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Abstract

Under multiplicative drift and other regularity conditions, it is established that the asymp-

totic variance associated with a particle filter approximation of the prediction filter is

bounded uniformly in time, and the non-asymptotic, relative variance associated with a

particle approximation of the normalizing constant is bounded linearly in time. The con-

ditions are demonstrated to hold for some hidden Markov models on non-compact state

spaces. The particle stability results are obtained by proving v-norm multiplicative stability

and exponential moment results for the underlying Feynman-Kac formulae.

1 Introduction

Particle filters have become very popular devices for approximate solution of non-linear filtering

problems in hidden Markov models (HMM’s) and various aspects of their theoretical properties

are now well understood. However, there are still very few results which establish some form of

stability over time of particle filtering methods on non-compact spaces, at least without resorting

to algorithmic modifications which involve a random computational expense. The aim of the

present work is to establish theoretical guarantees about some stability properties of a standard

particle filter, under assumptions which are verifiable for some HMM’s with non-compact state

spaces.

It is now well known that, under mild conditions, the error associated with particle approx-

imation of filtering distributions satisfies a central limit theorem. The first stability property

we obtain is a time-uniform bound on the corresponding asymptotic variance. Making use of

some recent results on functional expansions for particle approximation measures, the second

stability property we obtain is a linear-in-time bound on the non-asymptotic, relative variance

of the particle approximations of normalizing constants. These two properties are established

by first proving some multiplicative stability and exponential moment results for the Feynman-

Kac formulae underlying the particle filter. The adopted approach involves Lyapunov function,

multiplicative stability ideas in a weighted ∞-norm setting, which allows treatment of a non-

compact state space. We thus obtain stability results which hold under weaker assumptions than

those existing in the literature. The main restriction is that our assumptions are typically satis-

fied under some constraints on the observation component of the HMM and/or the observation

sequence driving the filter. On the other hand, subject to these constraints, our stability results
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hold uniformly over observation records and without any stochasticity necessarily present in the

observation process.

The rest of this paper is structured as follows. Section 2 briefly introduces filtering in

HMM’s, particle filters, and comments on some existing stability results. Section 3 gives some

applications of the main particle stability results to classes of hidden Markov models. The hope

is that sections 2 and 3 can be read without the reader necessarily delving into the main results

of section 4 or the corresponding proofs and auxiliary results of section 5, which are obtained in

the more abstract setting of interacting particle approximations of Feynman-Kac formulae.

2 Setting

2.1 Hidden Markov models and filtering

A hidden Markov model is a bi-variate, discrete time Markov chain ((Xn, Yn) ;n ≥ 0) where the

signal process (Xn) is also a Markov chain and each observation Yn is conditionally independent

of the rest of the bi-variate process given Xn. Each Xn is valued in a state-space X and each

Yn is valued in the observation space Y. The present work focuses on the case where X is

non-compact, and we are typically interested in the case that X is some subset of Rd. In any

case, throughout the following we assume that X and Y are Polish spaces endowed with their

respective Borel σ-algebras, B (X) and B (Y). Our main stability results, presented in section 4,

are in the setting of Feynman-Kac formulae which can be considered as underlying the filtering

problem of interest. In that section, more precise definitions are given. In the present section,

we consider the HMM directly.

Let µ be a probability distribution on X, let f be a Markov kernel acting from X to itself and

let g be a Markov kernel acting from X to Y, with g(x, ·) admitting density, similarly denoted

by g (x, y), with respect to some dominating σ-finite measure. We will assume that g (x, y) > 0

and, for now, that supx,y g(x, y) < ∞. Loosely speaking, the task of filtering is to compute some

conditional distributions of the (Xn) process given the observations (Yn), under an assumed

model:

(X0, Y0) ∼ µ (dx0) g (x0, dy0) ,

(Xn, Yn)| {Xn−1 = xn−1} ∼ f (xn−1, dxn) g (xn, dyn) , n ≥ 1, (2.1)

For a realization of observations (y0, y1, . . . , ), we may take as a recursive definition of the (one-

step-ahead) prediction filters, the sequence of distributions (πn;n ≥ 0) following

π0 (dx0) := µ (dx0) ,

πn (dxn) :=

´

X
πn−1 (dxn−1) g (xn−1, yn−1) f(xn−1, dxn)
´

X
πn−1 (dxn−1) g (xn−1, yn−1)

, n ≥ 1. (2.2)

We also define the sequence (Zn;n ≥ 0) by

Z0 := 1, Zn := Zn−1

ˆ

X

πn−1 (dxn−1) g (xn−1, yn−1) , n ≥ 1. (2.3)
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Note that the dependence of πn and Zn on y0:n−1 = (y0, . . . yn−1) is suppressed from the notation.

Unless stated otherwise, whenever (πn) or (Zn) appear below it should be understood that

they depend on an arbitrary but fixed and deterministic Y-valued sequence (y0, y1, . . .). The

same applies for the particle approximations introduced in section 2.2. The set of observation

sequences for which our particle variance results hold is made precise and discussed in section 3.

Under the model (2.1), πn is the conditional distribution of Xn given {Y0:n−1 = y0:n−1};
and Zn is the joint density of Y0:n−1 evaluated at y0:n−1. The convention of working with the

one-step-ahead quantities is mostly for simplicity of presentation in the following.

In applications there typically will be some degree of model mis-specification; perhaps the

data generating process (Xn, Yn) is not distributed according to (2.1) with this particular µ, f

and g, or perhaps (Yn) are not the observations from an HMM at all (for ease of presentation we

purposefully avoid giving a name to a “true” distribution for (Yn)). Never-the-less, as (y0, y1, . . .)

arrive our aim is to compute, or well-approximate (πn) and (Zn) as per (2.2)-(2.3) with some µ,

f and g of our choosing.

HMM’s are simple and yet flexible models which have found countless applications. However,

under choices of µ, f and g which are desirable in many practical situations, (πn) and (Zn) are

not available in closed form.

2.2 Particle filtering

Particle filters [Gordon et al., 1993] are a class of stochastic algorithms which yield approxi-

mations of (πn) and (Zn) using a population of N samples which interact over time. These

approximations will be denoted by
(
πN
n

)
and

(
ZN
n

)
. Algorithm 1 is perhaps the most simple

generic particle filtering scheme (a more precise probabilistic definition is considered in section

4). At time n ≥ 1, the sampling step performs a selection-mutation operation and is equivalent

to choosing, with replacement, N individuals from the population on the basis of their fitness,

proportional to g (·, yn−1), followed by them each mutating in a conditionally independent man-

ner according to f .

Algorithm 1

For n=0,

Sample
(
ξi0
)N
i=1

iid∼ µ,

Report πN
0 =

1

N

N∑

i=1

δξi0 , ZN
0 = 1.

For n ≥ 1,

Report ZN
n = ZN

n−1

1

N

N∑

j=1

g
(
ξjn−1, yn−1

)
,

Sample
(
ξin
)N
i=1

∣∣∣
(
ξin−1

)N
i=1

iid∼
∑N

j=1 g
(
ξjn−1, yn−1

)
f
(
ξjn−1, ·

)

∑N
j=1 g

(
ξjn−1, yn−1

) ,

Report πN
n =

1

N

N∑

i=1

δξin .

A large number of variations and extensions of this algorithm have been developed. A full
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survey is well beyond the scope of the present work, but a few comments are called for. Firstly,

Algorithm 1 implicitly uses “multinomial resampling” at every time step. It would be interesting

to investigate similar results to those presented here for other resampling schemes, for example

via the analyses of Chopin [2004], Del Moral et al. [2011]. Secondly, Algorithm 1 involves mu-

tation at every time step according to the Markov kernel f . Again, various alternative schemes

have been devised. Mutation according to f is not an essential characteristic of the main results

of section 4 and it is only for simplicity that the results of section 3 are presented in this context.

Thirdly, the results presented here are likely to be relevant to related classes of sequential Monte

Carlo methods, for example the smoothing algorithms treated by Del Moral et al. [2010] and

Douc et al. [2011].

2.3 Existing stability results for particle filters

One of the first and most influential works on stability of particle filters is that of Del Moral and Guionnet

[2001] who established time-uniform convergence properties of the particle approximations. They

required uniform upper and lower bounds on g and stability of the corresponding exact filter, in

turn derived using quite strong assumptions on f involving simultaneous, uniform minorization

and majorization, which are rarely satisfied then X is non-compact. Similar mixing assumptions

have been employed in LeGland and Oudjane [2004], Chopin [2004], Künsch [2005], Cérou et al.

[2011] in order to establish (respectively) uniform convergence of particle filtering approxima-

tions; a time-uniform bound on the asymptotic variance; and linear-in-time bounds on the

non-asymptotic variance of the normalizing constant. All also consider variants of the standard

particle filter in Algorithm 1.

LeGland and Oudjane [2003] developed truncation ideas in order to achieve uniform particle

approximations without mixing assumptions, but with random computational cost and/or pro-

posals restricted to compact sets. A further development was made by Oudjane and Rubenthaler

[2005], allowing treatment of some non-ergodic signals via a particle filter incorporating an ac-

cept/reject step. Truncation ideas have also been used in Heine and Crisan [2008] in order to

obtain uniform convergence of particle filter approximations for HMM’s on non-compact state-

spaces with quite specific structure (including X and Y being of the same dimension). van Handel

[2009] has established uniform convergence of time-averaged filters under tightness assumptions

on non-compact spaces. Del Moral and Jacod [2001] proved tightness of the sequence of asymp-

totic variances (as a function of random observations) in the linear-Gaussian case. Favetto [2009]

has proved tightness of the same for a class of HMM’s, but subject to a mixing assumption on

f .

It is stressed that: 1) a time-uniform bound on the asymptotic variance for πN
n and 2) a

linear-in-time bound on the relative variance for ZN
n , as pursued here, are different properties

from the time-uniform convergence results proved in most of the above. The existing works

featuring the most similar type of results to those considered here are [Chopin, 2004], [Künsch,

2005], [Favetto, 2009] and [Cérou et al., 2011], all of which rely on strong mixing assumptions,

at least on f , which we do not invoke.

The overall approach used in the present work to express Feynman-Kac formulae and asso-

ciated functionals is the semigroup formulation of Del Moral [2004], but the stability ideas are
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different and are based around a weighted ∞-norm function space setting. In Theorem 1, the

decomposition idea of Kleptsyna and Veretennikov [2008] and some technical approaches from

Douc et al. [2009] are employed.

