
E�cient Bayesian Inference for Switching State-Space Models

using Particle Markov Chain Monte Carlo Methods

Nick Whiteley, Christophe Andrieu

Department of Mathematics,

University of Bristol,

University Walk,

Bristol BS8 1TW, UK.

Email: {Nick.Whiteley,C.Andrieu}@bris.ac.uk

Arnaud Doucet

Department of Statistics,

University of British Columbia,

Vancouver V6T 1Z2, BC, Canada.

Email: Arnaud@stat.ubc.ca

June 15, 2010

Abstract

Switching state-space models (SSSM) are a popular class of time series models that have found many
applications in statistics, econometrics and advanced signal processing. Bayesian inference for these
models typically relies on Markov chain Monte Carlo (MCMC) techniques. However, even sophisticated
MCMC methods dedicated to SSSM can prove quite ine�cient as they update potentially strongly
correlated variables one-at-a-time. Particle Markov chain Monte Carlo (PMCMC) methods are a recently
developed class of MCMC algorithms which use particle �lters to build e�cient proposal distributions
in high-dimensions [1]. The existing PMCMC methods of [1] are applicable to SSSM, but are restricted
to employing standard particle �ltering techniques. Yet, in the context of SSSM, much more e�cient
particle techniques have been developed [22, 23, 24]. In this paper, we extend the PMCMC framework to
enable the use of these e�cient particle methods within MCMC. We demonstrate the resulting generic
methodology on a variety of examples including a multiple change-points model for well-log data and
a model for U.S./U.K. exchange rate data. These new PMCMC algorithms are shown to outperform
experimentally state-of-the-art MCMC techniques for a �xed computational complexity. Additionally
they can be easily parallelized [39] which allows further substantial gains.

Keywords: Bayesian inference, Markov chain Monte Carlo, optimal resampling, particle �lters, se-
quential Monte Carlo, switching state-space models.

1

1 Introduction

Linear Gaussian Switching State-Space Models (SSSM) are a class of time series models in which the pa-
rameters of a linear Gaussian model switch according to a discrete latent process. They are ubiquitous in
statistics [7, 32], econometrics [37, 35] and advanced signal processing [3, 12] as they allow us to describe in a
compact and interpretable way regime switching time series. SSSM have been successfully used to describe,
among others, multiple change-point models [23, 34], nonparametric regression models with outliers [9] and
Markov switching autoregressions [5, 32, 37].

Performing Bayesian inference for SSSM requires the use of Markov chain Monte Carlo (MCMC) tech-
niques. The design of e�cient sampling techniques for this class of models has been a subject of active
research for over 15 years, dating back at least as far as [8, 41]. A recent overview of MCMC in this context
can be found in [7, 32]. The main practical di�culty lies in simulating from the conditional distribution of the
trajectory of the discrete-valued latent process. The cost of computing this distribution grows exponentially
in the length of the observation record and therefore obtaining an exact sample from it is impractical for all
but tiny data sets. A standard strategy is instead to update the components of the discrete latent process
one-at-a-time [9, 33, 34]. However, it is well-known that such an approach can signi�cantly slow down the
convergence of MCMC algorithms. An alternative is to sample approximately from the joint distribution of
the latent discrete trajectory using particle �lters: non-iterative techniques based on a combination of im-
portance sampling and resampling techniques, see [17, 40] for a review of the literature. Empirical evidence
suggests that particle �lters are able to provide samples whose distribution is close to the target distribution
of interest and this evidence is backed up by the rigourous quantitative bounds established in [14, chapter
8]. This motivates using particle �lters as proposal distributions within MCMC.

This idea is very natural, but its realization is far from trivial as the distribution of a sample generated
by a particle �lter does not admit a closed-form expression hence preventing us from directly using the
standard Metropolis-Hastings (MH) algorithm. In a recent paper [1], it has been shown that it is possible to
bypass this problem. The authors have proposed a whole class of MCMC algorithms named Particle MCMC
(PMCMC) relying on proposals built using particle �lters. These algorithms have been demonstrated in the
context of non-linear non-Gaussian state-space models and are directly applicable to SSSM; see also [29]
for applications in �nancial econometrics. However, the standard particle methods employed in [1] do not
fully exploit the discrete nature of the latent process in SSSM. This was recognized early by Paul Fearnhead
who proposed an alternative generic algorithm, which we refer to as the Discrete Particle Filter (DPF) [22].
The DPF bypasses the importance sampling step of standard particle techniques and can be interpreted as
using a clever random pruning mechanism to select support points from the exponentially growing sequence
of discrete latent state spaces. The DPF methodology has been demonstrated successfully in a variety of
applications [7, 22, 23, 24]. It has been shown to signi�cantly outperform alternative approaches such as the
Rao-Blackwellized particle �lters developed in [10, 19] for a �xed computational complexity.

The main contribution of this article is to extend the PMCMC methodology to allow us to use the e�cient
DPF as a proposal distribution for this important class of statistical models. The practical e�ciency of the
proposed methods relies on a new backward sampling procedure. We show that on a variety of applications
this new generic methodology outperforms state-of-the-art MCMC algorithms for a �xed computational
complexity. Moreover, as in the case of standard particle �lters [39], the DPF can be parallelized easily. This
suggests that even greater computational gains can be achieved.

The rest of the paper is organised as follows. In Section 2 we present the general class of SSSM considered
in this paper and give some illustrative examples. In Section 3, we discuss the intractability of exact inference
in SSSM and present the DPF algorithm [22, 23, 24]. Our presentation is slightly non-standard and explicitly
introduces the random support sets generated by the algorithm. This allows us to describe the DPF precisely
and compactly in a probabilistic way which proves useful to establish the validity of the PMCMC algorithms.
We also review standard MCMC techniques used in this context. In Section 4 we introduce original PMCMC
algorithms relying on the DPF to perform inference in SSSM and discuss some theoretical results. In Section
5, we discuss generic practical issues and demonstrate the e�ciency of the proposed methods in the context
of three examples. Finally in Section 6 we discuss several extensions of this work.

2

2 Switching state-space models

2.1 Model

From herein, we use the standard convention whereby capital letters are used for random variables while
lower case letters are used for their values. Hereafter for any generic process {zn} we will denote zi:j :=
(zi, zi+1, . . . , zj). The identity matrix of size p is denoted Ip and the matrix of zeros of size p× q by 0p×q.

Consider the following SSSM, also known in the literature as a conditionally linear Gaussian state-space
model or a jump linear system. The latent state process {Xn}n≥1 is such that Xn takes values in a �nite
set X . It is characterized by its initial distribution X1 ∼ νθ (·) and transition probabilities for n > 1

Xn|(X1:n−1 = x1:n−1) ∼ fθ (·|x1:n−1) . (1)

Conditional upon {Xn}n≥1, we have a linear Gaussian state-space model de�ned through Z0 ∼ N (m0,Σ0)
and for n ≥ 1

Zn = Aθ(Xn)Zn−1 +Bθ(Xn)Vn + Fθ(Xn)un, (2)

Yn = Cθ(Xn)Zn +Dθ(Xn)Wn +Gθ(Xn)un, (3)

where N (m,Σ) is the normal distribution of mean m and covariance Σ, Vn
i.i.d.∼ N (0v×1, Iv), Wn

i.i.d.∼
N (0w×1, Iw), {Aθ(x), Bθ(x), Cθ(x), Dθ(x), Fθ(x), Gθ(x);x ∈ X} are matrices of appropriate dimension and
un is an exogeneous input. Here θ ∈ Θ is some static parameter which may be multidimensional, for example
Θ ⊂ Rd. For purposes of precise speci�cation of resampling algorithms in the sequel and without loss of
generality we label the elements of X with numbers, for example X = {1, ..., |X |} for some |X | ∈ N. We may
then endow each Cartesian product space X 2,X 3, ... with the corresponding lexicographical order relation.
From henceforth, whenever we refer to ordering of a set of points in Xn it is with respect to the latter
relation.

We give here a simple example of a SSSM. Two more sophisticated examples are discussed in Section 5.

2.1.1 Example: Auto-regression with shifting level

Let X = {0, 1} and for {Xn} a Markov chain on X with transition matrix PX , consider the process de�ned
by

Yn = µn + φ(Yn−1 − µn−1) + σVn,1

µn = µn−1 + σXnVn,2,

where for each n ≥ 1, µn and Yn are real-valued and {Vn,1} and {Vn,2} are i.i.d. N (0, 1). The initial
distribution on µ0 is N (m0, σ

2
0). This is a natural generalization of a �rst order autoregressive model to the

case where the level µn is time-varying with shifts driven by the latent process {Xn}. This model can be
expressed in state-space form by setting

Zn =
[
Yn − µn
µn

]
, Aθ(xn) =

[
φ 0
0 1

]
∀xn,

Bθ(xn) = σ

[
1 0
0 xn

]
, Cθ(xn) =

[
1 1

]
, Dθ(xn) = Fθ(xn) = Gθ(xn) = 0, ∀xn.

The unknown parameters of this model are θ = [φ σ2 PX]. In this model and more generally in SSSMs,
inferences about the latent processes {µn} and {Xn} from a particular data set are likely to be highly
sensitive to values of these parameters if they are assumed known.

2.2 Inference aims

Our aim is to perform Bayesian inference in SSSMs, conditional upon some observations y1:T and for some
T ≥ 1, treating both the latent trajectories {Xn}, {Zn} and the parameter θ as unknowns. Where applicable,
the values of the input sequence u1:T are assumed known, but for clarity we suppress them from our notation.
We ascribe a prior density p (θ) to θ so Bayesian inference relies on the joint density

p (θ, x1:T , z0:T |y1:T) ∝ pθ (x1:T , z0:T , y1:T) p (θ) , (4)

3

where the de�nition of pθ (x1:T , z0:T , y1:T) follows from Eq. (1)-(2)-(3). This posterior can be factorized as
follows

p (θ, x1:T , z0:T |y1:T) = p (θ, x1:T |y1:T) pθ (z0:T |y1:T , x1:T) (5)

where

p (θ, x1:T |y1:T) =
pθ (y1:T |x1:T) p(x1:T |θ)p(θ)´

Θ

∑
x′1:T∈XT pθ (y1:T |x′1:T) p(x′1:T |θ)p (θ) dθ

. (6)

Conditional upon X1:T = x1:T , Eq. (2)-(3) de�ne a linear Gaussian state-space model so it is possible to
compute e�ciently the statistics of the conditional multivariate Gaussian density pθ (z0:T | y1:T , x1:T) in Eq.
(5) and the conditional marginal likelihood pθ (y1:T |x1:T) in Eq. (6) using Kalman techniques. For example
pθ (y1:T |x1:T) can be computed using the product of predictive densities

pθ (y1:T |x1:T) =
T∏
n=1

gθ (yn| y1:n−1, x1:n) (7)

where y1:0 := ∅. The statistics of these Gaussian predictive densities can be computed using the Kalman
�lter which is recalled in Appendix A for sake of convenience. For simplicity of presentation throughout the
following we assume that for each 1 ≤ n ≤ T and θ ∈ Θ the support of pθ (x1:n |y1:n) is Xn. This assumption
is satis�ed in the vast majority of cases considered in practice and in all the examples we consider. The
techniques discussed below can be transferred to cases where this assumption is not met with only cosmetic
changes.

3 Inference techniques for switching state-space models

3.1 Exact Inference and Intractability

The main di�culty faced in the exact computation of p(θ, x1:T |y1:T), is the need to perform the summation

in the denominator of Eq. (6) over up to |X |T values of x1:T , where |X | is the cardinality of X . For even
modest values of T , this sum is too expensive to compute exactly. In the applications we consider, T is of
the order of thousands, so exact computation is practically impossible.

