
State-Observation Sampling

Laurent E. Calvet and Veronika Czellar∗

First version: February 2010

This version: October 2011

Abstract

In this paper, we introduce a new sequential Monte Carlo method, the state-

observation sampling (SOS) filter. SOS extends the particle filtering method-

ology to general state-space models where the density of the observation con-

ditional on the state is unavailable. In the mutation stage of SOS, a set of

state-observation pairs are sampled from past state particles. In the impor-

tance sampling step, each state particle is weighted by the kernel distance

between its corresponding simulated observation and the actual data point.
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We establish that the convergence rate of SOS coincides with the convergence

rate of a kernel density estimator on the observation space. SOS overcomes

the curse of dimensionality with respect to the size of state space. We de-

velop a plug-in rule for the selection of the bandwidth. The good finite-sample

performance of SOS is demonstrated on an asset pricing model with investor

learning.

Keywords: State-space model; Particle filter; Kernels; Bandwidth; Likeli-

hood estimation.

1 Introduction

Since their introduction by Gordon, Salmond, and Smith (1993), particle filters

have considerably expanded the range of applications of hidden Markov models and

now pervade fields as diverse as biomedical research (Acton and Ray, 2006; Liu

et al.. 2011), biometrics (Tistarelli, 2009), ecology (Newman et al, 2009), finance

(Kim, Shephard and Chib, 1998; Johannes and Polson, 2009) and macroeconomics

(Fernandez-Villaverde et al., 2011; Hansen, Polson and Sargent, 2011). Particle fil-

ters help track phenomena as diverse as virus dynamics in epidemiology, tumor cell

kinetics in cancer research, and market behavior in economics and finance. These

methods provide estimates of the distribution of a hidden Markov state xt conditional

on a time series of observations Yt = (y1, ..., yt), yt ∈ R
nY , by way of a set of “par-

ticles” (x
(1)
t , ..., x

(N)
t ). In the original sampling and importance resampling algorithm

of Gordon et al. (1993), the construction of the date-t filter from the date-(t − 1)
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particles proceeds in two steps. In the mutation phase, a new set of particles is

obtained by drawing a hidden state x̃
(n)
t from each date-(t − 1) particle x

(n)
t−1 under

the transition kernel of the Markov state. Given a new observation yt, the particles

are then resampled using weights that are proportional to the observation density

fY (yt|x̃(n)
t , Yt−1). Important refinements of the algorithm include sampling from an

auxiliary model in the mutation phase (Pitt and Shephard, 1999), or implementing

variance-reduction techniques such as stratified (Kitagawa 1996) and residual (Liu

and Chen 1998) resampling.1

A common feature of existing filters is the requirement that the observation den-

sity fY (yt|xt, Yt−1) be available analytically up to a normalizing constant. This con-

dition need not hold in complex environments such as state-space models of animal

populations, HIV dynamics in the presence of mixed effects, or dynamic equilibria

with hidden agents beliefs or latent macroeconomic fundamentals. To overcome the

unavailability of the observation density nonparametric (Rossi and Vila, 2006, 2009)

and Approximate Bayesian Computation (“ABC”; Jasra et al., 2011) methods, both

based on simulations of pseudo-observations, have been considered. However, the

former approach is only applicable when the state xt is a continuous random vari-

able evolving in a Euclidean space R
nX . It is numerically challenging because N

conditional densities, and therefore 2N2 kernels, must be evaluated every period.

The method is also prone to the curse of dimensionality since the rate of conver-

gence decreases both with the dimension of the state space nX and the dimension

1Further advances of particle filtering in the statistics literature include Andrieu, Doucet, and
Holenstein (2010), Del Moral (2004), Fearnhead and Clifford (2003), Gilks and Berzuini (2001),
Godsill, Doucet, and West (2004), Kitagawa (1998), Liu and Chen (1995) and Storvik (2002).
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of the observation space nY . In the ABC approach, the pseudo-observations need to

be sorted every period, which requires N log2N steps, and convergence is an open

question.

The present paper develops a new method, the State-Observation Sampling (SOS)

filter, which consists of simulating a state and a pseudo-observation (x̃
(n)
t , ỹ

(n)
t ) from

each date-(t − 1) particle. In the resampling stage, we assign to each particle x̃
(n)
t

an importance weight determined by the proximity between the pseudo-observation

ỹ
(n)
t and the actual observation yt. We quantify proximity by a kernel of the type

considered in nonparametric statistics:

p
(n)
t ∝ 1

hnY

t

K

(

yt − ỹ
(n)
t

ht

)

,

where ht is a bandwidth and K is a probability density function supported on the

real line. SOS requires the calculation of only N kernels each period and makes

no assumptions on the characteristics of the state space, which may or may not be

Euclidean. We demonstrate that as the number of particles N goes to infinity, the

filter converges to the target distribution under a wide range of conditions on the

bandwidth ht. The root mean squared error of moments computed using the filter

decays at the rate N−2/(nY +4), that is at the same rate as the kernel density estimator

of a random vector on R
nY (e.g. Fan and Yao, 2003; Hart, 1997). The asymptotic

rate of convergence is thus invariant to the size of the state space, indicating that

