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Chapter 1

Solution to exercise 1:
By (1.1), we have

E(Xn) = E(Xn−1) = . . . = E(X0) = 0

and

Var(Xn) = Var

 ∑
1≤k≤n

Uk

 = n E(U2
1 ) = n.

This ends the proof of the exercise.

Solution to exercise 2:
In order to come back to the origin, the walker must take an equal number of positive

and negative steps in each direction. Thus, we clearly have P (X2n+1 = 0) = 0. In addition,
since the variables Uk in (1.1) are independent and identically distributed, each of the(

2n
n

)
possible paths of the same length 2n is equally likely. This implies that

P (X2n = 0) =

(
2n
n

)
2−n × 2−n.

For any n ≥ m, the walker who starts at the origin and reaches (2m) at time (2n), must
have made (n+m) steps upwards and (n−m) steps downwards, so that

P (X2n = 2m) =

(
2n

n+m

)
2−(n+m) 2−(n−m) =

(
2n

n+m

)
2−2n.

This ends the proof of the exercise.

Solution to exercise 3:
If s < t we have

Nt = (Nt −Ns) +Ns.

By the independence property between (Nt −Ns)
N0=0

= and Ns
N0=0

= (Ns −N0), we prove
that

E(NtNs) = E ((Nt −Ns)Ns) + E(N2
s ) = E (Nt −Ns)E (Ns) + E(N2

s ).

On the other hand (Nt −Ns)
law
= Nt−s, so that

E(NtNs) = E (Nt−s)E (Ns) + E(N2
s ).

841



842 Chapter 1

Finally,
Cov(Ns, Nt) = E (Nt−s)E (Ns) + E(N2

s )− E(Ns)E(Nt).

This ends the proof of the exercise.

Solution to exercise 4:
By construction, we have Xt = (−1)NtX0. This ends the proof of the exercise.

Solution to exercise 5:
We clearly have

E (Xt) = E
(
(−1)Nt

)
E(X0) = 0.

In addition, using the fact that

Nt+s = (Nt+s −Nt) + (Nt −N0)

and the independence property between (Nt+s −Nt) and (Nt −N0), we prove that

E(XtXt+s) = E
(

(−1)Nt(−1)(Nt+s−Nt)+Nt
)

= E
(

(−1)(Nt+s−Nt)
)
.

Recalling that (Nt+s −Nt) has the same law as Ns, we conclude that

E(XtXt+s) = E
(
(−1)Ns

)
= e−λs

∑
n≥0

(λs)n

n!
(−1)n = e−λs

∑
n≥0

(−λs)n

n!
= e−2λs.

This ends the proof of the exercise.

Solution to exercise 6:
We let n0 < T < n1 be the �rst time a path from P0 to P1 hits the time axis. Re�ecting

the path from P0 to (T, 0) w.r.t. the time axis we obtain a path from P−0 to (T, 0), and
inversely. This procedure gives a correspondence between the set of paths from P0 to P1 that
hit the time axis at some time n0 < T < n1 and the set of all paths from P−0 := (n0,−xn0)
to P1 (that necessarily hit the time axis at some time n0 < T < n1).

This ends the proof of the exercise.

Solution to exercise 7:
By construction, the probability density of Zi,n is given by

P(εn = 1)× q(x) + P(εn = 0)× pi(x)− ρq(x)

1− ρ
= ρ q(x) + 1− ρ pi(x)− ρq(x)

1− ρ
= pi(x).

This shows that pi is the probability density of Zi,n, for i = 1, 2. The independence
property of the random variables (Zi,n)n≥0 is immediate, for i = 1 or i = 2. We let
T = inf {n ≥ 1 : εn = 1} be the �rst time εn = 1. We have

Z1,T = Z2,T and P (T > n) = P (ε1 = 0, . . . , εn = 0) = P (ε1 = 0)
n

= (1− ρ)n.

This shows that T is a geometric random variable and so it is �nite.
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This ends the proof of the exercise.

Solution to exercise 8:
We let Xi be the Bernoulli random variable taking the value 1 if the i-th guess is correct,

and 0 otherwise. Without any information, we have

X =
∑

1≤i≤n

Xi ⇒ E(X) =
∑

1≤i≤n

E(Xi) =
∑

1≤i≤n

P(Xi = 1) =
∑

1≤i≤n

1

n
= 1.

If the cards are shown after each guess, the best strategy is to choose one of the cards
which has not been shown. Therefore

E(X) =
1

n
+

1

n− 1
+ . . .+

1

2
+ 1 =

∑
1≤i≤n

1

i
' log n.

This ends the proof of the exercise.

Solution to exercise 9:
For m = 1 the claim is obvious. We assume that the claim is true at some rank m.

At the (m + 1)-step, the element a(i) (with 1 ≤ i ≤ m) is in position j ≤ m only if it
was there at rank m (with probability 1/m under the induction hypothesis), and if it was
not swapped with a(m + 1) (with probability m/(m + 1); the chance to pick a(i) with
1 ≤ i ≤ m). Multiplying these two probabilities gives the total probability 1/(m+ 1).

The element at the last position and the location of a(m+ 1) are obvious.
This ends the inductive proof of the exercise.
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Solution to exercise 11:

• For the Bernoulli distribution p(x) = px(1− p)1−x, with p ∈ [0, 1] and x ∈ {0, 1}, we have

ϕ(s) = E(sX) = p s+ (1− p) s0 = ps+ (1− p).

• For the Binomial distribution p(x) =

(
n
x

)
px(1 − p)n−x, with p ∈ [0, 1] and x ∈

{0, . . . , n} for some n ∈ N, we have

ϕ(s) =
∑

0≤x≤n

(
n
x

)
sx px(1− p)n−x

=
∑

0≤x≤n

(
n
x

)
(sp)x(1− p)n−x = ((1− p) + ps)

n
.

• For the Poisson distribution p(x) = e−λλx/x!, with λ > 0 and x ∈ N, we have

ϕ(s) = e−λ
∑
x≥0

sx λx/x!

= e−λ
∑
x≥0

(sλ)x/x! = e−λ+sλ = e−λ(1−s).

• For the Geometric distribution p(x) = (1− p)x−1p, with λ > 0 and x ∈ N− {0}, we have

ϕ(s) = p
∑
x≥1

sx (1− p)x−1

= ps
∑
x≥1

sx−1 (1− p)x−1 = ps
∑
x≥0

(s(1− p))x = ps/ (1− s(1− p)) .

This ends the proof of the exercise.

Solution to exercise 12:
By construction, we have

E(Nn+1) = E

E

 ∑
1≤i≤Nn

Xi
n | Nn


= E

 ∑
1≤i≤Nn

E
(
Xi
n | Nn

) = E(Nn) m.
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846 Chapter 2

Var(Nn+1) = E(N2
n+1)− (E(Nn+1))

2

= E

E


 ∑

1≤i≤Nn

Xi
n

2

| Nn


− (E(Nn+1))

2
.

On the other hand, we have

E


 ∑

1≤i≤Nn

Xi
n

2

| Nn

 = NnE(X2) +Nn(Nn − 1) (E(X))
2

= Nn Var(X) +N2
nm

2.

This implies that

Var(Nn+1) = E(Nn) Var(X) + E(N2
n)m2 − (E(Nn+1))

2

= E(Nn) Var(X) + Var(Nn)m2 +
[
(E(Nn) m)

2 − (E(Nn+1))
2
]

= m2 Var(Nn) + E(Nn) Var(X).

We conclude that

Var(Nn+1) = m2
[
m2 Var(Nn−1) + E(Nn−1) Var(X)

]
+ E(Nn) Var(X)

= m4 Var(Nn−1) +
[
m2E(Nn−1) + E(Nn)

]
Var(X)

= m6 Var(Nn−2) +
[
m4E(Nn−2) +m2E(Nn−1) + E(Nn)

]
Var(X)

= . . .

= m2(n+1) Var(N0) + Var(X)
∑

0≤k≤n

m2kE(Nn−k),

so that

Var(Nn+1) = m2(n+1) Var(N0) + Var(X) mn (E(N0))n
∑

0≤k≤n

(m/E(N0))k.

When N0 = 1 we have Var(N0) = 0 and E(N0) = 1. In this case, we have

Var(Nn) = Var(X) mn−1
∑

0≤k<n

mk =

{
n Var(X) when m = 1

Var(X) mn−1 mn−1
m−1 when m 6= 1.

This ends the proof of the exercise.

Solution to exercise 13:
We have

ϕn(s) := E
(
E
(
sNn | Nn−1

))
= E

 ∏
1≤i≤Nn−1

E
(
sX

i
n | Nn−1

)
= E

(
E
(
sX
)Nn−1

)
= E

(
ϕ1(s)Nn−1

)
= ϕn−1 (ϕ1(s)) .
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Recalling that 00 = 1, this implies that

ϕn(0) = E(0Nn) = 1× P(Nn = 0) = P(Nn = 0).

For the Bernoulli o�spring distribution p(x) = pxq1−x, with q := (1 − p), p ∈ [0, 1] and
x ∈ {0, 1}, we have

ϕ1(s) = q + ps

ϕ2(s) = ϕ1 (q + ps) = q + p(q + ps) = q(1 + p) + p2s

ϕ3(s) = ϕ2 (q + ps) = q(1 + p) + p2(q + ps) = q(1 + p+ p2) + p3s

. . . = . . .

ϕn(s) = q(1 + p+ p2 + . . .+ pn−1) + pns =
q

1− p
(1− pn) + pns = (1− pn) + pns.

The last assertion follows from the fact that ϕn(s) = (1−pn)+pns is the moment generating
function of a Bernoulli random variable Nn with parameter pn; that is, we have that

P(Nn = 1) = pn and P(Nn = 0) = 1− pn.

This ends the proof of the exercise.

Solution to exercise 14:
We set gi0 =

(
gi0 (j)

)
j∈S . In this notation, we have

E

 ∑
1≤i≤N1

f(ξ̂i0)
∣∣ gi0, ξ0

 =
∑

1≤i≤N0

gi0
(
ξi0
)
f(ξi0).

This implies that

E

 ∑
1≤i≤N1

f(ξ̂i0) | ξ0

 =
∑

1≤i≤N0

G
(
ξi0
)
f(ξi0)

and therefore

E

 ∑
1≤i≤N1

f(ξ̂i0)

 =
∑

1≤i≤N0

η0(Gf) = N0η0(Gf). (30.18)

In the same vein, we have

E

 ∑
1≤i≤N1

f(ξi1) | N1, ξ̂0

 =
∑

1≤i≤N1

E
(
f(ξi1) | ξ̂i0

)
=

∑
1≤i≤N1

M(f)(ξ̂i0).

Using (30.18), we readily deduce that

E

 ∑
1≤i≤N1

f(ξi1)

 = E

 ∑
1≤i≤N1

M(f)(ξ̂i0)

 = N0 η0(GM(f)). (30.19)

In much the same way, if we set gi1 =
(
gi1 (j)

)
j∈S then we have

E

 ∑
1≤i≤N2

f(ξ̂i1)
∣∣ gi1, ξ1

 =
∑

1≤i≤N1

gi1
(
ξi1
)
f(ξi1).
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This implies that

E

 ∑
1≤i≤N2

f(ξ̂i1) | ξ1

 =
∑

1≤i≤N1

G
(
ξi1
)
f(ξi1).

Using (30.18), we readily deduce that

E

 ∑
1≤i≤N2

f(ξ̂i1)

 = E

 ∑
1≤i≤N1

G
(
ξi1
)
f(ξi1)

 = N0 η0(Q(Gf)). (30.20)

Arguing as above we have

E

 ∑
1≤i≤N2

f(ξi2) | N2, ξ̂1

 =
∑

1≤i≤N2

E
(
f(ξi2) | ξ̂i1

)
=

∑
1≤i≤N2

M(f)(ξ̂i1).

Using (30.20) we deduce that

E

 ∑
1≤i≤N2

f(ξi2)

 = E

 ∑
1≤i≤N2

M(f)(ξ̂i1)

 = N0 η0(Q(GM(f))) = N0 η0(Q2(f)).

(30.21)
The last assertion is proved using induction. This ends the proof of the exercise.

Solution to exercise 15:
By construction, we have

P (Xn+1 = i | X1, . . . , Xn) =
n

n+ α

1

n

∑
1≤p≤n

1Xp(i) +
α

n+ α
µ(i). (30.22)

The number of di�erent tables occupied by the �rst n customers is de�ned by

Tn :=
∑

1≤p≤n

εp

where εn stands for a sequence of independent Bernoulli random variables with distribution

P (εn = 1) = 1− P (εn = 0) =
α

α+ (n− 1)
.

This implies that∑
1≤p<n

∫ p+1

p

dt

1 + (t/α)
≤ E (Tn) =

∑
0≤p<n

α

α+ p
≤

∑
1≤p<n

∫ p

p−1

dy

1 + (t/α)
.

We conclude that∫ n

1

dt

1 + (t/α)
= α log

(
α+ n

α+ 1

)
≤ E (Tn) ≤

∫ n−1

0

dt

1 + (t/α)
= α log (1 + (n− 1)/α).

The formula

P (Xn+1 = i | X1, . . . , Xn) =
αµ(i) + Vn(i)

α+ n
with Vn(i) =

∑
1≤p≤n

1Xp(i)
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is a direct consequence of (30.22).
This ends the proof of the exercise.

Solution to exercise 16:
For each s ∈ S and x = (x1, . . . , xn+1) we let tk(s, x) ∈ {1, . . . , n + 1}, with k =

1, . . . , vn+1(s) be the times at which xtk(s,x) = s. In this notation, we have

P (X1 = x1, . . . , Xn+1 = xn+1) =
∏
s∈S

∏
0≤k<vn+1(s)

αµ(s) + k

α+ (tk(s, x)− 1)

=

 ∏
0≤t≤n

1

α+ t

 ∏
s∈S

∏
0≤k<vn+1(s)

(αµ(s) + k) .

In the last assertion we have used the fact that T (s, x) := {tk(s, x) , k = 1, . . . , vn+1(s)},
with s ∈ S is a partition of the set {1, . . . , n+ 1}

∪s∈ST (s, x) = {1, . . . , n+ 1}.

The formula (2.6) coincides with (4.9) when as = αµ(s). Following the arguments described
on page 79, we conclude that (Xi)i≥1 can be interpreted as a sequence of independent
random variables on the set S := {1, . . . , d} with probability distribution given by (2.7).
By the law of large numbers, given U check that 1

n

∑
1≤p≤n 1Xp(i) converges almost surely

to Ui, as n ↑ ∞. In addition, we have

E

 1

n

∑
1≤p≤n

1Xp(i) | U

 = Ui and Var

 1

n

∑
1≤p≤n

1Xp(i) | U

 =
1

n
(Ui(1− Ui)).

This ends the proof of the exercise.

Solution to exercise 17:
The �rst assertion is immediate. In addition, we have that

Sn(f) =
n

n+ 1

(
1

n

n−1∑
k=0

f(Xk) +
1

n
f(Xn)

)

=
n

n+ 1
Sn−1(f) +

1

n+ 1
f(Xn).

By construction, we have

E(f(Xn+1) | X0, . . . , Xn) = ε Sn(f) + (1− ε) µ(f).

In other words, this yields

E([f(Xn+1)− µ(f)] | X0, . . . , Xn) = ε Sn([f − µ(f)]) .

Thus, for any function f such that µ(f) = 0, we have

E(f(Xn+1) | X0, . . . , Xn) = ε Sn(f) ⇒ ηn+1(f) = ε Sn(f) .

Recalling that
E(f(Xn+1)) = E(E(f(Xn+1) | X0, . . . , Xn))
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we prove that

Sn(f) =
n

n+ 1
Sn−1(f) +

1

n+ 1
E(f(Xn))

=
n+ ε

n+ 1
× Sn−1(f)

=
n+ ε

n+ 1
× (n− 1) + ε

(n− 1) + 1
× Sn−2(f) = . . . =

[
n∏
k=1

k + ε

k + 1

]
× E(f(X0)).

We observe that

k ≤ t ≤ k + 1⇒ log

(
1− (1− ε)

k

)
≤ log

(
1− (1− ε)

t

)
≤ log

(
1− (1− ε)

k + 1

)
.

This implies that ∑
1≤k≤n

∫ k+1

k

log

(
1− (1− ε)

t

)
dt ≤ logαε(n)

and

logαε(n) ≤
∑

1≤k≤n

∫ k+2

k+1

log

(
1− (1− ε)

t

)
dt.

This ends the proof of (2.8). Using the estimates

∀x ∈ [0, 1[ − x

1− x
≤ log (1− x) ≤ −x

we check that ∫ n+2

2

log

(
1− (1− ε)

t

)
dt ≤ −(1− ε) log (1 + n/2)

and ∫ n+1

1

log

(
1− (1− ε)

t

)
dt ≥ −(1− ε) log (1 + n/ε).

The end of the proof of the exercise is immediate.

Solution to exercise 18:
By construction, we have

M(f)(i) = ε K(f)(i) + (1− ε) ν(f) ⇒ [M(f)(i)−M(f)(j)] = ε [K(f)(i)−K(f)(j)]

⇒ osc(M(f)) ≤ ε osc(f).

Assuming that osc(Mn(f)) ≤ εn osc(f) is true at rank n, we have

osc(Mn+1(f)) = osc(Mn(M(f))) ≤ εn osc(M(f)) ≤ εn+1 osc(f).

Recall that

f = 1k ⇒Mn(f)(i) = Mn(i, k) = P(Xn = k|X0 = i).

The end of the proof of the exercise is now clear.
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Solution to exercise 19: The �rst assertion is immediate since dW t

dt = Wt
dWt

dt . To
check the second one, we observe that

Xn = anXn−1 + bn =

[
n∏
p=1

ap

]
X0 +

∑
1≤p≤n

 ∏
n≥q>p

aq

 bp

with the sequence of random variables

an = (1− εn) + εn 4−1 = 4−εn and bn = (1− εn)h

Using the fact that

Law ((a1, . . . , ap+1, . . . , an), (b1, . . . , bp, . . . , bn))
=
Law ((an, . . . , an−p, . . . , a1), (bn, . . . , bn−p+1, . . . , b1)) .

we check that

∑
1≤p≤n

 ∏
n≥q>p

aq

 bp
law
=

∑
1≤p≤n

[a1 . . . an−p] b(n−p)+1 =
∑

0≤p<n

[a1 . . . ap] bp+1

The end of the proof of the exercise is now clear.

Solution to exercise 20:
We have

P(XT = xmax|X0 = x)

= E (P(XT = xmax | X1)|X0 = x)

= p P(XT = xmax | X1 = x+ 1)︸ ︷︷ ︸
:=P (x+1)

+(1− p) P(XT = xmax | X1 = x− 1)︸ ︷︷ ︸
:=P (x−1)

.

On the other hand

P (x) = pP (x) + qP (x) = p P (x+ 1) + q P (x− 1)

⇒ p [P (x+ 1)− P (x)] = q [P (x)− P (x− 1)]

⇒ [P (x+ 1)− P (x)] = p
q [P (x)− P (x− 1)] .

Recalling that P (0) = 0, this yields

[P (2)− P (1)] =
p

q
P (1) ⇒ [P (3)− P (2)] =

p

q
[P (2)− P (1)] =

(
p

q

)2

P (1).

By a simple induction w.r.t. x we �nd that

[P (x)− P (x− 1)] =

(
p

q

)x−1

P (1)

⇒ [P (x+ 1)− P (x)] =
p

q
[P (x)− P (x− 1)] =

(
p

q

)x
P (1).
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On the other hand, we have

P (x+ 1) = [P (x+ 1)− P (0)] =
∑

0≤y≤x

[P (y + 1)− P (y)] = P (1)
∑

0≤y≤x

(
p

q

)y
.

We end the proof using the fact that

x = xmax − 1⇒ P (x+ 1) = P (xmax) = 1 = P (1)
∑

0≤y<xmax

(
p

q

)y
so that

P (1) = 1/
∑

0≤y<xmax

(
p

q

)y
.

This implies that

P (x+ 1) =

∑
0≤y≤x

(
p
q

)y
∑

0≤y<xmax

(
p
q

)y =


1−

(
q
p

)x+1

1−
(
q
p

)xmax if p 6= q

(x+ 1)

xmax
if p = q.

This ends the proof of the exercise.
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Solution to exercise 21:
We have

x2 +
1

ε
(y −

√
(1− ε)x)2 = x2 +

1

ε

(
y2 + (1− ε)x2 − 2xy

√
(1− ε)

)
=

1

ε
(x2 + y2)− 2xy

√
(1− ε)
ε

.

By the symmetry property of the last formula w.r.t. the pair (x, y) we readily check that

λ(x)P (x, y) = λ(y)P (y, x).

Notice that
π(y)P (y, x)

π(x)P (x, y)
=
e−βV (y)

e−βV (x)
× λ(y)P (y, x)

λ(x)P (x, y)
= e−β(V (y)−V (x)).

Thus acceptance ratio of the corresponding Metropolis-Hastings algorithm is given by

a(x, y) = min

(
1,
π(y)P (y, x)

π(x)P (x, y)

)
= min

(
1, e−β(V (y)−V (x))

)
.

When

λ(x) = 1 and P (x, y) =
1√
2π

exp

[
−1

2
(y − x)

2

]
= P (y, x)

we also have

λ(x)P (x, y) = λ(y)P (y, x)⇒ a(x, y) = min
(

1, e−β(V (y)−V (x))
)
.

This ends the proof of the exercise.

Solution to exercise 22:
The transition probabilitiesM(x, y) of the Metropolis-Hastings with proposal transition

P and target distribution π are given got any x ∈ N by

M(x, x+ 1) = P (x, x+ 1) min

(
1,
π(x+ 1)P (x+ 1, x)

π(x)P (x, x+ 1)

)

=
1

2
min

1,
e−λ λx+1

(x+1)!

e−λ λx

x!

 =
1

2
min

(
1,

λ

x+ 1

)
and for any x ≥ 1

M(x, x− 1) = P (x, x− 1) min

(
1,
π(x− 1)P (x− 1, x)

π(x)P (x, x− 1)

)

=
1

2
min

1,
e−λ λx−1

(x−1)!

e−λ λx

x!

 =
1

2
min

(
1,
x

λ

)
.
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Notice that

x < λ < y ⇒ M(x, x+ 1) = 1
2 ≥ M(x, x− 1) = 1

2
x
λ

M(y, y + 1) = 1
2

λ
y+1 ≤ M(y, y − 1) = 1

2 .

This ends the proof of the exercise.

Solution to exercise 23:
For 1 ≤ i = j ≤ d′ we clearly have π′(i)M ′(i, j) = π′(j)M ′(j, i). For 0 ≤ i 6= j ≤ d′,

recalling that π′(i) ∝ π(i) we have

π(i)M ′(i, j) = π(i)M(i, j) = π(j)M(j, i) = π(j)M ′(j, i)⇒ π′(i)M ′(i, j) = π′(j)M ′(j, i).

The last case is obvious.
This ends the proof of the exercise.

Solution to exercise 24:
We clearly have∑

x∈S
1 M(x, y) = 1⇐⇒

∑
x∈S

1

card(S)
M(x, y) =

1

card(S)
⇐⇒ πM = π.

This ends the proof of the exercise.

Solution to exercise 25:
Using the regression formula (3.4), we have

m̂n = mn +
σ2
n

σ2
n + τ2

(yn −mn) and σ̂−2
n = τ−2 + σ−2

n .

Using the prediction rule (3.5) we have

mn+1 = m̂n and σ2
n+1 = σ̂2

n + σ2.

This implies

mn+1 =
τ2

τ2 + σ2
n

mn +
σ2
n

τ2 + σ2
n

yn

from which we conclude that

[
mn+1 −m′n+1

]
=

τ2

τ2 + σ2
n

[mn −m′n] =

 ∏
0≤k≤n

τ2

τ2 + σ2
n

 [m0 −m′0] .

We end the proof using the fact that σ2
n+1 = σ̂2

n + σ2 ≥ σ2. This ends the proof of the
exercise.

Solution to exercise 26: Notice that the density of the observation variable Yn given
Xn = xn is given by the Gaussian density

p(yn|xn) =
1√
2πτ

exp

(
− 1

2τ2
(yn − xn)2

)
.
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Initially, we start by sampling N i.i.d. random copies ξ0 := (ξi0)1≤i≤N of the signal X0.
Given the observation Y0 = y0 we sample N random variables ξ̂0 := (ξ̂i0)1≤i≤N with the
discrete distribution ∑

1≤i≤N

e−
1

2τ2 (y0−ξi0)2∑
1≤j≤N e

− 1
2τ2 (y0−ξj0)2

δξi0 .

In other words, each random variable ξ̂k0 is sampled according to the probability measure

∀i ∈ {1, . . . , N} P(ξ̂k0 = ξi0 | ξ0) =
e−

1
2τ2 (y0−ξi0)2∑

1≤j≤N e
− 1

2τ2 (y0−ξj0)2
.

During the prediction transition ξ̂0  ξ1 = (ξi1)1≤i≤N , we sample N i.i.d. copies (W i
1)1≤i≤N

of W1 and we set
∀i ∈ {1, . . . , N} ξi1 = ξ̂i0 +W i

1.

Given the observation Y1 = y1 we sample N random variables ξ̂1 := (ξ̂i1)1≤i≤N with the
discrete distribution ∑

1≤i≤N

e−
1

2τ2 (y1−ξi1)2∑
1≤j≤N e

− 1
2τ2 (y1−ξj1)2

δξi1 .

During the prediction transition ξ̂1  ξ2 = (ξi2)1≤i≤N , we sample N i.i.d. copies (W i
2)1≤i≤N

of W2 and we set
∀i ∈ {1, . . . , N} ξi2 = ξ̂i1 +W i

2

and so on.
This ends the proof of the exercise.

Solution to exercise 27: The solution is discussed in full details on page 55.

Solution to exercise 28:
Applying Doeblin-It	o di�erential formula to the function f(x) = x2 (⇒ f ′(x) = 2x and

f ′′(x) = 2) we �nd that

df(Wt) = f ′(Wt) dWt +
1

2
f ′′(Wt)dt = dW 2

t = 2 Wt dWt + dt.

This implies that

W 2
t −W 2

0 =

∫ t

0

dW 2
s = 2

∫ t

0

Ws dWs + t⇒ E(W 2
t ) = t.

This ends the proof of the exercise.

Solution to exercise 29: Applying Doeblin-It	o di�erential formula to the function
f(x) = x4 (⇒ f ′(x) = 4x3 and f ′′(x) = 12x2) we �nd that

df(Wt) = f ′(Wt) dWt +
1

2
f ′′(Wt)dt = dW 4

t = 4 W 3
t dWt + 6 W 2

t dt.

This yields

W 4
t =

∫ t

0

dW 4
s = 4

∫ t

0

W 3
s dWs + 6

∫ t

0

W 2
s ds⇒ E(W 4

t ) = 6

∫ t

0

E(W 2
s )︸ ︷︷ ︸

=s

ds = 3t2.
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This ends the proof of the exercise.

Solution to exercise 30:
Using (3.17), for any α ∈ R we have

E (Xα
t ) = E (Xα

0 )

[
exp

(∫ t

0

α

(
bs −

1

2
σ2
s

)
ds

)]
× E

(
exp

(
α

∫ t

0

σs dWs

))
.

Recalling that Yt :=
∫ t

0
σs dWs is a centered Gaussian random variable with variance

Var(Yt) = E(Y 2
t ) =

∫ t

0

σ2
s ds

we conclude that

E (Xα
t ) = E (Xα

0 ) exp

(
α

∫ t

0

(
bs −

1

2
σ2
s

)
ds

)
× exp

(
α2

2

∫ t

0

σ2
s ds

)
= E (Xα

0 ) exp

(
α

∫ t

0

bs ds+
α(α− 1)

2

∫ t

0

σ2
s ds

)
.

This ends the proof of the exercise.

Solution to exercise 31:
We set Vt :=

∫ t
0
σs(Xs) dWs ⇒ dVt = σt(Xt) dWt. Applying the Doeblin-It	o di�erential

formula to the function f(x) = f ′(x) = f ′′(x) = ex we have

dYt = df(Vt) = f ′(Vt) dVt +
1

2
f ′′(Vt) σ

2
t (Xt) dt = Yt

(
σt(Xt) dWt +

1

2
σ2
t (Xt) dt

)
.

In the same vein, if we set

Ut :=

∫ t

0

σs(Xs) dWs −
1

2

∫ t

0

σ2
s(Xs) ds⇒ dUt = σt(Xt) dWt −

1

2
σ2
t (Xt) dt

we have

dZt = df(Ut) = f ′(Ut) dUt +
1

2
f ′′(Ut) σ

2
t (Xt) dt

= Zt

(
σt(Xt) dWt −

1

2
σ2
t (Xt) dt+

1

2
σ2
t (Xt) dt

)
= Zt σt(Xt) dWt.

This ends the proof of the exercise.

Solution to exercise 32:
Applying Doeblin-It	o di�erential formula to the function f(x) = xn ⇒ f ′(x) = nxn−1

and f ′′(x) = n(n− 1)xn−2

dXn
t = nXn−1

t [(at + bt Xt) dt+ (τt + σt Xt) dWt] +
n(n− 1)

2
Xn−2
t (τt + σt Xt)

2
dt

= nXn
t

[(
bt +

(n− 1)

2
σ2
t

)
dt + σt dWt

]
+n Xn−1

t [{at + (n− 1)τtσt} dt+ τt dWt] +
n(n− 1)

2
Xn−2
t τ2

t dt.
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This implies that

dmn
t = n mn

t

(
bt +

(n− 1)

2
σ2
t

)
dt

+n mn−1
t (at + (n− 1)τtσt) dt+

n(n− 1)

2
mn−2
t τ2

t dt.

This ends the proof of the exercise.

Solution to exercise 33:
Using the Doeblin-It	o formula (3.10), we have

df(Xt) = L(f)(Xt)dt+
∂f

∂x
(t,Xt) σt(Xt) dWt.

This implies that

dE(f(Xt)) =
∫
f(x) (pt+dt(x)− pt(x)) dx = E(L(f)(Xt)) dt

⇔
∫
f(x) ∂pt

∂t dx =
∫
L(f)(x) pt(x) dx.

On the other hand, for any smooth function with compact support, using an integration by
parts we have∫

L(f)(x) pt(x) dx =

∫ [
bt
∂f

∂x
(x) +

1

2
σ2
t

∂2f

∂x2
(x)

]
pt(x) dx

= −
∫

f(x)
∂

∂x
(btpt)(x) dx+

1

2

∫
f(x)

∂2

∂x2
(σtpt)(x)

This result being true for any function f implies that we must have

∂pt
∂t

= − ∂

∂x
(bt pt) +

1

2

∂2

∂x2

(
σ2
t pt

)
.

This ends the proof of the exercise.

Solution to exercise 34:We have Y = eµ+σZ with Z being standard normal. We also
note that the probabilities of the events {Y > K} and {Z > log(K)−µ

σ } coincide. Hence

E
[
(Y −K)+

]
=

∫ ∞
log(K)−µ

σ

(
eµ+σt −K

) e−t2/2√
2π

dt

= eµ+σ2/2

∫ ∞
log(K)−µ−σ2

σ

e−x
2/2

√
2π

dx−K G

(
µ− log(K)

σ

)
= eµ+σ2/2 G

(
µ− log(K) + σ2

σ

)
−K G

(
µ− log(K)

σ

)
.
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Solution to exercise 35: For any nN− {0}, we have

P (bXc = n− 1) = P (n− 1 ≤ X < n) =

∫ n

n−1

λ e−λt dt

=
[
e−λt

]n−1

n
=
(
e−λ

)n−1 (
1− e−λ

)
= (1− p)n−1 p.

This ends the proof of the exercise.

Solution to exercise 44: For any bounded function f on [0,∞[, we have

E (f(X + Y )) =
ca+b

Γ(a)Γ(b)

∫ ∞
0

xa−1

[∫ ∞
0

f(x+ y) yb−1 e−c(x+y)dy

]
dx

=
ca+b

Γ(a)Γ(b)

∫ ∞
0

xa−1

[∫ ∞
x

f(z) (z − x)b−1 e−czdz

]
dx

=
ca+b

Γ(a)Γ(b)

∫
0≤x≤z

f(z) xa−1 (z − x)b−1 e−czdxdz.

This yields

E (f(X + Y )) =
ca+b

Γ(a)Γ(b)

∫ ∞
0

f(z) e−cz
[∫ z

0

xa−1 (z − x)b−1 dx

]
dz.

