
STOCHASTIC DESIGN AND CONTROL IN RANDOM
HETEROGENEOUS MATERIALS ∗

RAPHAEL STERNFELS † AND PHAEDON-STELIOS KOUTSOURELAKIS ‡

Abstract. The present paper discusses a sampling framework that enables the optimization
of complex systems characterized by high-dimensional uncertainties and design variables. We are
especially concerned with problems relating to random heterogeneous materials where uncertainties
arise from the stochastic variability of their properties. In particular, we reformulate topology op-
timization problems to account for the design of truly random composites. In addition, we address
the optimal perscription of input loads/excitations in order to achieve a target response by the ran-
dom material system. The methodological advances proposed in this paper consist of an adaptive
Sequential Monte Carlo scheme that economizes the number of runs of the forward solver and allows
the analyst to identify several local maxima that provide important information with regards to the
robustness of the design. We further propose a principled manner of introducing information from
approximate models that can ultimately lead to further reductions in computational cost.
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1. Introduction. The analysis of materials which exhibit very small length
scales of heterogeneity has attracted considerable attention in recent years [44]. This
is because fine details in the microstructure can give rise to marked differences in the
macroscale response. In reality, the majority of such materials exhibit randomness as
local physical and mechanical properties fluctuate stochastically. In multiphase ma-
terials for example the distribution of the constituent phases in space does not follow
a particular pattern and is characterized by disorder. It is therefore obvious that a
probabilistic description is most appropriate and provides a sounder basis for their
characterization and quantification of the performance of the systems where these
appear.

While marked advances have been achieved in the context of modeling [48, 20, 18,
29] and uncertainty propagation [42, 6, 47, 45], the problem of design/optimization in
the presence of randomness has received much less attention [28, 49]. We address two
problems in the context of random heterogeneous materials. On one hand we examine
the problem of designing of random heterogeneous materials. This can be seen as the
fully stochastic counterpart of topology optimization, a deterministic tool for the
systematic design of composite microstructures with desirable macroscopic properties
[33, 32, 34, 39, 35, 40, 41, 2, 37, 36, 12, 14]. Rather than fully specifying the spatial
distribution of the constitutive phases, we are interested in controlling statistics of
the associated probability distribution (i.e. volume fractions, spatial correlations),
while the resulting microstructure remains random. Such a capability could prove
particularly useful in the fabrication of heterogeneous materials. For example in
polycrystalline materials, it is known that macro-scale forming parameters such as
forging rates, die shapes and preform shapes or heat treatment, do not uniquely define
the final polycrystalline texture but rather its statistical features [43]. In naturally
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occurring random heterogeneous materials such as soils, remediation procedures such
as solidification or stabilization allow us to alter the microstructure and its properties
by altering the probabilistic characteristics of the existing phases and introducing
randomly dispersed new materials.

The second problem of interest involves the optimization of the input in the
presence of uncertainties. In particular we consider a random heterogeneous material,
fully defined by the probability distribution of its properties and seek to identify the
input such that the expected response is as close as possible to a target, desired output
[49]. Both problems are examined in the context of heat conduction but can be readily
extended to other physics as the methodology advocated makes non-intrusive use of
forward solvers (e.g. Finite Elements).

The present papers advocates a simulation strategy that recasts the optimization
problem as a sampling problem in the expanded space which apart from the random
variables includes the design/control parameters [24]. High probability regions of the
auxiliary target density correspond to maxima of the design objectives. To that end we
employ adaptive Sequential Monte Carlo (SMC) methods that are well-suited in high
dimensions, are directly parallelizable and capable of identifying multimodal densities
which correspond to local maxima [10, 21]. In addition, they give rise to a popula-
tion of estimates that provide valuable information with regards to the robustness of
the optima. Despite their advantages, SMC-based samplers require multiple calls to
deterministic simulators which might be impractical or infeasible for highly complex,
nonlinear solvers. To that end we propose an adaptive sampling framework which
aims at reducing the number of calls to the forward solver in order to attain a certain
level of accuracy. Furthermore, we propose a hierarchical strategy where approximate
forward models can be rigorously incorporated in order to give accurate estimates
at a reduced computational cost. Such approximate solvers can be derived by using
principled reduced-order approximations or simply by coarsening the discretization
(e.g. in Finite Element analysis).

2. Proposed Approach. We consider systems characterized by a vector of un-
certainties denoted by θ ∈ Θ ⊂ R

nθ distributed according to the density p(θ). This
vector will characterize the spatial variability of material properties (e.g. conductiv-
ity at various locations) and in general its dimension will be large (i.e. nθ >> 1).
We denote by d ∈ D ⊂ R

Nd the vector of design/control variables. In the problems
examined in this paper, these represent the input or the statistics of the distribution
of θ, i.e. p(θ | d). Our goal is to find the values of the design variables d in the
feasible domain D, that maximize the expected utility Û(d):

Û(d) =

∫

Θ

U(θ,d)p(θ) dθ (2.1)

The utility function U(θ,d) depends on the output of interest (and is therefore a func-
tion of the system uncertainties and design variables) and in the present framework it
suffices that it is non-negative ∀θ,d 1. The formulation above is quite general and can
readily be adapted to cases of practical interest. For example if U(θ,d) = 1A(θ,d)
is the indicator function of an event A of interest (e.g. failure, or exceedance of a
response threshold) then maximizing Û(d) in Equation (2.1) is equivalent to the max-
imization of the probability associated with the event A (similarly one can minimize

1even if U is negative, it suffices that U(θ, d) ≥ U0 > −∞ in which case one can utilize U(θ, d)−
U0 ≥ 0
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the the probability of event A by employing the indicator function of the comple-
mentary even Ac in place of U in Equation (2.1)). Furthermore if u(θ,d) denotes
the output vector (i.e. displacements, stresses, temperatures etc) and utarget a tar-
get/desired response, then for U(θ, bsd) = exp{− ‖ u(θ,d) − utarget ‖ in Equation
(2.1), implies finding d for which the response is, on average, as close to the target.

