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Abstract

We present a novel backward Itô–Ventzell formula and an extension of the Alekseev–Gröbner
nterpolating formula to stochastic flows. We also present some natural spectral conditions that yield
irect and simple proofs of time uniform estimates of the difference between the two stochastic flows
hen their drift and diffusion functions are not the same, yielding what seems to be the first results of

his type for this class of anticipative models. We illustrate the impact of these results in the context of
iffusion perturbation theory, comparisons for solutions of stochastic differential equations, interacting
iffusions and discrete time approximations.
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1. Introduction

Let bt (x) be a vector-valued function from Rd into Rd and σt (x) = [σt,1(x), . . . , σt,r (x)] be
a matrix-valued function from Rd into Rd×r , for some parameters d, r ⩾ 1. Both functions

ill be assumed to be differentiable. Let Wt be an r -dimensional Brownian motion and denote
y Ws,t the σ -field generated by the increments (Wu − Wv) of the Brownian motion, with

u, v ∈ [s, t].
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For any time horizon s ⩾ 0 we denote by Xs,t (x) the stochastic flow defined for any
∈ [s,∞[ and any starting point Xs,s(x) = x ∈ Rd by the stochastic differential equation

d Xs,t (x) = bt
(
Xs,t (x)

)
dt + σt

(
Xs,t (x)

)
dWt (1.1)

e assume that x ↦→ bt (x) and x ↦→ σt (x) have continuous and uniformly bounded derivatives
p to the third order. This condition is clearly met for linear Gaussian models as well as for
he geometric Brownian motion. This condition ensures that the stochastic flow x ↦→ Xs,t (x)
s a twice differentiable function of the initialization x . In addition, all absolute moments of
he flow and the ones of its first and second order derivatives exists for any time horizon.

As it is well known, dynamical systems and hence stochastic models involving drift
unctions with quadratic growth require additional regularity conditions to ensure non explosion
f the solution in finite time. It is also implicitly assumed that all functions (bt , σt ) are smooth
unctions w.r.t. the time parameter.

The present article uses several constructive and stochastic analysis tools including Bismut–
lworthy–Li formulae, stochastic semigroup perturbation formulae, extended two-sided
tochastic integration, Malliavin calculus, gradient and Hessian semigroup processes estimates.
e are also looking for useful quantitative and time uniform estimates which are valid under
single set of easily checked conditions that only depend on the parameters of the model.
Various techniques presented in the article and many results can be separately and readily

xtended to more general models with weaker and abstract custom assumptions that depend
n the different quantities to handle.

Let X s,t (x) be the stochastic flow associated with a stochastic differential equation defined as
1.1) by replacing (bt , σt ) by some drift and diffusion functions (bt , σ t ) with the same regularity
roperties. Constant diffusion functions (σt , σ t ) are defined by

σt (x) = Σt and σ t (x) = Σ t for some matrices Σt and Σ t . (1.2)

n this context, we will assume that Σt and Σ t are uniformly bounded w.r.t. the time horizon.
The Markov transition semigroups associated with the flows Xs,t (x) and X s,t (x) are defined

for any measurable function f on Rd by the formula

Ps,t ( f )(x) := E
(

f (Xs,t (x))
)

and P s,t ( f )(x) := E
(

f (X s,t (x))
)

In this paper we derive equations for the differences

(Xs,t − X s,t ) and (Ps,t − P s,t )

in terms of the difference of their corresponding drifts and diffusion functions,

∆at := at − at ∆bt := bt − bt and ∆σt = σt − σ t (1.3)

here at (x) := σt (x) σt (x)′ and at (x) := σ t (x) σ ′

t (x). In some applications the functions
bt = bt − ∆bt and σ t = σt − ∆σt can be interpreted as a local perturbation of the drift
and the diffusion of the stochastic flow Xs,t .

We also address the problem of finding time-uniform estimates for the difference between
the stochastic flows Xs,t and X s,t and their corresponding Markov transition kernels Ps,t and
P s,t .

These important questions arise in a variety of domains including stochastic perturbation
heory as well as in the stability and the qualitative theory of stochastic systems. Classical
nalytic estimates on the difference between the stochastic flows driven by different drift and
iffusion functions are often much too large for most diffusion processes of practical interest.
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In some instances none of the diffusion flows are stable. In this context, any local
erturbation of the stochastic model propagates so that any global error estimate eventually
ends to ∞ as the time horizon t → ∞.

Whenever one of the stochastic flows is stable, classical perturbation bounds combining
ipschitz type inequalities with Gronwall lemma [8,28] yield exceedingly pessimistic global
stimates that grows exponentially fast w.r.t. the time horizon.

Notice that an exponential type estimate of the form eλt for some parameter λ > 0 and some
ime horizon t s.t. λ t ⩾ 199 would induce an error bound larger than the estimated number
086 of elementary particles of matters in the visible universe.

As mentioned in [33] in the context of Euler scheme type approximations of deterministic
ynamical systems, one may encounter situations where λ = 108 and t = 102 and the resulting
xponential bounds are clearly impractical from a numerical perspective.

The statement of the main results of the article are presented in Section 1.1:

i. Section 1.1.1 presents a novel generalized backward Itô–Ventzell formula (cf. Theo-
rem 1.1). The Itô–Ventzell is a very important formula, arguably as useful as the Itô’s
change of variable, but surprisingly the backward Itô–Ventzell presented in this work
has never been studied before. Theorem 1.1 can be seen as a new generalized backward
version of the generalized Itô–Ventzell formula presented in [47].

ii. In Section 1.1.2 we apply the backward Itô–Ventzell formula to derive a forward–
backward stochastic perturbation formula that expresses the difference between the
stochastic flows Xs,t and X s,t in terms of first and second order derivatives of the flows,
which we call the tangent and Hessian processes respectively, with respect to the space
parameter (cf. Theorem 1.2).

iii. Section 1.1.2 also provides a novel forward–backward Itô type differential formula for
interpolating stochastic diffusion flows (cf. the change of variable formula (1.9)).

iv. In the beginning of Section 1.1.2 we present a discrete time approach based on the pivotal
interpolating telescoping sum formula (4.2). This interpolating stochastic semigroup
technique can be seen as an extension to stochastic flows of the stochastic perturbation
analysis developed in [25,21,23,24] and in [3,5,11] in the context of discrete time
models, matrix and nonlinear interacting processes (see also [4,5]). For a more thorough
discussion on these models, we refer to Section 8. This approach allows to derive a
stochastic interpolation formula (1.10) with a fluctuation term (1.12) defined by an
extended two-sided stochastic integral.

v. Section 1.1.3 presents some natural spectral conditions on the gradients of bt (x), σt (x),
bt (x) and σ t (x) that allows us to derive in a direct way a series of realistic uniform
estimates with respect to the time horizon.

The rest of the article is organized as follows:
Section 3 provides some basic tools associated with the first and second variational equations

associated with a diffusion flow. We also present some quantitative estimates of the tangent
and the Hessian processes. For a more thorough discussion on stochastic flows and their
differentiability properties we refer to [15,39,42].

Section 4 is mainly concerned with the forward–backward stochastic interpolation formula
(1.10) stated in Theorem 1.2. Two approaches are presented: The first one discussed in
Section 4.1 is based on an extension of the two-sided stochastic calculus introduced by Pardoux
and Protter in [49] to stochastic interpolation flows. The second one discussed in Section 4.2
is based on the generalized backward Itô–Ventzell formula. This section also discusses a
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multivariate Skorohod–Alekseev–Gröbner formula. Apart from more complex and sophisticated
ensor notation, the quantitative stochastic analysis of these multivariate formulae follows the
ame arguments as the ones used in the proof of Theorem 1.3. Thus, we have chosen to
oncentrate this introduction on stochastic flows.

Some extensions of the stochastic interpolation formula (1.10) are discussed in Section 4.4.
Section 5 is dedicated to the analysis of the Skorohod fluctuation process introduced in

1.12).
Section 6 is dedicated to the analysis of an extended version of two-sided stochastic integrals

nd a generalized backward Itô–Ventzell formula.
Section 7 presents some illustrations of the forward–backward interpolation formulae

iscussed in the present article in the context of diffusion perturbation theory, interacting
iffusions and discrete time approximations.

Comments and comparisons with existing literature are provided in Section 8.
The technical proofs of some results are housed in the Appendix.

.1. Statement of some main results

.1.1. A backward Itô–Ventzell formula
We represent the gradient of a real valued function of several variables as a column vector

hile the gradient and the Hessian of a (column) vector valued function as tensors of type
1, 1) and (2, 1), see for instance (2.2) and (2.3); in more layman terms a (1, 1) tensor is a

matrix while the (2, 1) tensor can be visualized as a “row of matrices” [A1, . . . , An] where
he entries Ai are matrices of a common dimension. We also use the tensor product and the
ranspose operator defined in (2.1), see also (2.4).

We denote by Dt the Malliavin derivative from some dense domain D2,1 ⊂ L2(Ω ) into the
pace L2(Ω × R+;Rr ). For multivariate d-column vector random variables F with entries

F j , we use the same rules as for the gradient and Dt F is the (r, p)-matrix with entries
Dt F)i, j := Di

t F j . For (p × q)-matrices F with entries F j
k we let Dt F be the tensor with

ntries (Dt F)i, j,k = Di
t F j

k .
For a more thorough discussion on Malliavin derivatives and Skorohod integration we refer

o Section 2.3.
Let F be some function from Rp into Rq , and let y ∈ Rp be some given state, for some

p, q ⩾ 1. Suppose we are given a forward p-dimensional continuous semi-martingale Ys,t
nd a backward stochastic process Fs,t from Rp into Rq with a column-vector type canonical
epresentation of the following form:⎧⎪⎪⎨⎪⎪⎩

Ys,t = y +

∫ t

s
Bs,u du +

∫ t

s
Σs,u dWu

Fs,t (x) = F(x) +

∫ t

s
Gu,t (x) du +

∫ t

s
Hu,t (x) dWu

(1.4)

or some Ws,t -adapted functions Bs,t ,Gs,t , Hs,t ,Σs,t with appropriate dimensions and satisfy-
ng the following conditions:

(H1): The functions Fs,t , Gu,t and Hu,t as well as ∇ Hu,t , ∇
2 Fu,t and the derivatives Dv∇Fu,t

nd DvHu,t are continuous w.r.t. the state and the time variables for any given ω ∈ Ω .
(H2) The function Gu,t ,∇ Hu,t ,∇

2 Fu,t , and the derivatives DvHu,t , Dv∇Fu,t have at most
olynomial growth w.r.t. the state variable, uniformly with respect to ω ∈ Ω .

(H3) The processes Bs,u,Σs,u as well as DvΣs,u are continuous and have moments of any

rder.
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In this notation, the first main result of this article is the following theorem.

heorem 1.1. Assume conditions (Hi )i=1,2,3 are satisfied. In this situation, for any s ⩽ u ⩽
v ⩽ t we have the generalized backward Itô–Ventzell formula

Fv,t (Ys,v) − Fu,t (Ys,u)

=

∫ v

u
(∇Fr,t (Ys,r )′ Bs,r +

1
2

∇
2 Fr,t (Ys,r )′ Σs,rΣ

′

s,r − Gr,t (Ys,r )) dr

+

∫ v

u

(
∇Fr,t (Ys,r )′ Σs,r − Hr,t (Ys,r )

)
dWr

(1.5)

he stochastic anticipating integral in the r.h.s. of (1.5) is understood as a Skorohod stochastic
ntegral.

The above theorem can be seen as the backward version of the generalized Itô–Ventzell
ormula presented in [47,48]. The proof of the above theorem is provided in Section 6.2 (see
heorem 6.4).

Conventional forward and backward Itô stochastic integrals are particular instances of the
wo-sided stochastic integrals introduced by Pardoux and Protter in [49]. The terminology “two-
ided” coined by the authors in [49] comes from the fact that the integrand of the Skorohod
ntegral depend on the past as well as on the future of the history generated by the Brownian

otion.
The stochastic anticipating integral in the r.h.s. of (1.5) involves a backward random field and

forward semimartingale, thus it is tempting to interpret this integral as a two sided integral.
nfortunately, this class of integrands are not considered in the construction of the two-sided

tochastic integrals defined in [49]. In Sections 4.1 and 6.1 we shall present an extended version
f the two-sided stochastic integrals introduced in [49] that applies to integrands defined as
compositions of backward and forward stochastic flows. This extended version applies to

ackward stochastic flows but it does not encapsulate more general backward random fields.
e believe more general extensions of the two-sided integrals can be developed but it is out

f the scope of this article to develop a theory on generalized two-sided stochastic integrals.
e finally mention that all two-sided stochastic integrals discussed in this article are particular

nstances of Skorohod integrals.

.1.2. A stochastic flow interpolation formula
The diffusion flow (1.1) is defined in terms of a column vector with twice continuously

ifferentiable entries. For h ≃ 0 we use the backward approximation:

Xs,t (x) − Xs−h,t (x) = Xs,t (x) − (Xs,t ◦ Xs−h,s)(x)
≃ Xs,t (x) − Xs,t (x + bs(x) h + σs(x) (Ws − Ws−h))

≃ −

[(
∇ Xs,t (x)′ bs(x) +

1
2

∇
2 Xs,t (x)′ as(x)

)
h + ∇ Xs,t (x)′σs(x) (Ws − Ws−h)

] (1.6)

n the above display, Xs,t ◦ Xs−h,s stands for the composition of the mappings Xs,t and Xs−h,s .
The above approximations are discussed in more detailed in Section 4.1 and lead to the

backward stochastic flow evolution equation:

ds Xs,t (x) = −
[(

∇ Xs,t (x)′ bs(x) +
1
2 ∇

2 Xs,t (x)′ as(x)
)

ds + ∇ Xs,t (x)′σs(x) dWs
]

(1.7)

In the above display, d X i (x) represents the change in X i (x) w.r.t. the variable s.
s s,t s,t
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In the same vein, for any s < u < t we have the interpolating semigroup decompositions

Xu+h,t ◦ X s,u+h − Xu,t ◦ X s,u

= (Xu+h,t − Xu,t ) ◦ X s,u +
(
Xu+h,t ◦ X s,u+h − Xu+h,t ◦ X s,u

)
s well as the forward approximations

Xu+h,t
(

X s,u(x) +
(
X s,u+h(x) − X s,u(x)

))
− Xu+h,t (X s,u(x))

≃
(
∇ Xu+h,t

)
(X s,u(x))′ (X s,u+h(x) − X s,u(x))

+
1
2

(
∇

2 Xu+h,t
)

(X s,u(x))′ au(X s,u(x)) h
(1.8)

The above approximations are rigorously justified in Section 4.1 in terms of two-sided
stochastic integrals and lead to the forward–backward stochastic interpolation equation

du
(
Xu,t ◦ X s,u

)
(x)

=
(
du Xu,t

)
(X s,u(x)) +

(
∇ Xu,t

)
(X s,u(x))′ du X s,u(x)

+
1
2

(
∇

2 Xu,t
)

(X s,u(x))′ au(X s,u(x)) du
(1.9)

The discrete time version of the forward–backward stochastic formula in the above display
reduces to the telescoping sum formula (4.2) and the second order Taylor expansions discussed
in Section 4.1. We already mention that (4.2) can be interpreted as a discrete time version of the
Alekseev–Gröbner lemma [1,27]. The terminology forward–backward comes from the forward
and backward nature of (1.9) and the telescoping sum formula (4.2).

Also notice that (1.7) can also be deduced formally from (1.9) by replacing X s,u by the
tochastic flow Xs,u in (1.9), and then letting s = u.

This yields the following interpolation theorem.

heorem 1.2. We have the forward–backward stochastic interpolation formula

Xs,t (x) − X s,t (x) = Ts,t (∆a,∆b)(x) + Ss,t (∆σ )(x) (1.10)

ith the stochastic process

Ts,t (∆a,∆b)(x)

:=

∫ t

s

[(
∇ Xu,t

)
(X s,u(x))′ ∆bu(X s,u(x)) +

1
2

(
∇

2 Xu,t
)

(X s,u(x))′ ∆au(X s,u(x))
]

du

(1.11)

nd the fluctuation term given by the Skorohod stochastic integral

Ss,t (∆σ )(x) :=

∫ t

s

(
∇ Xu,t

)
(X s,u(x))′ ∆σu(X s,u(x)) dWu (1.12)

he fluctuation term in the above display can also be seen as the extended two-sided stochastic
ntegral defined in (4.3) (see also Proposition 6.2).

These interpolation formulae combine the backward evolution (1.7) with the conventional
orward evolution of the perturbed flow.

The proof of the interpolation formula (1.10) is provided in Section 4.
We will present two different approaches: The first one presented in Section 4.1 is rather

lementary and very intuitive. It combines the conventional Itô-type discrete time approxima-
ions of stochastic integrals discussed above with the two-sided stochastic integration calculus
202
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introduced in [49]. Using this approximation technique the fluctuation term is defined by the
extended two-sided stochastic integral defined in (4.3). In this interpretation, Eq. (1.10) can be
seen as an extended version of the Itô-type change rule formula stated in Theorem 6.1 in the
rticle [49] to the interpolating flow

Z s,t
: u ∈ [s, t] ↦→ Z s,t

u := Xu,t ◦ X s,u H⇒ Z s,t
s − Z s,t

t = Xs,t − X s,t (1.13)

oughly speaking, the increments of the interpolating path are decomposed into two parts:
One comes from the backward increments of the flow u ↦→ Xu,t given the past values of the

stochastic flow X s,u . The other one comes from the conventional Itô increments of u ↦→ X s,u

iven the future values of the stochastic flow Xu,t .
The second approach discussed in Section 4.2 is based on the generalized backward Itô–

entzell formula stated in Theorem 1.1. More precisely we also recover (1.10) from (1.5) by
hoosing

(Fs,t (x), Ys,t (y)) = (Xs,t (x), X s,t (y)) (Bs,t ,Σs,t ) =
(
bt
(
X s,t (x)

)
, σ t

(
X s,t (x)

))
Gu,t (x) = ∇Fu,t (x)′ bu(x) +

1
2

∇
2 Fu,t (x)′ au(x) and

Hu,t (x) = ∇Fu,t (x)′ σu(x)

nd letting (u, v) = (s, t) in (1.5). The regularity conditions on the drift and the diffusion
unction ensure that conditions (Hi )i with i = 1, 2, 3 stated in Section 1.1.1 are satisfied.

We emphasize that the backward diffusion flow discussed in (1.7) and (4.1) is essential to
pply Theorem 1.1. Section 4.2 also provides a multivariate version of (1.10).

The interpolation formula (1.10) with a fluctuation term given by the Skorohod stochastic
ntegral (1.12) can be seen as a Alekseev–Gröbner formula of Skorohod type.

In this context, the integrability of the fluctuation term and any quantitative type estimates
equire a refined analysis of the Malliavin derivatives of the integrand. Under our regularity
onditions the stochastic flows Xs,t (x) and X s,t (x) are Holder-continuous w.r.t. the time

parameters as well as twice differentiable w.r.t. the space variables, with almost sure uniformly
bounded first and second order derivatives. In addition, for any n ⩾ 1 all the n-absolute

oments of the stochastic flows are finite with at most linear growth w.r.t. the initial values.
hese properties ensure that the Skorohod stochastic integral (1.12) is well defined and they
llow to derive several quantitative estimates. Section 5 provides a refined of the fluctuation
erm; see for instance Theorem 5.2.

When σt = 0 the flow Xs,t (x) is deterministic so that the Skorohod fluctuation term
1.12) reduces to the traditional Itô stochastic integral. In this context, quantitative estimates
f the fluctuation term are obtained combining Burkholder–Davis–Gundy inequalities with the
eneralized Minkowski inequality. The resulting interpolation formula (1.10) can be seen as a
lekseev–Gröbner formula of Itô-type.
To distinguish these two classes of models, the interpolation formulae (1.10) associated with

he case σt = 0 will be called an Itô–Alekseev–Gröbner formula; the one associated with the
case ∆σt ̸= 0 will be called a Skorohod–Alekseev–Gröbner formula.