Even if θ is treated as �xed, inference is intractable. In this case, we wish to compute pθ(x1:T |y1:T),
whose normalization involves the same problematic summation. One approach is to obtain pθ(x1:T |y1:T) by
sequential computation of pθ(x1|y1), pθ(x1:2|y1:2), ... via the recursive relationship

pθ(x1:n|y1:n) =
gθ(yn|y1:n−1, x1:n)fθ(xn|x1:n−1)pθ(x1:n−1|y1:n−1)∑

x1:n∈Xn
gθ(yn|y1:n−1, x1:n)fθ(xn|x1:n−1)pθ(x1:n−1|y1:n−1)

,

but the computation involved increases exponentially in n. For purposes of exposition in the sequel, we
remark that, as for each n the support of pθ(x1:n|y1:n) is Xn then the sequence of such supports satis�es the
trivial recursion:

Xn = X × Xn−1,

and is evidently growing in cardinality with n. Hence, in both the cases of computing p(θ, x1:T |y1:T) and
pθ(x1:T |y1:T) it is necessary to rely on Monte Carlo methods.

3.2 Monte Carlo Methods

We next review two classes of Monte Carlo techniques to perform inference in SSSM. The �rst method
we discuss is the DPF algorithm of Fearnhead [22]. For a �xed parameter value θ, this algorithm allows
us to compute an approximation of the posterior distribution pθ (x1:T |y1:T) and an approximation of the
marginal likelihood pθ (y1:T). We present this algorithm in a slightly non-standard way which allows us to
describe it probabilistically in a concise and precise manner. This will prove useful for the development of
PMCMC algorithms in Section 4. We also review MCMCmethods which have been developed to approximate
p (θ, x1:T , z0:T |y1:T) and discuss their advantages and limitations.

4

3.3 The discrete particle �lter

The DPF algorithm proposed in [22, 23] is a non-iterative procedure approximating the posterior distribution
pθ (x1:T |y1:T) and the marginal likelihood pθ (y1:T). Practically, the DPF approximation of the posterior dis-
tributions {pθ (x1:n|y1:n) ;n ≥ 1} is made sequentially in time using a collection of N |X | weighted trajectories
or �particles�

{
X

(i)
1:n; i = 1, ..., N |X |

}
,

p̂Nθ (x1:n|y1:n) =
N |X |∑
i=1

W θ
n

(
X

(i)
1:n

)
δ
X

(i)
1:n

(x1:n) , W θ
n

(
X

(i)
1:n

)
≥ 0,

N |X |∑
i=1

W θ
n

(
X

(i)
1:n

)
= 1.

The parameter N controls the precision of the algorithm. The larger it is, the more accurate (on average)
the approximation of the target distribution. It has been demonstrated experimentally in [7, 23, 24] that
the DPF algorithm outperforms signi�cantly, sometimes by one order of magnitude, the Rao-Blackwellized
particle �lters proposed in [10, 18, 19] and that it is able to provide very good approximations of pθ (x1:T |y1:T)
in realistic scenarios even with a moderate number of particles. The action of the DPF can be summarised
as follows.

Assume that we have, at time step n obtained p̂Nθ (x1:n|y1:n) consisting of N |X | distinct particles with
weights that sum to 1. A resampling step is then applied, exactly N of the N |X | trajectories survive and their
weights are adjusted accordingly. The resampling mechanism is chosen in such a way as to be optimal in some
sense. Throughout the remainder of the paper we treat the case of minimising the sum of variances of the
importance weights as in [23] but exactly the same method applies to other schemes discussed in [3]. Features
of this resampling scheme which distinguish it from standard methods, such as multinomial resampling, are
that it results in no duplicated particles and gives post-resampling weights which are non-uniform.

Whereas standard particle methods rely on a stochastic proposal mechanism to explore the space, the
DPF performs all its exploration deterministically. This is possible because of the �nite cardinality of the
latent discrete space. Consider one of N particles which survived the resampling operation, each of which is a
point in Xn. Call the point in question x1:n and denote by mz,θ

n|n(x1:n) and Σz,θn|n(x1:n) respectively the mean

and covariance of the Gaussian density pθ(zn|y1:n, x1:n). From this point |X | new particles {(x1:n, x);x ∈ X}
are formed, and for each one of them, mz,θ

n+1|n+1(x1:n, x), Σz,θn+1|n+1(x1:n, x) and the associated unnormalized

weight are calculated using the Kalman �ltering recursions (included for reference in Appendix (A)). This
procedure is repeated for the remaining N−1 particles, resulting in N |X | weighted trajectories. The weights
are then normalized to yield a probability distribution constituting p̂Nθ (x1:n+1|y1:n+1).

This outline of the DPF operations highlights the function of the resampling step: in the case of the
DPF it acts to prune the exponentially growing (in n) tree of possible paths {x1:n ∈ Xn;n = 1, 2, ...}. It is
convenient to specify the DPF in a slightly non-standard way which highlights that the only randomness in
this algorithm arises from the resampling step. To this end, we introduce random support sets S1,S2, ...,ST
with each Sn taking a value sn which is a subset of Xn. It is stressed that, in the following interpretation,
the x1:n's are not random variables, and are just points in the state space (and Cartesian products thereof)
used for indexing. With this notation, we write the DPF approximation for n > 1 as

p̂Nθ (x1:n|y1:n) =
∑

x′1:n∈Sn

W θ
n (x′1:n) δx′1:n (x1:n) . (8)

Under the probability law of the DPF algorithm, which we discuss in more detail later, for each n ≥ 2,
|Sn| = N |X |, with probability 1. We thus see in (8) the e�ect of the parameter N : it speci�es the number
of support points of the approximation p̂Nθ (x1:n|y1:n). We next provide pseudo code for the DPF algorithm
and then go on to discuss several issues related to its practical use and its theoretical representation.

5

DPF algorithm

At time n = 1
• Set S1 = X and for each x1 ∈ X , compute mz,θ

1|1(x1) , Σz,θ1|1(x1) and gθ(y1|x1) using the Kalman �lter.

• Compute and normalise the weights. For each x1 ∈ X ,

wθ1 (x1) = νθ (x1) gθ (y1|x1) , W θ
1 (x1) =

wθ1 (x1)∑
x′1∈X

wθ1 (x′1)
. (9)

At times n = 2, ..., T
• If |Sn−1| ≤ N set Cn−1 =∞ otherwise set Cn−1 to the unique solution of∑

x1:n−1∈Sn−1

1 ∧ Cn−1W
θ
n−1 (x1:n−1) = N.

• Maintain the Ln−1 trajectories in Sn−1 which have weights strictly superior to 1/Cn−1, then apply the
strati�ed resampling mechanism to the other trajectories to yield N − Ln−1 survivors. Set S′n−1 to the set of
surviving and maintained trajectories.
• Set Sn = S′n−1 ×X .
• For each x1:n ∈ Sn, compute mz,θ

n|n(x1:n) , Σz,θn|n(x1:n) and gθ(yn|y1:n−1, x1:n) using the Kalman �lter.

• Compute and normalise the weights. For each x1:n ∈ Sn,

wθn (x1:n) = fθ(xn|x1:n−1)gθ(yn|y1:n−1, x1:n)
W θ
n−1 (x1:n−1)

1 ∧ Cn−1W θ
n−1 (x1:n−1)

, (10)

W θ
n (x1:n) =

wθn (x1:n)∑
x′1:n∈Sn

wθn (x′1:n)
. (11)

3.3.1 Exact computation at the early iterations

For small n it is practically possible to compute pθ(x1:n|y1:n) exactly. It is only once n is large enough that
|Xn| > N that we need to employ the resampling mechanism to prune the set of trajectories. This action
is represented conceptually in the DPF algorithm above by the arti�ce of setting Cn = ∞ if n is such that
|Sn−1| ≤ N . When this condition is satis�ed, the resampling step is not called into action. Of course in the
practically unrealistic case that

∣∣X T ∣∣ ≤ N the DPF, unlike standard SMC algorithms, thus reduces to exact
recursive computation of {pθ(x1:n|y1:n);n = 1, ..., T}.

3.3.2 Computing Cn and strati�ed resampling

The threshold Cn is a deterministic function of the weights
{
W θ
n (x1:n)

}
x1:n∈Sn

. A method for solving∑
x1:n∈Sn

1 ∧ CnW θ
n (x1:n) = N is given in [23]. The strati�ed resampling mechanism, which is employed

once Cn has been computed, proceeds as follows at time n; this was originally proposed in [6, 38], although
not in the context of the DPF.

Strati�ed resampling

• Normalise the weights wθn−1 (x1:n−1) of the N |X | − Ln−1 particles and label them according to the order of

the corresponding x1:n−1 to obtain Ŵ θ
n−1

(
x

(i)
1:n−1

)
; i = 1, ..., N |X | − Ln−1.

• Construct the corresponding cumulative distribution function: for i = 1, ..., N |X | − Ln−1,

Qθn−1(i) :=
∑
j≤i

Ŵ θ
n−1

(
x

(j)
1:n−1

)
, Qθn−1(0) := 0.

• Sample U1 uniformly on [0, 1/(N − Ln−1)] and set Uj = U1 + j−1
N−Ln−1

for j = 2, ..., N − Ln−1.

• For i = 1, ..., N |X | − Ln−1, if there exists j ∈ {1, ..., N − Ln−1} such that Qθn−1(i − 1) < Uj ≤ Qθn−1(i),
then x

(i)
1:n−1 survives.

6

3.3.3 Computational Requirements

Assuming that the cost of evaluating fθ(xn|x1:n−1) is O(1) for all n, the computational complexity of the
DPF is O(|X |N) at each time step due to the propagation of N |X | Kalman �ltering operations and the
generation of a single uniform random variable. The parallelisation techniques described in [39] could readily
be exploited when performing the Kalman computations.

3.3.4 Estimating pθ (y1:T)

Of particular interest in the sequel is the fact that the DPF provides us with an estimate of the marginal
likelihood pθ (y1:T) given by

p̂θ (y1:T) := p̂θ (y1)
T∏
n=2

p̂θ (yn|y1:n−1) (12)

where
p̂θ (yn|y1:n−1) =

∑
x1∈X

wθ1 (x1) , p̂θ (yn|y1:n−1) =
∑

x1:n∈Sn

wθn (x1:n) , n > 1. (13)

Inevitably, for �xed N , the quality of the particle approximation to the distribution pθ (x1:T |y1:T) decreases
as T increases. For �xed T , once N is larger than

∣∣X T ∣∣, the DPF computes pθ (y1:T) exactly.
Before introducing the details of the new PMCMC algorithms, we review some existing MCMC algorithms

for performing inference in SSSM.

3.4 Standard Markov chain Monte Carlo methods

Designing e�cient MCMC algorithms to sample from p (θ, x1:T , z0:T |y1:T) is a di�cult task. Most existing
MCMC methods approach this problem using some form of Gibbs sampler and can be summarized as
cycling in some manner through the sequence of distributions p (θ|y1:T , x1:T , z0:T), pθ (z0:T |y1:T , x1:T) and
pθ (x1:T |y1:T , z0:T) or pθ (x1:T |y1:T).

Sampling e�ciently from p (θ|y1:T , x1:T , z0:T) is often feasible due to the small or moderate size of θ and
the fact that for many models and parameters of interest, conjugate priors are available. When conjugate
priors are not used, Metropolis-within-Gibbs steps may be applied.

A variety of e�cient algorithms have been developed to sample from pθ (z0:T |y1:T , x1:T). These methods
rely on the conditionally linear-Gaussian structure of the model and involve some form of forward �ltering
backward sampling recursion [8, 30]. Variants of these schemes which approach the task by explicitly sampling
the state disturbances may be more e�cient and/or numerically stable for some classes of models [13, 20]. In
all the numerical examples we consider, sampling from pθ (z0:T |y1:T , x1:T) was performed using the simulation
smoother of [20].