The systems of interest are considered complex in the sense that the utility func-
tion U(θ,d) is not known explicitly, and can only be computed for a particular (θ,d)
with a call to , a potentially costly, deterministic solver, e.g. a finite element solver.
Thus the number of calls to such a solver will dominate the total amount of compu-
tational work. It is clear that a brute force application of deterministic optimization
procedures directly on Û(d) is impractical, as each evaluation of this function (and
potentially its derivatives) will in general require a high-dimensional integration with
respect to the uncertainties θ. Furthermore, discretizing the design space D is ineffi-
cient or infeasible when the dimension nd of d is large.

For these reasons we advocate a sampling strategy, first proposed in [24]. This
entails defining an (unormalized) probability density π(θ,d) defined on the joint space
Θ ×D:

π(θ,d) ∝ U(θ,d)p(θ) 1D(d) (2.2)

where 1D(d) is the indicator function of the feasible domain D. The marginal π(d) =
∫

π(θ,d)dθ is clearly proportional to Û(d) and as a result samples drawn from the

joint density π(θ,d) will be marginally distributed according to Û(d) and populate
regions where this attains its maximum value(s). It is also important to point out that
such an approach does not lead to point estimates for the maxima of the expected
utility but also provides information about the variability of the latter with respect to
d and therefore the robustness of the select design d [30, 38]. If the global maximum of
Û(d) is desired, then this can be achieved within the same framework by artificially
expanding the sampling space [16]. In particular, one employs the (unormalized)
density π(θ1:n,d), where θ1:n = (θ1,θ2, . . . ,θn), which is defined on Θ × . . .Θ

︸ ︷︷ ︸

n times

×D

[24]:

π(θ1:n,d) ∝
n∏

j=1

U(θi,d)p(θi) 1D(d) (2.3)

It is clear again that the marginal with respect to d, i.e. π(d) =
∫

π(θ1:n,d) dθ1:n is

proportional to Ûn(d). As a result, the d-coordinates of samples drawn from π(θ1:n,d)
will be more tightly concentrated around the maxima of Û(d), increasingly so with n.

Despite its flexibility, such an approach requires sampling in the joint space of ran-
dom and design variables. Its dimension is even higher when the augmented density
of Equation (2.3) is employed. While Monte Carlo strategies offer the most general
method for carrying out the sampling task, a naive implementation would be imprac-
tical as it would require a large number of evaluations of the utility function U(θ,d)
and therefore a lot of calls to the forward solver. Furthemore, it might fail to identify
all the modes of the distribution π(θ,d) in Equation (2.2) (or π(θ1:n,d) in Equation
(2.3)) which correspond to local maxima of the expected utility Û(d). These local
maxima can be of considerable value in terms of their physical and engineering sig-
nificance as they also reveal valuable features with regards to the sensitivity of the
expected output to the design/control variables. Traditionally Markov Chain Monte



4 R. STERNFELS, P.S. KOUTSOURELAKIS

Carlo techniques (MCMC) have been employed which are based on building a Markov
chain that asymptotically converges to the target density (in this case π) by appro-
priately defining a transition kernel. While convergence can be assured under weak
conditions [22, 25], the rate of convergence can be extremely slow and require a lot of
utility function evaluations. Particularly in cases where the target density has multi-
ple modes, very large mixing times might be required. For that purpose we advocate
the use of Sequential Monte Carlo (SMC) procedures which have the capability of
sampling from multi-modal distributions in high-dimensional spaces and discuss an
adaptive scheme for reducing the computational cost. It is noted that SMC strategies
have been employed in this framework and in the context of Bayesian optimal design
in [1, 21] and for maximum likelihood estimation in latent variable models in [16].

2.1. Adaptive Sequential Monte Carlo. SMC strategies represent a set of
flexible simulation-based methods for sampling from a sequence of probability distri-
butions [23, 11]. As with Markov Chain Monte Carlo methods (MCMC), the target
distribution(s) need only be known up to a constant as is the case in Equation (2.2)
and Equation (2.3). They utilize a set of random samples (commonly referred to as
particles), which are propagated using a combination of importance sampling, resam-
pling and MCMC-based rejuvenation mechanisms [10, 9]. Each of these particles is
associated with an importance weight. These weights are updated sequentially along
with the particle locations. Hence if {(θ(i),d(i)), w(i)}N

i=1 represent N such particles
and associated weights for distribution π(θ,d) in Equation (2.2) then:

π(θ,d) ≈
N∑

i=1

W (i) δ
θ(i)(θ) δ

d(i)(d) (2.4)

where W (i) = w(i)/
∑N

k=1 w(k) are the normalized weights and δx(.) is the Dirac
function centered at x. Furthermore, for any function h(θ,d) which is π-integrable
[8, 7]:

N∑

i=1

W (i) h(θ(i),d(i)) →
∫

h(θ,d) π(θ,d) dθdd (almost surely) (2.5)

The underlying idea in SMC strategies is to operate on a sequence of distribu-
tions, starting from one that can be accurately and easily sampled from, and gradually
changing it until the target density is reached. In that respect, it is quite similar to
simulated annealing employed in optimization but more general sequences of distri-
butions can be adopted as it will be demonstrated in subsequent sections. Initially
however we consider a sequence parameterized by γ ∈ [0, 1] which plays the role of
reciprocal temperature such that:

