than it actually is. In order to understand the

most common pathology it is useful to consider a simple importance sampling scenario which generalises

directly to the sequential cases considered within this chapter.

Consider a situation in which the proposal distribution has little mass in the mode of the target

distribution and in which both distributions are reasonably flat in the mode of the proposal. It is quite

possible that all of the importance weights are similar and the estimated ESS is large but, in fact, it is

an extremely poor representation of the distribution of interest (in this setting, such a pathology will be

revealed by using a large enough sample size; unfortunately, one does not know a priori how large that

sample must be, and it is typically impossible to employ such a strategy in a sequential setting). For

definiteness, let π = 0.9N(0, 1) + 0.1N(4, 0.12) and let µ = N(0, 1).

The proposal and target densities are illustrated in figure 10.7. Whilst the supports of these two

distributions are the same and the tails of the proposal are as heavy as those of the target, it is immediately

apparent that the two distributions are poorly matched: there is small probability of proposing samples

with values greater than 3 and yet more than 90% of the mass of the target lies in this region. Consequently,

the variance is finite but potentially extremely large. However, drawing collections of samples of various

sizes from µ and calculating their ESS once they have been weighted to target π reveals a problem. Table

N 100 500 1,000 10,000

NESS 100 500 999.68 1.8969

NESS/N 1.000 1.000 0.9997 0.0002

Table 10.1. Effective sample sizes for the ESS example for various sample sizes.

10.1 shows the effective sample sizes estimated from samples of various different sizes. It is clear that when

the estimator is a good one, NESS/N should converge to a constant. What we observe is that this ratio

is close to unity for the smaller values of N which are considered (and notice that for a one dimensional

problem these numbers do not seem that small). However, when a larger sample is used the effective

sample size drops suddenly to a very low value: one which clearly indicates that the sample is no more use

than one or two iid samples from the target distribution (in the sense quantified by the ESS, of course).

On consideration it is clear that the problem is that unless the sample is fairly large, no particles will be
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Fig. 10.7. Proposal and target densities for the ESS example scenario.

sampled in the region in which the importance weights are very large: outside this region those weights

are approximately constant. In the example here it is clear that a different proposal distribution would be

required, it would require an enormous number of particles to reduce the estimator variance to reasonable

levels with the present choice.

Whilst this example is somewhat contrived, it demonstrates a phenomenon which is seen in practice

in scenarios in which it is much more difficult to diagnose. In general, it is not possible to plot the

target distribution at all and the true normalising constant associated with the importance weights is

unknown.In summary, the standard approximation to the ESS used in importance sampling provides a

useful descriptive statistic and one which can be used to guide the design of resampling strategies but it

is not infallible and care should be taken before drawing any conclusions from its value. As always, there

is no substitute for careful consideration of the problem at hand.

10.3.3 Approaches to Resampling

Whilst the presentation above suggests that only one approach to resampling exists, a more sophisticated

analysis reveals that this isn’t the case. Indeed, there are approaches which are clearly superior in terms

of the Monte Carlo variance associated with them.

Resampling has been justified as another sampling step: approximating the weighted empirical distri-

bution with an unweighted collection of samples from that distribution. Whilst this is intuitively appealing,

an alternative view of resampling makes it clear that there are lower variance approaches which introduce

no additional bias. We require that the expected value of the integral of a test function under the empirical

distribution associated with the resampled particles matches that under the weighted empirical measure

before resampling for all bounded integrable test functions. Assume that we have a collection of samples
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{Wi,Xi}N
i=1 and allow {X̃i} to denote the collection of particles after resampling. We want to ensure that:

E

[
1

N

N∑

i=1

ϕ(X̃i)

∣∣∣∣∣X1:N

]
=

N∑

i=1

Wiϕ(Xi).

It is useful to consider that the X̃i must all be equal to one of the Xi as we a drawing from a discrete

distribution with mass on only those values. Consequently, we could, alternatively consider the number of

replicates of each of the original particles which are present in the resampled set. Let Mi = |{j : X̃j = Xi}|
be the number of replicates of Xi which are present in the resampled set. Then, we have:

E

[
1

N

N∑

i=1

ϕ(X̃i)

∣∣∣∣∣X1:N

]
= E

[
1

N

N∑

i=1

Miϕ(Xi)

∣∣∣∣∣X1:N

]

=

N∑

i=1

E

[
Mi

N
ϕ(Xi)

∣∣∣∣X1:N

]

=
N∑

i=1

E

[
Mi

N

∣∣∣∣X1:N

]
ϕ(Xi).