SOS overcomes a form of the curse of dimensionality. We also prove that the SOS

filter provides consistent estimates of the likelihood function and propose a plug-in

rule for the choice of bandwidth.
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We demonstrate the good performance of the SOS filter on the dynamic asset

pricing model with agent learning of Calvet and Fisher (“CF” 2007), where the

Markov chain driving fundamentals (Mt) and agent belief (Πt) about the Markov

chain both drive the observation dynamics. The advantages of the CF 2007 model is

that the state variable is mixed (discrete Mt and continuous Πt), which allows us to

investigate the accuracy of SOS in the most general case. Moreover, in the special

case when the agent is fully informed about the state of fundamentals, the state

reduces to Mt and the likelihood function is available in closed form. This feature

allows us to investigate the convergence of the SOS estimated likelihood to the true

likelihood under different state-space dimensions and to illustrate the defeat of the

curse of dimensionality with respect to the size of the state space (see Figure 4).

The paper is organized as follows. Section 2 defines the SOS filter for general

state-space models. Section 3 applies these methods to a dynamic asset pricing model

with agent learning; we verify the accuracy of our inference methodology by Monte

Carlo simulations. Section 4 concludes.

2 The State-Observation Sampling (SOS) Filter

2.1 Definition in a Euclidean State Space

We consider a Markov process xt defined on a measurable space (X,FX). Time is

discrete and indexed by t = 0, 1, ...,∞. For expositional simplicity, we assume in this

subsection that X = R
nX .

Let yt ∈ R
nY denote the observation at date t and Yt−1 = (y1, ..., yt−1), the vector
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of observations up to date t− 1. The building block of our model is the conditional

density of (xt, yt) given (xt−1, Yt−1),

fX,Y (xt, yt|xt−1, Yt−1). (2.1)

Let fX0
denote a prior over the state space. The inference problem consists of

estimating the density of the latent state xt conditional on the set of current and

past observations: fX(xt|Yt) at all t ≥ 1.

A large literature proposes estimation by way of a particle filter. The sampling

importance resampling method of Gordon et al. (1993) is based on Bayes’rule:

fX(xt|Yt) =
fY (yt|xt, Yt−1) fX(xt|Yt−1)

fY (yt|Yt−1)
.

The construction begins by drawing N independent states x
(1)
0 , ..., x

(N)
0 from fX0

.

Given the date−(t − 1) filter (x
(1)
t−1, . . . , x

(N)
t−1), the construction of the date−t filter

proceeds in two steps. First, we sample x̃
(n)
t from x

(n)
t−1 using the transition ker-

nel of the Markov process. Second, in the resampling step, we sample N particles

(x
(1)
t , . . . , x

(N)
t ) from (x̃

(1)
t , . . . , x̃

(N)
t ) with normalized importance weights

p
(n)
t =

fY (yt|x̃(n)
t , Yt−1)

∑N
n′=1 fY (yt|x̃

(n′)
t , Yt−1)

. (2.2)

Under a wide range of conditions, the sample mean N−1
∑N

n=1 Φ(x
(n)
t ) converges to

E[Φ(xt)|Yt] for any bounded measurable function Φ (e.g. Crisan and Doucet, 2002).

The sampling and importance resampling algorithm, and its various refinements,
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assume that the observation density fY (yt|xt, Yt−1) is readily available up to a normal-

izing constant, which is a restrictive assumption in many applications. We propose

a solution to this difficulty when it is possible to simulate from (2.1). Our filter

makes no assumption on the tractability of fX,Y (·|xt−1, Yt−1), and in fact does not

even require that the transition kernel of the Markov state xt be available explicitly.

The principle of our new filter is to simulate from each x
(n)
t−1 a state-observation pair

(x̃
(n)
t , ỹ

(n)
t ), and then select particles x̃

(n)
t associated with pseudo-observations ỹ

(n)
t

that are close to the actual data point yt. The definition of the importance weights

is based on Bayes’ rule applied to the joint distribution of ỹ
(n)
t , x̃

(n)
t ,x

(n)
t−1 conditional

on Yt:

ỹ
(n)
t , x̃

(n)
t , x

(n)
t−1|Yt ∼ δ(yt − ỹ

(n)
t ) fX,Y (x̃

(n)
t , ỹ

(n)
t |x(n)

t−1, Yt−1) fX(x
(n)
t−1|Yt−1)

fY (yt|Yt−1)
, (2.3)

where δ denotes the Dirac distribution on R
nY . Since the Dirac distribution produces

degenerate weights, we consider a strictly positive kernel K that satisfies the usual

properties.

Assumption 1 (Kernel). The function K : RnY → R satisfies:

(i) K(u) > 0 for all u ∈ R
nY ;

(ii)
∫

K(u)du = 1;

(iii)
∫

uK(u)du = 0;

(iv) A(K) =
∫

‖u‖2K(u)du < ∞;

(v) B(K) =
∫

[K(u)]2du < ∞.

6



For any y ∈ R
nY , let

Kht
(y) =

1

hnY

t

K

(

y

ht

)

denote the corresponding kernel with bandwidth ht at date t. The kernel Kht
con-

verges to the Dirac distribution as ht goes to zero, which we use to approximate

(2.3). This suggests the following algorithm.