πγ(θ,d) ∝ Uγ(θ,d)p(θ) 1D(d) (2.6)

It is easily seen that for γ = 0 one recovers the distribution of p(θ) 1D(d) i.e. the
random variables θ is distributed according to their density p(θ) and the design vari-
ables d uniformly in the feasible domain D. It is implicitely assumed that generating
samples from these distributions is tractable. For γ = 1, one recovers the target
density of Equation (2.2). Staring with a particulate approximation for πγ=0 (which
trivially involves drawing samples from the p(θ) for θ and the uniform in D for d with
weights w(i) = 1), the goal is to gradually update the importance weights and parti-
cle locations in order to approximate the target density. The role of these auxiliary
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distributions πγ for γ ∈ (0, 1) is to bridge the gap between πγ=0 and πγ=1 and provide
a smooth transition path where importance sampling can be efficiently applied. It
is easily understood that as the number of these distributions increases the accuracy
increases since the transition becomes smoother, but at the same time so does the
computational cost as more evaluations of the utility function would be needed. On
the other hand too few intermediate distributions πγ can adversely affect the overall
accuracy of the approximation.

To that end we propose an adaptive SMC scheme that automatically determines
the number of intermediate distributions needed [9, 19]. In this process we are guided
by the Effective Sample Size (ESS, [22]). In particular, let S be the total number
of intermediate distributions (which is unknown a priori) and γs, s = 1, 2, . . . , S the
associated reciprocal temperatures such that 0 = γ1 < γ2 < . . . < γS = 1, which

are also unknown a priori. Let also {(θ(i)
s ,d(i)

s ), W
(i)
s }N

i=1 denote the particulate
approximation of πγs

defined as in Equation (2.6) for γ = γs. The Effective Sample

Size of these particles is then defined as ESSs = 1/
∑N

i=1(W
(i)
s )2 and provides a

measure of the population variance. One extreme, i.e. when ESSs = 1, arises when
a single particle has a unit normalized weight whereas the rest have zero weights and
as a result provide no information. The other extreme, i.e. ESSs = 1, arises when all

the particles are equally informative and have equal weights W
(i)
s = 1/N .

If the next bridging distribution πγs+1
is very similar to πγs

(ie. γs+1 ≈ γs), then
ESSs+1 should not be that much different from ESSs. On the other hand if that
difference is pronounced then ESSs+1 could drop dramatically. Hence in determining
the next auxiliary distribution, we define an acceptable reduction in the ESS, i.e.
ESSs+1 ≥ ζ ESSs (where ζ < 1) and prescribe γs+1 (Equation (2.6)) accordingly.
The proposed adaptive SMC algorithm is summarized in Table 2.1.

It should be noted that unlike MCMC schemes, the particle perturbations in the
Rejuvenation step do not require that the Ps(., .) is ergodic [10]. It suffices that it
is a πγs

-invariant kernel, which readily allows adaptively changing its parameters in
order to achieve better mixing rates. A more detailed discussion on the kernels and
adaptivity schemes used in the Rejuvenation step is deferred for section 3.

The same idea can be employed in sampling in the extended space with re-
spect to the density π(θ1:n,d), n = 1, 2, . . . in Equation (2.3). Specifically, sup-

pose {(θ(i)
1:n−1,d

(i)),W (i)}N
i=1 represents a particulate approximation of the density

π(θ1:n−1,d) defined in Equation (2.3). In order to obtain samples from π(θ1:n,d)
a new sequence of bridging distributions is built in the spirit of Equation (2.6) as
follows:

πn−1,γ ∝ Uγ(θn,d)p(θn)

n−1∏

j=1

U(θi,d)p(θi) 1D(d), γ ∈ [0, 1] (2.8)

It is immediately obvious that for γ = 0 we recover π(θ1:n−1,d) and for γ = 1 the
target π(θ1:n,d). The adaptive SMC scheme of Table 2.1 can be applied identically
for the aforementioned sequence. An additional advantage of the proposed approach
is that the state augmentation takes place sequentially which gives the analyst the
opportunity to terminate the algorithm if sufficient information on the maximum (or
maxima) of the expected utility Û(d) has been obtained.

2.2. Using information from approximate models. The proposed adaptive
SMC sampling framework allows for great flexibility in selecting the sequence of dis-
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Table 2.1

Basic steps of the adaptive SMC algorithm proposed

Adaptive SMC algorithm:
1. Initialization: Set s = 1 and γ1 = 0. Initialize population

{(θ(i)
1 ,d

(i)
1 ), w

(i)
1 }N

i=1 where θ
(i)
1 are i.i.d draws from p(θ), d(i) are

i.i.d draws from 1D(d) and w
(i)
1 = 1 (ESS1 = N).

2. While γs < 1:
a) Set s = s + 1.
b) Reweighing-Importance Sampling: If:

w(i)
s (γs) = w

(i)
s−1

πγs
(θ

(i)
s−1,d

(i)
s−1)

πγs−1
(θ

(i)
s−1,d

(i)
s−1)

= w
(i)
s−1 Uγs−γs−1(θ

(i)
s−1,d

(i)
s−1)

(2.7)
are the updated weights as a function of γs, then determine γs ∈
(γs−1, 1] so that the associated ESSs = ζESSs−1 (the value

ζ = 0.95 was used in all the examples). Calculate w
(i)
s for this γs.

c) Resampling: If ESSs ≤ ESSmin then resample (the value
ESSmin = N/2 was used in all the examples).

d) Rejuvenation: Use an MCMC kernel Ps

(

(θ
(i)
s−1,d

(i)
s−1), (θ

(i)
s ,d(i)

s )
)

that leaves πγs
invariant to perturb each particle (θ

(i)
s−1,d

(i)
s−1) →

(θ(i)
s ,d(i)

s )

e) The current population {(θ(i)
s ,d(i)

s ), w
(i)
s }N

i=1 provides a particu-
late approximation of πγs

in the sense of Equations (2.4), (2.5).
3. end while

tributions which can be adapted to the specifics of the problem. In the following we
present an alternative that can lead to significant computational savings.