It is clear that any scheme in which E
[

Mi

N

∣∣X1:N

]
= Wi will introduce no additional bias. This is unsur-

prising: any scheme in which the expected number of replicates of a particle after resampling is precisely

the weight associated with that sample will be unbiased. Clearly, many such schemes will have extremely

large variance – for example, selecting a single index with probability proportional to Wi and setting all

of the particles to Xi. However, there are a number of techniques by which such unbiased sampling can

be accomplished with small variance.

A brief review of possible strategies is provided by (Robert and Casella, 2004, Section 14.3.5), but

three of the most commonly used approaches are summarised here.

Multinomial Resampling. The approach which has been described previously, in which each X̃i is

drawn independently from the empirical distribution associated with the collection {Wi,Xi}N
i=1 is equiv-

alent to drawing the vector of replicate counts M from a multinomial distribution with N trials and

parameter vector W1:N . That is: M ∼ M(·|N,W ), where the multinomial distribution is a generalisation

of the binomial distribution to trials which have more than two possible outcomes. It takes mass on the

points {M ∈ R
N :

∑N
i=1 Mi = N} and has the probability mass function:

M(M |N,W ) =





N !
NQ

i=1

Mi!

N∏
i=1

WMi
i if

N∑
i=1

Mi = N,

0 otherwise.

For this reason the simple scheme described above is usually termed multinomial resampling.

Residual Resampling. The reason that resampling is not carried out deterministically is that in general

NWi is not an integer and so it is not possible to replicate particles deterministically in a manner which

is unbiased. However, it is possible to remove the integer component of NWi for each weight and then

to assign the remainder of the mass by multinomial resampling. This is the basis of a scheme known as

residual resampling. The approach is as follows:

1. Set M̃i = ⌊NWi⌋ where ⌊NWi⌋ := sup{z ∈ Z : z < NWi}.

Set W̃i = Wi − ⌊NWi⌋/N .

2. Sample M ′ ∼ M(·|N −
N∑

i=1

⌊NWi⌋, W̃ ).

3. Set Mi = M̃i + M ′
i .
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The intuition is that by deterministically replicating those particles that we expect at least one of in

the replicated set and introducing randomness only to allow us to deal with the non-integer (residual)

components of NWi we retain the unbiased behaviour of multinomial resampling whilst substantially

reducing the degree of randomness introduced by the resampling procedure. It is straightforward to verify

that the variance of this approach is, indeed, less than that of multinomial resampling.

Stratified and Systematic Resampling. The motivation for residual resampling was that determin-

istically replicating particles and hence reducing the variability of the resampled particle set whilst retain

the lack of bias must necessarily provide an improvement. Another approach is motivated by the stratified

sampling technique. In order to sample from mixture distributions with known mixture weights, the vari-

ance is reduced if one draws a deterministic number of samples from each component, with the number

proportional to the weight of that component2. Taking this to its logical conclusion, one notices that one

can partition any single dimensional distribution in a suitable manner by taking it cumulative distribution

function, dividing it into a number of segments, each with equal associated probability mass, and then

drawing one sample from each segment (which may be done, at least in the case of discrete distributions

by drawing a uniform random variable from the range of each of the CDF segments and applying inversion

sampling).

x1 x2 x3x4 x5 x6 x7x7 x8x8 x9 x10
0.0 0.0

1.01.0
Cumulative Distribution Function CDF of Stratum 7

Fig. 10.8. The cumulative distribution associated with a collection of ten particles divided into ten strata, together

with the distribution function associated with the seventh stratum.