Step 1 (State-observation sampling): For every n = 1, . . . , N, we simu-

late a state-observation pair (x̃
(n)
t , ỹ

(n)
t ) from fX,Y (·|x(n)

t−1, Yt−1).

Step 2 (Importance weights): We observe the new data point yt and com-

pute

p
(n)
t =

Kht

(

yt − ỹ
(n)
t

)

∑N
n′=1 Kht

(

yt − ỹ
(n′)
t

) , n = 1, . . . , N.

Step 3 (Multinomial resampling): For every n = 1, . . . , N, we draw x
(n)
t

from x̃
(1)
t , . . . , x̃

(N)
t with importance weights p

(1)
t , . . . , p

(N)
t .

SOS filter

The state-observation pairs {(x̃(n)
t , ỹ

(n)
t )}n=1,...,N constructed in step 1 provide a

discrete approximation to the conditional distribution of (xt, yt) given the data Yt−1.

In step 2, we construct a measure of the proximity between the pseudo and the

actual data points, and in Step 3 we select particles for which this measure is large.

The variance of multinomial resampling in step 3 can be reduced and computational

speed can be improved by alternatives such as residual (Liu and Chen, 1998) or

stratified (Kitagawa, 1996) resampling. In section 3, we obtain good results with a
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combined residual-stratified approach.2 The convergence proof below applies equally

well to these alternatives.

Step 2 of SOS is based on the calculation of N kernels, analogous to the evalu-

ation of N observation densities in the traditional sampling and importance resam-

pling filter. The overall numerical complexity SOS is therefore the same as the O(N)

complexity of the traditional filter (in cases when the observation density is available

analytically). Moreover, SOS improves on the O(N2) complexity of earlier nonpara-

metric methods (e.g. Rossi and Vila, 2009) and the O(N log2(N)) complexity of the

ABC algorithm proposed by Jasra et al. (2011).

2.2 Extension to Non-Euclidean State Spaces and Conver-

gence

The SOS filter easily extends to the case of a general measurable state space X. The

building blocks of the model are the conditional probability measure of (xt, yt) given

(xt−1, Yt−1):

g(·|xt−1, Yt−1),

and a prior measure λ0 over the state space. The SOS filter targets the probability

measure of the latent state xt conditional on the set of current and past obser-

2We select
∑N

n=1⌊Np
(n)
t ⌋ particles deterministically by setting ⌊Np

(n)
t ⌋ particles equal to

x̃
(n)
t for every n ∈ {1, . . . , N}, where ⌊·⌋ denotes the floor of a real number. The remaining

Nr,t = N −
∑N

n=1⌊Np
(n)
t ⌋ particles are selected by the stratified sampling that produces x̃

(n)
t

with probability q
(n)
t = (Np

(n)
t − ⌊Np

(n)
t ⌋)/Nr,t, n = 1, . . . , N . That is, for every k ∈ {1, . . . , Nr,t},

we draw Ũk from the uniform distribution on ( k−1
Nr,t

, k
Nr,t

], and select the particle x̃
(n)
t such that

Ũk ∈ (
∑n−1

j=1 q
(j)
t ,
∑n

j=1 q
(j)
t ].
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vations, λ(·|Yt). It is defined by sampling (x̃
(n)
t , ỹ

(n)
t ) from the conditional measure

g(·|x(n)
t−1, Yt−1) in step 1, and then implementing steps 2 and 3 as in Section 2.

We now specify conditions under which for a fixed history YT = (y1, . . . , yT ),

T ≤ ∞, the SOS filter converges in mean squared error to the target λ(·|Yt) as the

number of particles N goes to infinity.

Assumption 2 (Conditional Distributions). The observation process satisfies

the following hypotheses:

(i) the conditional density fY (ỹt|xt−1, Yt−1) exists and

κt = sup{fY (ỹt|xt−1, Yt−1); (xt−1, ỹt) ∈ X× R
nY } < ∞ ;

(ii) the observation density fY (ỹt|xt, Yt−1) is well-defined and there exists κ′
t ∈ R+

such that:

|fY (ỹt|xt, Yt−1)− fY (yt|xt, Yt−1)−
∂fY
∂yTt

(yt|xt, Yt−1)(ỹt − yt)| ≤ κ′
t‖ỹt − yt‖2

for all (xt, ỹt) ∈ X× R
nY and t ≤ T .

Assumption 3 (Bandwidth). The bandwidth is a function of N , ht = ht(N), and

satisfies

(i) limN→∞ ht(N) = 0,

(ii) limN→∞ N [ht(N)]nY = +∞,
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for all t = 1, . . . , T.

We establish the following result in Appendix A.

Theorem 1 (Convergence of the SOS Filter). Under assumptions 1 and 2

and for every t and N ≥ 1, there exists Ut(N) ∈ R+ such that

E







[

1

N

N
∑

n=1

Kht
(yt − ỹ

(n)
t )− fY (yt|Yt−1)

]2






≤ [fY (yt|Yt−1)]
2

4
Ut(N), (2.4)

where the expectation is over all the realizations of the random particle method. Fur-

thermore, for any bounded measurable function, Φ : X → R,

MSEt = E







[

1

N

N
∑

n=1

Φ(x
(n)
t )− E[Φ(xt)|Yt]

]2






≤ Ut(N)‖Φ‖2, (2.5)

where ‖Φ‖ = sups∈X |Φ(s)|. If assumption 3 also holds, then

lim
N→∞

Ut(N) = 0 ,

and the filter converges in mean squared error. Furthermore, if the bandwidth se-

quence is of the form ht(N) = ht(1)N
−1/(nY +4), then Ut(N) decays at rate N−4/(nY +4)

and the root mean squared error MSE
1/2
t at rate N−2/(nY +4) for all t.