1.1.3. Uniform estimates w.r.t. the time horizon
The final objective of this article is to derive uniform estimates w.r.t. the time parameter.

Our methodology is mainly based on two different types of regularity conditions to be defined
and discussed in detail in Section 2.2:
203
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• The first is a technical condition that ensures that the n-absolute moments of the flows
Xs,t and X s,t are uniformly bounded w.r.t. the time horizon; we call this condition (M)n .

• The second is a spectral condition on the gradient of the drift and diffusion matrices of
the stochastic flows, which we call condition (T )n . Without going into details, we state one

sual case of interest: for constant diffusion functions (1.2) the spectral condition (T )n is met
or any n ⩾ 2 as soon as the following log-norm conditions are met

∇bt + (∇bt )′ ⩽ −2λ I and ∇bt + (∇bt )′ ⩽ −2λ I for some λ ∧ λ > 0, (1.14)

To motivate the above condition consider a linear drift function of the form bt (x) = Bt x
nd σ = 0. In this case the tangent process ∇ Xs,t (x) satisfies a time-varying deterministic
inear dynamical system

∂t ∇ Xs,t (x) = ∇ Xs,t (x) B ′

t

he asymptotic behavior of this process cannot be characterized by the statistical properties
f the spectral abscissa of the matrices Bt . Indeed, unstable semigroups associated with
ime-varying (deterministic) matrices Bt with negative eigenvalues are exemplified in [16,55].
onversely, stable semigroups with Bt having positive eigenvalues are given by Wu in [55]. In
ontrast, the uniform log-norm condition (1.14) provides a readily verifiable condition.

To describe with some precision the second main result of the article, we need to introduce
ome additional terminology. When there is no ambiguity, we denote by ∥.∥ any (equivalent)
orm on some finite dimensional vector space. For some multivariate function ft (x), for (t, x) ∈

0,∞) × Rd , let ∥ f (x)∥ := supt ∥ ft (x)∥ and the uniform norm be ∥ f ∥ := supt,x ∥ ft (x)∥. For
ny n ⩾ 1 we also set

||| f (x)|||n := sup
s⩾0

sup
t⩾s

E
(
∥ ft (X s,t (x))∥n)1/n

(1.15)

e denote by κn and κδ,n some constants that depend on some parameters n and (δ, n) but do
ot depend on the time horizon, nor on the space variable.

In this notation, the second main result of the article takes basically the following form.

heorem 1.3. Assume conditions (M)2n/δ and (T )2n/(1−δ) are satisfied for some parameters
⩾ 2 and δ ∈]0, 1[. In this situation, we have the time-uniform estimates

sup
s⩾0

sup
t⩾s

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κδ,n
(
|||∆a(x)|||2n/(1+δ) + |||∆b(x)|||2n/(1+δ) + |||∆σ (x)|||2n/δ (1 ∨ ∥x∥)

) (1.16)

or constant diffusion functions (1.2), the estimate simplifies to

(1.14) H⇒ ∀n ⩾ 2 sup
s⩾0

sup
t⩾s

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κn
(
|||∆b(x)|||n + ∥Σ − Σ∥

) (1.17)

The estimates (1.16) come from (A.2) and (5.9). A more detailed proof is provided in the
Appendix, Section Proof of (1.16). The estimates (1.17) are direct consequences of (2.18) and
(5.11). When σt = σ t the Skorohod term is indeed absent and (1.10) reduces to the almost
ure interpolation formula

Xs,t (x) − X s,t (x) =

∫ t (
∇ Xu,t

)
(X s,u(x))′ ∆bu(X s,u(x)) du (1.18)
s
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We recover the interpolation formula for nonlinear stochastic flows presented in Section 3.1 in
the article [3]. In this context the analysis of Ln-errors will proceed via two-step procedure. In

ection 3.1 we will derive the exponential bound

sup
x

E(∥
(
∇ Xu,t

)
(x)∥n

2)1/n ⩽ κn exp(−λ(n) (t − u)) for some λ(n) > 0

sing the Minkowski integral inequality in (1.18) yields

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽
∫ t

s
E
[
∥
(
∇ Xu,t

)
(X s,u(x))∥n

× ∥∆bu(X s,u(x))∥n]1/n
du.

A further conditioning argument and the above exponential bound on the tangent process yields

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κn

∫ t

s
exp(−λ(n) (t − u))du sup

s⩽u
E[∥∆bu(X s,u(x))∥n]1/n.

Replacing the term outside the time integral with |||∆b(x)|||n yields the stated result in (1.16)
excluding the terms representing the difference in the diffusions.

The stochastic interpolation formula (1.18) can also provide almost sure uniform estimates.
Indeed, assume that σt = σ t and

bt (x) = bt (x) + ϵ ϕt (x) for some ϵ ∈ [0, 1] and some bounded drift function ϕt (x).

n this situation, for any λ > 0 we have

∇bt + (∇bt )′ ⩽ −2λ I H⇒ sup
s⩾0

sup
t⩾s

∥Xs,t (x) − X s,t (x)∥ ⩽ ϵ ∥ϕ∥/λ

n the context of one-dimensional diffusions, we readily check the following stochastic
omparison(

∀x ∈ R bt (x) ⩾ bt (x)
)

H⇒
(
∀x ∈ R ∀s ⩾ 0 ∀t ∈ [s,∞[ Xs,t (x) ⩾ X s,t (x)

)
his yields a simple proof of the comparisons theorems for solutions of stochastic differential
quations discussed in Proposition 2.18 in [35], see also [32], and the references therein.

We illustrate another use of Theorem 1.2 in the context of analyzing the error in discretizing
he diffusion Xs,t (x) for some initial time point s ⩾ 0. Let h > 0 denote the discretization
nterval size and for any t ∈ [s + kh, s + (k + 1)h[ let

d X h
s,t (x) = Y h

s,t (x) dt + Σ dWt with Y h
s,t (x) := b

(
X h

s,s+kh(x)
)

or a fixed diffusion matrix σt (x) = Σ . Here X h
s,t (x) is the discretization of Xs,t (x) with

esolution h. Note that the drift at time t is not a function of the instantaneous value of X h
s,t (x),

t time t , but rather the value it took at the largest discrete time-point before t . In Section 4.4
e discuss how the formula in (1.10) also applies in this context and establish that

X h
s,t (x) − Xs,t (x) =

∫ t

s

(
∇ Xu,t

)
(X h

s,u(x))′
[
Y h

s,u(x) − b(X h
s,u(x))

]
du.

his comparison result when combined with the regularity assumptions (1.19) yields the
oment bound below.

roposition 1.4. Assume that

∇b + (∇b)′ ⩽ −2λ I ∥∇b∥ := sup ∥∇b(x)∥ < ∞ and ⟨x, b(x)⟩ ⩽ −β ∥x∥
2 (1.19)
x
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for some λ > 0, β > 0. In this situation, for any n ⩾ 1 we have the uniform estimates

E
(
∥X h

s,t (x) − Xs,t (x)∥n)1/n
⩽ ∥∇b∥

(
[∥b(0)∥ + m̂n(x) ∥∇b∥] h + σ

√
h
)
/λ

here m̂n(x) ⩽ κn (1 + ∥x∥).

Proposition 1.4 is proved in Section 7.3. To apply Proposition 1.4 to a Langevin diffusion
ith a convex potential U (x), the drift would be bt (x) = −∇U (x) and the corresponding

ssumptions on U (x) are typical.

. Preliminary results

.1. Some basic notation

With a slight abuse of notation, we denote by I the identity (d × d)-matrix, for any d ⩾ 1.
e also denote by ∥.∥ any (equivalent) norm on a finite dimensional vector space over R. All

ectors are column vectors by default.
We introduce some matrix notation needed from the onset.
We denote by Tr(A), ∥A∥2 := λmax (AA′)1/2

= λmax (A′ A)1/2, resp. ∥A∥F = Tr(AA′)1/2 and
(A) = λmax ((A+ A′)/2) the trace, the spectral norm, the Frobenius norm, and the logarithmic
orm of some matrix A. A′ is the transpose of A and λmax (.) the largest eigenvalue. The
pectral norm is sub-multiplicative or ∥AB∥2 ⩽ ∥A∥2∥B∥2 and compatible with the Euclidean
orm for vectors, by that we mean for a vector x we have ∥Ax∥ ⩽ ∥A∥2∥x∥.

Let [n] be the set of n multiple indexes i = (i1, . . . , in) ∈ In over some finite set I. We
enote by (Ai, j )(i, j)∈[p]×[q] the entries of a (p, q)-tensor A with index set I for [p] and J for
q]. For the sake of brevity, the index sets will be implicitly defined through the context.

For a given (p1, q)-tensor A and a given (q, p2) tensor B, AB and B ′ is a (p1, p2)-tensor
esp. a (p2, q)-tensor with entries given by

∀(i, j) ∈ [p1] × [p2] (AB)i, j =

∑
k∈[q]

Ai,k Bk, j and B ′

j,k := Bk, j . (2.1)

he symmetric part Asym of a (p, p)-tensor is the (p, p)-tensor Asym with entries

∀(i, j) ∈ [p] × [p] (Asym)i, j = (Ai, j + A j,i )/2

e consider the Frobenius inner product given for any (p, q)-tensors A and B by

⟨A, B⟩F = Tr(AB ′) =

∑
i

(AB ′)i,i and the norm ∥A∥F =

√
Tr(AA′)

or any (p, q)-tensors A and B we also check the Cauchy–Schwarz inequality

⟨A, B⟩
2
F ⩽ ∥A∥F ∥B∥F and ∥A∥2 ⩽ ∥A∥F ⩽ Card(I)p

∥A∥2 with

∥A∥2 := λmax (AA′)1/2

or any tensors A, B with appropriate dimensions we have the inequality

∥AB∥F ⩽ ∥A∥F ∥B∥F

iven some tensor valued function T : (t, x) ↦→ Tt (x) we also set

∥T ∥F := sup ∥Tt (x)∥F ∥T ∥2 := sup ∥Tt (x)∥2 and ∥T ∥ := sup ∥Tt (x)∥

t,x t,x t,x
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Given some smooth function h(x) from Rp into Rq we denote by

∇h =
[
∇h1, . . . ,∇hq] with ∇hi

=

⎡⎢⎣ ∂x1 hi

...

∂x p hi

⎤⎥⎦ (2.2)

the gradient (p, q)-matrix associated with the column vector-valued function h = (hi )1⩽i⩽q .
The notation ∂ f is only used in the context of one-dimensional models, ∂n f is the nth derivative

f a functions f (x) from R into R. (Use of vector-type gradient and matrix-type Hessian
otation for one-dimensional models is potentially confusing.)

Building on this notation: let b : Rn
→ Rp and let the mapping x → G(x) = h(b(x)). Then

G(x) = ∇b(x) × ∇h(b(x)). Let

∇
2h =

[
∇

2h1, . . . ,∇2hq] with ∇
2hi

=

⎡⎢⎣ ∂x1,x1 hi . . . ∂x1,x p hi

... . . .
...

∂x p,x1 hi . . . ∂x p,x p hi

⎤⎥⎦ (2.3)

he Hessian H = ∇
2h associated with the function h = (hi )1⩽i⩽q is a (2, 1)-tensor where

H(i, j),k = (∇2hk)i, j = ∂xi ,x j h
k . In this notation we can compactly represent the second order

term of the Taylor expansion of the vector valued function h. For a vector y = (y1, . . . , yp)′⎡⎢⎣ y′
∇

2h1(x) y
...

y′
∇

2hq (x) y

⎤⎥⎦ = ∇
2h(x)′ yy′

here we have regarded the matrix yy′ as the (2, 1)-tensor Y with Y(i, j),1 = yi y j .
In the same vein, in terms of the tensor product (2.1), for any pair of column vector-valued

unction h = (hk)1⩽k⩽q and b = (bi )1⩽i⩽p and any matrix function a = (ai, j )1⩽i, j⩽p from Rp

nto Rq , for any parameter 1 ⩽ k ⩽ q we also have(
∇h(x)′ b(x)

)k
=

∑
1⩽i⩽p

(∇h(x))′k,i bi (x) =

∑
1⩽ j⩽p

∂xi h
k(x) bi (x) = ⟨∇hk(x), b(x)⟩

(
∇

2h(x)′ a(x)
)k

=

∑
1⩽i, j⩽p

(∇2h(x))′k,(i, j) ai, j (x)

=

∑
1⩽i, j⩽p

∂xi ,x j h
k(x) ai, j (x) = ⟨∇

2hk(x), a(x)⟩F

n a more compact form, the above formula takes the form

∇h(x)′ b(x) =

⎡⎢⎣ ⟨∇h1(x), b(x)⟩
...

⟨∇hq (x), b(x)⟩

⎤⎥⎦ and ∇
2h(x)′ a(x) =

⎡⎢⎣ ⟨∇
2h1(x), a(x)⟩F

...

⟨∇
2hq (x), a(x)⟩F

⎤⎥⎦
(2.4)

For any n ⩾ 1 we let Pn(Rd ) be the convex set of probability measures µ1, µ2 on Rd with
bsolute nth moment and equipped with the Wasserstein distance of order n denoted by

W (µ ,µ ) := infE(∥X − X ∥
n)1/n
n 1 2 1 2
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In the above display the infimum is taken over all pair or random variables (X1, X2) with
arginal distributions (µ1, µ2). The stochastic transition semigroups associated with the flows

Xs,t (x) and X s,t (x) are defined for any measurable function f on Rd by the formulae

Ps,t ( f )(x) := f (Xs,t (x)) and Ps,t ( f )(x) := f (X s,t (x))

Given some column vector-valued function f = ( f i )1⩽i⩽p, let Ps,t ( f ) and Ps,t ( f ) denote the
column vector-valued functions with entries Ps,t ( f i ) and Ps,t ( f i ) (with the Markov semigroup
Ps,t defined in the unnumbered equation afer Eq. (1.2)). Building on the tensor notation, let
Ps,t (∇ f ) and Ps,t (∇2 f ) respectively denote the (1, 1) and (2, 1)-tensor valued functions with
entries

Ps,t (∇ f )(x)i,k := Ps,t (∂xi f k)(x) and Ps,t (∇2 f )(x)(i, j),k := Ps,t (∂xi ,x j f k)(x)

We also consider the random (2, 1) and (2, 2)-tensors given by

∇
2 Xs,t (x)(i, j),k = ∂xi ,x j X k

s,t (x) =
[
∇

2 Xs,t (x)
]′

k,(i, j) (2.5)[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
(i, j),(k,l) = ∇ Xs,t (x)i,k∇ Xs,t (x) j,l =

[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]′
(k,l),(i, j)

Throughout the rest of the article, unless otherwise stated κ, κϵ, κn, κn,ϵ denote constants
hose values may vary from line to line but only depend on the parameters in their subscripts,

.e. n ⩾ 0 and ϵ > 0, as well as on the parameters of the model; that is, on the drift and diffusion
unctions. We also use the letters c, cϵ, cn, cn,ϵ to denote universal constants. Importantly these
onstants do not depend on the time horizon. We also consider the uniform log-norm parameters

ρ(∇σ )2
:=

∑
1⩽k⩽r

ρ(∇σk)2 and ρ⋆(∇σ ) := sup
1⩽k⩽r

ρ(∇σk)

with ρ(∇σk) := sup
t,x
ρ(∇σt,k(x))

(2.6)

nd the parameters χ (b, σ ) defined by

χ (b, σ ) := c + ∥∇
2b∥ + ∥∇

2σ∥
2
+ ρ⋆(∇σ )2 (2.7)

.2. Regularity conditions and some preliminary results

We consider two different types of regularity conditions (M)n and (T )n , indexed by some
arameter n ∈ [2,∞[, for the diffusion (bt , σt ).

M)n There exists some parameter κn ⩾ 0 such that for any x ∈ Rd we have

mn(x) := sup
s⩽t

E
(
∥Xs,t (x)∥n)1/n

⩽ κn (1 ∨ ∥x∥)

T )n There exists some parameter λA > 0 such that

At := ∇bt + (∇bt )′ +
∑

1⩽k⩽r

∇σk,t (∇σk,t )′ ⩽ −2λA I (2.8)

where σk,t denotes the kth column of σt . In addition, the following condition is satisfied

λA(n) := λA −
d(n − 2)

ρ⋆(∇σ )2 > 0 (2.9)

2
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We now define the corresponding assumptions for the diffusion (bt , σ t ).

M)n The regularity condition defined as in (M)n by replacing Xs,t (x) by X s,t (x).

T )n Let At be the symmetric matrix defined as At in (2.8) by replacing (bt , σt ) by (bt , σ t ).
Assume there exists some λA > 0 such that At ⩽ −2λA I . Furthermore, assume
λA(n) > 0 where λA(n) is defined as λA(n) when (λA, σt ) = (λA, σ t ).

M)n We write (M)n when both conditions (M)n and (M)n are satisfied.

T )n Both conditions (T )n and (T )n are met, and let

λA,A(n) := λA(n) ∧ λA(n)

In practice, the uniform moment condition (M)n is often checked using Lyapunov tech-
iques. For example we can use the following polynomial growth condition.