Sampling from pθ (x1:T |y1:T , z0:T) can also be performed e�ciently using a forward �ltering backward
sampling recursion [8, 11] when {Xn} is a Markov chain. The resulting Gibbs sampler is elegant but it
can mix very slowly as X1:T and Z0:T are usually strongly correlated. To bypass this problem, the authors
in [9, 33] proposed to integrate out Z0:T using the Kalman �lter as discussed in Subsection 2.2. However,
as mentioned in the introduction, exact sampling from pθ (x1:T |y1:T) is typically infeasible as the cost of
computing this distribution is exponential in T . Therefore, in the algorithms of [9, 33], the discrete variables
X1:T are updated one-at-a-time according to their full conditional distributions pθ (xn|y1:T , x1:n−1, xn+1:T).
It was shown in [9, 33] that this strategy can improve performance drastically compared to algorithms where
X1:T is updated conditional upon Z0:T . From hereon we refer to the Gibbs sampler of [33] as the �standard
Gibbs� algorithm.

At this stage, we comment a little further on the method of [33] as it is relevant to the new algorithms
described in the later sections. The Gibbs sampler of [33] achieves a sweep of samples from pθ (x1|y1:T , x2:T),
pθ (x2|y1:T , x1, x3:T), etc. by a �backward�forward� procedure exploiting the identities

pθ (xn|y1:T , x1:n−1, xn+1:T) ∝ pθ(yn|y1:n−1, x1:n)pθ(xn|x1:n−1, xn+1:T)pθ(yn+1:T |y1:n, x1:T), (14)

and

pθ(yn+1:T |y1:n, x1:T) =
ˆ
pθ(yn+1:T |zn, xn+1:T)pθ(zn|x1:n, y1:n)dzn. (15)

In [33], it was shown that the coe�cients of zn in pθ(yn+1:T |zn, xn+1:T) which are needed to evaluate (15)
can be computed recursively for n = T, T − 1, ..., 1 (the backward step). Then, for each n = 1, 2, ..., T ,

7

pθ(yn|y1:n−1, x1:n) and pθ(zn|x1:n, y1:n) are obtained through standard Kalman �ltering recursions, (15) is
computed for each xn ∈ X and a draw is made from (14) (the forward step). In the resulting algorithm, if
the computational cost of evaluating pθ(xn|x1:n−1, xn+1:T) is O(1), the cost of one sampling sweep through
pθ (x1|y1:T , x2:T), pθ (x2|y1:T , x1, x3:T), etc. grows linearly in T .

More recently, adaptive MCMC methods have been suggested to make one-at-a-time updates [34]. How-
ever, these algorithms are still susceptible to slow mixing if the components of X1:T are strongly correlated.
Moreover even if we were able to sample e�ciently using one-at-a-time updates, this algorithm might still
converge slowly if X1:T and θ are strongly correlated; e.g. if {Xn} is a Markov chain and θ includes the
transition matrix of this chain.

4 Particle Markov chain Monte Carlo methods for switching state-

space models

A natural idea arising from the previous section is to use the output p̂θ (x1:T |y1:T) of the DPF algorithm as
part of a proposal distribution for a MCMC algorithm targeting pθ (x1:T |y1:T) or p (θ, x1:T |y1:T). This could
allow us, in principle, to design automatically an e�cient high-dimensional proposal for MCMC. However a
direct application of this idea would require us to be able to both sample from and evaluate pointwise the
unconditional distribution of a particle sampled from p̂θ (x1:T |y1:T). This distribution is given by

qθ (x1:T |y1:T) = E [p̂θ (x1:T |y1:T)] ,

where the expectation is with respect to the probability law of the DPF algorithm: the stochasticity which
produces the random probability measure p̂θ (x1:T |y1:T) in Eq. (8). While sampling from qθ (x1:T |y1:T) is
straightforward as it only requires running the DPF algorithm to obtain p̂θ (x1:T |y1:T) then sampling from
this random measure, the analytical expression of this distribution is clearly not available.

The novel MCMC updates presented in this section, under the umbrella term PMCMC, circumvent
this problem by considering target distributions on an extended space, over all the random variables of
the DPF algorithm. Details of their theoretical validity are given in Subsection 4.3 but are not required
for implementation of the algorithms. The key feature of these PMCMC algorithms is that they are �exact
approximations� to standard MCMC updates targeting p (θ, x1:T |y1:T). More precisely, on the one hand these
algorithms can be thought of as approximations to possibly �idealized� standard MH updates parametrized
by the number N of particles used to construct the DPF approximation. On the other hand, under mild
assumptions, PMCMC algorithms are guaranteed to generate asymptotically (in the number of MCMC
iterations used) samples from p (θ, x1:T |y1:T), for any �xed number N ≥ 2 of particles, in other words, for
virtually any degree of approximation.

In Subsection 4.1, we describe the Particle MMH (Marginal Metropolis-Hastings) algorithm which can be
thought of as an exact approximation of an idealised �Marginal MH� (MMH) targetting directly the marginal
distribution p (θ|y1:T) of p (θ, x1:T |y1:T). This algorithm admits a form similar to the PMMH discussed in [1]
but its validity relies on di�erent arguments. In Subsection 4.2 we present a particle approximation of a Gibbs
sampler targeting p (θ, x1:T |y1:T), called the Particle Gibbs (PG) algorithm. It is a particle approximation
of the �ideal� block Gibbs sampler which samples from p (θ, x1:T |y1:T) by sampling iteratively from the full
conditionals pθ (x1:T |y1:T) and p (θ|y1:T , x1:T). This algorithm is signi�cantly di�erent from the PG sampler
presented in [1] and incorporates a novel backward sampling mechanism. Convergence results for these
algorithms are established in Subsection 4.3.

4.1 Particle marginal Metropolis-Hastings sampler

Let us consider the following ideal �marginal� MH (MMH) algorithm to sample from p (θ, x1:T |y1:T) where θ
and x1:T are updated simultaneously using the proposal given by

q ((θ∗, x∗1:T)| (θ, x1:T)) = q (θ∗| θ) pθ∗ (x∗1:T |y1:T) .

In this scenario the proposed x∗1:T is perfectly �adapted� to the proposed θ∗ and the resulting MH acceptance
ratio is given by

p (θ∗, x∗1:T |y1:T)
p (θ, x1:T |y1:T)

q ((θ, x1:T)| (θ∗, x∗1:T))
q ((θ∗, x∗1:T)| (θ, x1:T))

=
pθ∗ (y1:T) p (θ∗)
pθ (y1:T) p (θ)

q (θ|θ∗)
q (θ∗|θ)

. (16)

8

This algorithm is equivalent to a MH update working directly on the marginal density p (θ|y1:T), justifying
the MMH terminology. This algorithm is appealing but typically cannot be implemented as the marginal
likelihood terms pθ (y1:T) and pθ∗ (y1:T) are cannot be computed exactly and it is impossible to sample
exactly from pθ∗ (x1:T |y1:T). We propose the following particle approximation of the MMH algorithm where,
whenever a sample from pθ (x1:T |y1:T) and the expression for the marginal likelihood pθ (y1:T) are needed,
their DPF approximation counterparts are used instead.

PMMH sampler for SSSM

Initialisation, i = 0
• Set θ(0) arbitrarily.
• Run the DPF targeting pθ(0) (x1:T |y1:T), sample X1:T (0) ∼ p̂θ(0) (·|y1:T) and denote p̂θ(0) (y1:T)
the marginal likelihood estimate.

For iteration i ≥ 1
• Sample θ∗ ∼ q (·|θ (i− 1)).
• Run the DPF targeting pθ∗ (x1:T |y1:T), sample X∗1:T ∼ p̂θ∗ (·|y1:T) and denote p̂θ∗ (y1:T)
the marginal likelihood estimate.
• With probability

1 ∧ p̂θ∗ (y1:T) p (θ∗)
p̂θ(i−1) (y1:T) p (θ (i− 1))

q (θ (i− 1) |θ∗)
q (θ∗|θ (i− 1))

(17)

set θ (i) = θ∗, X1:T (i) = X∗1:T , p̂θ(i) (y1:T) = p̂θ∗ (y1:T),
otherwise set θ (i) = θ (i− 1), X1:T (i) = X1:T (i− 1), p̂θ(i) (y1:T) = p̂θ(i−1) (y1:T) .

4.2 Particle Gibbs sampler

As discussed in Section 3.4, an attractive but impractical strategy to sample from p (θ, x1:T |y1:T) consists
of using the Gibbs sampler which iterates sampling steps from pθ (x1:T |y1:T) and p (θ|y1:T , x1:T) or a mod-
i�ed Gibbs sampler where we insert a sampling step from pθ (z0:T |y1:T , x1:T) after having sampled from
pθ (x1:T |y1:T) to update θ according to p (θ|y1:T , x1:T , z0:T). Numerous implementations rely on the fact that
sampling from the conditional density p (θ|y1:T , x1:T) or p (θ|y1:T , x1:T , z0:T) is feasible and thus the poten-
tially di�cult design of a proposal density for θ can be bypassed. However, as mentioned before, it is typically
impossible to sample from pθ (x1:T |y1:T). Clearly substituting to the sampling step from pθ (x1:T |y1:T), sam-
pling from the DPF approximation p̂θ (x1:T |y1:T) would not provide Gibbs samplers admitting the correct
invariant distribution.

We now present a valid particle approximation of the Gibbs sampler which assumes we can sample from
p (θ|y1:T , x1:T). Similarly it is possible to build a valid particle approximation of the modi�ed Gibbs sampler
by the same arguments, but we omit the details here for brevity.

PG sampler for SSSM

Initialisation, i = 0
• Set θ (0) , X1:T (0) arbitrarily.
For iteration i ≥ 1
• Sample θ (i) ∼ p (·|y1:T , X1:T (i− 1)).
• Run a conditional DPF algorithm targeting pθ(i) (x1:T |y1:T) conditional upon X1:T (i− 1) .
• Run a backward sampling algorithm to obtain X1:T (i).

The remarkable property enjoyed by the PG algorithm is that under weak assumptions it generates samples
from p (θ, x1:T |y1:T) in steady state for any number N ≥ 2 of particles used to build the required DPF
approximations. The non-standard steps of the PG sampler are the conditional DPF algorithm and backward
sampling algorithms which we now describe.

Given a value of θ and a trajectory x∗1:T , the conditional DPF algorithm proceeds as follows. Kalman
�ltering recursions are given in Appendix A.

9

Conditional DPF algorithm

At time n = 1
• Set S1 = X and for each x1 ∈ X (which includes x∗1), compute mz,θ

1|1(x1) , Σz,θ1|1(x1) and gθ(y1|x1) using the

Kalman �lter
• Compute and normalise the weights. For each x1 ∈ X ,

wθ1 (x1) = νθ (x1) gθ (y1|x1) , W θ
1 (x1) =

wθ1 (x1)∑
x′1∈X

wθ1 (x′1)
. (18)

At times n = 2, ..., T
• If |Sn−1| ≤ N set Cn−1 =∞ otherwise set Cn−1 to the the unique solution of∑

x1:n−1∈Sn−1

1 ∧ Cn−1W
θ
n−1 (x1:n−1) = N.