For completeness we also mention the following. Whiteley [2011] considered stability prop-

erties of a related class of sequential Monte Carlo methods which are not used for filtering and

operate in a different structural regime, where the number of distributions involved may be

considered a parameter of the algorithm. Whiteley et al. [2011] considered relative variance for

ZN
n in the context of time-homogeneous Feynman-Kac models (obtained in the present setting

by setting all y0, y1, . . . to a constant), appealing to spectral properties of the integral kernel

involved. There is nothing explicitly spectral about the present work, but there are some re-

lated structural ideas involved (see section 4). For example, Theorem 1 is expressed in such

a way that it may be viewed as an non-homogeneous analogue of the v-norm multiplicative

ergodicity results of Kontoyiannis and Meyn [2005], in the context of positive operators. The

assumptions in the present work also allow the treatment of time-homogeneous Feynman-Kac

models, and in that setting are actually stronger than the assumptions of Whiteley et al. [2011]

(because in assumption (H3)-(H4) of section 4.2 here, we require a simultaneous local minoriza-

tion/majorization condition), but on the other hand the approach of Whiteley et al. [2011] is

specific to the time-homogeneous setting.

3 Summary and application of some results

In this section, the results of section 4 are summarized and applied to some specific hidden

Markov models and the particle filter of Algorithm 1. To this end we consider the following

assumptions on µ, f and g which serve as an intermediate layer of abstraction and which

together imply that assumptions (H1)-(H5) of section 4 are satisfied. Discussion of the latter

assumptions and their relation to the existing literature is given in section 4.1.1.

Consider the following:

• Y⋆ ⊆ Y is measurable, and the quantities in the below conditions may depend on Y⋆.

• There exists V : X → [1,∞) unbounded, d ∈ [1,∞) and δ > 0 with the following properties.

For each d ∈ [d,∞),

g(x, y)

ˆ

Cd

f(x, dx′) > 0, ∀x ∈ X, y ∈ Y⋆, (3.1)

where Cd := {x : V (x) ≤ d}, and there exists bd < ∞ such that

sup
y∈Y⋆

g(x, y)

ˆ

X

f(x, dx′) exp
[
V (x′)

]

≤ exp [V (x)(1 − δ) + bdICd
(x)] , ∀x ∈ X, (3.2)
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and there exists a probability measure νd and 0 < ǫ−d ≤ ǫ+d < ∞ such that

ǫ−d νd
(
dx′
)
ICd

(
x′
)

≤ g (x, y) f
(
x, dx′

)
ICd

(
x′
)

≤ ǫ+d νd
(
dx′
)
ICd

(
x′
)
, ∀x ∈ Cd, y ∈ Y⋆, (3.3)

with νd (Cr) > 0 for all r ∈ [d, d]

•
´

exp [V (x)]µ (dx) < ∞

• Although not required for all results of section 4, in the present section it is also assumed

that

sup
(x,y)∈X×Y⋆

g(x, y) < ∞. (3.4)

The condition of (3.2) is a multiplicative drift condition. Similar conditions have been used in the

study of stability of exact filters [Douc et al., 2009] and can hold when Y⋆ = Y is non-compact.

It may be the case that f alone satisfies such a multiplicative condition (see section 3.1 below),

in which case (3.2) can be satisfied when supy∈Y g(x, y) is not bounded above in x. When (3.4)

holds, then (3.2) can hold even when f is not ergodic, but it is then typically required that

Y⋆ ⊂ Y is compact (see section 3.2). The conditions of (3.3) and (3.4) together imply that for

all d ∈ [d,∞),

sup
y∈Y⋆

sup
(x,x′)∈Cd×Cd

g (x, y)

g (x′, y)
< ∞,

which can, loosely, be interpreted as a constraint on the amount of information which any single

observation in Y⋆ can provide about the hidden state in each Cd. For the example of section

3.1.1 we are able to satisfy the assumptions when Y⋆ = Y is compact. For non-compact Y in the

examples below, we resort to taking Y⋆ compact.

Under the above assumptions, the main conclusions of Propositions 3 and 4, section 4.5, may

be summarized as follows.

Uniformly bounded variance in the CLT for πN
n

It is known (e.g. [Del Moral, 2004, Section 9.4.2]) that under (3.4), for any ϕ : X → R bounded,

measurable, n ≥ 1 and any y0:n ∈ Y
n+1
⋆ ,

√
N

ˆ

X

[
πN
n (dx)− πn(dx)

]
ϕ(x) −→ N

(
0, σ2

n (y0:n)
)

in distribution as N → ∞. Under the conditions of (3.1)-(3.4), Proposition 3 may be applied to

establish there exists cµ < ∞ depending on Y⋆, such that for all such ϕ and n ≥ 0

σ2
n (y0:n) ≤ Varπn (ϕ) + ‖ϕ‖2 cµ, ∀y0:n ∈ Y

n+1
⋆ , (3.5)

with ‖·‖ the sup norm. Discussion of a CLT for other classes of ϕ is given in section 4.5.1.
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Linearly bounded relative variance for ZN
n

Under the conditions of (3.1)-(3.4), Proposition 4 may be applied to establish that there exists

c′µ < ∞ depending on Y⋆ such that for all n ≥ 0,

N > c′µ (n+ 1) =⇒ Eµ

[(
ZN
n

Zn
− 1

)2
]
≤ c′µ

4

N
(n+ 1) , ∀y0:n ∈ Y

n+1
⋆ . (3.6)

where Eµ is expectation with respect to the law of the N -particle filtering algorithm initialized

using µ.

3.1 A class of ergodic signal models

The following class of signal model has been considered by Kleptsyna and Veretennikov [2008]

and Douc et al. [2009] in the context of stability of exact filters (i.e. without particle approxi-

mation). We have X = R
dx for some dx ≥1. The transition kernel f corresponds to the signal

model

Xn+1 = Xn +B(Xn) + σ (Xn)Wn, (Wn;n ≥ 1)
iid∼ N (0, Idx) , (3.7)

with

• B is a dx-dimensional vector function, locally bounded and

lim
r→∞

sup
|x|≥r

|x+B(x)| − |x| = −∞ (3.8)

• σ is a dx×dx matrix function, and has the so-called non-degenerate noise variance property

0 < inf
x∈Rdx

inf
λ∈Rdx ,|λ|=1

λTσ(x)σT (x)λ ≤ sup
x∈Rdx

sup
λ∈Rdx ,|λ|=1

λTσ(x)σT (x)λ < ∞. (3.9)

As per Lemma 4 in the appendix, f in this case itself satisfies a multiplicative drift condition

with v(x) := exp (1 + c |x|) for c a positive constant. An example of a possible signal model

with non-Gaussian transition probability and f itself satisfying a multiplicative drift condition

is the discretely sampled Cox-Ingersoll-Ross process, see [Whiteley et al., 2011].

We now discuss some observation models which may be combined with the signal model

above.

3.1.1 Discrete-valued observations

With Y = {0, 1}dx , consider the multivariate binary observation model

(
Y 1
n , . . . , Y

dx
n

)∣∣∣ {Xn = xn} ∼ Be
(
p
(
x1n
))

⊗ · · · ⊗ Be
(
p
(
xdxn

))
,

7



where Be denotes the Bernoulli distribution, p(x) := 1/ (1 + e−x) and Yn =
(
Y 1
n , . . . , Y

dx
n

)
,

xn =
(
x1n, . . . , x

dx
n

)
. This corresponds to

g(x, y) =

dx∏

j=1

p
(
xj
)I[yj=1] (

1− p
(
xj
))I[yj=0]

.

Clearly supx,y g(x, y) = 1 and for any compact C ⊂ R
dx , infx∈C infy∈Y g(x, y) > 0. Combined

with Lemma 4, this establishes that the assumptions of equations (3.1), (3.2) and (3.3) are

satisfied when this observation model is combined with the signal model of equation (3.7)-(3.9).

3.1.2 Uninformative observations in R
d

With Y = R
dy , dy ≥ 1, Consider the observation model

Yn = H (Xn) + ζn, (ζn;n ≥ 1)
iid∼ N

(
0, Idy

)
,

with H a bounded, vector-function. That the disturbance terms are standard normal here is

only for simplicity of presentation. Obviously we have

g(x, y) =
1

(2π)dy/2
exp

(
−1

2
[y −H(x)]T [y −H(x)]

)

so that sup(x,y)∈(X,Y) g(x, y) = (2π)−dy/2. In this case the observations may be considered

uninformative as for each y, infx∈X g(x, y) > 0. In light of Lemma 4, standard calculations show

that this observation model combined with f of (3.7)-(3.9) satisfies the drift condition of (3.2)

with Y⋆ = Y and d chosen large enough. However, when we attempt to verify (3.3) (via (5.2) in

Lemma 4) by incorporating g(x, y), the minorization part of (3.3) is not satisfied with Y⋆ = Y,

due to the requirement of uniformity in y. We may satisfy (3.3) by taking Y⋆ ⊂ Y a compact

set, and the constants involved will then depend on Y⋆.

3.1.3 Stochastic volatility observations

With Y = R and dx = 1, consider the stochastic volatility observation model (considered in

[Douc et al., 2009, Section 4.3]),

Yn = β exp (Xn/2) ǫn, (ǫn;n ≥ 0)
iid∼ N (0, Idx)

where β > 0 is a fixed parameter of the model. The corresponding likelihood is

g(x, y) =
1

(2π)1/2 β
exp

[
−y2 exp (−x) /(2β2)− x/2

]
,

which is not uniformly upper-bounded on X × Y. But, as noted in [Douc et al., 2009, Section

4.3], supx∈X g(x, y) ≤ (2πe)−1/2 |y|−1. For 0 < y < ȳ < ∞, take Y⋆ :=
[
−ȳ,−y

]
∪
[
y, ȳ
]
. Then

(3.4) is satisfied and using Lemma 4, the drift condition of (3.2) and the upper bound of (3.3)

are satisfied with d large enough. The lower bound of (3.3) is also satisfied because for d < ∞,

inf(x,y)∈Cd×Y⋆
g(x, y) > 0.

8



3.2 A class of possibly non-ergodic signal models

We now consider a class of signal model which includes some non-ergodic f and point out how

characteristics of the observation model can be used to satisfy the drift condition (3.2).

Take X = R
dx for some dx ≥ 1 and consider the signal model

Xn+1 = B(Xn) +Wn, (Wn;n ≥ 0)
iid∼ N (0, Idx) , (3.10)

with B is a dx-dimensional vector function, locally bounded. That the disturbance terms (Wn)

are standard Normal is only for simplicity of presentation; one can draw analogous conclusions

under conditions such as (3.9), but we focus here on the interplay between V , Y⋆ , B and g. For

some δ0 > 1, take V (x) :=
xTx

2 (1 + δ0)
+ 1.

Assuming that Y⋆, B and g are such that, for some δ1 ∈ (0, 1),

lim
r→∞

sup
|x|≥r

sup
y∈Y⋆

−(1− δ1)x
Tx

2 (1 + δ0)
+

1

2δ0
BT (x)B(x) + log g(x, y) < 0. (3.11)

standard manipulations then establish that the drift condition of (3.2) is satisfied with δ < δ1

and d large enough. For the condition of (3.2), again with d large enough we can take νd the

normalized restriction of Lebesgue measure to Cd if it is the case that

inf
(x,y)∈Cd×Y⋆

g(x, y) > 0. (3.12)

The conditions (3.11) and (3.12) are satisfied, for example, when

• The signal model is a random walk, B(x) := x

• Y = R
dy ,

Yn = H(x) + σyζn, (ζn;n ≥ 0)
iid∼ N

(
0, Idy

)

with σy > 0, so that

g(x, y) =
1

(2π)dy/2 σ
dy
y

exp

(
− 1

2σ2
y

[y −H(x)]T [y −H(x)]

)

• Y⋆ is compact

• H is locally bounded and such that

lim
r→∞

sup
|x|≥r

xTx

2

(1 + δ1)

δ0(1 + δ0)
+

1

σ2
y

(
sup
y∈Y⋆

|y|
)(

sup
|λ|=1

λTH(x)

)
− H(x)TH(x)

2σ2
y

< 0.