P)n There exists some parameters αi , βi ⩾ 0 with i = 0, 1, 2 such that for any t ⩾ 0 and any
x ∈ Rd we have

∥σt (x)∥2
F ⩽ α0 +α1∥x∥+α2∥x∥

2 and ⟨x, bt (x)⟩ ⩽ β0 +β1∥x∥−β2∥x∥
2 (2.10)

for some norm ∥σt (x)∥ of the matrix-valued diffusion function. In addition, we have

β2(n) := β2 −
(n − 1)

2
α2 > 0

emma 2.1. For any n ⩾ 2 we have

(P)n H⇒ (M)n with κn = 1 +
(γ1 + (n − 2)α1) + (γ0 + (n − 2)α0)1/2

2β2(n)1/2 (2.11)

The proof of the above assertion follows standard stochastic calculations, thus it is housed in
he Appendix, Section Proof of (2.11). For one-dimensional geometric Brownian motions the
ondition (P)n is a sufficient and necessary condition for the existence of uniformly bounded
bsolute n-moments. In this case (T )n coincides with (P)n by setting

λA = β2 − α2/2 and α2 = ρ⋆(∇σ )2

Whenever condition (M)n is met for some n ⩾ 2, we also check the uniform estimates

E
(
∥[Xu,t ◦ X s,u](x)∥n)1/n

⩽ κn (1 + ∥x∥) (2.12)

ith the same parameter κn as the one associated with the condition (M)n .
Recalling that the functions (bt , bt ) and (σt , σ t ) have at most linear growth, with the

n-norms |||.|||n introduced in (1.15) we also have that

|||∆b(x)|||n ⩽ κ1,n(1 ∨ ∥x∥) and |||∆a(x)|||n/2 ⩽ κ2,n (1 ∨ ∥x∥)2 (2.13)

To give more insight where these assumptions will be used, we now briefly state the stability
esults that stem from them. Condition (T )n ensures that the exponential decays of the absolute
nd uniform n-moments of the tangent and the Hessian processes; that is, when (T )n is met
or some n ⩾ 2 we have that( n)1/n ( 2 n)1/n −λ(n)(t−s)
E ∥∇ Xs,t (x)∥ ∨ E ∥∇ Xs,t (x)∥ ⩽ κn e for some λ(n) > 0 (2.14)
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A more precise statement is provided in Proposition 3.2 and Eq. (3.10). These uniform estimates
clearly imply, via a conditioning argument, that for any n ⩾ 2 and s ⩽ u ⩽ t we have

E
(
∥(∇ Xu,t )(X s,u(x))∥n)1/n

∨ E
(
∥(∇2 Xu,t )(X s,u(x))∥n)1/n

⩽ κn e−λ(n)(t−u) (2.15)

ith the same parameters (κn, λ(n)) as in (2.14). The case ∇σ = 0 will also serve a useful
urpose, for example in analyzing the error of a numerical implementation as in Proposition 1.4.
or instance whenever (T )2 is met we have the almost sure and uniform gradient estimates

∥∇ Xs,t∥2 := sup
x

∥∇ Xs,t (x)∥2 ⩽ e−λA(t−s) (2.16)

n addition, we have the almost sure and uniform Hessian estimates

∥∇
2 Xs,t∥F := sup

x
∥∇

2 Xs,t (x)∥F ⩽
d
λA

∥∇
2b∥F e−λA(t−s) (2.17)

proof of the above estimates is provided in the beginning of Sections 3.1 and 3.2. In this
ituation, whenever (T )2 is met we have

E
[
∥Ts,t (∆a,∆b)(x)∥n]1/n

⩽ κ (|||∆b(x)|||n + |||∆a(x)|||n) . (2.18)

In the above display, Ts,t (∆a,∆b)(x) stands for the stochastic process discussed in (1.11), and
κ stands for some finite constant that does not depend on the parameter n. For instance, for a
Langevin diffusion associated with some convex potential function U we have b = −∇U and
σ = 0. Then assuming

∇
2U ⩾ λ I H⇒ (T )2 is met

H⇒ ∥∇ Xs,t∥2 ⩽ e−λ(t−s) and ∥∇
2 Xs,t∥F ⩽

d
λ

∥∇
3U∥F e−λ(t−s) (2.19)

where the almost sure tangent and Hessian bounds follow from (2.16) and (2.17) respectively.
In practice, it is often easier to work with at (x) = σt (x)σt (x)′ than σt (x) and we now discuss

some ways of estimating ∆σt (x) = σt (x) − σ t (x) in terms of ∆at (x) = at (x) − at (x) and in
he reverse direction. The latter is straightforward:

∥∆at (x)∥ ⩽ ∥∆σt (x)∥ [∥σt (x)∥ + ∥σ t (x)∥] .

o estimate ∆σt in terms of ∆at , assume the following ellipticity condition is satisfied

at (x) ⩾ υ I and at (x) ⩾ υ I for some parameter υ > 0. (2.20)

We recall the Ando–Hemmen inequality [2] for any symmetric positive definite matrices
Q1, Q2

∥Q1/2
1 − Q1/2

2 ∥ ⩽
[
λ

1/2
min(Q1) + λ

1/2
min(Q2)

]−1
∥Q1 − Q2∥ (2.21)

or any unitary invariant matrix norm ∥.∥. In the above display, λmin(.) stands for the minimal
igenvalue. We also have the square root inequality

Q1 ⩾ Q2 H⇒ Q1/2
1 ⩾ Q1/2

2 (2.22)

ee for instance Theorem 6.2 on page 135 in [29], as well as Proposition 3.2 in [2]. A proof
f (2.22) can be found in [9]. In this situation, using (2.21) and (2.22) we check that

∥∆σt (x)∥ ⩽
1

√ ∥∆at (x)∥ and ∥σt (x)∥ ⩽ ∥σt (0)∥+
1

√ [∥at (x)∥ + ∥at (0)∥] (2.23)

υ υ
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This provides a way to estimate the growth of σt (x) in terms of the one of at (x). For instance
he estimate (1.16) combined with (2.23) implies that

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κδ,n
(
|||∆b(x)|||2n/(1+δ) + |||∆a(x)|||2n/δ(1 ∨ ∥x∥)

)
• Assume that (M)n is satisfied for some n ⩾ 1. Also let ft (x) be some multivariate function

such that

∥ f (0)∥ := sup
t

∥ ft (0)∥ < ∞ and ∥∇ f ∥ := sup
t,x

∥∇ ft (x)∥ < ∞

In this situation, we have the estimates

||| f (x)|||n ⩽ ∥ f (0)∥ + ∥∇ f ∥ mn(x)
and therefore ||| f (x)|||n ⩽ κn (∥ f (0)∥ + ∥∇ f ∥) (1 ∨ ∥x∥)

.3. Some results on anticipating stochastic calculus

In this section we review some results on Malliavin derivatives and Skorohod integration
alculus which will be needed below. We restrict the presentation to unit time intervals. Let
Ω ,W) be the canonical space equipped with the Wiener measure P associated with the
-dimensional Brownian motion Wt discussed in the introduction.

The Malliavin derivative Dt is a linear operator from some dense domain D2,1 ⊂ L2(Ω )
nto the space L2(Ω × [0, 1];Rr ) of r -dimensional processes with square integrable states on
he unit time interval. For multivariate d-column vector random variables F with entries F i ,
e use the same rules as for the gradient and we set

Dt F =
[
Dt F1, . . . , Dt Fd] with Dt F i

=

⎡⎢⎣ D1
t F i

...

Dr F i

⎤⎥⎦
or (p × q)-matrices F with entries F j

k we let Dt F be the tensor with entries

(Dt F)i, j,k = Di
t F j

k

t is clearly out of the scope of this article to review the analytical construction of Malliavin
ifferential calculus. For a more thorough discussion we refer the reader to the seminal book
y Nualart [43], see also the more synthetic presentation in the articles [44,47].

Formally, one can think the Malliavin derivatives Di
t F of some F ∈ D2,1 as way to extract

rom the random variable F the integrand of Brownian increment dW i
t . For instance, when

⩽ t we have

Di
t Xs,t (x) = σt,i (Xs,t (x))

(Dt ∇ Xs,t (x))i, j,k = Di
t (∇ Xs,t (x)) j,k :=

(
∇ Xs,t (x) ∇σt,i (Xs,t (x))

)
j,k (2.24)

s conventional differentials, for any smooth function G from Rd into Rp×q , Malliavin
erivatives satisfy the chain rule properties

Di
t (G

j
k ◦ F) =

∑
1⩽l⩽d

(
∂xl G

j
k

)
(F) × Di

t F l
⇐⇒ Dt (G ◦ F) = Dt F ((∇G) ◦ F)

or instance, for any s ⩽ u ⩽ v we have

Du
(
Xu,t ◦ Xs,u

)
=
(
Du Xs,u

) [(
∇ Xu,t

)
◦ Xs,u

]
and( ) [ ] (2.25)
Du ςt ◦ Xs,t = (Du Xs,t ) (∇ςt ) ◦ Xs,t
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In the same vein, we have

Du
(
∇ Xs,u

[(
∇ Xu,t

)
◦ Xs,u

])
= (Du∇ Xs,u)

[(
∇ Xu,t

)
◦ Xs,u

]
+
(
Du Xs,u ⊗ ∇ Xs,u

) [(
∇

2 Xu,t
)
◦ Xs,u

] (2.26)

Let L2,1(Rr ) ⊂ L2(Ω × [0, 1];Rr ) be the Hilbert space of r -dimensional process Ut with
alliavin differentiable entries U i

t ∈ D2,1 equipped with the norm

|||U ||| := E
(∫

[0,1]
∥Ut∥

2 dt
)1/2

+ E
(∫

[0,1]2
∥DsUt∥

2 ds dt
)1/2

The Skorohod integral w.r.t. the Brownian motion W i
t on the unit interval is defined a linear

and continuous mapping from

V ∈ L2,1(R) ↦→

∫ 1

0
Vt dW i

t ∈ L2(Ω )

characterized by the two following properties

E
(∫ 1

0
Vt dW i

t

)
= 0

E

((∫ 1

0
Vt dW i

t

)2)
= E

(∫
[0,1]

V 2
t dt

)
+ E

(∫
[0,1]2

Di
s Vt Di

t Vs ds dt
)

(2.27)

he above formula can be seen as an extended version of the Itô isometry to Skorohod integrals,
or instance [46], as well as Chapters 1.3 to 1.5 in the book by Nualart [43].

As for the Itô integral, the Skorohod integral w.r.t. the r -dimensional Brownian motion Wt
f a matrix valued process with entries V i

k ∈ L2,1(R) is defined by the column vector with
ntries(∫ 1

0
Vt dWt

)i

:=

∫ 1

0
V i

t dWt :=

∑
1⩽k⩽r

∫ 1

0
V i

t,k dW k
t

. Variational equations

.1. The tangent process

In terms of the tensor product (2.4), the gradient ∇ Xs,t (x) of the diffusion flow Xs,t (x) is
iven by the gradient (d × d)-matrix

d ∇ Xs,t (x) = ∇ Xs,t (x)

[
∇bt

(
Xs,t (x)

)
dt +

∑
1⩽k⩽r

∇σt,k
(
Xs,t (x)

)
dW k

t

]
here W k

t is the kth component of the Brownian motion. After some calculations we check
hat

d
[
∇ Xs,t (x) ∇ Xs,t (x)′

]
= ∇ Xs,t (x) At

(
Xs,t (x)

)
∇ Xs,t (x)′ dt + d Ms,t (x) (3.1)

ith the matrix function At (x) defined in (2.8) and the symmetric matrix valued martingale

d Ms,t (x) :=

∑
1⩽k⩽r

∇ Xs,t (x)
[
∇σt,k

(
Xs,t (x)

)
+ ∇σt,k

(
Xs,t (x)

)′]
∇ Xs,t (x)′ dW k

t

hese expansions, when combined with condition (T )2, yield the following estimates of the
ifference between X (x) and X (y).
s,t s,t
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Proposition 3.1. Assume (T )2 is satisfied. Then

E
(
∥Xs,t (x) − Xs,t (y)∥2)1/2

⩽
√

d e−λA(t−s)
∥x − y∥. (3.2)

In addition, we have the almost sure estimate

∇σ = 0 H⇒ ∥Xs,t (x) − Xs,t (y)∥ ⩽ e−λA(t−s)
∥x − y∥ (3.3)

Proof of Proposition 3.1. Whenever (T )2 is met, we have the following uniform estimate
from (3.1)

(T )2 H⇒ E
(
∥∇ Xs,t (x)∥2

2

)1/2
⩽ E

(
∥∇ Xs,t (x)∥2

F

)1/2
⩽

√
d e−λA(t−s) (3.4)

here the
√

d term arises from imposing the initial condition ∇ Xs,s(x) = I on the resulting
ifferential equation for ∂tE

(
∥∇ Xs,t (x)∥2

F

)1/2. In addition, when ∇σ = 0 the martingale
Ms,t (x) = 0 is null and as a consequence of (3.1) we have the following almost sure estimate

∥∇ Xs,t∥2 := sup
x

∥∇ Xs,t (x)∥2 ⩽ e−λA(t−s) (3.5)

he Taylor expansion

Xs,t (x) − Xs,t (y) =

∫ 1

0
∇ Xs,t (ϵx + (1 − ϵ)y)′(x − y) dϵ

H⇒ ∥Xs,t (x) − Xs,t (y)∥2 ⩽

[∫ 1

0
∥∇ Xs,t (ϵx + (1 − ϵ)y)∥2

2 dϵ
]

∥x − y∥
2

ombined with (3.4) and (3.5) completes the proof. □

These contraction inequalities quantify the stability of the stochastic flow Xs,t (x) w.r.t. the
nitial state x . For instance, the estimate (3.2) ensures that the Markov transition semigroup is
xponentially stable; that is, we have that

W2
(
µ0 Ps,t , µ1 Ps,t

)
⩽ c exp [−λA(t − s)] W2 (µ0, µ1) (3.6)

or the Langevin diffusions discussed in (2.19) the stochastic flow is time homogeneous; that is
e have that Xs,t = X t−s := X0,(t−s) and Ps,t = Pt−s := P0,(t−s). In addition when σ (x) = σ I ,

he diffusion flow X t (x) has a single invariant measure on Rd given by the Boltzmann–Gibbs
easure

π (dx) =
1
Z

exp
(

−
2
σ 2 U (x)

)
dx with Z :=

∫
e−

2
σ2 U (x) dx (3.7)

rom (2.19), it follows that

∇
2U ⩾ λ I H⇒ Wn

(
µPs,t , π

)
⩽ exp [−λ(t − s)] Wn (µ, π)

or all n ⩾ 1.
Taking the trace in (3.1) we also find that

d ∥∇ Xs,t (x)∥2
F = Tr

[
∇ Xs,t (x) At

(
Xs,t (x)

)
∇ Xs,t (x)′

]
dt + d Ns,t (x)

with the martingale

d Ns,t (x) =

∑
Tr
(
∇ Xs,t (x)

[
∇σt,k

(
Xs,t (x)

)
+ ∇σt,k

(
Xs,t (x)

)′]
∇ Xs,t (x)′

)
dW k

t

1⩽k⩽r
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Observe that

∂t ⟨Ns,.(x)⟩t =

∑
k

Tr
(
∇ Xs,t (x)

[
∇σt,k

(
Xs,t (x)

)
+ ∇σt,k

(
Xs,t (x)

)′]
∇ Xs,t (x)′

)2

This implies that

∂tE
(
∥∇ Xs,t (x)∥4

F

)
= 2 E

(
∥∇ Xs,t (x)∥2

F Tr
[
∇ Xs,t (x) At

(
Xs,t (x)

)
∇ Xs,t (x)′

])
+

∑
1⩽k⩽r

E
(

Tr
(
∇ Xs,t (x)

[
∇σt,k

(
Xs,t (x)

)
+ ∇σt,k

(
Xs,t (x)

)′]
∇ Xs,t (x)′

)2
)

henever (T )2 is met, we have the estimate

∂tE
(
∥∇ Xs,t (x)∥4

F

)
⩽ −4

[
λA − ρ(∇σ )2] E

(
∥∇ Xs,t (x)∥4

F

)
with the uniform log-norm parameter ρ(∇σ ) defined in (2.6). This yields the estimate

∂tE
(
∥∇ Xs,t (x)∥4

F

)1/4
⩽ −

[
λA − ρ(∇σ )2] E

(
∥∇ Xs,t (x)∥4

F

)1/4

ore generally, we readily check the following result.

roposition 3.2. When condition (T )n is met we have the following time-uniform bounds,

E
(
∥∇ Xs,t (x)∥n

F

)1/n
⩽

√
d e−

[
λA−(n−2)ρ(∇σ )2/2

]
(t−s) (3.8)

3.2. The Hessian process

In terms of the tensor product (2.1), we have the tensor-valued diffusion equation

d ∇
2 Xs,t (x)

=
[[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]
∇

2bt (Xs,t (x)) + ∇
2 Xs,t (x)∇bt (Xs,t (x))

]
dt + dMs,t (x)

ith the null matrix initial condition ∇
2 Xs,s(x) = 0 and the tensor-valued martingale

dMs,t (x) =

∑
1⩽k⩽r

([
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
∇

2σt,k(Xs,t (x))

+ ∇
2 Xs,t (x)∇σt,k(Xs,t (x))

)
dW k

t

onsider the tensor functions

υt :=

∑
1⩽k⩽d

(∇2σt,k) (∇2σt,k)′ and τt := ∇
2bt +

∑
1⩽k⩽d

(∇2σt,k) (∇σt,k)′ (3.9)

After some computations, we check that

d
[
∇

2 Xs,t (x)∇2 Xs,t (x)′
]

=

{[
∇

2 Xs,t (x) At (Xs,t (x)) ∇
2 Xs,t (x)′

]
+ 2

[[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
τt (Xs,t (x)) ∇

2 Xs,t (x)′
]

sym

+

[[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
υt (Xs,t (x))

[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]′]} dt + dNs,t (x)
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with the matrix function At (x) defined in (2.8) and the tensor-valued martingale

dNs,t (x) = 2
∑

1⩽k⩽r

{[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
∇

2σt,k(Xs,t (x)) ∇
2 Xs,t (x)′

+ ∇
2 Xs,t (x) ∇σt,k(Xs,t (x)) ∇

2 Xs,t (x)′
}

sym dW k
t

hen ∇σ = 0 the above equation reduces to

∂t
[
∇

2 Xs,t (x)∇2 Xs,t (x)′
]

=
[
∇

2 Xs,t (x) At (Xs,t (x)) ∇
2 Xs,t (x)′

]
+ 2

[[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
∇

2bt (Xs,t (x)) ∇
2 Xs,t (x)′

]
sym

henever (T )2 is met, taking the trace in the above display we check that

∂t ∥∇
2 Xs,t (x)∥2

F ⩽ −2λA ∥∇
2 Xs,t (x)∥2

F + 2∥∇
2b∥F ∥∇ Xs,t (x)∥2

F ∥∇
2 Xs,t (x)∥F

his yields the estimate

∂t ∥∇
2 Xs,t (x)∥F ⩽ −λA ∥∇

2 Xs,t (x)∥F + ∥∇
2b∥F ∥∇ Xs,t (x)∥2

F

sing (2.16) this implies that

∥∇
2 Xs,t (x)∥F ⩽ ∥∇

2b∥F e−λA(t−s)
∫ t

s
eλA(u−s)

∥∇ Xs,u(x)∥2
F du ⩽

d
λA

∥∇
2b∥F e−λA(t−s)

This ends the proof of the almost sure estimate (2.17).
For more general models, we have that

d ∥∇
2 Xs,t (x)∥2

F

=

{
Tr
[
∇

2 Xs,t (x) At (Xs,t (x)) ∇
2 Xs,t (x)′

]
+ 2 Tr

[[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
τt (Xs,t (x)) ∇

2 Xs,t (x)′
]

+ Tr
[[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]
υt (Xs,t (x))

[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]′]} dt + d Ms,t (x)

with a continuous martingale Ms,t (x) with angle bracket

∂t ⟨Ms,.(x)⟩t

= 4
∑

1⩽k⩽r

Tr
{[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]

∇
2σt,k(Xs,t (x)) ∇

2 Xs,t (x)′

+ ∇
2 Xs,t (x) ∇σt,k(Xs,t (x)) ∇

2 Xs,t (x)′
}2

roposition 3.3. Assume (T )n is met. In this situation, for any ϵ > 0 s.t. λA(n) > ϵ we have

E
(
∥∇

2 Xs,t (x)∥n
F

)1/n
⩽ n ϵ−1 χ (b, σ ) exp (− [λA(n) − ϵ] (t − s)) (3.10)

ith the parameters χ (b, σ ) and λA(n) defined in (2.7) and (2.9).

In the above display, ρ⋆(∇σ ) is defined in (2.6). The proof of the above estimate is technical
nd thus housed in the Appendix, Section Proof of Proposition 3.3.
215



P. Del Moral and S.S. Singh Stochastic Processes and their Applications 154 (2022) 197–250

g

w

T
f

f
a

A
d
d

L
|

I

f

3.3. Bismut–Elworthy–Li formulae

We further assume that ellipticity condition (2.20) is met. In this situation, we can extend
radient semigroup formulae to measurable functions using the Bismut–Elworthy–Li formula

∇ Ps,t ( f )(x) = E
(

f (Xs,t (x)) τωs,t (x)
)

(3.11)

ith the stochastic process

τωs,t (x) :=

∫ t

s
∂uωs,t (u) ∇ Xs,u(x) au(Xs,u(x))−1/2 dWu

he above formula is valid for any function ωs,t : u ∈ [s, t] ↦→ ωs,t (u) ∈ R of the following
orm

ωs,t (u) = ϕ ((u − s)/(t − s)) H⇒ ∂uωs,t (u) =
1

t − s
∂ϕ ((u − s)/(t − s)) (3.12)

or some non decreasing differentiable function ϕ on [0, 1] with bounded continuous derivatives
nd such that

(ϕ(0), ϕ(1)) = (0, 1) H⇒ ωs,t (t) − ωs,t (s) = 1

rather simple proof of the formulae (3.11) when au(x) = I in the context of nonlinear
iffusion flows can be found in the Appendix in [5], see also [6,14,26,41,52] in the context of
iffusions on differentiable manifolds.