• If W θ
n−1

(
x∗1:n−1

)
> 1/Cn−1, maintain the Ln−1 trajectories which have weights strictly superior to 1/Cn−1

(which includes x∗1:n−1), then apply the strati�ed resampling mechanism to the other weighted trajectories to
yield N − Ln−1 survivors. Set S′n−1 to the set of surviving and maintained trajectories.
• If W θ

n−1

(
x∗1:n−1

)
≤ 1/Cn−1 maintain the Ln−1 trajectories which have weights strictly superior to 1/Cn−1

(which excludes x∗1:n−1), then then apply the conditional strati�ed resampling mechanism to the other weighted
trajectories to yield N − Ln−1 survivors. Set S′n−1 to the set of surviving and maintained trajectories.
• Set Sn = S′n−1 ×X .
• For each x1:n ∈ Sn, update m

z,θ
n|n(x1:n) and Σz,θn|n(x1:n) and compute gθ(yn|y1:n−1, x1:n) using the Kalman

�lter.
• Compute and normalise the weights. For each x1:n ∈ Xn,

wθn (x1:n) = fθ(xn|x1:n−1)gθ(yn|y1:n−1, x1:n)
W θ
n−1 (x1:n−1)

1 ∧ Cn−1W θ
n−1 (x1:n−1)

(19)

W θ
n (x1:n) =

wθn (x1:n)∑
x′1:n∈Sn

wθn (x′1:n)
. (20)

• If backward sampling is to be used, store W θ
n(x1:n), mz,θ

n|n(x1:n) and Σz,θn|n(x1:n) for each x1:n ∈ Sn.

The conditional strati�ed resampling procedure can be implemented as follows.

Conditional strati�ed resampling

• Normalise the weights wθn−1 (x1:n−1) of the N |X |−Ln−1 particles and label them according to the order of the

corresponding x1:n−1 to obtain Ŵ θ
n−1

(
x

(i)
1:n−1

)
; i = 1, ..., N |X | −Ln−1. De�ne κ to be the integer satisfying

x
(κ)
1:n−1 = x∗1:n−1.
• Construct the corresponding cumulative distribution function: for i = 1, ..., N |X | − Ln−1,

Qθn−1(i) :=
∑
j≤i

Ŵ θ
n−1

(
x

(j)
1:n−1

)
, Qθn−1(0) := 0.

• Sample U∗ uniformly on
[
Qθn−1(κ− 1), Qθn−1(κ)

]
, set U1 = U∗ −

b(N − Ln−1)U∗c
N − Ln−1

and compute Uj =

U1 + j−1
N−Ln−1

for j = 2, ..., N − Ln−1. Here bac denotes the largest integer not greater than a.

• For i = 1, ..., N |X | − Ln−1, if there exists j ∈ {1, ..., N − Ln−1} such that Qθn−1(i − 1) < Uj ≤ Qθn−1(i),
then x

(i)
1:n−1 survives.

The backward sampling step is an important component of the PG algorithm. In contrast to the standard
PMCMC algorithms of [1], it allows the sampled trajectory obtained from the conditional SMC update not

10

only to be chosen from those surviving at time T , but allows full exploration of all trajectories sampled
during the Conditional DPF algorithm. Further comments on the theoretical validity of alternative schemes
are made in section 4.3 and demonstration of numerical performance given in section 5.

We note that this procedure is of some independent interest for smoothing in SSSM's if θ is known, as
it can be combined with the standard DPF algorithm. A forward �ltering-backward smoothing algorithm
for SSSM was devised in [27], and involved joint sampling of both continuous and discrete variables from
an approximation of pθ(x1:T , z0:T |y1:T). The backward sampling algorithm we propose is di�erent because
the continuous component of the state is integrated out analytically, giving a further Rao-Blackwellization
over the scheme of [27]. Furthermore, the fact that the backward sampling algorithm involves sampling only
discrete�valued variables is central to the validity of the PG algorithm, discussed in the next section. Details
of the matrix-vector recursions necessary for the implementation of the backward sampling procedure are
given in Appendix B.

Backward Sampling

At time n = T
• Sample a path X ′1:T from the distribution on ST ⊂ X T de�ned by {W θ

T (x1:T)}, then discard X ′1:T−1 to yield
X ′T . Set ΞT = 0, µT = 0.
At times n = T − 1, ..., 1
• Update Ξn and µn as per the procedure of Appendix B.
• For each x1:n ∈ Sn compute the backward weight

V θn
(
x1:n

∣∣x′n+1:T

)
∝W θ

n(x1:n)pθ(x′n+1:T |x1:n)pθ(yn+1:T |y1:n, x1:n, x
′
n+1:T)

where

pθ(yn+1:T |y1:n, x1:n, x
′
n+1:T) =

ˆ
pθ(yn+1:T |zn, x′n+1:T)pθ(zn|x1:n, y1:n)dzn

is evaluated using µn, Ξn and the stored mz,θ
n|n(x1:n) and Σz,θn|n(x1:n) of pθ(zn|x1:n, y1:n) as per Eq. (28) in

Appendix B.
• Normalise the backward weights

{
V θn
(
x1:n

∣∣x′n+1:T

)}
x1:n∈Sn

and draw from the distribution they de�ne on

Sn ⊂ Xn to obtain X ′1:n.
• If n > 1 discard X ′1:n−1, otherwise output X ′1:T .

4.3 Validity of the algorithms

The key to establishing the validity of the PMCMC algorithms is in showing that these are standard MCMC
algorithms on an extended state-space including all the random variables introduced in the DPF algorithm.

The �rst step is observe that under our representation of the DPF algorithm, its operation remains
essentially unchanged if at each iteration we adopt the convention of setting wθn(x1:n) = W θ

n (x1:n) = 0 for
all x1:n /∈ Sn, and to replace all summations over Sn with summations over Xn. We assume this convention
throughout the remainder of this section. In this case the solution of

∑
x1:n∈Sn

1 ∧ CnW θ
n (x1:n) = N is

identical to the solution of
∑
x1:n∈Xn 1 ∧ CnW θ

n (x1:n) = N . Furthermore we can consider the resampling
mechanism as acting on all trajectories in Xn and not only those in Sn; those with zero weights clearly fall
below the threshold 1/Cn and there is zero probability of them surviving the resampling operation. As we
shall see, the intuitive implication of this observation is that once a trajectory x1:n has been discarded, it is
lost and for any m > n , any subsequent trajectory (x1:n, x

′
n+1:m) ∈ Xm is also assigned zero weight. We

denote by Wθ
n the set of normalised importance weights at time n.

We next write an expression for the joint distribution of the sequence of random support sets S1,S2, ...,ST
generated through the DPF algorithm. By de�nition of the algorithm, for n ≥ 2, Sn is conditionally
independent of the history of the algorithm given Wθ

n−1:

Sn|
(
Wθ

n−1 = wθ
n−1

)
∼ rNn (·|wθ

n−1), (21)

where for each N , n and wθ
n−1, r

N
n (·|wθ

n−1) can be understood as a probability distribution over the set of
subsets of Xn, and we denote this set of subsets by P(Xn). This density is parameterized by N because for all
n ≥ 2, for each point sn in the support of rNn (·|wθ

n−1) , |sn| = N |X | . In the case of n = 1, rNn (·) = I[· = X].

11

We will not need an explicit expression for the distribution (21), but from the de�nition of the optimal
resampling mechanism [22, 23], we know that it has the following marginal property: for all x1:n ∈ Xn , we
have

rNn (x1:n ∈ sn|wθ
n−1) = 1 ∧ cn−1w

θ
n−1 (x1:n−1) . (22)

where we have adopted the abusive notation that

rNn (x1:n ∈ sn|wθ
n−1) :=

∑
s′n:x1:n∈s′n

rNn (s′n|wθ
n−1)

Eq. (22) implies
rNn (x1:n ∈ sn|wθn−1 (x1:n−1) = 0) = 0.

Combined with Eq. (21) we see that for any n and x1:n−1, conditional on the event that W θ
n−1 (x1:n−1) = 0,

any subsequent paths which have x1:n−1 as their �rst n−1 coordinates are also assigned zero weight and are
not members of any subsequent Sn. Thus the corresponding subsequent weights need never be computed or
stored, as required to control the cost of the algorithm. We thus have the property as claimed earlier that
once a trajectory is discarded it is not recovered. To summarize the law of the DPF algorithm, we can write
the density of S1,S2, ...,ST on

∏T
n=1 P(Xn) as

ψNθ (s1, s2, ..., sT) = rN1 (s1)
T∏
n=2

rNn (sn|wθ
n−1). (23)

As the weights Wθ
n are just a deterministic function of S1, . . . ,Sn, it is not necessary to introduce them as

arguments of ψNθ .
The key to the PMCMC algorithms described here is to de�ne the following arti�cial target density on

Θ×X T ×
∏T−1
n=1 P(Xn) through

πN (θ, x1:T , s1, s2, ..., sT) = p(θ, x1:T | y1:T)

{
T∏
n=2

I[x1:n ∈ sn]

}
ψNθ (s1, s2, ..., sT)∏T

n=2 r
N
n (x1:n ∈ sn|wθ

n−1)
(24)

which admits p(θ, x1:T | y1:T) as a marginal by construction. Let πNθ (x1:T , s1, s2, ..., sT) denote the density
of X1:T ,S1,S2, ...,ST conditional upon θ under πN (θ, x1:T , s1, s2, ..., sT). In the following results we show
that the PMMH and PG algorithms are just standard MCMC updates targeting this arti�cial distribution.
Proofs can be found in Appendix C.

We �rst present a result establishing the convergence of the PMMH sampler which relies on the following
assumption.

(A1) The MH sampler of target density p (θ| y1:T) and proposal density q(θ∗|θ) is irreducible and aperiodic
(and hence converges for almost all starting points).

We have the following result.

Theorem 1 For any N ≥ 2

1. the PMMH sampler is an MH sampler de�ned on the extended space Θ×X T ×
∏T
n=1 P(Xn) with target

density πN (θ, x1:T , s1, s2, ..., sT) de�ned in Eq. (24) and proposal density

q(θ∗|θ) wθ
∗

T (x∗1:T) ψNθ∗ (s∗1, s
∗
2, ..., s

∗
T) (25)

where wθ
∗

T (x∗1:T) is the realisation of the normalised importance weight associated to the population of
particles proposed by the DPF algorithm.

2. if additionally (A1) holds, the PMMH sampler generates a sequence {θ (i) , X1:T (i)} whose marginal
distributions {LN ((θ (i) , X1:T (i)) ∈ ·)} satisfy∥∥LN ((θ (i) , X1:T (i)) ∈ ·)− p (·, ·| y1:T)

∥∥
TV
→ 0 as i→∞ .

for almost all starting points.

12

Next we consider the backward sampling procedure and establish its invariance properties.

Proposition 1 For any N ≥ 2 and θ ∈ Θ, assume (X1:T ,S1,S2, ...,ST) is distributed according to πNθ (·)
and let X ′1:T be the trajectory obtained at any time step m of the backward sampling procedure operating on
(X1:T ,S1,S2, ...,ST). Then X ′1:T is distributed according to pθ (x1:T |y1:T).

We now state a su�cient condition for the convergence of the PG sampler and provide a simple conver-
gence result.

(A2) The Gibbs sampler de�ned by drawing alternately from the conditionals p (θ|y1:T , x1:T) and pθ (x1:T |y1:T)
is irreducible and aperiodic (and hence converges for p-almost all starting points).

We have the following result.

Theorem 2

1. steps 1− 4 of the PG update de�ne a transition kernel on the extended space Θ× X T ×
∏T
n=1 P(Xn)

of invariant density πN (θ, x1:T , s1, s2, ..., sT) de�ned in Eq. (24) for any N ≥ 2.

2. if additionally (A2) holds, the PG sampler generates a sequence {θ (i) , X1:T (i)} whose marginal dis-
tributions {LNPG ((θ (i) , X1:T (i)) ∈ ·)} satisfy for any N ≥ 2∥∥LNPG ((θ (i) , X1:T (i)) ∈ ·)− p (·, ·| y1:T)

∥∥
tv
→ 0 as i→∞,

for almost all starting points.