For the latter condition, we observe a trade-off in terms of δ0 (which defines V ), the constant

δ1 (δ < δ1 appears in the drift condition), the observation noise variance σ2
y and the growth of

H(x).
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4 Lv-stability of Feynman-Kac formulae and particle approxima-

tions

4.1 Definitions and assumptions

As per the introduction, let the Polish state space X be non-compact and endowed with its Borel

σ-algebra B(X) (the observation space Y will not feature explicitly in the following Feynman-

Kac formulation, see Remark 2 below). For a weighting function v : X → [1,∞), and ϕ a

measurable, real-valued function on X, define the norm ‖ϕ‖v := supx∈X |ϕ(x)| /v(x) and let

Lv := {ϕ : X → R; ‖ϕ‖v < ∞} be the corresponding Banach space. Throughout, when dealing

with weighting functions we employ an lower/upper-case convention for exponentiation and write

interchangeably v ≡ eV .

For K a kernel on X × B (X), a function ϕ and a measure η denote η(ϕ) :=
´

ϕ(x)η(dx),

Kϕ(x) = K (ϕ) (x) :=
´

K(x, dy)ϕ(y) and ηK(·) :=
´

η(dx)K(x, ·). Let P be the collection

of probability measures on (X,B(X)), and for a given weighting function v : X → [1,∞) let Pv

denote the subset of such measures η such that η(v) < ∞.

The induced operator norm of a linear operator K acting Lv → Lv is

9K9v := sup

{‖Kϕ‖v
‖ϕ‖v

;ϕ ∈ Lv, ‖ϕ‖v 6= 0

}
= sup {‖Kϕ‖v ;ϕ ∈ Lv, |ϕ| ≤ v} .

The corresponding v-norm on signed measures is ‖η‖v := sup|ϕ|≤v η (v). For any n ≥ 1 and

1 ≤ s ≤ (n+ 1), define In,s := {(i1, ..., is) ∈ N
s
0; 0 ≤ i1 < . . . < is ≤ n}.

Let µ ∈ P be an initial distribution and for each n ∈ N let (Mn;n ≥ 1) be a collection

of Markov kernels, each kernel acting X × B(X) → [0, 1]. Let (Gn;n ≥ 0) be a collection of

B(X)-measurable, real-valued, strictly positive functions on X.

Next let (Qn;n ≥ 1) be the collection of integral kernels defined by

Qn(x, dx
′) := Gn−1(x)Mn(x, dx

′).

For 1 ≤ p ≤ n, let Qp,n be the semigroup defined by

Qp,n := Qp+1 . . . Qn, p < n, (4.1)

Qn,n = Id and by convention Qn+1,n = Id.

We now introduce our first two assumptions, which will be called upon in the following.

(H1) There exists V : X → [1,∞) unbounded and constants δ > 0 and d ≥ 1 with the fol-

lowing properties. For each each d ∈ [d,∞) there exists bd < ∞ such that the following

multiplicative drift condition holds:

sup
n≥1

Qn

(
eV
)

≤ eV (1−δ)+bdICd , (4.2)

where Cd := {x ∈ X;V (x) ≤ d}.

Whenever (H1) holds we may also consider:

10



(H2) µ ∈ Pv, where v = eV is as in (H1).

We may now proceed with some further definitions. Define the collection of measures

(γn;n ≥ 0) and probability measures (ηn;n ≥ 0)

γn (A) := µQ0,n(A), ηn(A) :=
γn (A)

γn (1)
, A ∈ B(X), (4.3)

where the dependence of (γn) and (ηn) on the initial distribution µ is suppressed from the

notation.

Before going further we note the following elementary implications of the assumptions

(H1) and (H2) introduced so far. Assumption (H1) implies that for all n ≥ 1 and x ∈ X,

Qn

(
eV
)
(x)/eV (x) ≤ ebd < ∞ and thus for all 0 ≤ p ≤ n and x ∈ X,

Qp,n

(
eV
)
(x) < ∞, (4.4)

Combined with Assumption (H2), we also observe that that for all n ≥ 0, ηn ∈ Pv.

It is straightforward to verify that the unnormalized measures (γn) have the following product

representation:

γn (A) =
n−1∏

p=0

ηp (Gp) ηn (A) , n ≥ 1. (4.5)

We denote by Eµ the expectation w.r.t. to the canonical law of the non-homogeneous Markov

chain (Xn;n ≥ 0) where X0 ∼ µ and Xn| {Xn−1 = xn−1} ∼ Mn (xn−1, ·). For p ≤ n and a

suitable test function ϕ we abuse notation by writing

Ep,x [ϕ (Xp, . . . ,Xn)] := Eµ [ϕ (Xp, . . . ,Xn)|Xp = x] ,

and for a probability measure η we write

Ep,η [ϕ (Xp, . . . ,Xn)] :=

ˆ

X

η (dx)Ep,x [ϕ (Xp, . . . ,Xn)] .

Under these notational conventions we have, for 0 ≤ p < n and η ∈ P, the identity

ηQp,n(A) = Ep,η

[
n−1∏

q=p

Gq (Xq) I [Xn ∈ A]

]
.

In particular,

ηpQp,n(A) = Ep,ηp

[
n−1∏

q=p

Gq (Xq) I [Xn ∈ A]

]
=

n−1∏

q=p

ηq (Gq) ηn (A) ,

due to (4.3) and (4.5), which will be used repeatedly.

Definition 1. (λ-values and h-functions). For n ≥ 0 let

λn := ηn (Gn) ,

11



and for 0 ≤ p ≤ n let hn,p : X → (0,∞) be the function defined by

hn,n(x) := 1, hp,n(x) :=
Qp,n (1) (x)∏n−1

q=p λq

, p < n. (4.6)

Remark 1. It is stressed that each λp, and therefore each hp,n, depends implicitly on the initial

distribution µ. This plays a key structural role in the proofs which follow. With the exception

of Corollary 1, throughout the following µ should be understood as arbitrary but fixed.

The two other main assumptions are the following.

(H3) With d as in (H1), for each d ∈ [d,∞),

Qn (x,Cd) > 0 ∀x ∈ X, n ≥ 1,

and there exists ǫ−d > 0 and νd ∈ Pv, such that

inf
n≥1

Qn (x,Cd ∩A) ≥ ǫ−d νd (Cd ∩A) , ∀x ∈ Cd, A ∈ B (X) .

with νd (Cr) > 0, for all r ∈ [d, d].

When (H1) and (H3) hold, we may also consider:

(H4) With d as in (H1) and (νd),
(
ǫ−d
)

as in (H3), for each d ∈ [d,∞) there exists ǫ+d ∈
[
ǫ−d ,∞

)

such that

sup
n≥1

Qn (x,Cd ∩A) ≤ ǫ+d νd (Cd ∩A) , ∀x ∈ Cd, A ∈ B (X) .

4.1.1 Comments on the assumptions

Assumptions (H3)-(H4) taken together are more specific than the local-Doeblin condition of

Douc et al. [2009] (when the latter is considered as holding for non-negative kernels) because

they are phrased in terms of the level sets for V and hold time-simultaneously. It is possible to

obtain results which are the analogue of those presented herein under multi-step versions of (H3)-

(H4), but this involves substantial notational complications which would obscure presentation.

Assumption (H1) is a type of multiplicative drift condition involving the Markov kernels

(Mn) and the potential functions (Gn). A notable characteristic of this assumption is that it

implies that for all ǫ > 0 there exists d ≥ d such that 9Qn− ICd
Qn9v < ǫ for all n ≥ 1, which is

itself time-simultaneous variation of [Douc et al., 2009, condition H2]. In the present work, the

sublevel sets of V play a central role in the proof of Theorem 2 and thus Proposition 4.

In the above definitions the functions (Gn) have been taken as strictly positive. It would be

interesting to also consider vanishing potential functions, but that situation is more complicated

as the particle system may become extinct.
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4.1.2 Particle system

The particle system may be considered a canonical non-homogeneous Markov chain and therefore

its definition is only sketched. For N ≥ 1, and each n ≥ 0 let ξn =
(
ξ1n, . . . , ξ

N
n

)
, be a X

N -valued

and then define

ηNn :=
1

N

N∑

i=1

δξin , n ≥ 0,

γN0 := ηN0 ,

γNn :=



n−1∏

p=0

ηNp (Gp)


 ηNn , n ≥ 1.

The particle system of population size N is the X
N - valued Markov chain with transitions given

symbolically by

(
ξ10 , . . . ξ

N
0

) iid∼ µ,
(
ξ1n, . . . ξ

N
n

)∣∣ ξn−1
iid∼ ηNn−1Qn (·)

ηNn−1 (Gn−1)
, n ≥ 1.

Remark 2. In order to obtain algorithm 1 take Gn(x) := g(x, yn), Mn(x, dx
′) := f(x, dx′).

In that case ηNn ≡ πN
n and γNn (1) ≡ Zn, and similarly, ηn ≡ πn, γn(1) ≡ Zn. Other particle

filters (such as the “fully-adapted” auxiliary particle filter of Pitt and Shephard [1999]) arise from

other choices of Gn and Mn. More generally, the state-space X may be augmented, e.g. to X
2, in

order to accommodate Mn corresponding to other choices of proposal kernel and corresponding

importance weight, see for example Doucet et al. [2000]. In such cases one would need multi-step

versions of (H3)-(H4).

4.2 Uniform v-controls

The main results of this section are Propositions 1 and 2, which establish uniform controls on

the measures (ηn), the λ-values and the h-functions. The uniform bounds of these propositions

play a key role in the stability results which then follow.

The first key ingredient is the following Lemma, which establishes some relationships between

the measures (ηn), the λ-values and the h-functions.

Lemma 1. Assume (H1)-(H2). The measures (ηn), h-functions and λ-values satisfy, for any

n ≥ 1 and 0 ≤ p < n, the recursive formulae

ηpQp+1 = λpηp+1, Qp+1 (hp+1,n) = λphp,n, (4.7)

and

ηp (hp,n) = 1.

Furthermore hp,n ∈ Lv where v = eV is as in (H1).

Proof. For the measure equation,

ηn (A) =
γn (A)

γn (1)
=

γn−1Qn (A)

γn−1Qn (1)
=

ηn−1Qn (A)

ηn−1Qn (1)
=

ηn−1Qn (A)

ηn−1 (Gn−1)
,
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where the third equality is due to the product formula (4.5). For the h-function equation, using

Definition 1,

hp−1,n =
Qp−1,n (1)∏n−1

q=p−1 λq

=
1

λp−1

QpQp,n (1)∏n−1
q=p λq

=
1

λp−1
Qp (hp,n) .