Whenever (T )2 is met, combining (3.4) with (3.11), for any f s.t. ∥ f ∥ ⩽ 1 we check that

∥∇ Ps,t ( f )∥2 ⩽ E
(
∥τωs,t (x)∥2)

⩽ κ1

∫ t

s
e−2λA(u−s)

∥∂uω
s,t (u)∥2 du

=
κ1

t − s

∫ 1

0
e−2λA(t−s)v (∂ϕ(v))2 dv

et ϕϵ with ϵ ∈]0, 1[ be some differentiable function on [0, 1] null on [0, 1 − ϵ] and such that
∂ϕϵ(u)| ⩽ c/ϵ and (ϕϵ(1 − ϵ), ϕ(1)) = (0, 1). For instance we can choose

ϕϵ(u) =

⎧⎨⎩ 0 if u ∈ [0, 1 − ϵ]

1 + cos
((

1 +
1 − u
ϵ

)
π

2

)
if u ∈ [1 − ϵ, 1]

n this situation, we check that

∥∇ Ps,t ( f )∥2 ⩽
κ2

ϵ2

1
t − s

∫ 1

1−ϵ

e−2λA(t−s)v dv

rom which we find the rather crude uniform estimate

∥∇ Ps,t ( f )∥ ⩽
κ

ϵ

1
√

t − s
e−λA(1−ϵ)(t−s) (3.13)

In the same vein, for any s ⩽ u ⩽ t we have the formulae

∇
2 Ps,t ( f )(x) = E

(
f (Xs,t (x)) τ [2],ω

s,t (x) + ∇ Xs,t (x) ∇ f (Xs,t (x)) τωs,t (x)′
)

(3.14)

= E
(

f (X (x))
[
τ [2],ω(x) + ∇ X (x) τω (X (x)) τω (x)′

])
(3.15)
s,t s,u s,u u,t s,u s,u
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with the process

τ
[2],ω
s,t (x)

:=

∫ t

s
∂uωs,t (u)

[
∇

2 Xs,u(x) au(Xs,u(x))−1/2

+
(
∇ Xs,u(x) ⊗ ∇ Xs,u(x)

)
(∇a−1/2

u )(Xs,u(x))
]

dWu

n the above display ∇a−1/2
u stands for the tensor function

(∇a−1/2
u (x))(i, j),k := ∂xi a

−1/2
u (x) j,k = −

(
a−1/2

u (x)
[
∂xi a

1/2
u (x)

]
a−1/2

u (x)
)

j,k

A detailed proof of the formulae (3.14) and (3.15) in the context of nonlinear diffusion flows
can be found in the Appendix in [5], see also [6,14,26,41,52].

Observe that

(2.20) H⇒ sup
i

∥∂xi a
−1/2
u (x)∥ ⩽ c ∥∇σ∥/υ

Whenever (T )2 is met, using the estimate (3.3) for any ϵ ∈]0, 1[

∥∇
2 Ps,t ( f )∥ ⩽

κ

ϵ

1
√

t − s
e−λA(t−s)(1−ϵ) (∥ f ∥ + ∥∇ f ∥) (3.16)

In the same vein, using (3.15) for any u ∈]s, t[ and any bounded measurable function f s.t.
∥ f ∥ ⩽ 1 we also check the rather crude uniform estimate

∥∇
2 Ps,t ( f )∥ ⩽

κ1

ϵ

1
√

u − s
e−λA(u−s)(1−ϵ)

+
κ2

ϵ2

1
√

(t − u)(u − s)
e−λA(u−s) e−λA(t−s)(1−ϵ)

hoosing u = s + (1− ϵ)(t − s) in the above display we check that for any ϵ ∈]0, 1[ we obtain
he uniform estimate

∥∇
2 Ps,t ( f )∥ ⩽

c1

ϵ
√

1 − ϵ

1
√

t − s
e−λA(1−ϵ)2(t−s)

+
c2

ϵ2

1
√
ϵ(1 − ϵ)

1
t − s

e−2λA(1−ϵ)(t−s)

(3.17)

. Backward semigroup analysis

.1. The two-sided stochastic integration

For any given time horizon s ⩽ t we have the rather well known backward stochastic flow
quation

Xs,t (x) = x +

∫ t

s

[
∇ Xu,t (x)′ bu(x) +

1
2

∇
2 Xu,t (x)′ au(x)

]
du

+

∫ t

s
∇ Xu,t (x)′σu(x) dWu

(4.1)

The right hand side integral is understood as a conventional backward Itô-integral. In a more
synthetic form, the above backward formula reduces to (1.7).

An elementary proof of the above formula based on Taylor expansions is presented in
Proposition 2.1 in [19], different approaches can also be found in [38] and [37]. Extensions of
the backward Itô formula (4.1) to jump type diffusion models as well as nonlinear diffusion
flows can also be found in Section 2 in [20] and in the Appendix of [3].
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Consider the discrete set [s, t]h := {u0, . . . , un−1} associated with the refining time mesh
i+1 = ui + h from u0 = s to un = t , for time step h > 0. In this notation, combining (1.6)
ith (1.8) for any u ∈ [s, t]h we have the Taylor type approximation

Xu+h,t ◦ X s,u+h − Xu,t ◦ X s,u

≃ −

((
∇ Xu+h,t

)
(X s,u(x))′ ∆bu(X s,u(x)) +

1
2

(
∇

2 Xu+h,t
)

(X s,u(x))′ ∆au(X s,u(x))
)

h

−
(
∇ Xu+h,t

)
(X s,u(x))′ ∆σu(X s,u(x)) (Wu+h − Wu)

This yields the interpolating forward–backward telescoping sum formula

Xs,t (x) − X s,t (x)

= −

∑
u∈[s,t]h

[
Xu+h,t (X s,u+h(x)) − Xu,t

(
X s,u(x)

)]
≃

∑
u∈[s,t]h

((
∇ Xu+h,t

)
(X s,u(x))′ ∆bu(X s,u(x))

+
1
2

(
∇

2 Xu+h,t
)

(X s,u(x))′ ∆au(X s,u(x))
)

h

+

∑
u∈[s,t]h

(
∇ Xu+h,t

)
(X s,u(x))′ ∆σu(X s,u(x)) (Wu+h − Wu)

(4.2)

We obtain formally (1.10) by summing the above terms and passing to the limit h ↓ 0.
To be more precise, we follow the two-sided stochastic integration calculus introduced by

Pardoux and Protter in [49]. As mentioned by the authors this methodology can be seen as a
variation of Itô original construction of the stochastic integral. In this framework, the Skorohod
stochastic integral (1.12) arising in (1.9) is defined by the L2-convergence

Ss,t (ς )(x)

:= lim
h→0

∑
u∈[s,t]h

(
∇ Xu+h,t

)
(X s,u(x))′ ςu(X s,u(x)) (Wu+h − Wu) with ςu = ∆σu (4.3)

The proof of the above assertion is based on a slight extension of proposition 3.3 in [49] to
Skorohod integrals of the form (1.12). For the convenience of the reader, a detailed proof of
the above assertion for one dimensional models is provided in Section 6.1.

Using (4.3), the complete proof of (1.9) now follows the same line of arguments as the
ones used in the proof of Itô-type change rule formula stated in Theorem 6.1 in [49], thus it
is skipped.

4.2. A multivariate stochastic interpolation formulae

In terms of the tensor product (2.1), for any p ⩾ 1 and any twice continuously differentiable
function f from Rd into Rp with at most polynomial growth the function Fs,t := Ps,t ( f )
satisfies the backward formula (1.4) with the random fields

Gu,t (x) := ∇Fu,t (x)′ bu(x) +
1
2

∇
2 Fu,t (x)′ au(x) and Hu,t (x) := ∇Fu,t (x)′ σu(x)

Using the quantitative estimates presented in Section 5.2, we checked that the regularity
conditions (H1), (H2) and (H3) stated in Section 1.1.1 are satisfied. Rewritten in terms of the
stochastic semigroups P and P we obtain the following theorem.
s,t s,t
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Theorem 4.1. For any s ⩽ t we have the forward–backward multivariate interpolation formula

Ps,t ( f )(x) − Ps,t ( f )(x) = Ts,t ( f,∆a,∆b)(x) + Ss,t ( f,∆σ )(x) (4.4)

ith the stochastic integro-differential operator

Ts,t ( f,∆a,∆b)(x)

:=

∫ t

s

[
∇Pu,t ( f )(X s,u(x))′ ∆bu(X s,u(x)) +

1
2

∇
2Pu,t ( f )(X s,u(x))′ ∆au(X s,u(x))

]
du

(4.5)

and the two-sided stochastic integral term given by

Ss,t ( f,∆σ )(x) :=

∫ t

s
∇Pu,t ( f )(X s,u(x))′ ∆σu(X s,u(x)) dWu (4.6)

Using elementary differential calculus, for twice differentiable (column vector-valued)
unction f from Rd into Rp we readily check the gradient and the Hessian formulae

∇ Ps,t ( f )(x) = ∇ Xs,t (x) Ps,t (∇ f )(x)

∇
2Ps,t ( f )(x) =

[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]
Ps,t (∇2 f )(x) + ∇

2 Xs,t (x) Ps,t (∇ f )(x) (4.7)

This shows that Ts,t ( f,∆a,∆b) and Ss,t ( f,∆σ ) have the same form as the integrals
Ts,t (∆a,∆b) and Ss,t (∆a,∆b) defined in (1.10) and (1.11) up to some terms involving the
radient and the Hessian of the function f . For instance, we have the two-sided stochastic
ntegral formula

Ss,t ( f,∆σ )(x) =

∫ t

s
Pu,t (∇ f )(X s,u(x))′ ∇ Xu,t (X s,u(x))′ ∆σu(X s,u(x)) dWu

Also observe that (4.4) coincides with (1.10) for the identity function; that is, we have that

f (x) = x H⇒ Ts,t ( f,∆a,∆b) = Ts,t (∆a,∆b) and Ss,t ( f,∆σ ) = Ss,t (∆σ )

s in (1.18) when σt = σ t the Skorohod terms are absent and (4.4) reduces to the almost sure
interpolation formula

Ps,t ( f )(x) − Ps,t ( f )(x) =

∫ t

s
∇Pu,t ( f )(X s,u(x))′ ∆bu(X s,u(x)) du

=

∫ t

s
Pu,t (∇ f )(X s,u(x))′

(
∇ Xu,t

) (
X s,u(x)

)
∆bu(X s,u(x)) du

The above discussion shows that the analysis of the differences of the stochastic semigroups
(Ps,t −Ps,t ) in terms of the tangent and the Hessian processes is essentially the same as the one

f the difference of the stochastic flows (Xs,t −X s,t ). For instance using the discussion provided
ection 5.3, when the gradient and the Hessian of the function f are uniformly bounded the
stimates stated in Theorem 1.3 can be easily extended at the level of the stochastic semigroups.

The L2-norm of the two-sided stochastic integrals in (1.10) and (4.4) are uniformly estimated
s soon as the pair of drift and diffusion functions (bt , σt ) and (b, σ t ) satisfy condition (T )2.
or a more thorough discussion we refer to Section 5.1, see for instance the Ln-norm estimates
resented in Theorem 5.2 applied to the difference function ς = ∆σ .
t t
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4.3. Semigroup perturbation formulae

Besides the fact that the Skorohod integral in the r.h.s. of (4.4) is not a martingale (w.r.t. the
rownian motion filtration) it is centered (see for instance (2.27) and the argument provided

n the beginning of Section 5.1). Thus, taking the expectation in the univariate version of (4.4)
e obtain the following interpolation semigroup decomposition.

orollary 4.2. For any twice differentiable function f from Rd into R with bounded derivatives
e have the forward–backward semigroup interpolation formula

Ps,t ( f )(x) − P s,t ( f )(x) =

∫ t

s
E
(
⟨∇ Pu,t ( f )(X s,u(x)),∆bu(X s,u(x))⟩

)
du

+
1
2

∫ t

s
E
(
Tr
[
∇

2 Pu,t ( f )(X s,u(x)) ∆au(X s,u(x))
])

du

(4.8)

In addition, under some appropriate regularity conditions for any differentiable function f such
that ∥ f ∥ ⩽ 1 and ∥∇ f ∥ ⩽ 1 we have the uniform estimate

|Ps,t ( f )(x) − P s,t ( f )(x)| ⩽ κ [|||∆a(x)|||1 + |||∆b(x)|||1] (4.9)

Rewritten in terms of the infinitesimal generators (L t , L t ) of the stochastic flows (Xs,t , X s,t )
e recover the rather well known semigroup perturbation formula

Ps,t = P s,t +

∫ t

s
P s,u(Lu − Lu)Pu,t du ⇐⇒ (4.8)

The above formula can be readily checked using the interpolating formula given for any
s ⩽ u < t by the evolution equation

∂u(P s,u Pu,t ) = (∂u P s,u)Pu,t + P s,u(∂u Pu,t ) = P s,u Lu Pu,t − P s,u Lu Pu,t

Now we come to the proof of (4.9). Whenever (T )2 is met, combining (3.13) with (3.16)
or any differentiable function f s.t. ∥ f ∥ ⩽ 1 and ∥∇ f ∥ ⩽ 1 and for any ϵ ∈]0, 1[ we check

that

|Ps,s+t ( f )(x) − P s,s+t ( f )(x)| ⩽
κ

ϵ
[|||∆a(x)|||1 + |||∆b(x)|||1]

∫ t

0

1
√

u
e−λA(1−ϵ)u du

his ends the proof of (4.9). ■
After some elementary manipulations the forward–backward interpolation formula (4.8)

ields the following corollary.

orollary 4.3. Let X t and X t be some ergodic diffusions associated with some time
omogeneous drift and diffusion functions (b, σ ) and (b, σ ). The invariant probability measures

and π of X t and X t are connected for any twice differentiable function f from Rd into R
ith bounded derivatives by the following interpolation formula

(π − π )( f ) =

∫
∞

0
E
(⟨

∇ Pt ( f )(Y ),∆b(Y )
⟩
+

1
2

Tr
[
∇

2 Pt ( f )(Y ) ∆a(Y )
])

dt (4.10)

n the above display Y stands for a random variable with distribution π and Pt stands for the
arkov transition semigroup of the process X .
t
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The formula (4.10) can be used to estimate the invariant measure of a stochastic flow
ssociated with some perturbations of the drift and the diffusion function.

For instance, for homogeneous Langevin diffusions X t associated with some convex
otential function U we have

b = −∇U and σ = I H⇒ π (dx) ∝ exp (−2 U (x)) dx

n the above display, dx stands for the Lebesgue measure on Rd . In this situation, using (4.10),
or any ergodic diffusion flow X t with some drift b and an unit diffusion matrix we have

π ( f ) = π ( f ) +

∫
∞

0
E
(⟨

(b + ∇U )(Y ),∇ Pt ( f )(Y )
⟩)

dt

otice that the above formula is implicit as the r.h.s. term depends on π . By symmetry
arguments, we also have the following more explicit perturbation formula

π ( f ) = π ( f ) +

∫
∞

0
E
(⟨

(b + ∇U )(Y ),∇ P t ( f )(Y )
⟩)

dt

n the above display Y stands for a random variable with distribution π and P t stands for the
arkov transition semigroup of the process X t .

.4. Some extensions

Several extensions of the forward–backward stochastic interpolation formula (1.10) to more
eneral stochastic perturbation processes can be developed. For instance, suppose we are given
ome stochastic processes Y s,t (x) ∈ Rd and Z s,t (x) ∈ Rd×r adapted to the filtration of the

Brownian motion Wt , and let X s,t (x) be the stochastic flow defined by the stochastic differential
quation

d X s,t (x) = Y s,t (x) dt + Z s,t (x) dWt (4.11)

n this situation, the interpolation formula (1.9) remains valid when au(X s,u(x)) is replaced by
he stochastic matrices Z s,t (x)Z s,t (x)′. This yields without further work the forward–backward
tochastic interpolation formula (1.10) with the local perturbations

∆bu(X s,u(x)) := bu(X s,u(x)) − Y s,u(x)

∆σu(X s,u(x)) := σu(X s,u(x)) − Z s,u(x) and

∆au(X s,u(x)) := au(X s,u(x)) − Z s,u(x)Z s,u(x)′

he corresponding interpolation formula should be used with some caution as the L2-norm of
he two-sided stochastic integral (1.12) depends on the Malliavin differential of the integrand
rocess of the Brownian motion; see for instance the variance formula provided in Lemma 5.1.

Assume that σ = I and the regularity condition (T )2 is met. Also suppose X s,t (x) is given
by a stochastic differential equation of the form (4.11) with r = d and Z s,t (x) = I . Arguing
as above, in terms of the tensor product (2.1) we have

Xs,t (x) − X s,t (x) =

∫ t

s

(
∇ Xu,t

)
(X s,u(x))′ (bu(X s,u(x)) − Y s,u(x)) du (4.12)

ombining (2.16) with the generalized Minkowski inequality, we check the following propo-
ition.
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Proposition 4.4. Assume that (T )2 is met for some λA > 0. In this situation, for any
1 ⩽ n ⩽ ∞ we have the estimates

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽
∫ t

s
e−λA(t−u) E

[
∥bu(X s,u(x)) − Y s,u(x)∥

]1/n
du (4.13)

In the same vein, we have

Ps,t ( f )(x) − P s,t ( f )(x) =

∫ t

s
E
(
⟨∇ Pu,t ( f )(X s,u(x)), bu(X s,u(x)) − Y s,u(x)⟩

)
du (4.14)

or instance, for the Langevin diffusion discussed in (2.19) and (3.7) the weak expansion (4.14)
mplies that

[π P s,t − π ]( f ) =

∫ t

s

∫
π (dx) E

(
⟨∇ Pt−u( f )(X s,u(x)),∇U (X s,u(x)) + Y s,u(x)⟩

)
du

(4.15)

his yields the W1-Wasserstein estimate

W1(π P s,t , π)| ⩽
∫ t

s
e−λA(t−u)

∫
π (dx) E

(
∥∇U (X s,u(x)) + Y s,u(x)∥

)
du

ombining (3.13) with (4.15), for any ϵ ∈]0, 1[ we also have the total variation norm estimate

∥π P s,t − π∥tv ⩽
c
ϵ

∫ t

s

1
√

t − u
e−λA(1−ϵ)(t−u)

×

[∫
π (dx) E

(
∥∇U (X s,u(x)) + Y s,u(x)∥

)]
du

(4.16)

. Skorohod fluctuation processes

.1. A variance formula

Let ςt (x) be some differentiable (d × r )-matrix valued function on Rd such that

∥∇ς∥ < ∞ and ∥ς (0)∥ := sup
t

∥ςt (0)∥ < ∞ (5.1)

Recalling that (Wu+h − Wu) is independent of the flows X s,u and ∇ Xu+h,t , the discrete time
pproximation (4.3) shows that Skorohod stochastic integral is centered; that is, we have that
(Ss,t (ς )(x)) = 0.

Following (4.3), the variance can be computed using the following approximation formula

E
[
∥Ss,t (ς )(x)∥2]

= lim
h→0

∑
u,v ∈[s,t]h

∑
1⩽i⩽d

∑
1⩽ j,k⩽r

E
{[(

∇ Xu+h,t
)

(X s,u(x))′ ςu(X s,u(x))
]

i, j

[(
∇ Xv+h,t

)
(X s,v(x))′ ςv(X s,v(x))

]
i,k

(W j
u+h − W j

u )(W k
v+h − W k

v )
}

(5.2)
The proof of the above assertion is provided in Section 6.1, see for instance Proposition 6.2.