Figure 10.8 illustrates this technique for a simple scenario in which ten particles are present. As usual,

the cumulative distribution function associated with a discrete distribution (the empirical distribution

associated with the weighted particles in this case) consists of a number of points of discontinuity connected

by regions in which the CDF is constant. These discontinuities have magnitudes corresponding to the

sample weights and locations corresponding to the values of those particles. If the sample values are

not one dimensional it becomes easier to consider sampling the particle indices rather than the values

themselves and then using those indices to deduce the values of the resampled particles; this adds little

2 Again, a little additional randomness may be required to prevent bias if the product of the number of samples

required and the various mixture weights is not an integer.
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complexity. Having obtained the CDF, one divides it into N equally-spaced segments vertically (such that

each encloses equal probability mass). Each segment of the CDF may then be rescaled to produce a new

CDF describing the distribution conditional upon it being drawn from that stratum – the figure illustrates

the case of the seventh stratum from the bottom in a particular case. Inversion sampling once from each

stratum then provides a new collection of N samples.

It can be seen that this approach has some features in common with residual resampling. For example,

a particle with a large weight will be replicated with probability one (in the case of stratified resampling,

if a particle has weight Wi such that NWi ≥ n + 1 then it is guaranteed to produce at least n replicates

in the resampled population. For example, in figure 10.8, the particle with value x3 has a sufficiently large

weight that it will certainly be selected from stratum 3 and 4, and it has positive probability of being

drawn in the two adjacent strata as well.

In fact, it is possible to further reduce the randomness, by drawing a single uniform random number

and using that to select the value sample from all of the segments of the CDF. This technique is widely

used in practice although it is relatively difficult to analyse. In order to implement this particular version

of resampling, typically termed systematic resampling, one simply draws a random number, U , uniformly

in the interval [0, 1/N ] and then, allowing FN to denote the CDF of the empirical distribution of the

particle set before resampling, set, for each i in 1, . . . , N :

X̃i := F−1
N (i/N − U).

In terms of figure 10.8, this can be understood as drawing a random variable, U , uniformly from an interval

describing the height of a single stratum and then taking as the new sample those values obtained from

the CDF at a point U below the top of any stratum. It is straightforward to establish that this technique

is unbiased, but the correlated samples which it produces complicate more subtle analysis. The systematic

sampling approach ensures that the expected number of replicates of a particle with weight Wi is NWi

and, furthermore, the actual number is within 1 of NWi.

10.4 Resample-Move Algorithms

An attempt at reducing the sample impoverishment was proposed by (Gilks and Berzuini, 2001a). Their

approach is based upon the following premise which (Robert and Casella, 2004) describe as generalised

importance sampling. Given a target distribution π, an instrumental distribution µ and a π-invariant

Markov kernel, K, the following generalisation of the importance sampling identity is trivially true:
∫

µ(x)K(x, y)
π(x)

µ(x)
h(y)dxdy =

∫
µ(x)K(x, y)

π(x)

µ(x)
dxh(y)dy =

∫
π(x)K(x, y)dxh(y)dy =

∫
π(y)h(y)dy.

In conjunction with the law of large numbers this tells us, essentially, that given a weighted collection of

particles {W (i),X(i)}N
i=1 from µ weighted to target π, if we sample Y (i) ∼ K(X(i), ·) then the weighted

collection of particles {W (i), Y (i)}N
i=1 also targets π.

Perhaps the simplest way to verify that this is true is simply to interpret the approach as importance

sampling on an enlarged space using µ(x)K(x, y) as the proposal distribution for a target π(x)K(x, y)

and then estimating a function h′(x, y) = h(y). It is then clear that this is precisely standard impor-

tance sampling. As with many areas of mathematics the terminology can be a little misleading: correctly

interpreted, “generalised importance sampling” is simply a particular case of importance sampling.

Whilst this result might seem rather uninteresting, it has a particularly useful property. Whenever we

have a weighted sample which targets π, we are free to move the samples by applying any π-invariant
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Markov kernel in the manner described above and we retain a weighted sample targeting the distribution

of interest. (Gilks and Berzuini, 2001a) proposed to take advantage of this to help solve the sample

impoverishment problem. They proposed an approach to filtering which they termed resample-move, in

which the particle set is moved according to a suitable Markov kernel after the resampling step. In the

original paper, and the associated tutorial (Gilks and Berzuini, 2001b), these moves are proposed in the

context of a standard SIR algorithm but, in fact, is is straightforward to incorporate them into any iterative

algorithm which employs a collection of weighted samples from a particular distribution at each time step.