To take the �nal step, we observe that∫ z

0

xa−1 (z − x)b−1 dx = za+b−1

∫ z

0

(x
z

)a−1 (
1− x

z

)b−1 dx

z

= z(a+b)−1 ×B(a, b)

with

B(a, b) =

∫ 1

0

ua−1 (1− u)
b−1

du.

This implies that

E (f(X + Y )) =

[
B(a, b)

Γ(a+ b)

Γ(a)Γ(b)

] ∫ ∞
0

ca+b

Γ(a+ b)
f(z) z(a+b)−1 e−cz dz

from which we conclude that

X + Y ∼ Gamma(a+ b, c) and B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

This ends the proof of the exercise.
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Solution to exercise 45: For any bounded function f on [0,∞[, we have

E
(
f
(

X
X+Y

))
=

ca+b

Γ(a)Γ(b)

∫ ∞
0

xa−1

[∫ ∞
0

f

(
x

x+ y

)
yb−1 e−c(x+y) dy

]
dx.

For each x, we use the change of variables

z =
x

x+ y
(∈ [0, 1])⇒ y = −x+

x

z
dy =

x

z2
dz

to check that

E
(
f
(

X
X+Y

))
=

ca+b

Γ(a)Γ(b)

∫ ∞
0

xa−1

[∫ 1

0

f(z)
(
−x+

x

z

)b−1

e−cx/z
x

z2
dz

]
dx

=
ca+b

Γ(a)Γ(b)

∫ 1

0

f(z) (1− z)b−1
z−b−1

(z
c

)a+b

Γ(a+ b)

×

[∫ ∞
0

(
c
z

)a+b

Γ(a+ b)
x(a+b)−1 e−

c
z x dx

]
︸ ︷︷ ︸

=1

dz.

This yields

E
(
f
(

X
X+Y

))
=

∫ 1

0

f(z)
Γ(a+ b)

Γ(a)Γ(b)
za−1 (1− z)b−1

dz.

This ends the proof of the exercise.

Solution to exercise 46: Using exercise 44, we have

Z :=
∑

1≤i≤d

Xi ∼ Γ(
∑

1≤i≤d

ai, c).

Our objective is to prove that for any Dirichlet variable

(Y1, . . . , Yd) ∼ D(a1, . . . , ad)

independent of Z, the collection (Z Yi)1≤i≤d forms a sequence of independent r.v. with
distribution (Γ(ai, c))1≤i≤d. In this situation, recalling that

∑
1≤i≤d Yi = 1 we have

∀1 ≤ i ≤ d Xi = Z Yi

=⇒

(
X1∑

1≤i≤dXi
, . . . ,

Xd∑
1≤i≤dXi

)
= (Y1, . . . , Yd) ∼ D(a1, . . . , ad).
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For any bounded function f on Rd, we have

E (f (ZY1, . . . , ZYd))

=

∫
∆d−1

∫ ∞
0

f (zy1, . . . , zyd)
c
∑

1≤i≤d ai

Γ
(∑

1≤i≤d ai

) z
∑

1≤i≤d ai−1 e−cz dz

×
Γ
(∑

1≤i≤d ai

)
∏

1≤i≤d Γ(ai)

 ∏
1≤i≤d

yai−1
i

 dy1 . . . dyd−1

=

∫
∆d−1

∫ ∞
0

f (zy1, . . . , zyd)
c
∑

1≤i≤d ai∏
1≤i≤d Γ(ai)

zd−1 e−cz dz

×

 ∏
1≤i≤d

(zyi)
ai−1

 dy1 . . . dyd−1.

For each z we use the change of variables

∀1 ≤ i ≤ d zi = zyi and we recall that zd := zyd = z(1− y1 − . . .− yd−1)

so that
∑

1≤i≤d zi = z, dy1 . . . dyd−1 = z1−ddz1 . . . dzd−1, and �nally dz = dzd. This implies
that

E (f (ZY1, . . . , ZYd))

=

∫
f (z1, . . . , zd)

∏
1≤i≤d

[
cai

Γ(ai)
zai−1
i e−czi

]
dz1 . . . dzd.

The last assertion is a direct consequence of the additive formula presented in exercise 44.
This ends the proof of the exercise.

Solution to exercise 47:
By symmetry, we can assume without loss of generality that i = 1. Using the fact that

Γ(z + 1) = zΓ(z), we prove that

E (U1)

=
Γ(
∑

1≤i≤d ai)∏
1≤i≤d Γ(ai)

∫
u1+...+ud−1<1

u
(a1+1)−1
1

[∏
1<i≤d u

ai−1
i

]
du1 . . . dud−1

= Γ(a1+1)
Γ(a1)

Γ(
∑

1≤i≤d ai)
Γ(1+

∑
1≤i≤d ai)

= a1∑
1≤i≤d ai

and
E
(
U2

1

)
=

Γ(
∑

1≤i≤d ai)∏
1≤i≤d Γ(ai)

∫
u1+...+ud−1<1

u
(a1+2)−1
1

[∏
1<i≤d u

ai−1
i

]
du1 . . . dud−1

= Γ(a1+2)
Γ(a1)

Γ(
∑

1≤i≤d ai)
Γ(2+

∑
1≤i≤d ai)

= 1+a1

1+
∑

1≤i≤d ai
× E (U1) .
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In the above formulae, we have implicitly used the notation ud = 1−
∑

1≤i<d ui. This ends
the proof of the exercise.

Solution to exercise 48:
For any observed sequence (x1, . . . , xn) ∈ {0, 1}, we have

P ((X1 . . . , Xn) = (x1, . . . , xn) | Θ = θ) = θ
∑

1≤i≤n xi × (1− θ)
∑

1≤i≤n(1−xi).

Using the Bayes rule, this implies that

P (Θ ∈ dθ | (X1 . . . , Xn) = (x1, . . . , xn))

∝ θ[a+
∑

1≤i≤n xi]−1 (1− θ)[b+
∑

1≤i≤n(1−xi)]−1
1[0,1](θ)

from which we conclude that

E (Θ | (X1 . . . , Xn)) =
a+

∑
1≤i≤nXi

a+ b+
∑

1≤i≤nXi +
∑

1≤i≤n(1−Xi)

= (1 + (a+ b)/n)
−1

a

n
+

1

n

∑
1≤i≤n

Xi


−→n↑∞ Θ.

This ends the proof of the exercise.

Solution to exercise 49:
The conditional density of (Y1, . . . , Yn) given X is given by

p(y1, . . . , yn | x) = p(y1|x) . . . p(yn|x) ∝
∏

1≤i≤n

e−
1
2τ (yi−ax)2

and

p(x | y1, . . . , yn) ∝ p(y1|x) . . . p(yn|x) p(x)

∝
∏

1≤i≤n

exp

(
− 1

2τ2
(yi − ax)

2 − 1

2nσ2
(x−m)

2

)
︸ ︷︷ ︸

=pn(x | yi)

with the conditional density

pn(x | yi) ∝ exp

(
− 1

2ρn
((x−m)− βn(yi − am)))

2

)
and the parameters

βn = a σ2n/(a2σ2n+ τ2)→ a−1 and ρn =
(
a2τ−2 + σ−2/n

)−1 → τ2/a2.

We get

p(x | y1, . . . , yn) ∝ exp

− 1

2ρn

∑
1≤i≤n

((x−m)− βn(yi − am))
2


∝ exp

− n

2ρn

(x−m)− βn
1

n

∑
1≤i≤n

(yi − am)

2
.
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This clearly implies that

E (X | (Y1, . . . , Yn)) = (1− aβn) m+ βn
1

n

∑
1≤i≤n

Yi −→ X.

This ends the proof of the exercise.

Solution to exercise 50:
We observe that

∀yk ∈ {0, 1} P(Yk = yk | X = x) = xyk (1− x)1−yk := p(yk | x)

and therefore

P(Yk = yk, 1 ≤ k ≤ n | X = x) =
∏

1≤k≤n

p(yk | x) = x
∑

1≤k≤n yk (1− x)n−
∑

1≤k≤n yk .

Using Bayes' rule, this implies that

P(X ∈ dx | Yk = yk, 1 ≤ k ≤ n)

=
1∫ 1

0
P(Yk = yk, 1 ≤ k ≤ n | X = u) 1[0,1](du) du

P(Yk = yk, 1 ≤ k ≤ n | X = x) 1[0,1](x) dx

=
1∫ 1

0
uyn (1− u)n−yndu

xyn (1− x)n−yn 1[0,1](x) dx

=
Γ(n+ 2)

Γ(yn + 1)Γ(n− yn + 1)
xyn (1− x)n−yn 1[0,1](x) dx

=
(n+ 1)!

yn!(n− yn)!
xyn (1− x)n−yn 1[0,1](x) dx

with yn =
∑

1≤k≤n yk. We recall that∫ 1

0

uα−1 (1− u)β−1du =
Γ(α)Γ(β)

Γ(α+ β)
and Γ(n+ 1) = n!

where α 7→ Γ(α) is the Gamma function. This ends the proof of the exercise.

Solution to exercise 51:
Firstly, we have that

P (X ∈ dx | Y = y) = x e−xy × xa−1 e−b x = x(a+1)−1 e−(b+y) x 1]0,∞[(x) dx

so that Law(X | Y ) = Gamma(a+ 1, b+ Y ).
In much the same way, we �nd that

P (X ∈ dx | Y = y) ∝ xy e−x × xa−1 e−b x 1]0,∞[(x) dx

= x(a+y)−1 e−(b+1) x 1]0,∞[(x) dx

so that Law(X | Y ) = Gamma(a+ Y, b+ 1). This ends the proof of the exercise.
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Solution to exercise 52:
The prior density of the Dirichlet distribution is given by

p (x1, . . . , xd) ∝

 ∏
1≤i≤d

xai−1
i

 1∆d−1
(x1, . . . , xd)

and the multinomial likelihood is given by

P
(
(Y 1
n , . . . , Y

d
n ) = (m1, . . . ,md) | X1 = x1, . . . , Xd = xd

)
∝ xm1

1 . . . xmdd .

This implies that the posterior density is de�ned for any (x1, . . . , xd) ∈ ∆d−1 by

p ((x1, . . . , xd) | (y1, . . . , yn)) ∝

 ∏
1≤i≤d

xmii

×
 ∏

1≤i≤d

xai−1
i


=

 ∏
1≤i≤d

x
(ai+mi)−1
i

 .
We conclude that

Law((X1, . . . , Xd) | (Y1, . . . , Yn)) = D (a1 +m1, . . . , ad +md) .

This ends the proof of the exercise.

Solution to exercise 53:
We have

E

 1

N

∑
1≤i≤N

Xi | Y

 =
∑

1≤i≤N

m̂(Y i)

=

(
σ̂

σ

)2

m+

(
1−

(
σ̂

σ

)2
)

1

N

∑
1≤i≤N

Y i.

On the other hand, using the fact that

E
(
X (f)2 | Y

)
=

∑
1≤i,j≤N

∫
f(xj)f(xj)

∏
1≤k≤N

M̂(Y k, dxk)

=
∑

1≤i≤N

M̂(f2)(Y i) + 2
∑

1≤i<j≤N

M̂(f)(Y i)M̂(f2)(Y i)

=
∑

1≤i≤N

[
M̂(f2)(Y i)− M̂(f)(Y i)2

]
+

 ∑
1≤i≤N

M̂(f)(Y i)

2

in the linear Gaussian model discussed here we �nd that

N E


 1

N

∑
1≤i≤N

Xi − E

 1

N

∑
1≤i≤N

Xi | Y

2

| Y

 = σ̂2.
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This ends the proof of the exercise.

Solution to exercise 54:
When the function f has compact support, we clearly have the integration by parts

formula ∫ (
d

dw
f(w)

)
1√
2π

e−
1
2 w2

dw = −
∫

f(w)

(
d

dw

1√
2π

e−
1
2 w2

)
dw.

Since
d

dw

1√
2π

e−
1
2 w2

=
w√
2π

e−
1
2 w2

we conclude that∫ (
d

dw
f(w)

)
1√
2π

e−
1
2 w2

dw = −
∫

w f(w)
1√
2π

e−
1
2 w2

dw.

For more general functions we use an approximation argument. This ends the proof of the
exercise.
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Solution to exercise 55:

We have

VN (a1 f1 + a2 f2) =
√
N (ηN (a1 f1 + a2 f2)− η(a1 f1 + a2 f2))

=
√
N (a1 η

N (f1) + a2 ηN (f2)− a1 η(f1)− a2η(f2))

= a1 V
N (f1) + a2 V

N (f2).

This ends the proof of the exercise.

Solution to exercise 56:

We have

VN (f1)VN (f2) =
1

N

∑
1≤i,j≤N

(f1(Xi)− η(f1))(f2(Xj)− η(f2))

=
1

N

∑
1≤i≤N

(f1(Xi)− η(f1))(f2(Xi)− η(f2))

+
1

N

∑
1≤i 6=j≤N

(f1(Xi)− η(f1))(f2(Xj)− η(f2)).

This implies that

E (VN (f1)VN (f2)) =
1

N

∑
1≤i≤N

E
[
(f1(Xi)− η(f1))(f2(Xi)− η(f2))

]
= E [(f1(X)− η(f1))(f2(X)− η(f2))] = E(f1(X)f2(X))− η(f1)η(f2).

The end of the proof of the exercise is now clear.

Solution to exercise 57:

We have

E (f(Y )) =

∫
f(y) p(y) dy =

∫
f(x)

p(x)

q(x)
q(x) dx

= E
(
f(X)

)
= E

 1

N

∑
1≤i≤N

f(Xi)


with the weight function

f(x) = f(x)
p(x)

q(x)
.

867
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Using simple calculations we �nd that

N Var

 1

N

∑
1≤i≤N

f(Xi)

 = E
(
f(X)2

)
− E

(
f(X)

)2
=

∫ (
f(x)

p(x)

q(x)

)2

q(x) dx− E (f(Y ))
2

=

∫
f2(x)

p(x)

q(x)
p(x) dx− E (f(Y ))

2
.

This ends the proof of the exercise.

Solution to exercise 58:
We have

P(Uk = u) = p 1u=1 + (1− p) 1u=0 and P(Uk = u) = p 1u=1 + (1− p) 1u=0.

This implies that

P(U1 = u1, . . . , Un = un)

=
∏

1≤k≤n (p 1uk=1 + (1− p) 1uk=0)

=
[∏

1≤k≤n

(
p 1uk=1+(1−p) 1uk=0

p 1uk=1+(1−p) 1uk=0

)]
P(U1 = u1, . . . , Un = un).

The end of the proof of the exercise is now clear.

Solution to exercise 59: We have

E
(
eλU)

)
=

1

2

(
eλ + e−λ

)
=

1

2

∑
n≥0

λn

n!
+
∑
n≥0

(−λ)n

n!


=

∑
n≥0

λ2n

(2n)!
≤ 1 +

∑
n≥1

λ2n

2n n!
= eλ

2/2.

Notice that
E
(
eλ(X−E(X))

)
= E

(
eλE((X−X) | X)

)
for an independent copy X of X. Using Jensen's inequality, we prove that

E
(
eλ(X−E(X))

)
= E

(
E
(
eλ(X−X) | X

))
= E

(
eλ(X−X)

)
= E

(
E
(
eλU(X−X) | X,X

))
= E

(
eλU(X−X)

)
.

The last assertion follows from the fact that (X − X) and −(X − X) have the same law.
Now, we use the fact that

E
(
eλU(X−X) | X,X

)
≤ eλ

2((X−X))2/2 ≤ e
λ2(b−a)2

2 .
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Finally, for any λ > 0 and ρ we have

P (X − E(X) ≥ ρ) = P
(
eλ(X−E(X)) ≥ eλρ

)
≤ e−λρ E

(
eλ(X−E(X))

)
≤ e
−
(
λρ−λ

2(b−a)2

2

)
.

Choosing

λ = ρ/(b− a)2 ⇒ λρ− λ2(b− a)2

2
=

ρ2

(b− a)2
− ρ2(b− a)2

2(b− a)4
=

ρ2

2(b− a)2

we �nd that

P (X − E(X) ≥ ρ) ≤ e−
ρ2

2(b−a)2 .

This ends the proof of the exercise.

Solution to exercise 60:
For any a ≥ 0 we have

P(Xn ≥ a) =
∑

A⊂{1,...,n}, |A|≥a

(∏
k∈A

pk

) ∏
k 6∈A

(1− pk)

 .

We set mn = E(Xn) =
∑

1≤i≤n pi. For any ε ≥ 0 and λ > 0 we have

P(Xn ≥ (1 + ε)mn) = P
(
eλXn ≥ e−λ(1+ε)mn

)
≤ e−λ(1+ε)mn E

(
eλXn

)
.

On the other hand, we have

E
(
eλXn

)
=

∏
1≤k≤n

E
(
eλUk

)
=

∏
1≤k≤n

(
(1− pk) + pke

λ
)

=
∏

1≤k≤n

(
1 + pk

(
eλ − 1

))
.

Using the elementary bound 1 + x ≤ ex, for any x ≥ 0, we prove that

E
(
eλXn

)
≤

∏
1≤k≤n

epk(e
λ−1) = emn(eλ−1)

and therefore
P(Xn ≥ (1 + ε)mn) ≤ e[(e

λ−1)−λ(1+ε)]mn .

To minimize the function f(λ) =
(
eλ − 1

)
− λ(1 + ε) we check that

λ = log (1 + ε) =⇒ f ′(λ) = eλ − (1 + ε) = 0.

In this situation, we �nd that

P(Xn ≥ (1+ε)mn) ≤ e[ε−log (1+ε)(1+ε)]mn =

(
eε

(1 + ε)1+ε

)mn
=

(
e

(
1− ε

1 + ε

) 1+ε
ε

)ε mn
.

Notice that (1− 1/x)x < e−1 for any x > 0 (and (1− 1/x)x increases to e−1, as x ↑ ∞), so

that e
(

1− ε
1+ε

) 1+ε
ε

< 1. This ends the proof of the exercise.

Solution to exercise 61:
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Firstly, we provide a simple inductive proof of (5.8). We assume without loss of generality
that the functions fi are centered, that is we have that η(fi) = 0 for any 1 ≤ i ≤ d.

The result is immediate for n = 1 (with the conventions
∑
∅ = 0 and

∏
∅ = 1). We

further assume that the formula has been checked at rank n. For any (λj)1≤j≤n+1 ∈ Rn+1

we have

E
(
e
∑

1≤j≤n+1 λj V
N (fj)

)
= E

(
eV

N(
∑

1≤j≤n+1 λj fj)
)

= e
2−1 η

(
[
∑

1≤j≤n+1 λj fj]
2
)

= e
2−1 η

(
[
∑

1≤j≤n λj fj]
2
)
× e2−1 λ2

n+1η(f2
n+1) × eλn+1

∑
1≤j≤n λj η(fjfn+1).

This implies that

E
(
e
∑

1≤j≤n+1 λj V
N (fj)

)
= E

(
e
∑

1≤j≤n λj V
N (fj)

)
× e2−1 λ2

n+1η(f2
n+1) × eλn+1

∑
1≤j≤n λj E(V (fj)V (fn+1)).

(30.23)

For any 1 ≤ i ≤ n the term
∏

1≤j 6=i≤n λj in the series expansion of E
(
e
∑

1≤j≤n λj V
N (fj)

)
is given by E

(∏
1≤j 6=i≤n VN (fj)

)
. Thus, the desired formula (5.8) at rank (n + 1) results

from a simple identi�cation of the terms

λ1 . . . λn+1 =

 ∏
1≤j 6=i≤n

λj

× λn+1 λi

in the series expansion of (30.23).
We notice that formula (5.8) is also true by a permutation of the indexes. This shows

that for any �xed index j0 ∈ {1, . . . , n} we have

E (V (f1) . . . V (fn)) =
1

2

∑
1≤i 6=j0≤n

E

 ∏
k 6∈{i,j0}

VN (fk)

× E(V (fi)V (fj0)).

This yields that

E (V (f1) . . . V (fn)) =
1

2n

∑
1≤i6=j≤n

E

 ∏
k 6∈{i,j}

VN (fk)

× E(V (fi)V (fj))

=
1

n

∑
1≤i<j≤n

E

 ∏
k 6∈{i,j}

VN (fk)

× E(V (fi)V (fj)).

(30.24)

Now we use the inductive proof of (5.9). The result is immediate for n = 1. Assuming that
it is true at rank n, we have

E

 ∏
k 6∈{i,j}

VN (fk)

 =
∑

P∈P(i,j)
2n −{{i,j}}

∏
{k,l}∈P

E (V (fk)V (fl))



Chapter 5 871

where P(i,j)
2n stands for the set of pairings of {1, . . . , 2n} containing {i, j}. Using (30.24),

this implies that

E (V (f1) . . . V (f2n))

= 1
n

∑
1≤i<j≤n

∑
P∈P(i,j)

2n −{{i,j}}
∏
{k,l}∈P∪{{i,j}} E (V (fk)V (fl))

= 1
n

∑
1≤i<j≤n

∑
P∈P(i,j)

2n

∏
{k,l}∈P E (V (fk)V (fl)) .

The end of the proof follows from the fact that each partition P ∈ P2n is counted n times
in the above display.

This ends the proof of the exercise.

Solution to exercise 62:
We have

∂xk
(
x′R−1x

)
= ∂xk

 ∑
1≤i,j≤r

xiR
−1
i,j xj


=

∑
1≤i,j≤r

(
1i=kR

−1
i,j xj + xiR

−1
i,j 1j=k

)
=
∑

1≤j≤r

R−1
k,jxj +

∑
1≤i≤r

xiR
−1
i,k

By symmetry arguments we conclude that

1

2
∂xk

(
x′R−1x

)
=
∑

1≤i≤r

R−1
k,i xi

Using the fact that

∑
1≤k≤r

Rj,k
∑

1≤i≤r

R−1
k,i xi =

∑
1≤i≤r

 ∑
1≤k≤r

Rj,k R
−1
k,i

 xi =
∑

1≤i≤r

1i=j xi = xj

we conclude that

xj =
1

2

∑
1≤k≤r

Rj,k ∂xk
(
x′R−1x

)
= −

∑
1≤k≤r

Rj,k e
1
2 x′R−1x∂xk

(
e−

1
2 x′R−1x

)
The last assertion is checked using the integration by parts formula

E (Xi f(X)) ∝
∫

xi f(x) e−
1
2 x′R−1x dx

= −
∑

1≤k≤r

Rj,k

∫
f(x)∂xk

(
e−

1
2 x′R−1x

)
dx

=
∑

1≤k≤r

Rj,k

∫
∂xkf(x) e−

1
2 x′R−1x dx =

∑
1≤k≤r

Rj,k E (∂xkf(X))

This ends the proof of the exercise.
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Solution to exercise 63:
By the Borel Cantelli lemma we have P({Xn = an}in�nitely often) = 0. Therefore for

any ω ∈ Ω there exists some N(ω) ∈ N− {0} such that Xn(ω) = bn, for any n ≥ N(ω). In
this case, for any such n ≥ N(ω) we have

1

n

∑
1≤k≤n

Xk(ω) =
A(ω)

n
+

1

n

∑
N(ω)≤k≤n

bk

with some �nite constant A(ω) =
∑

1≤k<N(ω)Xk(ω) <∞. This implies that

1

n

∑
1≤k≤n

Xk(ω) =
A(ω) +B(ω)

n
+

1

n

∑
1≤k≤n

bk →n↑∞ b

with B(ω) =
∑

1≤k<N(ω) bk <∞.
This ends the proof of the exercise.
Solution to exercise 64: We check the upper bound by using the fact that

P(X > δ) =
1√
2π

∫ +∞

δ

1

x

∂

∂x

(
−e− x

2

2

)
dx

=
1√
2π

[
1

x
e−

x2

2

]δ
+∞
− 1√

2π

∫ +∞

δ

1

x2
e−

x2

2 dx ≤ 1

δ

1√
2π

e−
δ2

2 .

To prove the lower bound we use the upper bound we just obtained to check that

P(X > δ) =

∫ +∞

δ

y

(
1

y

e−
y2

2

√
2π

)
dy ≥ δ

∫ +∞

δ

(∫ +∞

y

e−
x2

2

√
2π

dx

)
dy.

To continue, we use integration by parts to obtain∫ +∞

δ

(∫ +∞

y

e−
x2

2

√
2π

dx

)
dy

=

[
y

(∫ +∞

y

e−
x2

2

√
2π

dx

)]+∞

δ

+

∫ +∞

δ

y
e−

y2

2

√
2π

dy

= −δ
∫ +∞

δ

e−
x2

2

√
2π

dx+

∫ +∞

δ

∂

∂y

(
−e
− y

2

2

√
2π

)
dy

= −δ
∫ +∞

δ

e−
x2

2

√
2π

dx+
e−

δ2

2

√
2π

.

We conclude that

P(X > δ) ≥ −δ2 P(X > δ) + δ
e−

δ2

2

√
2π

.

In other words, we have proved that

P(X > δ) ≥ δ

1 + δ2

e−
δ2

2

√
2π

=
1

δ + δ−1

e−
δ2

2

√
2π

.
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This ends the proof of Mill's inequalities.

Now, using the fact that X
law
= −X we have

P (|X| ≥ a) = P (X ≥ a or X ≤ −a)

≤ P (X ≥ a) + P (X ≤ −a)

= P (X ≥ a) + P (−X ≥ a) = 2 P (X ≥ a)

≤ 2

a

1√
2π

e−
a2

2 .

If we choose a =
√

2(1 + α) log n, then we �nd that

P
(
|X| ≥

√
2(1 + α) log n

)
≤ 1√

πα

1

n1+α

1√
log (n)

.

The last assertion is a direct consequence of the Borel-Cantelli lemma. This ends the proof
of the exercise.

Solution to exercise 65: Jensen's inequality states that for any convex function and
a random variable W s.t. f (EW ) and E (f(W )) exist, the inequality

f (EW ) ≤ E (f(W ))

holds. Consider a random variableW de�ned on a interval (a,∞) and with a density that is
proportional to te−t

2/2, t ∈ (a,∞). Take f(t) := 1/t. Then by applying Jensen's inequality
we get: ∫ ∞

a

t e−
1
2 t

2

dt /

∫ ∞
a

t2 e−
1
2 t

2

dt ≤
∫ ∞
a

e−
1
2 t

2

dt /

∫ ∞
a

t e−
1
2 t

2

dt.

However we readily check that
∫∞
a
t e−

1
2 t

2

dt = e−
1
2a

2

and
∫∞
a
t2 e−

1
2 t

2

dt = a e−
1
2a

2

+∫∞
a
e−

1
2 t

2

dt holds. Substituting back, we get

(
e−

1
2a

2
)2

≤ ae− 1
2a

2

∫ ∞
a

e−
1
2 t

2

dt+

(∫ ∞
a

e−
1
2 t

2

dt

)2

.

If we set z :=
∫∞
a
e−

1
2 t

2

dt we are dealing with a quadratic inequality with respect to z.
Hence √

4 + a2 − a
2

e−
1
2a

2

≤
∫ ∞
a

e−
1
2 t

2

dt.

This ends the proof of the exercise.

Solution to exercise 66:
We consider a pair of standard normal random variables X = (X1, X2). Suppose we

want to evaluate the quantity

P (X ∈ A(a, ε)) = E
(
1A(a,ε)(X)

)
= η(1A(a,ε))

with the Gaussian distribution η of X, and the indicator function 1A(a,ε) of the set

A(a, ε) = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≥ a and 0 ≤ arctan (x2/x1) ≤ 2πe−b}.
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Using the Box-Muller transformation (X1, X2) = ϕ(U1, U2) presented in (4.5), we have

ϕ−1 (A(a, ε)) = [0, e−a]× [0, e−b] ⊂ [0, 1]2.

If we set f = 1A(a,ε) ◦ ϕ then we �nd that

P (X ∈ A(a, ε)) = E (f(U1, U2))

=

∫
[0,1]2

1[0,e−a]×[0,e−b](u1, u2) du1du2 = e−(a+b).

The above equation already shows that a very small part of the cell [0, 1]2 is used to
compute the desired integral, as soon as a, b are too large. This shows that any �xed grid
approximation technique will fail. We let (U i1, U

i
2)i≥1 be a sequence of independent copies

of the variable (U1, U2). If we set Xi = (Xi
1, X

i
2) = ϕ(U i1, U

i
2), then we have

ηN (1A(a,ε)) =
1

N

∑
1≤i≤N

1[0,e−a]×[0,e−b](U
i
1, U

i
2).

The chance for a sample (U i1, U
i
2) to hit the set [0, e−a] × [0, e−b] can be extremely small

whenever a, b are too large, so that the number of samples needed to get an accurate estimate
can be too large to get a feasible solution. In this case we notice that the relative variance
is given by

E

[ηN (1A(a,ε))

η(1A(a,ε))
− 1

]2
 =

1

Nη
(
1A(a,ε)

) (1− η (1A(a,ε)

))
.

This ends the proof of the exercise.
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Solution to exercise 68: In this case, we have

µβ(σ) ∝ e−βV (σ).

We let δ := infσ∈S−V ? (V (σ)− V?), with V? := infS V . Since the state space is �nite we
have δ > 0. We use the formulae

µβ(σ) =
e−β(V (σ)−V?)∑
τ∈S e

−β(V (τ)−V?)

and

Card(V ?) ≤
∑
τ∈S

e−β(V (τ)−V?) = Card(V ?) +
∑

τ∈S−V?

e−β(V (τ)−V?)

≤ Card(V ?) + Card(S − V ?)× e−βδ

to check that for any σ ∈ V ?

µ∞(σ)
β↑∞←− 1

1 + ce−βδ
× µ∞(σ) ≤ µβ(σ) ≤ µ∞(σ)

with c := Card(S − V ?)/Card(V ?). In much the same way, we prove that for any σ ∈ S−V ?
we have that

0 = µ∞(σ) ≤ µβ(σ) ≤ e−βδ ↓β↑∞ 0 = µ∞(σ).

This ends the proof of the exercise.

Solution to exercise 69:
The Metropolis-Hastings ratio is given by the formula

p(y)ε−dq((x− y)/ε)

p(x)ε−dq((y − x)/ε)
=
p(y)

p(y)
.

This ends the proof of the exercise.

Solution to exercise 70:
We have

π(x) M(x, y) ∝ w(x, y) = w(y, x) ∝ π(y) M(x, y)

and ∑
x∈V

π(x) M(x, y) = π(y)
∑
y∈V

M(x, y)︸ ︷︷ ︸
=1

.
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This implies that

P(X1 = y) =
∑
x∈V

P(X0 = x) P(X1 = y | X0 = x) =
∑
x∈V

π(x)M(x, y) = π(y).

By a simple induction w.r.t. the time parameter we prove that P (Xn = x) = π(x) for any
n ≥ 0. This ends the proof of the exercise.

Solution to exercise 71:
We have

p(xn+1 | y0, . . . , yn) =

∫
p(xn+1, xn | y0, . . . , yn) dxn

and
p(xn+1, xn | y0, . . . , yn) = p(xn+1 | y0, . . . , yn, xn)︸ ︷︷ ︸

=p(xn+1|xn)

p(xn | y0, . . . , yn).

Using Bayes' rule, we also have that

p(xn+1 | y0, . . . , yn, yn+1) =
p(yn+1|xn+1) p(xn+1 | y0, . . . , yn)∫

p(yn+1|x′n+1) p(x′n+1 | y0, . . . , yn) dx′n+1

and ∫
p(yn+1|x′n+1) p(x′n+1 | y0, . . . , yn) dx′n+1 = p(yn+1|y0 . . . , yn).

The last assertion follows from the fact that

p(y0 . . . , yn) =
∏

0≤k≤n

p(yk|y0, . . . , yk−1)

and

p(yk|y0, . . . , yk−1) =

∫
p(yk|xk) p(xk | y0, . . . , yk−1) dxk

and this ends the proof of the exercise.

Solution to exercise 72:
We have

Zβ =
∑
x∈S

exp

−hβ∑
i∈E

x(i) +K
∑
i∼j

x(i)x(j)

.
By symmetry, this yields

Zβ =
∑
x∈S

exp

[
Jβ

L∑
i=1

x(i)x(i+ 1) +
hβ
2

L∑
i=1

(x(i) + x(i+ 1))

]

=
∑
x∈S

L∏
i=1

T (x(i), x(i+ 1))

with

T (x(i), x(i+ 1)) = exp

[
Jβx(i)x(i+ 1) +

hβ
2

(x(i) + x(i+ 1))

]
.
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We conclude that

Zβ =
∑

x(1)∈{−1,+1}

. . .
∑

x(L)∈{−1,+1}

T (x(1), x(2)) . . . T (x(L− 1), x(L))T (X(L), x(1))

= Trace(TL).