222



P. Del Moral and S.S. Singh Stochastic Processes and their Applications 154 (2022) 197–250

I

I

o

A

I

r

d

Consider the matrix valued function

Σs,u,t (x) :=

[(
∇ Xu,t

)′
◦ X s,u

]
(x) ςu(X s,u(x)) (5.3)

n this notation, the limiting diagonal term u = v in the r.h.s. of (5.2) is clearly equal to∫ t

s
E

⎡⎣∑
i, j

Σs,u,t (x)i, j Σs,u,t (x)i, j

⎤⎦ du =

∫ t

s
E
[
∥Σs,u,t (x)∥2

F

]
du

n addition, whenever condition (T )2 is met and ς is bounded, (3.4) readily yields the estimate

[∫ t

s
E
[
∥Σs,u,t (x)∥2

F

]
du
]1/2

⩽ ∥ς∥2
√

d/(2λA) (5.4)

More generally, using (3.8) whenever (M)2/δ and (T )2/(1−δ) are met for some δ ∈]0, 1[ we
have the estimate

E
[
∥Σs,u,t (x)∥2] ⩽ c1,δ

[
∥ς (0)∥2

+ ∥∇ς∥
2 (1 + ∥x∥)2] e−2λA(2/(1−δ))(t−u)

This implies that[∫ t

s
E
[
∥Σs,u,t (x)∥2

F

]
du
]1/2

⩽ c2,δ [∥ς (0)∥ + ∥∇ς∥ (1 + ∥x∥)] /
√
λA (5.5)

The non-diagonal term can be computed in a more direct way using Malliavin derivatives
f the functions Σs,u,t . For any s ⩽ u ⩽ v ⩽ t we have

Dv

{[(
∇ Xu,t

)′
◦ X s,u

] [
ςu ◦ X s,u

]}
=

[(
Dv

(
∇ Xu,t

)′)
◦ X s,u

] [
ςu ◦ X s,u

]
(5.6)

s expected, observe that

∇σ = 0 H⇒ DvΣs,u,t (x) = 0

n the reverse angle, whenever s ⩽ v ⩽ u ⩽ t we have the chain rule formula

Dv

([
ςu ◦ X s,u

] [(
∇ Xu,t

)
◦ X s,u

])
:=
[
Dv

(
ςu ◦ X s,u

)] [(
∇ Xu,t

)
◦ X s,u

]
+
[
DvX s,u ⊗ (ςu ◦ X s,u)

] [(
∇

2 Xu,t
)
◦ X s,u

] (5.7)

As above, Malliavin differentials Dv

(
ςu ◦ X s,u

)
and DvX s,u can be computed using the chain

ule formulae (2.25).
A more detailed analysis of the chain rules formulae (2.25), (2.26) and (5.7) for one

imensional models is provided in Section 6.1 (cf. Lemma 6.1).
Observe that

∇ς = 0 H⇒ Dv

[
Σ ′

s,u,t

]
=
[
DvX s,u ⊗ (ςu ◦ X s,u)

] [(
∇

2 Xu,t
)
◦ X s,u

]
We consider the inner product⟨

DuΣs,v,t (x), DvΣs,u,t (x)
⟩
:=

∑
i, j,k

(
DvΣs,u,t (x)

)
k,i, j

(
DuΣs,v,t (x)

)
j,i,k

In this notation, an explicit description of the L2-norm of the two-sided stochastic integral in
terms of Malliavin derivatives is given below.
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Lemma 5.1. The L2-norm of the Skorohod integral Ss,t (ς )(x) introduced in (4.3) is given for
ny x ∈ Rd and s ⩽ t by the formulae

E
[
∥Ss,t (ς )(x)∥2]

=

∫
[s,t]

E
[
∥Σs,u,t (x)∥2

F

]
du

+

∫
[s,t]2

E
[⟨

DvΣs,u,t (x), DuΣs,v,t (x)
⟩]

du dv

ith the random matrix function Σs,u,t defined in (5.3) and the Malliavin derivative DvΣs,u,t
given in formulae (5.6) and (5.7). In addition, we have

∇σ = 0 H⇒ E
[
∥Ss,t (ς )(x)∥2]

=

∫
[s,t]

E
[
∥Σs,u,t (x)∥2

F

]
du

The above lemma can be interpreted as a matrix version of the isometry property (2.27). A
proof of the above lemma based on the L2-approximation of two-sided stochastic integrals is
provided in Section 6.1 (see for instance Proposition 6.2).

5.2. Quantitative estimates

For any p > 1 and any tensor norms we also quote the rather well known Lp-norm estimates

E
[
∥Ss,t (ς )(x)∥p]2/p

⩽ c1,p

∫
[s,t]

E
[
∥Σs,u,t (x)∥2] du + c2,p E

[(∫
[s,t]2

∥DvΣs,u,t (x)∥2 du dv
)p/2

]2/p

or some finite constants ci,p whose values only depend on p. A proof of these estimates can be
ound in [44,54], see also [46] for multiple Skorohod integrals. By the generalized Minkowski
nequality, for any n ⩾ 2 we also have the estimate

E
[
∥Ss,t (ς )(x)∥n]2/n

⩽ c1,n

∫
[s,t]

E
[
∥Σs,u,t (x)∥2] du + c2,n

∫
[s,t]2

E
[
∥DvΣs,u,t (x)∥n]2/n du dv

(5.8)

bserve that for any n ⩾ 2 we have

(M)n H⇒ |||ς (x)|||n ⩽ κn (∥ς (0)∥ + ∥∇ς∥) (1 ∨ ∥x∥)

The main objective of this section is to prove the following theorem.

Theorem 5.2. Assume that (M)2n/δ and (T )2n/(1−δ) are satisfied for some parameter n ⩾ 2
and some δ ∈]0, 1[. In this situation, we have the uniform estimate

E
[
∥Ss,t (ς )(x)∥n]1/n

⩽ κδ,n |||ς (x)|||2n/δ (1 ∨ ∥x∥) (5.9)

or uniformly bounded diffusion functions (ς, σ, σ ) whenever (T )2n is met for some n ⩾ 2 we
ave

E
[
∥Ss,t (ς )(x)∥n]1/n

⩽ κn (∥ς∥ + ∥∇ς∥) (5.10)

n addition, for constant diffusion functions (ς, σ, σ ) whenever (T )2 is met, for any n ⩾ 2 we
ave the uniform estimate

E
[
∥S (ς )(x)∥n]1/n

⩽ κ ∥ς∥ (5.11)
s,t n
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The proof of the above theorem, including a more detailed description of the parameters
δ,n and κn is provided below.

Next, we estimate the Ln-norm of the Malliavin differential DvΣs,u,t (x) in the two cases
(s ⩽ u ⩽ v ⩽ t) and (s ⩽ v ⩽ u ⩽ t).

Case (s ⩽ u ⩽ v ⩽ t)
Using (5.6) we have

∥DvΣs,u,t (x)∥ ⩽ c ∥ςu(X s,u(x))∥ ∥(Dv∇ Xu,t )(X s,u(x))∥

sing (2.25) and (2.26) this yields the estimate

∥DvΣs,u,t (x)∥ ⩽ c1 Is,u,t (x) + c2 Js,u,t (x)

ith the functions
Is,u,t (x) := ∥∇σ∥ ∥ςu(X s,u(x))∥ ∥(∇ Xu,v)(X s,u(x))∥ ∥(∇ Xv,t )(Z s,v

u (x))∥

Js,u,t (x) := ∥σv(Z s,v
u (x))∥ ∥ςu(X s,u(x))∥ ∥(∇ Xu,v)(X s,u(x))∥ ∥(∇2 Xv,t )(Z s,v

u (x))∥

In the above display, Z s,v
u (x) stands for the interpolating flow defined in (1.13).

• Firstly assume that ∥ς∥ ∨ ∥σ∥ < ∞ and (T )2n is satisfied for some parameter n ⩾ 1. In
this situation, applying Propositions 3.2 and 3.3, for any ϵ ∈]0, 1[ we have the uniform
estimates

E
(
∥DvΣs,u,t (x)∥n)1/n

⩽ ∥ς∥ χn,ϵ(b, σ ) exp (−(1 − ϵ)λA(2n)(t − u))

with the parameter χn,ϵ(b, σ ) given by

χn,ϵ(b, σ ) := c [∥σ∥ ∨ ∥∇σ∥]
[

1 +
1
ϵ

n
λA(2n)

χ (b, σ )
]

with χ (b, σ ) given in (2.7).

• More generally, when ∥∇ς∥ ∨ ∥∇σ∥ < ∞ the functions ςt (x) and σt (x) may grow at
the most linearly with respect to ∥x∥. Assume that conditions (M)2n/δ and condition
(T )2n/(1−δ) are satisfied for some parameters n ⩾ 1 and δ ∈]0, 1[. In this situation,
applying Hölder inequality we check that

E
(
∥Is,u,t (x)∥n)1/n

⩽ c ∥∇σ∥ E
(
∥ςu(X s,u(x))∥n/δ)δ/n

×E
(
∥(∇ Xu,v)(X s,u(x))∥2n/(1−δ))(1−δ)/(2n) E

(
∥(∇ Xv,t )(Z s,v

u (x))∥2n/(1−δ))(1−δ)/(2n)

Applying Proposition 3.2 we check that

E
(
∥Is,u,t (x)∥n)1/n

⩽ cn,δ ∥∇σ∥ |||ς (x)|||n/δ e−λA(2n/(1−δ))(t−u)

In the same vein, combining Propositions 3.2 and 3.3 with the uniform moment estimates
(2.12) we check that

E
(
∥Js,u,t (x)∥n)1/n

⩽ cn,δ [∥σ (0)∥ + ∥∇σ∥]
1
ϵ

χ (b, σ )
λA(2n/(1 − δ))

× |||ς (x)|||2n/δ [1 + ∥x∥] e−(1−ϵ)λA(2n/(1−δ))(t−u)

We conclude that

E
(
∥DvΣs,u,t (x)∥n)1/n

⩽ χn,δ,ϵ(b, σ ) |||ς (x)|||2n/δ [1 + ∥x∥] e−(1−ϵ)λA(2n/(1−δ))(t−u)

with the parameter

χn,δ,ϵ(b, σ ) := cn,δ [∥σ (0)∥ + ∥∇σ∥]
(

1 +
1 χ (b, σ )

)

ϵ λA(2n/(1 − δ))
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Case (s ⩽ v ⩽ u ⩽ t)
We use (5.7) to check that

∥DvΣs,u,t (x)∥ ⩽ ∥[Dv

(
ςu ◦ X s,u

)
](x)∥ ∥

(
∇ Xu,t

)
(X s,u(x))∥

+ ∥[DvX s,u](x) ⊗ ςu(X s,u)(x)∥ ∥
(
∇

2 Xu,t
)

(X s,u(x))∥

On the other hand, using the chain rules (2.25) we have

DvX s,u :=
(
DvX s,v

) [(
∇ Xv,u

)
◦ X s,v

]
Dv

(
ςu ◦ X s,u

)
= (DvX s,u)

[
(∇ςu) ◦ X s,u

]
his yields the estimate

∥DvΣs,u,t (x)∥ ⩽ c1 ∥σ v(X s,v(x))∥ ∥∇ς∥ ∥(∇ Xv,u)(X s,v(x))∥ ∥
(
∇ Xu,t

)
(X s,u(x))∥

+ c2 ∥σ v(X s,v(x))∥ ∥ςu(X s,u(x))∥ ∥(∇ Xv,u)(X s,v(x))∥ ∥
(
∇

2 Xu,t
)

(X s,u(x))∥

• Firstly assume that ∥ς∥ ∨ ∥σ∥ < ∞ and condition (T )2n is satisfied for some n ⩾ 1. In
this situation, arguing as above for any ϵ ∈]0, 1[ we have the uniform estimates

E
(
∥DvΣs,u,t (x)∥n)1/n

⩽ (∥ς∥ + ∥∇ς∥) χn,ϵ(b, σ ) exp
(
−(1 − ϵ)λA,A(2n)(t − v)

)
for some universal constant c and the parameter χn,ϵ(b, σ ) given by

χn,ϵ(b, σ ) := c ∥σ∥

[
1 +

1
ϵ

n
λA,A(2n)

χ (b, σ )
]

with χ (b, σ ) given in (2.7).

• More generally assume that ∥∇ς∥ ∨ ∥∇σ∥ < ∞. Also assume that conditions (M)2n/δ

and (T )2n/(1−δ) are satisfied for some parameters n ⩾ 1 and δ ∈]0, 1[. In this situation,
we have

E
(
∥DvΣs,u,t (x)∥n)1/n

⩽ χn,δ,ϵ(b, σ, σ ) |||ς (x)|||2n/δ [1 + ∥x∥] e−(1−ϵ)λA,A(2n/(1−δ))(t−v)

with the parameter

χn,δ,ϵ(b, σ, σ ) := cn,δ [∥σ (0)∥ + ∥∇σ∥]
(

1 +
1
ϵ

χ (b, σ )
λA,A(2n/(1 − δ))

)
he end of the proof of Theorem 5.2 is a direct consequence of the estimates discussed above
ombined with (5.8) and the diagonal estimates presented in (5.4). ■

.3. Some extensions

This section is concerned with the two-sided stochastic integral (4.6). Using the gradient
ormula in (4.7) the Skorohod stochastic integral in (4.6) takes the form

Ss,t ( f,∆σ )(x) =

∫ t

s
Σs,u,t ( f )(x) dWu

ith the integrands

Σs,u,t ( f )(x) := ∇ f (Z s,t
u (x))′ Σs,u,t (x) and

Σs,u,t (x) :=

[(
∇ Xu,t

)′
◦ X s,u

] [
∆σu ◦ X s,u

]
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As in (2.26), using the chain rule properties of Malliavin derivatives we check that

Di
vΣs,u,t ( f ) =

(
Di
v∇ f (Z s,t

u )′
)
Σs,u,t + ∇ f (Z s,t

u )′ Di
vΣs,u,t

s well as

Di
v∇ f (Z s,t

u )′ = ∇
2 f (Z s,t

u )′ Di
vZ s,t

u

his yields the differential formula

Di
vΣs,u,t ( f ) = ∇ f (Z s,t

u )′ Di
vΣs,u,t + ∇

2 f (Z s,t
u )′ (Di

vZ s,t
u ) Σs,u,t

he Malliavin derivatives Di
vΣs,u,t are computed using formulae (5.6) and (5.7); thus, it remains

o compute the Malliavin derivatives DvZ s,t
u of the interpolating path.

• When u ⩽ v we have

Z s,t
u = (Xv,t ◦ Xu,v) ◦ X s,u = Xv,t ◦ Z s,v

u

n this situation, as in (2.25) using the chain rule properties of Malliavin derivatives we check
hat

DvZ s,t
u = DvZ s,v

u ((∇ Xv,t ) ◦ Z s,v
u ) = ((DvXu,v) ◦ X s,u) ((∇ Xv,t ) ◦ Z s,v

u )

y (2.24) we conclude that

DvZ s,t
u = (σv ◦ Z s,v

u ) ((∇ Xv,t ) ◦ Z s,v
u )

• When v ⩽ u we have

Z s,t
u = Xu,t ◦ (Xv,u ◦ X s,v) = Z v,tu ◦ X s,v

In this situation, arguing as above we check that

DvZ s,t
u = DvX s,v ((∇Z v,tu ) ◦ X s,v) = DvX s,v ((∇ Xv,u) ◦ X s,v) ((∇ Xu,t ) ◦ X s,u)

By (2.24) we conclude that

DvZ s,t
u = (σ v ◦ X s,v) ((∇ Xv,u) ◦ X s,v) ((∇ Xu,t ) ◦ X s,u)

. Some anticipative calculus

For clarity and to avoid unnecessary sophisticated multi-index notation, we only consider
ne dimensional model. The proof of the results presented in this section in the general case
an be reproduced word-for-word for multidimensional models.

To simplify the presentation, we write ∂n f the derivative of order n ⩾ 1 of a smooth
unction f . We also set Ys,t (x) := X s,t (x). We also reduce the analysis to the unit interval. In

this context, for any t ∈ [0, 1] we set

Yt := Y0,t and X t
:= X t,1 (6.1)

.1. Extended two-sided stochastic integrals

The aim of this section is to extend the two-sided stochastic integration introduced in [49] to
korohod integrals of the form (4.3), for some time homogeneous function ςu = ς satisfying

(5.1). For any t ∈ [0, 1] we set

Φ(X t , Y (x)) := ∂X t (Y (x)) ς (Y (x)) (6.2)
t t t
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In this notation the limiting integral in (4.3) takes formally the following form

S0,1(ς )(x) :=

∫ 1

0
Φ(X t , Yt (x)) dWt

he existence of this two-sided stochastic integral is discussed below in (6.4).
To simplify the presentation, we fix the state variable x and we write Yt and Φ(X t , Yt )

instead of Yt (x) and Φ(X t , Yt (x)). Next technical lemma provided a more explicit description
of the Malliavin derivatives of the processes Φ(X t , Yt ).

Lemma 6.1. For any s < t we have

Ds Φ(X t , Yt ) =
[
∂((∂X t ) ◦ Ys,t )(Ys) (ς ◦ Ys,t )(Ys)

+ ((∂X t ) ◦ Ys,t )(Ys) × ∂(ς ◦ Ys,t )(Ys)
]
σ (Ys)

n addition, we have

Dt Φ(X s, Ys) =
[
∂((∂X t ) ◦ Xs,t )(Ys) (σ ◦ Xs,t )(Ys)

+ ∂(X t
◦ Xs,t )(Ys) ∂σ (Xs,t (Ys))

]
ς (Ys)

Proof. Using the chain rules properties, for any s < t we have

Ds Φ(X t , Yt ) = Ds
(
(∂X t )(Ys,t (Ys)) (ς ◦ Ys,t )(Ys)

)
= Ds

(
(∂X t

◦ Ys,t )(Ys)
)

(ς ◦ Ys,t )(Ys) + (∂X t
◦ Ys,t )(Ys) Ds(ς ◦ Ys,t )(Ys)

he end of the proof of the first assertion comes from the fact that

Ds
(
(∂X t

◦ Ys,t )(Ys)
)

= ∂(∂X t
◦ Ys,t )(Ys) DsYs with DsYs = σ (Ys)

n the same vein, we have

Ds(ς ◦ Ys,t )(Ys) = ∂(ς ◦ Ys,t )(Ys) σ (Ys)

We also have that
Dt Φ(X s, Ys) = Dt

(
(∂X s)(Ys) ς (Ys)

)
= Dt

(
∂(X t

◦ Xs,t )(Ys)
)
ς (Ys) = Dt

((
(∂X t ) ◦ Xs,t

)
(Ys) (∂Xs,t )(Ys)

)
ς (Ys)

The last assertion comes from the fact that
Dt
((

(∂X t ) ◦ Xs,t
)

(Ys) (∂Xs,t )(Ys)
)

= Dt
(
(∂X t ) ◦ Xs,t

)
(Ys) (∂Xs,t )(Ys) +

(
(∂X t ) ◦ Xs,t

)
(Ys) Dt (∂Xs,t )(Ys)

The r.h.s. term in the above display can be rewritten as follows

Dt (∂Xs,t )(Ys) = ∂σ (Xs,t (Ys)) (∂Xs,t )(Ys)
H⇒ ((∂X t ) ◦ Xs,t )(Ys) Dt (∂Xs,t )(Ys) = ∂(X t

◦ Xs,t )(Ys) ∂σ (Xs,t (Ys))

In the same vein, we have

Dt
(
(∂X t ) ◦ Xs,t

)
(Ys) = ((∂2 X t ) ◦ Xs,t )(Ys) Dt Xs,t (Ys)

= ((∂2 X t ) ◦ Xs,t )(Ys) σ (Xs,t (Ys))

H⇒ Dt
(
(∂X t ) ◦ Xs,t

)
(Ys) (∂Xs,t )(Ys) = ∂((∂X t ) ◦ Xs,t )(Ys) σ (Xs,t (Ys))

This ends the proof of the second assertion. The proof of the lemma is now completed. ■

Next proposition extends Proposition 3.3 in [49] to stochastic processes of the form (6.2).
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Proposition 6.2. Let [0, 1]h be any refining sequence of partitions of the unit interval. For
any h > 0 we define

Sh(Φ) :=

∑
t∈[0,1]h

Φ(X t+h, Yt ) (Wt+h − Wt )

Then Sh(Φ) is a Cauchy sequence in L2(Ω ). In addition, for any decreasing sequence of time
steps h1 > h2 we have the formula

lim
h1→0

E
(
Sh1 (Φ) Sh2 (Φ)

)
= E

(∫ 1

0
Φ(X t , Yt )2 dt +

∫
[0,1]2

Ds Φ(X t , Yt ) Dt Φ(X s, Ys) ds dt
) (6.3)

Before entering into the details of the proof of the proposition, we give a couple of
comments. The hypothesis that [0, 1]h is a refining sequence indexed by h is not essential
ut it simplifies the proof of the proposition, see for instance Lemma 3.1.1 in [43]. Arguing as
n the proof of Theorems 3.3 and 7.1 in [49], itself based on Proposition 3.1 in [45], the above
roposition ensures that the two-sided integral defined by the L2(Ω )-limit coincides with the
korohod integral of the process Φ(X t , Yt ) over the unit interval; that is, we have that∫ 1

0
Φ(X t , Yt ) dWt := L2 − lim

h→0

∑
t∈[0,1]h

Φ(X t+h, Yt ) (Wt+h − Wt ) (6.4)

From Lemma 6.1, all the n-absolute moments of the Malliavin derivatives Ds Φ(X t , Yt ) are
finite with at most quadratic growth w.r.t. the initial values. This clearly ensures the Skorohod
integrability of the integrand in the l.h.s. of (6.4). In this context, Proposition 6.2 can be
interpreted as a version of the isometry property (2.27) for the generalized two-sided integral
defined above.