Algorithm 4 A Resample-Move Filter
1: Set t = 1.

2: For i = 1 : N , sample X̃
(i)
1,1 ∼ q1(·).

3: For i = 1 : N , set W
(i)
1 ∝ π1(X

(i)
1,1)g1(y1|X̃(i)

1,1)/q1(X̃
(i)
1 ). Normalise such that

N
P

i=1

W
(i)
1 = 1.

4: Resample: for i = 1 : N , sample

X̂
(i)
1,1, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
1,1

N
P

j=1

W
(j)
1

.

5: Move: for i = 1 : N , sample X
(i)
1,1 ∼ K1(X̂

(i)
1,1, ·), where K1 is π1-invariant.

6: t← t + 1

7: For i = 1 : N , set X̃
(i)
t,1:t−1 = X

(i)
t−1,1:t−1 and sample X̃

(i)
t,t ∼ qt(·|X̃(i)

t,t−1).

8: For i = 1 : N , set W
(i)
t ∝W

(i)
t−1ft(X̃

(i)
t,t |X̃(i)

t,t−1)gt(yt|X̃(i)
t,t )/qt(X̃

(i)
t,t |X̃(i)

t,t−1). Normalise such that
N
P

i=1

W
(i)
t = 1.

9: Resample: for i = 1 : N , sample

X̂
(i)
t,1:t, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
t,1:t

N
P

j=1

W
(j)
1

.

10: Move: for i = 1 : N , sample X
(i)
t,1:t ∼ Kt(X̂t,1:t, ·), where Kt is πt-invariant.

11: The smoothing and filtering distributions at time t may be approximated with

π̂N
SIS,t(x1:t) =

1

N

N
X

i=1

δ
X

(i)
t,1:t

(x1:t), and π̂N
SIS,t(xt) =

1

N

N
X

i=1

δ
X

(i)
t,t

(xt), respectively.

12: Go to step 6.

Thus some progress has been made: a mechanism for injecting additional diversity into the sample has

been developed. However, there is still a problem in the smoothing scenario. If we were to apply Markov

Kernels of invariant distribution corresponding to the full path-space smoothing distribution at each time,

then the space on which those Markov kernels were defined must increase with every iteration. This would

have two effects: the most direct is that it would take an increasing length of time to apply the move with

every iteration; the second is that it is extremely difficult to design fast-mixing Markov kernels on spaces

of high dimension. If an attempt is made to do so in general it will be found that the degree of movement

provided by application of the Markov kernel decreases in some sense as the size of the space increases.

For example, if a sequence of Gibbs sampler moves are used, then each coordinate will move only very

slightly whilst a Metropolis Hastings approach will either proposal only very small perturbations or will

have a very high rate of rejection.

In practice, one tends to employ Markov kernels which only alter the terminal value of the particles

(although there is no difficulty with updating the last few values by this mechanism, this has an increased

computational cost and does not directly alter the future trajectories). The insertion of additional MCMC
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moves (as the application of a Markov kernel of the correct invariant distribution is often termed) in a

filtering context, then, is a convenient way to increase the diversity of the terminal values of the sample

paths.

It is not a coincidence that the various techniques to improve sample diversity all provide improved

approximations of the filtering distribution but do little to improve the distribution over the path-space

distributions involved in smoothing. In fact, theoretical analysis of the various particle filters reveal that

their stability arises from that of the system which they are approximating. Under reasonable regularity

conditions, the filtering equations can be shown to forget their past: a badly initialised filter will eventually

converge to the correct distribution. As the dynamics of the particle system mirror those of the exact system

which it is approximating, this property is also held by the particle system. It prevents the accumulation

of errors and allows convergence results to be obtained which are time uniform in the sense that the same

quality of convergence (in a variety of senses) can be obtained at all times with a constant number of

particles if one is considering only the filtering distributions; similar results have not been obtained in

the more general smoothing case and there are good technical reasons to suppose that they will not be

forthcoming. Technical results are provided by (Del Moral, 2004, Chapter 7) but these lie far outside the

scope of this course. It is, however, important to be aware of this phenomenon when implementing these

algorithms in practice.