The equality ηp (hp,n) = 1 is direct from (4.3) and the definition of hp,n. The assertion hp,n ∈ Lv

follows immediately from Definition 1 and (4.4).

The second key ingredient is the collection of kernels and drift functions identified in the

following definition (that these kernels are Markov is a consequence of Lemma 1).

Definition 2. (S-kernels and drift functions). For n ≥ 1, 1 ≤ p ≤ n let Sp,n : X× B (X) → R+

be the Markov kernel defined by

Sp,n (x,A) :=
Qp (IAhp,n) (x)

λp−1hp−1,n(x)
, (4.8)

and let vp,n : X → [1.∞) be defined by

vp,n (x) :=
v(x)

hp,n(x)
‖hp,n‖v ,

where v is as in (H1).

For each n ≥ 1 and η ∈ P, We denote by Ě
(n)
η expectation w.r.t. the canonical law of the

(n+ 1)-step non-homogeneous Markov chain
{
X̌p,n; 0 ≤ p ≤ n

}
with X̌0,n ∼ η and for 1 ≤ p ≤

n,X̌p,n

∣∣ {X̌p−1,n = x̌p−1,n

}
∼ Sp,n (x̌p−1,n, ·). By analogy to the definitions of section 4.1, for

each n ≥ 1 we write

Ě
(n)
p,x

[
ϕ
(
X̌p,n, . . . , X̌n,n

)]
:= Ě

(n)
η

[
ϕ
(
X̌p,n, . . . , X̌n,n

)∣∣ X̌p,n = x
]
.

The S-kernels and the corresponding expectations are of interest due to the following change-

of-measure identity.

Lemma 2. Assume (H1)-(H2). For any n ≥ 1, 0 ≤ p < n, a suitable test function ϕ and x ∈ X,

Ep,x

[∏n−1
q=p Gq (Xq)ϕ (Xp, . . . ,Xn)

]

Ep,ηp

[∏n−1
q=p Gq (Xq)

] = hp,n(x)Ě
(n)
p,x

[
ϕ
(
X̌p,n, . . . , X̌n,n

)]
.

Proof. From Definitions 1 and 2,

Ep,x

[∏n−1
q=p Gq (Xq)ϕ (Xp, . . . ,Xn)

]

ηpQp,n (1)

= hp,n(x)Ep,x

[
n−1∏

q=p

Gq (Xq)

λq

hq+1,n (Xq+1)

hq,n (Xq)
ϕ (X0, . . . ,Xn)

1

hn,n (Xn)

]

= hp,n(x)Ě
(n)
p,x

[
ϕ
(
X̌p,n, . . . , X̌n,n

)]
.

14



Remark 3. The S-kernels have previously been identified as playing a key role when analyzing

stability properties of Feynman-Kac formulae and particle systems, see [Del Moral and Guionnet,

2001], albeit written in a slightly different form. From Definition 1 we have immediately that

Sp,n (x,A) =
Qp (IAhp,n) (x)

λp−1hp−1,n(x)
=

Qp (IAQp,n(1)) (x)

Qp−1,n(1)(x)
,

and it is in the latter form that these kernel are usually considered. However, in the context

of the Lyapunov drift techniques employed here, (4.8) expressed in terms of the λ-values and

h-functions plays a central role in proofs of the two following propositions. The main theme

of the proof of Proposition 1 is to obtain uniform bounds on ‖ηn‖v via the representation of

Lemma 2, the identity Ě
(n)
p,x

[
v
(
X̌n,n

)]
= Sp+1,n · · ·Sn,n (v) (x) and the drift functions (vp,n).

Note that Proposition 1 does not require the majorization-type assumption (H4).

Proposition 1. Assume (H1)-(H3) and let v be as therein. Then there exists a finite constant

cµ depending on µ and the quantities in (H1) and (H3), such that

sup
n≥0

‖ηn‖v ≤ cµµ (v) .

Proof. See section 5.

The interest in the uniform bound of Proposition 1 is that, via the following proposition, we

obtain some uniform bounds on the λ-values and h-functions.

Proposition 2. Assume (H1)-(H3) and let v be as therein. Then 1)-2) below are equivalent.

1) supn≥0 ‖ηn‖v < ∞

2) infn≥0 λn > 0

If additionally (H4) holds then 1) and 2) are equivalent to 3):

3) supn≥1 sup0≤p≤n ‖hp,n‖v < ∞

Proof. Lemmata 7, 8 and 9. See section 5.

Before proceeding further, note that in the results from this point on, the statements often

feature a constant cµ. The value of this constant may change from one result to the next.

4.3 A multiplicative stability theorem

The form of the following result can be interpreted as a non-homogeneous analogue of the multi-

plicative ergodic theorem of Kontoyiannis and Meyn [2005] in the context of positive operators,

for direct comparison the reader is referred to [Whiteley et al., 2011, Theorem 2.2, equation

(2.10)]. This proposition will be applied in section 4.5 to bound the asymptotic variance asso-

ciated with
(
ηNn
)
. The proof is postponed.
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Theorem 1. Assume (H1)-(H4). Then there exists ρ < 1 depending only on µ and the constants

in (H1), (H3) and (H4) and cµ < ∞ depending on the quantities in (H1)-(H4) such that for any

ϕ ∈ Lv, n ≥ 1 and 0 ≤ p < n,

∣∣∣∣∣
Qp,n (ϕ) (x)∏n−1

q=p λq

− hp,n(x)ηn (ϕ)

∣∣∣∣∣ ≤ ρn−p ‖ϕ‖v cµv(x)µ (v) , ∀x ∈ X.

Proof. See section 5.

As a consequence of this theorem we obtain v-norm exponential stability with respect to

initial condition for measures (ηn).

Corollary 1. Assume (H1)-(H4), then with ρ and µ as in Theorem 1, for any µ′ ∈ Pv, there

exists cµ,µ′ < ∞ such that

∥∥∥η(µ)n − η(µ
′)

n

∥∥∥
v

≤ ρncµ,µ′µ (v)µ′ (v) ,

where η
(µ)
n :=

µQ0,n

µQ0,n (1)
and η

(µ′)
n :=

µ′Q0,n

µ′Q0,n (1)
.

Proof. Taking the bound of Theorem 1 and integrating w.r.t. µ′ gives

∣∣∣∣∣
µ′Q0,n (ϕ)∏n−1

p=0 λp

− µ′ (h0,n) η
(µ)
n (ϕ)

∣∣∣∣∣ ≤ ρn ‖ϕ‖v cµµ (v)µ′ (v) .

It is stressed that in the above display λp and h0,n are as in definition 1, i.e. dependent on µ, but

not on µ′. Now as µ′ ∈ Pv , for any d ∈ [d,∞), µ′ (Cc
d) ≤ µ′

(
ICc

d
eV
)
/ed ≤ µ

(
eV
)
/ed so there ex-

ists d ∈ [d,∞) such that µ′ (Cd) > 0. Then dividing through by µ′ (h0,n) = µ′Q0,n(1)/
∏n−1

p=0 λp,

∣∣∣∣
µ′Q0,n (ϕ)

µ′Q0,n (1)
− η(µ)n (ϕ)

∣∣∣∣ ≤ ρn ‖ϕ‖v
cµ

µ′ (h0,n)
µ (v)µ′ (v)

≤ ρn ‖ϕ‖v
cµ

µ′ (Cd) infx∈Cd
h0,n(x)

µ (v)µ′ (v)

≤ ρn ‖ϕ‖v cµ,µ′µ (v)µ′ (v) ,

where the final inequality holds due to Lemma 10.

4.4 Exponential moments for additive functionals

We now present a result on finite exponential moments for a class of additive, possibly unbounded

path space functionals. It will be applied in section 4.5 to bounds on the relative variance

associated with γNn (1). The proof is mostly technical and is given in the appendix.

Theorem 2. Assume (H1)-(H4) and let δ and v be as therein. Then there exists a finite constant

cµ depending on µ and the quantities in (H1)-(H4) such that for any collection of measurable

functions {Fn;n ≥ 1} with each Fn : X → R and supx (|Fn(x)| − δV (x)) < ∞; any n ≥ 1,
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0 ≤ s ≤ n+ 1, and (i1, . . . , is) ∈ In,s,

Eµ

[∏n−1
p=0 Gp (Xp) exp

(∑
k∈{i1,...,is}

|Fk (Xk)|
)]

Eµ

[∏n−1
p=0 Gp (Xp)

]

≤ csµµ (v)
∏

k∈{i1,...,is}

∥∥∥e|Fk|
∥∥∥
vδ
,

with the conventions that, when s = 0, the summation on the left hand side is zero and the

product on the right hand side is unity.

Proof. See section 5.

4.5 Variance bounds

Remark 4. At this point we introduce a further assumption, (H5) below. This assumption is

not necessary for all of the results of this section but is employed for the following three reasons:

1) it is not restrictive in filtering applications; 2) it allows Lemma 3 below to be invoked (an

equivalent result can also be obtained without (H5), but subject to constraints on the growth

rates of (Gn) and the assumption that the Markov kernels (Mn) themselves obey a suitable

simultaneous multiplicative drift condition); and 3) it allows an existing CLT for particle systems

to be simply stated below without proof (see also remark 6).

(H5) supn≥0 supx∈XGn(x) < ∞

The following lemma plays an important technical role in the variance results which follow.

Lemma 3. Assume (H1)-(H5) with v the drift function in (H1)–(H4). Then for any α ∈ (0, 1),

the statements of (H1)-(H4) also hold for the drift function v1 := vα and with α-dependent

constants.

Proof. Let Ḡ := supn≥0 supx∈XGn(x). Then for all x ∈ X, and any d ∈ [d,∞) as in (H1),

sup
n≥1

Qn

(
eαV

)
(x) ≤ Ḡ sup

n≥1

[
Gn−1(x)

Ḡ
Mn

(
eV
)
(x)

]α

= Ḡ1−α sup
n≥1

[
Qn

(
eV
)
(x)
]α

≤ exp
[
αV (x)(1 − δ) + αbdICd

(x) + (1− α) log Ḡ
]
,

where Jensen’s inequality and (H1) have been applied, and δ, bd and Cd = {x ∈ X;V (x) ≤ d}
are as in (H1). Then for any δ0 ∈ (0, δ) and Ḡ < ∞ there exists dα ∈ [d,∞) such that for any

d ∈ [dα,∞) and x /∈ {x ∈ X;αV (x) ≤ d},

sup
n≥1

Qn

(
eαV

)
(x) ≤ exp

[
αV (x) (1− δ0)− αd (δ − δ0) + (1− α) log Ḡ

]

≤ exp [αV (x) (1− δ0)] , (4.9)
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and for x ∈ {x ∈ X;αV (x) ≤ d},

sup
n≥1

Qn

(
eαV

)
(x) ≤ exp

[
αd(1 − δ) + αbd + (1− α) log Ḡ

]

=: exp (bd,α) . (4.10)

The statement of (H1) holds with the drift function v1 := vα because equations (4.9)-(4.10) show

that we may replace d, δ, bd, Cd in the corresponding statements with dα, δ0, bd,α,{x ∈ X;αV (x) ≤ d},
respectively.