Remark 6.3. Besides the fact that the Skorohod integrand Φ(X t , Yt ) in (6.2) has a somehow
different structure than the models discussed in [49], we shall see in the proof of Proposition 6.2
that the analysis developed in [49] can be adapted without too much work to analyze this
class of stochastic flows. We also mention that the existence of the n-absolute moments
of the Malliavin derivatives Ds Φ(X t , Yt ) simplifies the analysis developed in [49] for only
mean-square differentiable stochastic flows.

Proof of Proposition 6.2. We fix h1 > h2 and we assume that [0, 1]h2 is a refinement of
[0, 1]h1 . For any (s, t) ∈ ([0, 1]h1 × [0, 1]h2 ) we also set

Π
h1,h2
s,t := Φ(X s+h1 , Ys) Φ(X t+h2 , Yt ) (Ws+h1 − Ws) (Wt+h2 − Wt )

With a slight abuse of notation we set

∆Ws := (Ws+h1 − Ws) and ∆Wt := (Wt+h2 − Wt )

• For any overlapping pair s < t < t + h2 < s + h1 using the decomposition

∆Ws = (Ws+h1 − Wt+h2 ) + ∆Wt + (Wt − Ws)

we have
E
(
Φ(X s+h1 , Ys) Φ(X t+h2 , Yt ) ∆Wt ∆Ws | Wt ∨ W t+h2

)
s+h1 t+h2
= Φ(X , Ys) Φ(X , Yt ) h2
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It follows from the continuity properties of the processes that

E

⎛⎝ ∑
s<t<t+h2<s+h1

Π
h1,h2
s,t

⎞⎠ −→h1→0 E
(∫ 1

0
Φ(X t , Yt )2 dt

)
• When s + h1 < t we have

∂X s+h1 = ∂(X t
◦ Xs+h1,t )

= ∂(X t+h2 ◦ Xs+h1,t ) +
((
∂X t

− ∂X t+h2
)
◦ Xs+h1,t

)
× ∂Xs+h1,t

n the other hand, we have the decomposition

∂X t
− ∂X t+h2 =

(
(∂X t+h2 ) ◦ X t,t+h2

)
× ∂X t,t+h2 − ∂X t+h2

=
(
(∂X t+h2 ) ◦ (I + ∆X t ) − ∂X t+h2

)
+ ∂X t+h2 × ∆X ′

t

+
(
(∂X t+h2 ) ◦ (I + ∆X t ) − ∂X t+h2

)
× ∆X ′

t

ith the increment functions

∆X ′

t := ∂X t,t+h2 − 1 and ∆X t := X t,t+h2 − I

With a slight abuse of notation, we shall denote by O(h p) some possible random variable with
ny n-absolute moment of order h p, for some p > 0 with 0 < h < 1. In this notation, we have

∆X ′

t (x) =

∫ t+h2

t
∂σ (X t,u(x)) ∂X t,u(x) dWu + O(h2) = O(h1/2

2 )

∆X t (x) =

∫ t+h2

t
σ (X t,u(x)) dWu + O(h2) = O(h1/2

2 )

iven a smooth function θ we set

∂nθ (x, y) :=

∫ 1

0

(1 − ϵ)n−1

(n − 1)!
θ ′′(x + ϵy) dϵ

n this notation, we have the first and second order decompositions(
(∂X t+h2 ) ◦ (I + ∆X t ) − ∂X t+h2

)
(x)

= (∂2 X t+h2 )(x,∆X t (x)) ∆X t (x)
= (∂2 X t+h2 )(x) ∆X t (x) + (∂3 X t+h2 )(x,∆X t (x)) ∆X t (x)2

his implies that

(∂X t
− ∂X t+h2 )(x)

= (∂2 X t+h2 )(x) ∆X t (x) + ∂X t+h2 (x) × ∆X ′
t (x)

+ (∂3 X t+h2 )(x,∆X t (x)) ∆X t (x)2
+ (∂2 X t+h2 )(x,∆X t (x)) ∆X t (x) × ∆X ′

t (x)

rom which we conclude that
∂X s+h1 = ∂(X t+h2 ◦ Xs+h1,t )

+
[
∂((∂X t+h2 ) ◦ Xs+h1,t ) × ((∆X t ) ◦ Xs+h1,t ) + ∂(X t+h2 ◦ Xs+h1,t )

× ((∆X ′
t ) ◦ Xs+h1,t )

]
+ O(h2)

This yields the first order decomposition

Φ(X s+h1 , Ys)
0 1 2 ′
= ψs,t (Ys) + ψs,t (Ys) ((∆X t ) ◦ Xs+h1,t )(Ys) + ψs,t (Ys) ((∆X t ) ◦ Xs+h1,t )(Ys) + O(h2)
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with the functions

ψ0
s,t (Ys) := ∂(X t+h2 ◦ Xs+h1,t )(Ys) ς (Ys)

ψ1
s,t (Ys) := ∂((∂X t+h2 ) ◦ Xs+h1,t )(Ys) ς (Ys) and

ψ2
s,t (Ys) := ∂(X t+h2 ◦ Xs+h1,t )(Ys) ς (Ys)

Notice that none of the functions but the increment functions (∆X t ) and (∆X ′
t ) depend on

Wt,t+h2 , nor on Ws,s+h1 .
In the reverse angle, we have

(∂X t+h2 ) ◦ Yt

= (∂X t+h2 ) ◦ (Ys+h1,t ◦ Ys)

+
[
((∂X t+h2 ) ◦ Ys+h1,t ) ◦ (I + ∆Ys) − ((∂X t+h2 ) ◦ Ys+h1,t )

]
◦ Ys

with

∆Ys := (Ys,s+h1 − I ) H⇒ Ys+h1 = (I + ∆Ys) ◦ Ys

Arguing as above, we have[
((∂X t+h2 ) ◦ Ys+h1,t ) ◦ (y + ∆Ys(y)) − ((∂X t+h2 ) ◦ Ys+h1,t )(y)

]
= ∂((∂X t+h2 ) ◦ Ys+h1,t )(y) ∆Ys(y) + ∂2((∂X t+h2 ) ◦ Ys+h1,t )(y,∆Ys(y)) (∆Ys(y))2

We conclude that

(∂X t+h2 ) ◦ Yt

= (∂X t+h2 ) ◦ (Ys+h1,t ◦ Ys) + ∂((∂X t+h2 ) ◦ Ys+h1,t )(Ys) ((∆Ys) ◦ Ys) + O(h1)

In the same vein, we have

ς ◦ Yt = (ς ◦ Ys+h1,t ◦ Ys) + ∂(ς ◦ Ys+h1,t )(Ys) ((∆Ys) ◦ Ys) + O(h1)

Multiplying these terms, we check that

Φ(X t+h2 , Yt ) = Ψ 0
s,t (Ys) + Ψ 1

s,t (Ys) ((∆Ys) ◦ Ys) + O(h1)

with the functions

Ψ 0
s,t (Ys) := ((∂X t+h2 ) ◦ Ys+h1,t )(Ys) × (ς ◦ Ys+h1,t )(Ys)

Ψ 1
s,t (Ys) :=

[
∂((∂X t+h2 ) ◦ Ys+h1,t )(Ys) × (ς ◦ Ys+h1,t )(Ys)

+ ((∂X t+h2 ) ◦ Ys+h1,t )(Ys) × ∂(ς ◦ Ys+h1,t )(Ys)
]

None of the functions but the increment ∆Ys depend on Ws,s+h1 , nor on Wt,t+h2 .
Recall that the functions Φ(X t+h2 , Yt ) and ψ0

s,t (Ys) do not depend on ∆Wt . In addition, the
functions Φ(X s+h1 , Ys) and Ψ 0

s,t (Ys) do not depend on ∆Ws . This yields the formula

E
(
Φ(X s+h1 , Ys) Φ(X t+h2 , Yt ) ∆Ws ∆Wt

)
= E

([
Φ(X s+h1 , Ys) − ψ0

s,t (Ys)
] [

Φ(X t+h2 , Yt ) − Ψ 0
s,t (Ys)

]
∆Ws ∆Wt

)
= E

(
Ψ 1

s,t (Ys) ψ1
s,t (Ys) [((∆Ys) ◦ Ys) ∆Ws]

[
((∆X t ) ◦ Xs+h1,t )(Ys) ∆Wt

])
+ E

(
Ψ 1

s,t (Ys) ψ2
s,t (Ys) [((∆Ys) ◦ Ys) ∆Ws]

[
((∆X ′

t ) ◦ Xs+h1,t )(Ys) ∆Wt
])

+ O
(

h2+1/2
)

1
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To take the final step, observe that

E (∆Ys(y) ∆Ws)

= E
(∫ s+h1

s
b(Ys,u(y)) (Ws+h1 − Wu) du

)
+ E

(∫ s+h1

s
σ (Ys,u(y)) du

)
= E

(∫ s+h1

s
σ (Ys,u(y)) du

)
+ O

(
h1+1/2

1

)
In the same vein, we have

E
(
(∆X t )(Xs+h1,t (y)) ∆Wt | Ws+h1,t

)
= E

(∫ t+h2

t
σ (Xs+h1,u(y)) du | Ws+h1,t

)
+ O

(
h1+1/2

2

)
and

E
(
(∆X ′

t )(Xs+h1,t (y)) ∆Wt | Ws+h1,t
)

= E
(∫ t+h2

t
∂σ (Xs+h1,u(y)) (∂X t,u)(Xs+h1,t (y)) du

)
+ O

(
h1+1/2

2

)
= E

(∫ t+h2

t
∂
(
σ ◦ X t,u

)
(Xs+h1,t (y)) du

)
+ O

(
h1+1/2

2

)
his shows that

h−1
1 h−1

2 E
(
Φ(X s+h1 , Ys) Φ(X t+h2 , Yt ) ∆Ws ∆Wt

)
= E

(
Ψ 1

s,t (Ys) ψ1
s,t (Ys) h−1

1

[∫ s+h1

s
σ (Yu) du

]
h−1

2

[∫ t+h2

t
σ (Xs+h1,u(Ys)) du

])
+ E

(
Ψ 1

s,t (Ys) ψ2
s,t (Ys) h−1

1

[∫ s+h1

s
σ (Yu) du

]
h−1

2

×

[∫ t+h2

t
∂
(
σ ◦ X t,u

)
(Xs+h1,t (Ys)) du

])
+ O

(
h1/2

1

)
t follows that

lim
h1→0

E

⎛⎝ ∑
s+h1<t

Π
h1,h2
s,t

⎞⎠
= E

(∫ 1

0

∫ t

0

[
∂((∂X t ) ◦ Ys,t )(Ys) (ς ◦ Ys,t )(Ys)

+ ((∂X t ) ◦ Ys,t )(Ys) × ∂(ς ◦ Ys,t )(Ys)
]
σ (Ys)

×
[
∂((∂X t ) ◦ Xs,t )(Ys) σ (Xs,t (Ys)) + ∂(X t

◦ Xs,t )(Ys) ∂σ (Xs,t (Ys))
]
ς (Ys) ds dt

)
We end the proof of (6.3) using Lemma 6.1 and symmetry arguments. This ends the proof of
the proposition. ■

6.2. Generalized backward Itô–Ventzell formula

This section is mainly concerned with the proof of Theorem 1.1. Before entering into the
details of the proof we discuss how it applies to the process (X t , Y ) introduced in (6.1).
t
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Consider the random fields

Ft (x) := X t (x) H⇒ ∂Ft = ∂X t and ∂2 Ft = ∂2 X t

G t (x) := ∂X t (x) b(x) +
1
2
∂2 X t (x) a(x) and Ht (x) := ∂X t (x) σ (x) (6.5)

n this notation, the backward random field formula (4.1) with t ∈ [0, 1] takes the form

Ft (x) := F1(x) +

∫ 1

t
Gs(x) ds +

∫ 1

t
Hs(x) dWs with F1(x) = x (6.6)

e fix some given Y0 = y ∈ R and we write Yt instead of Yt (y) and set

(Au, Bu,Σu) :=
(
a(Yu), b(Yu), σ (Yu)

)
In this notation, we have

Yt = y +

∫ t

0
Bu du +

∫ t

0
Σu dWu (6.7)

bserve that Bu,Σu as well as the Malliavin derivatives DvΣu = ∂σ (Yu) DvYu have moments
of any order. Consider the processes

Ut := ∂Ft (Yt ) Bt +
1
2
∂2 Ft (Yt ) At − G t (Yt )

= ∂X t (Yt ) (b − b)(Yt ) +
1
2
∂2 X t (Yt ) (a − a)(Yt )

Vt := ∂Ft (Yt ) Σt − Ht (Yt ) = ∂X t (Yt ) (σ − σ )(Yt ) with At := Σ 2
t

n this notation, up to a change of sign and replacing x by Y0 in (1.10) the stochastic
nterpolation formula stated in Theorem 1.2 on the unit interval takes the following form

F1(Y1) − F0(Y0) =

∫ 1

0
Us ds +

∫ 1

0
Vs dWs

More generally, suppose we are given a forward real valued continuous semi-martingale Yt

of the form (6.7) for some W0,t -adapted functions Bt and Σt , and a backward random field
models of the form (6.6) for some Wt,1-adapted functions Ft (x),G t (x), Ht (x).

We consider the following conditions:
(H1)′: The functions Ft (x), G t (x) and Ht (x) as well as the differentials ∂Ht (x) and ∂2 Ft (x)

are continuous w.r.t. (t, x) for any given ω ∈ Ω . In addition, for any n ⩾ 1 we have

sup
|y|⩽n

(|Ft (Yt + y)| ∨ |Ht (Yt + y)| ∨ |G t (Yt + y)|) ⩽ gn(t)

sup
|y|⩽n

(
|∂Ht (Yt + y)| ∨ |∂Ft (Yt + y)| ∨ |∂2 Ft (Yt + y)|

)
⩽ gn(t)

with E
(∫ 1

0
g4

n(t) dt
)
< ∞

(6.8)

(H2)′: The Malliavin derivatives Ds∂Ft (x) and Ds Ht (x) are continuous w.r.t. x and (s, t)
or any given ω ∈ Ω . In addition, for any n ⩾ 1 we have

sup
|y|⩽n

(|(Ds Ft )(Yt + y)| ∨ |(Ds Ht )(Yt + y)|) ⩽ hn(s, t)

sup|y|⩽n (|(Ds∂Ft )(Yt + y)|) ⩽ hn(s, t)

with E
(∫

h4
n(s, t) dsdt

)
< ∞

(6.9)
[0,1]2
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(H3): The random processes Bu,Σu as well as DvΣu are continuous w.r.t. the time parameter
and they have moments of any order.

The next theorem is a slight extension of Theorem 1.1 applied to the semi-martingale and
the random fields models discussed in (6.7) and (6.5).

Theorem 6.4. Consider a backward random field models of the form (6.6) for some functions
Ft (x),G t (x), Ht (x) satisfying (H1)′ and (H2)′. Also let Yt be a continuous semi-martingale of
the form (6.7) functions and assume that Bt and Σt satisfy (H3). In this situation, for any
∈ [0, 1] we have the generalized backward Itô–Ventzell formula

Ft (Yt ) − F0(Y0)

=

∫ t

0

(
∂Fs(Ys) Bs +

1
2
∂2 Fs(Ys) As − Gs(Ys)

)
ds

+

∫ t

0
(∂Fs(Ys) Σs − Hs(Ys)) dWs

(6.10)

he r.h.s. term in the above display is understood as a Skorohod integral.

roof. We use the same approximation technique as in [13,47,48] (see also the proof of
heorem 3.2.11 in [43]). Consider a mollifier type approximation of the identify given for
ny ϵ > 0 by the function

ϕϵ(x) := ϕ(x/ϵ)/ϵ for some smooth compactly supported function ϕ

s.t.
∫

∞

−∞
ϕ(x)dx = 1.

For any x , applying the Itô-type change rule formula stated in Proposition 8.2 in [44] to the
roduct function

Γ (X t (x), ϕϵ(Yt − x)) := X t (x) ϕϵ(Yt − x)

e check that

(Ft (x) ϕϵ(Yt − x)) − (F0(x) ϕϵ(Y0 − x)) =

∫ t

0
uϵs (x) ds +

∫ t

0
vϵs (x) dWs (6.11)

ith

uϵs (x) := Fs(x) ∂ϕϵ(Ys − x) Bs +
1
2

Fs(x) ∂2ϕϵ(Ys − x) As − ϕϵ(Ys − x) Gs(x)

vϵs (x) := Fs(x) ∂ϕϵ(Ys − x) Σs − ϕϵ(Ys − x) Hs(x)

he stochastic integral in the r.h.s. of (6.11) can be interpreted as a two-sided stochastic integral.
ecalling that

Dtϕϵ(Ys − x) = Dt Ys ∂ϕϵ(Ys − x)

e check that

Dtv
ϵ
s (x) = Dt Fs(x) ∂ϕϵ(Ys − x) Σs + Fs(x) Dt Ys ∂

2ϕϵ(Ys − x) Σs

+ Fs(x) ∂ϕϵ(Ys − x) DtΣs − Dt Ys ∂ϕϵ(Ys − x) Hs(x)

−ϕϵ(Ys − x) Dt Hs(x)
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Condition (H3) ensures that the processes Yt and Dt Ys have moments of any order. In addition,
nder the regularity conditions (H1)′ and (H2)′ we check that∫

E
(∫ t

0
uϵs (x)2 ds

)
dx < ∞ and

∫
E

([∫ t

0
vϵs (x) dWs

]2
)

dx < ∞

pplying the Fubini theorem for Skorohod and measure theory integrals (see for instance [36,
3,50] and the work by Leon [40]) we check that

Fϵ
t (Yt ) :=

∫
Ft (x) ϕϵ(Yt −x) dx =

∫
F0(x) ϕϵ(Y0 −x) dx +

∫ t

0
U ϵ

s ds =

∫ t

0
V ϵ

s dWs

ith

U ϵ
s :=

∫
uϵs (x) dx and V ϵ

s :=

∫
vϵs (x) dx

ntegrating by parts where derivatives of ϕϵ appear we check that

U ϵ
s :=

∫ (
∂Fs(x) Bs +

1
2
∂2 Fs(x) As − Gs(x)

)
ϕϵ(Ys − x) dx

V ϵ
s :=

∫
(∂Fs(x) Σs − Hs(x)) ϕϵ(Ys − x) dx

rom the a.s. continuity of Ft (x) in x for each t ⩾ 0, we have

Fϵ
t (Yt ) − Ft (Yt ) =

∫
(Ft (Yt − ϵ x) − Ft (Yt )) ϕ(x) dx −→ϵ→0 0

he functions ∂Ft (x), ∂2 Ft (x) and G t (x) are almost surely continuous w.r.t. x and uniformly
ocally bounded. In addition, the random variables At and Bt are integrable at any order.