10.5 Auxiliary Particle Filters

The auxiliary particle filter (APF) is a technique which was originally proposed by (Pitt and Shephard,

1999, 2001), in the form presented in section 10.5.2, based upon auxiliary variables. It has recently been

recognised that it can, in fact, be interpreted as no more than an SIR algorithm which targets a slightly

different sequence of distributions, and then uses importance sampling to correct for the discrepancy; this

intuitive explanation, due to (Johansen and Doucet, 2007) is presented in section 10.5.3.

10.5.1 Motivations

Before becoming involved in the details, it is necessary to look at one particular problem from which SMC

methods can suffer: and what one would like to do in order to assuage this problem. That difficulty is that

one resamples the particle set at the conclusion of one iteration of the algorithm before moving them and

then weighting them, taking into account the most recent observation. In practice, this observation can

provide significant information about the likely state at the previous time (whilst xt is independent of yt+1

conditional upon the knowledge of xt+1 we do not, in fact, know xt+1). Whilst deferring resampling isn’t

really an option as it would simply mean leaving resampling until the following iteration and leaving the

same problem for that iteration, it would be nice if one could pre-weight the particles prior to resampling

to reflect how their compatibility with the next observation. This is essentially the idea behind the APF.

The relationship, in the filtering and smoothing context, between xn and yn+1, assuming that xn+1 is

unknown (we wish to establish how well xn is able to account for the next observation before sampling

the next state) is:

p(yn+1|x1:n, y1:n) = p(xn|y1:n)

∫
fn+1(xn+1|xn)gn+1(yn+1|xn+1)dxn+1

which is simply the integral of the joint distribution of xn:n+1 and yn+1 given y1:n. Defining gn+1(yn+1|xn) =
∫

fn+1(xn+1|xn)gn+1(yn+1|xn+1)dxn+1, it would be desirable to use a term of this sort to determine how
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well a particle matches the next observation in advance of resampling (before correcting with the discrep-

ancy that this introduces into the distribution after resampling by importance weighting).

10.5.2 Standard Formulation

The usual view of the APF is that it is a technique which employs some approximation ĝn+1(yn+1|xn) to

the predictive likelihood, gn(yn+1|xn) in an additional pre-weighting step and employs an auxiliary variable

technique to make use of these weights. The original proposal for the APF had a number of steps for each

iteration:

1. Apply an auxiliary weighting proportional to ĝn+1(yn+1|xn).

2. Using the auxiliary weights propose moves from a mixture distribution.

3. Weight moves to account for the auxiliary weighting introduced previously, the observation and the

proposal distribution.

4. Resample according to the standard weights.

Although the first three of these steps differ from a standard SIR algorithm the third differs only in the

nature of the importance weighting and the first two are essentially the key innovation associated with

the auxiliary particle filter.

The idea is that, given a sample of particles which target π̂t, and knowledge of the next observation,

yt+1, we can make use of an approximation of the conditional likelihood to attach a weight, λ(i) each

particle. This weight has the interpretation that it describes how consistent each element of the sample is

with the next observation. Having determined these weightings, one proposes the values of each particle

at time t + 1 (in the filtering case which was considered originally) independently from the mixture

distribution
N∑

j=1

λ(j)

N∑
k=1

λ(k)

qn+1(·|Xj
t ).

The samples are then weighted such that they target π̂t+1 and then resampling is carried out as

usual. This procedure is carried out iteratively as in any other particle filter, with the detailed algorithmic

description being provided by algorithm 5.

10.5.3 Interpretation as SIR

However, over time it has become apparent that there is actually little point in resampling immediately

prior to the auxiliary weighting step. Indeed, the use of an auxiliary variable in the manner described

in the previous section is exactly equivalent to first resampling the particles (via a multinomial scheme)

according to the auxiliary weights and then making standard proposals with that for each particle being

made from the previous value of that particle. Thus resampling, weighting and resampling again will

introduce additional Monte Carlo variance for which there is no benefit. In fact, it makes more sense to

resample after the auxiliary weighting step and not at the end of the algorithm iteration; the propagation

of weights from the previous iterations means that resampling is then carried out on the basis of both the

importance weights and the auxiliary weights.