The convergence rate of SOS is the same as the convergence rate of a kernel

density estimator on the observation space R
nY . SOS therefore defeats the curse
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of dimensionality with respect to the size of the state space, thus improving on the

nonparametric approach proposed by Rossi and Vila (2006, 2009).

By (2.4), the kernel estimator

f̂t =
1

N

N
∑

n=1

Kht
(yt − ỹ

(n)
t ), (2.6)

converges to the conditional density of yt given past observations. Consequently, we

can estimate the log-likelihood function by
∑T

t=1 ln f̂t. We now discuss the appropri-

ate choice of bandwidth.

2.3 Choice of Bandwidth

We begin by observing that computing the vector {ht(N)}Tt=1 that minimizes the

mean squared error (MSE) of the log likelihood estimator is a seemingly intractable

high-dimensional problem. For this reason, we consider a much simpler problem.

At each date t, we select the bandwidth that minimizes the integrated MSE in

the estimation of fY (yt|Yt−1) = E[fY (yt|xt−1, Yt−1)|Yt−1] under the simplifying as-

sumption that the conditional measure λ(·|Yt−1) concides with the date−(t − 1)

filter. In this setting, the state xt−1 takes values on the fixed finite support X
(N)
t−1 =

(x
(1)
t−1, . . . , x

(N)
t−1) with equal probabilities. Suppose that yt ∈ R

nY is fixed, and let

ft = N−1
∑N

n=1 fY (yt|x
(n)
t−1, Yt−1). The properties of the mean squared error

E[(f̂t − ft)
2|X(N)

t−1, Yt−1] = Var(f̂t|X(N)
t−1, Yt−1) +

[

E(f̂t|X(N)
t−1, Yt−1)− ft

]2

are summarized in the following proposition established in Appendix A.
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Proposition 1 Assume that xt−1 takes values on the fixed finite support X
(N)
t−1 with

equal probabilities. Then,

E(f̂t|X(N)
t−1, Yt−1)− ft =

h2
t

2
tr

[

∂2ft
∂yt∂yTt

VarK(u)

]

+ O(h3
t ) , (2.7)

Var(f̂t|X(N)
t−1, Yt−1) =

B(K)

NhnY

t

ft + O(h−nY +1
t ) . (2.8)

where ∂2ft
∂yt∂yTt

= 1
N

∑N
n=1

∂2fY
∂yt∂yTt

(yt|x(n)
t−1, Yt−1), tr is the trace operator and VarK(u) =

∫

uuTK(u)du.

The mean squared error E[(f̂t − ft)
2|X(N)

t−1, Yt−1] can therefore be approximated by

B(K)

NhnY

t

ft +
h4
t

4

{

tr
[ ∂2ft
∂yt∂yTt

VarK(u)
]

}2

.

We choose the bandwidth that minimizes the integrated mean squared error which

leads to the rule:

ht =





B(K)nY

N
∫ {

tr
[

∂2ft
∂yt∂yTt

VarK(u)
]}2

dyt





1/(nY +4)

. (2.9)

The formula reduces to the standard kernel density estimation (KDE) plug-in rule

if ft is Gaussian and the kernel satisfies VarK(u) = A(K)n−1
Y InY

, where InY
is the

nY -dimensional identity matrix. A separate observation is that if nY = 1, the rule

(2.9) simplifies to:

ht =

[

B(K)

NA(K)2
∫

(f ′′
t )

2dyt

]1/5

.
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2.3.1 Example: the Quasi-Cauchy Kernel

When nY = 1 we can use the infinite support quasi-Cauchy kernel:

K(u) =
1

(1 + Cu2)2
,

where C = (π/2)2 is a normalizing constant. We know that A(K) = 4/π2 and

B(K) = 5/8. Moreover, if ft is a Gaussian distribution N(µt, σ
2
t ), then

∫

(f ′′
t )

2dyt =

3/(8
√
πσ5

t ) . The quasi-Cauchy plug-in bandwidth is therefore

ht = σt

(

5π9/2

48N

)1/5

,

with σt estimated by the sample standard deviation of the simulated observations

{ỹ(n)t }Nn=1. We use this rule in all the calculations reported in the following section.

3 Inference in an Asset Pricing Model with In-

vestor Learning

We now apply our methodology to a dynamic incomplete-information equilibrium

model of equity returns.

3.1 Specification

We adopt the Lucas tree economy with regime-switching fundamentals of CF (2007,

2008). We consider three levels of information corresponding to nature, an agent and
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NATURE:
sets Mt

signal st

AGENT:
infers belief Πt about Mt

data yt

STATISTICIAN:
observes yt, infers the state (Mt,Πt)

Figure 1: Information structure.

the statistician, as illustrated in Figure 1. At the beginning of every period t, nature

selects a discrete first-order Markov vector Mt ∈ R
k. Each component of the vector

can take either a high value m0 ∈ [1, 2) or a low value 2 −m0. The agent observes

a signal st, whose distribution is contingent on the vector Mt, and uses Bayes’ rule

to infer the conditional probability distribution of Mt given (s1, . . . , st), to which

we will refer as the “belief” Πt. The agent also computes the stock return yt as a

function of her beliefs and signals. The statistician observes yt and aims to track the

hidden state xt = (Mt,Πt) of the learning economy.