oreover, under (H1)′ there exists some parameter n ⩾ 0 depending on the support of ϕ
uch that for any ϵ > 0 we have the estimate

|U ϵ
s | ⩽ sup

|y|⩽n
|∂Fs(Ys + y)| |Bs | +

1
2

sup
|y|⩽n

|∂2 Fs(Ys + y)| |As | + sup
|y|⩽n

|Gs(Ys + y)|

⩽ gn(t) (1 + |As | + |Bs |)

hus, by the dominated convergence theorem on (Ω × [0, 1]) equipped with the measure
P(dω) ⊗ dt) we have∫ t

0
U ϵ

s ds −→ϵ→0

∫ t

0
Us ds as well as Fϵ

t (Yt ) −→ϵ→0 Ft (Yt )

t remains to check that

E(
∫ t

0
(V ϵ

s − Vs)2 ds) + E
(∫

[0,t]2
(Dr V ϵ

s − Dr Vs) (Ds V ϵ
r − Ds Vr ) dr ds

)
−→ϵ→0 0
(6.12)
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Observe that∫ t

0
(V ϵ

s − Vs)2 ds

⩽ 2
∫ t

0

∫
(∂Fs(x) − ∂Fs(Ys))2 Σ 2

s ϕϵ(Ys − x) dx ds

+ 2
∫ t

0
(Hs(x) − Hs(Ys))2 ϕϵ(Ys − x) dx ds

Using the chain rule property we have

Dt V ϵ
s

:=

∫
Dt (∂Fs(x) Σs − Hs(x)) ϕϵ(Ys − x) dx

+

∫
(∂Fs(x) Σs − Hs(x)) Dtϕϵ(Ys − x) dx

ntegrating by parts, we check that

Dt V ϵ
s =

∫ [
Dt (∂Fs(x) Σs − Hs(x)) +

(
∂2 Fs(x) Σs − ∂Hs(x)

)
Dt Ys

]
ϕϵ(Ys − x) dx

bserve that
Dt (∂Fs(x) Σs − Hs(x)) +

(
∂2 Fs(x) Σs − ∂Hs(x)

)
Dt Ys

= ((Dt∂Fs)(x) + ∂2 Fs(x) Dt Ys) Σs + ∂Fs(x) DtΣs − ((Dt Hs)(x) + ∂Hs(x) Dt Ys)

n the other hand, we have
Dt Vs = Dt (∂Fs(Ys)) Σs + ∂Fs(Ys) DtΣs − Dt (Hs(Ys))

=
(
(Dt∂Fs)(Ys) + ∂2 Fs(Ys) Dt Ys

)
Σs + ∂Fs(Ys) DtΣs

− ((Dt Hs)(Ys) + ∂Hs(Ys) Dt Ys)

rguing as above, we have the estimate

E
(∫

[0,1]2
(Dr V ϵ

s − Dr Vs) (Ds V ϵ
r − Ds Vr ) dr ds

)
⩽ 2 E

(∫
[0,1]2

(Dt V ϵ
s − Dt Vs)2 ds dt

)
⩽ 24

∑
1⩽i⩽5

Ji (ϵ)

n the above display, Ji (ϵ) stands for the sequences

J1(ϵ) := E
(∫

[0,1]2×R
(∂Fs(x) − ∂Fs(Ys))2 (DtΣs)

2 ϕϵ(Ys − x) ds dt dx
)

J2(ϵ) := E
(∫

[0,1]2×R
(∂Hs(x) − ∂Hs(Ys))2 (Dt Ys)2 ϕϵ(Ys − x) ds dt dx

)
J3(ϵ) := E

(∫
[0,1]2×R

(
∂2 Fs(x) − ∂2 Fs(Ys)

)2
(Dt Ys)2 As ϕϵ(Ys − x) ds dt dx

)
he last two terms depend on the Malliavin derivatives of ∂Fs and Hs are they are given by

J4(ϵ) := E
(∫

[0,1]2×R
((Dt∂Fs)(x) − (Dt∂Fs)(Ys))2 As ϕϵ(Ys − x) ds dt dx

)
J5(ϵ) := E

(∫
((Dt Hs)(x) − (Dt Hs)(Ys))2 ϕϵ(Ys − x) ds dt dx

)

[0,1]2×R
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Arguing as above, by the dominated convergence theorem we conclude that the Skorohod
ntegral∫ t

0
V ϵ

s dWs converges in L2(Ω ) as ϵ → 0 to the Skorohod integral
∫ t

0
Vs dWs

his ends the proof of (6.12), and the proof of the theorem is now easily completed. ■

We end this section with some comments.

emark 6.5. Recalling that the diffusion flow Yt introduced in (6.1) has finite absolute
oments of any order, the integrability conditions stated in (6.8) and (6.9) are satisfied as

oon as the functions Ft ,G t , Ht , the differentials ∂Ft , ∂
2 Ft , ∂Ht , and the Malliavin derivatives

Ds Ht , Ds∂Ft have at most polynomial growth w.r.t. the state variable.
It is now readily check that (H1)′ and (H2)′ are met for the random fields introduced in

6.5).
The proof can be also be extended without difficulties to multivariate models. Following the

roof of Proposition 3.1 in [47], an alternative proof of Theorem 6.4 based on Itô formula for
ilbert space valued processes can be developed. This elegant functional approach requires

o introduce a custom Hilbert-space valued processes framework but this approach avoids
o do explicitly the interchange of integration using the Fubini theorem for Skorohod and

easure theory integrals. As the statement of Proposition 3.1 in [47], the assumptions of
heorem 6.4 can also be weaken when expressed in terms of this generalized stochastic calculus

or Hilbert-space valued processes.

. Illustrations

.1. Perturbation analysis

Assume that σ = σ and the drift function bt is given by a first order expansion

bt (x) = bδ,t (x) := bt (x) + δ b(1)
δ,t (x) with b(1)

δ,t (x) = b(1)
t (x) +

δ

2
b(2)
δ,t (x)

or some perturbation parameter δ ∈ [0, 1] and some functions b(i)
δ,t (x) with i = 1, 2.

In this context, the stochastic flow X s,t (x) := X δ
s,t (x) can be seen as a δ-perturbation of

Xs,t (x) := X0
s,t (x).

We further assume that the unperturbed diffusion satisfies condition (T )2.
To avoid unnecessary technical discussions on the existence of absolute moments of the

flows we also assume that b(i)
δ,t (x) are uniformly bounded w.r.t. the parameters (δ, t, x). In

ddition, b(1)
t (x) is differentiable w.r.t. the coordinate x and it has uniformly bounded gradients.

n this situation, we set

∥b(i)
∥ := sup

δ,t,x
∥b(i)

δ,t (x)∥ and ∥∇b(1)
∥ := sup

t,x
∥∇b(1)

t (x)∥

ith some additional work to estimate the absolute moments of the flows, the perturbation
nalysis presented below allows to handle more general models. The methodology described in
his section can also be extended to expand the flow X δ

s,t (x) at any order as soon as δ ↦→ bδ,t (x)
s sufficiently smooth.

The first order approximation is given by the following theorem.
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Theorem 7.1. For any s ⩽ t , x ∈ Rd and δ ⩾ 0 we have the first order expansion

X δ
s,t (x) = Xs,t (x) + δ ∂Xs,t (x) +

δ2

2
∂2
δ Xs,t (x) (7.1)

with the first order stochastic flow

∂Xs,t (x) :=

∫ t

s

(
∇ Xu,t

)
(Xs,u(x))′ b(1)

u (Xs,u(x)) du

he remainder second order term ∂2
δ Xs,t (x) in the above display is such that for any n ⩾ 2

.t. λA(n) > 0 we have the uniform estimate

sup
s,t,x

E[∥∂2
δ Xs,t (x)∥n]1/n ⩽ cn

roof. Using (4.12) we readily check that

DX δ
s,t (x) := δ−1[X δ

s,t (x) − Xs,t (x)] =

∫ t

s

(
∇ Xu,t

)
(X δ

s,u(x))′ b(1)
δ,u(X δ

s,u(x)) du

y Proposition 3.2 for any n ⩾ 2 we have

λ+

A(n) := λA − (n − 2)ρ(∇σ )2/2 > 0 H⇒ E
(
∥DX δ

s,t (x)∥n)1/n
⩽ c ∥b(1)

∥/λ+

A(n) (7.2)

his yields the first order Taylor expansion (7.1) with

∂2
δ Xs,t (x) := ∂

(2,1)
δ Xs,t (x) + ∂

(2,2)
δ Xs,t (x)

nd the second order remainder terms

∂
(2,2)
δ Xs,t (x) :=

∫ t

s

(
∇ Xu,t

)
(X δ

s,u(x))′ b(2)
δ,t (X δ

s,u(x)) du

∂
(2,1)
δ Xs,t (x) := 2δ−1

∫ t

s

[(
∇ Xu,t

)
(X δ

s,u(x)) −
(
∇ Xu,t

)
(Xs,u(x))

]′
b(1)

u (X δ
s,u(x)) du

+ 2δ−1
∫ t

s

(
∇ Xu,t

)
(Xs,u(x))′ [b(1)

u (X δ
s,u(x)) − b(1)

u (Xs,u(x))] du

rguing as above, for any n ⩾ 2 s.t. λ+

A(n) > 0 we have the uniform estimate

E
(
∥∂

(2,2)
δ Xs,t (x)∥n

)1/n
⩽ c ∥b(2)

∥/λ+

A(n)

o estimate ∂ (2,1)
δ Xs,t (x) we need to consider the second order decompositions

2−1 ∂
(2,1)
δ Xs,t (x)

=

∫ 1

0

∫ t

s

[
∇

2 Xu,t
] (

Xs,u(x) + ϵ(X δ
s,u(y) − Xs,u(x))

)′
×
[
b(1)

u (X δ
s,u(x)) ⊗ DX δ

s,u(x)
]

du dϵ

+

∫ 1

0

∫ t

s

(
∇ Xu,t

)
(Xs,u(x))′ ∇b(1)

u

(
Xs,u(x) + ϵ(X δ

s,u(x) − Xs,u(x)), y
)′

× DX δ
s,u(x) du dϵ

ombining Proposition 3.3 with the estimate (7.2) for any n ⩾ 2 s.t. λA(n) > 0 we check that
(2,1) n 1/n χ

( (1) )2
E[∥∂δ Xs,t (x)∥ ] ⩽ c (1 + n (b, σ )/λA(n)) ∥b ∥/λA(n)
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for some universal constant c < ∞ and the parameter χ (b, σ ) introduced in (2.7). This ends
he proof of (7.1). The proof of the theorem is completed. ■

.2. Interacting diffusions

Consider a system of N interacting and Rd -valued diffusion flows X i
s,t (x), with 1 ⩽ i ⩽ N

iven by a stochastic differential equation of the form

d X i
s,t (x) = Bt

(
X i

s,t (x),
1
N

∑
1⩽i⩽N

X j
s,t (x)

)
dt + σt

(
1
N

∑
1⩽i⩽N

X j
s,t (x)

)
dW i

t

or some Lipschitz functions Bt (x, y) and σt (y) with appropriate dimensions. In the above
isplay, W i

t stands for a collection of independent copies of d-dimensional Brownian motion
Wt . Assume that Bt (x, y) linear w.r.t. the first coordinate.

In this situation, up to a change of probability space, the empirical mean of the process

X s,t (x) :=
1
N

∑
1⩽i⩽N

X j
s,t (x)

satisfies the stochastic differential equation

d X s,t (x) = bt
(
X s,t (x)

)
dt +

1
√

N
σt
(
X s,t (x)

)
dWt with bt (x) := Bt (x, x)

ormally, the above diffusion converges as N → ∞ to the flow Xs,t (x) of the dynamical system
efined by

∂t Xs,t (x) := bt
(
Xs,t (x)

)
ore rigorously and without further work, the forward–backward interpolation formula (1.10)

ields directly the bias–variance error decomposition

X s,t (x) − Xs,t (x) =
1

2N

∫ t

s

(
∇

2 Xu,t
)

(X s,u(x))′ au(X s,u(x)) du

+
1

√
N

∫ t

s

(
∇ Xu,t

)
(X s,u(x))′ σu(X s,u(x)) dWu

his readily implies the a.s. convergence

X s,t (x) −→N→∞ Xs,t (x)

After some elementary manipulations we check the bias formula

lim
N→∞

N
[
E(X s,t (x)) − Xs,t (x)

]
=

1
2

∫ t

s

(
∇

2 Xu,t
)

(Xs,u(x))′ au(Xs,u(x)) du

e also have the almost sure fluctuation theorem

lim
N→∞

√
N
[
X s,t (x) − Xs,t (x)

]
=

∫ t

s

(
∇ Xu,t

)
(Xs,u(x))′ σu(Xs,u(x)) dWu

.3. Time discretization schemes

This section is mainly concerned with the proof of Proposition 1.4. We fix some parameter
h > 0 and some s ⩾ 0 and for any t ∈ [s + kh, s + (k + 1)h[ we set

d X h (x) = Y h (x) dt + σ dW with Y h (x) := b
(
X h (x)

)

s,t s,t t s,t s,s+kh
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for some fluctuation parameter σ ⩾ 0. For any s + kh ⩽ u < s + (k + 1)h we have

X h
s,u(x) − X h

s,s+kh(x) = Y h
s,u(x) (u − (s + kh)) + σ (Wu − Ws+kh)

sing (4.12), in terms of the tensor product (2.1) we readily check that

X h
s,t (x) − Xs,t (x) =

∫ t

s

(
∇ Xu,t

)
(X h

s,u(x))′
[
Y h

s,u(x) − b(X h
s,u(x))

]
du

ombining (3.5) with the Minkowski integral inequality we check that

E
(
∥X h

s,t (x) − Xs,t (x)∥n)1/n

=

∫ t

s
E
(
∥
(
∇ Xu,t

)
(X h

s,u(x))′
[
Y h

s,u(x) − b(X h
s,u(x))

]
∥

n)1/n
du

=

∫ t

s
e−λ(t−u) E

(
∥Y h

s,u(x) − b(X h
s,u(x))∥n)1/n

du

where the second line follows from the exponential estimate of the tangent process from
Proposition 3.1. The integrand will be bounded as follows: for any s + kh ⩽ u < s + (k + 1)h
nd any n ⩾ 1 we have

E
(
∥b(X h

s,u(x)) − Y h
s,u(x)∥n)1/n

⩽ ∥∇b∥

(
[∥b(0)∥ + m̂n(x) ∥∇b∥] h + σ

√
h
)

hich then yields the stated result of the proposition. We now prove the stated bound on the
ifference of the drift processes. For any s + kh ⩽ u < s + (k + 1)h we have

b(X h
s,u(x)) − Y h

s,u(x)

=

[∫ 1

0
∇b

(
X h

s,s+kh(x) + ϵ(X h
s,u(x) − X h

s,s+kh(x))
)′

b
(
X h

s,s+kh(x)
)

dϵ
]

(u − (s + kh))

+

[∫ 1

0
∇b

(
X h

s,s+kh(x) + ϵ(X h
s,u(x) − X h

s,s+kh(x))
)′

dϵ
]
σ (Wu − Ws+kh) (7.3)

The Ln-norm of the second integral term is bounded by ∥∇b∥σ
√

h.
The assumption ⟨x, b(x)⟩ ⩽ −β ∥x∥

2, for some β > 0, implies the stochastic flows Xs,t (x)
has uniform absolute moments of any order n ⩾ 1 w.r.t. the time horizon, that is, we have that

mn(x) ⩽ κn (1 + ∥x∥) with mn(x) defined in (2.11).

The stochastic flows X h
s,t (x) also obey a similar moment bound: observe that for any t ∈

[s + kh, s + (k + 1)h[ we have

d∥X h
s,t (x)∥2

⩽
[
−2λ0 ∥X h

s,t (x)∥2
+ 2 ⟨X h

s,t (x), b(X h
s,s+kh(x)) − b(X h

s,t (x))⟩ + σ 2d
]

dt

+ 2σ X h
s,t (x)′dWt

Thus, for any ϵ > 0 we have

d∥X h
s,t (x)∥2 ⩽

[
(−2λ0 + ϵ)∥X h

s,t (x)∥2
+ ϵ−1

∥∇b∥ + σ 2d
]

dt + 2σ X h
s,t (x)′dWt

e can check that the stochastic flows X h
s,t (x) also have uniform moments w.r.t. the time

orizon; that is, for any n ⩾ 1 we have that

m̂n(x) := sup supE
[
∥X h

s,t (x)∥n]1/n
⩽ cn (1 + ∥x∥)
h⩾0 t⩾s
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Using this bounds, we check that

E(∥b(X h
s,s+kh(x))∥n)1/n

= ∥b(0)∥ + m̂n(x)∥∇b∥

he end of the proof now follows elementary manipulations, thus it is skipped. The proof of
roposition 1.4 is now completed. ■

. Comments and comparisons with existing literature

The interpolation formula (1.10) can be interpreted as an extension of Alekseev–Gröbner
emma [1,27,34] as well as an extended version of the variation-of-constant and related
ronwall type lemma [8,28] to diffusion processes. In this connection we underline that the

orward–backward formula (1.10) differs from the stochastic Gronwall lemma presented in [51]
ased on particular classes of stochastic linear inequalities that does not involve Skorohod type
ntegrals.

The forward–backward interpolation formula (1.10) can also be seen as an extension of
heorem 6.1 in [49] on two-sided stochastic integrals to diffusion flows. This interpolation

ormula can also be interpreted as a backward version of the generalized Itô–Ventzell formula
resented in [47] (see also Theorem 3.2.11 in [43]).

Stochastic interpolation formulae of the form (1.10) and their discrete time version discussed
n (4.2) are not really new. To describe their origins, it is worth to mention that the stochastic
erturbations may come from auxiliary random sources, uncertainty propagations, as well as
ime discretization schemes and mean field type particle fluctuations.

The pivotal interpolating telescoping sum formula (4.2) and the second order forward–
ackward perturbation semigroup methodology discussed in the present article can also be
ound in Chapter 7 in [21] for discrete time models as well as in the series of articles [23–25]
ublished at the beginning of the 2000s, see also Chapter 10 in [22]. In this context, the random
erturbations come from the fluctuations of a genetic type particle interpretation of nonlinear
eynman–Kac semigroups.

The more recent articles [10,12,11] also provide a series of backward–forward interpolation
ormulae of the same form as (1.10) for stochastic matrix Riccati diffusion flows arising in
ata assimilation theory (cf. for instance Theorem 1.3 in [11] as well as Section 2.2 in [12]
nd the proof of Theorem 2.3 in [10]). In this context, the random perturbations come from the
uctuations of a mean field particle interpretation of a class of nonlinear diffusions equipped
ith an interacting sample covariance matrix functional.
We underline that the Itô–Alekseev–Gröbner formula (4.6) discussed in [11] is an extension

f the interpolation formula (1.10) to stochastic diffusion flows in matrix spaces. In this context
he unperturbed model is given by the flow of a deterministic matrix Riccati differential equa-
ion and the random perturbations are described by matrix-valued diffusion martingales. The
orresponding Itô–Alekseev–Gröbner formulae can be seen as a matrix version of Theorem 1.2
n the present article when σ = 0. These stochastic interpolation formulae were used in [11] to
uantify the fluctuation of the stochastic flow around the limiting deterministic Riccati equation,
t any order. We will briefly discuss the analog of these Taylor type expansions in Section 7.1
n the context of Euclidean diffusions.

The forward–backward perturbation methodology discussed in the present article has also
een used in [3,5] in the context of nonlinear diffusions and their mean field type interacting
article interpretations, see for instance Section 2.3 in [5]. In this context, the random
erturbations come from the fluctuations of a mean field particle interpretation of a class
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of nonlinear diffusions. The extended version of the Itô–Alekseev–Gröbner formula (1.18) to
nonlinear diffusions is also discussed in Section 3.1 in the article [3]. In this situation, the
time varying drift and diffusion functions of the stochastic flows depend on some possibly
different nonlinear measure valued semigroups which may start from two possibly different
initial distributions. For a more thorough discussion on this class of nonlinear diffusions, we
refer to the Itô–Alekseev–Gröbner formula (3.2) and Corollary 3.2 in the article [3]. These
Itô–Alekseev–Gröbner formulae correspond to Theorem 1.2 in the present article when σ = 0.