Having noticed this, it should be clear that there is actually little more to the APF than there is to

SIR algorithms and, indeed, it is possible to interpret the auxiliary particle filter as no more than an SIR

algorithm which targets a slightly different sequence of distributions to those of interest and then to use
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Algorithm 5 Traditional View of the APF

1: Set t = 1.

2: For i = 1 : N , sample X̃
(i)
1,1 ∼ q1(·).

3: For i = 1 : N , set W
(i)
1 ∝ π1(X

(i)
1,1)g1(y1|X̃(i)

1,1)/q1(X̃
(i)
1 ). Normalise such that

N
P

i=1

W
(i)
1 = 1.

4: Resample: for i = 1 : N , sample

X
(i)
1,1, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
1,1

N
P

j=1

W
(j)
1

.

5: t← t + 1

6: Calculate auxiliary weights: set λ
(i)
t ∝ ĝt(yt|X(i)

t−1,t−1) and normalise such that
N
P

i=1

λ
(i)
t = 1.

7: Sample α
(i)
t such that P

“

α
(i)
t = j

”

= λ
(j)
t (i.e. sample from the discrete distribution with parameter λt).

8: For i = 1 : N , set X̃
(i)
t,1:t−1 = X

(α
(i)
t )

t−1,1:t−1 and sample X̃
(i)
t,t ∼ qt(·|X̃(i)

t,t−1).

9: For i = 1 : N , set

W
(i)
t ∝

ft(X̃
(i)
t,t |X̃(i)

t,t−1)gt(yt|X̃(i)
t,t )

λ
(α

(i)
t )

t qt(X̃
(i)
t,t |X̃(i)

t,t−1)

.

Normalise such that
N
P

i=1

W
(i)
t = 1.

10: Resample: for i = 1 : N , sample

X
(i)
t,1:t, ∼

N
P

i=1

W
(i)
1 δ

X̃
(i)
t,1:t

N
P

j=1

W
(j)
1

.

11: The smoothing and filtering distributions at time t may be approximated with

π̂N
SIS,t(x1:t) =

1

N

N
X

i=1

δ
X

(i)
t,1:t

(x1:t), and π̂N
SIS,t(xt) =

1

N

N
X

i=1

δ
X

(i)
t,t

(xt), respectively.

12: Go to step 5.

Algorithm 6 The APF as SIR
1: Set t = 1.

2: For i = 1 : N , sample X
(i)
1,1 ∼ q1(·).

3: For i = 1 : N , set W
(i)
1 ∝ π1(X

(i)
1,1)g1(y1|X(i)

1,1)/q1(X
(i)
1 ).

4: t← t + 1

5: Set W̃
(i)
t ∝W

(i)
t−1λ

(i)
t where λ

(i)
t ∝ ĝt(yt|X(i)

t−1,t−1) and normalise such that
N
P

i=1

W̃
(i)
t = 1.

6: Resample: for i = 1 : N , sample

X
(i)
t,1:t−1 ∼

N
P

i=1

W̃
(i)
t δ

X
(i)
t−1,1:t−1

N
P

j=1

W̃
(j)
t

.

7: For i = 1 : N , sample X
(i)
t,t ∼ qt(·|X(i)

t,t−1).

8: For i = 1 : N , set W
(i)
t ∝ ft(X

(i)
t,t |X(i)

t,t−1)gt(yt|X(i)
t,t )/qt(X̃

(i)
t,t |X̃(i)

t,t−1)ĝt(yt|X(i)
t,t−1). Normalise such that

N
P

i=1

W
(i)
t = 1.

9: The smoothing and filtering distributions at time t may be approximated with

π̂N
SIS,t(x1:t) =

N
X

i=1

W
(i)
t δ

X
(i)
t,1:t

(x1:t), and π̂N
SIS,t(xt) =

N
X

i=1

W
(i)
t δ

X
(i)
t,t

(xt), respectively.