It is clear that for cases of practical interest the most expensive part of the
computations relates to the repeated evaluations of the utility function U(θ,d) and in
particular in the Rejuvenation step of the algorithm in Table 2.1 (the utility functions
values can be stored in memory and used in the Reweighing step). This is because each
evaluation implies a run of the forward solver which can in many cases be costly. For
that purpose we propose employing approximate computational models which might
be less expensive but provide inaccurate evaluations of the utility function U(θ,d).
This idea has been successfully employed in [17, 19].

Such inexpensive, approximate models can be formally constructed using reduced-
order modeling strategies [5] or less-rigorously by coarsening the spatio-temporal
discretization of the governing PDEs or increasing the allowable error if iterative
solvers are used for the solution of the system of algebraic equations. As it has also
been demonstrated in [19], it is not important that the solutions of the approxi-
mate solver deviate significantly from the reference, but it suffices that they exhibit
some sort of dependence in the sense to be explained in the sequence. For clarity
of the presentation we assume that the approximate model consists of a coarsened
discretization of the governing PDEs and the utility function evaluated by this solver
is denoted by Uc(θ,d). In contrast, the utility function of the reference/fine solver
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with the desired discretization is denoted by Uf (θ,d). The goal is to sample from
πf (θ,d) ∝ Uf (θ,d)p(θ)1D(d) as in Equation (2.2). The ideas presented can be
readily generalized to a sequence of approximate models with increasing resolution,
something that might be desired in practical cases where it is not a priori known what
the appropriate resolution should be.

In order to make use of the information furnished by the approximate solver, we
first define a sequence of distributions which employ Uc(θ,d) as follows:

πγ̂(θ,d) ∝ U γ̂
c (θ,d)p(θ)1D(d), γ̂ ∈ [0, 1] (2.9)

The target density which is obtained for γ̂ = 1 is πc(θ,d) ∝ Uc(θ,d)p(θ)1D(d).
Sampling from this sequence of distribution can be achieved using the adaptive SMC
scheme of Table 2.1. It is important to note that due the reduced cost associated
which each evaluation of Uc the overall expense is generally much lower than trying
to sample from πf . Once a particulate approximation of πc has been obtained, we
propose operating on the following sequence:

πγ̃(θ,d) ∝ U1−γ̃
c (θ,d)U γ̃

f (θ,d) p(θ)1D(d), γ̃ ∈ [0, 1] (2.10)

which for γ̃ = 1 recovers the target density πf (θ,d). The adaptive SMC scheme
of Table 2.1 can be readily with a slight change in the Reweighing step where the
updated weights of Equation (2.7) are now given by:

w(i)
s (γ̃s) = w

(i)
s−1

πγ̃s
(θ

(i)
s−1,d

(i)
s−1)

πγ̃s−1
(θ

(i)
s−1,d

(i)
s−1)

= w
(i)
s−1

(

Uf (θ
(i)
s−1,d

(i)
s−1)

Uc(θ
(i)
s−1,d

(i)
s−1)

)∆γ̃s

(2.11)

where ∆γ̃s = γ̃s − γ̃s−1. This reweighing has to be performed for all intermediate
steps s = 1, . . . , S and since evaluations of the expensive utility Uf are required at
each iteration (and each particle), the overall cost is proportional to S. The expres-
sion above implies that the second sequence of distributions is used to “correct” the
inferences produced using the approximate solver. It is critically important to point
out, that the correction required does not depend on the difference Uf −Uc but rather

on the variability of the ratio
Uf

Uc
over the (θ,d) space. Hence if the regions of high-

probability of πc (i.e. the regions where Uc is high) coincide with the high-probability
regions under Uf very few (potentially only one) iterations would be needed. The role
of the approximate solver is to steer the sampling at regions of interest at a fraction
of the cost. Good approximate solvers are therefore those for which the ratio

Uf

Uc
is as

close to a constant as possible over the (θ,d) space. Note that this can be achieved
even if Uf −Uc is large. We demonstrate in section 3 the reduction in computational
cost that can be achieved. Furthermore, if a sequence of increasingly expensive solvers
is utilized additional sequences of distributions as in Equation (2.10) can be defined.
If the corresponding densities do not change, the analyst has the option of terminat-
ing the sampling. Finally in the case of state augmentation of Equation (2.3), the
approximate solver(s) can be readily used at each n by defining two sequences as in
Equation (2.9) and Equation (2.10).

3. Numerical experiments. Both problems examined in this work involve ran-
dom heterogeneous materials in the context of steady-state heat diffusion with a gov-
erning PDE:

−∇ ·
(
λ(x)∇T (x)

)
= f(x), x ∈ Ω (3.1)
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The conductivity field λ(x) and/or input f(x) depend on the vector of uncertainties
θ and design variables d. As a result the solution field T (x) will also implicitely
depend on (θ,d). The finite element method is employed for the discretization of the
aforementioned equations leading to the usual system of linear algebraic equations:

K(θ,d) T = F (d) (3.2)

The random variables θ parameterize the conductivities in a manner to be specialized
in each of the examples below along with the boundary conditions.