The spectral condition (T )n defined in (2.8) is well suited to analyze the exponential decays
of the gradient and the Hessian of stochastic flows and thus the differentials of Markov
transition semigroups (cf. for instance the variational estimates provided Section 3 in the present
article). This variational methodology based on different forms of the spectral condition (T )n

has been developed in a systematic way in [3] in the context of mean field type interacting
diffusions at the level of the nonlinear process itself (see for instance the Corollary 3.2 and the
Wasserstein exponential stability theorem, Theorem 3.3 in [3]) as well as at the level of the
particle system in product spaces to derive uniform propagation of chaos estimates w.r.t. the
time parameter (see for instance Theorems 4.2 and 4.3 in [3]). When applied to Langevin-type
interacting diffusions with constant diffusion coefficient as well as even and convex interacting
potential condition (T )n reduces to the typical strong convexity of the exterior potential (cf.
the comments below Proposition 1.4). In this context, uniform propagation of chaos estimates
for more general classed of interacting Langevin-type diffusions involving random interacting
forces are provided in the recent article [7].

We underline that the spectral condition (T )n is also closely related to the obtuse-angle
condition introduced in [18] to analyze the exponential decays of the gradient of Markov
semigroups (cf. condition (31) and Theorem 4.1 in [18]), and further developed in the
article [17] to derive uniform in time estimates for the weak error of the Euler method for
diffusions. The obtuse-angle conditions (31) and its homogeneous version presented in [18] is
expressed as a time varying or as a functional inequality to deduce exponential decays from
the evolution equation of the semigroup. A spectral form of the obtuse angle condition with
respect to the coordinates of the differential fields is provided in the more recent article [17].
This spectral formulation is closely related to the spectral condition (T )n discussed in (2.8).

The interpolating stochastic semigroup techniques discussed in the present article are also
applied to mean field particle systems and deterministic nonlinear measure valued semigroups.
In this context, the process Xs,t is given a deterministic measure-valued process and X s,t

represents the evolution of the particle density profiles associated with an approximating mean
field particle interpretation of Xs,t . For instance, the article [4] is concerned with interacting
jumps models on path spaces, the second article [5] discusses the propagation of chaos
properties of mean field type interacting diffusions. The stochastic interpolation formulae
discussed in [4,5] correspond to the case (1.10) with σ = 0 and or σ ̸= σ (see for instance the
nterpolation formula (3.5), Theorem 2.6, Theorem 2.7 and the interpolating telescoping sum
n Section 1.2 in [5]).

In the series of articles discussed above, as in (1.9) the central common idea is to analyze
he evolution of the interpolating process (1.13) between a given process Xs,t and some
tochastic flow X s,t with an extra level of randomness. In discrete time settings, the differential
nterpolation formula (1.9) can also recasted in terms of a telescoping sum of the same form
s (4.2) combined with a second order Taylor expansion reflecting the differences between a
tochastic semigroup and its perturbations, see for instance Chapter 7 in [21].
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In most of the application domains discussed above, this second order stochastic perturbation
ethodology has been developed to quantify uniformly w.r.t. the time horizon the propagations

f some stochastic perturbations entering in some deterministic and stable reference or
nperturbed process. In the context of Euclidean diffusions, this corresponds to the situation

where the diffusion function σ = 0 (the case σ = 0 can be treated by symmetry arguments).
The Itô–Alekseev–Gröbner type formulae discussed in Section 3.1 in the article [3] correspond
to Theorem 1.2 in the present article when σ = σ .

The present article can be seen as a natural extension of the second order perturbation
ethodology developed in the above referenced articles to diffusion type perturbed processes
hen σ ̸= σ .
To the best of our knowledge, the first article considering the case σ ̸= σ with σ ̸= 0

nd σ ̸= 0 is the independent work of Hudde–Hutzenthaler–Jentzen–Mazzonetto [30]. In this
article, the authors discuss an Itô–Alekseev–Gröbner formula for abstract diffusion perturbation

odels of the form (4.11). Here again, as in the list of referenced articles discussed above,
he common central idea is to use discrete time approximations and combine the pivotal
nterpolating telescoping sum formulae (4.2) with a second order Taylor expansion. Besides
his fact and in contrast with our analysis, the fluctuation term (1.12) discussed in [30] cannot
e interpreted in terms of the extended two-sided stochastic integral defined in (4.3) (see also
roposition 6.2) but only in terms of a Skorohod stochastic integral. The study [30] is also
ased on a series of particularly chosen and custom regularity conditions. For instance, the
uthors assume that the abstract diffusion perturbation models are chosen so that the Skorohod
uctuation term exists without providing any quantitative type estimate. This work is also not
onnected to the two-sided stochastic integration calculus developed by Pardoux and Protter
n [49] nor to any type of backward Itô–Ventzell formula.

We feel that our approach is more direct and intuitive as it relies on an extended version of
tô’s change rule formula (1.9) to interpolating stochastic flows. It also allows to interpret the
uctuation term (1.12) as an extended two-sided stochastic integral.

In Section 5 in the present article, we will also see that any quantitative analysis requires to
stimate the absolute moments of the Malliavin derivatives of the stochastic integrands of the
rownian motion arising in the Skorohod fluctuation term. In our framework, these Malliavin
erivatives depend on the gradient of both of the diffusion functions (σ, σ ) as well as on the
angent process of the perturbed diffusion flow. The quantitative analysis developed in 5 can
e extended without difficulties to abstract diffusion perturbation models satisfying appropriate
ifferentiability and integrability conditions.

The article [30] also presents an application to tamed Euler type discrete time approxima-
ions of a stochastic van-der-Pol process introduced in [53], simplifying the analysis provided
n an earlier work [31]. In this situation, we underline that the Skorohod fluctuation term is null
o that the resulting Alekseev–Gröbner type formula resumes to the simple and elementary case
iscussed in (1.18) and in the article [3]. As expected for this class of “unstable processes”,
he authors recast a series of L2-estimates discussed in [31] into a series of estimates that grow

exponentially fast with respect to the time horizon.
In contrast with the present work, the above article does not discuss any quantitative uniform

estimates w.r.t. the time horizon. The analysis presented in [30] is mainly concerned with the
proof of a Skorohod–Alekseev–Gröbner type formula for abstract diffusion perturbation models
nd it does not apply to derive any type of estimates to general diffusion perturbation models
ithout adding regularity conditions.
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Besides its elegance the forward–backward interpolation formula (1.10) is clearly of rather
oor mathematical and numerical interest without a better understanding of the variational
rocesses and the Skorohod fluctuation term (1.12). A crucial problem is to avoid exceedingly
essimistic exponential estimates that grow exponentially fast w.r.t. the time horizon.

One advantage of the second order perturbation methodology developed in the present article
s that it takes advantage of the stability properties of the tangent and the Hessian flow in the
stimation of Skorohod fluctuation term and this sharpen analysis of the difference between
tochastic flows. Our main contribution is to develop a refined analysis of these variational
rocesses and the Skorohod fluctuation terms. We also deduce several uniform perturbation
ropagation estimates with respect to the time horizon, yielding what seems to be the first
esults of this type for this class of models.

The forward–backward stochastic interpolation formula (1.10) can also be extended to
ore general classes of stochastic flows on abstract state spaces. For instance the recent

rticle [34] provides a deterministic first order version of (1.10) on abstract Banach spaces. The
tochastic perturbation analysis developed in the series of articles [4,5,10,12,11,23–25] and the
ooks [21,22] is applied to matrix-valued diffusions and measure valued processes, including
ean field type interacting diffusions and Feynman–Kac type interacting jumps models.
The stability properties of these abstract models discussed above depend on the problem

t hand. To focus on the main ideas without clouding the article with unnecessary technical
etails and sophisticated mathematical tools based on abstract ad hoc regularity conditions we
ave chosen to concentrate the article on diffusion flows on Euclidean spaces with simple and
asily checked regularity conditions.
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ppendix

In this appendix we prove the estimates (1.16) and (2.11) and Proposition 3.3. We commence
ith a detailed discussion of the relationship between some key results in this paper and
revious works in the literature.

roof of (2.11)

Whenever (M)n is satisfied, we have

2⟨x, bt (x)⟩ + ∥σt (x)∥2
F ⩽ γ0 + γ1∥x∥ − γ2∥x∥

2

with the parameters

γ = α + 2β γ = α + 2β and γ = 2β − α
0 0 0 1 1 1 2 2 2

244



P. Del Moral and S.S. Singh Stochastic Processes and their Applications 154 (2022) 197–250

A

T

f

T

f

a
b

T

P

o

L
i

Observe that
d∥Xs,t (x)∥2

=
[
2 ⟨Xs,t (x), bt (Xs,t (x))⟩ + ∥σt (Xs,t (x))∥2

F

]
dt + 2

∑
k⟨Xs,t (x), σk,t (Xs,t (x))⟩ dW k

t

fter some elementary computations, for any n ⩾ 1 we check that

n−1∂tE
[
∥Xs,t (x)∥2n

]
⩽ − [γ2 − 2(n − 1)α2] E

[
∥Xs,t (x)∥2n

]
+ [γ1 + 2(n − 1)α1] E

[
∥Xs,t (x)∥2n−1

]
+ [γ0 + 2(n − 1)α0] E

[
∥Xs,t (x)∥2(n−1)

]
his implies that

∂tE
[
∥Xs,t (x)∥2n

]1/n
⩽ − [γ2 − 2(n − 1)α2] E

[
∥Xs,t (x)∥2n

]1/n

+ [γ1 + 2(n − 1)α1] E
[
∥Xs,t (x)∥2n]1/(2n)

+ [γ0 + 2(n − 1)α0]

rom which we check that for any ϵ > 0 we have

∂tE
[
∥Xs,t (x)∥2n

]1/n

⩽ − [γ2 − 2(n − 1)α2 − 2ϵ] E
[
∥Xs,t (x)∥2n]1/n

+
1
8ϵ

[γ1 + 2(n − 1)α1]2

+ [γ0 + 2(n − 1)α0]

his implies that

∂tE
[
∥Xs,t (x)∥2n

]1/n

⩽ −2 [β2 − (n − 1/2)α2 − ϵ] E
[
∥Xs,t (x)∥2n]1/n

+
1
8ϵ

[γ1 + 2(n − 1)α1]2

+ [γ0 + 2(n − 1)α0]

rom which we check that

E
[
∥Xs,t (x)∥2n]1/n

⩽ e−2[β2−(n−1/2)α2−ϵ](t−s)
∥x∥

2

+
1
8ϵ

[γ1 + 2(n − 1)α1]2
+ [γ0 + 2(n − 1)α0]

2 [β2 − (n − 1/2)α2 − ϵ]
s soon as ϵ < β2 − (n − 1/2)α2 and n ⩾ 1. Replacing ϵ by ϵ(β2 − (n − 1/2)α2) and then (2n)
y n we check that

E
[
∥Xs,t (x)∥n]1/n

⩽ e−(1−ϵ)β2(n)(t−s)
∥x∥ +

1
4
√
ϵ(1 − ϵ)

γ1(n) + γ0(n)1/2

β2(n)1/2

with γi (n) := γi + (n − 2)αi

his ends the proof of (2.11). ■

roof of Proposition 3.3

The proof of the estimate (3.10) is mainly based on the following technical lemma of its
wn interest.

emma A.1. Let Z t be a non negative diffusion process satisfying in integral sense an
nequality of the following form

d Z ⩽ (−λZ + α
√

Z + β ) dt + d M with ∂ ⟨M⟩ ⩽ (u
√

Z + v Z )2

t t t t t t t t t t t t
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for some parameters λ > 0 and vt ⩾ 0, and some non negative processes (αt , βt , ut ). In this
ituation, for any ϵ > 0 we have

E(Zn
t )1/n ⩽ e

∫ t
0 λn,s (ϵ)ds E(Zn

0 )1/n
+

∫ t

0
e
∫ t

s λn,u (ϵ)du zn
s (ϵ) ds (A.1)

with the parameters

λn,t (ϵ) := −λ+
n − 1

2
v2

t +
ϵ

2

zn
t (ϵ) := E

[
βn

t

]1/n
+

n − 1
2

E
[
u2n

t

]1/n
+

1
ϵ

(
E
[
α2n

t

]1/n
+ (n − 1)2 E

[
(utvt )2n]1/n

)
roof. Applying Itô’s formula, for any n ⩾ 2, we have

n−1∂tE(Zn
t )

⩽ E
[

Zn−1
t (−λZ t + αt

√
Z t + βt ) +

n − 1
2

(ut

√
Z t + vt Z t )2 Zn−2

t

]
=

(
−λ+

n − 1
2

v2
t

)
E(Zn

t ) + E
[(
βt +

n − 1
2

u2
t

)
Zn−1

t

]
+E

(
[αt + (n − 1)utvt ] Zn−1/2

t

)
n the other hand, for any ϵ > 0 we have the almost sure inequality

[αt + (n − 1)utvt ] Z (n−1)/2
t Zn/2

t ⩽
1
2ϵ

[αt + (n − 1)utvt ]2 Zn−1
t +

ϵ

2
Zn

t

his implies that

n−1∂tE(Zn
t )

⩽ λn,t (ϵ) E(Zn
t ) + E

[(
βt +

n − 1
2

u2
t +

1
2ϵ

[αt + (n − 1)utvt ]2
)

Zn−1
t

]
pplying Hölder inequality we check that

E
[(
βt +

n − 1
2

u2
t +

1
2ϵ

[αt + (n − 1)utvt ]2
)

Zn−1
t

]
⩽ E

[(
βt +

n − 1
2

u2
t +

1
2ϵ

[αt + (n − 1)utvt ]2
)n]1/n

E(Zn
t )1−1/n ⩽ zn

t E(Zn
t )1−1/n

his yields the estimate

∂tE(Zn
t )1/n

= E(Zn
t )−(1−1/n) n−1∂tE(Zn

t ) ⩽ λn,t (ϵ) E(Zn
t )1/n

+ zn
t

his ends the proof of the lemma. ■

We set

Ys,t (x) := ∥∇
2 Xs,t (x)∥2

F and Ts,t (x) := ∥∇ Xs,t (x)∥F

nd we also consider the collection of parameters

∥τ∥F := supt,x ∥τt (x)∥F ρ(υ) := supt,x λmax (υt (x))

ith the tensor functions (τt , υt ) introduced in (3.9). Observe that
2 2 2 2 2
∥τ∥F ⩽ ∥∇ b∥F + d ∥∇ σ∥F and ρ(υ) ⩽ d ∥∇ σ∥2
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Whenever (T )2 is met we have

Tr
[
∇

2 Xs,t (x) At (Xs,t (x)) ∇
2 Xs,t (x)′

]
⩽ −2λA Ys,t (x)

lso observe that

|Tr
[[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]
τt (Xs,t (x)) ∇

2 Xs,t (x)′
]
| ⩽ ∥τ∥F Ys,t (x)1/2 Ts,t (x)2

and

Tr
[[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]
υt (Xs,t (x))

[
∇ Xs,t (x) ⊗ ∇ Xs,t (x)

]′]
⩽ ρ(υ) Ts,t (x)4

In the same vein, we have

|Tr
{[

∇ Xs,t (x) ⊗ ∇ Xs,t (x)
]

∇
2σt,k(Xs,t (x)) ∇

2 Xs,t (x)′

+ ∇
2 Xs,t (x) ∇σt,k(Xs,t (x)) ∇

2 Xs,t (x)′
}
|

⩽ ∥∇
2σk∥F Ts,t (x)2 Ys,t (x)1/2

+ ρ(∇σk) Ys,t (x)

We are now in position to prove Proposition 3.3.

roof of Proposition 3.3. Applying the above lemma to the processes

Z t = Ys,t (x) λ = 2λA αt = 2∥τ∥F Ts,t (x)2 βt = ρ(υ) Ts,t (x)4

nd the parameters

ut = 2
√

d ∥∇
2σ∥F Ts,t (x)2 and vt = 2

√
d ρ⋆(∇σ )

e obtain the estimate (A.1) with the parameters

λn,t (ϵ) := −2
[
λA − d(n − 1)ρ⋆(∇σ )2

−
ϵ

4

]
zn

t (ϵ) :=
{
ρ(υ) + 2d(n − 1) ∥∇

2σ∥
2
F

+
4
ϵ

(
∥τ∥2

F + 4 d2(n − 1)2 ρ⋆(∇σ )2
∥∇

2σ∥
2
F

)}
×E

[
∥∇ Xs,t (x)∥4n

F

]1/n

bserve that

zn
t (ϵ) ⩽ cn2 (1 ∨ ϵ−1) χ (b, σ )2 E

[
∥∇ Xs,t (x)∥4n

F

]1/n

or some universal constant c < ∞ and the parameter χ (b, σ ) defined in (2.7). Using (3.8) we
heck that

E
(
∥∇

2 Xs,t (x)∥2n
F

)1/n

⩽ cn2 (1 ∨ ϵ−1) χ (b, σ )2
∫ t

s
e−2

[
λA−d(n−1)ρ⋆(∇σ )2

−
ϵ
4

]
(t−u) e−4

[
λA−(n−1)ρ(∇σ )2

]
(u−s) du

= cn2 (1 ∨ ϵ−1) χ (b, σ )2 e−2
[
λA−d(n−1)ρ⋆(∇σ )2

−
ϵ
4

]
(t−s)∫ t

s
e−2

[
λA−(n−1)ρ(∇σ )2

+(n−1)[dρ⋆(∇σ )2
−ρ(∇σ )2]+ ϵ

4

]
(u−s) du

ssume that

λ > d(n − 1)ρ (∇σ )2

A ⋆
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R

In this case there exists some 0 < ϵn ⩽ 1 such that for any 0 < ϵ ⩽ ϵn we have

λA − d(n − 1)ρ⋆(∇σ )2 > ϵ

nd therefore

E
(
∥∇

2 Xs,t (x)∥2n
F

)1/(2n)
⩽ c n ϵ−1 χ (b, σ ) exp

(
−
[
λA − d(n − 1)ρ⋆(∇σ )2

− ϵ
]

(t − s)
)

his ends the proof of the proposition. ■

roof of (1.16)

Using (2.15), the generalized Minkowski inequality applied to (1.10) whenever (T )n/δ is
et for some δ ∈]0, 1[ and n ⩾ 2 gives

E
[
∥Ts,t (∆a,∆b)(x)∥n]1/n

⩽
κn/δ

λ(n/δ)

(
|||∆b(x)|||n/(1−δ) + |||∆a(x)|||n/(1−δ)

)
with (κn, λ(n)) given in (2.14).

(A.2)

he Skorohod integral Ss,t (∆σ )(x) is estimated using Theorem 5.2. Using (A.2) and (5.9) we
check that

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κ(δ1,δ2),n
(
|||∆a(x)|||n/(1−δ1) + |||∆b(x)|||n/(1−δ1) + |||∆σ (x)|||2n/δ2 (1 ∨ ∥x∥)

)
s soon as the regularity conditions (T )n/δ1 , (M)2n/δ2 and (T )2n/(1−δ2) are satisfied for some
arameter n ⩾ 2 and some δ1, δ2 ∈]0, 1[. Choosing δ1 = (1 − δ2)/2 and setting δ = δ2 we
heck that

E
[
∥Xs,t (x) − X s,t (x)∥n]1/n

⩽ κδ,n
(
|||∆a(x)|||2n/(1+δ) + |||∆b(x)|||2n/(1+δ) + |||∆σ (x)|||2n/δ (1 ∨ ∥x∥)

)
s soon as (M)2n/δ and (T )2n/(1−δ) are satisfied for some parameter n ⩾ 2 and some δ ∈]0, 1[.
or instance, (M)2n/δ and (T )2n/(1−δ) are satisfied as soon as

β2 − α2/2 > (n/δ − 1) α2 and λA > d(n/(1 − δ) − 1) ρ⋆(∇σ )2

his ends the proof of (1.16). ■
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