It is immediate that (H2) holds for vα , because v ≥ 1. (H3)-(H4) also hold for vα, by

replacing d, Cd,ǫ
−
d , ǫ+d , νd with dα, {x ∈ X;αV (x) ≤ d}, ǫ−d/α, ǫ+d/α, νd/α, respectively.

4.5.1 Asymptotic variance for ηNn

Remark 5. There are several existing CLT results for the particle systems in question, see for

example [Chopin, 2004, Douc and Moulines, 2008]. We choose to present that of Del Moral [2004,

Proposition 9.4.2], as it holds immediately under (H5), and we may state also the corresponding

asymptotic variance expression with essentially no further work. The restriction is that the

stated result holds only for bounded functions. It is of interest to investigate whether the same

result holds for a suitable class of possibly unbounded functions in terms of v, for example via

the techniques of Chopin [2004] or Douc and Moulines [2008], but this is beyond the scope of

the present article.

The following CLT holds for errors associated with the particle approximation measures(
ηNn
)
. Straightforward manipulations of the asymptotic variance expression of [Del Moral, 2004,

Proposition 9.4.2] show that it can be written as in (4.11) below, in terms of the h-functions

and λ-values.

Theorem 3. [Del Moral, 2004, Proposition 9.4.2]. Assume (H5). Then for ϕ : X → R bounded

and measurable and any n ≥ 1,

√
N
(
ηNn − ηn

)
(ϕ) → N

(
0, σ2

n

)

in distribution as N → ∞, where

σ2
n := ηn

[
(ϕ− ηn (ϕ))

2
]
+

n−1∑

p=0

ηp



(
Qp,n (ϕ)∏n−1

q=p λq

− hp,nηn (ϕ)

)2

 . (4.11)

We can readily apply the result of Theorem 1 to obtain a time-uniform bound on the asymp-

totic variance.

Proposition 3. Assume (H1)-(H5). Then there exists cµ < ∞ depending only on µ and the

quantities in (H1)-(H5) such that for any n ≥ 1,

σ2
n ≤ ηn

[
(ϕ− ηn (ϕ))

2
]
+ cµ ‖ϕ‖21 µ (v)2 ,

where v is as in (H1) and ϕ and σ2
n are as in Theorem 3.
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Proof. As (H1)-(H4) are assumed to hold with some drift function v , then by Lemma 3, the same

assumptions hold with the drift function v1/2 and suitable constants. Then applying Theorem 1

(using the drift v1/2 and the corresponding instances (H1)-(H4)), and then Proposition 1 (using

the drift v), we find that there is cµ < ∞ such that

ηp



(
Qp,n (ϕ)∏n−1

q=p λq

− hp,nηn (ϕ)

)2

 ≤ ρ2(n−p)cµ ‖ϕ‖21 µ

(
v1/2

)2
ηp (v)

≤ ρ2(n−p) ‖ϕ‖21 cµµ (v)2 ,

and the statement of the Theorem follows by summing.

4.5.2 Non-asymptotic variance for γNn (1)

For n ≥ 1 and 1 ≤ s ≤ n+ 1, define

Υ(i1,...is)
n :=

µQ0,i1(1)Eµ

[∏n−1
p=0 Gp (Xp)

∏s
j=1Qij ,ij+1(1)

(
Xij

)]

[γn (1)]
2 ,

with the convention that is+1 = n.

Building from Del Moral et al. [2009], Cérou et al. [2011] obtained a non-asymptotic func-

tional expansion of the relative variance associated with γNn (1). Elementary manipulations of

this relative variance show that it may be written in terms of the quantities
(
Υ

(i1,...is)
n

)
as fol-

lows, and as we assume (H5), the quantities involved are well defined (although this is not a

necessary condition, one may alternatively assume (H1)-(H2) ).

Theorem 4. [Cérou et al., 2011, Proposition 3.4]Assume (H5). Then for any n ≥ 1,

Eµ

[(
γNn (1)

γn(1)
− 1

)2
]

=

n+1∑

s=1

(
1− 1

N

)(n+1)−s 1

N s

∑

(i1,...,is)∈In,s

[
Υ(i1,...is)

n − 1
]
,

where the expectation is with respect to the law of the N -particle system initialized from µ.

We may now apply Theorem 2 in order to obtain the following linear-in-n bound on the

relative variance.

Proposition 4. Assume (H1)-(H5) and let v be as therein. Then there exists a finite constant

cµ depending on µ and the quantities in (H1)-(H5) such that for any n ≥ 1,

N > cµ (n+ 1) =⇒ Eµ

[(
γNn (1)

γn(1)
− 1

)2
]
≤ cµ

4

N
(n+ 1)µ (v)2 .

Proof. Throughout the proof c is a finite constant depending on µ and the quantities in (H1)-

(H5) whose value may change on each appearance.
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First notice that by definition 1 and the product formula (4.5) we may write

Υ(i1,...is)
n =

µQ0,i1(1)

µQ0,i1(1)

1

γn (1)
Eµ



n−1∏

p=0

Gp (Xp)
s∏

j=1


Qij ,ij+1(1)

(
Xij

)
∏ij+1−1

k=ij
λk






=
1

γn (1)
Eµ



n−1∏

p=0

Gp (Xp)

s∏

j=1

hij ,ij+1

(
Xij

)

 , (4.12)

with the convention that
∏n−1

n = 1 in the first equality to deal with the case is = n.

Let v and δ be as in (H1). Then by Lemma 3, the statements of (H1)-(H4) also hold for the

drift function vδ and with constants which depend on δ. Then Proposition 1 and Proposition

2 both applied with the drift function vδ and the corresponding instances of (H1)-(H4) of show

that

sup
n≥1

sup
0≤p≤n

‖hp,n‖vδ < ∞,

so that, using the representation (4.12), and applying Theorem 2 with the drift function v and

the corresponding instances of (H1)-(H4), there exists a finite constant c such that

Υ(i1,...is)
n ≤ cs

1

γn (1)
Eµ



n−1∏

p=0

Gp (Xp)

s∏

j=1

vδ
(
Xij

)



≤ csµ(v).

Therefore by Theorem 4,

Eµ

[(
γNn (1)

γn(1)
− 1

)2
]
≤ µ (v)2

n+1∑

s=1

(
1− 1

N

)(n+1)−s 1

N s

∑

(i1,...,is)∈In,s

cs

The remainder of the proof then follows by the same arguments as [Cérou et al., 2011, Proofs

of Theorem 5.1 and Corollary 5.2], so the details are omitted.

5 Proofs and auxiliary results

Auxiliary result for section 3.1

Lemma 4. When f is the transition kernel corresponding to the model of equations (3.7)-(3.9),

there exists d < ∞ and δ > 0 such that, for any d ∈ [d,∞) there exists bd < ∞ and

ˆ

X

f
(
x, dx′

)
v(x′) ≤ v(x)1−δ exp [bdICd

(x)] , x ∈ X, (5.1)

where v(x) := exp (1 + c |x|) for c a positive constant, and furthermore for each such d there

exists 0 < ǫ−d < ǫ+d < ∞ such that

ǫ−d νd (A ∩ Cd) ≤ f (x,A ∩Cd) ≤ ǫ+d νd (A ∩Cd) , x ∈ Cd, A ∈ B (X) , (5.2)
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with νd the normalized restriction of Lebesgue measure to Cd. Furthermore
´

Cd
f(x, dx′) > 0,

∀x ∈ X.

Proof. As per Douc et al. [2009], under the assumptions on the model, there exists β < ∞ such

that

´

X
f (x, dx′) v(x′)

v(x)
≤ β exp [c (|x+B(x)| − |x|)]

= β exp

[
−c |x|

(
1− |x+B(x)|

|x|

)]
,

and then using (3.8), there exists δ1 > 0 such that for |x| sufficiently large,

(
1− |x+B(x)|

|x|

)
≥ δ1,

so for such |x| and δ ∈ (0, δ1),

´

X
f (x, dx′) v(x′)

v(x)
≤ exp [−V (x)δ − c |x| (δ1 − δ) + log β + 1] ,

and by increasing |x| further if necessary, we conclude that the result holds with bd := d+ log β.

(5.2) and
´

Cd
f(x, dx′) > 0 hold immediately.

Proofs and results for section 4.2

The proof of Proposition 1 is given after Lemma 5 and Lemma 6.

Lemma 5. Assume (H1)-(H3). Then for any d ∈ [d,∞), any n ≥ 1 and 1 ≤ p ≤ n, the

following inequalities hold,

Sp,n (vp,n) ≤ ρp,nvp−1,n +Bp,nICd
, (5.3)

where

ρp,n :=
e−δd

λp−1

‖hp,n‖v
‖hp−1,n‖v

< ∞ (5.4)

Bp,n :=
ed(1−δ)+bd

ǫ−d
‖hp,n‖v

1

νd (ICd
hp,n)

< ∞, (5.5)

and with the dependence of ρp,n and Bp,n on d suppressed from the notation.

Proof. For x /∈ Cd,

Sp,n (vp,n) (x) =
Qp (v) (x)

λp−1hp−1,n(x)
‖hp,n‖v

≤ v(x)

λp−1hp−1,n(x)
e−δd ‖hp,n‖v

= vp,n−1(x)
e−δd

λp−1

‖hp,n‖v
‖hp−1,n‖v

,
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where (H1) has been applied.

For x ∈ Cd, from Lemma 1 and (H3),

λp−1hp−1,n(x) = Qp (hp,n) (x) ≥ ǫ−d νd (ICd
hp,n) ,

and thus using (H1),

Sp,n (vp,n) (x) ≤ ed(1−δ)+bd
‖hp,n‖v
λp−1

1

hp−1,n(x)

≤ ed(1−δ)+bd

ǫ−d
‖hp,n‖v

1

νd (ICd
hp,n)

.

We have ρp,n < ∞ and Bp,n < ∞ because for any p ≤ n, λp−1 > 0, hp,n ∈ Lv, hp,n(x) > 0 for

all x ∈ X, and for any d ≥ d, νd (Cd) > 0.

Lemma 6. Assume (H1)-(H3). Then for any d ∈ [d,∞), 0 ≤ p < q ≤ n, and x ∈ X ,

Ě
(n)
p,x

[
vq,n

(
X̌q,n

)]

≤ e−δd(q−p)

∏q−1
k=p λk

‖hq,n‖v
‖hp,n‖v

vp,n (x)

+
ed(1−δ)+bd

ǫ−d
‖hq,n‖v


 1

νd (ICd
hq,n)

+

q−1∑

k=p+1

e−δd(q−k)

∏q−1
j=k λj

1

νd (ICd
hk,n)


 , (5.6)

with the convention that the sum is zero when p = q − 1.