Before embarking in the presentation of the results, it is worth providing some
details on the MCMC kernels used in the Rejuvenation step of the adaptive SMC
sampling scheme (Table 2.1). In particular we employ a Metropolis-within-Gibbs
[25] or component-wise Hastings [4] sampler for the θ and d coordinates separately
i.e. we sample from the conditionals πγs

(θ | d) ∝ Uγs(θ,d)p(θ) and πγs
(d | θ) ∝

Uγs(θ,d)1D(d) respectively (from Equation (2.2)). Since the latter are analytically
unavailable we employ a Metropolis-adjusted Langevin algorithm (MALA, [4]), which

for updating the θ-coordinates of a particle i, from θ
(i)
s−1 to θ(i)

s requires:

θ(i)
s = θ

(i)
s−1 +

σ2
θ

2
∇θ log πγs

(θ
(i)
s−1 | d

(i)
s−1) + σθZ

(i)
s−1 (3.3)

where Z
(i)
s−1 a vector of i.i.d Gaussian random variables Z

(i)
s−1 ∼ N (0, I). The afore-

mentioned proposal was augmented with the standard Metropolis accept/reject step
[22]. Two observations are in order. Firstly, application of this scheme requires the
calculation of derivatives of the utility function U . Due to its dependence on the
solution vector of Equation (3.2) (in a manner to be made specific in the ensuing
examples), this entails differentiation of T (θ,d). It is noted that such derivatives are
also used is deterministic topology optimization schemes [15, 46]. Secondly, the pa-
rameter σθ controls the variance of the random noise. In the simulations performed its
value was adjusted at each step of the SMC scheme so as to ensure an acceptance ratio
between 50% and 80% [27]. Subsequently, and in order to update the d-coordinates

of a particle i, from d
(i)
s−1 to d(i)

s , we employ a MALA scheme:

d(i)
s = d

(i)
s−1 +

σ2
d

2
∇d log πγs

(d
(i)
s−1 | θ(i)

s ) + σdZ̃
(i)

s−1 (3.4)

where Z̃
(i)

s−1 ∼ N (0, I). The free parameter σd is also adaptively adjusted so as to
ensure an acceptance rate between 50% and 80%.

3.1. Designing random heterogeneous materials. This problem is inspired
by deterministic topology optimization (most recently [46]). The problem domain Ω
is the unit square and Dirichlet and Neumann boundary conditions are prescribed
as in Figure 3.1. The heat source density is assumed constant f(x) = 1 as in [46].
Typically in deterministic topology optimization the problem is posed as:

Deterministic topology optimization: Given two materials with (signifi-
cantly) different conductivities λ1 and λ2 (the values 1 and 0.01 were used in this
study) which are to be used with volume fractions V1 and V2 (such that V1 + V2 = 1),
find the the spatial distribution of the two phases that minimize J =

∫
f(x)T (x) dΩ ≈

F T T (the latter objective is refererred to as minimum compliance objective in solid
mechanics [15]).
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In this work, we reformulate the problem for random heterogeneous materials. In
particular we consider a composite made up of these two phases i.e.:

λ(x) =

{
λ1, x ∈ phase 1
λ2, x ∈ phase 2

(3.5)

It is further assumed that λ(x) is a random field whose first-order distribution is
fully defined by the volume fractions i.e. Pr[λ(x) = λ1] = V1 and Pr[λ(x) = λ2] =
V2 = 1 − V1. Hence the conductivity at each x ∈ Ω (or each pixel in the discretized
case) is a binary random variable. Clearly, optimizing with respect to λ(x) and using
∫

f(x)T (x) dΩ as an objective function is meaningless as they are both random. A
viable set of design variables d (given V1 and V2) consists of the higher-order statistics
of the random field. More concretely, we consider conductivity random fields defined
by a mapping from a zero-mean, unit variance Gaussian random field g(x) [3, 26] as
follows:

λ(x) = λ1 + (λ2 − λ1)Φ

(
g(x) − µ

ǫ

)

(3.6)

where Φ(.) is the standard normal cumulative distribution function 2. The threshold
µ is selected in order to ensure the desired volume fractions. In this study, for V1 =
V2 = 0.5, the value µ = 0 was used. The higher order statistics of the conductivity
field are therefore determined by the covariance function of the Gaussian field g(x)
[26, 44]. We consider a spectral representation of a statically homogeneous Gaussian
random field [31] with respect to its power spectral density Sg(ω1, ω2) [31] 3:

g(x = (x1, x2)) =
√

2
∑N1−1

n1=0

∑N2−1
n2=0 (An1,n2

cos(ω1,n1
x1 + ω2,n2

x2 + φn1,n2
)+

Ãn1,n2
cos(ω1,n1

x1 − ω2,n2
x2 + φ̃n1,n2

)
)

(3.7)
where:

• ω1,n1
= n1∆ω1 = n1

ω1,max

N1
, ω2,n2

= n2∆ω2 = n2
ω2,max

N2

4

•

An1,n2
=







√
1
2Sg(ω1,n1

, ω2,n2
)∆ω1∆ω2, n1 = n2 = 0

√

Sg(ω1,n1
, ω2,n2

)∆ω1∆ω2, n1 = 0 & n2 > 0
, or n1 > 0 & n2 = 0

√

2Sg(ω1,n1
, ω2,n2

)∆ω1∆ω2, otherwise

(3.8)