Remark 1 The reader will observe that as Proposition 1 applies for any time step of the backward sampling,
modi�cation of the PG algorithm to the case where X1:T (i) is set to the X ′1:T obtained at any time step of
the backward sampling procedure also corresponds to a Markov kernel of the required invariant distribution.
For example, one could simply apply only the �rst backward sampling step: sample X ′1:T from the distribution
de�ned by {WT (x1:T)} and then set X1:T (i) = X ′1:T . The resulting algorithm is closer akin to the original
Particle Gibbs algorithm of [1]. However, in numerical experiments in the context of SSSMs this approach has
been found to be relatively ine�cient. This phenomenon is discussed further and demonstrated numerically
in section 5.

5 Applications

5.1 Example 1: Autoregression with shifting level

In our �rst numerical experiments we return to the toy model speci�ed in section 2.1.1 and address some
generic issues regarding algorithmic settings and performance.

5.1.1 Particle Gibbs and the e�ect of backward sampling

We �rst demonstrate the e�ect of applying the backward sampling procedure as part of the PG algorithm.
The purpose of this section is to show the importance of applying backward sampling as part of the PG
algorithm and to show its advantage over the standard Gibbs sampler. From hereon we refer to as �PG
without backward sampling� the alternative PG scheme described in Remark 1 which involves sampling
X ′1:T from the distribution de�ned by {WT (x1:T)} and immediately setting X1:T (i) = X ′1:T .

Recall that for this model the parameters are θ = [φ σ2 PX]. Conjugate priors are readily available: a
Gaussian distribution for φ, inverse-gamma for σ2 and independent Dirichlet for each row of PX . A data
record of length T = 1000 was generated from the model with true parameter values of φ = 0.1, σ = 0.1 and

PX =
[

0.99 0.01
0.99 0.01

]
. Flat Dirichlet priors were set on each row of PX . A N (0, 10) distribution restricted

to |φ| ≤ 1 was set over φ and a (0.1, 0.1) inverse gamma distribution was set over σ2. The initial distribution
over µ0 was N (0, 10). For various numbers of particles the PG algorithm, with and without backward
sampling, was run and compared to the standard one-at-a-time Gibbs algorithm in terms of the sample lag
1 autocorrelation for each component of the discrete latent trajectory {Xn}. In all cases the simulation
smoother of [20] was used to sample from pθ(z0:T |y1:T , x1:T).

13

In both panes of Figure 1. the vertical dashed lines show the true times at which Xn = 1. The bottom
pane shows the lag 1 autocorrelation for PG with backward sampling and the standard one-at-a-time Gibbs
sampler: here it was found that for all components of the trajectory, increasing N monotonically decreased
the autocorrelation and for any N the PG algorithm exhibited lower autocorrelation than the standard
one-at-a-time algorithm. Spikes in the autocorrelation coincide with the true times at which Xn = 1 and
between these times the autocorrelation, even using the standard Gibbs sampler, was found to be very low.
By contrast, for the PG without backward sampling and the same numbers of particles, the autocorrelation
from the PG algorithm was higher than that from the standard Gibbs algorithm for most components of
discrete trajectory. In all cases the sample autocorrelation was computed from 105 iterations after a burn-in
of 104 iterations. After the 104+105 iterations, with N = 10 and N = 20 particles, the PG without backward
sampling had entirely failed to converge: in the plots of Figure 1, we use the ranges in which the plots reach
the value exactly 1 to represent those components of the discrete trajectory never having changed from their
initial condition (such a sample sequence does not have a well de�ned autocorrelation as its sample variance
is zero). Very similar results were observed for other initialisations and data records.

This performance can be explained in terms of the well-known particle path degeneracy phenomenon
which arises from the resampling mechanism in SMC algorithms: the act of repeated selection of sampled
paths inevitably leads to a loss in diversity in their early components. In the present context the path
degeneracy in�uences the performance of the PG algorithms via the conditional DPF update. During the
conditional DPF operation at MCMC iteration i + 1, by construction of the conditional DPF, X1:T (i) is
forced to survive until time step T . Thus for the PG without backward sampling, for some m < T , the path
degeneracy phenomenon implies there is a signi�cant probability that X1:m (i) coincides with X1:m(i + 1).
This explains the strong correlations between components of consecutive samples of the latent trajectory
shown in the top pane of Figure 1. By contrast, backward sampling provides a chance for the path degeneracy
to be circumvented. The CPU time for one iteration of the PG with backward sampling was found to be
between 1 and 1.5 times that without backward sampling for the same number of particles. The results
therefore indicate that overall it is signi�cantly more e�cient to use the backward sampling method and
from now on it is the only PG algorithm we consider.

Figure 2 shows sample autocorrelation as a function of lag for various numbers of particles from the PG
algorithm with backward sampling and the standard one-at-a-time Gibbs sampler. We observe that using
large N leads to lower autocorrelation and very little decrease in autocorrelation was observed using more
than N = 50 particles. As we go on to discuss in more details in the next section, under the Dirichlet
prior for each row of PX it is possible to analytically integrate out PX both when using the standard Gibbs
sampler and the PG, and we did so. The above experiments were also conducted in the case where PX is
not integrated out and we obtained results which were almost identical (not shown).

5.1.2 Treatment of PX

A common feature of SSSMs is that it is possible to analytically integrate out PX under Dirichlet priors for
each of its rows and the autoregressive model with shifting level is no exception. It is natural to ask, even in
the context of standard MCMC algorithms, whether it is bene�cial to perform this integration analytically,
or to treat PX as part of the sampling problem. To the authors' knowledge, in the context of SSSMs this
issue has not been treated in the literature.

Consider �rst the standard one-at-a-time Gibbs sampling case. The reader will recall from section 3.4
and [33] that the algorithm involves sampling from

pθ (xn|y1:T , x1:n−1, xn+1:T) ∝ pθ(yn|y1:n−1, x1:n)pθ(xn|x1:n−1, xn+1:T)pθ(yn+1:T |y1:n, x1:T) (26)

for each n. Conditionally on PX , the process {Xn}n≥1 is Markov and so in the above display we have
the simpli�cation pθ(xn|x1:n−1, xn+1:T) = pθ(xn|xn−1, xn+1). Conversley, when PX is integrated out, in
which case the parameter reduces to θ = [φ σ2], the process {Xn}n≥1 is not Markov and the former
simpli�cation is not applicable. Thus, in terms of the correlation structure of the Markov chains generated
by the corresponding Gibbs samplers, there appears to be a trade-o� between conditioning on PX and
conditioning on components of the {Xn}n≥1 process when drawing from distributions of the form (26). In
terms of computational cost there is no signi�cant di�erence: in the case that PX is integrated out analytically
evaluation of pθ(xn|x1:n−1, xn+1:T) requires only state-transition count statistics which are cheap to compute
and store.

Analogous remarks to those above hold for the PG algorithm. It involves computing fθ(xn|x1:n−1) in the
conditional DPF step and pθ(xn+1:T |x1:n) in the backward sampling step and it is in these places that the

14

0 250 500 750 1000

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

Figure 1: Example 1. Sample lag-1 autocorrela-
tion for each of the discrete trajectory components
{Xn(i), n = 1, ..., 1000} with (bottom) and without
(top) backward sampling for various numbers of par-
ticles: green N = 10, red N = 20, black N = 50. In
both top and bottom the blue line is sample autocor-
relation for standard one-at-a-time Gibbs. Vertical
dashed lines are true locations of Xn = 1.

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

25 50 75 100

0

0.2

0.4

0.6

0.8

1

Figure 2: Example 1. Autocorrelation against lag
for standard Gibbs sampler (blue) and PG with
backward sampling and various numbers of parti-
cles: green N = 10, red N = 20, black N = 50. Top
pane is for φ and bottom pane for σ2.

same conditioning issues arise. In our numerical experiments for this model and others we were unable to
establish that either incorporating PX into the sampling problem or integrating it out analytically lead to a
signi�cant advantage in terms of sample autocorrelation, both for the standard one-at-a-time Gibbs sampler
and the PG algorithm (results not shown). It would be very interesting to study the theoretical properties
underlying this issue in Gibbs sampling algorithms for SSSMs but such an investigation is well beyond the
scope of this document.

We found more obvious e�ects in the context of the PMMH algorithm, which we now go on to discuss.
In this case fθ(xn|x1:n−1) is computed as part of the DPF algorithm, which is where the same conditioning
issues arise. A data record of length T = 1000 was generated from the model with the same true parameter
values as stated in the previous section. The same prior distributions were also employed. Central to the
performance of the PMMH algorithm is the normalizing constant estimate p̂θ(y1:T) computed using the DPF.
When the variance of this estimate is large the PMMH algorithm performs poorly, exhibiting a high rejection
rate - a characteristic shared with the standard PMCMC algorithms in [1]. We found that in the two cases
(where PX was integrated out and where it was not), the DPF exhibited striking di�erences in the variance
of this estimate. The parameter θ was set to its true value and the DPF was run 1000 times on the simulated
data set. Figure 3 shows the sample variance of log p̂θ(y1:n) as a function of n. The bottom pane corresponds
to the case in which PX is integrated out analytically. In this case the sample variance grows super-linearly
with n. By contrast, as shown in the top pane, when conditioning on PX the variance grows far more slowly.
Very similar results were obtained when conditioning on values of PX other than the truth. A step towards
explaining this phenomenon is noting that integrating out PX destroys the ergodicity properties of the latent
process {Xn}conditional on θ. For standard SMC algorithms it is now theoretically well understood that
assumptions about the ergodicity properties of the latent process are central to establishing linear growth
rates (with respect to n) for the error in normalizing constant-type estimates [15, 16]. Our numerical results
are consistent with the DPF having similar properties.

The variance of p̂θ(y1:T) in�uences the acceptance rates of the corresponding two PMMH algorithms. Of
course the trade-o� is that when implementing a PMMH algorithm which incorporates PX into the sampling
problem one has the added burden of designing proposal moves for PX and the contribution to the variability
of the MH acceptance ratio from these proposals also in�uences the acceptance rate. In our experiments we
found that an e�ective approach to making proposals for PX was to reparameterize the model in terms of
the unnormalized components of each row of PX , with the Dirichlet prior corresponding to gamma priors
over these components. Proposals could then be made using log-Gaussian random walks (an analogous
approach was advocated in the [36] in the context of static mixture models). In numerical experiments we

15

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Figure 3: Example 1. Sample variance of log p̂θ(y1:n)
for �xed θ as a function of n for various numbers
of particles: blue: N = 10, green: N = 50, red:
N = 100, black: N = 200. Top pane is conditional
on the true value of PX and bottom pane is with PX
integrated out.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

Figure 4: Example 1. PMMH acceptance rate as
function of data record length for various numbers
of particles: blue: N = 10, green: N = 50, red:
N = 100, black: N = 200. Top pane is PMMH
making proposals for PX and bottom pane is with
PX integrated out.

adopted this approach with independent log-Gaussian random walk proposals made on each unnormalized
component of PX . After a couple of preliminary runs, the standard deviation of the increment in the log
domain was set to 0.05. A log-Gaussian random walk proposal with the same standard deviation was also
used for the parameter σ2 and a Gaussian random walk with standard deviation 0.1 was used for φ. For
the case where PX is integrated out we used the same proposals as above for φ and σ2. Figure 4 shows the
PMMH acceptance rates as a function of the length of the data record. These results were obtained over 105

iterations of the algorithms after a burn-in of 104. The results show that the acceptance rate drops much
more rapidly in the case that PX is integrated out. However, we cannot conclude that the PMMH algorithm
is always more e�cient when PX is incorporated into the sampling problem as the overall e�ciency naturally
depends on the particular choice of proposal mechanism for PX . Our numerical results do indicate that even
using a fairly simple proposal mechanism for PX one can obtain acceptance rates which are superior to those
in the case that PX is integrated out analytically and the autocorrelation plots in Figure 5 show that this is
carried over to lower sample autocorrelation for the parameters φ and σ2.