Proof. For each n, p and q in the specified ranges, the proof begins by recursive application of

the drift inequalities of Lemma 5. A simple induction yields

Ě
(n)
p,x

[
vq,n

(
X̌q,n

)]

≤




q∏

k=p+1

ρk,n


 vp,n (x) +

q∑

k=p+1




q∏

j=k+1

ρj,n


Bk,n, (5.7)

with the convention that the right-most product is equal to 1 when p = q − 1.

By the definitions of (hp,n), (ρp,n) and (Bp,n),

q∏

k=p+1

ρk,n =

q∏

k=p+1

e−δd

λk−1

‖hk,n‖v
‖hk−1,n‖v

=
e−δd(q−p)

∏q
k=p+1 λk−1

‖hq,n‖v
‖hp,n‖v

, (5.8)
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and for k < q,




q∏

j=k+1

ρj,n


Bk,n

=

(
e−δd(q−k)

∏q
j=k+1 λj−1

‖hq,n‖v
‖hk,n‖v

)
ed(1−δ)+bd

ǫ−d
‖hk,n‖v

1

νd (ICd
hk,n)

=
ed(1−δ)+bd

ǫ−d
‖hq,n‖v

e−δd(q−k)

∏q−1
j=k λj

1

νd (ICd
hk,n)

. (5.9)

The proof is complete upon combining (5.7), (5.8), (5.9) and applying the definition of Bq,n for

the case q = k.

Proof. (Proposition 1). For n = 0 we have trivially η0 (v) = µ (v).

For n ≥ 1, by Lemma 2,

ηn (v) =
Eµ

[∏n−1
q=0 Gq (Xq) v (Xn)

]

Eµ

[∏n−1
q=0 Gq (Xq)

] .

=

ˆ

µ (dx) h0,n(x)Ě
(n)
x

[
v
(
X̌n,n

)]

≤
ˆ

µ (dx) h0,n(x)Ě
(n)
x

[
vn,n

(
X̌n,n

)]
, (5.10)

where the inequality is due to hn,n = 1 and ‖hn,n‖v ≤ 1. The proof proceeds by bounding the

expectation.

Fix d ∈ [d,∞) arbitrarily. Applying Lemma 6 with q = n and p = 0, and again noting

hn,n = 1, ‖hn,n‖v ≤ 1, we obtain

Ě
(n)
x

[
vn,n

(
X̌n,n

)]
≤ e−δdn

∏n−1
k=0 λk

1

‖h0,n‖v
v0,n (x)

+
ed(1−δ)+bd

ǫ−d

[
1

νd (Cd)
+

n−1∑

k=1

e−δd(n−k)

∏n−1
j=k λj

1

νd (ICd
hk,n)

]
,

=
e−δdn

µQ0,n(1)

1

‖h0,n‖v
v0,n (x)

+
ed(1−δ)+bd

ǫ−d

[
1

νd (Cd)
+

n−1∑

k=1

e−δd(n−k)

νd [ICd
Qk,n (1)]

]
, (5.11)

with the convention (as per Lemma 6), that the summation is equal to zero when n = 1. The

equality is due to the definitions of the λ-values and h-functions.

We now obtain lower bounds in order to treat the µQ0,n(1) and νd [ICd
Qk,n (1)] terms. Recall

that d ∈ [d,∞) was arbitrary. Now choose arbitrarily r ∈ [d, d]. Then under (H3), for any η ∈ Pv
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and any 0 ≤ k < n,

η [ICd
Qk,n (1)] = Ek,η


ICd

(Xk)
n−1∏

q=k

Gq (Xq)




≥ Ek,η


ICr (Xk)

n−1∏

q=k

Gq (Xq) ICr (Xq) ICr (Xn)




≥ η (Cr)
[
ǫ−r νr (Cr)

]n−k
. (5.12)

Under (H2), for r and d increased if necessary, but still subject to r ≤ d, we have µ (Cr) =

1 − µ (Cc
r) ≥ 1 − µ

(
ICc

r
eV
)
e−r ≥ 1 − µ

(
eV
)
e−r > 0. Now hold r constant and if necessary,

increase d so that e−δd < [ǫ−r νr (Cr)]
−1

. Equation (5.12) then gives

sup
n≥1

e−δdn

µQ0,n(1)
≤ sup

n≥1

e−δdn

µ [ICd
Q0,n(1)]

≤ 1

µ (Cr)
< ∞. (5.13)

Then under (H1), noting νd (Cr) > 0 and applying (5.12),

sup
n≥1

[
1

νd (Cd)
+

n−1∑

k=1

e−δd(n−k)

νd [ICd
Qk,n (1)]

]

≤ 1

νd (Cd)
+

1

νd (Cr)
sup
n≥1

[
n−1∑

k=1

e−δd(n−k)

[
ǫ−r νr (Cr)

](n−k)

]
< ∞. (5.14)

Combining (5.13), (5.14) and (5.11), establishes that there exists a finite constant cµ, indepen-

dent of n such

Ě
(n)
x

[
vn,n

(
X̌n,n

)]
≤ 1

µ (Cr)

1

‖h0,n‖v
v0,n (x) + cµ.

and then returning to (5.10), we have shown that

ηn (v) ≤ 1

µ (Cr)

1

‖h0,n‖v

ˆ

h0,n(x)v0,n (x)µ (dx)

+cµ

ˆ

h0,n(x)µ (dx)

=
µ (v)

µ (Cr)
+ cµ,

where the final equality uses the definition of v0,n and the property µ (h0,n) = η (h0,n) = 1 as in

Lemma 1. Thus there exists a finite constant c′µ such that

sup
n≥1

ηn (v) ≤ c′µµ (v) ,

which completes the proof.

Lemma 7. Assume (H1)-(H3) and let v be as therein. Then
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sup
n≥0

‖ηn‖v < ∞ ⇐⇒ inf
n≥0

λn > 0. (5.15)

Proof. (⇒). Suppose supn≥0 ‖ηn‖v < ∞. Then there exists a finite constant η̄ such that for any

d ≥ d,

sup
n≥0

ηn (C
c
d) ≤ sup

n≥0

ηn
(
ICc

d
eV
)

ed
≤ sup

n≥0

ηn
(
eV
)

ed
≤ η̄e−d.

Thus for all β < 1, there exists d ≥ d such that supn≥0 ηn (C
c
d) < β. Thus for β ∈ (0, 1) there

exists r ≥ d such that

inf
n≥0

λn ≥ inf
n≥0

ηn (ICrQn+1 (ICr )) ≥ ǫ−r νr (Cr) inf
n≥0

ηn (Cr) ≥ ǫ−r νr (Cr) (1− β) ,

where the second inequality is due to (H3).

(⇐). Suppose infn≥0 λn > 0. Then there exists λ > 0 such that for any n ≥ 1,

ηn
(
eV
)
=

ηn−1Qn

(
eV
)

ηn−1 (Gn−1)
≤ ηn−1Qn

(
eV
)

λ
,

where (4.7) has been used. Now set d > d ∨
(
−1

δ
log λ

)
. Then under (H1),

ηn
(
eV
)

≤
ηn−1

[
ICc

d
Qn

(
eV
)]

λ
+

ηn−1

[
ICd

Qn

(
eV
)]

λ

≤ e−δd

λ
ηn−1

(
eV
)
+

ed(1−δ)+bd

λ

=: ρηn−1

(
eV
)
+B, (5.16)

for some ρ < 1 and B < ∞. Iteration of (5.16) establishes 1).

Lemma 8. Assume (H1)-(H4) and let v be as therein. Then

inf
n≥0

λn > 0 =⇒ sup
n≥1

sup
0≤p≤n

‖hp,n‖v < ∞.

Proof. Recall the definition

hp,n(x) =
Qp.n (1) (x)

ηpQp,n (1)
. (5.17)

For the case p = n, hp,n = 1. For other cases we proceed by decomposing and then bounding

the numerator.

Set d ∈ [d,∞) arbitrarily, let n ≥ 1, 0 ≤ p < n and define τ
(d)
p := inf {q ≥ p;Xq ∈ Cd,Xq+1 ∈ Cd}.
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Now consider the decomposition:

Qp,n(1)(x) =

n−1∑

k=p

Ep,x

[
n−1∏

q=p

Gq (Xq) I
{
τ (d)p = k

}]

+Ep,x

[
n−1∏

q=p

Gq (Xq) I
{
τ (d)p ≥ n

}]
(5.18)

and define

Ap := 9QpICc
d
9v, Bp := 9QpICd

9v,

Ξ0 := v (Xp) , Ξj :=



p+j−1∏

q=p

Gq (Xq)

A
ICc

d
(Xq)

q+1 B
ICd

(Xq)

q+1


 v (Xp+j) , 1 ≤ j ≤ n− p.

Assumption (H1) implies that, for 1 ≤ j ≤ n− p, Ep+j−1,Xp+j−1 [Ξj] ≤ Ξj−1, so that

Ep,x [Ξn−p] ≤ Ep,x [Ξ0] = v(x). (5.19)

For k > p, define M
(d)
p,k :=

∑k−1
q=p IC

c
d
(Xq). Then the following bound holds under (H1):

[
k−1∏

q=p

A
ICc

d
(Xq)

q+1 B
ICd

(Xq)

q+1

]
I

{
M

(d)
p,k ≥ (k − p) /2

}

≤
(
sup
q≥1

9QqICc
d
9v

)M
(p,k)
d

I

{
M

(d)
p,k ≥ (k − p) /2

}(
1 ∨ sup

q≥1
9Qq9v

)(k−p)/2

≤ exp [−δd (k − p) /2] exp
[
bd (k − p) /2

]
. (5.20)

where 9QqICd
9v ≤ 9Qq9v has been used.

Consider one term from the summation in (5.18) with p < k < n. By [Douc et al., 2009,

Lemma 17], I
{
τ
(d)
p ≥ k

}
= I

{∑k−1
q=p ICd

(Xq) ICd
(Xq+1) = 0

}
≤ I

{
M

(d)
p,k ≥ (k − p) /2

}
. Then

combining (5.19) and (5.20) and using (H4),

Ep,x

[
n−1∏

q=p

Gq (Xq) I
{
τ (d)p = k

}]

≤ ǫ+d νd [ICd
Qk+1,n(1)]Ep,x

[
k−1∏

q=p

Gq (Xq) I
{
M

(d)
p,k ≥ (k − p) /2

}
v (Xk)

]

≤ ǫ+d νd [ICd
Qk+1,n(1)] v(x)

· exp [−δd (k − p) /2] exp
[
bd (k − p) /2

]
, k > p, (5.21)
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similarly

Ep,x

[
n−1∏

q=p

Gq (Xq) I
[
τ
(p)
d ≥ n

]]

≤ Ep,x

[
n−1∏

q=p

Gq (Xq) I
{
M

(d)
p,k ≥ (k − p) /2

}
v (Xn)

]

≤ v(x) exp [−δd (n− p) /2] exp
[
bd (n− p) /2

]
, (5.22)

and also by (H4),

Ep,x

[
n−1∏

q=p

Gq (Xq) I
[
τ
(p)
d = p

]]
≤ ǫ+d νd [ICd

Qp+1,n(1)] v(x), (5.23)

recalling from section 4.1 the convention Qn+1,n = Id. Returning to (5.18), the bounds of

(5.21)-(5.23) show that for p < n,

Qp,n(1)(x)

≤ ǫ+d v(x)

n−1∑

k=p

exp [−δd (k − p) /2] exp
[
bd (k − p) /2

]
νd [ICd

Qk+1,n(1)]

+v(x) exp [−δd (n− p) /2] exp
[
bd (n− p) /2

]
. (5.24)

We now turn to the denominator of (5.17) and stress that we are continuing to use the same

arbitrary value of d as above.