•

Ãn1,n2
=







√
1
2Sg(ω1,n1

,−ω2,n2
)∆ω1∆ω2, n1 = n2 = 0

√

Sg(ω1,n1
,−ω2,n2

)∆ω1∆ω2, n1 = 0 & n2 > 0
, or n1 > 0 & n2 = 0

√

2Sg(ω1,n1
,−ω2,n2

)∆ω1∆ω2, otherwise

(3.9)

• φn1,n2
, φ̃n1,n2

are random phase angles uniformly distributed in [0, 2π].
Given the expressions above, the following parameterization is adopted:

2a very small ǫ is used so that Φ approximates a Heaviside function at µ. In this study ǫ = 0.001
3the power spectral density is the Fourier transform of the autocovariance function
4the upper-cutoff frequencies effectively determine the scale of heterogeneity
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Ω
ΓN

ΓN

ΓD

Fig. 3.1. Configuration for problem described in section 3.1 taken from [46]. Dirichlet boundary
conditions specified on ΓD = [0.25, 0.75] where T = 0 and Neumann boundary conditions on ΓN to
be λ ∂T

∂n
= 0.

• random variables θ = {φn1,n2
, φ̃n1,n2

}N1−1,N2−1
n1,n2=0 of dimension N1N2, and with

p(θ) =
(

1
2π

)N1N2
.

• design variables d = {Sg(ω1,n1
, ω2,n2

)}N1−1,N2−1
n1=0,n2=−(N2−1) of dimension (2N2 −

1)N1. It is noted that since we consider unit variance Gaussian fields, the
power spectral density must integrate to 1. This imposes a constraint on the
sum of the design variables. An additional constraint is that Sg(ω1,n1

, ω2,n2
) ≥

0, ∀n1, n2.
The objective function J(θ,d) =

∫
f(x)T (x) dΩ ≈ F T T used in deterministic

topology optimization formulations, will now be a random variable due to its de-
pendence on the random, spatial distribution of conductivities. The two extreme
values it attains are ∼ 10−3 when λ(x) = λ1 = 1, ∀x ∈ Ω and ∼ 10−1 when
λ(x) = λ2 = 0.01 ∀x ∈ Ω. The utility function we employ is:

U(θ,d) =

{
1 if J(θ,d) ≤ J0 = 2.5 × 10−3

e−c(J(θ,d)−J0) if J(θ,d) > J0 = 2.5 × 10−3 (3.10)

For a large c (the value c = 10 was used in this study) the aforementioned utility func-
tion approximates the Heaviside function at J(θ,d) = J0. As a result the expected
utility Û(d) (Equation (2.1)) represents the probability that J is less than the thresh-
old J0. Hence, the formulation of the problem in the stochastic topology optimization
framework proposed is:
Stochastic topology optimization: Given two materials with (significantly) dif-
ferent conductivities λ1 and λ2 (the values 1 and 0.01 were used in this study) which
are to be randomly distributed with volume fractions V1 = V2 = 0.5, find the the ran-
dom spatial distribution as prescribed by the design variables d above, that maximize
the probability that J(θ,d) is less than a prescribed threshold J0.

In the simulations performed, N = 100 particles were used and n = 5 state aug-
mentations (Equation (2.3)). Since the design variables d represent the power spectral

density Sg, the particulate representations (i.e. particle values d(i) and weights W (i))
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were used to estimate the expected value of Sg as in Figure 3.2(a). The corresponding
autocovariance function is depicted in Figure 3.2(b).

The result of the deterministic topology optimization is shown in Figure 3.3(a)
[46]. The high-conductivity material is depicted with black (λ1 = 1) and mostly
occupies the region under the boundary ΓD where Dirichlet boundary conditions are
specified. Thick or thin clusters of the phase 1 emanate from ΓD over the whole
domain in order for the energy introduced by the heat source f(x) (Equation (3.1))
to permeate throughout Ω, ensuring a low value of the objective. Obviously such
realizations (as in Figure 3.3(a)) are inconsistent with a statistically homogeneous
random field λ(x) prescribed in the stochastic optimization framework. For example
it is clear that the volume fraction of the black phase is close to 1 near ΓD and drops to
zero far away. The proposed framework however allows one to control microstructures
by controlling the statistics of their random distribution (in this case through Sg).
Hence the composite is always random and its first-order distribution (as expressed
by the volume fractions) is always the same.

Figures 3.3(b) depict three realizations of the random medium generated by the
optimal Sg shown in Figure 3.2(a) through the mapping of Equation (3.6). It is noted
that the average Sg corresponding to a uniform distribution on the design variables,
gives rise to random checkerboards, i.e. realizations that exhibit zero correlation. The
realizations of Figure 3.3(b) however exhibit strong correlation patterns. In partic-
ular it is noted that the black phase (high conductivity) exhibits connected paths,
particularly in the vertical direction (x2). This is also verified in Figure 3.4 where
the lineal-path functions of the black phase for various separations in the directions
x1 (horizontal) and x2 (vertical) have been calculated. In the pixelized version, the
lineal-path function L(∆x) [44] expresses the probability that a line of pixel-length ∆x
lies wholly on the black phase. It can be readilly calculated using the spectral density
Sg (Figure 3.2(a), or the autocovariance (Figure 3.2(b)) of the underlying Gaussian
field in Equation (3.6). It can be clearly seen that the optimal random microstructure
is statistically anisotropic. As it is perhaps expected from the result of the determin-
istic topology optimization (Figure 3.3(a)), the optimal random composite exhibits
higher connectivity in the vertical direction x2 than in the horizontal x1.