To diagonalize the symmetric matrix L we need to compute the eigenvalues. To this end,
we check that

det(L− λId) = (eJβ+hβ − λ)
(
eJβ−hβ − λ

)
− e−2Jβ

= λ2 − 2λeJβ
e−hβ++hβ

2
+ 2

e2Jβ − e−2Jβ

2

= λ2 − 2eJβ λ cosh (hβ) + 2 sinh(2Jβ)

=
(
λ− eJβ cosh (hβ)

)2 − (e2Jβ cosh (hβ)
2 − 2 sinh(2Jβ)

)
.

Therefore the two eigenvalues are given by

λ+,β = eJβ cosh (hβ) +

√
e2Jβ cosh (hβ)

2 − 2 sinh(2Jβ)

λ−,β = eJβ cosh (hβ)−
√
e2Jβ cosh (hβ)

2 − 2 sinh(2Jβ).

The last assertion of the exercise follows from the spectral decomposition

Dβ :=

(
λ+,β 0

0 λ−,β

)
= UTU−1 with U−1 = U ′

for some unitary transformation matrix U . Therefore

TL = (U−1DβU)L ⇒ Trace(TL) = Trace(DL
β ) = λL+,β + λL−,β .

We have
1

βL
logZβ =

1

β
log λ+,β +

1

βL
log

(
1 +

[
λ−,β
λ+,β

]L)
︸ ︷︷ ︸

→L↑∞0

.

This ends the proof of the exercise.

Solution to exercise 73:
We follow the solution of exercise 26, so we only describe the �rst selection-mutation

transitions. In this context, the density of the observation variable Yn given Xn = xn = x
(1)
n

x
(2)
n

x
(3)
n

 ∈ S = R3 is given by the Gaussian density

p(yn|xn) =
1√

2π∆
exp

(
− 1

2∆2
(yn − x(3)

n )2

)
.

Initially, we start by sampling N i.i.d. random copies ξ0 := (ξi0)1≤i≤N of the signal X0.
Notice that in this situation each particle has three components

ξi0 =

 ξ
i,(1)
0

ξ
i,(2)
0

ξ
i,(3)
0

 ∈ S = R3.
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Given the observation Y0 = y0 we sample N random variables ξ̂0 := (ξ̂i0)1≤i≤N with the
discrete distribution

∑
1≤i≤N

exp
(
− 1

2∆2 (y0 − ξi,(3)
0 )2

)
∑

1≤j≤N exp
(
− 1

2∆2 (y0 − ξj,(3)
0 )2

) δξi0 .

Notice that the N selected particles have again three components

ξ̂i0 =

 ξ̂
i,(1)
0

ξ̂
i,(2)
0

ξ̂
i,(3)
0

 ∈ S = R3.

During the prediction transition ξ̂0  ξ1 = (ξi1)1≤i≤N , we sample N i.i.d. copies
(εi1)1≤i≤N and (W i

1)1≤i≤N of ε1 and W1 and we set

∀i ∈ {1, . . . , N} ξi1 =

 ξ
i,(1)
1

ξ
i,(2)
1

ξ
i,(3)
1

 ∈ S = R3

with 
ξ
i,(1)
1 − ξ̂i,(1)

0 = εi1 W
i
1

ξ
i,(2)
1 − ξ̂i,(2)

0 = −α ξ̂i,(2)
0 ∆ + β ∆ ξ

i,(1)
1

ξ
i,(3)
1 − ξ̂i,(3)

0 = ξ
i,(2)
1 ∆

and so on.
This ends the proof of the exercise.

Solution to exercise 74:

• Random polynomials

V (x) =
∑

0≤n≤d

Un x
n ⇒ C(x, y) = E(V (x)V (y)) = E(U2

1 )
∑

0≤n≤d

(xy)n.

• Cosine random �eld

V (x) = U1 cos (ax) + U2 sin (ax)

⇒ C(x, y) = E(V (x)V (y)) = E(U2
1 ) (cos (ax) cos (ay) + sin (ax) sin (ay)]

= E(U2
1 ) cos (a(x− y)).

This ends the proof of the exercise.

Solution to exercise 75: We have

E (V (x)V (y)) = E(U2
1 )
∑
n≥1

λn ϕn(x)ϕn(y) = E(U2
1 ) C(x, y).

This ends the proof of the exercise.
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Solution to exercise 76: We have

∂

∂ai
E


(V (x)−

∑
1≤i≤n

ai V (xi)

2
 = 2E

(V (x)−
∑

1≤j≤n

aj V (xj)

 V (xi)

 = 0

for
∑

1≤j≤n aj C(xi, xj) = C(x, xi). This implies that w1(x)
...

wn(x)

 =

 C(x1, x1) . . . C(x1, xn)
...

...
...

C(xn, x1) . . . C(xn, xn)


−1 C(x, x1)

...
C(x, xn)

 .

We set V = [V (x1), . . . , V (xn)], C =

 C(x, x1)
...

C(x, xn)

, and

Q =

 C(x1, x1) . . . C(x1, xn)
...

...
...

C(xn, x1) . . . C(xn, xn)

 = E (V ′V) .

In this notation, we have

E
[
(V (x)− V̂ (x))2

]
= E(V (x)2)− 2E

(
VQ−1C

)
+ E

(
C′Q−1V ′VQ−1C

)
= C(x, x)− C′Q−1C.

This ends the proof of the exercise.





Chapter 7

Solution to exercise 77:
By construction, we have

E (f (Xn+1) | Xn)

=

∫
f (Xn + bn(Xn) + σn(Xn)w) 1A (Xn + bn(Xn) + σn(Xn) Wn+1) µn+1(dw)

+

∫
f (Xn) 1A (Xn + bn(Xn) + σn(Xn)w) µn+1(dw)

=

∫
f (xn+1) 1A (xn+1) Kn+1(xn, dxn+1) + f (Xn)

∫
1S−A (xn+1) Kn+1(xn, dxn+1)

This shows that

Mn+1(xn, dxn+1) = P (Xn+1 ∈ dxn+1 | Xn = xn)

= Kn+1(xn, dxn+1) 1A(xn+1) + (1−Kn+1(xn, A)) δxn(dxn+1)

This ends the proof of the exercise.

Solution to exercise 78:
We have Xn = X0 +

∑
1≤k≤nWk

P(W = +1 | Θ) = 1− P(W = −1 | Θ) = Θ

Given Θ, Xn is a simple random walk

P (Xn+1 = Xn + 1 | Xn Θ) = Θ

For any ε ∈ {−1,+1} 7→ 1+ε
2 ∈ {0, 1} we readily check that

P(W = ε | Θ) = Θ
1+ε

2 (1−Θ)
1− 1+ε

2

This implies that

P (W1 = ε1, . . . ,Wn = εn | Θ) = Θ
∑

1≤i≤n
1+εi

2 (1−Θ)
n−
∑

1≤i≤n
1+εi

2

Applying Bayes' rule, this yields the formula

P (Θ ∈ dθ | W1, . . . ,Wn) ∝ θ
∑

1≤i≤n
1+Wi

2 (1− θ)n−
∑

1≤i≤n
1+Wi

2 µ(dθ)
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If we set Wn =
∑

1≤i≤n
1+Wi

2 ∈ [0, n]
(
⇒ n−Wn

)
∈ [0, n] we also have

P (Θ ∈ dθ | W1, . . . ,Wn) = P
(
Θ ∈ dθ | Wn

)
∝ θWn (1− θ)n−Wn µ(dθ)

When Θ is uniform on [0, 1] we have the conditional Beta distribution

P
(
Θ ∈ dθ | Wn

)
=

Γ((Wn+1)+((n−Wn)+1))
Γ(Wn+1)Γ((n−Wn)+1)

θ(Wn+1)−1 (1− θ)((n−Wn)+1)−1
1[0,1](θ) dθ

In other words, we have

Law
(
Θ ∈ dθ | Wn

)
= Beta

(
Wn + 1, (n−Wn) + 1

)
This implies that

E
(
Θ | Wn

)
=

Wn + 1

Wn + 1 + (n−Wn) + 1
=

1

n+ 2

(
Wn + 1

)
The mean and the variance of Beta distributions are discussed in exercises 45-47 in terms
of Dirichlet distributions. By the Law of Large Numbers, given the value of Θ we have

Wn/n→n→∞
E(W | Θ)+1

2 = (2Θ−1)+1
2 = Θ

=⇒ E
(
Θ | Wn

)
→n→∞ Θ

More generally, when Θ is itself a Beta(a, b) distribution on [0, 1] we have the conditional
Beta distribution

P
(
Θ ∈ dθ | Wn

)
=

Γ((Wn+a)+((n−Wn)+b))
Γ(Wn+a)Γ((n−Wn)+b)

θ(Wn+a)−1 (1− θ)((n−Wn)+b)−1
1[0,1](θ) dθ

In this situation, we have

E
(
Θ | Wn

)
=

Wn + a

Wn + a+ (n−Wn) + b

=
1

a+ b+ n

(
Wn + a

)
=

n

a+ b+ n

Wn

n
+

a+ b

a+ b+ n

a

a+ b︸ ︷︷ ︸
=E(Θ)

Here again, we notice that
E
(
Θ | Wn

)
→n→∞ Θ

In all the situations, we have

Xn = x0 +
∑

1≤k≤n

Wk

= x0 + 2

 ∑
1≤k≤n

1 +Wk

2

− n = x0 + 2Wn − n
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This implies that

Wn = [(Xn − x0) + n]/2

so that

E (P (Xn+1 = Xn + 1 | Xn Θ) | Xn) = E
(
P (Xn+1 = Xn + 1 | Xn Θ) | Wn

)
= E

(
Θ | Wn

)
when Θ is itself a Beta(a, b) distribution on [0, 1] we have

P (Xn+1 = Xn + 1 | Xn) =
n

a+ b+ n

(Xn − x0) + n

2n
+

a+ b

a+ b+ n

a

a+ b
'n↑∞ Θ

This ends the proof of the exercise.

Solution to exercise 79:

Observe that

Yq = a+
∑

1≤p≤q

bp Yq−p + Vq = a+ b1 Yq−1 + b2 Yq−2 + . . .+ bq Y0 + Vq

X0 =

 Y0

...
Yq−1


and

X1 =


Y1

Y2

...
Yq−1

Yq



= a


0
0
...
0
1


︸ ︷︷ ︸

:=c

+


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 1
bq bq−1 bq−2 bq−3 . . . b2 b1


︸ ︷︷ ︸

:=B


Y0

Y1

...
Yq−2

Yq−1

+ Vq


0
0
...
0
1


︸ ︷︷ ︸

:=W1

This shows that

X1 = c+BX0 +W1

In the same vein, we have

Yn+q = a+
∑

1≤p≤q

bp Yn+q−p + Vn+q

= a+ b1 Yn+q−1 + b2 Yn+q−2 + . . .+ bq−1 Yn+1 + bq Yn + Vn+q
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Xn+1 =


Yn+1

Yn+2

...
Yn+q−1

Yn+q



= a


0
0
...
0
1


︸ ︷︷ ︸

:=c

+


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 1
bq bq−1 bq−2 bq−3 . . . b2 b1


︸ ︷︷ ︸

:=B


Yn
Yn+1

...
Yn+q−2

Yn+q−1

+ Vn+q


0
0
...
0
1


︸ ︷︷ ︸

:=Wn+1

This shows that
Xn+1 = c+BXn +Wn+1

This ends the proof of the exercise.

Solution to exercise 80:
By construction, initially G �res at U , U �res at G, and B �res at G. Since nobody

�res at B the transition (GUB)  (GU) is not possible. Similarly, (GUB)  (G) and
(GUB) (U) are impossible.

Initially the chain starts at the state (GUB). The next states can be

• (GUB) when all shooters missed their opponents.

• (GB) when G kills U , U misses G, and B misses G.

• (UB) when

� the U hits G, G misses U , and B hits G.

� the U hits G, G misses U , and B misses G.

� the U misses G, G misses U , and B hits G.

• (B) when

� G hits U , U hits G and B misses G

� G hits U , U hits G, and B hits G

� G hits U , U misses G, and B hits G

From (UB) the next states can be

• (UB) when both shooters missed their opponents.

• (U) when U kills B and B misses U .

• (B) when U misses B and B kills U .

• when(∅) U kills B and B kills U .

From (GB) the next states can be

• (GB) when both shooters missed their opponents.
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• (G) when G kills B and B missed G.

• (B) when G missed B and B kills G.

• (∅) when G kills B and B kills G.

P((GUB) (GUB)) = (1− g)(1− u)(1− b)
P((GUB) (GB)) = g(1− u)(1− b)
P((GUB) (UB)) = (1− g)ub+ (1− g)u(1− b) + (1− g)(1− u)b

P((GUB) (B)) = gu(1− b) + gub+ g(1− u)b.

In the same way, we have

P((UB) (UB)) = (1− u)(1− b)
P((UB) (B)) = (1− u)b

P((UB) (U)) = u(1− b)
P((UB) (∅)) = ub

and

P((GB) (GB)) = (1− g)(1− b)
P((GB) (G)) = g(1− b)
P((GB) (B)) = (1− g)b

P((GB) (∅)) = gb

and, of course

P((∅) (∅)) = P((G) (G) = P((U) (U) = P((B) (B)) = 1.

This ends the proof of the exercise.

Solution to exercise 81:
There are 3 cases to have (∅) at the (n+ 1)-th round:

• have (∅) at the n-th round.

• (GB) at round n and the (n+ 1)-th transition (GB) (∅).

• (UB) at round n and the (n+ 1)-th transition (UB) (∅)

Recall that q1(n), q2(n) are the probabilities that the states (GB), (UB) are the result of
the n-th round. This yields

p1(n+ 1) = p1(n) + gb q1(n) + ub q2(n).

There are 2 cases to have (G) at the (n+ 1)-th round:

• have (G) at the n-th round.
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• (G) at round n and the (n+ 1)-th transition (GB) (∅).

• (GB) at round n and the (n+ 1)-th transition (GB) (G)

This yields
p2(n+ 1) = p2(n) + g(1− b) q1(n).

There are 2 cases to have (U) at the (n+ 1)-th round:

• have (U) at the n-th round.

• (G) at round n and the (n+ 1)-th transition (GB) (∅).

• (UB) at round n and the (n+ 1)-th transition (UB) (U)

This yields
p3(n+ 1) = p3(n) + u(1− b) q2(n).

There are 4 cases to have (B) at the (n+ 1)-th round:

• have (B) at the n-th round.

• (GB) at round n and the (n+ 1)-th transition (GB) (B).

• (UB) at round n and the (n+ 1)-th transition (UB) (B).

• (GUB) at round n and the (n+ 1)-th transition (GUB) (B).

This yields

p4(n+ 1) = p4(n) + (1− g)b q1(n) + (1− u)b q2(n) + [gu(1− b) + gub+ g(1− u)b] q3(n)

= p4(n) + (1− g)b q1(n) + (1− u)b q2(n) + [gu+ g(1− u)b] q3(n).

In much the same way, we have 2 cases to have (GB) at the (n+ 1)-th round:

• (GB) at round n and the (n+ 1)-th transition (GB) (GB).

• (GUB) at round n and the (n+ 1)-th transition (GUB) (GB).

This yields
q1(n+ 1) = (1− g)(1− b) q1(n) + g(1− u)(1− b) q3(n).

We also have 2 cases to have (UB) at the (n+ 1)-th round:

• (UB) at round n and the (n+ 1)-th transition (UB) (UB).

• (GUB) at round n and the (n+ 1)-th transition (GUB) (UB).

The �rst of these two cases yields

q2(n+ 1) = (1− u)(1− b) q2(n) + [(1− g)ub+ (1− g)u(1− b) + (1− g)(1− u)b] q3(n)

= (1− u)(1− b) q2(n) + [(1− g)u+ (1− g)(1− u)b] q3(n).

The second one clearly yields

q3(n+ 1) = (1− g)(1− u)(1− b) q3(n).

Notice that q1(0) = 0 = q2(0), and q3(0) = 1.
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We conclude that

q(n+ 1) =

 q1(n+ 1)
q2(n+ 1)
q3(n+ 1)



=

 (1− g)(1− b) 0 g(1− u)(1− b)
0 (1− u)(1− b) (1− g)u+ (1− g)(1− u)b
0 0 (1− g)(1− u)(1− b)

 q1(n)
q2(n)
q3(n)


and

p(n+ 1) =


p1(n+ 1)
p2(n+ 1)
p3(n+ 1)
p4(n+ 1)


=


p1(n)
p2(n)
p3(n)
p4(n)

+


gb ub 0

g(1− b) 0 0
0 u(1− b) 0

(1− g)b (1− u)b gu+ g(1− u)b


 q1(n)

q2(n)
q3(n)

 .

This ends the proof of the exercise.

Solution to exercise 82:
For n = 1, we have

1

2

 3
2 +

(
1
2 − 1

)
20 1

2 +
(

1
2 − 1

)
1
2 20 1

2
1
2 +

(
1
2 − 1

)
20 3

2 +
(

1
2 − 1

)
 =

1

2

 3
2 −

1
2 1 1

2 −
1
2

1
2 1 1

2
1
2 −

1
2 1 3

2 −
1
2

 = M.

We suppose the result is true at rank n. In this case, we have

Mn+1 =
1

2n+1

 3
2 +

(
2n−2 − 1

)
2n−1 1

2 +
(
2n−2 − 1

)
2n−2 2n−1 2n−2

1
2 +

(
2n−2 − 1

)
2n−1 3

2 +
(
2n−2 − 1

)
 1 1 0

1
2 1 1

2
0 1 1


=

1

2n+1

 3
2 +

(
2n−1 − 1

)
2n 1

2 +
(
2n−1 − 1

)
2n−1 2n 2n−1

1
2 +

(
2n−1 − 1

)
2n 3

2 +
(
2n−1 − 1

)
 .

In the �rst row of the above display we have used the fact that

3

2
+
(
2n−2 − 1

)
+ 2n−2 =

3

2
+
(
2× 2n−2 − 1

)
=

3

2
+
(
2n−1 − 1

)
3

2
+
(
2n−2 − 1

)
+ 2n−1 +

1

2
+
(
2n−2 − 1

)
= 2n−2 + 2n−1 + 2n−2 = 22 2n−2 = 2n

2n−2 +
1

2
+
(
2n−2 − 1

)
= 2n−1 − 1

2
=

1

2
+
(
2n−1 − 1

)
.

In the second row, we have used the fact that

2n−2 +
1

2
2n−1 = 2 2n−2 = 2n−1

2n−2 + 2n−1 + 2n−2 = 2 2n−1 = 2n.
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The last row follows the same computations as the �rst one. This shows that

Mn =

 1
2n+1 + 1

4
1
2 − 1

2n+1 + 1
4

1
4

1
2

1
4

− 1
2n+1 + 1

4
1
2

1
2n+1 + 1

4



=

 1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4

+ 1
2n+1

 1 0 −1
0 0 0
−1 0 1

→n↑∞

 1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4

 .

This ends the proof of the exercise.

Solution to exercise 83:
Consider a path (k,Xk)0≤k≤n of the simple random walk (1.1) starting in (0, X0) = (0, 0)

(at time n = 0) and ending at (n,Xn) = (n, x) (at some terminal time n). We recall that
Xk = Xk−1+Uk with a sequence of i.i.d. copies of a Bernoulli random variable U ∈ {−1,+1}
with P(U = +1) = P(U = −1) = 2−1. We let a the number of Uk = +1 and b the number
of Uk = −1. By construction, we have

a+ b = n and a− b = x⇒ a =
n+ x

2
and b =

n− x
2

.

Furthermore there are

(
n
a

)
ways of choosing the time-location of the +1 in the path.

Observe that (n+x) must be even otherwise there is no admissible path going from (0, X0) =
(0, 0) to (n,Xn) = (n, x). It remains to notice that each admissible path has the same
probability 2−n. We conclude that

P(Xn = x | X0 = 0) = 2−n
(

n
n+x

2

)
.

On the other hand, we have

P(Xn = y | Xm = x) = P(Xn−m = (x− y) | X0 = 0).

It remains to compute the number of paths from (m,x) to (n, y) that remain in the positive
axis, when x, y > 0. Using the re�ection principle proved in exercise 6, every path that
hits the horizontal axis H = {(n, 0) , n ∈ N} can be re�ected into a path going from (m,x)
to (n,−y). This re�ection transformation is an one-to-one mapping from the paths from
(m,x) to (n,−y) into the paths from (m,x) to (n, y) that hit H at some time between m

and n. Since there are

(
n−m

(n−m)−(x+y)
2

)
such paths, we conclude that the number of paths

going from (m,x) to (n, y) that remains in the positive axis is given by(
n−m

(n−m)+(y−x)
2

)
−
(

n−m
(n−m)−(x+y)

2

)
This ends the proof of the second assertion.

For any z < x∨ y the number of paths from (m,x) to (n, y) that remain above the axis
Hz := {(n, z), n ∈ N} coincides with the number of paths from (m,x− z) to (n, y− z) that
remain above H (use the fact that only these paths only depend on the relative positions of
x and y w.r.t. z). Using the fact that

(n−m)− ((x− z) + (y − z))
2

=
(n−m)− (x+ y)

2
+ z
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we end the proof of the third assertion.
The number of paths (Xk)0≤k≤n from (0, 0) to (n, x) s.t. Xk ≥ 0 for any 0 ≤ k ≤ n

coincides with the number of paths from (0, 0) to (n, x) s.t. Xk > z = −1 for any 0 ≤ k ≤ n,
which is the same as the number of paths from (0, 1) to (n, x + 1) s.t. Xk > 0 for any
0 ≤ k ≤ n. From previous calculations, this number is given by(

n
n+((x+1)−1)

2

)
−
(

n
n−(1+(x+1))

2

)
=

(
n
n+x

2

)
−
(

n
n−x

2 − 1

)
=

(
n
n+x

2

)
−
(

n
n+x

2 + 1

)
.

In the last assertion, we used the fact that

n−
(
n− x

2
− 1

)
=
n+ x

2
+ 1⇒

(
n

n−x
2 − 1

)
=

n!(
n−x

2 − 1
)
!
(
n+x

2 + 1
)
!

=

(
n

n+x
2 + 1

)
.

When x = 0 and n = 2m we have(
2m
m

)
−
(

2m
m− 1

)
=

(
2m
m

)
−
(

2m
m+ 1

)

=
(2m)!

m!2
− (2m)!

(m− 1)!(m+ 1)!

=
(2m+ 1)!

m!(m+ 1)!

1

2m+ 1
((m+ 1)−m) =

1

2m+ 1

(
2m+ 1
m

)
.

To prove the last assertion, we recall that

P(X2m = 2y , Xk ≥ 0, 0 ≤ k ≤ 2m | X0 = 0)

= 2−2m

[(
2m
m+ y

)
−
(

2m
m+ (y + 1)

)]
⇒ P(Xk ≥ 0, 0 ≤ k ≤ 2m | X0 = 0)

= 2−2m
∑m
y=0

[(
2m
m+ y

)
−
(

2m
m− (y + 1)

)]

= 2−2m

([(
2m
m

)
−
(

2m
m+ 1

)]
+

[(
2m
m+ 1

)
−
(

2m
m+ 2

)]

+ . . .+

[(
2m

m+m

)
− 0

])
.

This ends the proof of the exercise.

Solution to exercise 84:
The nonlinear Markov chain has the same form as the one de�ned in (7.27). The

corresponding mean �eld particle model is de�ned by the system of N interacting equations

ξin − ξin−1 =
1

N

∑
1≤j≤N

log

(
1 +

(
ξjn−1

)2
)

+ W i
n
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with 1 ≤ i ≤ N . In the above displayed formulae, W i
n stands for N independent copies of

Wn.
This ends the proof of the exercise.

Solution to exercise 85:

∀n ≥ 1 Xn = AnXn−1 +BnWn

where X0, Wn are Rd-valued independent random variables such that Wn is centered.

Xn = AnAn−1Xn−2 +AnBn−1Wn−1 +BnWn

= (AnAn−1An−2)Xn−3

+(AnAn−1)Bn−2Wn−2 +AnBn−1Wn−1 +BnWn

= (An . . . A1)X0 +
∑

1≤p≤n

(An . . . Ap+1)BpWp

This implies that
E(Xn) = An . . . A1 E(X0).

We use the decompositions

Xn − E (Xn) = (An . . . A1) (X0 − E(X0)) +
∑

1≤p≤n

(An . . . Ap+1)BpWp

and
[Xn − E (Xn)][Xn − E (Xn)]′

=
[
(An . . . A1) (X0 − E(X0)) +

∑
1≤p≤n (An . . . Ap+1)BpWp

]
×
[
(X0 − E(X0))

′
(An . . . A1)

′
+
∑

1≤p≤nW
′
pB
′
p (An . . . Ap+1)

′
]

= (An . . . A1) (X0 − E(X0)) (X0 − E(X0))
′
(An . . . A1)

′

+
∑

1≤p,q≤n (An . . . Ap+1)BpWpW
′
qB
′
q (An . . . Aq+1)

′
+Rn

with

Rn =
∑

1≤p≤n (An . . . A1) (X0 − E(X0))W ′pB
′
p (An . . . Ap+1)

′

+
∑

1≤p≤n (An . . . Ap+1)BpWp (X0 − E(X0))
′
(An . . . A1)

′

Using the fact that

E
(
(X0 − E(X0))W ′p

)
= 0 = E

(
Wp (X0 − E(X0))

′)⇒ E(Rn) = 0

we prove that the covariance matrix is given by

Cov(Xn, Xn)

= (An . . . A1)Cov(X0, X0) (An . . . A1)
′

+
∑

1≤p≤n (An . . . Ap+1)BpCov(Wp,Wp) B
′
p (An . . . Ap+1)

′
.
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For one dimensional and time homogeneous models (An, Bn,Cov(Wn,Wn)) = (a, b, σ2)
we �nd that

E(Xn) = an E(X0)

Var(Xn) = a2n Var(X0) + (σb)2
∑

0≤p<n

a2p.

For instance, when a < 1 and E(X0) = 0 we have E(Xn) = 0 and

Var(Xn) = σ2 b2

1− a2

(
1− a2n

)
.

This ends the proof of the exercise.

Solution to exercise 86:
We check the reversible property using the fact that

1
ε (y −

√
1− ε x)2 + x2

= 1
ε (y2 − 2

√
1− ε x y + (1− ε)x2) + x2

= 1
ε (y2 − 2

√
1− ε x y + x2).

This ends the proof of the exercise.

Solution to exercise 87:
For any i ≥ 1, using the �xed point equation π = πM we have

π(i) =
∑
j≥0

π(j)M(j, i)

= π(0) p(i) + π(i+ 1)

= π(0) [p(i) + p(i+ 1)] + π(i+ 2) = . . . = π(0) P(I1 ≥ i).

On the other hand, we have∑
i≥1

P(I1 ≥ i) =
∑
j≥i≥1

P(I1 = j) =
∑
j≥1

∑
1≤i≤j

1×︸ ︷︷ ︸
=j

P(I1 = j) = E(I1).

This implies that

1− π(0) =
∑
j≥1

π(i) = π(0) E(I1)⇒ π(0) =
1

1 + E(I1)

and

∀i ≥ 1 π(i) =
P(I1 ≥ i)
1 + E(I1)

.

This ends the proof of the exercise.
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Solution to exercise 90:
The transition matrix is doubly stochastic so that the invariant measure of the chain is

given by the uniform measure

π =
1

4
[1, 1, 1, 1] =

1

4
[1, 1, 1, 1]


0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0

 .

This ends the proof of the exercise.

Solution to exercise 91:
The invariant measure of the chain is given by

π =
1

6
[1, 2, 2, 1] =

1

6
[1, 2, 2, 1]


0 1 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0

 .

This ends the proof of the exercise.

Solution to exercise 92:
The invariant measure of the chain is given by

π =
1

8
[1, 3, 3, 1] =

1

8
[1, 3, 3, 1]


0 1 0 0

1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1 0

 .

This ends the proof of the exercise.

Solution to exercise 93:
The invariant measure of the chain is given by

π =
1

2(1 + v)
[u, 2v, 2v, u] =

1

2(1 + v)
[u, 2v, 2v, u]


u v 0 0
u/2 v u/2 0
0 u/2 v u/2
0 0 v u

 .

This ends the proof of the exercise.

893
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Solution to exercise 94:

When p < 1/2, the invariant measure π(x) of the chain is given by

∀x ∈ N π(x) =
1− 2p

1− p

(
p

1− p

)x ∑
x≥0

(
p

1− p

)x
=

1− p
1− 2p

 .

For instance, we check this claim by using the fact that

π(x−1) M(x−1, x) ∝
(

p

1− p

)x−1
p

1− p
(1−p) =

(
p

1− p

)x
(1−p) ∝ π(x) M(x, x−1).

for any x ≥ 1. When p ≥ 1/2 the chain has no invariant measure. This ends the proof of
the exercise.

Solution to exercise 95:

The invariant measure π(x) of the chain is given by

∀x ∈ {0, . . . , d} π(x) =
1−

(
p

1−p

)
1−

(
p

1−p

)d+1

(
p

1− p

)x  ∑
0≤y≤d

(
p

1− p

)y
=

1−
(

p
1−p

)d+1

1−
(

p
1−p

)
 .

For instance, we check this claim by using the fact that

π(x−1) M(x−1, x) ∝
(

p

1− p

)x−1
p

1− p
(1−p) =

(
p

1− p

)x
(1−p) ∝ π(x) M(x, x−1)

for any 1 ≤ x ≤ d.

Solution to exercise 96:

We have

Det(M − λId) = Det

(
(1− p)− λ p

q (1− q)− λ

)
= [(1− p)− λ] [(1− q)− λ]− pq
= λ2 − λ ((1− p) + (1− q)) + (1− p)(1− q)− pq

= λ2 − 2λ

(
1− p+ q

2

)
+ 1− (p+ q).

This yields

Det(M − λId) =

(
λ−

(
1− p+ q

2

))2

−

[(
1− p+ q

2

)2

− (1− (p+ q))

]
︸ ︷︷ ︸

=((p+q)/2)2

.
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Therefore

Det(M − λId) =

(
λ−

(
1− p+ q

2

))2

−
(
p+ q

2

)2

= (λ− 1) (λ− (1− (p+ q))) .

This shows that M has two real eigenvalues

λ1 = 1 and λ2 = 1− (p+ q) (= (1− p)− q ≤ 1⇐ (1− p), q ∈ [0, 1]).

The corresponding eigenvectors are ϕi :=

(
ϕi(0)
ϕi(1)

)
, with i = 1, 2, and are obtained by

solving the linear equations
M(ϕi) = λi ϕi.

We observe that

M(ϕi) :=

(
M(ϕi)(0)
M(ϕi)(1)

)
=

(
M(0, 0) M(0, 1)
M(1, 0) M(1, 1)

)(
ϕi(0)
ϕi(1)

)
=

(
1− p p
q 1− q

)(
ϕi(0)
ϕi(1)

)
=

(
(1− p)ϕi(0) + pϕi(1)
qϕi(0) + (1− q)ϕi(1)

)
=

(
λiϕi(0)
λiϕi(1)

)
if and only if we have {

(1− p)ϕi(0) + pϕi(1) = λiϕi(0)
qϕi(0) + (1− q)ϕi(1) = λiϕi(1)

For i = 1, we easily check that ϕ1 =

(
ϕ1(0)
ϕ1(1)

)
=

(
1
1

)
is a solution of the system.

For i = 2, the linear system takes the following form{
(1− p)ϕ2(0) + pϕ2(1) = (1− (p+ q))ϕ2(0) (= (1− p)ϕ2(0)− qϕ2(0))
qϕ2(0) + (1− q)ϕ2(1) = (1− (p+ q))ϕ2(1) (= (1− q)ϕ2(1)− pϕ2(1)) .

These equations are equivalent to the fact that

pϕ2(1) = −qϕ2(0)

from which we conclude that ϕ2 =

(
ϕ2(0)
ϕ2(1)

)
=

(
p
−q

)
is a solution of the system.

We can check immediately that

M(ϕ1) =

(
1− p p
q 1− q

)(
1
1

)
= 1×

(
1
1

)
= λ1 × ϕ1

and

M(ϕ2) =

(
1− p p
q 1− q

)(
p
−q

)
=

(
(1− p)p− pq
qp− q(1− q)

)
=

(
[1− (p+ q)] p

[−p+ (1− q)] (−q)

)
= [1− (p+ q)]

(
p
−q

)
= λ2 × ϕ2.
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We equip B({0, 1}) = R{0,1} with the scalar product

〈f1, f2〉 :=
∑

x∈{0,1}

f1(x)f2(x) for any fi =

(
fi(0)
fi(1)

)
i = 1, 2.