3.1.1 State Model

Nature’s Mt. The components of Mt = (Mk,t)1≤k≤k are mutually independent across

k. Conditional on Mk,t, the next-period multiplier Mk,t+1 is either: (a) unchanged:

Mk,t+1 = Mk,t with probability 1− γk; or, alternatively, (b) drawn from a Bernoulli

taking values m0 or 2 − m0 with equal probability. The Markov vector Mt takes

14



d = 2k possible values m1, . . . ,md, and we denote by aij = P(Mt = mj|Mt−1 = mi)

its transition probabilities.

Signal. The components of the signal st ∈ R
k+2 consist of dividend growth s1,t,

consumption growth s2,t, and signals s3,t, . . . , sk+2,t about the state of nature. They

are specified by:

s1,t = gD − σ2
D(Mt)

2
+ σD(Mt)ε1,t, (3.1)

s2,t = gC + σCε2,t, (3.2)

si+2,t = Mi,t + σδεi,t, i = 1, . . . , k . (3.3)

where gD, gC , σC , and σδ are fixed scalars. The stochastic volatility of dividends

is σD(Mt) = σD

(

∏k
k=1Mk,t

)1/2

, where σD ∈ R+. The innovations ε1,t, . . . , εk,t are

jointly normal and have zero means and unit variances. The correlation ρ1,2 between

ε1,t and ε2,t is strictly positive, and all the other correlations are zero.

Agent belief. The agent recursively applies Bayes’ rule to compute the beliefs:

Πj
t ∝ f(st|Mt = mj)

d
∑

i=1

aijΠ
i
t−1 ,

for all j ∈ {1, . . . , d} and t ≥ 1.

State of the economy. At a given date t, the state of the economy is the mixed

variable:

xt = (Mt,Πt) ∈ X = {m1, . . . ,md} ×∆d−1
+ , (3.4)
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Table 1: Dimension of the state space

Incomplete Information
(σδ > 0)

Full Information
(σδ = 0)

State space X {m1, . . . ,md} ×∆d−1
+ {m1, . . . ,md}

Dimension of X d− 1 0

Likelihood Unavailable Available

where Mt is the Markov vector selected by nature, Πt is the agent’s belief, and

∆d−1
+ = {Π ∈ R

d
+|
∑d

i=1 Πi = 1} denotes the (d − 1)–dimensional unit simplex. The

transition kernel of the Markov state xt is generally unavailable in closed-form.

In the special case where σδ = 0, the agent is fully informed (FI) about the state

of nature (as can be seen from (3.3)) and the belief vector reduces to Πt = 1Mt
, where

1Mt
denotes the vector whose jth component is equal to 1 ifMt = mj and 0 otherwise.

The log-likelihood under full information, denoted LFI , is available analytically (see

CF 2007, 2008). Under incomplete information (II), when σδ > 0, the log-likelihood,

denoted LII is unavailable. The topological dimensions of the state spaces under full

and incomplete information are summarized in Table 1.

3.1.2 Observation Model

The statistician observes the log excess return computed by the agent according to

her beliefs:

yt = ln

[

1 +Q(Πt)

Q(Πt−1)

]

+ s1,t − rf , (3.5)
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Figure 2: Simulated observations.

where rf is the log interest rate and Q(Πt) is the stock’s price-dividend ratio defined

byQ(Πt) =
∑d

j=1Q(mj)Πj
t . The definition of the linear coefficientsQ(mj) is provided

in Appendix B. The observation density fY (yt|Mt,Πt, Yt−1) is in general unavailable

analytically.

3.2 Accuracy of the SOS filter

We now present the results of Monte Carlo simulations of the SOS particle filter.

Comparison with a Known Likelihood. We generate a simulated sample of excess

returns of size T = 1, 000 periods from the learning model in Section 3.1, with k = 3

volatility components and signal noise parameter σδ = 0. The values of the other

parameters are given in Appendix B. Simulated data are illustrated in Figure 2. The
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Figure 3: Boxplots of SOS likelihood estimates. The figure illustrates estimates of the
full-information log-likelihood function LFI for various filter sizes. All the filters are
applied to the dataset reported in Figure 2. For each filter sizeN = 103, 104, 105, 106,
one hundred SOS estimates of LFI are computed using the quasi-Cauchy kernel. The
horizontal line illustrates the true likelihood LFI .

