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ABSTRACT
In this paper, we consider online seperation and detection of
superimposed events by applying particle filtering. We con-
centrate on a model where a background process, represented
by a 1D-signal, is superimposed by an Auto-Regressive (AR)
’event signal’, but the proposed approach is applicable in a
more general setting. The activation and deactivation times
of the event-signal are assumed to be unknown. We solve
the online detection problem of this superpositional event by
extending the state space dimension by one. The additional
parameter of the state represents the AR-signal, which is zero
when deactivated. Numerical experiments demonstrate the
effectiveness of our approach.

Index Terms— Event detection, Conditional Density,
SIR, Importace Sampling, Bayesian Statistics

1. INTRODUCTION

Event detection is becoming an important and more fre-
quently studied field in recent times. There are applica-
tions in intrusion detection, internet traffic analysis, bio-
information processing, telecommunication, surveillance and
more. In this paper, online model based event detection us-
ing sequential Monte Carlo methods, namely particle filter-
ing [3, 5, 6, 8, 4, 2], is studied. The term model based em-
phasizes that the stochastic model of the event is known. On
the other hand, the activation time of the event is unknown
and the event is superpositional with respect to a background
process. This stochastic event-process is modeled as an Auto
Regressive (AR) process, which superimposes a background
stochastic process. So, in this setting, only the result of this
superposition is observable. The task of the proposed ap-
proach is to simulate and estimate the hidden background pro-
cess, to detect the event activation/deactivation times and to
estimate also the hidden event process.
In many event detection methods [11], the estimated state or
a sequence of estimated states is undergone a secondary anal-
ysis by e.g. using a Hidden Markow Model (HMM). This
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HMM represents the model of the event statistics. MCMC-
based methods as in [9, 7, 10] are generally not applicable in
an online approach due to high computational requirements.
In [1], an overview of change point detection using parti-
cle filters is given. However, our approach not just attacks
a change point detection problem, but enables also online
source seperation.

In the proposed approach, the detection method of the
event is embedded in the particle filtering framework directly.
By increasing the state space dimension by the number of ad-
ditional event process parameters and appropriately choosing
the importance functions, we are able to estimate in paral-
lel the hidden process and the superpositional event process.
This is accomplished by minimal modification of the particle
filtering framework.

2. SEQUENTIAL MONTE CARLO METHODS - SIR

In the Sequential Monte Carlo (SMC) setting, the stochastic
process consists of hidden state propagation and observation,
represented as a HMM(1). The state propagation xt → xt+1

at time t is modeled as

xt+1 = f(xt) + vt, (1)

and the observation yt is modeled as

yt = g(xt) + wt, (2)

where vt and wt are independent random variables. The se-
quential Bayesian inference consists of a prediction step and
an update step via

p(xt+1|y1:t) =
∫
p(xt+1|xt)p(xt|y1:t)dxt (3)

p(xt+1|y1:t+1) =
p(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
, (4)

with
y1:t

∧= {y1, ..., yt}. (5)



Due to generally intractable integrals, the sequential Bayesian
inference is realized by approximation methods such as Se-
quential Importace Resampling (SIR) [3]. In the SIR frame-
work, the posterior p(xt|y1:t) is represented by a particle set
of N particles. A particle consists of a position vector xn,t
and a weight-scalar ωn,t with the approximation property

p(dxt|y1:t) ≈
N∑
n=1

ωn,tδ(dxn,t), (6)

where
N∑
n=1

ωn,t = 1. (7)

The particle positions are sampled from an importance den-
sity

xn,t+1 ∼ π(xt+1|xn,t, y1:t+1) (8)

at each time step. The weights are determined by

ω̃n,t+1 = ωn,t
p(yt+1|xt+1)p(xt+1|xt)
π(xt+1|xn,t, y1:t+1)

(9)

and normalized afterwards

ωn,t+1 =
ω̃n,t+1∑N
n=1 ω̃n,t+1

. (10)

Due to degeneracy in this method regarding the importance
weights, on which all but one particle has a weight of 1 and all
others have zero weight, a resampling step is added after each
iteration. The resampling is done by copying the particle Nω
times in average by overwriting other particles, so particles
with strong weights are reproduced more often, in average.

3. FRAMEWORK FOR SUPERIMPOSED EVENT
DETECTION

The type of events we consider can be modeled as follows.
The background signal, denoted by xt, is superimposed by a
second signal, denoted by zt, which is independent of xt

xt+1 = f(xt) + vt + αtzt+1. (11)

The event signal is assumed to be only present for some time
window TE

αt =
{

1 t ∈ TE
0 else. (12)

Since there is no ’pure’ observation available from the signal
zt, it can only be estimated together with xt. We assume that
a parameteric description of the signal zt, specified by

zt+1 = h(zt) + ut, (13)

is available
zt = zt(θt). (14)

The task is to detect the event, in this case to tell whether there
is a superpositional zt present and to estimate zt. The pro-
posed approach consists of using an SIR-particle filter, whose
state space dimension is extended by the number of the re-
quired additional hidden parameters, having the state vector
st

st = (xt, zt, αt, θt). (15)

Alternatively, the parameter αt can be discarded by adapting
the conditional probability density p(zt+1|zt) of zt by

p′(zt+1|zt) =
1
2
(δ(0) + p(zt+1|zt)), (16)

where δ(.) is the Dirac substitution and δ(0) produces exact
zeros as ’no-event’ samples.