We consider the normalized eigenvectors ϕi. They are de�ned by

ϕi =
ϕi
|ϕi|

=
1√

ϕi(0)2 + ϕi(1)2

(
ϕi(0)
ϕi(1)

)
for any i = 1, 2. This implies that

ϕ1 =

(
1/
√

2

1/
√

2

)
and ϕ2 =

(
p/
√
p2 + q2

−q/
√
p2 + q2

)
.

Notice that

〈ϕ1, ϕ2〉 =
p− q√

2(p2 + q2)
= 0 ⇐⇒ p = q

⇐⇒ M symmetric

=⇒ ϕ2 =
1√
2

(
1
−1

)
.

We introduce the change of variable formula

P := (ϕ1, ϕ2) =

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)
=

(
1/
√

2 p/
√
p2 + q2

1/
√

2 −q/
√
p2 + q2

)
.

To compute its inverse, we observe that

P

(
x
y

)
=

(
u
v

)
if and only if 

1√
2
x+ p√

p2+q2
y = u

1√
2
x− q√

p2+q2
y = v

This shows that
p+ q√
p2 + q2

y = (u− v)⇒ y = (u− v)

√
p2 + q2

p+ q
.

This also implies that

x√
2
− q

p+ q

(
p+ q√
p2 + q2

y

)
︸ ︷︷ ︸

u−v

= v =
x√
2
− q

p+ q
(u− v).

Hence we prove that

x =
√

2

(
q

p+ q
(u− v) + v

)
=
√

2

(
q

p+ q
u+ v

(
1− q

p+ q

))
=

√
2

p+ q
(q u+ p v) .
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In summary, we get

P−1 =
1

p+ q

(
q
√

2 p
√

2√
p2 + q2 −

√
p2 + q2

)
.

We can also check that

1

p+ q

(
1/
√

2 p/
√
p2 + q2

1/
√

2 −q/
√
p2 + q2

)(
q
√

2 p
√

2√
p2 + q2 −

√
p2 + q2

)
= Id.

We let D =

(
λ1 0
0 λ2

)
. By construction, we also have that

PD =

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)(
λ1 0
0 λ2

)
=

(
λ1 ϕ1(0) λ2 ϕ2(0)
λ1 ϕ1(1) λ2 ϕ2(1)

)
= M

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)
= MP

from which we conclude that
M = PDP−1

and therefore

M2 = PDP−1PDP−1 = PD2P−1 ⇒ . . .⇒Mn = PDnP−1.

DnP−1

=
1

p+ q

(
1 0
0 λn2

)(
q
√

2 p
√

2√
p2 + q2 −

√
p2 + q2

)

=
1

p+ q

(
q
√

2 p
√

2

λn2
√
p2 + q2 −λn2

√
p2 + q2

)
.

This shows that

Mn = PDnP−1

=
1

p+ q

(
1/
√

2 p/
√
p2 + q2

1/
√

2 −q/
√
p2 + q2

)(
q
√

2 p
√

2

λn2
√
p2 + q2 −λn2

√
p2 + q2

)

=
1

p+ q

(
q + λn2p p− λn2p
q − λn2 q p+ λn2 q

)
.

This implies that

Mn =
1

p+ q

(
q p
q p

)
+

λn2
p+ q

(
p −p
−q q

)
= π × Id+

λn2
p+ q

(
p −p
−q q

)
→n↑∞ π × Id

with the measure

π =

[
q

p+ q
,

p

p+ q

]
.

When M is symmetric (i.e. p = q), we notice that

π =

[
1

2
,

1

2

]
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as well as

P =
1√
2

(
1 1
1 −1

)
and P−1 =

1√
2

(
1 1
1 −1

)
= P ′ = P.

In this case we also have that

Mn = π × Id+ λn2
1√
2

(
1√
2
− 1√

2

− 1√
2

1√
2

)
.

This implies that

Mn(f)(0) = π(f) + λn2

(
1√
2
f(0)− 1√

2
f(1)

)
1√
2

= π(f) + λn2 〈f, ϕ2〉 ϕ2(0).

Mn(f)(1) = π(f)− λn2
(

1√
2
f(0)− 1√

2
f(1)

)
1√
2

= π(f) + λn2 〈f, ϕ2〉 ϕ2(1).

This clearly implies that

∀n ≥ 1 ∀x ∈ S Mn(f)(x) = π(f) + λn2 〈f, ϕ2〉 ϕ2(x).

Now, we turn to the proof of (8.9). Using the fact that

〈f1, f2〉π =
1

2
〈f1, f2〉

and
|
√

2 ϕi|2π = |ϕi|2 = 1

for any i = 1, 2, we show that the functions ψi :=
√

2ϕi form an orthogonal basis of l2(π).
This also shows that

Mn(f)(x) = π(f) × 1 + λn2
1

2
〈f,
√

2 ϕ2〉
√

2 ϕ2(x)

= π(ψ1)ψ1(x) + λn2 〈f, ψ2〉π ψ2(x).

Solution to exercise 97:
Choosing R = Rε := 2/(1− ε), we �nd that(

1−
(
ε+

1

R

))
=

(
1−

(
ε+

1− ε
2

))
= 1− 1 + ε

2
=

1− ε
2

and

1− 1

1 + 2ρR
= 1− (1− ε)

(1− ε) + 4ρ
=

4ρ

(1− ε) + 4ρ
.

This implies that
W (x) ∧W (y) ≥ Rε

⇓
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∀ρ ∈]0, 1]
‖M(x, .)−M(y, .)‖Vρ

1 + Vρ(x) + Vρ(y)
≤ 1− 1

2

4ρ(1− ε)
(1− ε) + 4ρ

< 1.

In much the same way, when W (x) ∨W (y) ≤ 2/(1− ε) we have

‖M(x, .)−M(y, .)‖Vρ
1 + Vρ(x) + Vρ(y)

≤ 1−
(
αε −

8ρ

1− ε

)
< 1

with αε := 1− β(Rε)(M), as soon as

ρ < αεδ/8 with δ := (1− ε).

If we set u := 4ρ/δ then we have

1

2

4ρ(1− ε)
(1− ε) + 4ρ

=
δ

2

(
1− 1

1 + u

)
:= g(u)

and (
αε −

8ρ

1− ε

)
= (αε − 2u) := h(u).

On the interval u ∈ [0, αε/2] (so that ρ < αεδ/8) the function g is increasing from g(0) = 0
to g(αε/2) = δαε

2+αε
< 1, while the function h is decreasing from h(0) = αε to h(αε/2) = 0.

These two functions intersect at a point u such that

(1 + u) (2u− αε) + uδ/2 = 0.

In other words, if we set

a :=
1

2

(
1− b+

δ

4

)
≤ 1

2
with b :=

αε
2

we need to solve the equation

u2 + 2ua− b = (u− a)
2 −

[
a2 + b

]
= 0

with u ∈ [0, b]. This implies that

0 < u =
√
a2 + b− a ≤ b.

The r.h.s. inequality is checked using the fact that√
a2 + b− a ≤ b ⇔ a2 + b ≤ a2 + b2 + 2ab

⇔ b ≤ b (b+ 2a) = b

(
1 +

δ

4

)
.

Using Taylor expansion, for any v ≥ 0 we have
√

1 + v = 1 +
v

2
√

1 + vτv
≥ 1 +

v

2
√

1 + v

for some τv ∈ [0, 1]. If we set v = b/a2 we �nd that

u =
√
a2 + b− a ≥ b

2
√
a2+b

⇒ g(u) = h(u) ≥ g
(

b
2
√
a2+b

)
= δ

2
b

2
√
a2+b

1
1+ b

2
√
a2+b

= δb
2

1
b+2
√
a2+b

≥ δb
1+2
√

3
.
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The r.h.s. estimate follows from the fact that

a ∨ b ≤ 1/2 ⇒ b+
√

4a2 + 4b ≤ 1/2 +
√

1 + 2 = (1 + 2
√

3)/2.

Choosing ρ = uδ/4, we conclude that

βVρ(M) = sup
x,y

‖M(x, .)−M(y, .)‖Vρ
1 + Vρ(x) + Vρ(y)

≤ 1− g(u) ≤ 1− (1− ε)(1− β(Rε)(M))

2(1 + 2
√

3)
.

This ends the proof of the exercise.

Solution to exercise 98:
Since M has positive entries, by theorem 8.1.2 all the entries of γ are positive. We let

γ = [γ(1), γ(2), γ(3)]. We want to solve the equation

[γ(1), γ(2), γ(3)]

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 = [γ(1), γ(2), γ(3)].

In other words, we have γ(1) [1− (p12 + p13)] + γ(2) p21 + γ(3)p31 = γ(1)
γ(1) p12 + γ(2) [1− (p21 + p23)] + γ(3)p32 = γ(2)
γ(1) p13 + γ(2) p23 + γ(3) [1− (p31 + p32)] = γ(3)

which is equivalent to γ(2) p21 + γ(3) p31 = γ(1) [p12 + p13]
γ(1) p12 + γ(3) p32 = γ(2) [p21 + p23]
γ(1) p13 + γ(2) p23 = γ(3) [p31 + p32] .

This yields the system{
γ(2)
γ(1) p21 + γ(3)

γ(1) p31 = [p12 + p13]

p12 + γ(3)
γ(1) p32 = γ(2)

γ(1) [p21 + p23] .

This shows that {
γ(2)
γ(1) p21 + γ(3)

γ(1) p31 = [p12 + p13]
γ(2)
γ(1) [p21 + p23]− γ(3)

γ(1) p32 = p12.

Multiplying the �rst line by [p21 + p23] and the second one by p21, we �nd that{
γ(2)
γ(1) p21 [p21 + p23] +γ(3)

γ(1) p31 [p21 + p23] = [p21 + p23] [p12 + p13]
γ(2)
γ(1) p21 [p21 + p23] −γ(3)

γ(1) p21p32 = p12p21.

Then we subtract the two lines to check that

γ(3)

γ(1)
(p31 [p21 + p23] + p21p32) = [p21 + p23] [p12 + p13]− p12p21

= p21p13 + p23 [p12 + p13] .

This implies that
γ(3)

γ(1)
=
p21p13 + p23 [p12 + p13]

p31 [p21 + p23] + p21p32
.
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In a similar way, by multiplying the �rst line by p32 and the second one by p31, we �nd that{
γ(2)
γ(1) p21p32 +γ(3)

γ(1) p31p32 = p32 [p12 + p13]
γ(2)
γ(1) p31 [p21 + p23] −γ(3)

γ(1) p31p32 = p12p31.

Adding the two lines we �nd that

γ(2)

γ(1)
(p31 [p21 + p23] + p21p32) = p32 [p12 + p13] + p12p31

from which we conclude that

γ(2)

γ(1)
=
p32 [p12 + p13] + p12p31

p31 [p21 + p23] + p21p32

and
γ(3)

γ(2)
=
γ(3)

γ(1)
× γ(1)

γ(2)
=
p21p13 + p23 [p12 + p13]

p32 [p12 + p13] + p12p31
.

We conclude that

γ(1) ∝ p31 [p21 + p23] + p21p32

= p31p21 + p23p31 + p32p21 =
∏

(i,j)∈g1

pi,j +
∏

(i,j)∈g3

pi,j +
∏

(i,j)∈g3

pi,j

with the 1-graphs {g1, g2, g3} de�ned on page 214 and

γ(2) ∝ p32 [p12 + p13] + p12p31

γ(3) ∝ p21p13 + p23 [p12 + p13] .

This ends the proof of the exercise.

Solution to exercise 99:
For any g ∈ G(x) and x′ 6 x, the set h = g ∪ {(x, x′)} is a directed graph on S with a

single loop at the state x′. We let L(x′) be the set of these graphs. We clearly have that

L(x′) = ∪x 6=x′ (G(x) ∪ {(x, x′)}) = ∪x6=x′ (G(x′) ∪ {(x′, x′)}) .

We set
M(g) :=

∏
(u,v)∈g

M(u, v).

In this notation, we have that

∑
x : x 6=x′

γ(x)M(x, x′) =
∑

x : x 6=x′

 ∑
g∈G(x)

M(g)

M(x, x′)

=
∑

x : x 6=x′

∑
g∈G(x)

M(g ∪ {(x, x′)})

=
∑

h∈L(x′)

M(h)

=
∑

x : x 6=x′

∑
g∈G(x′)

M(g ∪ {(x′, x)})

=
∑

x : x 6=x′
γ(x′)M(x′, x) = γ(x′) (1−M(x′, x′)) .
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The end of the proof of the exercise is now clear.

Solution to exercise 100:

P (λ) = Det

 p11 − λ p12 p13

p21 p22 − λ p23

p31 p32 p33 − λ


= (p11 − λ)Det

(
p22 − λ p23

p32 p33 − λ

)
−p12 Det

(
p21 p23

p31 p33 − λ

)
+ p1,3 Det

(
p21 p22 − λ
p31 p32

)
.

P (λ) = (p11 − λ) [(p22 − λ)(p33 − λ)− p23p32]

−p12 [p21(p33 − λ)− p23p31]

+p1,3 [p21p32 − p31(p22 − λ)]

= −λ3 + λ2A+ λB + C

with

A = p11 + p22 + p33

B = p23p32 + p12p21 + p13p31 − (p11p22 + p11p33 + p22p33)

C = 1− (A+B).

The last assertion follows from the fact that P (1) = 0 so that A+B+C = 1. We also have
that

P (λ) = (1− λ)
(
λ2 + (1−A)λ+ C

)
and

λ2 + (1−A)λ+ C =

(
λ+

(
1−A

2

))2

−

((
1−A

2

)2

− C

)
.

We also notice that

1−A = 1− ((1− p12 − p13) + (1− p21 − p23) + (1− p31 − p32))

= p12 + p21 + p13 + p31 + p32 + p23 − 2.

This yields

−1−A
2

= 1− (q12 + q13 + q23)

with
qi,j = (pij + pji)/2.

Therefore(
1−A

2

)2

= 1 + (q12 + q13 + q23)2 − 2(q12 + q13 + q23)

= 1 + (q2
12 + q2

13 + q2
23) + 2 (q12q13 + q12q23 + q13q23)

−2(q12 + q13 + q23).
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On the other hand, we have

p11p22 = (1− p12 − p13)(1− p21 − p23)

= 1− (p12 + p13 + p21 + p23) + (p12p21 + p12p23 + p13p21 + p13p23)

p11p33 = (1− p12 − p13)(1− p31 − p32)

= 1− (p12 + p13 + p31 + p32) + (p12p31 + p12p32 + p13p31 + p13p32)

p22p33 = (1− p21 − p23)(1− p31 − p32)

= 1− (p21 + p23 + p31 + p32) + (p21p31 + p21p32 + p23p31 + p23p32)

from which we conclude that

B = p23p32 + p12p21 + p13p31 − [p11p22 + p11p33 + p22p33]

= −3 + 4 (q12 + q13 + q23)−D

with
D = (p12p23 + p21p32 + p12p32) + (p13p21 + p21p31 + p12p31)

+ (p13p23 + p23p31 + p13p32) .

We also have that

4q12q23 = (p12p23 + p21p32 + p12p32) + p21p23

4q12q13 = (p21p13 + p21p31 + p12p31) + p12p13

4q13q23 = (p13p23 + p23p31 + p13p32) + p31p32

whence
D = 4 (q12q13 + q12q23 + q13q23)− (p21p23 + p12p13 + p31p32)(

1−A
2

)2 − C
=
(

1−A
2

)2 − 1 + (A+B)

= (q2
12 + q2

13 + q2
23) + 2 (q12q13 + q12q23 + q13q23)− 2(q12 + q13 + q23)

+ (3− (p12 + p21 + p13 + p31 + p32 + p23))

−3 + 4 (q12 + q13 + q23)−D

= (q2
12 + q2

13 + q2
23)− 2 (q12q13 + q12q23 + q13q23)

+ [p21p23 + p12p13 + p31p32] .

This implies that (
1−A

2

)2

− C = ∆(q) + δ(p)

with the parameters

∆(q) =
1

2

[
(q12 − q13)2 + (q12 − q23)2 + (q13 − q23)2

]
δ(p) = [p12p13 − q12q13] + [p21p23 − q21q23] + [p31p32 − q31q32] .
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This implies that

λ2 = (1− (q12 + q13 + q23)) +
√

∆(q) + δ(p)

λ3 = (1− (q12 + q13 + q23))−
√

∆(q) + δ(p)

with the convention
√
−a = i

√
a, for any a ≥ 0. In the reversible case, we have δ(p) = 0

and

λ2 = (1− (p12 + p13 + p23)) +
√

∆(p)

λ3 = (1− (p12 + p13+23))−
√

∆(p).

We also check that

λ2 ≤ 1⇔ 1

2

[
(p12 − p13)2 + (p12 − p23)2 + (p13 − p23)2

]
≤ (p12 + p13 + p23).

Since
1
2

[
(p12 − p13)2 + (p12 − p23)2 + (p13 − p23)2

]
− (p12 + p13 + p23)

= − (p12p13 + p12p23 + p13p23)

we conclude that λ3 ≤ λ2 ≤ λ1.
This ends the proof of the exercise.

Solution to exercise 101:
We use mathematical induction to prove the claim.

• When k = 1, the assertion is obvious .

• Suppose there are k cards below the bottom card, and that all k! arrangements of these
cards are equally likely.

The next (k + 1)-th card, to be inserted below the original bottom card, is equally likely
to land in any of the (k+ 1) possible positions among these k cards (between the original
bottom card and the �rst of these k cards, below the �rst, or the second, and �nally below
the k-th one). By induction, these remaining k cards are in any of the possible k! random
orders, so that (k + 1) × k! = (k + 1)! of the arrangements are equally likely. This ends
the proof of the induction.

Once the bottom card reaches the top, all possible 51! permutations of the cards below are
equally likely. Therefore, when we are inserting it back at a random position, all 52 × 51!
permutations of the deck are equally likely.

This ends the proof of the exercise.

Solution to exercise 102:
We use the decomposition

M(x, dy) = (1− ε) Mε(x, dy) + εν(dy) with Mε(x, dy) :=
M(x, dy)− εν(dy)

1− ε

to check that
osc (M(f)) = (1− ε)× osc (Mε) ≤ (1− ε)osc (f) .
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This implies that β(M) ≤ 1.
This ends the proof of the exercise.

Solution to exercise 103:

• Since X1
0 = 0 = X2

0 , we have

(T = 1) = ∅ and (T = 2) =
(
X1

1 = 1 = X2
1

)
.

This implies that
P(T = 1) = 0 and P(T = 2) = µ(1)2.

In much the same way, we have

(T = 3) =
(
X1

1 = 2 = X2
1

)
=⇒ P(T = 3) = µ(2)2.

• The chain Xn may return to the origin after 4 steps using only two possible random paths.
More precisely, we have that

(X0 = 0 7→ X1 = 3 7→ X2 = 2 7→ X3 = 1 7→ X4 = 0) = (X1 = 3)

and
(X0 = 0 7→ X1 = 1 7→ X2 = 0 7→ X3 = 1 7→ X4 = 0) = (X1 = 1 = X3) .

This implies that

(T = 4) = {X1
1 = 3 = X2

1}

∪ {X1
1 = 3 & X2

1 = 1 = X2
3} ∪ {X1

1 = 1 = X1
3 & X2

1 = 3}

from which we conclude that

P(T = 4) = µ(3)2 + 2µ(3)µ(1)2.

• The chain Xn may return to the origin after 5 steps using only two possible random paths.
More precisely, we have that

(X0 = 0 7→ X1 = 2 7→ X2 = 1 7→ X3 = 0 7→ X4 = 1 7→ X5 = 0)

= (X1 = 2, X4 = 1)

and
(X0 = 0 7→ X1 = 1 7→ X2 = 0 7→ X3 = 2 7→ X4 = 1 7→ X5 = 0)

= (X1 = 1, X3 = 2) .

This implies that

(T = 5) =
{(
X1

1 = 2, X1
4 = 1

)
&
(
X2

1 = 1, X2
3 = 2

)}
∪
{(
X1

2 = 2, X2
4 = 1

)
&
(
X1

1 = 1, X1
3 = 2

)}
from which we conclude that

P(T = 5) = 2× (µ(2)µ(1)× µ(1)µ(2)) = 2µ(1)2µ(2)2.
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• The chain Xn may return to the origin after 6 steps using only four possible random paths
A,B,C,D described below

A = (X0 = 0 7→ X1 = 1 7→ X2 = 0 7→ X3 = 1 7→ X4 = 0

7→ X5 = 1 7→ X6 = 0)

= (X1 = X3 = X5 = 1)

B = (X0 = 0 7→ X1 = 1 7→ X2 = 0 7→ X3 = 3 7→ X4 = 2

7→ X5 = 1 7→ X6 = 0)

= (X1 = 1, X3 = 3)

C = (X0 = 0 7→ X1 = 3 7→ X2 = 2 7→ X3 = 1 7→ X4 = 0

7→ X5 = 1 7→ X6 = 0)

= (X1 = 3, X3 = 1)

D = (X0 = 0 7→ X1 = 2 7→ X2 = 1 7→ X3 = 0 7→ X4 = 2

7→ X5 = 1 7→ X6 = 0)

= (X1 = 2 = X4) .

Eliminating the combinations of paths that meet the origin strictly before time 6, and
with some obvious abuse of notation we �nd that

(T = 6) =
{

(X1, X2) = (A,D)
}
∪
{

(X1, X2) = (D,A)
}

∪
{

(X1, X2) = (B,C)
}
∪
{

(X1, X2) = (C,B)
}

∪
{

(X1, X2) = (B,D)
}
∪
{

(X1, X2) = (B,D)
}

∪
{

(X1, X2) = (C,D)
}
∪
{

(X1, X2) = (D,C)
}

from which we conclude that

P(T = 6) = 2×
(
µ(1)3 × µ(2)2 + µ(1)2µ(3)2 + 2 µ(1)× µ(3)× µ(2)2

)
= 2µ(1)

(
µ(1)2µ(2)2 + µ(1)µ(3)2 + 2µ(3)µ(2)2

)
.

• For the geometric distribution with success parameter p ∈]0, 1[, we have

µ(i) = (1− p)i−1p⇒ µ(1) = p, µ(2) = p(1− p), µ(3) = p(1− p)2
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In this situation, we �nd that

P(T = 1) = 0

P(T = 2) = p2

P(T = 3) = p2(1− p)2

P(T = 4) = p2(1− p)4 + 2p3(1− p)2

P(T = 5) = 2p4(1− p)2

P(T = 6) = 2p5(1− p)2 + 6p4(1− p)4

This ends the proof of the exercise.

Solution to exercise 104:
We use the decomposition

T∑
n=1

Xn =
∑
n≥1

Xn 1T≥n.

Notice that

[∀k ≥ 1 {T = k} ∈ σ(X1, . . . , Xk)]⇒ {T ≥ n} = Ω− {T < n} ∈ σ(X0, . . . , Xn−1).

This implies that

E

 ∑
1≤n≤T

Xn

 = E

∑
n≥1

=E(X)P(T≥n)︷ ︸︸ ︷
E ( Xn 1T≥n | (X0, . . . , Xn−1))


= E(X)E(T ).

This ends the proof of the �rst assertion. When E(X) = 0, we have

Var

 ∑
1≤n≤T

Xn

 = E


 ∑

1≤n≤T

Xn

2
 .

On the other hand, is we set Xn =
∑

1≤k≤nXk we have ∑
1≤n≤T

Xn

2

= X
2

T =
∑
n≥1

(
X

2

n −X
2

n−1

)
︸ ︷︷ ︸
=X2

n+2Xn−1Xn

1T≥n

with the convention X0 = 0. Arguing as in the proof of the �rst assertion, we prove the
desired result. This ends the proof of the exercise.

Solution to exercise 105:
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When εi = 0, for each 1 ≤ i ≤ r, the Markov chain reduces to the deterministic evolution
equation

Xn+1 = Xn + τn [V (Xn)−Xn] = (1− τn) Xn + τn V (Xn).

In this situation, we have

Xn+1 − x? = (1− τn) Xn + τn V (Xn)− (τnx
? + (1− τn)x?)

= (1− τn) (Xn − x?) + τn (V (Xn)− V (x?)) .

This implies that

‖Xn+1 − x?‖ ≤ (1− τn) ‖Xn − x?‖ + τn (1− ρ) ‖Xn − x?‖

≤ (1− τnρ) ‖Xn − x?‖ ≤ . . . ≤

 ∏
0≤k≤n

(1− τkρ)

 ‖X0 − x?‖ .

Recalling that log (1− x) ≤ −x, for any x ∈ [0, 1[, we conclude that

‖Xn − x?‖ ≤ exp

−ρ ∑
0≤k≤n

τk

 ‖X0 − x?‖ −→n→∞ 0.

We have

(∂W )(x) =

 ∂x1
W (x)
...

∂xrW (x)

 =

 x1 − x?1
...

xr − x?r


and therefore

((∂W )(x))
T

(V (x)− x) = 〈x− x?, V (x)− x〉
= 〈x− x?, V (x)− V (x?)〉 − 〈x− x?, x− x?〉
≤ ‖x− x?‖ ‖V (x)− V (x?)‖ − ‖x− x?‖2

= (1− ρ) ‖x− x?‖2 − ‖x− x?‖2 = −ρ ‖x− x?‖2 < 0

for any x 6= x?. Clearly, we also have that

∂W (x?) = 0 and 〈x? − x, V (x)− x〉 ≥ ρ ‖x? − x‖2 .

We also have

E
[
‖(V (x) + ε)− x‖2

]
= E

[
‖(V (x)− V (x?)) + (x? − x) + ε‖2

]
≤ E

[
(‖V (x)− V (x?)‖+ ‖x? − x‖+ ‖ε‖)2

]
≤ 3

(
‖V (x)− V (x?)‖2 + ‖x? − x‖2 + E

[
‖ε‖2

])
.

In the last assertion we have used the variance estimate ((a+ b+ c)/3)2 ≤ (a2 + b2 + c2)/3,
which is valid for any a, b, c ∈ R. This shows that

E
[
‖(V (x) + ε)− x‖2

]
≤ 3 max

(
((1− ρ)2 + 1),E

[
‖ε‖2

])
︸ ︷︷ ︸

:=c

(
1 + ‖x? − x‖2

)
.
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We have

In+1 = ‖Xn+1 − x?‖2

= 〈Xn − x? + τn [(V (Xn) + εn)−Xn] , Xn − x? + τn [(V (Xn) + εn)−Xn]〉
= In + 2τn 〈[(V (Xn) + εn)−Xn] , Xn − x?〉+ τ2

n ‖[(V (Xn) + εn)−Xn]‖2 .

We have

E (In+1 | Fn) = In + 2τn 〈[V (Xn)−Xn] , Xn − x?〉+ τ2
nE
(
‖[(V (Xn) + εn)−Xn]‖2 | Xn

)
≤ In − 2τnρ ‖Xn − x?‖2 + τ2

n c
(

1 + ‖Xn − x?‖2
)

= In − τn (2ρ− τn c) In + τ2
n c .

We have
Mn := In + c τ2 − c

∑
0≤k<n

τ2
k ≥ 0

and

E (Mn+1 | Fn) = Mn + (E (In+1 | Fn)− In)− c τ2
n

= Mn − τn (2ρ− τn c) In ≤Mn.

This shows that Mn is a non negative super-martingale such that

sup
n≥0

E (Mn) ≤ E(M0) = E
(
‖X0 − x?‖2

)
+ c τ2.

By Doob's convergence theorem (theorem 8.4.23) we conclude that limn→∞Mn = M∞
exists. On the other hand, we have

E (Mn+1) = E (Mn)− τn (2ρ− τn c) E (In)

= E (M0)−
∑

0≤k≤n

τk (2ρ− τk c) E (Ik) ≥ 0.

This implies that

0 ≤
∑

0≤k≤n

τk (2ρ− τk c) E (Ik) ≤ E (M0) = E
(
‖X0 − x?‖2

)
+ c τ2.

Notice that
τk →k↑∞ 0 =⇒ ∃k0 ≥ 1 s.t. 2ρ− τk c ≥ ρ.

This yields

0 ≤
∑

0≤k<k0

τk (2ρ− τk c) E (Ik) + ρ E

∑
k0≤k

τk Ik

 ≤ E (M0) .

We conclude that ∑
k0≤k

τk =∞ =⇒ lim
n→∞

In = 0 =⇒ M∞ = 0.

This ends the proof of the exercise.
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Solution to exercise 106:
We follow the proof of the exercise 105 but replace the function V (x) + ε− x by U(x, ε)

and V (x)− x by U(x).
When U(x, ε) = U(x), the Markov chain reduces to the deterministic evolution equation

Xn+1 = Xn + τn U(Xn).

In this situation, we have

〈Xn+1 − x?, Xn+1 − x?〉 = 〈Xn − x?, Xn − x?〉+ 2 τn〈Xn − x?, U(Xn)〉+ τ2
n〈U(Xn), U(Xn)〉

≤ (1− (2ρ− cτn)τn) 〈Xn − x?, Xn − x?〉+ cτ2
n

= (1− an) 〈Xn − x?, Xn − x?〉+ bn

with
an = (2ρ− cτn)τn and bn = cτ2

n.

Notice that 2ρ− cτn ≥ ρ for n ≥ n0 and some su�ciently large n0 ≥ 1. This implies that

‖Xn+1 − x?‖2 ≤ (1− (2ρ− cτn)τn) ‖Xn − x?‖2 + cτ2
n

= (1− a′n) 〈Xn − x?, Xn − x?〉+ bn

for any n ≥ n0 with a′n = ρτn. Observe that

bn
a′n

= τn
c

2ρ
→n↑∞ 0 and

∏
n≥0

(1− a′n) ≤ e−ρ
∑
n≥0 τn →n↑∞ 0.

This implies that ‖Xn − x?‖ →n↑∞ 0. We check this claim using the fact that

∀ε > 0 ∃n(ε) ≥ 1 s.t. ∀n ≥ n(ε) bn ≤ ε a′n and
∏
n≥0

(1− a′n) ≤ ε.

In this case, for any n ≥ n(ε) we have

‖Xn+1 − x?‖2 − ε ≤ (1− a′n) ‖Xn − x?‖2 + ε a′n − ε

= (1− a′n) ‖Xn − x?‖2 − ε(1− a′n) = (1− a′n)
(
‖Xn − x?‖2 − ε

)
.

The end of the proof is now clear.
Arguing as in the proof of exercise 105 we prove that

In+1 = 〈Xn − x? + τn U(Xn, εn), Xn − x? + τn U(Xn, εn)〉
= In + 2τn 〈U(Xn, εn), Xn − x?〉+ τ2

n ‖U(Xn, εn)‖2

and therefore

E (In+1 | Fn) = In + 2τn 〈U(Xn), Xn − x?〉+ τ2
nE
(
‖U(Xn, εn)‖2 | Xn

)
≤ In − 2τnρ ‖Xn − x?‖2 + τ2

n c
(

1 + ‖Xn − x?‖2
)

= In − τn (2ρ− τn c) In + τ2
n c .

The end of the proof follows the one of exercise 105, thus it is omitted.
The �nal assertion is a direct application of the above results to the functions U(x) =

a−W (x), U(x, ε) = a−W(x, ε), with x? = xa and U(xa) = a−W (xa) = 0.
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This ends the proof of the exercise.

Solution to exercise 107:
We have

Xn = Xn−1 × exp (aUn + b)⇒ E (Xn | Fn−1) = Xn−1 E (exp (aUn + b)) .

On the other hand, we have

E (exp (aUn + b)) = eb
ea + e−a

2
= 1⇐⇒ b = − log cosh(a).

This ends the proof of the exercise.

Solution to exercise 108:
After 2a consecutive jumps in the same direction the chain Xn exits the set [−a, a].

Thus, we have

P (T > 2a+ n | T > n) ≤ P (|X2a+n| < a | |Xn| < a)

= 1− P (|X2a+n| ≥ a | |Xn| < a)︸ ︷︷ ︸
≥1/22a

≤ 1− 1

22a
.

This implies that

P (T > 2a+ n | T > n) =
P (T > 2a+ n)

P (T > n)
≤ 1− 1

22a

and by induction

P(T > 2an) ≤
(

1− 1

22a

)n
.

By Borel Cantelli lemma we conclude that P(T <∞) = 1. Finally, we observe that

E(T ) =
∑
k≥0

P(T > k)

=
∑
n≥0

∑
2na≤k<2(n+1)a

P(T > k)

≤ 2a
∑
n≥0

P(T > 2an) ≤ 2a
∑
n≥0

(
1− 1

22a

)n
= a 22a+1.

This ends the proof of the exercise.