state space dimension is zero (see Table 1) and the likelihood function is available

in this case (see CF 2007). We apply to the simulated excess return series the SOS

filter with the quasi-Cauchy kernel and bandwidth derived in section 2. Figure 3

illustrates boxplots of 100 estimates of the log-likelihood function for various values

of the filter size N = 103, 104, 105, 106. The estimated log-likelihood increases with

the filter size, as one expects from Jensen’s inequality. SOS provides very accurate

estimates of the likelihood function for N ≥ 106.
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Figure 4: Plot of the RMSE as a function of the filter size N . We consider SOS
with a correctly specified model (σδ = 0, continuous line) and misspecified models
with a higher state space dimension (σδ = 0.1, dashed line, and 0.5, dotted line).
Convergence of SOS is nearly identical for the correct (σδ = 0) and the misspecified
high-dimensional (σδ = 0.1) models, even though the topological dimension of the
state space is 0 for the former and 7 for the latter. The figure confirms the result of
Theorem 1 that the convergence rate of SOS is independent of the dimension of the
state space.
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Defeat of the curse of dimensionality. We now increase the state space dimension

and apply the SOS filter to data in Figure 2 using two misspecified models, that is

with σδ = 0.1 and 0.5, where the state space dimension is nX = 7. We compare

the convergence of the SOS estimation with increased state space dimension to the

SOS estimation using the correctly specified model where nX = 0. To investigate

convergence in mean squared error of Theorem 1, we use the following measure:

RMSE =

√

√

√

√

1

T

T
∑

t=1

[

1

N

N
∑

n=1

Kht
(yt − ỹ

(n)
t )− fY (yt|Yt−1)

]2

, (3.6)

where fY (yt|Yt−1) is the analytically available score function of the FI model. Fig-

ure 4 plots the RMSE as a function of the filter size N for SOS with correctly

specified learning model and misspecified learning models with increased state space

dimension. Convergence of SOS is nearly identical for the FI model and for the II

model with σδ = 0.1, even though II has a much larger state space. These findings

confirm the result of Theorem 1 that the convergence rate of SOS is independent of

the dimension of the state space.

4 Conclusion

In this paper, we have developed a powerful algorithm, the State-Observation Sam-

pling filter, for general state-space models in which state-observation pairs can be

conveniently simulated. Our method makes no assumption on the availability of

the observation density and therefore expands the scope of sequential Monte Carlo
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methods. The rate of convergence does not depend on the size of the state space,

which shows that our filter defeats a form of the curse of dimensionality. Among

many possible applications, SOS is useful to estimate the likelihood function, con-

duct likelihood-based specification tests, and generate forecasts.

The new filter naturally applies to nonlinear economies with agent learning of the

type often considered in financial economics. In this context, SOS permits to track

in real time both fundamentals and agent beliefs about fundamentals.

The paper opens multiple directions for future work. For instance, SOS can be

used to price complex instruments, such as derivatives contracts, which crucially

depend on the distribution of the hidden state. We can expand the role of learning

in the analysis, for instance by letting the agent learn the parameter of the economy

over time, or by conducting the joint online estimation of the structural parameter

θ and the state of the economy xt, as in Polson, Stroud, and Mueller (2008) and

Storvik (2002). Applications to other fields, such as epidemiology or ecology, are

also envisioned and will be the object of further research.

A Convergence of the SOS Filter (Section 2)

A.1 A Preliminary Result

In this appendix, we show the convergence of the SOS particle filter defined in section

2 as the number of particles N goes to infinity. Since the path YT is fixed, our focus

is on simulation noise, and expectations in this section are over all the realizations

of the random particle method. We begin by establishing the following result for a
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given N ≥ 1 and t ≥ 1.

Lemma A1. Assume that there exists Ut−1(N) such that for every bounded measur-

able function Φ : X → R,

E







[

1

N

N
∑

n=1

Φ(x
(n)
t−1)− E[Φ(xt−1)|Yt−1]

]2






≤ Ut−1(N)‖Φ‖2. (A.1)

Let U∗
t (N) = 2κ′2

t A(K)2h4
t +B(K)κt/(NhnY

t ) + 2Ut−1(N)κ2
t . Then, the inequality

E







[

1

N

N
∑

n=1

Φ(x̃
(n)
t )Kht

(yt − ỹ
(n)
t )− fY (yt|Yt−1)E [Φ(xt)|Yt]

]2






≤ U∗
t (N)‖Φ‖2

holds for every bounded measurable function Φ.

Proof of Lemma A1. We consider the function

at−1(xt−1) =

∫

Φ(x̃t)Kht
(yt − ỹt)g(dx̃t, dỹt|xt−1, Yt−1).

We note that

|at−1(xt−1)| ≤ ‖Φ‖
∫

Kht
(yt − ỹt)g(dx̃t, dỹt|xt−1, Yt−1)

= ‖Φ‖
∫

Kht
(yt − ỹt)fY (ỹt|xt−1, Yt−1)dỹt.

The function at−1 is therefore bounded above by κt ‖Φ‖.

The difference Z = N−1
∑N

n=1 Φ(x̃
(n)
t )Kht

(yt − ỹ
(n)
t ) − fY (yt|Yt−1)E [Φ(xt)|Yt] is
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the sum of the following three terms:

Z1 =
1

N

N
∑

n=1

[

Φ(x̃
(n)
t )Kht

(yt − ỹ
(n)
t )− at−1(x

(n)
t−1)

]

,

Z2 =
1

N

N
∑

n=1

at−1(x
(n)
t−1)−

∫

at−1(xt−1)λ(dxt−1|Yt−1),

Z3 =

∫

at−1(xt−1)λ(dxt−1|Yt−1)− fY (yt|Yt−1)E [Φ(xt)|Yt] .