As per the statement of the Lemma, suppose λ := infn≥0 λn > 0. Then by Lemma 7,

η̄ := supn≥0 ηn
(
eV
)
< ∞ and choosing independently ǫ ∈ (0, 1), by (H1) d may then be chosen

large enough that

inf
n≥0

ηn (Cd) = inf
n≥0

1− ηn (C
c
d) ≥ inf

n≥0
1− ηn

(
ICc

d
eV
)
e−d ≥ 1− η̄e−d ≥ 1− ǫ =: η.

Then for p < k < n,

ηpQp,n(1) =

(
k−1∏

q=p

λq

)
ηkQk,n(1)

≥ λ(k−p)ηk [ICd
Qk,n(1)]

≥ ǫ−d λ
(k−p)ηk (Cd) νd [ICd

Qk+1,n(1)]

≥ ǫ−d λ
(k−p)ηνd [ICd

Qk+1,n(1)] , (5.25)

and for p < n,

ηpQp,n(1) ≥ ǫ−d ηp (Cd) νd [ICd
Qp+1,n(1)] ≥ ǫ−d ηνd [ICd

Qp+1,n(1)] , (5.26)

and also

ηpQp,n(1) ≥ λ(n−p). (5.27)
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Combining (5.25)-(5.27) with (5.24) and (5.17) we finally obtain, for p < n,

hp,n(x) ≤ ǫ+d
ǫ−d η

v(x)

n−1∑

k=p

exp [−δd (k − p) /2] exp
[
(k − p)

(
bd/2− log λ

)]

+ v(x) exp [−δd (n− p) /2] exp
[
(n− p)

(
bd/2 − log λ

)]
.

Then increasing d further if necessary, we conclude that there exists c < ∞ such that for any

x ∈ X, supn≥1 sup0≤p≤n hp,n(x) ≤ cv(x) and this completes the proof.

Lemma 9. Assume (H1)-(H3) and let v be as therein. Then

sup
n≥1

sup
0≤p≤n

‖hp,n‖v < ∞ =⇒ inf
n≥0

λn > 0.

Proof. Suppose supn≥1 sup0≤p≤n ‖hp,n‖v < ∞. Then by Lemma 1 and (H3), for any x ∈ Cd,

inf
n≥0

λn = inf
n≥0

Qn+1 (hn+1,n+1) (x)

hn,n+1(x)

≥ inf
n≥0

Qn+1 (Cd) (x)

‖hn,n+1‖v v(x)

≥ ǫ−d
ed

νd (Cd)

supn≥0 ‖hn,n+1‖v
> 0.

Proofs for section 4.3

The following Lemma will be used in the proofs of Theorems 1 and 2.

Lemma 10. Assume (H1)-(H4) and let d be as therein. Then for any d ∈ [d,∞),

inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n (x) > 0.

Proof. We will prove a finite, uniform upper bound on

sup
x∈Cd

1

hp,n(x)
= sup

x∈Cd

ηpQp,n (1)

Qp,n(1)(x)

=
ηpQp,n (1)

infx∈Cd
Qp,n(1)(x)

. (5.28)

The proof uses the same approach as in the proof of Lemma 9 and therefore some steps are

omitted for brevity. For the case p = n, ηnQn,n(1) = 1 and Qn,n(1)(x) = 1 for all x. For the

remaining cases we proceed by considering the numerator of 5.28.

Set d ∈ [d,∞) arbitrarily, let n ≥ 1 and p < n and define τ
(d)
p := inf {q ≥ p;Xq ∈ Cd,Xq+1 ∈ Cd}.
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We have the decomposition

ηpQp,n (1) =

n−1∑

k=p

Ep,ηp

[
n−1∏

q=p

Gq (Xq) I
[
τ (d)p = k

]]

+Ep,ηp

[
n−1∏

q=p

Gq (Xq) I
[
τ (d)p ≥ n

]]
, (5.29)

This is of exactly the same form as in equation (5.18) in the proof of Lemma 9, except for

the initial measure ηp. Thus by exactly the same arguments (integrate equation (5.24) w.r.t.

ηp) we obtain the bound

ηpQp,n (1)

≤ ǫ+d ηp (v)
n−1∑

k=p

exp [−δd (k − p) /2] exp
[
bd (k − p) /2

]
νd [ICd

Qk+1,n(1)]

+ηp (v) exp [−δd (n− p) /2] exp
[
bd (n− p) /2

]
. (5.30)

Now set r ∈ [d, d]. For the denominator of (5.28) we have by (H3),

inf
x∈Cd

Qp,n(1)(x) ≥ inf
x∈Cd

Qp [ICd
Qp+1,n(1)] (x)

≥ ǫ−d νd [ICrQp+1,n(1)] , (5.31)

also

ǫ−d νd [ICrQp+1,n(1)] ≥ ǫ−d νd (Cr)
[
ǫ−r νr (Cr)

]n−p−1

and for p < k < n,

ǫ−d νd [ICrQp+1,n(1)]

= ǫ−d Ep+1,νd


ICr (Xp+1)

n−1∏

q=p+1

Gq (Xq)




≥ ǫ−d Ep+1,νd


ICr (Xp+1)

n−1∏

q=p+1

Gq (Xq) ICd
(Xk) ICd

(Xk+1)




≥ ǫ−d Ep+1,νd


ICr (Xp+1)

k−1∏

q=p+1

Gq (Xq)


 ǫ−d νd [ICd

Qk+1,n(1)]

≥ ǫ−d Ep+1,νd


ICr (Xp+1)

k−1∏

q=p+1

Gq (Xq) ICr (Xq+1)


 ǫ−d νd [ICd

Qk+1,n(1)]

≥ ǫ−d νd (Cr)
[
ǫ−r νr (Cr)

]k−p−1
ǫ−d νd [ICd

Qk+1,n(1)] . (5.32)
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Combining (5.28), (5.30), (5.31) and (5.32) gives for p < n

sup
x∈Cd

1

hp,n(x)

≤ ǫ+d
ǫ−d

ηp (v)

+
ǫ+d
ǫ−d

ηp (v)

ǫ−d νd (Cr)

·




n−1∑

k=p+1

exp [−δd (k − p) /2] exp
[
(k − p) bd/2 + (k − p− 1) log

[
ǫ−r νr (Cr)

]]



+
1

ǫ−d

ηp (v)

νd (Cr)
exp [−δd (n− p) /2] exp

[
(n− p)

(
bd/2 + log

[
ǫ−r νr (Cr)

])]
,

with the convention that the summation is zero when p = n− 1. With r kept fixed, increasing

d and noting that under the assumptions of the lemma, Proposition 1 holds, we conclude that

there exists a finite constant cµ(d) such that

sup
n≥1

sup
0≤p≤n

sup
x∈Cd

1

hp,n(x)
≤ cµ(d).

The proof is complete because d1 ≤ d2 ⇒ Cd1 ⊆ Cd2 .

Proof. (Theorem 1). The proof is based directly on those of [Douc et al., 2009, Proposition 12

and Lemma 15], which are in turn developments from the decomposition ideas of Kleptsyna and Veretennikov

[2008]. However, there are some crucial differences here: the focus of the present work is on the

v-norm on measures, as opposed to total variation, and different techniques will be used to deal

with and control denominator terms in equation (5.33) below, by way of Propositions 1 and 2.

Throughout the proof, c is a finite constant whose value depends on µ and the quantities in

(H1)-(H4) and whose value may change on each appearance.

Let
(
X̄n;n ≥ 0

)
be the bi-variate Markov chain on X

2 with

X̄n

∣∣ {X̄n−1 =
(
xn−1,x

′
n−1

)}
∼ Mn (xn−1, ·)⊗Mn

(
x′n−1, ·

)

and for some distribution H on X
2 we denote by ĒH the expectation with respect to the law of

this bi-variate chain initialized by X̄0 ∼ H. In line with previous definitions, for η a distribution

on X we write Ēp,δx⊗η :=
´

δx (dx) η (dx
′) ĒH

[
ϕ
(
X̄p, . . . , X̄n

)∣∣ {X̄p = (x, x′)
}]

. Also define

C̄d := Cd × Cd and throughout the following writing x̄ = (x, x′) for a point in X
2, define

Ḡn (x̄) := Gn (x)Gn (x
′) and v̄ (x̄) := v (x) v (x′) .

For each n ≥ 1 define the tensor-product kernel Q̄n (x̄, dȳ) := Qn(x, dy) ⊗ Qn(x
′, dy′) and

let
(
Q̄p,n

)
be the semigroup defined in the same fashion as (4.1).

Now fix arbitrarily d ∈ [d,∞) and define, for n ≥ 1,

R̄n (x̄, dȳ) := Q̄n (x̄, dȳ)− IC̄d
(x̄)
(
ǫ−d
)2

νd ⊗ νd (dȳ)

and
(
R̄p,n

)
in the same way. The dependence of R̄n on d is suppressed from the notation.
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First set n ≥ 1 and 0 ≤ p ≤ n arbitrarily. We have from the above definitions,

∣∣∣∣∣
Qp,n (ϕ) (x)

hp,n(x)
∏n−1

q=p λq

− ηn (ϕ)

∣∣∣∣∣

=

∣∣∣∣
Qp,n (ϕ) (x)

Qp,n (1) (x)
− ηpQp,n (ϕ)

ηpQp,n (1)

∣∣∣∣

=

∣∣∣∣
(δx ⊗ ηp) Q̄p,n (ϕ⊗ 1)− (ηp ⊗ δx) Q̄p,n (ϕ⊗ 1)

Qp,n (1) (x)ηpQp,n (1)

∣∣∣∣

=

∣∣∣∣
(δx ⊗ ηp) R̄p,n (ϕ⊗ 1− 1⊗ ϕ)

Qp,n (1) (x)ηpQp,n (1)

∣∣∣∣

≤ 2 ‖ϕ‖v
(δx ⊗ ηp) R̄p,n (v̄)

Qp,n (1) (x)ηpQp,n (1)
=: 2 ‖ϕ‖v

∆p,n (x, ηp)

Qp,n (1) (x)ηpQp,n (1)
, (5.33)

where the third equality is due to the decomposition of Kleptsyna and Veretennikov [2008].