Solution to exercise 109:
For any m ≤ n we have

Fm ⊂ Fn ⇒ E(Zn | Fm) = E(E(X | Fn) | Fm) = E(X | Fm) = Zm.

This ends the proof of the exercise.
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Solution to exercise 110:
We have

E(Yn | Fn−1) =

 ∏
1≤p≤(n−1)

Xp

× E(Xn | Fn−1) = Yn−1 E(Xn) = Yn−1.

This ends the proof of the exercise.

Solution to exercise 111:
Using the Markov property, we have

E(Yk+1 | Fk) = E(E(fn(Xn)|Xk+1) | Xk) = E(fn(Xn) | Xk) = Yk.

This ends the proof of the exercise.

Solution to exercise 112:
We have

M(V )(x)− V (x) = E
(
‖x+ b(x) + σ(x)W‖2 − ‖x‖2

)
= ‖x+ b(x)‖2 − ‖x‖2 + tr (σ(x)′σ(x)) .

The last assertion comes from the fact that

‖x+ b(x) + σ(x)W‖2 = (x+ b(x) + σ(x)W )
′
(x+ b(x) + σ(x)W )

= (x+ b(x))
′
(x+ b(x)) + 2 (x+ b(x))

′
σ(x)W +W ′σ(x)′σ(x)W

and for any square (r × r)-matrix A = (Ai,j)1≤i,j≤r we have

E (W ′AW ) =
∑

1≤i,j≤r

E
(
W iAi,jW

j
)︸ ︷︷ ︸

=Ai,i1i=j

=
∑

1≤i≤r

Ai,i = tr(A).

This yields the formula

M(V )(x)− V (x) = 2 〈x, b(x)〉+ ‖b(x)‖2 + tr (σ(x)′σ(x)) .

This implies that

lim sup‖x‖→∞ 2 〈x, b(x)〉+ ‖b(x)‖2 + tr (σ(x)′σ(x)) < 0

=⇒ (∃R > 0 s.t. ∀‖x‖ ≥ R we have M(V )(x)− V (x) ≤ 0)

(otherwise we arrive at a contradiction). In much the same way, we have

lim sup‖x‖→∞ 2 〈x, b(x)〉+ ‖b(x)‖2 + tr (σ(x)′σ(x)) < −1

=⇒ (∃R > 0 s.t. ∀‖x‖ ≥ R we have M(V )(x)− V (x) ≤ −1) .
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This ends the proof of the exercise.

Solution to exercise 113: The r.h.s. condition is clearly met for constant di�usion
matrices σ(x) = σ for any

ρ2 ≥ tr (σ′σ) and for any R ≥ 1.

We can obviously choose ρ2 = ε r, where ε stands for the maximal eigenvalue of the
symmetric matrix σ′σ.

The l.h.s. conditions are also met for linear drift functions b(x) = Ax associated with a
symmetric matrix A with a maximal eigenvalue −a, for some a > 0, with ρ0 = a =

√
ρ1. In

this situation, we clearly have

‖b(x)‖2 = x′A′A x ≤ a2 x′x and 〈x, b(x)〉 = x′A x ≤ −a x′x.

For any x 6∈ B(0, R) we have

V (x) = ‖x‖2 ≥ R2

⇒ [M(V )(x)− V (x)] /V (x) = 2
‖x‖2 〈x, b(x)〉+ 1

‖x‖2 ‖b(x)‖2 + 1
‖x‖2 tr (σ(x)′σ(x))

≤ ρ1 + ρ2 − 2ρ0.

We conclude that

ρ0 > (ρ1 + ρ2)/2

=⇒ [M(V )(x)− V (x)] ≤ −
(
ρ0 −

ρ1 + ρ2

2

)
V (x) ≤ −

(
ρ0 −

ρ1 + ρ2

2

)
R2.

We return to the example discussed above. We further assume that σ = ε1/2 Id for
some ε > 0 s.t. rε < 1. In this situation we have ρ2 = r ε and

ρ0 >
ρ1 + ρ2

2
⇐⇒ 1− (1− a)2 > rε⇐⇒ 1−

√
1− rε < a < 1 +

√
1− rε.

This ends the proof of the exercise.

Solution to exercise 114:
By (8.47) the stochastic process

Mn :=Mn(V ) = V (Xn)− V (X0)−
∑

1≤p<n

(M(V )− V ) (Xp)

is a martingale. By the optional stopping theorem (theorem 8.4.12) the stopped process

MTA∧n := V (XTA∧n)− V (X0) +
∑

1≤p<TA∧n

(V −M(V )) (Xp)︸ ︷︷ ︸
≥1

remains a martingale. On the other hand, we have

MTA∧n −MTA∧(n−1) = V (XTA∧n)− V (XTA∧(n−1)) + (V −M(V )) (X(TA∧n)−1)

≥ V (XTA∧n)− V (XTA∧(n−1)) + 1
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and

Nn := V (XTA∧n)− V (X0) + (TA ∧ n)

⇒ Nn −Nn−1 = V (XTA∧n)− V (XTA∧(n−1)) + (TA ∧ n)− (TA ∧ (n− 1))︸ ︷︷ ︸
=1TA=n

≤ V (XTA∧n)− V (XTA∧(n−1)) + 1 ≤MTA∧n −MTA∧(n−1).

We readily conclude that

E (Nn | Fn−1)−Nn−1 ≤ E (MTA∧n | Fn−1)−MTA∧(n−1) = 0.

This ends the proof of the exercise.

Solution to exercise 115:
Using exercise 114, the stochastic process Nn := V (XTA∧n) − V (X0) + (TA ∧ n) is a

supermartingale. Using Fatou's lemma, this implies that

E (V (XTA) + TA | X0 = x0)− V (x0) ≤ E (Nn | X0 = x0)

≤ E (Nn−1 | X0 = x0) ≤ . . . ≤ E (N0 | X0 = x0) = 0.

On the other hand, we have

E (V (XTA) + TA | X0 = x0) ≥ inf
x∈A

V (x) + E (TA | X0 = x0) .

We conclude that
E (TA | X0 = x0) ≤ V (x0)/ inf

x∈A
V (x) ≤ 1.

This ends the proof of the exercise.

Solution to exercise 116:
Arguing as in exercise 114 we check that the stochastic process Nn := V (XTA∧n) is a

super-martingale. By the optional stopping theorem (theorem 8.4.12) the stopped process
NTC∧n := V (XTC∧TA∧n) is also a super-martingale. This implies that

V (x) = E (N0 | X0 = x) ≥ E (Nn∧TC | X0 = x) = E (V (XTC∧TA∧n) | X0 = x) .

Applying Fatou's lemma, and recalling that V is non negative we check that

V (x) = E (N0 | X0 = x)

≥ E (NTC | X0 = x) = E (V (XTC∧TA) | X0 = x)

≥ E (V (XTC∧TA) 1TA=∞ | X0 = x) ≥ c P (TA =∞ | X0 = x) .

This implies that
P (TA =∞) ≤ V (x)/c −→n→∞ 0

from which we conclude that P (TA <∞ | X0 = x) = 1.
This ends the proof of the exercise.
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Solution to exercise 117:
Using exercise 114, the stochastic process Nn := V (XTA∧n) − V (X0) + (TA ∧ n) is a

supermartingale.
In addition, following the proof of exercise 115 and recalling that V is a non negative

function, for any x ∈ S we have

E (TA | X0 = x)− V (x) ≤ E (V (XTA) + TA | X0 = x)− V (x) ≤ E (N0 | X0 = x) = 0.

We conclude that
E (TA | X0 = x) ≤ V (x).

We have T ′A = inf {n ≥ 1 : Xn ∈ A}, thus for any x ∈ A we have

E (T ′A | X0 = x) = E (E (T ′A | X1) | X0 = x) ≤ E (V (X1) | X0 = x) = M(V )(x).

This ends the proof of the exercise.
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Solution to exercise 119:

For any z ∈]a, b[, we have

P (Za,b ≤ z) = P
(
U ≤ F (z)− F (a)

F (b)− F (a)

)
=

F (z)− F (a)

F (b)− F (a)
=

∫ z
a
λ(dz)∫ b

a
λ(dz)

=
E
(
1Z≤z1]a,b[(Z)

)
E
(
1]a,b[(Z)

)
= E (1Z≤z | Z ∈]a, b[) = P (Z ≤ z | Z ∈]a, b[) .

This ends the proof of the exercise.

Solution to exercise 120:

The elementary transitions of the chain are given by

Mh(f)(v, x) = f(v, x+ vh) e−(U(x+hv)−U(x))+ + f(−v, x)
(

1−e−(U(x+hv)−U(x))+

)
.

Using a change of variable and recalling that µ is symmetric we have∫
π(d(v, x)) e−(U(x+hv)−U(x))+ f(v, x+ vh)

∝
∫

e−U(x) dx µ(dv) e−(U(x+hv)−U(x))+ f(v, x+ vh)

∝
∫

e−U(y−vh) dy µ(dv) e−(U(y)−U(y−vh))+ f(v, y) (y = x+ vh⇒ x = y − vh)

∝
∫

e−U(y+vh) dy µ(dv) e−(U(y)−U(y+vh))+ f(−v, y) (since µ is symmetric)

=

∫
e−U(y) µ(dv) e−(U(y+vh)−U(y)) dy e−(U(y)−U(y+vh))+ f(−v, y)

=

∫
e−U(y) µ(dv) e−(U(y+vh)−U(y)) dy e−(U(y+vh)−U(y))− f(−v, y).

The last assertion follows from the property (−a)+ = a−. Using the fact that

(U(y + vh)− U(y)) = (U(y + vh)− U(y))+ − (U(y + vh)− U(y))−

917
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we conclude that ∫
π(d(v, x)) e−(U(x+hv)−U(x))+ f(v, x+ vh)

∝
∫

e−U(y) dy µ(dv) e−(U(y+vh)−U(y))+ f(−v, y)

∝
∫

π(d(v, x)) e−(U(x+vh)−U(x))+ f(−v, x).

This clearly implies that

πMh(f) =

∫ ∫
π(d(v, x)) f(−v, x) = π(f).

Hence we see that any probability distribution π(d(v, x)) ∝ e−U(x) dx µ(dx) is an invariant
measure, as soon as µ is a symmetric distribution. For instance, µ can be a centered
Gaussian, a Laplace distribution µ(dv) ∝ e−|v| dv, or the discrete measure µ ∝ (δ−1 + δ+1).
This ends the proof of the �rst part of the exercise.

Notice that

Mh(f)(v, x)

=

∫
f(w, x+ vh) e−(U(x+hv)−U(x))+µ(dw) +

∫
f(w, x)

(
1− e−(U(x+hv)−U(x))+

)
µ(dw)

= K(f)(v, x+ vh) e−(U(x+hv)−U(x))+ +K(f)(−v, x)
(

1− e−(U(x+hv)−U(x))+

)
.

This clearly implies that Mh = MhK.
The last assertion stems from the fact that

W
law
= −W =⇒ dy P (y, dx) = dx P (x, dy).

The r.h.s. can be checked using the fact that∫
dy f(y) P (y, dx) g(x) =

∫
f(y) dy µ(dw) g(y + w)

=

∫
f(x− w) dx µ(dw) g(x)

=

∫
g(x) dx µ(dw) f(x+ w) =

∫
dx f(x) P (x, dy) g(y).

This completes the proof of the exercise.

Solution to exercise 121:
The chain being de�ned as a Gibbs sampler, the chain Zn is reversible w.r.t. the prob-

ability measure π. Next we provide a direct proof without using this property. We further
assume that Z0 = (X0, Y0) is a random variable with distribution π.

E (f(X1, Y1) | (X1, Y0)) =
1

2
√

1−X2
1

∫
f(X1, y) 1

[−
√

1−X2
1 ,+
√

1−X2
1 ]

(y) dy.
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This implies that

E (f(X1, Y1) | (X0, Y0))

= E
(

1

2
√

1−X2
1

∫
f(X1, y) 1

[−
√

1−X2
1 ,+
√

1−X2
1 ]

(y) dy | (X0, Y0)

)
=
∫
f(x, y) 1

2
√

1−x2
1[−
√

1−x2,+
√

1−x2](y)

× 1

2
√

1−Y 2
0

1
[−
√

1−Y 2
0 ,+
√

1−Y 2
0 ]

(x) dxdy.

Using the fact that

P (Y0 ∈ dy0) = 2
√

1− y2
0 1[0,1](y0) dy0

we conclude that

E (f(X1, Y1))

= E
(

1

2
√

1−X2
1

∫
f(X1, y) 1

[−
√

1−X2
1 ,+
√

1−X2
1 ]

(y) dy | (X0, Y0)

)

=

∫
f(x, y)

1

2
√

1− x2
1[−
√

1−x2,+
√

1−x2](y)

×


∫

1
[−
√

1−y2
0 ,+
√

1−y2
0 ]

(x)︸ ︷︷ ︸
=1

[−
√

1−x2,+
√

1−x2]
(y0)

1[0,1](y0) dy0

 dxdy.

This implies that

E (f(X1, Y1))

=

∫
f(x, y) 1[−

√
1−x2,+

√
1−x2](y) dxdy = π(f).

Let (X,Y ) be a uniform random variable the circle {(x, y) : x2 + y2 = 1}. Observe
that

P (X ∈ dx, Y ∈ dy) =

=P(X∈dx)︷ ︸︸ ︷
1

π

1√
1− x2

1]−1,1[(x) dx ×

=P(Y ∈dy | X=x)︷ ︸︸ ︷
1

2

[
δ−
√

1−x2 + δ√1−x2

]
(dy)

=
1

π

1√
1− y2

1]−1,1[(y) dy︸ ︷︷ ︸
=P(Y ∈dy)

× 1

2

[
δ−
√

1−y2 + δ√
1−y2

]
(dx)︸ ︷︷ ︸

=P(X∈dx | Y=y)

The Gibbs samplers are based on sampling the second coordinate Y given the �rst X, and

the �rst given the second. Starting from

(
x
y

)
it is immediate to check that any of these

Gibbs samplers gets stuck on the four states{(
x
y

)
,

(
x
−y

)
,

(
−x
−y

)
,

(
−x
y

)}
.
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Of course the random states

(
(+/-) X
(+/-) Y

)
are uniform random variables the circle {(x, y) : x2+

y2 = 1}, but starting from a given state

(
x0

y0

)
the resulting Gibbs samplers fail to con-

verge to the desired uniform target measure.
This ends the proof of the exercise.

Solution to exercise 122:

∀x ∈ N− {0, 1} π(x− 1)K(x− 1, x)

π(x)K(x, x− 1)
=

λx−1

(x−1)!

λx

x!

=
x

λ
⇒ a(x, x− 1) = 1 ∧ x

λ

and

∀x ∈ N− {0} π(x+ 1)K(x+ 1, x)

π(x)K(x, x+ 1)
=

λx+1

(x+1)!

λx

x!

=
λ

x+ 1
⇒ a(x, x+ 1) = 1 ∧ λ

x+ 1
.

In addition
π(0)K(0, 1)

π(1)K(1, 0)
= a(1, 0) = 2

π(0)

π(1)
= 2/λ⇒ a(1, 0) = 1 ∧ 2

λ

and
π(1)K(1, 0)

π(0)K(0, 1)
=

1

2

π(1)

π(0)
=
λ

2
⇒ a(0, 1) = 1 ∧ λ

2
.

This ends the proof of the exercise.

Solution to exercise 123:
We have

K(x, y) = K(y, y) ⇒ π(y)K(y, x)

π(x)K(x, y)
=
π(y)

π(x)
= exp

(
− 1

2σ2
((y −m)2 − (x−m)2)

)
⇒ a(x, y) = 1 ∧ exp

[
1

σ2
(x− y)

(
x+ y

2
−m

)]
.

This ends the proof of the exercise.

Solution to exercise 124
The proposal transition Kε(x, dy) is symmetric in the sense that

dx Kε(x, dy) = dy Kε(y, dx).

The Metropolis-Hastings ratio resumes to

p(y)dy Kε(y, dx)

p(x) dx Kε(x, dy)
=
p(y)

p(x)

as soon as p(x) > 0. The resulting transition of MCMC chain is de�ned as follows: Given
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some x0 s.t. p(x0) > 0, we pick randomly a state y0 in B(x0, ε). We move to x1 = y0 with
probability a(x0, y0) := 1 ∧ p(y0)

p(x0) . Otherwise we stay in x0; that is we set x1 = x0.
This ends the proof of the exercise.

Solution to exercise 125:
For any bounded function f we have

ηM(f) =

∫
ν(du)

∫
dt

[∫
p(x)

p(x+ tu)∫
p(x+ su) ds

f(x+ tu) dx

]
.

The change of variable y = x+ tu (⇒ dx = dy) in the x-integral yields

ηM(f) =

∫
ν(du)

∫
dt

[∫
p(y − tu)

p(y)∫
p(y + (s− t)u) ds

f(y) dy

]
=

∫
p(y) dy

[∫
dt

p(y − tu)∫
p(y + (s− t)u) ds

]
f(y) dy.

On the other hand, another change of variable τ = t− s in the s-integral shows that∫
dt

p(y − tu)∫
p(y + (s− t)u) ds

=

∫
dt

p(y − tu)∫
p(y − τu) dτ

= 1.

We conclude that ηM = η. This above formulae are also valid if we replace ν by ν(du) =
δu0(du), for some u0 ∈ Sr−1. In this situation we have

M(f)(x) = ηx,u0(f)⇒
∫

η(dx) ηx,u0(dz) = (ηM)(dz) = η(dz).

When the density p(x) is supported by an open bounded subset S ⊂ Rr we replace
ηx,u(dz) , with x ∈ S by the distribution

ηx,u(dz) =

∫
S(x,u)

p(x+ tu) dt∫
S(x,u)

p(x+ su) ds
δx+tu(dz)

with
S(x, u) = {t ∈ R : x+ tu ∈ S} .

The above hit-and-run sampler will always have the desired target measure for any
choice of the measure ν, as soon as the change of variable and the restriction of η to the
line A(x, u) are well de�ned. For instance we can choose ν(du) with a positive density and
η with a positive and bounded density. Some clear drawbacks of these samplers are strong
correlations and jams around the corner of the set S.

When r = 2, using the change of variables

ψx : (θ, t) ∈ (]0, 2π]×]0,∞[) 7→ y = ψx(θ, t) ∈ R2 − {y : y2 = x2}

given by

y := ψx(θ, t) :=

(
y1 = x1 + t cos (θ)
y2 = x2 + t sin (θ)

)
⇒ t = tx(y) =

√
(y1 − x1)2 + (y2 − x2)2 and θ = θx(y) = arctan y2−x2

y1−x1

⇒
∣∣∣∣( ∂y1tx(y) ∂y2tx(y)

∂y1
θx(y) ∂y2

θx(y)

)∣∣∣∣ = 1
‖x−y‖
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and cutting the [0, 2π]-integral w.r.t. the angles ]0, π/2[∪]3π/2, 2π[ and ]π/2, 3π/2[ we �nd
that

1
2π

∫ 2π

0

∫
[0,∞[

f

(
x1 + t cos (θ)
x2 + t sin (θ)

)
dt dθ =

1

π

∫
f (y) ‖x− y‖−1 dy.

We set uθ =

(
cos (θ)
sin (θ)

)
and vx,y = y−x

‖y−x‖ .

In this notation, we have

1

2π

∫ 2π

0

∫
[0,∞[

p(x+ tuθ)f (x+ tuθ)∫
S(x,uθ)

p(x+ suθ) ds
dt dθ =

1

π

∫
f(y)

p(y) ‖x− y‖−1∫
S(x,vx,y)

p(x+ tvx,y) dt
dy.

We conclude that
M(x, dy) = m(x, y) dy

with the probability density

m(x, y) =
1

π

p(y)

‖x− y‖
/

∫
S(x,vx,y)

p(x+ svx,y) ds.

When p is bounded, we have

m(x, y) ≥ (πdiam(S)‖p‖δ)−1
p(y)

with
diam(S) := sup

(x,y)∈S2

‖x− y‖ and sup
x,y

λ(S (x, vx,y)) = δ.

Here λ(S (x, vx,y)) is the Lebesgue measure of the set S (x, vx,y). Using (8.15) and theo-
rem 8.2.13 we conclude that∥∥∥µMn − η

∥∥∥
tv
≤ (1− ε)n ‖µ− η‖tv

for any initial distribution µ on S.
We further assume that ν = 1

r

∑
1≤i≤r δei , where ei = (1i(j))1≤j≤r stands for the r unit

vectors of Rr. In this situation, for each selected 1 ≤ i ≤ r we have

ηx,ei(dz) =

∫
p(x+ tei) dt∫
p(x+ sei) ds

δx+tei(dz).

On the other hand, we have∫
p(x+sei) ds =

∫
p(x1, . . . , xi−1, xi+s, xi+1, . . . , xr) ds = p−i(x1, . . . , xi−1, xi+1, . . . , xr)

where p−i stands for the density of X−i. In much the same way, we have

ηx,ei(f) ∝
∫

p(x+ tei) f(x+ tei) dt =

∫
p(x1, . . . , xi−1, yi, xi + s, xi+1, . . . , xr)f(yi) dyi.

This shows that
ηX,ei = Law (Xi | X−i) .

The resulting Markov transition coincides with the one discussed in (9.13). This ends the
proof of the exercise.
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Solution to exercise 126:
In terms of Bayes' formula we have

p(d(x, y)) = η(dx) K(x, dy)︸ ︷︷ ︸
p(dx)p(dy|x)

= (ηK)(dy) M(y, dx)︸ ︷︷ ︸
p(dy)p(dx|y)

.

In this notation a Gibbs sampler wit target measure p(d(x, y)) is de�ned by the following
synthetic diagram:(
Xn = x
Yn = y

)
→
(
Xn+ 1

2
= x′ ∼ (X | Y = y)

Yn+ 1
2

= y

)
→
(
Xn+1 = x′

Yn+1 = y′ ∼ (Y | X = x′)

)
.

This ends the proof of the exercise.

Solution to exercise 127:
We have

E (f(Y ) | X) =
1

2
[f(X + 1) + f(X − 1)] =

∫
f(y)

1

2
[δX−1 + δX+1] (dy)

and by a change of variables

E (f(Y )) =
1

2

∫
[f(x+ 1) + f(x− 1)] p(x) dx

=

∫
f(y)

1

2
[p(y + 1) + p(y − 1)] dy.

This shows that

P(Y ∈ dy) =
1

2
[p(y + 1) + p(y − 1)] dy and P (Y ∈ dy | X) =

1

2
[δX−1 + δX+1] (dy).

We set

h(Y ) =
p(Y − 1)

p(Y + 1) + p(Y − 1)
f(Y − 1) +

p(Y + 1)

p(Y + 1) + p(Y − 1)
f(Y + 1).

In this notation, we have

E (g(Y )h(Y )) = E
(
g(Y )

[
p(Y − 1)

p(Y + 1) + p(Y − 1)
f(Y − 1)+

p(Y + 1)

p(Y + 1) + p(Y − 1)
f(Y + 1)

])
=

1

2

∫
g(y) p(y − 1) f(y − 1) dy +

1

2

∫
g(y) p(y + 1) f(y + 1) dy.

This implies that

E (g(Y )h(Y )) =
1

2

∫
g(x+ 1) p(x) f(x) dx+

1

2

∫
g(x− 1) p(x) f(x) dx

=

∫
1

2
[g(x+ 1) + g(x− 1)] p(x) f(x) dx

=

∫
E(g(Y ) | X = x) f(x) p(x) dx = E(f(X)g(Y )).
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We conclude that
h(Y ) = E (f(X) | Y ) .

The target distribution π = Law(X,Y ) can be written as follows

P((X,Y ) ∈ d(x, y)) = P (Y ∈ dy | X = x) P(X ∈ dx)

= P (X ∈ dx | Y = y) P(Y ∈ dy)

with the couple of conditional distributions

P (Y ∈ dy | X) =
1

2
[δX−1 + δX+1] (dy)

P (X ∈ dx | Y ) =
p(Y − 1)

p(Y + 1) + p(Y − 1)
δY−1(dx) +

p(Y + 1)

p(Y + 1) + p(Y − 1)
δY+1(dx).

A Gibbs sampler with target measure π is de�ned by the following synthetic diagram:(
Xn = x
Yn = y

)
→
(
Xn+ 1

2
= x′ ∼ (X | Y = y)

Yn+ 1
2

= y

)
→
(
Xn+1 = x′

Yn+1 = y′ ∼ (Y | X = x′)

)
.

When U is an uniform random variable on {−h,+h} the same analysis applies. In this case
we have

P(Y ∈ dy) =
1

2
[p(y + h) + p(y − h)] dy and P (Y ∈ dy | X) =

1

2
[δX−h + δX+h] (dy)

as well as

P (X ∈ dx | Y ) =
p(Y − h)

p(Y + h) + p(Y − h)
δY−h(dx) +

p(Y + h)

p(Y + h) + p(Y − h)
δY+h(dx).

This ends the proof of the exercise.

Solution to exercise 128:
We have the conditional distributions

P ((U,Z) ∈ d(u, z) | X) = ν(du)

∫
µ(dt) δX+tu(dz)

and

P (Z ∈ dz | U) =

[∫
p(z − tU) µ(dt)

]
dz.

We check these formula using the fact that

E (f(U,Z) | X) =

∫
ν(du) µ(dt) f (u,X + tu) .

E (f(U,Z)) =

∫
p(x) dx ν(du) µ(dt) f (u, x+ tu)

=

∫
ν(du)

[∫
µ(dt) p(z − tu)

]
dz f (u, z) .

E (g(Z) | U) =

∫
p(x) dx µ(dt) g (x+ tU) =

∫ [∫
p(z − tU) µ(dt)

]
g (z) dz.
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We set

h (U,Z) =

∫
p (Z − sU) f (Z − sU) µ(ds)∫

p (Z − s′U) µ(ds′)
.

In this notation, we have

E (g (U,Z) h (U,Z))

=

∫
g (u, z) h (u, z) ν(du)

[∫
p(z − t′U) µ(dt′)

]
dz

=

∫
g (u, z)

∫
p (z − su) f (z − su) µ(ds)∫

p (z − s′u) µ(ds′)
ν(du)

[∫
p(z − t′u) µ(dt′)

]
dz

=

∫ [∫
g (u, z) p (z − su) f (z − su) dz

]
ν(du) µ(ds).

This implies that

E (g (U,Z) h (U,Z))

=

∫ [∫
g (u, x+ su) p (x) f (x) dx

]
ν(du) µ(ds) = E (g (U,Z) f (X))

from which we conclude that

E (f(X) | U,Z) = h (U,Z) .

Equivalently, we have

P (X ∈ dx | (U,Z)) =

∫
p (Z − tU) µ(dt)∫
p (Z − sU) µ(ds)

δZ−tU (dx).

A Gibbs sampler wit target measure π = Law(X,Y ) is de�ned by the following synthetic
diagram: (

Xn = x
Yn = (Un, Zn) = (u, z)

)

→

(
Xn+ 1

2
= x′ ∼ (X | (U,Z) = (u, z))

Yn+ 1
2

=
(
Un+ 1

2
, Zn+ 1

2

)
= (u, z)

)

→
(
Xn+1 = x′

Yn+1 = = (Un+1, Zn+1) = (u′, z′) ∼ ((U,Z) | X = x′)

)
.

This ends the proof of the exercise.

Solution to exercise 129:
Using the change of variables g(x) = y (recalling that the Lebesgue measure is invariant

w.r.t. rotations) we have

E (f(g(X))) ∝
∫
S

f(g(x)) dx =

∫
g(S)

f(y) dy =

∫
f(y) ηg(dy).
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This shows that g(X) has the uniform distribution ηg on g(S); that is, we have that

ηg = Law(g(X)).

For any x ∈ g(S) we let Tg.x be a random variable with distribution Mg(x, dy) on g(S). In
this notation we have

Mg(x, dy) = P(g−1Tg.g(x) ∈ dy).

For any g ∈ G and any function f on S we have

E
(
f
(
g−1Tg.g(X)

))
=

∫
S

η(dx) f
(
g−1Tg.g(x)

)
=

∫
S

η(dx)

∫
g(S)

δg(x)(dx
′)

∫
g(S)

Mg(x
′, dy′)

∫
S

δg−1(y′)(dy) f(y)

=

∫
g(S)

∫
S

η(dx) Mg(g(x), dy′)︸ ︷︷ ︸
=
∫
g(S)

ηg(dx′) Mg(x′,dy′)=ηg(dy′)

f
(
g−1(y′)

)

which yields the �xed point formula

E
(
f
(
g−1Tg.g(X)

))
∝

∫
g(S)

f
(
g−1(y)

)
dy =

∫
S

f (x) dx = E(f(X)).

We conclude that
η = ηMg ⇔ g−1Tg.g(X)

law
= X.

By Fubini's theorem we check immediately that

∀g ∈ G η = ηMg =⇒ η = ηM with M(x, dy) =

∫
G

µ(dg) Mg(x, dy).

This ends the proof of the �rst part of the exercise. We further assume that

η(dx) ∝ p(x) 1S(x) dx

for some density function p(x) w.r.t. the Lebesgue measure dx. We also set

ηg = Law(g(X))⇔ P(g(X) ∈ dx) := ηg(dx) ∝ 1g(S)(x) p(g−1(x)) dx.

Notice that ∫
g(S)

p(g−1(x)) dx =

∫
S

p(x) dx.

In this situation, we have

E (f (g(X))) ∝
∫
S

p(x) f(g(x)) dx

=

∫
g(S)

p(g−1(x)) f(x) dx ∝
∫
g(S)

ηg(dx) f(x).

Assume that ηg = ηgMg. In this situation, by Fubini's theorem we also have

ηMg(f) =

∫
S

η(dx)

∫
g(S)

Mg(g(x), dy)f(g−1(y))

=

∫
g(S)

ηg(dz)Mg(z, dy)f(g−1(y)) =

∫
g(S)

ηg(dy)f(g−1(y)) = η(f).
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Arguing as above, we conclude that η = ηM .
The extension of these formulae to any transformation group G and any target distri-

bution η follows the same lines of arguments. Let ηg be the distribution of g(X) with a
random sample X with distribution η. In this case, we also have

E
(
f
(
g−1Tg.g(X)

))
=

∫
S

η(dx) f
(
g−1Tg.g(x)

)
=

∫
g(S)

∫
S

η(dx)

∫
g(S)

δg(x)(dx
′) Mg(x

′, dy′)︸ ︷︷ ︸
=ηg(dy′)

∫
S

δg−1(y′)(dy) f(y).

This implies that

E
(
f
(
g−1Tg.g(X)

))
= E

(
f
(
g−1(g(X))

))
= E (f (X)) .

This ends the proof of the exercise.

Solution to exercise 130:
Observe that∫

S

p(x) dx K(x, dg) f(g(x))

=

∫
G

∫
S

p(x) dx
p(g(x)) |∂g(x)/∂x|∫

p(h(x)) |∂h(x)/∂x| ν(dh)
f(g(x)) ν(dg).

Using the change of variables

x = g−1(y) ⇒ dx =
∣∣∂g−1(y)/∂y

∣∣ dy
and recalling that

|∂g/∂x|h(y) |∂h(y)/∂y| = |∂(g ◦ h)/∂x|y
we check that∫

S

p(x) dx K(x, dg) f(g(x))

=

∫
G

∫
S

p(g−1(y)) dy
p(y) |∂g/∂x|g−1(y)

∣∣∂g−1(y)/∂y
∣∣∫

p(h(g−1(y))) |∂h/∂x|g−1(y) ν(dh)
f(y) ν(dg)

=

∫
S

p(y) f(y) dy

∫
G

p(g−1(y))
∣∣∂g−1(y)/∂y

∣∣∫
p(h(g−1(y))) |∂h/∂x|g−1(y) |∂g−1(y)/∂y| ν(dh)

ν(dg)

=

∫
S

p(y) f(y) dy

∫
G

p(g−1(y))
∣∣∂g−1(y)/∂y

∣∣ ν(dg)∫
p(h(g−1(y))) |∂(h ◦ g−1)(y)/∂y| ν(dh)︸ ︷︷ ︸

=1

.

In the last assertion we have used the fact that(
H ∼ ν ⇒ ∀h ∈ G H ◦ h−1 ∼ ν

)
⇒
∫
p(h(g−1(y)))

∣∣∂(h ◦ g−1)(y)/∂y
∣∣ ν(dh) =

∫
p(g(y)) |∂g(y)/∂y| ν(dg)
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and(
H ∼ ν ⇒ H−1 ∼ ν

)
⇒
∫

p(g(y)) |∂g(y)/∂y| ν(dg) =

∫
p(g−1(y))

∣∣∂g−1(y)/∂y
∣∣ ν(dg).