5.1.3 PMMH and label switching in an unidenti�ed model

The attractive property of Gibbs samplers in general is the relative ease of their implementation. Typically
there is no algorithmic design involved and one only has to derive the full conditional distributions from
which to sample. However, in some situations their performance can be poor. To represent the potential
for performance bene�ts when using the PMMH algorithm we consider a slight generalization of the above
auto-regressive model with level switching. Again we have X = {0, 1} and given PX , the process {Xn}n≥1

is Markov. However, we now have

Zn =
[
Yn − µn
µn

]
, Aθ(xn) =

[
φ 0
0 1

]
, Bθ(0) =

[
σY 0
0 σµ,0

]
, Bθ(1) =

[
σY 0
0 σµ,1

]
,

Cθ(xn) =
[

1 1
]
, Dθ(xn) = Fθ(xn) = Gθ(xn) = 0, ∀xn.

The unknown parameters of this model are θ = [φ σY σ2
µ,0 σ

2
µ,1 PX]. An important characteristic of this

model is its invariance to labelling of the discrete latent states, a feature which is common in switching and
mixture models in general. Under a symmetric prior, the posterior distribution over the parameters exhibits
two symmetric modal patterns corresponding to the two possible labellings of the states. Permutation
sampling methods for dynamic mixture models have been discussed in [31]. For purposes of exposition we
use the multi-modality of the posterior as an informal test of the mixing properties of MCMC algorithms.
Following the rationale of [36] in the context of static mixtures, as we know the posterior has several

16

25 50 75 100

0

0.2

0.4

0.6

0.8

1

25 50 75 100

0

0.2

0.4

0.6

0.8

1

25 50 75 100

0

0.2

0.4

0.6

0.8

1

25 50 75 100

0

0.2

0.4

0.6

0.8

1

Figure 5: Example 1. Sample autocorrelation against lag for various numbers of particles, blue: N = 10,
green: N = 50, red: N = 100, black: N = 200. Left column is PMMH with PX sampled and right column
is with PX integrated out analytically. Top plots are for φ and bottom plots are for σ2.

symmetric modes, we can be more con�dent in the mixing abilities of a sampler which visits all of these
modes than one that does not. A data record of length T = 1000 was generated from the model with true

parameter values φ = 0.1, σµ,0 = 0.1, σµ,1 = 0.5, σY = 0.1 and PX =
[

0.99 0.01
0.99 0.01

]
. Flat Dirichlet priors

were set on each row of PX . A N (0, 10) distribution restricted to |φ| ≤ 1 was set over φ and independent
(0.1, 0.1) inverse gamma distributions were set over σ2

µ,0, σ
2
µ,1, and σ

2
Y . We ran the PMMH algorithm in which

PX is incorporated in to the sampling problem. The proposal for φ was Gaussian random walk of standard
deviation 0.1. We again take the approach of reparameterizing in terms of the unnormalized components
of PX and for each of these components we used an independent, mixture of log-Gaussian random walks
proposal with two components: the �rst with weight 0.8, and log-domain standard deviation 0.05 and the
second with weight 0.1, standard deviation 2. The same proposals were also used for σ2

µ,0, σ
2
µ,1, and σ

2
Y . We

set N = 100 (for larger N no di�erence in performance was observed) and ran the PMMH algorithm and
the PG sampler for 105 iterations after discarding the �rst 104 samples. Segments of trace plots for log σ2

µ,0

and log σ2
µ,1 are shown in Figure 6. We observe that the PG sampler is not able to switch between modes

where as the PMMH sampler is. This demonstrates the better mixing performance which can be achieved
using the PMMH algorithm. It may be possible to devise more sophisticated, correlated proposals for the
unnormalised components of PX but we do not pursue this here.

5.2 Example 2: Multiple change-point model with dependence between seg-

ments.

There is an extensive literature on statistical time series analysis based on multiple change-point models. In
such models it is often assumed that given the position of a change-point, the data after that change-point
are conditionally independent of those before, see for example [4, 25], amongst many others. This modelling
assumption may be restrictive in some circumstances. A natural way to relax it is via a SSSM, which allows
the notion of change-points to be introduced whilst allowing potentially complex dependence structures
across segments of the data.

We consider a multiple-change point model in which observations arise from a latent process which is
piece-wise linear. Changes in the latent process are of two varieties: those in which there is a discontinuity in
the latent trajectory and its gradient and those in which there is a discontinuity only in the gradient. More
speci�cally, we have X = {0, 1, 2} and we assume that {Xn} is Markov with unknown transition matrix
PX . The observations {Yn} are valued in R, as are the latent trajectory {µn} and its gradient {µ̇n}. In
state-space form we have

Zn =
[
µn
µ̇n

]
, Aθ(0) =

[
1 ∆
0 1

]
, Aθ(1) =

[
1 ∆
0 0

]
, Aθ(2) =

[
0 0
0 0

]
,

17

−6

−4

−2

0

2

4

−6

−4

−2

0

2

4

Figure 6: Example 1. Trace plots for PG (top)
and PMMH (bottom) for log σ2

µ,0 and log σ2
µ,1 in the

unidenti�ed model. True values are log σ2
µ,0 = −4.61

and log σ2
µ,0 = −1.39.

−2

0

2

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

Figure 7: Example 2. Top: well-log data. Middle
and bottom panes are estimated p(Xn = 2|y1:T) from
respectively the standard Gibbs and PG samplers.

Bθ(0) =
[

0 0
0 0

]
, Bθ(1) =

[
0 0
0 σµ,1

]
, Bθ(2) =

[
σµ,0 0

0 σµ,1

]
,

Cθ(xn) =
[

1 0
]
, Dθ(xn) = σY , Fθ(xn) = Gθ(xn) = 0, ∀xn.

Here ∆ is a �xed time incremement and the unknown parameters are θ = [σ2
Y σ2

µ,0 σ
2
µ,1 PX]. We apply

this model to the analysis of well-log data: measurements of the nuclear resonance of underground rocks,
as studied originally in [28]. Observations arise from a drill bit which passes down through layers of rock
over time and each datum is a measurement of the resonance of the rock through which the bit is passing
at that time. The aim is to identify segments in the data, each corresponding to a stratum of a single type
of rock. The data set we analyse was treated in [23, 25, 26] under a variety of models, but in all these cases
the static parameters of the models were assumed known. In [26] a change-point model with dependence
across segments was employed and its advantages in terms of avoiding spurious detection of change-points
was demonstrated. We are interested in similar analysis, but without assuming �xed values for the static
parameters of the model. As in [23, 25, 26] a few extreme outliers were removed from the data set manually
resulting in 3975 data points.

Flat Dirichlet priors were set on each row of PX . Independent inverse gamma (2, 3) priors were placed
over σ2

Y , σ
2
µ,0 and σ2

µ,1. In our experiments, inference was found to be insensitive to choice of parameters
for these inverse gamma priors (not shown). For the initial distribution over Z0 we set a relatively di�use,
zero mean Gaussian prior with diagonal covariance components 100 and 100, corresponding to µ0 and µ̇0

respectively. We set ∆ = 0.1. The standard Gibbs sampler was run for 2 × 106 iterations and PG sampler
with N = 50 for 4× 104 iterations so as to equate computational cost. Histograms of sample output for σ2

Y ,
σ2
µ,0 and σ2

µ,1 are shown in Figure 8. These results indicate that despite the long run the standard Gibbs
sampler has not converged: most noticeably in the case of the histograms for σ2

µ,1, it appears not to have
explored the support as thoroughly as the PG sampler and has become stuck in a mode of the distribution.
The di�erence in performance is even more striking when considering the corresponding estimated posterior
probabilities for the latent switching process. Figure 7 shows the estimated marginal posterior probabilities
of each Xn being in state 2 (recall this state corresponds to a discontinuity in the latent process {µn} and its
gradient) for each time step of the data record. Due to the lack of full exploration of the parameter space,
the results for the standard Gibbs sampler show erroneously high posterior probabilities that each Xn is
in state 2. We can conclude that for the same computational cost the performance of the PG sampler is
superior.

18

0 0.05 0.1 0.15 0.2 0.25 0 0.5 1 1.5 2 0.04 0.05 0.06 0.07

Figure 8: Example 2. Histograms estimates of posterior marginals. Top row: standard Gibbs sampler.
Bottom row: PG sampler. Columns from left to right are σ2

µ,1, σ
2
µ,0 and σ2

Y .

5.3 Example 3: Exchange Rate Model

The following model was investigated in [21, 32], where it was used to analyze economic data. The model
consists of a latent random walk component observed in auto-regressive noise, where the variance of the
observation noise innovations can switch between di�erent values. In [21], this model was advocated to
re�ect the heteroscedasticity evident in the price index adjusted U.S./U.K. exchange rate during the late
19th and 20th centuries. The data consist of 1322 monthly log exchange rate values. We consider the case
treated in [32] where the auto-regressive noise process is of order 2 and there are 4 switching states. In
this model, X = {1, 2, 3, 4} and the discrete latent process {Xn} is a Markov chain with transition matrix
PX . The observations {Yn} are log-exchange rate values. The latent process {µn} is a random walk and we
denote by {ηn} the auto-regressive noise process:

Yn = µn + ηn,

µn = µn−1 + σµVn,1

ηn = a1ηn−1 + a2ηn−2 + ση,XnVn,2

where {Vn,1} and {Vn,2} are i.i.d. N (0, 1) noise sequences. In state-space form we then have

Zn =

 µn
ηn
ηn−1

 , Aθ(xn) =

 1 0 0
0 a1 a2

0 1 0

 , Bθ(xn) =

 σµ 0 0
0 ση,xn

0
0 0 0

 ,
Cθ(xn) =

[
1 1 0

]
, Dθ(xn) = Fθ(xn) = Gθ(xn) = 0, ∀xn.

The unknown parameters of the model are θ = [σ2
µ, σ

2
η,1 σ

2
η,2 σ

2
η,3 σ

2
η,4 a1 a2 PX]. Under symmetric priors the

labeling of the discrete states is not identi�able. We consider the same prior distributions on the parameters
and initial conditions on Z0 as in [32] and we refer to the latter for full details, including a stability constraint
on the auto-regressive coe�cients (a1,a2). The only di�erence is that we do not impose an identi�ability
constraint a priori on σ2

η,1, σ
2
η,2, σ

2
η,3, σ

2
η,4, but instead target the unidenti�ed model and impose the ordering

σ2
η,1 < σ2

η,2 < σ2
η,3 < σ2

η,4 after sampling (see [31, 36] and references therein for various approaches to drawing
inference in models with unidenti�able state labels).