3.2. Design/Control of random heterogeneous materials. The goal of this
problem is to optimally select the input in a random system described by a hetero-
geneous medium so as to maximize an expected utility related to the response. In
particular we consider the rectangular domain Ω = [−1, 1]× [0, 1] of Figure 3.5, where

T = 0 on ΓD, −λ(x)∂T (x)
∂n

= 0 on ΓN1
and −λ(x)∂T (x)

∂n
= q on ΓN2

.
The design variables d in this problem parameterize the imposed flux q on the left

boundary ΓN2
. We consider several utility functions that relate to the temperature

profile T Σ along the vertical line Σ located at x1 = 0 [49]. The random variables θ

parameterize the random conductivity field λ(x). In particular we consider a statis-
tically homogeneous λ(x) defined through a zero-mean Gaussian field g(x) as:

λ(x;θ) = eg(x) (3.11)

The autocovariance C(∆x1,∆x2) of g(x) is prescribed as:

C(∆x1,∆x2) = exp{−∆x2
1 + ∆x2

2

x0
} (3.12)

The value of x0 = 0.2 for the correlation length was used in this study. In order
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Fig. 3.2. a) Average power spectral density Sg(ω1, ω2) found by averaging over the particles i.e.
PN

i=1 W (i)d
(i) (Equation (3.7) for N1 = N2 = 10 and ω1,max = ω2,max = 20π). b) Corresponding

autocovariance C(∆x1, ∆x2) for various separations (∆x1, ∆x2). The latter is found by taking the
Fourier transform of Sg(ω1, ω2) in a).

to obtain a resolution-independent representation of g(x) we employed a Karhunen-
Loève expansion:

g(x) =

nθ∑

i=1

θi

√
µiφi(x) (3.13)

where the eigenvalues µi and eigenfunctions φi(x) of the autocovariance can be cal-
culated semi-analytically as in [13]. The series was truncated at nθ = 1, 000 which
was found to represent 95% of the variance of g(x). The corresponding 1, 000 stan-
dard normal variates θi represent the random variables θ in this problem. Figure 3.6
depicts a sample realization of λ(x) obtained from Equations (3.11) and (3.13).

3.2.1. One design variable - Bimodal expected utility. In this example
we consider a constant flux on the left boundary ΓN2

and therefore a single design
variable. The utility function employed was:

U(θ,d) = e−
‖T Σ−T

(1)
target

‖2

2σ2 + 6e−
‖T Σ−T

(2)
target

‖2

2σ2 (3.14)

Each of the terms in the sum above provide a measure of the difference between

the temperature profile T Σ along Σ (Figure 3.5) and some target values T
(1)
target and

T
(2)
target. Hence we seek the imposed flux so that the temperatures T Σ are as close

as possible to the prescribed targets. It is noted that T Σ depends on θ and d but
this has been omitted for notational economy. The reason two target profiles were
selected is to assess whether the proposed scheme can correctly identify more than
one local maxima of the expected utility. It is finally mentioned that the value σ = 5
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(a) Deterministic topology opti-
mization

(b) realization 1 (c) realization 2 (d) realization 3

Fig. 3.3. a) Result of deterministic optimization taken form [46] (copyright permission pend-
ing). b), c), d) Sample realizations obtained from the proposed stochastic topology optimization
scheme. All results correspond to a 70 × 70 grid. The high-conductivity material is depicted with
black (λ1 =).

was used and the target temperature profiles were constant along Σ and equal to 35
and 75 respectively.

Figure 3.7 depicts the d coordinates of the particles and their histogram which
is proportional to the expected utility Û(d) (Equation (2.1)). This simulation was
performed with N = 1, 000 particles and entailed sampling in nθ + nd = 1, 000 + 1 =
1, 000 dimensions. The algorithm can clearly identify and populate the two modes
which correspond to two distinct local maxima of the expected utility, despite the
high-dimensionality of the sampling space.

The same utility function was used and state augmentation was employed in
order to test the capability of the algorithm to zoom in the global maximum. Figure
3.8 depicts particles and expected utilities with n = 1, n = 3 and n = 5 state
augmentations as in Equation (2.3). It is clearly seen that the global maximum is
identified.

3.2.2. Two design variables - Unimodal expected utility. In this problem
we increase the design variables to two i.e. d = (d1, d2). In particular it is assumed
that d1 represents the flux on the upper half of ΓN2

and d2 at the lower. The following
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Fig. 3.4. Lineal path functions in the directions x1 and x2 for various separations ∆x1 or ∆x2.
These are compared with the linear path function of a random checkerboard (i.e. no correlation).

ΓN1

ΓN1

ΓD

Σ

ΓN2

Ttarget

Fig. 3.5. Problem domain

utility function was used:

U(θ,d) = e−
‖T Σ−T target‖

2

2σ2 (3.15)

and the target temperature profile was taken constant and equal to 35. Figure 3.9
depicts the d-coordinates of N = 100 particles that were used to solve this problem
without (n = 1) and with state augmentation (n = 5). These runs entailed sampling
in 1, 002 and 5, 002 dimensions respectively. An interesting observation arising from
these results is that the maxima of the expected utility seem to be attained for d1 +
d2 = 20. This is more clear in Figure 3.9(b) and provides physical insight into the
sensitivity of the random system to the input d. In particular, it appears that the
total flux (i.e. d1 + d2) controls the temperature profile along Σ.
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Fig. 3.6. Sample realization of the conductivity field λ(x) prescribed in Equations (3.11) and
(3.13)
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Fig. 3.7. Particles {d(i)}N=1,000
i=1 and corresponding histogram. The latter is proportional to

the expected utility Û(d) of the problem in section 3.2.1

3.2.3. Multi-resolution analysis. The goal of this last example is to illustrate
the potential of significant computational savings by employing approximate models
in the manner explained in section 2.2. In particular, we consider a two-resolution
approach where the role of the approximate model is played by a finite element solver
with a coarse resolution. Our coarse/approximate model consists of 200 triangular
finite elements and our reference/fine solver of 800 finite elements (in both cases uni-
form meshes were used). The comparisons in terms computational cost are expressed
in terms of the (equivalent) number of calls to the finer (most expensive) solver. In
this problem, the cost of the coarse solver is much less and corresponds to 1

64 calls to
the fine solver. Our goal is to use the former in order to expedite the sampling and
reduce the overall number of calls to the latter solver.