10: Go to step 5.
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these as an importance sampling proposal distribution in order to estimate quantities of interest (Johansen

and Doucet, 2007). Although the precise formulation shown in algorithm 6 appears to differ in some minor

details from algorithm 5 it corresponds exactly to the formulation of the APF which is most widely used

in practice and which can be found throughout the literature. The significant point is that this type of

filtering algorithm has an interpretation as a simple SIR algorithm with an importance sampling step and

can be analysed within the same framework as the other algorithms presented within this chapter.

10.5.4 A Note on Asymptotic Variances

It is often useful in estimation scenarios based upon sampling to compare the asymptotic variance of those

estimators which are available. In the context of sequential Monte Carlo methods a substantial amount

of calculation is required to obtain even asymptotic variance expressions and these can be difficult to

interpret. In the case of the standard SIS algorithm one is performing standard importance sampling

and so the asymptotic variance can be obtained directly by standard methods, see (Geweke, 1989), for

example. In the case of SIR and the APF a little more subtlety is required. Relatively convenient variance

decompositions for these algorithms may be found in (Johansen and Doucet, 2007), which makes use of

expressions applicable to the SIR case obtained by (Del Moral, 2004; Chopin, 2004).

10.6 Static Parameter Estimation

The difficulty with static parameter estimation becomes clear when considered in light of the information

acquired in studying the filtering and smoothing problems: although we are able to obtain a good char-

acterisation of the filtering distribution, the smoothing distribution is much more difficult to deal with.

Typically, degeneracy occurs towards the beginning of the trajectory and the estimated distribution of the

earlier coordinates of the trajectory are extremely poor. In order to estimate the distribution of a static

parameter within a HMM, it is generally necessary to also estimate the distribution of the latent state

sequence. The posterior distribution of the static parameter is heavily dependent upon the distribution of

the full sequence of latent variables and the aforementioned degeneracy problems lead to severe difficulties

when attempting to perform online parameter estimation within this framework.

A heuristic approach which has been advocated in some parts of the literature is to modify the model

in such a way that the static parameter is replaced with a slowly time-varying parameter. This introduces

a degree of forgetting and it is possible to produce a model in which the time-scale over which degeneracy

becomes a problem is less than that over which the parameter’s dynamics allow it to forget the past.

However, this is clearly rather unsatisfactory and it is far from clear how inference based upon this model

relates to that of interest.

A more principled approach was suggested by (Chopin, 2002). His approach was based upon something

which he termed artificial dynamics. Essentially, the static parameter is updated according to a Markov

kernel of the correct invariant distribution after each iteration of the algorithm, allowing it to change.

This overcomes one problem: specifically that otherwise no new values of the parameter would ever be

introduced into the algorithm, but does not eliminate all of the problems which arise from the ultimate

degeneracy of the path-space particle distribution.

As of the time of writing, no entirely satisfactory solution to the problem of online estimation of static

parameters in a HMM via their posterior mode has been proposed, although a number of techniques which

provide some improvement have been developed in recent years.
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10.7 Extensions, Recent Developments and Further Reading

Much recent work has focused upon the problem of sampling from arbitrary sequences of distributions

using the techniques developed in the SMC setting presented here. This work is interesting, but cannot

be included in the present course due to time constraints; the interested reader is referred to (Del Moral

et al., 2006a,b) which present a sophisticated method which include other approaches which have been

proposed recently (Neal, 1998) as particular cases.

An introductory, application-oriented text on sequential Monte Carlo methods is provided by the

collection (Doucet et al., 2001). Short, but clear introductions are provided by (Doucet et al., 2000) and

(Robert and Casella, 2004, chapter 14).

A simple self-contained and reasonably direct theoretical analysis providing basic convergence results

for standard SMC methods of the sort presented in this chapter can be found in (Crisan and Doucet,

2002). Direct proofs of central limit theorems are given by (Chopin, 2004; Künsch, 2005). A compre-

hensive mathematical treatment of a class of equations which can be used to analyse sequential Monte

Carlo methods with some degree of sophistication is provided by (Del Moral, 2004) – this is necessarily

somewhat technical, and requires a considerably higher level of technical sophistication than this course;

nonetheless, the treatment provided is lucid, self-contained and comprehensive incorporating convergence

results, central limit theorems and numerous stronger results.
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