This ends the proof of the exercise.

Solution to exercise 131:

Notice that
ηg0

(dx) = η(dx) ∝ 1[−1,1](x1)× 1[−1,1](x2) dx1dx2.

A Gibbs sampler with target uniform measure on S starts with a given state (x1, x2) ∈ S.
Then we change x2 by sampling a random sample x′2 in the set [−1, 1]. Given that state we
change x1 by a random sample x′1 in the set [−1, 1], and so on. Notice that after two steps
the Gibbs sampler is at equilibrium; that is the random states have the desired distribution
η after two steps.

We let gθ the rotation with angle θ ∈ [0, 2π]. In this notation, we notice that

gθ(S) = {gθ(x) : x ∈ S}
= {(cos (θ)x1 − sin (θ)x2, sin (θ)x1 + cos (θ)x2) : x ∈ S} .

We also have

gθ(S) = ∪x1∈[−(cos θ+sin (θ)),cos θ+sin (θ)] ({x1} ×A2,θ(x1))

= ∪x2∈[−(cos θ+sin (θ)),cos θ+sin (θ)] (A1,θ(x2)× {x2})

for any θ ∈ [0, π/2[ with the sections

A1,θ(x1) := {x2 ∈ R : x = (x1, x2) ∈ gθ(S)} ,
A2,θ(x2) := {x1 ∈ R : x = (x1, x2) ∈ gθ(S)} .

This implies that

ηgθ (dx) = ρ1,θ(dx1) K
(2)
θ (x1, dx2) = ρ2,θ(dx2) K

(1)
θ (x2, dx1)

for some probability measures ρi,θ on [−(cos θ + sin (θ)), cos θ + sin (θ)] (the i-th marginal
of ηgθ ), some Markov transitions K1,θ from x2 ∈ [−(cos θ + sin (θ)), cos θ + sin (θ)] into
A1,θ(x1) (the ηgθ -conditional distribution of the �rst coordinate given the second one) and
K2,θ from x1 ∈ [−(cos θ + sin (θ)), cos θ + sin (θ)] into A2,θ(x2) (the ηgθ -conditional distri-
bution of the second coordinate given the �rst one) . For instance, for θ = π/4 we have

ηgπ/4(dx)

∝
(

1[0,
√

2](x2) 1[−(
√

2−x2),(
√

2−x2)](x1) + 1[−
√

2,0](x2) 1[−(
√

2+x2),(
√

2+x2)](x1)
)
dx1dx2

=
(

1[0,
√

2](x1) 1[−(
√

2−x1),(
√

2−x1)](x2) + 1[−
√

2,0](x1) 1[−(
√

2+x1),(
√

2+x1)](x2)
)
dx1dx2.

The following diagram illustrates the rotation of the cell and the new direction axis of the
Gibbs sampler.
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In this case, we have

K
(2)
π/4(x1, dx2)

∝ 1[0,
√

2](x1) 1
2(
√

2−x1)
1[−(

√
2−x1),(

√
2−x1)](x2)dx2

+1[−
√

2,0](x1) 1
2(
√

2+x1)
1[−(

√
2+x1),(

√
2+x1)](x2)dx2

and by symmetry arguments we also have

K
(1)
π/4(x2, dx1)

∝ 1[0,
√

2](x2) 1
2(
√

2−x2)
1[−(

√
2−x2),(

√
2−x2)](x1)dx1

+1[−
√

2,0](x2) 1
2(
√

2+x2)
1[−(

√
2+x2),(

√
2+x2)](x1)dx1.

A Gibbs sampler with target uniform measure on gπ/4(S) starts with a given state
(x1, x2) ∈ gπ/4(S), with say x2 ∈ [0,

√
2]. Then we change x1 by a random sample x′1 in

the set
[
−(
√

2− x2), (
√

2− x2)
]
. Given that state x′1, say in [0,

√
2] we sample a state x′2

uniformly on
[
−(
√

2− x1), (
√

2− x1)
]
, and so on. The resulting Gibbs sampler transition
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from gπ/4(S) into itself is given by Mgπ/4 = M
(1)
gπ/4M

(2)
gπ/4 with

M (1)
gπ/4

((x1, x2), d(y1, y2)) = δx2
(dy2) K

(1)
π/4(x2, dy1),

M (2)
gπ/4

((x1, x2), d(y1, y2)) = δx1(dy1) K
(2)
π/4(x1, dy2).

We can alternatively use the transition

Mgπ/4 =
1

2
M (1)
gπ/4

+
1

2
M (2)
gπ/4

.

Notice that M (i)
g (x′, dy′) coincides with the distribution of a random state x′+Ti(x

′) ei
where Ti(x′) is a uniform random variable on Ti(x′). For instance for i = 1, g = gπ/4, and
x′ ∈ g(S) s.t. x′2 ∈ [0,

√
2] we have

T1,g(x
′) :=

{
t ∈ R :

(
x′1
x′2

)
+ t

(
1
0

)
∈ g(S)

}
=

{
t ∈ R : x′1 + t ∈

[
−(
√

2− x′2), (
√

2− x′2)
]}

.

In this situation, we have

M (1)
g (f)(x′1, x

′
2) ∝

∫
Ti,g(x′)

dt f (x′ + te1)

=

∫ (
√

2−x′2)

−(
√

2−x′2)

f (t, x′2) dt ∝
∫

K(1)
g (x′2, dy

′
1) f (y′1, x

′
2) .

More generally, we can show that the Markov transitions M (i)
g de�ned in the exercise state-

ment coincide with the transitions de�ned by

M (1)
gθ

((x1, x2), d(y1, y2)) = δx2(dy2) K
(1)
θ (x2, dy1),

M (2)
gθ

((x1, x2), d(y1, y2)) = δx1
(dy1) K

(2)
θ (x1, dy2).

For any x ∈ S, g ∈ SO(2) and any i = 1, 2 we have

Tg(x) = x+ tei =⇒ g−1Tg.g(x) = g−1 (g(x) + tei) = x+ t g−1(ei).

This shows that

Mg :=
1

2

(
M (1)
g +M (2)

g

)
⇒M =

1

2

(
M

(1)
+M

(2)
)

with

M
(i)

(x, dy) ∝
∫
G

µ(dg)

∫
Ti,g(g(x))

dt δx+tg−1(ei)(dy).

Also observe that

Ti,g(g(x)) := {t ∈ R : g(x) + tei ∈ g(S)}

and {
x+ tg−1(ei) : t ∈ Ti,g(g(x))

}
=

{
x+ tg−1(ei) : t s.t. g(x) + tei ∈ g(S)

}
=

{
x+ tg−1(ei) : t s.t. x+ tg−1(ei) ∈ S

}
=: L(x, g−1(ei)),
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where L(x, g−1(ei)) stands for the line segment in S passing through x with a direction
vector g−1(ei). This yields the formula

M
(i)

(x, dy) =

∫
G

µ(dg) PL(x,g−1(ei))(dy),

where PL(x,g−1(ei))(dy) stands for the uniform distribution on L(x, g−1(ei)). To be more
precise, let us assume that we are given a line segment L of he following form

L :=
{

(x, y) ∈ R2 : ax+ b = y with x ∈ [x?, x
?]
}

=
{

(x, y) ∈ R2 : ax+ b = y with y ∈ [y?, y
?]
}

for some parameters (a, b) ∈ R2, a 6= 0, x? < x? and y? < y?. In this situation, the uniform
mesure PL on L is given by

PL(d(x, y)) :=
1

x? − x?
1[x?,x?](x) dx δax+b(dy)

=
1

y? − y?
1[y?,y?](y) dy δ(y−b)/a(dx).

The following diagram illustrates the rotation of the cell and the new direction axis of
the Gibbs sampler for any angle θ.
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The main di�erence between this sampler and the one discussed above arises from the
random directions explored by the sampler. More precisely, mapping back and forth the
samples of the Gibbs sampler with target ηgπ/4 to the original set S we de�ne a Gibbs
sampler on S that di�ers from the one discussed above by only rotating the random direction
of the samples. Equivalently, the sampling according to the transition Mθ amounts to
replacing the coordinate exploration axis (0, x1) and (0, x2) of the usual Gibbs sampler by
rotating these directions by an angle θ.

Therefore, sampling according to M �rst amounts to choosing randomly an angle θ.
Then, we explore the space coordinate by coordinate, according to the couple directions
de�ned by the θ-rotation of the coordinate exploration axis (0, x1) and (0, x2).

This ends the proof of the exercise.

Solution to exercise 132:

We consider the Rotation group MCMC sampler discussed in exercise 129 when r = 2.
Assume that S is given by the boundary of the cell discussed in exercise 131; that is, we
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have

S = ∂ ([−1, 1]× [−1, 1]) = ({−1, 1} × [−1, 1]) ∪ ([−1, 1]× {−1, 1}) .

Let η be the uniform probability measure on S is given in cartesian coordinates by

η(d(x1, x2)) ∝ (δ−1(dx1) + δ1(dx1)) 1[−1,1](x2) dx2

+ 1[−1,1](x1) dx1 (δ−1(dx2) + δ1(dx2)) .

One way to sample a random variable X with probability η on S is given below: Firstly we
choose randomly one of the states

Y :=

(
Y1

Y2

)
∈
{(

1
0

)
,

(
−1
0

)
,

(
0
1

)
,

(
0
−1

)}
.

Given Y ∈
{(

1
0

)
,

(
−1
0

)}
we sample a random variable Z uniformly on [−1, 1] and

we set X =

(
Y1

Z

)
. Given Y ∈

{(
0
1

)
,

(
0
−1

)}
we sample a random variable Z

uniformly on [−1, 1] and we set X =

(
Z
Y2

)
. Two equivalent ways of sampling X are

given below: First we sample a random variable X1 on [−1, 1], then given X1 we choose
X2 in {−1, 1}. By symmetry, we can also also start by sampling a random variable X2 on
[−1, 1], and then given X2 we choose X1 in {−1, 1}.

In all cases, for any subset C ⊂ S of length c we have

P (X ∈ C) = c/8.

For instance, the chance to have X ∈ ([a, b]× {1}) with the �rst sampling technique is the

same as the chance (1/4) for Y to select

(
0
1

)
and the chance (b− a)/2 for Z (uniformly

on [−1, 1]) to hit the set [a, b]. This yields

P (X ∈ [a, b]× {1}) = P
(
Y =

(
0
1

))
× P

(
Z ∈ [a, b]

∣∣∣∣Y =

(
0
1

))
=

1

4

b− a
2

.

In much the same way the uniform measure on gπ/4(S) is given in cartesian coordinates
by

ηgπ/4(d(x1, x2)) ∝ 1[0,
√

2](x1) dx1

(
δ−(
√

2−x1)(dx2) + δ√2−x1
(dx2)

)
+1[−

√
2,0](x1) dx1

(
δ−(
√

2+x1)(dx2) + δ√2+x1
(dx2)

)
= 1[0,

√
2](x2) dx2

(
δ−(
√

2−x2)(dx1) + δ√2−x2
(dx1)

)
+1[−

√
2,0](x2) dx2

(
δ−(
√

2+x2)(dx1) + δ√2+x2
(dx1)

)
.

The sampling of these distributions follows the same arguments as the one above.
The Gibbs samplers with the target measures ηgθ are de�ned as the ones discussed in

exercise 131. First we notice that the conditional distribution of one coordinate given the
other one resumes to a discrete measure. For instance, given x1 say in [0,

√
2], the second

coordinate is randomly chosen in the set {−(
√

2 − x1),+(
√

2 − x1)}. It is readily checked
that the resulting Gibbs sampler discussed above evolves between the 4 states{(

x1

−(
√

2− x1)

)
,

(
x1

−(
√

2− x1),

)
,

(
−x1

−(
√

2− x1)

)
,

(
−x1

−(
√

2− x1)

)}
.
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In cartesian coordinates, the Gibbs sampler evolves on a boundary of some bounded
regular domain embedded in Rr using the conditional distributions of one coordinate given
the other ones. These distributions are discrete probability measures, thus they are easy to
sample (as soon as we identify the possible states).

This ends the proof of the exercise.

Solution to exercise 133:
Let S = ∂D be the boundary of some smooth convex surface D. It is readily checked

that
rx = r′x and r2

x = rx.

In addition, we have

〈u, n(x)〉 ≥ 0⇒ 〈rx(u), n(x)〉 = n(x)′rx(u) = n(x)′ (Id− 2 n(x)n(x)′) (u)

= −n(x)′u = −〈u, n(x)〉 ≤ 0.

We conclude that the mapping rx is the re�ection w.r.t. the tangent line Tx(D) at the
surface at x ∈ ∂D.

For any (x, u) ∈
(
S × S1

x

)
we set

t(x, u) := inf {t ≥ 0 : x+ tu ∈ ∂D}.

By construction, we have

y = x+ t(x, u)u⇒ t(x, u) = ‖y − x‖ ⇒ y = x+ ‖y − x‖ u⇒ u =
y − x
‖y − x‖

as soon as x 6= y (otherwise we set t(x, u) = 0 for any u ∈ S1
x).

The uniform measure on the S1 is given by

ν(d(u1, u2)) =
1

π

1√
1− u2

1

1]−1,1[(u1) du1
1

2

(
δ−
√

1−u2
1

+ δ−
√

1−u2
1

)
(du2).

We let νx be the restriction of ν to the hemisphere S1
x and Ux be a random variable with

distribution νx. Now

E (f(x+ t(x, Ux)Ux)) =
1

ν(S1
x)

∫
S1
x

f(x+ t(x, u)u) 1S1
x
(u) ν(du).

We further assume that ∂D is the null level set ∂D = ϕ−1({0}) of a continuously di�er-
entiable function s.t. ∂y2ϕ(y) 6= 0 on ∂D. By the implicit function theorem, for any
given y ∈ ∂D (s.t. ∂y2ϕ(y) 6= 0) there exists a product of open sets y ∈ O := (O1×O2) ⊂ R2

and some height function h : z1 ∈ O1 7→ h(z1) = z2 ∈ O2 such that

{z = (z1, z2) ∈ O : ϕ(z) = 0} = {(z1, h(z1)) : z1 ∈ O1} .

For a given x ∈ ∂D and a given direction u ∈ S1
x we set y = x + t(x, u)u. We let h be

the height function de�ned above. We assume that O1 is chosen su�ciently small so that
we can �nd some open subset U ∈ S1

x s.t.

O1 = {x+ t(x, u)u : u ∈ U} .

https://en.wikipedia.org/wiki/Implicit_function_theorem
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We use the change of variables from u ∈ U into z1 ∈ O1 given by

z1 = x1 + t(x, u)u1 = x1 + ‖z − x‖ u1 with z = (z1, z2) = (z1, h(z1)).

We have

u1 =
z1 − x1√

(z1 − x1)2 + (h(z1)− x2)2

=⇒ ∂z1u1 =
1√

(z1 − x1)2 + (h(z1)− x2)2

(
1− (z1 − x1)2 + (z1 − x1)(h(z1)− x2)∂h(z1)

(z1 − x1)2 + (h(z1)− x2)2

)
.

This implies that

∂z1u1 =
(h(z1)− x2)

[(z1 − x1)2 + (h(z1)− x2)2]
3/2

((h(z1)− x2)− (z1 − x1)∂h(z1))

=
(h(z1)− x2)

[(z1 − x1)2 + (h(z1)− x2)2]
3/2

〈(
(z1 − x1)

(h(z1)− x2)

)
,

(
−∂h(z1)

1

)〉
=

(h(z1)− x2)

‖z − x‖2

〈
z − x
‖z − x‖

, n(z)

〉 √
1 + (∂h(z1))

2

with the outward pointing unit normal vector n(z) at z ∈ ∂D given by

n(z) =
1√

1 + (∂h(z1))
2

(
−∂h(z1)

1

)
.

On the other hand, we have

√
1− u2

1 =

√
1− (z1 − x1)2

(z1 − x1)2 + (h(z1)− x2)2
=
|h(z1)− x2|
‖z − x‖

.

This yields the change of variable formula

1]−1,1[(u1)
du1√
1− u2

1

=
1

‖z − x‖

〈
z − x
‖z − x‖

, n(z)

〉
µh(dz1)

with the surface measure in the coordinate system associated with the height function h
given by

µh(dz1) =

√
1 + (∂h(z1))

2
dz1.

We conclude that

E (f(x+ t(x, Ux)Ux)) ∝
∫
∂D

f(z)
1

‖z − x‖

〈
z − x
‖z − x‖

, n(z)

〉
σ(dz)

with the surface measure σ(dz) (to be more rigorous, we can use the patching techniques
discussed on pages 595 and 648 to perform the change of variable discussed above on the
whole state space).

The following diagram illustrates this change of variable formula.
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The following diagram illustrates the stochastic billiard when S = ∂D = {x ∈ R2 : ‖x‖ =
R}.
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A list of trigonometric formulae can be found in the wikipedia website. In this situ-
ation, we have

M(x, dy) ∝ 1

‖y − x‖

〈
y − x
‖y − x‖

, n(y)

〉
σ(dy) =

1

‖y − x‖
cos (θx,y) σ(dy) ∝ σ(dy).

The following diagram illustrates the Gibbs sampler on the boundary and the one asso-
ciated with the α-rotation of the state.

https://en.wikipedia.org/wiki/List_of_trigonometric_identities


938 Chapter 9

This ends the proof of the exercise.

Solution to exercise 134:
When νx is replaced by the measure

νx,κ(du) ∝ κx(u)νx(du) with κx(u) = −〈u, n(x)〉 = |〈u, n(x)〉|

using the same arguments as above we have

E (f(x+ t(x, Ux)Ux)) ∝
∫
∂D

f(z) κx

(
z − x
‖z − x‖

)
1

‖z − x‖

〈
z − x
‖z − x‖

, n(z)

〉
σ(dz)

=

∫
∂D

f(z)
1

‖z − x‖

〈
x− z
‖x− z‖

, n(x)

〉 〈
z − x
‖z − x‖

, n(z)

〉
σ(dz).

When S = ∂D = {x ∈ R2 : ‖x‖ = R}, using the diagram presented in exercise 133 we
have

M(x, dy) ∝
∣∣∣∣sin(θx − θy2

)∣∣∣∣ σ(dy).

This ends the proof of the exercise.

Solution to exercise 135:
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By construction, we have

P ((X,Y ) ∈ d(x, y)) = p(x) dx
1

p(x)
1[0,p(x)](y) dy,

= 1[0,p(x)](y) dx dy = 1p−1([y,∞[)(x) dx dy

P (Y ∈ dy) =

[∫
1p−1([y,∞[)(x

′)

]
dy.

Observe that

P ((X,Y ) ∈ d(x, y)) =
1∫

1p−1([y,∞[)(x′) dx′
1p−1([y,∞[)(x) dx︸ ︷︷ ︸

=P(X∈dx | Y=y)

×
[∫

1p−1([y,∞[)(x
′)

]
dy︸ ︷︷ ︸

=P(Y ∈dy)

This implies that

P (X ∈ dx | Y ) =
1∫

1p−1([y,∞[)(x′) dx′
1p−1([y,∞[)(x) dx.

A Gibbs sampler wit target measure π = Law(X,Y ) is de�ned by the following synthetic
diagram:(

Xn = x
Yn = y

)
→
(
Xn+ 1

2
= x′ ∼ (X | Y = y)

Yn+ 1
2

= y

)
→
(
Xn+1 = x′

Yn+1 = y′ ∼ (Y | x = x)

)
.

This ends the proof of the exercise.

Solution to exercise 136:
We have

(ηK ′) (dx′) =

∫
SX×SY

(ηK)(dy)×M(y,dx)︷ ︸︸ ︷
η(dx) K(x, dy) M ′y(x, dx′)

=

∫
SY

(ηK)(dy)×
∫
SX

M(y, dx)M ′y(x, dx′)︸ ︷︷ ︸
M(y,dx)

.

This implies that

(ηK ′) (dx′) =

∫
SY

(ηK)(dy)M(y, dx′)︸ ︷︷ ︸
=η(dx′) K(x′,dy)

=

∫
SY

η(dx′) K(x′, dy) = η(dx′).

This ends the proof of the exercise.

Solution to exercise 137:
The �rst assertion is a direct consequence of the formula

∀a > 0 E(f(aU1)) =

∫ 1

0

f(au) du =
1

a

∫ a

0

f(u) du =

∫
f(u)

1

a
1[0,a](u) du
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which is valid for any bounded function f . This shows that (aU1) is an uniform random
variable on [0, a].

This implies that

K(x, dy) := P (Y ∈ dy | X = x)

=

 ∏
1≤i≤r

e−Vi(x) 1[0,eVi(x)](yi)

 dy.

In the above display, dy = dy1 × . . . × dyr stands for an in�nitesimal neighborhood of the
state y = (y1, . . . , yr).

We conclude that

P ((X,Y ) ∈ d(x, y)) = P (Y ∈ dy | X = x)× P (X ∈ dx)

=

 ∏
1≤i≤r

1[0,eVi(x)](yi)

 λ(dx) dy.

This shows that

P (X ∈ dx | Y = y) =
1

Z(y)

 ∏
1≤i≤r

1[0,eVi(x)](yi)

 λ(dx)

for some normalizing constant (here the density of the sequence Y w.r.t. dy). The last
assertion is easily completed using exercise 136 (and running a Markov chain with transition
K ′).

This ends the proof of the exercise.

Solution to exercise 138:

The conditional density of the observation sequence (Yi,j)(i,j)∈(I×J) given (Xi)i∈I = x,
Z = z, (V1, V2) = (v1, v2) is given for any y = (yi,j)(i,j)∈(I×J) by

p(y | x, v1, v2, z) =
∏
i∈I

1√
2πV2

exp

− 1

2v2

∑
j∈J

(yi,j − xi)2


and

p(x | v1, v2, z) =
∏
i∈I

1√
2πV1

exp

(
− 1

2v1
(xi − z)2

)
.

On the other hand we have

p(x | y, v1, v2, z) ∝ p(y | x, v1, v2, z) p(x | v1, v2, z)

∝
∏
i∈I

1√
2πv2

exp
(
− 1

2v2

∑
j∈J(yi,j − xi)2

)
1√

2πV1
exp

(
− 1

2v1
(xi − z)2

)
.
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Using the fact that

1

v2

∑
j∈J

(yi,j − xi)2 +
1

v1
(xi − z)2

=
1

v2

∑
j∈J

[
y2
i,j + x2

i − 2xiyi,j
]

+
1

v1
(x2
i + z2 − 2xiz)

= x2
i

(
1

v1
+
|J |
v2

)
− 2x

 z

v1
+

1

v2

∑
j∈J

yi,j

+

 1

v2

∑
j∈J

y2
i,j +

z

v1



=

(
1

v1
+
|J |
v2

) [
xi −

z
v1

+ 1
v2

∑
j∈J yi,j

1
v1

+ |J|
v2

]2

−


(
z
v1

+ 1
v2

∑
j∈J yi,j

)2

1
v1

+ |J|
v2

−

 1

v2

∑
j∈J

y2
i,j +

z

v1




we prove that

p(x | y, v1, v2, z) =
∏
i∈I

1√
2πσ2(v)

exp

(
− 1

2σ2(v)
[xi − α ((yi,j)j∈J , v1, v2)]

2

)
, (30.25)

with

σ−2(v1, v2) =

(
1

v1
+
|J |
v2

)
and α ((yi,j)j∈J , v1, v2) =

z
v1

+ 1
v2

∑
j∈J yi,j

1
v1

+ |J|
v2

.

We also notice that

p(v1 | x, y, z, v2) = p(v1 | x, z) ∝ p(x | z, v1) p(v1 | z) = p(x | z, v1) p(v1). (30.26)

Now we use the fact that

p(x | z, v1) p(v1)

∝ 1

(
√

2πv1)|I|
exp

(
− 1

2v1

∑
i∈I

(xi − z)2

)
1

va1+1
1

exp

(
− b1
v1

)
1]0,∞[(v1)

∝ 1

v
|I|
2 +a1+1

1

exp

(
− 1

v1

(
1

2

∑
i∈I

(xi − z)2 + b1

))
1]0,∞[(v1).

This shows that the conditional distribution of V1 givenX = (Xi)i∈I = x, Y = (Yi,j)(i,j)∈(I×J) =
y and (Z, V2) = (z, v2) coincides with the conditional distribution of V1 given X = x and
Z = z and it is given by an inverse Gamma distribution with shape parameter A1(a1) and
scale parameter B1(z) given by

A1 =
|I|
2

+ a1 and B1(z) = b1 +
1

2

∑
i∈I

(xi − z)2.

In much the same way, we have

p(v2 | x, y, z, v1) = p(v2 | y, x) ∝ p(y | x, v2) p(v2 | x) = p(y | x, v2) p(v2). (30.27)
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Notice that

p(y | x, v2) p(v2)

∝ 1

v
|I|/2
2

exp

− 1

2v2

∑
(i,j)∈(I×J)

(yi,j − xi)2

 1

va2+1
2

exp

(
− b2
v2

)
1]0,∞[(v2)

∝ 1

v
|I|/2+a2+1
2

exp

− 1

v2

b2 +
1

2

∑
(i,j)∈(I×J)

(yi,j − xi)2

 1]0,∞[(v2).

This shows that the conditional distribution of V2 givenX = (Xi)i∈I = x, Y = (Yi,j)(i,j)∈(I×J) =
y and (Z, V1) = (z, v1) coincides with the conditional distribution of V2 given Y = y and
X = x and it is given by an inverse Gamma distribution with shape parameter A2(a2) and
scale parameter B2(x, y) given by

A2 =
|I|
2

+ a2 and B2(x, y) = b2 +
1

2

∑
(i,j)∈(I×J)

(yi,j − xi)2.

Finally, we have

p(z, x | y, v1, v2) = p(z, x | v1) ∝ p(x | z, v1) p(z | v1) = p(x | z, v1) p(z). (30.28)

To take the �nal step, we notice that

p(x | z, v1) p(z)

∝ 1
√

2πv1
|I| exp

(
− 1

2v1

∑
i∈I

(xi − z)2

)
1√
2πv

exp

(
− 1

2v
(z −m)

2

)
.

Using the fact that

1

v1

∑
i∈I

(xi − z)2
+

1

v
(z −m)

2

=
1

v1

∑
i∈I

x2
i +
|I|
v1

z2 − 2z
1

v1

∑
i∈I

xi +
1

v
z2 +

1

v
m2 − 2z

m

v

= z2

(
|I|
v1

+
1

v

)
− 2z

(
m

v
+

1

v1

∑
i∈I

xi

)
+

1

v
m2 +

1

v1

∑
i∈I

x2
i

=

(
|I|
v1

+
1

v

)z −
(
m
v + 1

v1

∑
i∈I xi

)
(
|I|
v1

+ 1
v

)
2

−

(
m
v + 1

v1

∑
i∈I xi

)2

(
|I|
v1

+ 1
v

) +
1

v
m2 +

1

v1

∑
i∈I

x2
i

we conclude that

p(z | x, y, v1, v2) ∝ exp

(
− 1

2τ2(v, v1)
[z − β(x, v1)]

2

)
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with

τ−2(v1) =

(
|I|
v1

+
1

v

)
and β(x, v1) =

(
m
v + 1

v1

∑
i∈I xi

)
(
|I|
v1

+ 1
v

) .

Now we can design a Gibbs sampler using the conditional distributions computed above
as follows.

Suppose we are given the random state Xk = (X(k), Z(k), V
(k)
1 , V

(k)
2 ) = (x(k), z(k), v

(k)
1 , v

(k)
2 )

at the k-th iteration. The transition

Xk  Xk+1 = (X(k+1), Z(k+1), V
(k+1)
1 , V

(k+1)
2 ) = (x(k+1), z(k+1), v

(k+1)
1 , v

(k+1)
2 )

is de�ned in 4 steps:

• Firstly, we sample X(k+1) = x(k+1) with the conditional Gaussian distribution (30.25)
given (Y,Z, V1, V2) = (y, z(k), v

(k)
1 , v

(k)
2 ).

• Then we sample V (k+1)
1 = v

(k+1)
1 with the inverse Gamma distribution (30.26) with shape

parameter A1 and scale parameter B1(z(k)).

• At the third step, we sample V (k+1)
2 = v

(k+1)
2 with the inverse Gamma distribution (30.27)

with shape parameter A2 and scale parameter B2(x(k+1), y).

• Finally, we sample Z(k+1) = z(k+1) with the Gaussian distribution (30.28) with mean and
variance (β(x(k+1), v

(k+1)
1 ), τ2(v

(k+1)
1 ))

τ−2(v
(k+1)
1 ) =

(
|I|

v
(k+1)
1

+
1

v

)
and β(x, v

(k+1)
1 ) =

(
m
v + 1

v1

∑
i∈I x

(k+1)
i

)
(
|I|

v
(k+1)
1

+ 1
v

) .

This ends the proof of the exercise.
Solution to exercise 139:
The �ltering problem (9.103) has the same form as the �ltering problem discussed in

(6.7) and in section 9.9.2.

• Using some abusive Bayesian notation, we set

Pn(d(x0, . . . , xn)) := P((X0, . . . , Xn) ∈ d(x0, . . . , xn)) = p(x0, . . . , xn) dx0 . . . dxn.

Notice that

p(x0, . . . , xn) dx0 . . . dxn = p(x0)dx0︸ ︷︷ ︸
:=η0(dx0)

∏
1≤k≤n

p(xk | xk−1)dxk︸ ︷︷ ︸
=Mk(xk−1,dxk)

with η0 = Law(X0) and for any k ≥ 1

Mk(xk−1, dxk) = P(Xk ∈ dxk | Xk−1 = xk−1) =
1√
2π

exp

(
−1

2
(xk − ak(xk−1))2

)
dxk.

We let (yn)n≥0 be a given sequence of observations. Consider the sequence of likelihood
functions

∀n ≥ 0 Gn(xn) := p(yn|xn) :=
1√
2π

exp

(
−1

2
(yn − bn(xn))2

)
.
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Using Bayes' rule, we have

P((X0, . . . , Xn) ∈ d(x0, . . . , xn) | Yk = yk, 0 ≤ k < n)

= p((x0, . . . , xn)|(y0, . . . , yn−1)) dx0 . . . dxn

=
1

p(y0, . . . , yn−1)

 ∏
1≤k<n

p(yk|xk)

 p(x0, . . . , xn) dx0 . . . dxn

=
1

Zn

 ∏
0≤k<n

Gk(xk)

 Pn(d(x0, . . . , xn)) := Qn(d(x0, . . . , xn))

with the normalizing constant

Zn = p(y0, . . . , yn−1) =
∏

0≤k<n

p(yk|y0, . . . , yk−1)

and

p(yk|y0, . . . , yk−1) =

∫
p(yk|xk)︸ ︷︷ ︸
:=Gk(xk)

p(xk|y0, . . . , yk−1) dxk.

We use the convention p(y0|y0, . . . , y−1) = p(y0), for k = 0.

We let ηn be the n-th time marginal of the path space measure Qn de�ned above. From
previous calculations, we have

ηn = Law(Xn | Yk = yk, 0 ≤ k < n)

Qn = Law((X0, . . . , Xn) | Yk = yk, 0 ≤ k < n)

Zn = p(y0, . . . , yn−1) =
∏

0≤k<n

ηk(Gk) = γn(1)

with the unnormalized Feynman-Kac measures γn de�ned in (9.23).

• Using (9.30) the sequence of distributions ηn satis�es the nonlinear updating-prediction
equation

ηn = ΨGn−1
(ηn−1)Mn.

This ends the proof of the exercise.

Solution to exercise 140:

• We use the mean �eld particle models described in section 9.6.1. We let εn any positive
number s.t. εnGn(xn) ≤ 1 for any xn ∈ R. For instance we can choose εn = 0, or

εn =
√

2π ⇒ εnGn(xn) = exp

(
−1

2
(yn − bn(xn))2

)
∈ [0, 1].
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The particle �lter starts with N i.i.d. copies ξ0 = (ξi0)1≤i≤N ∈ R of the initial state X0.
The evolution of the particles is decomposed into 2 transitions

ξn = (ξin)1≤i≤N
updating
−−−−−−−−→ ξ̂n = (ξ̂in)1≤i≤N

prediction
−−−−−−−−→ ξn+1 = (ξin+1)1≤i≤N .

During the updating-selection transition, for each 1 ≤ i ≤ N we set ξ̂in = ξin with a
probability ε Gn(ξin); otherwise we set ξ̂in = ξ̃in, where ξ̃

i
n denotes a random variable with

distribution

ΨGn(ηNn ) =
∑

1≤i≤N

Gn(ξin)∑
1≤j≤N Gn(ξjn)

δξin .