Let X
(N)
t−1 = (x

(1)
t−1, . . . , x

(N)
t−1) denote the vector of period−(t−1) particles. Conditional

on X
(N)
t−1, Z1 has a zero mean, while Z2 and Z3 are deterministic. Hence:

E(Z2) = E(Z2
1) + E[(Z2 + Z3)

2] ≤ E(Z2
1) + 2E(Z2

2) + 2E(Z2
3).

Conditional on X
(N)
t−1, the state-observation pairs {(x̃(n)

t , ỹ
(n)
t )}Nn=1 are independent,

and each (x̃
(n)
t , ỹ

(n)
t ) is drawn from g(·|x(n)

t−1, Yt−1); the addends of Φ(x̃
(n)
t )Kht

(yt −

ỹ
(n)
t ) − at−1(x

(n)
t−1) are thus independent and have mean zero. We infer that the

conditional expectation of Z2
1 is bounded above by:

1

N2

N
∑

n=1

∫

Φ(x̃t)
2Kht

(yt − ỹt)
2g(dx̃t, dỹt|x(n)

t−1, Yt−1) ≤
κt‖Φ‖2

N

∫

Kht
(yt − ỹt)

2dỹt.

We apply the change of variable u = (yt − ỹt)/ht:

∫

Kht
(yt − ỹt)

2dỹt =
B(K)

hnY

t

,

and infer that E(Z2
1) ≤ ‖Φ‖2B(K)κt/(NhnY

t ).
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Since the function at−1(xt−1) is bounded above by κt ‖Φ‖, we infer from (A.1)

that: E(Z2
2) ≤ Ut−1(N)κ2

t ‖Φ‖2.

Finally, we observe that fY (yt|Yt−1)E [Φ(xt)|Yt] =
∫

Φ(xt)fY (yt|xt, Yt−1)λ(dxt|Yt−1),

and therefore

Z3 =

∫

Φ(xt)

{
∫

Kht
(yt − ỹt)[fY (ỹt|xt, Yt−1)− fY (yt|xt, Yt−1)]dỹt

}

λ(dxt|Yt−1)

=

∫

Φ(xt)

{
∫

K(u)[fY (yt − htu|xt, Yt−1)− fY (yt|xt, Yt−1)]du

}

λ(dxt|Yt−1).

Note that
∣

∣

∫

K(u)[fY (yt − htu|xt, Yt−1)− fY (yt|xt, Yt−1)]du
∣

∣ ≤ κ′
tA(K)h2

t .Hence |Z3| ≤

κ′
tA(K)h2

t‖Φ‖ and therefore E(Z2
3) ≤ κ′2

t A(K)2h4
t‖Φ‖2. We conclude that the lemma

holds. Q.E.D.

A.2 Proof of Theorem 1

The proof of (2.5) proceeds by induction. When t = 0, the particles are drawn from

the prior λ0, and the conditional expectation is computed under the same prior.

Hence the property (2.5) holds with U0(N) = 1/N.

We now assume that the property (2.5) holds at date t− 1. The estimation error

X = N−1
∑N

n=1 Φ(x
(n)
t )− E[Φ(xt)|Yt] is the sum of:

X1 =
1

N

N
∑

n=1

Φ(x
(n)
t )−

N
∑

n=1

p
(n)
t Φ(x̃

(n)
t ).

X2 =

[

N
∑

n=1

p
(n)
t Φ(x̃

(n)
t )

][

fY (yt|Yt−1)−N−1
∑N

n′=1 Kht
(yt − ỹ

(n′)
t )

fY (yt|Yt−1)

]

,

X3 =
1

NfY (yt|Yt−1)

N
∑

n=1

Φ(x̃
(n)
t )Kht

(yt − ỹ
(n)
t )− E[Φ(xt)|Yt].
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The first term, X1, corresponds to step 3 resampling, the second term to the normal-

ization of the resampling weights, and the third term to the error in the estimation

of Φ using the nonnormalized weights.

Conditional on {(x̃(n)
t , ỹ

(n)
t )}Nn=1, the particles x

(n)
t are independent and identically

distributed, and X1 has mean zero. We infer that E[X2
1 |{x̃

(n)
t , ỹ

(n)
t }Nn=1] ≤ ‖Φ‖2/N,

and therefore E(X2
1 ) ≤ ‖Φ‖2/N. Note that when we use stratified, residual or com-

bined stratified-residual resampling in step 3, the inequality E(X2
1 ) ≤ ‖Φ‖2/N re-

mains valid, and smaller upper bounds can also be derived.3

Conditional on {(x̃(n)
t , ỹ

(n)
t )}Nn=1, X2 andX3 are deterministic variables. The mean

squared error satisfies:

E(X2) = E(X2
1 ) + E[(X2 +X3)

2] ≤ E(X2
1 ) + 2E(X2

2 ) + 2E(X2
3 ).

We note that |X2| ≤ ‖Φ‖[fY (yt|Yt−1)]
−1
∣

∣

∣
fY (yt|Yt−1)−

∑N
n′=1 Kht

(yt − ỹ
(n′)
t )/N

∣

∣

∣
.