The state propagation density for the superimposed signal
can be written as

p(xt+1, zt+1|xt, zt) = p(xt+1|xt)p(zt+1|zt). (17)

3.1. The choice of importance functions

The choice of the importance function is crucial in the SIR-
framework, since it has a great impact on the efficiency and
even feasability of the simulations. One of the most common
methods is to use the state propagation density as the impor-
tance density function, as in [6]. Though this choice does not
take the current observation into account, it is sufficient for
many simulation problems.
The importance function for αt can be chosen as

πα(αt+1|αt) =
1
2
δ(0) +

1
2
δ(1). (18)

In the spirit of [6], a possible choice for the importance func-
tion of zt is its propagation density

πz(zt+1|zt, xt, yt, αt) = p(zt+1|zt). (19)

or, in the case of discarding the parameter αt, we may choose

πz(zt+1|zt, xt, yt) = p′(zt+1|zt), (20)

and so for the background process

πx(xt+1|xt, yt) = p(xt+1|xt). (21)

For the joint importance density follows

πx(xt+1, zt+1|xt, zt, yt) = p(xt+1|xt)p′(zt+1|zt). (22)

The importance densities may have higher variances then
their corresponding propagation densities in order to ’cap-
ture’ the additional uncertainty influenced from the observa-
tion model. The importance function of the parameters θt is
highly dependent on the model dynamics and should be cho-
sen accordingly.



3.2. Detection

The indicator It for the event is easily calculated by counting
the number Z of exact zeros over all N particles at time step
t, i.e.

Zt =
N∑
n=1

δzn,t , (23)

where δzn,t
is the so called Kronecker-Delta, the discrete ver-

sion of the Dirac substitution, with the property

δzn,t =
{

0 zn,t 6= 0
1 zn,t = 0. (24)

Having calculated the number Zt of exact zeros, the event
indicator It is calculated by

It =
{

0 Zt

N < 1
2

1 else.
(25)

4. EXPERIMENTS

4.1. Setup

For the background process, we use the following state prop-
agation function

xt+1 = 12 + 0.5xt sin(t/5) +N (0, σ2
x) (26)

and the following observation function

yt = 0.5x2
t − 2 +N (0, σ2

o), (27)

where N (m,σ2) denotes a normal probability density func-
tion with mean m and variance σ2. The resulting state prop-
agation function including the superpositional AR(1) process
zt is given by

xt+1 = 12 + 0.5xt sin(t/5) +N (0, σ2
x) + zt+1, (28)

where the propagation of the AR(1) process is given by

zt+1 = azt +N (0, σ2
z). (29)

The extended state vector is determined by

st = (xt, zt). (30)

The importance functions for the states xt, zt are chosen as

π(xt+1|xn,t, y1:t+1) = p(xt+1|xn,t)
π(zt+1|zn,t, y1:t+1) = 0.5δ(0) + 0.5N (azn,t, σ2

z),
(31)

with variances of

σ2
π(x) = 6σ2

x, σ
2
π(z) = 6σ2

z . (32)

The compound importance function is then defined by

π(xt+1, zt+1|xn,t, zn,t, y1:t+1)
= π(xt+1|xn,t, y1:t+1)π(zt+1|zn,t, y1:t+1) (33)
= p(xt+1|xn,t)(0.5δ(0) + 0.5N (azn,t, σ2

z). (34)

It is obvious that the detection success probability depends on
the variances σ2

x and σ2
z . With different values for σ2

x, an ob-
servation noise of σ2

o = 0.001 and an AR(1) process noise of
σ2
z = 0.2, we performed simulations of the hidden states xt

and zt.
The event was activated within TE = [50, 70[. We calculated
the detection rates, including the false positive alarm proba-
bility e+, and false negative alarm probability e− by repeating
the state sequence estimations 50 times each. The number of
particles was set to N = 500.

4.2. Results

Figures 1, 2, 3 and 4 show the results of the filter estimates
vs. true values of both the xt and the zt signals and the event
detection indicator bars for the state-variances of σ2

x = 10−2,
σ2
x = 10−3, σ2

x = 10−4 and σ2
x = 10−5. It is known from

detection theory, that the success of correct detection depends
on the noise of the signals. As expected, the detection error
decreases for smaller variances of the noise of the x-signal.
The detection errors are shown in table 1.
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Fig. 1. True and estimated signals xt, zt at
σ2
z = 2 · 10−1, σ2

x = 10−2

5. CONCLUSIONS

In case where events can be described by superpositional
stochastic processes and the state propagation densities, a.k.a.
the ’models’ are known, the proposed framework can be used
for online seperation and detection of 2 or more simultane-
ous events. Results can be further improved when the mini-
mum activation time interval of the event signal is known and
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Fig. 2. True and estimated signals xt, zt at
σ2
z = 2 · 10−1, σ2

x = 10−3
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Fig. 3. True and estimated signals xt, zt at
σ2
z = 2 · 10−1, σ2

x = 10−4

σ2
x σ2

z e+ e−

10−5 2 · 10−1 0.0057 0.061
10−4 2 · 10−1 0.0252 0.074
10−3 2 · 10−1 0.0582 0.105
10−2 2 · 10−1 0.1115 0.186

Table 1. Event detection false positive alarm probabilities
and false negative alarm probabilities for several background
process noise variances

covers more than 1 sample. In this case, a modified event in-
dicator would depend on the whole time interval and decide
accordingly.
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Fig. 4. True and estimated signals xt, zt at
σ2
z = 2 · 10−1, σ2

x = 10−5
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