Here ηNn is the occupation measure ηNn = 1
N

∑
1≤i≤N δξin of the particles ξn = (ξin)1≤N .

During the prediction-mutation transition, we sample N independent copies (W i
n+1) of

Wn+1 and we set
∀1 ≤ i ≤ N ξin+1 = an(ξ̂in) +W i

n.

In other words, during the prediction transition we sample N independent random vari-

ables ξin+1 with distribution Mk+1

(
ξ̂ik, dxk+1

)
, with 1 ≤ i ≤ N .

By (9.49) we have

ηNn =
1

N

∑
1≤i≤N

δξin −→N↑∞ ηn.

• Using the product formula (9.50) an unbiased particle approximation of the normalizing
constant γn(1) is given by the formula

γNn (1) :=
∏

0≤k<n

ηNk (Gk) =
∏

0≤k<n

1√
2π

1

N

∑
1≤i≤N

exp

(
−1

2
(yk − bk(ξik))2

)
.

By (9.50), for any function f on R we also have

γNn (f) := γNn (1)× ηNn (f) −→N↑∞ γn(f).

• Using the Feynman-Kac models on path space discussed in (9.6.2), the ancestral lines

∀1 ≤ i ≤ N
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n−1,n, ξ

i
n,n

)
of the individuals ξin,n = ξin can be interpreted as a mean �eld particle approximations of
the Feynman-Kac models on path space. Using (9.55), we have

1

N

∑
1≤i≤N

δ(ξi0,n,ξi1,n,...,ξin,n) −→N→∞ Qn = Law((X0, . . . , Xn) | Yk = yk, 0 ≤ k < n).

• Notice that the likelihood functions Gn and the Markov transitions Mn satisfy the regu-
larity property (9.56)

Gn−1(xn−1) Mn(xn−1, dxn)

= exp

(
−1

2
(yn − bn(xn))2

)
× exp

(
−1

2
(xn − an(xn−1))

2

)
dxn
2π

= Hn(xn−1, xn) λn(dxn)
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with λn(dxn) =
dxn
2π

and

Hn(xn−1, xn) = exp

(
−1

2

[
(yn − bn(xn))

2
+ (xn − an(xn−1))

2
])
.

The backward particle model (9.58) is given by

QNn (d(x0, . . . , xn)) = ηNn (dxn)
∏

0≤k<n

Mk+1,ηNk
(xk+1, dxk) −→N↑∞ Qn

with the backward Markov transitions

Mk+1,ηNk
(xk+1, dxk) =

∑
1≤i≤N

Hk+1(ξik, xk+1)∑
1≤j≤N Hk+1(ξjk, xk+1)

δξik(dxk).

This ends the proof of the exercise.

Solution to exercise 141:

• By construction, we have

∂

∂θ
pθ(y0, . . . , yn) =

∂

∂θ
E

 ∏
0≤k≤n

Gθ,k(Xk)


= E

 ∂

∂θ

 ∏
0≤k≤n

Gθ,k(Xk)


with

Gθ,k(Xk) =
1√
2π

exp

(
−1

2
(yk − ck(Xk)− θdk(Xk))2

)
.

Using the fact that

∂

∂θ

 ∏
0≤k≤n

Gθ,k(Xk)

 =

 ∑
0≤k≤n

∂

∂θ
logGθ,k(Xk)

  ∏
0≤k≤n

Gθ,k(Xk)


and

∂

∂θ
logGθ,k(Xk) = (yk − ck(Xk)− θdk(Xk)) dk(Xk) := lθ,k(Xk)

we prove that

∂

∂θ
pθ(y0, . . . , yn) = E

Ln,θ(X0, . . . , Xn)
∏

0≤k≤n

Gθ,k(Xk)


with the additive functional

Ln,θ(X0, . . . , Xn) =
∑

0≤k≤n

lθ,k(Xk).
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We conclude that
∂

∂θ
log pθ(y0, . . . , yn) = Qn+1,θ(Ln+1,θ)

with
Ln+1,θ(X0, . . . , Xn, Xn+1) = Ln,θ(X0, . . . , Xn).

• We �x the parameter θ. With a slight abuse of notation we let ηNn = 1
N

∑
1≤i≤N δξin and

(ξi0,n, . . . , ξ
i
n,n)1≤i≤N be the occupation measures and the ancestral lines of the genetic

type N -particle model associated with the likelihood-selection �tness functions (Gk,θ)k≥0

de�ned in (9.104).

Using the Feynman-Kac particle approximation on path-space in terms of ancestral lines
we have

1
N

∑
1≤i≤N Ln+1,θ(ξ

i
0,n+1, ξ

i
1,n+1, , . . . , ξ

i
n+1,n+1)

−→N↑∞
E(Ln+1,θ(X0,...,Xn+1)

∏
0≤k≤nGθ,k(Xk))

E(
∏

0≤k≤nGθ,k(Xk))
= Qn+1,θ(Ln+1,θ) = ∂

∂θ log pθ(y0, . . . , yn).

On the other hand, using the backward particle approximation

QNn+1,θ(d(x0, . . . , xn+1)) = ηNn+1(dxn+1)
∏

0≤k≤n

M(θ)

k+1,ηNk
(xk+1, dxk) −→N↑∞ Qn+1,θ

with the collection of transitionsM(θ)
k+1,η de�ned asMk+1,η by replacing Gk by the function

Gk,θ de�ned in (9.104). This yields the particle approximation

QNn+1(Ln+1,θ) =
∑

0≤k≤n

ηNn+1Mn+1,ηNn
. . .Mk+1,ηNk

(lθ,k) .

This ends the proof of the exercise.

Solution to exercise 142:

• The Feynman-Kac measures (γn, ηn) are described in exercise 139. The one step optimal
predictor

ηn = Law(Xn | Yk = yk, 0 ≤ k < n)

is de�ned by the Feynman-Kac model

ηn(f) = γn(f)/γn(1) with γn(f) = E

f(Xn)
∏

0≤p<n

Gp(Xp)


for any function f on R, and with the likelihood potential functions

Gn(xn) := p(yn|xn) :=
1√
2π

exp

(
−1

2
(yn − bn(xn))2

)
.

• We consider the genetic-type particle �lter approximation of the 1d-nonlinear �ltering
problem de�ned in (9.103):

ξn = (ξin)1≤i≤N
updating
−−−−−−−−→ ξ̂n = (ξ̂in)1≤i≤N

prediction
−−−−−−−−→ ξn+1 = (ξin+1)1≤i≤N , (30.29)
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starting with N i.i.d. copies ξ0 = (ξi0)1≤i≤N ∈ R of the initial state X0. During the
updating transition, we sample N random variables (ξ̂in)1≤i≤N with distribution

∑
1≤i≤N

Gn(ξin)∑
1≤j≤N Gn(ξjn)

δξin .

During the prediction-mutation transition, we sample N independent copies (W i
n+1) of

Wn+1 and we set
∀1 ≤ i ≤ N ξin+1 = an(ξ̂in) +W i

n.

By (9.49) and (9.50) we have

ηNn =
1

N

∑
1≤i≤N

δξin −→N↑∞ ηn and γNn (f) := γNn (1)× ηNn (f) −→N↑∞ γn(f).

• The many-body Feynman-Kac measures (γn, ηn) associated with (γn, ηn) are the Feynman-
Kac measures on RN de�ned for any function f on S = RN by

ηn(f) = γn(f)/γn(1) with γn(f) := E

f(Xn)
∏

0≤p<n

Gp(Xp)

 .

In the above display, Xn :=
(
ξin
)

1≤i≤N ∈ SNn and the collection of particle likelihood

functions Gn on RN are de�ned by

Gn(Xn) := ηNn (Gn) =
1

N

∑
1≤i≤N

Gn(ξin).

We recall that

f(Xn) :=
1

N

∑
1≤i≤N

f(ξin)⇒ γn(f) = γn(f).

This ends the proof of the exercise.

Solution to exercise 143:

• For path-space models, the conditional distributions

ηn = Law((X ′0, . . . , X
′
n) | Yk = yk, 0 ≤ k < n) = Law(Xn | Yk = yk, 0 ≤ k < n)

are de�ned for any function fn on Sn = Rn+1 by the Feynman-Kac model

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E

f(Xn)
∏

0≤p<n

Gp(Xp)

 .

In the above display, the likelihood potential functions Gn on the path space are de�ned
for any xn = (x′0, . . . , x

′
n) ∈ Sn = Rn+1 by

Gn(xn) := G′n(x′n) := p(yn|x′n) :=
1√
2π

exp

(
−1

2
(yn − bn(x′n))2

)
.
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• The corresponding genetic type particle model (30.29) is de�ned in terms of path-particles

ξin =
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
and ξ̂in =

(
ξ̂i0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n

)
∈ Sn = Rn+1.

We also start with N i.i.d. copies ξ0 = (ξi0)1≤i≤N ∈ R of the initial state X0 = X ′0.

During the updating transition, we sample N random paths (ξ̂in)1≤i≤N with the weighted
distribution∑

1≤i≤N

Gn(ξin)∑
1≤j≤N Gn(ξjn)

δξin =
∑

1≤i≤N

G′n(ξin,n)∑
1≤j≤N G

′
n(ξjn,n)

δ(ξi0,n,ξi1,n,...,ξin,n).

During the prediction-mutation transition, we sample N independent copies (W i
n+1) of

Wn+1 and for each 1 ≤ i ≤ N we set

ξin+1 =
((
ξi0,n+1, ξ

i
1,n+1, . . . , ξ

i
n,n+1

)
, ξin+1,n+1

)
=

((
ξ̂i0,n, ξ̂

i
1,n, ξ̂

i
2,n, . . . , ξ̂

i
n,n

)
, ξin+1,n+1

)(
=
(
ξ̂in, ξ

i
n+1,n+1

))
∈ Rn+2

with
ξin+1,n+1 = an(ξ̂in,n) +W i

n.

By (9.49) and (9.50) we have

ηNn =
1

N

∑
1≤i≤N

δξin −→N↑∞ ηn and γNn (fn) := γNn (1)× ηNn (fn) −→N↑∞ γn(fn).

• The many-body Feynman-Kac measures (γn, ηn) associated with (γn, ηn) are the Feynman-
Kac measures on (Rn+1)N de�ned for any function fn on Sn = (Rn+1)N by

ηn(fn) = γn(fn)/γn(1) with γn(fn) := E

f(Xn)
∏

0≤p<n

Gp(Xp)

 .

In the above display, the reference Markov chain Xn is the path-space particle model

Xn :=
(
ξin
)

1≤i≤N =
((
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

))
1≤i≤N ∈ S

N
n (30.30)

and the collection of particle likelihood functions Gn on (Rn+1)N is de�ned by

Gn(Xn) =
1

N

∑
1≤i≤N

Gn(ξin) =
1

N

∑
1≤i≤N

G′n(ξin,n).

We recall that

fn(Xn) :=
1

N

∑
1≤i≤N

fn(ξin)⇒ γn(fn) = γn(fn).

• We consider the Feynman-Kac measures on Sn = (S0× . . .×Sn) de�ned for any bounded
function fn on Sn by

ηn(fn) := γn(fn)/γn(1) with γn(fn) := E

fn(Xn)
∏

0≤p<n

Gp(Xp)


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In the above display, Xn := (X0, . . . , Xn) ∈ Sn = (S0× . . .×Sn) is the historical process
associated with the path-particle Markov chain (30.30).

We design a particle Metropolis-Hastings algorithm with a target measure ηn following
the methodology developed in section 9.7.2.

More precisely, we �x the time horizon n and we de�ne the particle Metropolis-Hastings
Markov chain (Xk)k≥0 on Sn as follows.

Given some historical trajectory of the path-particle model

Xk = xn = (x0, . . . , xn) ∈ Sn = (S0 × . . .× Sn)

we sample an independent trajectory

Yk = yn = (y0, . . . , yn) ∈ Sn

of the historical process Xn := (X0, . . . , Xn). With a probability

a (xn,yn) = 1 ∧
∏

0≤k<nGk(yk)∏
0≤k<nGk(xk)

we set Xk+1 = Yk, otherwise we set Xk+1 = Xk. By construction, Xk is a Markov chain
with invariant measure ηn. In addition, for any function of the form

fn(Xn) = fn(Xn) =
1

N

∑
1≤i≤N

fn(ξin)

with
Xn =

(
ξin
)

1≤i≤N and ∀1 ≤ i ≤ N ξin =
(
ξi0,n, . . . , ξ

i
n,n

)
∈ Rn+1

we have
ηn(fn) = ηn(fn) = E(fn(X ′0, . . . , X

′
n) | Yk = yk, 0 ≤ k < n).

This ends the proof of the exercise.

Solution to exercise 144:

• The posterior distributions of Xn = (X ′0, . . . , X
′
n) ∈ Rn+1 given the sequence of observa-

tions (Y ′k)0≤k<n = (y′k)0≤k<n are de�ned by the Feynman-Kac measures (γn, ηn) de�ned
in (9.23) with

Gn(Xn) = G′n(X ′n) =
1√
2π

exp

(
−1

2
(y′n − bn(X ′n))2

)
.

• The genealogical tree based particle approximation of the measures ηn are discussed in
full details in section 9.6.2.The many-body Feynman-Kac measures associated with the
mean �eld particle interpretation of the measures ηn are de�ned in section 9.7.1. The dual
mean �eld model with frozen trajectory Xn is described in full details in section 9.7.3,
and a couple of particle Gibbs-Glauber algorithms are presented is section 9.7.4.

This ends the proof of the exercise.
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Solution to exercise 145:
Since Nt is a Poisson random variable with parameter λt, we have

E(Nt) = e−λt
∑
n≥1

n
(λt)n

n!
= λt e−λt

∑
n≥1

(λt)n−1

(n− 1)!
= λt.

and

E(N2
t ) = e−λt

∑
n≥1

(n(n− 1) + n)
(λt)n

n!
= E(Nt) + (λt)2e−λt

∑
n≥2

(λt)n−2

(n− 2)!
= λt+ (λt)2.

This ends the proof of the exercise.

Solution to exercise 146:

• For any s ∈ [0, t], we have

P(T1 ≤ s | Nt = 1) = P(Ns = 1 | Nt = 1)

=
P (Ns = 1, (Nt −Ns) = 0)

P(Nt = 1)
=

(λs)1

1! e−λs (λ(t−s))0

0! e−λ(t−s)

(λt)1

1! e−λt
=
s

t
.

This shows that the conditional distribution of T1 given Nt = 1 is the uniform distribution
on [0, t].

• For any s ∈ [0, t], we have

P(T1 ≤ s | Nt = 2) = P(Ns ≥ 1 | Nt = 2)

=
P (Ns = 1, (Nt −Ns) = 1)

P(Nt = 2)
+

P (Ns = 2, (Nt −Ns) = 0)

P(Nt = 2)

=
(λs)1

1! e−λs (λ(t−s))1

1! e−λ(t−s)

(λt)2

2! e−λt
+

(λs)2

2! e−λs (λ(t−s))0

0! e−λ(t−s)

(λt)2

2! e−λt

= 2
s(t− s)
t2

+
s2

t2
=

2st− s2

t2
= 2

s

t
−
(s
t

)2

= 1−
(

1− s

t

)2

.

This shows that the conditional distribution of T1 given Nt = 2 is the distribution on [0, t]
with density

∂

∂s
P(T1 ≤ s | Nt = 2) = 2

1

t

(
1− s

t

)
.

• For any s ∈ [0, t], we have

P(T2 ≤ s | Nt = 2) = P(Ns ≥ 1 | Nt = 2)

=
P (Ns = 2, (Nt −Ns) = 0)

P(Nt = 2)
=

(λs)2

2! e−λs (λ(t−s))0

0! e−λ(t−s)

(λt)2

2! e−λt
=
(s
t

)2

.

951
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This shows that the conditional distribution of T2 given Nt = 2 is the distribution on [0, t]
with density

∂

∂s
P(T2 ≤ s | Nt = 2) = 2

1

t

s

t
.

This ends the proof of the exercise.

Solution to exercise 147:
We have

P(N(t) = n) =
∑

0≤m≤n

P(N1(t) = m)P(N2(t) = n−m)

= e−(λ1+λ2)t
∑

0≤m≤n

(λ2t)
m

m!

(λ1t)
n−m

(n−m)!

= e−(λ1+λ2)t 1

n!

∑
0≤m≤n

n!

m!(n−m)!
(λ2t)

m (λ1t)
n−m

= e−(λ1+λ2)t 1

n!
([λ1 + λ2]t)

n
.

This shows that N(t) is a Poisson random variable with parameter (λ1 + λ2)t. The condi-
tional distribution of N1(t) given N(t) is given for any 0 ≤ m ≤ n by

P(N1(t) = m | N(t) = n) =
P(N1(t) = m N2(t) = n−m)

P(N(t) = n)

=
P(N1(t) = m)× P(N2(t) = n−m)

P(N(t) = n)

=

1
m! (λ1t)

m × 1
(n−m)! (λ2t)

n−m

1
n! ([λ1 + λ2]t)

n

=
n!

m!(n−m)!

(
λ1

λ1 + λ2

)m (
λ2

λ1 + λ2

)n−m
.

This is clearly a binomial distribution. This ends the proof of the exercise.

Solution to exercise 148: Clearly Nn ∼ Bin(n, p) is a Binomial random variable with
parameters n and p. We have

m < n⇒ Nn −Nm =
∑

m<k≤n

Ek
law
= Nn−m ∼ Bin(n−m, p).

In addition Nn and (Nn −Nm) are independent. More generally,

(Nn1 , Nn2 −Nn1 , . . . , Nnk −Nnk−1
)

are independent Binomal random variables with parameters

((n1, p), (n2 − n1)p, . . . , (nk − nk−1)p)

for any sequence of parameters 1 ≤ n1 < . . . < nk.
Finally, we observe that

(T1 ≤ n) = (Nn ≥ 1) = Ω− (Nn = 0)⇒ P(T1 ≤ n) = 1− P(Nn = 0) = 1− (1− p)n.
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Therefore, we have

(T1 = n) = (T1 ≤ n)− (T1 ≤ (n− 1))

⇒ P(T1 = n) = (1− (1− p)n)−
(
1− (1− p)n−1

)
= (1− p)n−1(1− (1− p)) = p(1− p)n−1

We conclude that T1 is a Geometric random variable with (success) parameter p.
Finally, we have

(Tn = k) = (Tn ≤ k) ∩ (Tn > k − 1)

= (Nk ≥ n) ∩ (Nk−1 < n) = (Nk ≥ n) ∩ (Nk−1 = (n− 1))

= (Nk−1 = (n− 1)) ∩ (Ek = 1)

This implies that Sn is distributed according to the negative binomial probability

P(Tn = k) =

(
k − 1
n− 1

)
pn−1 (1− p)(k−1)−(n−1) × p

=

(
k − 1
n− 1

)
pn (1− p)k−n.

This ends the proof of the exercise.

Solution to exercise 149:
The key idea is to run a Poisson process N(t) with intensity λ = λ1 +λ2. At each jump

time, N1(t) jumps with a probability λ1

λ1+λ2
(and N2(t) does not jump), and N2(t) jumps

with a probability λ2

λ1+λ2
(and N1(t) does not jump). Among the �rst (n+ (m− 1)) jumps

of N(t), N1(t) jumps at least n times. Therefore we have

P (N1 jumps n times before N2 jumps m times)

=
∑
n≤k<m+n

(
n+ (m− 1)

k

) (
λ1

λ1+λ2

)k (
λ2

λ1+λ2

)(n+(m−1))−k
.

This ends the proof of the exercise.

Solution to exercise 150:
By construction, we have N2(T

(2)
n−1) = N

(2)
0 + (n− 1) so that

T (2)
n − T (2)

n−1 =
T

(1)
n − T (1)

n−1

λ(N
(2)
0 + (n− 1))

.

This ends the proof of the exercise.

Solution to exercise 151:
Combining

P ((T1, . . . , Tn) ∈ d(t1, . . . , tn))

=

 ∏
1≤p<n

1[tp−1,∞[(tp) λtp dtp

 exp
(
−
∫ tn

0
λs ds

)
1[tn−1,∞[(tn) dtn
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and

P (Tn ∈ dt) =

(∫ t
0
λsds

)n−1

(n− 1)!
λt exp

(
−
∫ t

0

λs ds

)
dt

with the Bayes formula we prove

P ((T1, . . . , Tn−1) ∈ d(t1, . . . , tn−1) | Tn = tn)

= (n− 1)! 10≤t1≤...≤tn−1≤tn

∏
1≤p<n

λtpdtp∫ t
0
λsds

.

This ends the proof of the exercise.

Solution to exercise 152:
We have

Xt −Xt− = dXt = a Xt− dNt = a Xt− (Nt −Nt−).

Thus, at the �rst jump time say T1 of Nt we have

XT1
= X0 + a X0 = (1 + a)NT1 X0.

Let T2 be second jump time of Nt. By construction, we have

∀T1 ≤ t < T2 Xt = XT1
= (1 + a)NT1X0 = (1 + a)Nt X0

and

XT2 = XT2− + a XT2− = (1 + a) (1 + a)NT2− X0 = (1 + a)NT2−+1 X0 = (1 + a)NT2 X0.

Iterating the argument, we prove that

Xt = (1 + a)Nt X0.

This ends the proof of the exercise.

Solution to exercise 153:
Using the same arguments as in exercise 152, we �nd that

Xt = X0

∏
0≤k≤Nt

(1 + aTk) = X0

∏
0≤s≤t ,dNs=1

(1 + as).

This ends the proof of the exercise.

Solution to exercise 154:
Between two jump times, say Tn ≤ t ≤ Tn+1 the process Xt satis�es the linear equation

dXt = (bt − λ at) Xt−dt.

This implies that

∀Tn ≤ t ≤ Tn+1 Xt = XTn exp

(∫ t

0

(bs − λ as)ds
)
.
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Using the same arguments as in exercise 153, we �nd that

Xt = X0 exp

(∫ t

0

(bs − λ as)ds
) ∏

0≤k≤Nt

(1 + aTk).

This ends the proof of the exercise.
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Solution to exercise 155:
The process Xt = YNt can be interpreted as the embedding of a Markov chain Yn with

transition probabilities K, with a Poisson process Nt with intensity λ >. We let (Tn)n≥0

be the jump times of the process Nt de�ned by

T0 = 0 ∀n ≥ 1 Tn+1 − Tn = − 1

λ
logUn

where Un stands for a sequence of independent uniform random variables on ]0, 1[ (inde-
pendent of the sequence (Yn)n≥0). We recall that En = − 1

λ logUn forms a sequence of
independent exponential random variables with parameter λ.

Given Nt = n we have

∀n ≥ 0 ∀t ∈ [Tn, Tn+1[ Xt = XTn = Yn.

This implies that∫ Tn

0

V (Xt) dt =
∑

0≤k<n

∫ Tk+1

Tk

V (Xt) dt =
∑

0≤k<n

V (XTk) (Tk+1 − Tk).

Therefore

E

(
f(XTn) exp

(∫ Tn

0

V (Xs) ds

)
| (T0, . . . , Tn)

)

= E

f(Yn)
∏

0≤k<n

e(Tk+1−Tk)V (Yk) | (T0, . . . , Tn)

 ,

as well as

E

(
f(XTn) exp

(∫ Tn

0

V (Xs) ds

))
= E

f(Yn)
∏

0≤k<n

eEkV (Yk)

 .

We also �nd that

Nt = n ⇒
∫ Tn

0

V (Xt) dt =

∫ Tn

0

V (Xt) dt+

∫ t

Tn

V (Xt) dt

=
∑

0≤k<n

V (XTk) (Tk+1 − Tk) + V (Tn) (t− Tn).

This yields

E
(
f(Xt) exp

(∫ t

0

V (Xs) ds

)
| Nt = n

)

= E

f(Yn)e(t−
∑

0≤k<n Ek)V (Yn)
∏

0≤k<n

eEkV (Yk)


957
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This ends the proof of the exercise.

Solution to exercise 156:
Reversing the integration order, we have

∂tηt(f) = −ηt(f) +

∫
f(x)

[∫ x

−∞
q(x− y) pt(y) dy

]
dx

= −ηt(f) +

∫ [∫
f(y) 1[x,∞[ q(y − x) dy

]
pt(x) dx = ηt(L(f)),

with the pure jump generator

L(f)(x) =

∫
(f(y)− f(x)) K(x, dy)

and the Markov transition

K(x, dy) = 1[x,∞[(y) q(y − x) dy.

Notice that a random sample from M(x, dy) is simply de�ned by x+U where U stands for
a random variable with probability density q on [0,∞[. The embedded Markov model Yn
is de�ned by

Yn = Yn−1 + Un = . . . = X0 + Vn with Vn :=
∑

1≤i≤n

Ui

where X0 is a random variable with probability density p0 and Un stands for a sequence of
independent copies of U . By (11.12) we have

Xt = YNt and Pt(f)(x) = E (f(x+ VNt)) .

Also observe that

ηt(L(f)) = ηt(K(f))− ηt(f) = E(f(Xt + U))− E(f(Xt)) = ∂tE(f(Xt)). (30.31)

We consider (whenever their exist) the Laplace transforms

φt(λ) := E(eλXt) and ϕ(λ) := E(eλU ).

Notice that
E(eλXt+U ) = E(eλXt) E(eλU ).

Therefore, choosing f(x) = eλx in (30.31) we �nd that

∂tφt(λ) = φt(λ) (ϕ(λ)− 1)⇒ φt(λ) = φ0(λ) exp (t (ϕ(λ)− 1)).

This shows the existence and uniqueness of φt(λ) for any λ s.t. ϕ(λ) < ∞. For instance,
for exponential jumps with parameter α > 0 we have

q(u) = α e−αu 1[0,∞[(u)⇒ ϕ(λ) := E(eλU ) =
α

α− λ

∫ ∞
0

(α− λ)α e−(α−λ)u =
α

α− λ

for any λ < α. In this situation

φt(λ) = φ0(λ) exp

(
t

(
α

α− λ
− 1

))
= φ0(λ) exp

(
λt

α− λ

)
.



Chapter 11 959

For exponential jumps (cf. exercise 41), the random variables Vn are Gamma with parameter
(n, α).

P (Vn ∈ dv) =
vn−1

(n− 1)!
× αn e−αv 1[0,∞[(v) dv.

This shows that

Kn(f)(x) = E(f(x+ Vn)) =

∫
f(y)

(y − x)n−1

(n− 1)!
× αn e−α(y−x) 1[x,∞[(y) dy

from which we conclude that

Pt(x, dy) = e−t
∑
n≥0

tn

n!

(y − x)n−1

(n− 1)!
× αn e−α(y−x) 1[x,∞[(y) dy.

This ends the proof of the exercise.

Solution to exercise 157:
The in�nitesimal generator of the process is given by

L(f)(1) = λ(1) (f(2)− f(1)) and L(f)(2) = λ(2) (f(1)− f(2)).

We have
dηt(f) = ηt(L(f)).

On the other hand, we have

f(x) = 11(x)⇒ L(11)(1) = L(1, 1) = −λ(1) and L(11)(2) = L(2, 1) = λ(2).

By symmetry arguments, we also have

f(x) = 12(x)⇒ L(12)(1) = L(1, 2) = λ(1) and L(12)(2) = L(2, 2) = −λ(2).

This implies that

d

dt
ηt(1) = ηt(L(11)) = ηt(1)L(11)(1) + ηt(2)L(11)(2) = −λ(1)ηt(1) + λ(2)ηt(2)

and

d

dt
ηt(2) = ηt(L(12)) = ηt(1)L(12)(1) + ηt(2)L(12)(2) = λ(1)ηt(1)− λ(2)ηt(2).

Notice that

d

dt
(λ(1)ηt(1)− λ(2)ηt(2)) = λ(1) [−λ(1)ηt(1) + λ(2)ηt(2)]− λ(2) [λ(1)ηt(1)− λ(2)ηt(2)]

= − (λ(1) + λ(2)) (λ(1)ηt(1)− λ(2)ηt(2)) .

This implies

λ(1)ηt(1)− λ(2)ηt(2) = e−(λ(1)+λ(2))t (λ(1)η0(1)− λ(2)η0(2)) .

Recalling that ηt(2) = 1− ηt(1) we conclude that

(λ(1) + λ(2)) ηt(1) = λ(2) + e−(λ(1)+λ(2))t (λ(1)η0(1)− λ(2)η0(2)) .



960 Chapter 11

Therefore

ηt(1) =
λ(2)

λ(1) + λ(2)
+

1

λ(1) + λ(2)
e−(λ(1)+λ(2))t (λ(1)η0(1)− λ(2)η0(2)) .

By symmetry arguments, we also have

ηt(2) =
λ(1)

λ(1) + λ(2)
− 1

λ(1) + λ(2)
e−(λ(1)+λ(2))t (λ(1)η0(1)− λ(2)η0(2)) .

This ends the proof of the exercise.

Solution to exercise 158:

L(x, x+ 1) = λ+(x) L(x, x− 1) = λ−(x) and L(x, x) = λ+(x) + λ−(x).

For any x ∈ N− {0} we have

(πL)(x) = π(x− 1) λ+(x− 1)− π(x) [λ+(x) + λ−(x)] + π(x+ 1) λ−(x+ 1)

= [π(x+ 1) λ−(x+ 1)− π(x)λ+(x)]− [π(x)λ−(x)− π(x− 1) λ+(x− 1)] .

For x = 0, we �nd that

(πL)(0) = π(1) λ−(1)− π(0) λ+(0) = 0.

Using induction w.r.t. x we conclude that

π(x)λ−(x)− π(x− 1) λ+(x− 1) = 0⇒ π(x) = λ+(x−1)
λ−(x) π(x− 1)

= · · ·
=

[∏
0≤y<x

λ+(y)
λ−(y+1)

]
π(0).

Finally, we have

∑
x≥0

 ∏
0≤y<x

λ+(y)

λ−(y + 1)

π(0) = 1⇒ π(0) =

∑
x≥0

 ∏
0≤y<x

λ+(y)

λ−(y + 1)

−1

.

This ends the proof of the exercise.

Solution to exercise 159:
For any n ∈ S := N the in�nitesimal generator L of Nt is de�ned by

L(f)(n) = λ [f(n+ 1)− f(n)] ⇔ L(n,m) = λ [1n+1(m)− 1n(m)].

For any m ≥ 1

d

dt
ηt(m) =

∑
n≥0

ηt(n) L(n,m) = λ [ηt(m− 1)− ηt(m)].
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Since N0 = 1, we have η0(m) = 10(m) and

d

dt
ηt(0) = −λ ηt(0)⇒ ηt(0) = e−λt

d

dt
ηt(1) = λ [e−λt − ηt(1)]⇒ ηt(1) =

∫ t

0

e−λ(t−s)λ e−λsds = λt e−λt.

We use mathematical induction. Assuming that ηt(n) = (λt)n

n! e−λt, we �nd that

d

dt
ηt(n+ 1) = λ

[
(λt)n

n!
e−λt − ηt(n+ 1)

]
.

Therefore

ηt(n+ 1) =

∫ t

0

e−λ(t−s)
[
λ

(λs)n

n!
e−λs

]
ds

= e−λt
∫ t

0

λ
(λs)n

n!
ds =

(λs)n+1

(n+ 1)!
e−λt.

This ends the proof of the exercise.

Solution to exercise 160:

The process jumps up by +1 unit at rate λ and jumps down by −1 unit at the same
rate. We conclude that the generator of Xt is de�ned by

L(f)(x) = λ (f(x+ 1)− f(x)) + λ′ (f(x− 1)− f(x))

= (λ+ λ′)

[
λ

λ+ λ′
(f(x+ 1)− f(x)) +

λ′

λ+ λ′
(f(x− 1)− f(x))

]
= 2λ

∫
(f(y)− f(x)) K(x, dy),

with the Markov transition

K(x, dy) =
λ

λ+ λ′
δx+1(dy) +

λ′

λ+ λ′
δx−1(dy).

On the other hand, for any bounded function f on S = Z we have

∂tηt(f) =
∑
x∈Z

f(x) ∂tηt(x) = ηt(L(f))

= λ
∑
x∈Z

ηt(x) (f(x+ 1)− f(x)) + λ′
∑
x∈Z

ηt(x) (f(x− 1)− f(x))

= λ
∑
x∈Z

(ηt(x− 1)− ηt(x)) f(x) + λ′
∑
x∈Z

(ηt(x+ 1)− ηt(x)) f(x)

=
∑
x∈Z

[λ (ηt(x− 1)− ηt(x)) + λ′ (ηt(x+ 1)− ηt(x))] f(x).