We implemented an algorithm for this model with PX incorporated into the sampling. Each iteration of
the algorithm consisted of a sequence of two PMMH updates. The �rst holding PX and σ2

η,1, σ
2
η,2, σ

2
η,3, σ

2
η,4

constant and the second holding (a1,a2) and σ2
µ constant (using standard arguments for Metropolis-within-

Gibbs algorithms and Theorem 1 it is straightforward to show this sequence of updates is invariant with
respect to the extended target distribution). After a couple of preliminary runs the following proposals
were selected. A symmetric random walk proposal of standard deviation of 0.001 was used for (a1,a2) and
for σ2

µ a log-Gaussian random walk with log-domain standard deviation of 0.01. We used a mixture of log-
Gaussian random walks for the unnormalised components of PX and σ2

η,1, σ
2
η,2, σ

2
η,3, σ

2
η,4. For each individual

parameter, the mixture had two components, the �rst with weight 0.9 and standard deviation 0.05 in the
log domain and the second with weight 0.1 and standard deviation 1 in the log domain. With these settings
and N = 200 we achieved an overall acceptance rate of 0.2. This is a reasonable rate given the mixture
proposals. The algorithm was run for 2× 105 iterations after an initial burn-in of 104. Inferential summaries
are presented in Figures 9-11. We note that there are some di�erences between the results we obtained and

19

0 50

ση,4
2

0 0.2 0.4

ση,1
2

1 1.5 2

ση,2
2

5 10

ση,3
2

−0.4 −0.2 0
a

2

0 0.1 0.2

σµ
2

1 1.2 1.4
a

1

Figure 9: Example 3. Histogram estimates of posterior marginals and scatter plots of pairwise marginals for
the exchange rate model.

those from [32], where a standard Gibbs sampler was applied. We conjecture that the latter had not fully
explored the support of the posterior distribution. Noticeable di�erences are that the posterior marginal
for σ2

η,1 we obtain is more di�use than that reported in [32] and we obtain a much �atter trajectory in the
posterior estimates of {µn} in Figure 11. Another signi�cant di�erence is that we obtain concentration of
the marginal posterior over the auto-regressive coe�cients (a1, a2) in a di�erent region than that reported
in [32]. Using other proposals for (a1, a2) we were not able to �nd another major mode. Furthermore the
posterior marginal for σ2

µ we obtained is concentrated on lower values. Overall, we feel that the ability to
integrate out approximately the latent variables makes the PMMH algorithm a powerful tool: as these results
demonstrate it gives us the chance to explore regions of posterior support which Gibbs sampling algorithms
may struggle to �nd.

6 Discussion and extensions

In this article, we have extended the PMCMC methodology to be able to use the e�cient DPF algorithm
within MCMC. This yields a set of generic MCMC algorithms to perform Bayesian inference in SSSM. We
have shown experimentally that these algorithms outperform state-of-the-art MCMC algorithms for a given
computational complexity. Moreover the DPF can be easily parallelised so further substantial improvements
could be obtained.

There are various possible extensions to this work. First, we have restricted ourselves to SSSM but the
DPF can be applied to any model where the latent process is discrete-valued. This includes for example
Dirichlet process mixtures [24] and the in�nite hidden Markov model introduced in [42]. Compared to the
SSSM framework, the di�erences are that, in these scenarios, Xn takes values in a set whose cardinality
increases over time and computations required to evaluate the importance weights are not performed using
the Kalman �lter. However, the PMCMC methodology discussed here can be straightforwardly extended
to these cases. Second, it would be possible to extend the DPF and the associated PMCMC methodology
by using look-ahead techniques. In a look-ahead strategy with an integer lag L, we resample trajectories at
time n by considering the weights proportional to pθ (x1:n|y1:n+L) instead of pθ (x1:n|y1:n) for the standard
DPF. This is obviously more expensive than the DPF as computation of the weights involves summing
over xn+1:L for each particle, but this might be of interest in scenarios where future observations are very
informative about Xn. Third, it would be interesting and of practical signi�cance to develop variants of
PMCMC which involve tempering of the target distribution so as to improve mixing, in the spirit of standard
simulated/parallel tempering schemes.

20

0.95 1 0 0.05 0 0.05 0 0.05

0 0.01 0.02 0.9 1 0 0.05 0.1 0 0.05 0.1

0 0.02 0.04 0 0.01 0.02 0.95 1 0 0.05

0 0.1 0.2 0 0.5 0 0.2 0.4 0.5 1

Figure 10: Example 3. Histogram estimates of marginal posterior distributions for entries of the state
transition matrix PX . Panes are arranged as per the transition matrix itself.

60

80

100

120

140

160

0

0.5

1

0

0.5

1

0

0.5

1

1880 1900 1920 1940 1960 1980 2000
0

0.5

1

1880 1900 1920 1940 1960 1980 2000
0

10

20

30

Figure 11: Example 3. Top left: data (solid) and E [µn| y1:T] (dashed). Bottom left: E
[
σ2
η,Xn

∣∣ y1:T

]
. Right:

estimated posterior probabilities p(Xn = j|y1:T) for, top to bottom, j = 1, 2, 3, 4.

21

A Kalman Filter

Conditional upon X1:T = x1:T , Eq. (2)-(3) de�nes a linear Gaussian state-space model. The Kalman

�lter allows us to compute recursively in time pθ (zn| y1:n−1, x1:n) = N
(
zn;mz,θ

n|n−1 (x1:n) ,Σz,θn|n−1 (x1:n)
)
,

pθ (zn| y1:n, x1:n) = N
(
zn;mz,θ

n|n (x1:n) ,Σz,θn|n (x1:n)
)
and the predictive density

gθ (yn| y1:n−1, x1:n) = N
(
yn;my,θ

n|n−1 (x1:n) ,Σy,θn|n−1 (x1:n)
)
. For n ≥ 1 these statistics are computed using

the following recursion initialized with mx
0|0 = m0, Σx0|0 = Σ0

mz,θ
n|n−1 (x1:n) = Aθ(xn)mz

n−1|n−1 (x1:n−1) + Fθ(xn)un,

Σz,θn|n−1 (x1:n) = Aθ(xn)Σzn−1|n−1A
T

θ (xn) +Bθ(xn)BT

θ (xn),

my,θ
n|n−1 (x1:n) = Cθ(xn)mz,θ

n|n−1 (x1:n) +Gθ(xn)un,

Σy,θn|n−1 (x1:n) = Cθ(xn)Σz,θn|n−1 (x1:n)CT

θ (xn) +Dθ(xn)DT

θ (xn),

mz,θ
n|n (x1:n) = mz,θ

n|n−1 (x1:n) + Σz,θn|n−1 (x1:n)CT

θ (xn)
[
Σy,θn|n−1 (x1:n)

]−1 (
yn −my,θ

n|n−1 (x1:n)
)
,

Σz,θn|n (x1:n) = Σz,θn|n−1 (x1:n)− Σz,θn|n−1 (x1:n)CT

θ (xn)
[
Σy,θn|n−1 (x1:n)

]−1

Cθ (xn) Σz,θn|n−1 (x1:n) .

B Backward Sampling

A key component of the backward sampling algorithm is the evaluation of the backward weight

V θn
(
x1:n

∣∣x′n+1:T

)
∝W θ

n(x1:n)pθ(x′n+1:T |x1:n)pθ(yn+1:T |y1:n, x1:n, x
′
n+1:T)

for each candidate sub-trajectory x1:n and where x′n+1:T is the complementing sub-trajectory which has been
obtained from previous steps of the backward sampling procedure. Central to the computation of this weight
is the identity

pθ(yn+1:T |y1:n, x1:n, x
′
n+1:T) =

ˆ
pθ(yn+1:T |zn, x′n+1:T)pθ(zn|x1:n, y1:n)dzk, (27)

where pθ(zn|x1:n, y1:n) is the Gaussian conditional �ltering density associated with the sub-trajectory x1:n

and is speci�ed by its mean vector mz,θ
n|n (x1:n) and co-variance matrix Σz,θn|n (x1:n). In order to com-

pute (27) (at least up to a constant of proportionality) it is necessary to obtain the coe�cients of zn in
pθ(yn+1:T |zn, x′n+1:T). The latter can be expressed as

pθ(yn+1:T |zn, x′n+1:T) ∝ exp
[
−1

2
(
zTnΞnzn − 2µTnzn

)]
where Ξn and µn are respectively a matrix and vector of appropriate dimension, both depending on x′n+1:T ,
yn+1:T and θ. In the following this dependence is suppressed from the notation for convenience. For ease
of presentation we use the similarly abusive conventions in writing mn = mz,θ

n|n (x1:n), Σn = Σz,θn|n (x1:n),
An = Aθ(xn), Bn = [Bθ(xn) 0z×w], Cn = Cθ(xn), Dn = [0y×v Dθ(xn)] , Fn = Fθ(xn), Gn = Gθ(xn). Then
let Υn be a matrix satisfying Σz,θn|n (x1:n) = ΥnΥT

n . We have

pθ(yn+1:T |y1:n, x1:n, x
′
n+1:T)

∝ exp
(
−1

2

[
mT
nΞnmn − 2µTnmn − (µn − Ξnmn)T Υn (ΥnΞnΥn + I)−1 ΥT

n (µn − Ξnmn)
])

×
∣∣ΥT

nΞnΥn + I
∣∣−1/2

. (28)

where I is the identity matrix of appropriate dimension. We now specify equations for updating (µn,Ξn),
which are given without proof of validity: they are a direct application of Lemmata 1 and 2 in [33]. As in

22

[33], for simplicity we present recursions only for the case in which the observations are scalar-valued, but
they can readily be extended to the vector-valued case. Let

rn+1 = (Cn+1Bn+1 +Dn+1) (Cn+1Bn+1 +Dn+1)T ,

Φn+1 =Bn+1

(
BTn+1C

T
n+1 +DT

n+1

)
/rn+1,

Λn+1 =
(
1− Φn+1C

T
n+1

)
An+1,

an+1 =
(
1− Φn+1C

T
n+1

)
Fn+1un+1 − Φn+1Gn+1un+1,

and let Γn+1 be a matrix which satis�es

Γn+1ΓTn+1 = Bn+1

(
I − 1

rn+1

(
BTn+1C

T
n+1 +DT

n+1

) (
BTn+1C

T
n+1 +DT

n+1

)T)
BTn+1.

The recursion for (µn,Ξn) is then given by

• Set ΞT = 0, µT = 0.

• For n = T − 1, ..., 1

Mn+1 = ΓTn+1Ξn+1Γn+1 + I,

Ξn = ΛTn+1

(
Ξn+1 − Ξn+1Γn+1M

−1
n+1ΓTn+1Ξn+1

)
Λn+1 +ATn+1C

T
n+1Cn+1An+1

1
rn+1

,

µn = ΛTn+1

(
I − Ξn+1Γn+1M

−1
n+1ΓTn+1

)
(µn+1 − Ξn+1 (an+1 + Φn+1yn+1))

+ATn+1C
T
n+1 (yn+1 −Gn+1un+1 − Cn+1Fn+1un+1)

1
rn+1

.

C Proofs

Proof of Theorem 1. We obtain from Eq. (22)-(23)-(24) that on the event x1:T ∈ ST ,

πNθ (x1:T , s1, s2, ..., sT)
wθT (x1:T) ψNθ (s1, s2, ..., sT)

=
pθ(x1:T | y1:T)

{∏T
n=2 I[x1:n ∈ sn]

}
wθT (x1:T)

∏T
n=2 r

N
n (x1:n ∈ sn|wθ

n−1)

=
pθ(x1:T | y1:T)

{∏T
n=2 I[x1:n ∈ sn]

}
wθT (x1:T)

∏T−1
n=1 (1 ∧ cnwθn (x1:n))

.

It follows from Eq. (10)-(11) that on the event x1:T ∈ ST the normalized weight can be expanded as follows

wθT (x1:T) = νθ(x1)gθ(y1|x1)
T∏
n=2

fθ(xn|x1:n−1)gθ(yn|y1:n−1, x1:n)

×
T−1∏
n=1

1
1 ∧ cnwθn (x1:n)

T∏
n=1

 ∑
x′1:n∈sn

wθn (x′1:n)

−1

(29)

Hence, using Eq. (12)-(13), we obtain

πNθ (x1:T , s1, s2, ..., sT)
wθT (x1:T) ψNθ (s1, s2, ..., sT)

=
p̂θ (y1:T)
pθ (y1:T)

. (30)

From (30), we can now easily establish that an MH sampler of target density (24) and proposal density (25)
admits indeed Eq. (17) as MH ratio and the �rst part of the theorem follows. The second part of the proof
is a direct consequence of Theorem 1 in [2] and (A1). �
Proof of Proposition 1. First note that, from Eq. (24) and Eq. (29), for θ, s1, s2, ..., sT in the support of
πN (θ, s1, s2, ..., sT),

23

πN (x1:T |θ, s1, s2, ..., sT) ∝ pθ(x1:T | y1:T)

{
T∏
n=2

I[x1:n ∈ sn]

}
ψNθ (s1, s2, ..., sT)∏T

n=2 r
N
n (x1:n ∈ sn|wθ

n−1)

∝ νθ(x1)gθ(y1|x1)
T∏
n=2

fθ(xn|x1:n−1)gθ(yn|y1:n−1, x1:n)

×

{
T∏
n=2

I[x1:n ∈ sn]

}
T−1∏
n=1

1
1 ∧ cnwθn (x1:n)

(31)

∝ wθT (x1:T).