We consider a single design variable d (representing the flux on ΓN2
) and the

utility function of Equation (3.15) .The cost of the reference solution which employs
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Fig. 3.8. Particles {d(i)}N=1,000
i=1 and corresponding histograms for n = 1, 3, 5 state augmenta-

tions for the utility function of Equation (3.14)
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(b) n = 5: Sampling in 5, 002 dimensions

Fig. 3.9. Particles {d(i)}N=100
i=1 for the utility function of Equation (3.15)

only the fine solver and the advocated adaptive SMC scheme is 7, 200 calls. The result
of this simulation in terms of the d-coordinates of the N = 100 particles used and the
expected utility Û(d) are depicted in Figure 3.10.

Figure 3.11 compares the value of the utility function (Equation (3.15)) calculated
with for the same θ and d values using the coarse i.e. Uc and fine, i.e. Uf solvers
(section 2.2). It can be seen that the coarse model underestimates Uf and in absolute
terms provides a poor approximation. Furthermore one observes a significant scatter
which clearly implies that Uc cannot uniquely predict Uf .

In the proposed framework however, as explained in section 2.2, it suffices that
the output Uc of the coarse/approximate model is correlated with Uf in order to
achieve computational savings. We employed the two sequences of distributions as in
Equation (2.9) and Equation (2.10). The first allows us to estimate the maxima of the
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the expected utility Û(d) in section 3.2.3
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Fig. 3.11. Each circle corresponds to (Uc(θ, d), Uf (θ, d)) (given by Equation (3.15)) evaluated
using the coarse and fine solvers for the same (θ, d) values each time

coarse/approximate expected utility and requires only calls to the inexpensive/coarse
solver. The d-coordinates and the estimated expected approximate utility are depicted
in Figure 3.12 (blue line - “coarse”). The cost of obtaining this result with N =
100 particles was equivalent to 138 calls to the fine/expensive solver. Obviously the
result differs from the expected fine/reference utility (red line - “fine” in Figure 3.12).
Using this distribution as the starting point for sampling from the second sequence
of distributions in Equation (2.10), which requires calls to the coarse and fine solvers,
ultimately leads to the result depicted in Figure 3.12) (green line - “coarse+fine”).
The cost of sampling from this second sequence was equivalent to 717 runs of the
most expensive solver. Hence even though the total cost was 138 + 717 = 955 runs,
i.e. a reduction by a factor of 7, the result obtained practically coincides with the
reference solution.

The efficiency gain by utilizing the approximate model was also tested for the
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Fig. 3.12. Particles {d(i)}N=100
i=1 and corresponding histograms obtained using: only the fine

solver (red), only the coarse solver (blue) and, combination of coarse and fine solvers (green) as in
the sequences of Equation (2.9) and Equation (2.10).

utility function of Equation (3.14). As it can seen in Figure 3.13, which compares Uc

and Uf , the coarse solver provides a very poor approximation of the output of the fine
solver in terms of Uf . It is also noted that the quality of the approximation seems to
deteriorate for large utility function values which are of interest.
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Fig. 3.13. Each circle corresponds to (Uc(θ, d), Uf (θ, d)) (given by Equation (3.14)) evaluated
using the coarse and fine solvers for the same (θ, d) values each time

Figure 3.14 compares the accuracy of the sampling with N = 1, 000 particles. It is
noted that the cost of using exclusively the fine solver (red line - “fine”) is equivalent
to 57, 000 runs whereas the total cost of employing the coarse and fine solver in the
manner explained in section 2.2 is 25, 500 runs. Even though the computational
savings achieved (a factor of 2) are not as striking as in the previous case, it is
still significant, particularly when considering the poor correlation between the two
outputs in Figure 3.13. The expected utilities estimated exhibit negligible differences
( red and green lines in Figure 3.14) despite the presence of two modes.
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Fig. 3.14. Particles {d(i)}N=1,000
i=1 and corresponding histograms obtained using: only the fine

solver (red), only the coarse solver (blue) and, combination of coarse and fine solvers (green) as in
the sequences of Equation (2.9) and Equation (2.10).

4. Conclusions. A critical task in the context of random heterogeneous materi-
als involves their design and the optimization of their response/behavior/performance.
An embarrassingly parallelizable sampling scheme is discussed that is capable of deal-
ing with systems with high-dimensional vectors of uncertainties and design variables.
An efficient adaptive SMC scheme is proposed that can efficiently populate regions
of the design space where the expected utility function attains its maxima. The pro-
posed framework allows the principled utilization of approximate models in order to
achieve further reduction in computational cost and enables the multi-resolution anal-
ysis of such problems. An extension currently investigated involves the utilization of
statistical regression techniques to identify the relation between the approximate and
the reference models that could lead to more efficiency gains. Moreover, we are cur-
rently examining the development of probabilistic reduced-order models that would
be adaptively trained and be suited to the analysis objectives.
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