Using the induction hypothesis at date t − 1, we apply Lemma A1 with Φ ≡ 1 and

obtain that E(X2
2 ) is bounded above by:

U∗
t (N)‖Φ‖2

[fY (yt|Yt−1)]2
. (A.2)

Lemma A1 implies that E(X2
3 ) is also bounded above by (A.2). We conclude that

3See Cappé, O., Moulines, E., and T. Rydén (2005, ch. 7) for a detailed discussion of sampling
variance.
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E(X2) ≤ Ut(N)‖Φ‖2, where Ut(N) = 4U∗
t (N)[fY (yt|Yt−1)]

−2 +N−1, or equivalently

Ut(N) =
4

[fY (yt|Yt−1)]2

[

2κ′2
t A(K)2h4

t +
B(K)κt

NhnY

t

+ 2Ut−1(N)κ2
t

]

+
1

N
. (A.3)

This establishes part (2.5) of the theorem. From (2.5) and Lemma A1 with Φ ≡ 1,

(2.4) follows.

Assume now that the bandwidth is a function of N , and that assumption 3 holds.

A simple recursion implies that limN→∞ Ut(N) = 0 for all t. The mean squared error

converges to zero for any bounded measurable function Φ.

We now characterize the rate of convergence. Given Ut−1(N), we know that the

coefficient Ut(N) defined by (A.3) is minimal if

ht = N−1/(nY +4)

[

κtnYB(K)

8κ′2
t A(K)2

]1/(nY +4)

. (A.4)

More generally, if the bandwidth sequence is of the form ht(N) = ht(1)/N
−1/(nY +4),

then Ut(N) is of the form:

Ut(N) = u1,tN
−4/(nY +4) + u2,tUt−1(N) +N−1. (A.5)

where u1,t and u2,t are finite nonnegative coefficients.4 By a simple recursion, Ut(N)

is of order N−4/(nY +4) for all t. Q.E.D.

4We verify that u1,t = 4[f(yt|Yt−1)]
−2
[

2κ′2
t ht(1)

4A(K)2 +B(K)κtht(1)
−nY

]

and u2,t =
8κ2

t [f(yt|Yt−1)]
−2.
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A.3 Proof of Proposition 1

We first investigate the bias. Note that:

E[Kht
(yt − ỹ

(n)
t )|x(n)

t−1, Yt−1] =

∫

Kht
(yt − ỹt)fY (ỹt|x(n)

t−1, Yt−1)dỹt

=

∫

K(u)fY (yt − htu|x(n)
t−1, Yt−1)du.

(A.6)

From a Taylor expansion of fY (yt − htu|x(n)
t−1, Yt−1) around fY (yt|x(n)

t−1, Yt−1) we have:

E[Kht
(yt−ỹ

(n)
t )|x(n)

t−1, Yt−1] = fY (yt|x(n)
t−1, Yt−1)+

h2
t

2

∫

K(u)uT ∂2fY
∂yt∂yTt

(yt|x(n)
t−1, Yt−1)u du+O(h3

t ) .

By construction, EK(u) =
∫

uK(u)du = 0. We observe that

∫

K(u)uT ∂2fY
∂yt∂yTt

(yt|x(n)
t−1, Yt−1)u du = tr

[

∂2fY
∂yt∂yTt

(yt|x(n)
t−1, Yt−1)VarK(u)

]

.

The bias is therefore

E(f̂t|X(N)
t−1, Yt−1)− ft =

h2
t

2
tr

[

∂2ft
∂yt∂yTt

VarK(u)

]

+ O(h3
t ) .

Next, we note that the variance Var
[

Kht
(yt − ỹ

(n)
t )|x(n)

t−1, Yt−1

]

can be written as

∫

[Kht
(yt − ỹt)]

2 fY (ỹt|x(n)
t−1, Yt−1)dỹt −

{

E

[

Kht
(yt − ỹ

(n)
t )|x(n)

t−1, Yt−1

]}2

.
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Hence

Var
[

Kht
(yt − ỹ

(n)
t )|x(n)

t−1, Yt−1

]

=
1

hnY

t

∫

[K(u)]2fY (yt − htu|x(n)
t−1, Yt−1)du+ O(1)

=
B(K)

hnY

t

fY (yt|x(n)
t−1, Yt−1) + O(h−nY +1

t ) .

We conclude that (2.8) holds. Q.E.D.

B Linear coefficients and parameter values in the

learning model of CF (2007)

We choose parameter values that provide empirically plausible results in the analysis

of U.S. daily excess returns reported in CF (2007). We let m0 = 1.7, γk = 0.06,

b = 2, gC = 0.75 basis point (bp) (or 1.18% per year), rf = 0.42 bp per day (1% per

year), gD − rf = 0.5 bp per day (about 1.2% per year), σC = 0.189% (or 2.93% per

year), σD = 0.70% per day (about 11% per year), and ρ1,2 = 0.6.

The linear coefficients are given by
(

Q(m1), . . . , Q(md)
)T

= (I−B)−1ι− ι , where

B = (bij)1≤i,j≤d is the matrix with components bij = ai,j exp
[

gD − rf − α ρ1,2 σC σD(m
j)
]

and ι = (1, . . . , 1)T . The risk aversion coefficient α is chosen so that the average price-

dividend ratio is Q = d−1
∑d

i=1Q(mi) = 6000 in daily units (25 in yearly units).
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