Furthermore, for 1 ≤ n ≤ T − 1,

πN (x1:n|θ, xn+1:T , s1, s2, ..., sn) ∝ pθ(x1:T |y1:T)

{
n∏
k=2

I[x1:k ∈ sk]

}
ψNθ (s1, s2, ..., sn)∏n

k=2 r
N
k (x1:k ∈ sk|wθ

k−1)

∝ pθ(x1:n|y1:n)∏n
k=2 r

N
k (x1:k ∈ sk|wθ

k−1)
pθ(xn+1:T |x1:n)pθ(yn+1:T |y1:n, x1:T)

×

{
n∏
k=2

I[x1:k ∈ sk]

}
∝ wθn(x1:n)pθ(xn+1:T |x1:n)pθ(yn+1:T |y1:n, x1:T)
∝ vθn (x1:n |xn+1:T) , (32)

where for the third proportionality we have used (19)-(20) and an expansion of W θ
n(x1:n) which is the direct

analogue of (29) but for �nal time index n.
To establish the assertion of the proposition we use an inductive argument over the iterations of the back-
ward sampling algorithm (indexed by n = T, T − 1, ..., 1). The inductive hypothesis is that for some in-
dex n satisfying 1 < m < n < T of the backward sampling procedure, (X ′1:T ,S1,S2, ...,Sn) obtained
immediately after sampling from the backwards weights is distributed according to the marginal distri-
bution

∑
sn+1

...
∑

sT
πNθ (x1:T , s1, s2, ..., sT). This implies (X ′n:T , s1, s2, ..., sn−1) is distributed according to∑

x1:n−1

∑
sn
...
∑

sT
πNθ (x1:T , s1, s2, ..., sT). Then at time step n− 1, due to Eq. (32), (X ′1:T , s1, s2, ..., sn−1)

obtained after sampling from the backward weights is distributed according to
∑

sn
...
∑

sT
πNθ (x1:T , s1, s2, ..., sT)

and thus X ′1:T is distributed according to
∑

s1
...
∑

sT
πNθ (x1:T , s1, s2, ..., sT) = pθ(x1:T |y1:T). Next note that,

due to Eq. (31) the �rst step of the backward sampling procedure draws from πNθ (x1:T |s1, s2, ..., sT). The
proof is then complete under the assumption of the proposition. �
Proof of Theorem 2. For part 1, it is easy to check that steps 1− 4 of the PG algorithm de�ne a collapsed
Gibbs sampler targeting Eq. (24). This follows from Proposition 1 and the fact that the conditional DPF
update, given a value of θ and x1:T , is nothing but an algorithm sampling from{

T∏
n=2

I[x1:n ∈ sn]

}
ψNθ (s1, s2, ..., sT)∏T

n=2 r
N
θ (x1:n ∈ sn|wθ

n−1)
.

For part 2, we focus on establishing irreducibility and aperiodicity of the transition probability of this
algorithm. We denote by LG the law of the Gibbs sampler to which assumption 2 applies and LNPG the law
of the PG sampler using N particles.

For any set U write 2U for the power set of U and let B(Θ) denote a σ-algebra on Θ. Let A×B × C ∈
B(Θ) × 2X

T ×
∏T
n=1 2P(Xn) be such that πN (θ ∈ A,X1:T ∈ B,S1, ...,ST−1 ∈ C) > 0. It follows that

π((θ,X1:T) ∈ A × B) > 0 and then from irreducibility of the corresponding Gibbs sampler (assumption 2)
there exists a �nite j such that LG((θ(j), X1:T (j)) ∈ A×B) > 0.

From the de�nition of the conditional DPF update, it is straightforward to check that, for any θ ∈ Θ,
N ≥ 2, given any x1:T and for any time step, any particle which has positive weight immediately before
resampling has a positive probability of surviving that resampling step. Thus, by an inductive argument
in n, any point in the support of pθ(x1:T |y1:T) has positive probability of being assigned a positive weight

24

at time T . It then follows from the above arguments that A × B is marginally an accessible set of the PG
sampler for the same j: i.e. LNPG((θ(j), X1:T (j)) ∈ A×B) > 0. Furthermore, as the conditional DPF update
corresponds to drawing from the conditional of πN given θ and X1:T ,

LNPG((θ(j + 1), X1:T (j + 1),S1(j + 1), ...,ST (j + 1)) ∈ A×B × C) > 0

and irreducibility follows. Furthermore, aperiodicity of the PG sampler holds by contradiction: if the PG
sampler were periodic, then the Gibbs sampler would be too; this violates Assumption A2.�

References

[1] Andrieu, C., Doucet, A. and Holenstein, R. (2010) Particle Markov chain Monte Carlo methods (with
discussion). J. Roy. Stat. Soc. B, 72, 269-342.

[2] Andrieu, C. and Roberts, G.O. (2009) The pseudo-marginal approach for e�cient computation. Annals
Statist., 37, 697-725.

[3] Barembruch, S., Garivier, A. and Moulines, E. (2009) On approximate maximum likelihood methods
for blind identi�cation: how to cope with the curse of dimensionality. IEEE Trans. Signal Proc., 57(11),
4247-4259.

[4] Barry, D. and Hartigan, J. A., (1993) A Bayesian analysis for change point problems. J. Am. Stat.
Assoc., 88(421), 309-319.

[5] Billio, M. and Monfort, A. (1998) Switching state space models: likelihood, �ltering and smoothing. J.
Stat. Planning Inf., 68, 65-103.

[6] Carpenter, J., Cli�ord, P. and Fearnhead, P. (1999) An improved particle �lter for non-linear problems.
IEE Proc. F, 146, 2-7.

[7] Cappé, O., Moulines, E. and Rydén, T. (2005) Inference in Hidden Markov Models. New York: Springer-
Verlag.

[8] Carter, C.K. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541-553.

[9] Carter, C.K. and Kohn, R. (1996). Markov chain Monte Carlo in conditionally Gaussian state space
models. Biometrika, 83, 589-601.

[10] Chen, R. and Liu, J.S. (2000) Mixture Kalman �lters. J. Roy. Stat. Soc. B, 62, 493-508.

[11] Chib, S. (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J.
Econometrics, 75, 79-97.

[12] Costa, O.L.V., Fragoso, M. D. and Marques, R.P. (2005) Discrete-Time Markovian Jump Linear Sys-
tems. Springer-Verlag.

[13] De Jong, P. and Shephard, N. (1995) The simulation smoother for time series models. Biometrika, 82,
339-350.

[14] Del Moral, P. (2004) Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Ap-
plications, New York: Springer-Verlag.

[15] Cérou. F., Del Moral, P. and Guyader, A. (2008) A non asymptotic variance theorem for unnormalized
Feynman-Kac particle models. HAL-INRIA Research Report-6716.

[16] Del Moral, P., Doucet, A. and Singh S.S. (2009) A Backward Particle Interpretation of Feynman-Kac
Formulae. HAL-INRIA Research Report-7019.

[17] Doucet, A., de Freitas, J.F.G. and Gordon, N.J. (eds.) (2001) Sequential Monte Carlo Methods in
Practice. New York: Springer-Verlag.

[18] Doucet, A., Godsill, S.J. and Andrieu, C. (2000) On sequential Monte Carlo sampling methods for
Bayesian �ltering. Statist. Comput., 10, 197-208.

25

[19] Doucet, A., Gordon, N.J. and Krishnamurthy, V. (2001) Particle �lters for state estimation of jump
Markov linear systems. IEEE Trans. Signal Proc., 49, 613-624.

[20] Durbin, J. and Koopman, S.J. (2002) A simple and e�cient simulation smoother for state space time
series analysis. Biometrika, 89, 603-616.

[21] Engle, C. and Kim, C-J. (1999) The long-run U.S./U.K. real exchange rate. J. Money, Credit and
Banking, 31, 335-356.

[22] Fearnhead, P. (1998) Sequential Monte Carlo methods in �lter theory. PhD Thesis, Department of
Statistics, University of Oxford.

[23] Fearnhead, P. and Cli�ord, P. (2003) Online inference for well-log data. J. Roy. Stat. Soc. B, 65, 887-899.

[24] Fearnhead, P. (2004) Particle �lters for mixture models with an unknown number of components. Statist.
Comput., 14, 11-21.

[25] Fearnhead, P., and Liu, Z. (2007). On-line inference for multiple changepoint problems. J. Roy. Statist.
Soc. B, 69, 589-605.

[26] Fearnhead, P. and Liu, Z. (2009) E�cient Bayesian analysis of multiple changepoint models with de-
pendence across segments. Statist. Comput., to appear.

[27] Fong, W., Godsill, S.J., Doucet, A. and West, M. (2002) Monte Carlo smoothing with application to
audio signal enhancement. IEEE Trans. Signal Proc., 50(2), 438-449.

[28] O Ruanaidh, J.J.K. and Fitzgerald, W.J. (1996) Numerical Bayesian Methods Applied to Signal Pro-
cessing. New York: Springer.

[29] Flury, T. and Shephard, N. (2010) Bayesian inference based only on simulated likelihood: particle �lter
analysis of dynamic economic models. Econometrics Theory, to appear.

[30] Frühwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models. J. Time Series Analysis,
15, 183�202.

[31] Frühwirth-Schnatter, S (2001). Markov chain Monte Carlo estimation of classical and dynamic switching
and ixture Models. J. Amer. Statist. Assoc. 96(453): 194-209.

[32] Frühwirth-Schnatter, S. (2006) Finite Mixture and Markov Switching Models. New York: Springer Ver-
lag.

[33] Gerlach, R., Carter, C. K. and Kohn, R. (2000) E�cient Bayesian inference for dynamic mixture models,
J. Amer. Statist. Assoc., 95, 819�828.

[34] Giordani, P. and Kohn, R. (2008) E�cient Bayesian inference for multiple change-point and mixture
innovation models. J. Business Economic Statist., 26, 66-77.

[35] Giordani, P., Kohn, R. and van Dijk, D. (2007) A uni�ed approach to nonlinearity, structural change
and outliers, J. Econometrics, 137, 112-133.

[36] Jasra, A., Holmes, C. C. and Stephens D. A. (2005) Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statist. Sci. 20(1), 50-67.

[37] Kim, C.J. and Nelson, C. (1999) State-Space Models with Regime Switching: Classical and Gibbs-
Sampling Approaches with Applications, MIT Press.

[38] Kitagawa, G. (1996) Monte Carlo �lter and smoother for non-Gaussian nonlinear state space models.
J. Comp. Graph. Statist., 5, 1-25.

[39] Lee, A., Yau, C., Giles, M., Doucet, A. and Holmes, C.C. (2009) On the utility of graphics cards to
perform massively parallel simulation with advanced Monte Carlo methods. Technical report Oxford-
Man Institute of Quantitative Finance. Available at http://arxiv.org/abs/0905.2441.

[40] Liu, J.S. (2001) Monte Carlo Strategies in Scienti�c Computing. New York: Springer Verlag.

26

[41] Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81, 115-131.

[42] Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006) Hierarchical Dirichlet processes. J. Am.
Statist. Assoc., 101, 1566-1581.

27