Now define ρd := 1 −
(
ǫ−d
ǫ+d

)2

< 1 and M̄
(d)
p,n :=

∑n−1
k=p IC̄d

(
X̄k

)
IC̄d

(
X̄k+1

)
. Following es-

sentially the same argument as [Douc et al., 2009, Proof of Proposition 12] then gives, for any

β ∈ (0, 1),

∆p,n (x, ηp) ≤ Ēδx⊗ηp

[
n−1∏

q=p

Ḡq

(
X̄q

)
ρ
M̄

(d)
p,n

d v̄
(
X̄n

)
]

= Ēδx⊗ηp

[
n−1∏

q=p

Ḡq

(
X̄q

)
ρ
M̄

(d)
p,n

d I

{
M̄ (d)

p,n ≥ β (n− p)
}
v̄
(
X̄n

)
]

+Ēδx⊗ηp

[
n−1∏

q=p

Ḡq

(
X̄q

)
ρ
M̄

(d)
p,n

d I

{
M̄ (d)

p,n < β (n− p)
}
v̄
(
X̄n

)
]

=: ∆(1)
p,n (x, ηp) + ∆(2)

p,n (x, ηp) .

We first consider ∆
(1)
p,n (x, ηp). As ρd < 1, we have the bound

∆
(1)
p,n (x, ηp)

Qp,n (1) (x)ηpQp,n (1)
≤ ρ

β(n−p)
d

[
Qp,n(v)(x)

Qp,n(1)(x)

]
ηn(v),

but using Lemma 6, Proposition 1, Proposition 2 and Lemma 10 show that for r large enough,

but then fixed,

Qp,n(v)(x)

Qp,n(1)(x)
≤ Ě

(n)
p,x

[
vn,n

(
X̌n,n

)]

≤ e−δr(n−p)

λ(n−p)

1

‖hp,n‖v
vp,n (x)

+
er(1−δ)+br

ǫ−r


 1

νr (ICrhp,n)
+

n−1∑

k=p+1

e−δr(n−k)

λ(n−k)

1

νr (ICrhk,n)




≤ c
vp,n (x)

‖hp,n‖v
, (5.34)
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so

∆
(1)
p,n (x, ηp)

Qp,n (1) (x)ηpQp,n (1)
≤ cρ

β(n−p)
d

vp,n (x)

‖hp,n‖v
ηn(v)

≤ cρ
β(n−p)
d

vp,n (x)

‖hp,n‖v
µ (v) . (5.35)

where the second inequality is due to Proposition 1.

Now consider ∆
(2)
p,n (x, ηp). The main idea for treating this term is that of [Douc et al., 2009,

Proof of Lemma 15]. There are some cosmetic differences of indexing, but some intermediate

steps are omitted for brevity. Define

M̃ (d)
p,n :=

n−1∑

k=p

IC̄c
d

(
X̄k

)
, ap,n := ⌊(n− p) (1− β) /2− 1/2⌋ ,

Ap := 9Q̄pIC̄c
d
9v⊗v , Bp := 9Q̄pIC̄d

9v⊗v ,

Ξ0 := v̄
(
X̄p

)
, Ξk :=



p+k−1∏

q=p

Ḡq

(
X̄q

)

A
IC̄c

d
(X̄q)

q+1 B
IC̄d

(X̄q)
q+1


 v̄
(
X̄p+k

)
, 1 ≤ k ≤ n− p.

Then for 1 ≤ k ≤ n− p, Ēp+k−1,X̄p+k−1
[Ξk] ≤ Ξk−1, so that

Ēp,δx⊗ηp [Ξn−p] ≤ Ēp,δx⊗ηp [Ξ0] = v(x)ηp (v) ≤ cv(x)µ (v) , (5.36)

where the last inequality is due to Proposition 1.

By [Douc et al., 2009, Lemma 19], M̄
(d)
p,n < β (n− p) implies M̃

(d)
p,n ≥ ap,n, and then

[
p+k−1∏

q=p

A
IC̄c

d
(X̄q)

q+1 B
IC̄d

(X̄q)
q+1

]
I

{
M̄ (d)

p,n < β (n− p)
}

≤
(
sup
q≥1

Aq

)ap,n (
1 ∨ sup

q≥1
9Qq9v

)2(n−p−ap,n)

≤
(
sup
q≥1

9QqICc
d
9v

)ap,n (
1 ∨ sup

q≥1
9Qq9v

)2(n−p)

≤ e−δdap,n

(
1 ∨ sup

q≥1
9Qq9v

)2(n−p)

≤ exp (−δdap,n) exp
[
0 ∨ 2bd (n− p)

]
. (5.37)

where (H1) has been used. For the remainder of the proof we may assume without loss of

generality that bd > 0.
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Combining (5.36) and (5.37) then gives

∆(2)
p,n (x, ηp) ≤ Ēδx⊗ηp

[
n−1∏

q=p

Ḡq

(
X̄q

)
I

{
M̄ (d)

p,n < β (n− p)
}
v̄
(
X̄n

)
]

≤
(
sup
q≥1

Aq

)ap,n (
sup
q≥1

Bq

)n−p−ap,n

Ēp,δx⊗ηp [Ξn−p]

≤ c exp
[
−δdap,n + 2bd (n− p)

]
v(x)µ (v) ,

and therefore

∆
(2)
p,n (x, ηp)

Qp,n (1) (x)ηpQp,n (1)

=
∆

(2)
p,n (x, ηp)

hp,n(x)
(∏n−1

q=p λq

)2

≤ c exp
[
−δdap,n + 2 (n− p)

(
bd − log λ

)] vp,n(x)
‖hp,n‖v

µ (v) , (5.38)

where Proposition 1 and Proposition 2 have been applied and λ = infn≥0 λn > 0.

Collecting the bounds of (5.35), (5.38) and returning to (5.33), we establish that

∣∣∣∣∣
Qp,n (ϕ) (x)

hp,n(x)
∏n−1

q=p λq

− ηn (ϕ)

∣∣∣∣∣

≤ 2c ‖ϕ‖v
vp,n(x)

‖hp,n‖v
µ (v)

[
ρ
β(n−p)
d + exp

[
−δdap,n + 2 (n− p)

(
bd − log λ

)]]

≤ 2c ‖ϕ‖v
vp,n(x)

hp,n(x)
µ (v)

·
[
ρ
β(n−p)
d + exp

[
− (n− p)

(
δd(1 − β)/2 − 2bd + 2 log λ

)
+ 3δd/2

]]
,

where for the second inequality, ⌊a⌋ ≥ a−1 has been used. The proof is complete upon recalling

that d ∈ [d,∞) was arbitrary, ρd < 1, β ∈ (0, 1) and multiplying through by hp,n(x).

Proofs for section 4.4

Proof. (Theorem 2). Throughout the proof c denotes a finite constant whose value may change

on each appearance but which depends only on µ and the quantities in (H1)-(H4). Also, through-

out the proof we take by convention that for any j < k,
∑j

k ≡ 0.
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First consider the case s > 0. By Lemma 2,

Eµ

[∏n−1
p=0 Gp (Xp) exp

(∑
k∈{i1,...,is}

|Fk (Xk)|
)]

Eµ

[∏n−1
p=0 Gp (Xp)

]

=

ˆ

µ (dx)h0,n (x) Ě
(n)
x


exp


 ∑

k∈{i1,...,is}

∣∣Fk

(
X̌k,n

)∣∣





≤


 ∏

k∈{i1,...,is}

∥∥∥e|Fk|
∥∥∥
vδ



ˆ

µ(dx)h0,n(x)Ě
(n)
x


 ∏

k∈{i1,...,is}

vδ
(
X̌k,n

)

 . (5.39)

We now obtain some bounds which will be used to control the expectation in (5.39). Proposition

1 holds under the assumptions of the theorem so we may apply the upper and lower bounds of

Proposition 2 and Lemma 10 to the bound of Lemma 6 and choose d therein large enough, in

order to establish that there exists a finite constant c independent of 1 ≤ p < q ≤ n and x ∈ X

such that

Ě
(n)
p,x

[
vq,n

(
X̌q,n

)]

≤ e−δd(q−p)

λ(q−p)

‖hq,n‖v
‖hp,n‖v

vp,n (x)

+
ed(1−δ)+bd

ǫ−d
‖hq,n‖v


 1

νd (ICd
hq,n)

+

q−1∑

k=p+1

e−δd(q−k)

λ(q−k)

1

νd (ICd
hk,n)




≤ c
‖hq,n‖v
‖hp,n‖v

vp,n (x) , (5.40)

where λ = infn≥0 λn > 0 . Therefore by (H1), for p ≤ q,

vδ(x)Ě
(n)
p−1,x

[
vq,n

(
X̌q,n

)]
≤ cvδ(x)

‖hq,n‖v
‖hp,n‖v

Sp,n (vp,n) (x)

= cvδ(x) ‖hq,n‖v
Qp (v) (x)

λp−1hp−1,n(x)

≤ c ‖hq,n‖v
v (x)

hp−1,n(x)

ebd

λ

≤ c
‖hq,n‖v

‖hp−1,n‖v
vp−1,n(x). (5.41)

Now fix n ≥ 1 , 1 ≤ s ≤ n+ 1, (i1, . . . , is) ∈ In,s arbitrarily and define (Ξk,n; 0 ≤ k ≤ s) by

Ξ0,n :=
v0,n

(
X̌0,n

)

‖h0,n‖v
,

Ξk,n :=
vik,n

(
X̌ik ,n

)

‖hik ,n‖v
exp



k−1∑

j=1

(
δV
(
X̌ij ,n

)
− log c

)

 , 1 ≤ k ≤ s.

where c is as in (5.41). We then have
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Ě
(n)

ik−1,X̌ik−1,n
[Ξk,n]

=
1

‖hik,n‖v
Ě
(n)

ik−1,X̌ik−1,n

[
vik,n

(
X̌ik,n

)]
exp



k−1∑

j=1

(
δV
(
X̌ij ,n

)
− log c

)



≤ c
vik−1,n

(
X̌ik−1,n

)
∥∥hik−1,n

∥∥
v

vδ
(
X̌ik−1,n

)
exp



k−1∑

j=1

(
δV
(
X̌ij ,n

)
− log c

)



= Ξk−1,n,

where the inequality is due to (5.41). Thus
(
Ξk,n, F̌k,n; 0 ≤ k ≤ s

)
is a super-Martingale, with

F̌k,n := σ
(
X̌0,n, . . . , X̌ik−1,n, X̌ik ,n

)
. Therefore

Ě
(n)
x


 ∏

k∈{i1,...,is}

vδ
(
X̌k,n

)

 ≤ csĚ(n)

x [Ξs,n] ‖his,n‖v

≤ cs
v0,n (x)

‖h0,n‖v
‖hik ,n‖v

≤ cs
v (x)

h0,n(x)
(5.42)

where Propositions 1-2 have been used for the last inequality.

The proof is completed upon combining (5.42) with (5.39) and noting that the result holds

trivially when s = 0.
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