By choosing f = 1x, we conclude that

∂tηt(x) = λ (ηt(x− 1)− ηt(x)) + λ′ (ηt(x+ 1)− ηt(x)) .
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We have

∂tgt(z) =
∑
x∈Z

∂tηt(x) zx

=
∑
x∈Z

zx [ληt(x− 1)− (λ+ λ′)ηt(x) + λ′ηt(x+ 1)]

=
∑
x∈Z

[
zx−1ηt(x− 1) λ z+1 − zxηt(x) (λ+ λ′) + zx+1ηt(x+ 1) λ′z−1

]
= gt(z)

[
λ z+1 − (λ+ λ′) + λ′z−1

]
.

This implies that

gt(z) = exp
([
λ z − (λ+ λ′) + λ′z−1

]
t
)
g0(z)︸ ︷︷ ︸
=z0=1

.

Hence
gt(z) = e−(λ+λ′)t e(λz+λ

′z−1) t.

This ends the proof of the exercise.

Solution to exercise 161:
By construction, Xt jumps at rate λ with an amplitude Y. Thus, its in�nitesimal gener-

ator of Xt is given by

L(f)(x) = λ

∫
(f(x+ y)− f(x)) µ(dy).

We have

P(Xt ≤ x) = E (P(Xt ≤ x | Nt)) = e−λt
∑
n≥0

(λt)n

n!
P(
∑

1≤i≤n

Yi ≤ x).

Since
∑

1≤i≤n Yi is a centered Gaussian with variance n, we have∑
1≤i≤n

Yi
in law

=
√
n Y ⇒ P(

∑
1≤i≤n

Yi ≤ x) = P(Y ≤ x/
√
n).

This ends the proof of the exercise.

Solution to exercise 162:

• We have n individuals after the (n−1)-th split (2 individuals at the �rst split, 2+1 = 3 at
the second split, and so on). The splitting time of each individual is an exponential random
variable with parameter λ. These variables being independent, the �rst splitting time Tn
after Tn−1 is the minimum between these n splitting times and it is an exponential random
variable with parameter λ× n. The splitting time of each o�spring being independent of
the last splitting times, the random time Tn is independent of (Tk)1≤k<n.

We conclude that Tn are independent exponential random variables with parameters λ×n,
with n ≥ 1.
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• Tn =
∑

1≤k≤n Tk is the sum of independent exponential random variables Tk with param-
eter λk. Suppose n students are starting an exam at time t = 0. Each of them completes
the exam at an exponential rate with parameter λ. Arguing as above, the time the �rst
student leaves is an exponential random variable Sn with parameter λn; the time the sec-
ond student leaves is an (independent) exponential random variable Sn−1 with parameter
λ(n − 1), and so on. This shows that Tn can be interpreted as the time at which all
students have left, so that

P
(
Tn ≤ t

)
= P (S1 ≤ t, . . . , Sn ≤ t) =

∏
1≤k≤n

P(Sk ≤ t) = (1− e−λt)n.

• Notice that
{Xt > n} =

{
Tn ≤ t

}
⇒ P (Xt > n) =

(
1− e−λt

)n
.

This implies that

P(Xt = n) = P(Xt ≥ n)−P(Xt > n) =
(
1− e−λt

)n−1−
(
1− e−λt

)n
= e−λt×

(
1− e−λt

)n−1

for any n ≥ 1. In addition, we have

E(Xt) =
∑
n≥0

P(Xt > n) =
∑
n≥0

(
1− e−λt

)n
= eλt.

This ends the proof of the exercise.

Solution to exercise 163:

• For any s ≤ t, we have

M
(1)
t −M (1)

s = (Nt −Ns)− λ(t− s).

Since (Nt −Ns) is independent of (Nr)0≤r≤s and (Nt −Ns) is a Poisson random variable
with parameter λ(t− s) we conclude that

E(Nt −Ns) = λ(t− s)

and

E
(
M

(1)
t −M (1)

s | Fs
)

= E (((Nt −Ns)− λ(t− s)) | Fs) = E (((Nt −Ns)− λ(t− s))) = 0.

• For any s ≤ t, (Nt−Ns) is a Poisson random variable with parameter λ(t− s). Thus, we
have

Var (Nt −Ns) = E
(

[(Nt −Ns)− λ(t− s)]2
)

= λ(t− s).

M
(2)
t −M (2)

s =
(
M (1)
s + (M

(1)
t −M (1)

s )
)2

−
(
M (1)
s

)2

− λ(t− s)

=
(
M

(1)
t −M (1)

s

)2

+ 2M (1)
s (M

(1)
t −M (1)

s )− λ(t− s)

= ((Nt −Ns)− λ(t− s))2
+ 2M (1)

s (M
(1)
t −M (1)

s )− λ(t− s).

Arguing as above, we �nd that

E
(
M (1)
s (M

(1)
t −M (1)

s ) | Fs
)

= M (1)
s E

(
(M

(1)
t −M (1)

s ) | Fs
)

= 0

and
E
(
M

(2)
t −M (2)

s | Fs
)

= 0⇔ E
(
M

(2)
t | Fs

)
= M (2)

s .
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• For any s ≤ t, (Nt − Ns) is a Poisson random variable with parameter λ(t − s) and
(Nt −Ns) is independent of (Nr)0≤r≤s. Thus, have

E
(
ea(Nt−Ns)−λ(t−s)(ea−1) | Fs

)
= E

(
ea(Nt−Ns)−λ(t−s)(ea−1)

)
= e−λ(t−s)

∑
n≥0

(λ(t− s))n

n!
ean−λ(t−s)(ea−1)

= e−λ(t−s)ea
∑
n≥0

(eaλ(t− s))n

n!
= 1.

This implies that

E
(
eaNt−λt(e

a−1) | Fs
)

= eaNs−λs(e
a−1).

This shows that M (3)
t is a martingale.

• Notice that

M
(4)
t = (1 + b)Nt e−λbt = exp (log (1 + b)Nt − λbt)

when a = log (1 + b)
= M

(3)
t .

This ends the proof of the exercise.

Solution to exercise 164:

• At an arrival time, Xt jumps to Xt + 1, whereas at the end of service times it jumps to
Xt − 1. If Xt = 0, at rate λ1 it jumps up by one unit. If Xt = x > 0, at rate λ1 + λ2 (we
recall that the minimum of a couple of independent exponential random variables with
parameters λ1 and λ2 is an exponential random variable with parameter λ1 +λ2). At that
time, with a probability λ1/(λ1 +λ2) it jumps up by one unit; otherwise it jumps down by
one unit (we recall that the probability that E1 coincides with the minimum of exponential
random variables E1 and E2 with parameters λ1 and λ2 is equal to λ1/(λ1 + λ2)).

• We have Xt = YNt where Nt is a Poisson process with rate λ := λ1+λ2, and the embedded
Markov chain Yn on N is given by

P(Yn = Yn−1 + 1 | Yn−1 = y) = λ1/(λ1 + λ2) = 1− P(Yn = Yn−1 − 1| Yn−1 = y)

for any y > 0, with P(Yn = 1 | Yn−1 = 0)=1 for y = 0.

This ends the proof of the exercise.

Solution to exercise 165: Firstly, suppose that a = 2. When Xt = 0 at rate λ1 it
jumps up by one unit. When Xt = 1 at rate λ1 + λ2, with a probability λ1/(λ1 + λ2) it
jumps up by one unit, otherwise it jumps down by one unit.

When Xt = x ≥ a = 2, the two customers are served independently at a rate λ2. Thus,
one of them is served at a rate 2λ2 (here again, we recall that the minimum of a couple
of independent exponential random variables with parameters λ2 is an exponential random
variable with parameter 2λ2). On the other hand (and independently of the random service
times), a new arrival occurs at a rate λ1. Therefore, Xt with jump at a rate λ1 + 2λ2. At
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the jump time, with a probability λ1/(λ1 +2λ2) it jumps up by one unit, otherwise it jumps
down by one unit.

We have Xt = YNt where Nt is a Poisson process with rate λ := λ1 + 2λ2, and the
embedded Markov chain Yn on N given by

P(Yn = Yn−1 + 1 | Yn−1 = y) =
λ1

λ1 + aλ2
and P(Yn = Yn−1 − 1| Yn−1 = y) =

aλ2

λ1 + aλ2

for any y ≥ a = 2. In much the same way, we have

P(Yn = Yn−1 + 1 | Yn−1 = y) =
λ1

λ1 + yλ2
and P(Yn = Yn−1 − 1| Yn−1 = y) =

yλ2

λ1 + yλ2

for any 0 ≤ y ≤ 1 = a − 1, with the convention P(Yn = 1 | Yn−1 = 0)=1 for y = 0. The
same formulae are valid for any a ≥ 2. This ends the proof of the exercise.

Solution to exercise 166:
By construction, we have

P (At = k |T ′n , n ≥ 0)

= P
(
U1 > λT ′1 , . . . , Uk−1 > λT ′k−1

, Uk ≤ λT ′k |T
′
n , n ≥ 0

)
=

{∏
1≤l<k

(
1−

λT ′
l

λ

)}
×

λT ′
k

λ .

Integrating out the uniform random times T ′l , l ≤ k, we �nd that

P (At = k) =

(
1−

∫ t
0
λsds

λt

)k−1 ∫ t
0
λsds

λt
.

This shows that At is a geometric r.v. with success probability given by the area ratio∫ t
0
λsds/(λt). In particular, we have

E(At) = λ

[
1

t

∫ t

0

λsds

]−1

.

Now

λt = e−t ≤ λ0 = λ := 1 ⇒ 1

t

∫ t

0

λsds =
1− e−t

t
↓t↑∞ 0

⇒ E(At) =
t

1− e−t
↑t↑∞ +∞.

This ends the proof of the exercise.

Solution to exercise 167:
The jump times Tn are de�ned by

Tn = inf

{
t ≥ Tn−1 :

∫ t

Tn−1

λs ds ≥ − logUn

}
.
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Notice that ∫ Tn

Tn−1

λs ds = −
∫ Tn

Tn−1

∂s log (1− s) ds = log
1− Tn−1

1− Tn
= − logUn

as soon as

1− Tn
1− Tn−1

= Un ⇐⇒ (1− Tn) = (1− Tn−1)Un

⇐⇒ Tn = 1− (1− Tn−1)Un = (1− Un) + Tn−1Un.

This yields

(1− Tn) = Un (1− Tn−1)

= UnUn−1 (1− Tn−2) = · · · = (Un . . . U1) (1− T0) =
∏

1≤k≤n

Uk.

On the other hand

E(Up) =
1

p+ 1
⇒ E ((1− Tn)

p
) = (E(Up))n = (p+ 1)−n.

By Borel-Cantelli lemma, this clearly implies that Tn →n→∞ T∞ = 1.
This ends the proof of the exercise.

Solution to exercise 168
If we consider the random times de�ned in (11.19), for some λn ≥ 1 then we have that

P

Tn ≤ ∑
1≤p≤n

λ−1
p + t+ 2

√ ∑
1≤p≤n

λ−2
p

√
t

 ≥ 1− e−t.

In the explosive case, using the fact that λ2
n ≥ λn ≥ 1, we �nd that

|λ|22 :=
∑
p≥1

λ−2
p ≤ |λ|1 :=

∑
p≥1

λ−1
p <∞.

In this case we have
P
(
Tn ≤ |λ|1 + t+ 2|λ|2

√
t
)
≥ 1− e−t

and by the monotone convergence theorem

P
(
T∞ ≤ t+ |λ|1(1 + 2

√
t)
)
≥ P

(
T∞ ≤ |λ|1 + t+ 2|λ|2

√
t
)
≥ 1− e−t.

If we choose t = 3 then we �nd that

P
(
T∞ ≤ 3 + |λ|1(1 + 2

√
3)
)
≥ 1− e−3 ≥ .95

For λn = n2, we have |λ|1 = π2/6

P
(
T∞ ≤ 3 + π2

(
1

6
+

1√
3

)
≤ 10.35

)
≥ 1− e−3 ≥ 0.95.
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Using Markov inequality, we have

P (T∞ ≥ t) ≤ t−1 E (T∞) = t−1
∑
n≥1

λ−1
n = t−1 π2/6 ≤ .005 = 5× 10−2

when t ≥ 10 π2/3 ' 32.9. This inequality implies that

P (T∞ ≤ 32.9) ≥ 0.95.

Theorem 11.3.7 also provides an estimate of the Tn even in the case where
∑
p≥1 λ

−1
p =

∞. For instance, for time homogeneous models λn = 1 we �nd that

P
(
Tn ≤ n+ t+ 2

√
nt
)

= P
(√

Tn ≤
√
n+
√
t
)
≥ 1− e−t.

If we choose t = 3 then we �nd that

Tn ≤ n+ 3 + 2
√

3n

with a probability larger than 95%. For instance the seventh jump time occurs before 20
units of time, with a probability 95%; and the 103-th time occurs before 1.1113× 103 units
of time, with a probability larger than 95%.

This ends the proof of the exercise.
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Solution to exercise 169:
Let Tn be the jump times of the Poisson process Nt. At jump times the process XTn−

jumps to
XTn = XTn− − 2XTn− = −XTn−.

In other words, the process changes its sign at a rate λ. Recalling that X0 = 1 we conclude
that Xt = (−1)Nt . This also shows that the generator of Xt is given by

L(f)(x) = λ (f(−x)− f(x)) .

This ends the proof of the exercise.

Solution to exercise 170:
We have

L(10)(0) = −λ(0) and L(10)(1) = λ(1).

By (12.5) this implies that

∂tηt(0) = ηt (L(10)) = ηt(0) L(10)(0) + ηt(1) L(10)(1)

= −ηt(0) λ(0) + ηt(1) λ(1)

= −ηt(0) λ(0) + (1− ηt(0)) λ(1) = λ(1)− ηt(0) (λ(0) + λ(1)) .

In much the same way, we have

ηt(1) = 1− ηt(0)⇒ ∂tηt(1) = −∂tηt(0) = ηt(0) λ(0)− ηt(1) λ(1).

The solution is given by the formula

ηt(0) = e−(λ(0)+λ(1))t

[
η0(0) +

∫ t

0

e(λ(0)+λ(1))s λ(1) ds

]
=

λ(1)

λ(1) + λ(0)
+ e−(λ(0)+λ(1))t

(
η0(0)− λ(1)

λ(0) + λ(1)

)
.

This ends the proof of the exercise.

Solution to exercise 171: We consider the compound Poisson process discussed in
exercise 161. We recall that the in�nitesimal generator of Xt is given by

L(f)(x) = λ

∫
(f(x+ y)− f(x)) µ(dy)

with the carrè du champ

ΓL(f, f)(x) = λ

∫
[f(x+ y)− f(x)]2 µ(dy).

969
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Notice that

f(x) = x⇒ L(f)(x) = λ E(Y ) and ΓLt(f, f)(x) = λ E(Y 2).

Therefore, applying the Doeblin-It	o formula (12.25) to f(x) = x we have

dXt = λ E(Y ) dt+ dMt ⇒ Xt = λ E(Y ) t+Mt

for the martingale Mt with the angle bracket

〈M〉t = λ E(Y 2) t.

This implies

E (Xt) = −λ E(Y ) t

Var (Xt) = E
[
(Xt − λE(Y )t)

2
]

= E(M2
t ) = λ E(Y 2) t.

We assume that E(Y ) = 0 = E(Y 3). In this situation we have

E (Xt) = 0 and E(X2
t ) = Var (Xt) = λ E(Y 2) t.

Also, observe that

f(x) = x2 ⇒ L(f)(x) = λ E(Y 2) and ΓLt(f, f)(x) = λ
(
E
(
Y 4
)

+ 4 x2 E
(
Y 2
))
.

By applying the Doeblin-It	o formula (12.25) to f(x) = x2 we have

dX2
t = λ E(Y 2) dt+ dMt ⇒ X2

t = λt E(Y 2) +Mt

with a martingale Mt with angle bracket

〈M〉t = λ

(
E(Y 4) t+ 4 E

(
Y 2
) ∫ t

0

X2
s ds

)
=⇒ E (〈M〉t) = λ

(
E(Y 4) t+ 2 λ t2 E(Y 2)2

)
.

This implies that

E
(
X2
t

)
= −λ E(Y 2) t

Var
(
X2
t

)
= E

[(
X2
t − λt E(Y 2)

)2]
= E(M2

t ) = λ
(
E(Y 4) t+ 2 λ t2 E(Y 2)2

)
.

This ends the proof of the exercise.

Solution to exercise 172:
Suppose we start from some X0 = ei0 , with 1 ≤ i0 ≤ r. Before the �rst jump time we

have

dXt =
∑

1≤i 6=j≤r

(ei − ej)

=1j=i0︷ ︸︸ ︷
〈ej , ei0〉 dN

(i,j)
t =

∑
1≤i≤r, i 6=i0

(ei − ei0) dN
(i,i0)
t .

Let T1 := T i1,i0 be the �rst jump time of some Poisson process N (i1,i0), for some index
1 ≤ i1 ≤ r, i1 6 i0. At that time, the process jumps from XT1− = ei0 to

XT1
= XT1− + (ei1 − ei0) = ei0 + (ei1 − ei0) = ei1 .



Chapter 12 971

Before the next jump time, we have

dXt =
∑

1≤i 6=j≤r

(ei − ej)

=1j=i1︷ ︸︸ ︷
〈ej , ei1〉 dN

(i,j)
t =

∑
1≤i≤r, i 6=i0

(ei − ei1) dN
(i,i1)
t .

Let T2 := T i2,i1 be the �rst jump time of some Poisson process N (i2,i1), for some index
1 ≤ i2 ≤ r, i2 6 i1. At that time, the process jumps from XT2− = ei1 to

XT2
= ei1 + (ei2 − ei1) = ei2

and so on. This shows that Xt is an S-valued Markov process with generator

L(f)(ej) =
∑

1≤i≤r : i 6=j

λ(j, i) (f(ei)− f(ej)) .

For any function f : S 7→ R we have

∂tηt(f) =
∑

1≤j≤r

f(ej) ∂tηt(j) = ηtL(f) =
∑

1≤i 6=j≤r

ηt(j)λ(j, i) (f(ei)− f(ej))

=
∑

1≤i≤r

f(ei)

 ∑
1≤j≤r, j 6=i

ηt(j)λ(j, i)

− ∑
1≤j≤r

f(ej) ηt(j)
∑

1≤i≤r, i 6=j

λ(j, i)

=
∑

1≤j≤r

f(ej)

 ∑
1≤i≤r, i 6=j

ηt(i)λ(i, j)− ηt(j)
∑

1≤i≤r, i 6=j

λ(j, i)

 .
This yields

∂tηt(j) =
∑

1≤i≤r, i 6=j

ηt(i)λ(i, j)− ηt(j)
∑

1≤i≤r, i 6=j

λ(j, i)

In vector form:

∂tηt = [∂tηt(1), . . . , ∂tηt(r)]

= ηt



−
∑

1≤i≤r, i 6=1

λ(1, i) λ(1, 2) λ(1, 3) · · · λ(1, r)

λ(2, 1) −
∑

1≤i≤r, i 6=2

λ(2, i) λ(2, 3) · · · λ(2, r)

...
...

... · · ·
...

λ(r, 1) λ(r, 2) λ(r, 3) · · · −
∑

1≤i≤r, i 6=r

λ(r, i)


.

Observe that
−

∑
1≤i≤r, i 6=j

λ(j, i) = λ(j, j)−
∑

1≤i≤r

λ(j, i)

for any choice of the diagonal terms λ(i, i).
This ends the proof of the exercise.

Solution to exercise 173:
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For any function F (x, y) = f(x) that depends on the �rst coordinate, we have

L(F )(x, y) = 1x 6=y

=L(f(x))(x)=0︷ ︸︸ ︷
L(F (x, .))(y) +

=L(f)(x)︷ ︸︸ ︷
L(F (., y))(x)

+ 1x=y

∫
[f(y)− f(x)] Q(x, dy)

= 1x 6=yL(f)(x) + 1x=y L(f)(x) = L(f)(x).

By symmetry arguments we also have L(F )(x, y) = L(g)(y) for any function F (x, y) = g(y)
that depends on the second coordinate. This implies that Xt and Yt have the same law as
Xt. This ends the proof of the exercise.

Solution to exercise 174: For any function F (x, y) = f(x) that depends on the �rst
coordinate, we have

L(F )(x, y) =

∫
[f(z)− f(x)] (q(x, z) ∧ q(y, z)) λ(dz)

+

∫
[f(z)− f(x)] (q(x, z)− q(y, z))+ λ(dz)

=

∫
[f(z)− f(x)] q(x, z) λ(dz) = L(f)(z).

The last assertion follows from the fact that

(q(x, z) ∧ q(y, z)) + (q(x, z)− q(y, z))+ = 1q(x,z)≥q(y,z) [q(y, z) + (q(x, z)−q(y, z))]
+1q(x,z)<q(y,z) [q(x, z) + 0] = q(x, z).

By symmetry arguments we also have L(F )(x, y) = L(g)(y) for any function F (x, y) = g(y)
that depends on the second coordinate. This implies that Xt and Yt have the same law as
Xt.

This ends the proof of the exercise.

Solution to exercise 175:
The exercise is a direct consequence of theorem 12.7.6. To be more precise, we let Pt be

the Markov semigroup of Xt. Combining theorem 12.7.6 with theorem 8.3.2 we �nd that

‖δxPt − δx′Pt‖tv ≤ c exp (−ρεt)

for some non negative parameters c and ρ > 0. This implies that the Dobrushin contraction
coe�cient β(Pt) of Pt is less than 1 for t su�ciently large. Thus we conclude by using
theorem 8.2.13.

This ends the proof of the exercise.

Solution to exercise 176:
We have

λK = λ =⇒ λ
(
e−V L(f)

)
∝ λ ((K − Id)f)) = λ(K(f))− λ(f) = 0.
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When K is λ-reversible we have

λ (g K(f)) = λ (f K(g))

from which we check that

λ
(
e−V g L(f)

)
∝ λ (g (K − Id)(f)) = λ (f (K − Id)(g)) ∝ λ

(
e−V g L(f)

)
.

This ends the proof of the exercise.

Solution to exercise 177:

We have

∂tγ
[β]
t (1) = E

[
∂t exp

(
−β

∫ t

0

V (Xs) ds

)]
= −β E

[
V (Xt) exp

(
−β

∫ t

0

V (Xs) ds

)]
= −β γ[β]

t (V ) = −β η[β]
t (V ) γ

[β]
t (1).

This implies that

∂t log γ
[β]
t (1) =

1

γ
[β]
t (1)

∂tγ
[β]
t (1) = −β η[β]

t (V )

from which we prove that

γ
[β]
t (1) = exp

(
−β

∫ t

0

η[β]
s (V ) ds

)
.

The end of the proof of the second assertion is now clear.
Under our assumptions we have

−tη[β]
∞ (V )− cβ ≤ −

∫ t

0

η[β]
s (V ) ds ≤ −tη[β]

∞ (V ) + cβ .

Taking the exponential this implies that

e−tη
[β]
∞ (V ) C−1

β ≤ e−
∫ t
0
η[β]
s (V ) ds =

[
γ

[β]
t (1)

]1/β
≤ e−tη

[β]
∞ (V )Cβ .

This ends the proof of the exercise.

Solution to exercise 178:

We clearly have

Lt(f)(x) =

∫
(f(x+ u)− f(x)) gt(x, u) du

=

∫
(f(y)− f(x)) gt(x, y − x) dy =

∫
(f(y)− f(x)) qt(x, y) dy,
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with qt(x, y) = gt(x, y − x). By construction, we have the integral evolution equation

∂tηt(f) =

∫
f(x) ∂tpt(x) dx = ηt (Lt(f))

=

∫
(f(y)− f(x)) pt(x) qt(x, y) dxdy

=

∫
f(x) pt(y) qt(y, x) dxdy −

∫
f(x)

[∫
qt(x, y) dy

]
pt(x) dx

=

∫
f(x)

(∫
pt(y) qt(y, x)dy −

[∫
pt(x) qt(x, y) dy

]
.

)
dx

This implies that

∂tpt(x) =

∫
[pt(y) qt(y, x)− pt(x) qt(x, y)] dy.

We also observe that

∂tpt(x) =

∫
[pt(y) gt(y, x− y)− pt(x) gt(x, y − x)] dy

=

∫
[pt(x− (x− y)) gt(x− (x− y), x− y)− pt(x) gt(x,−(x− y))] dy

=

∫ +∞

−∞
pt(x− (x− y)) gt(x− (x− y), x− y) dy − pt(x)

∫ +∞

−∞
gt(x,−(x− y)) dy

= −
∫ −∞

+∞
pt(x− z) gt(x− z, z) dz + pt(x)

∫ −∞
+∞

gt(x,−z) dz

=

∫ +∞

−∞
pt(x− z) gt(x− z, z) dz − pt(x)

∫ +∞

−∞
gt(x,−z) dz.

This implies that

∂tpt(x) =

∫
pt(x− z) gt(x− z, z) dz − pt(x)

∫
gt(x,−z) dz

=

∫
[pt(x− z) gt(x− z, z)− pt(x) gt(x, z)] dz.

The last assertion is a consequence of the fact that∫ +∞

−∞
gt(x,−z) dz = −

∫ −∞
+∞

gt(x, z) dz =

∫ +∞

−∞
gt(x, z) dz.

Using the Taylor's expansion,

pt(x− z) gt(x− z, z) = pt(x) gt(x, z) +
∑
n≥1

(−1)n

n!
zn ∂nx (pt(x)gt(x, z))

we �nd that the formula

∂tpt(x) =
∑
n≥1

(−1)n

n!

∫
zn ∂nx (pt(x)gt(x, z)) dz

=
∑
n≥1

(−1)n

n!
∂nx

([∫
zn gt(x, z) dz

]
pt(x)

)
=
∑
n≥1

(−1)n

n!
∂nx (αnt (x) pt(x)) .
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This ends the proof of the exercise.

Solution to exercise 179:
It clearly su�ces to check the result for λ = 1. In this case, we have

ηLh(f) =

∫
p(x)

[
(f(x+ h)− f(x))

p(x+ h)

p(x) + p(x+ h)

+ (f(x− h)− f(x))
p(x− h)

p(x) + p(x− h)

]
dx

=

∫
p(x) f(x+ h)

p(x+ h)

p(x) + p(x+ h)
dx−

∫
p(x) f(x)

p(x+ h)

p(x) + p(x+ h)
dx

+

∫
p(x) f(x− h)

p(x− h)

p(x) + p(x− h)
dx−

∫
p(x) f(x)

p(x− h)

p(x) + p(x− h)
dx.

The change of variables y = x+ h yields∫
p(x) f(x+ h)

p(x+ h)

p(x) + p(x+ h)
dx =

∫
p(y − h) f(y)

p(y)

p(y − h) + p(y)
dy

=

∫
p(x) f(x)

p(x− h)

p(x) + p(x− h)
dx.

By symmetry (h −h) we also have∫
p(x) f(x− h)

p(x− h)

p(x) + p(x− h)
dx =

∫
p(x) f(x)

p(x+ h)

p(x) + p(x+ h)
dx.

We conclude that ηLh(f). This ends the proof of the exercise.

Solution to exercise 180: The proof of �rst part of the exercise follows the same
arguments as the proof of exercise 178, so it is skipped. The last assertion is immediate.
This ends the proof of the exercise.

Solution to exercise 181:
In exercise 171 we proved that the process Xt and Mt = X2

t − 〈X〉t = X2
t − λ t E(Y 2)

are both martingales starting at 0 ∈ [−a, a]. Therefore we can apply directly (12.23) to the
martingale Xt and its angle bracket 〈X〉t = λ t E(Y 2). Otherwise we reformulate the proof
of (12.23). By the optional stopping theorem the stopped process Mt∧TD is a martingale so
that

E(Mt∧TD ) = 0⇒ λ E(t ∧ TD) E(Y 2) = E(X2
t∧TD ) ≤ a2 ⇒ E(t ∧ TD) ≤ a2/(λ E(Y 2)).

Applying Fatou's lemma, we �nd that

E(TD) = E
(

lim
t↑∞

(t ∧ TD)

)
≤ lim inf

t↑∞
E (t ∧ TD) ≤ a2/(λ E(Y 2)).

The compound process starting at some x ∈ D is given by Xx
t = x + Xt. In this
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situation, we have

(Xx
t )

2
= x2 +X2

t + 2xXt

E(Xt∧Tx
D

)=0

=⇒ E
(
X2
t∧TxD

)
= λ E(t ∧ T xD) E(Y 2) = E

((
Xx
t∧TxD

)2
)
− x2 ≤ a2 − x2.

Arguing as above, this yields the estimate

E(T xD) ≤ (a2 − x2)/(λE(Y 2)).

This ends the proof of the exercise.

Solution to exercise 182:

• Since customers wait in line before entering in the �rst free server, the number of customers
being served Xt, at some given time t, varies between 0 and d. Transitions x  x − 1
depend on the number x of customers being served. The departure rate of customers is
related to the minimum of x exponentials with parameter λ2. Thus, the departure rate
happens to be

λ(x) = λ2x.

The arrival rate is constant and it is equal to λ1.

• The in�nitesimal generator of Xt is given for any x ∈ {1, . . . , d− 1} by

L(f)(x) = λ2x (f(x− 1)− f(x)) + λ1 (f(x+ 1)− f(x))

and
L(f)(0) = λ1 (f(1)− f(0)) and L(f)(d) = λ2d (f(d− 1)− f(d)).

By choosing f = 1x−1:

L(f)(x) = L(1x−1)(x) = L(x, x− 1) = λ2x.

In the same vein, we �nd that

L(x, x+ 1) = λ1 = L(0, 1) L(d, d) = −λ2d and L(x, x) = − (λ1 + λ2x) .

In the other situations we have L(x, y) = 0.

• For any x ∈ {1, . . . , d− 1}

0 = (πL)(x) = π(x− 1) L(x− 1, x) + π(x)L(x, x) + π(x+ 1) L(x+ 1, x)

= π(x− 1) λ1 − π(x) (λ1 + λ2x) + π(x+ 1) λ2(x+ 1)

and

0 = (πL)(d) = π(d− 1) L(d− 1, d) + π(d) L(d, d) = π(d− 1) λ1 − π(d) λ2d.

We conclude that
π(d− 1) λ1 − π(d) λ2d = 0

and
[π(x− 1) λ1 − π(x)λ2x] = [π(x)λ1 − π(x+ 1) λ2(x+ 1)] .
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By a simple backward induction w.r.t. x we conclude that for any x ∈ {1, . . . , d}

π(x− 1) λ1 − π(x)λ2x = 0⇒ π(x) =
λ1

λ2x
π(x− 1) = · · · =

(
λ1

λ2

)x
1

x!
π(0)

and ∑
0≤x≤d

(
λ1

λ2

)x
1

x!
π(0) = 1⇒ π(0) =

1∑
0≤x≤d

(
λ1

λ2

)x
1
x!

.

This ends the proof of the exercise.

Solution to exercise 183:
The solution follows the arguments developed in exercise 182 but with a countable

number of servers.
In this situation we have

0 = (πL)(0) = π(0)L(0, 0) + π(1) L(1, 0) = −λ1π(0) + π(1)λ2 ⇒ π(1) =
λ1

λ2

and

[π(x)λ1 − π(x+ 1) λ2(x+ 1)] = [π(x− 1) λ1 − π(x)λ2x] = · · · = π(0) λ1 − π(1)λ2 = 0.

This implies

π(x) =
λ1

λ2

1

x
π(x− 1).

Thus, the invariant measure is the Poisson distribution given for any x ∈ N by

π(x) =

(
λ1

λ2

)x
1

x!
π(0) = e−

λ1
λ2

(
λ1

λ2

)x
1

x!
.

This ends the proof of the exercise.

Solution to exercise 184:
Since the queue has m servers, the in�nitesimal generator of Xt is de�ned for any

0 ≤ x ≤ m by

L(f)(x) = λ2x (f(x− 1)− f(x)) + λ1 (f(x+ 1)− f(x))

and for any x > m

L(f)(x) = λ2m (f(x− 1)− f(x)) + λ1 (f(x+ 1)− f(x)).

In this situation, the invariant measure is the Poisson distribution given for any 1 ≤ x <
m by

π(x) =

(
λ1

λ2

)x
1

x!
π(0).

For any x ≥ m, we have

0 = (πL)(x) = π(x− 1) L(x− 1, x) + π(x)L(x, x) + π(x+ 1) L(x+ 1, x)

= π(x− 1) λ1 − π(x) (λ1 + λ2m) + π(x+ 1) λ2m.
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For x = (m− 1) we �nd that

0 = π(m− 2) λ1 − π(m− 1) (λ1 + λ2(m− 1)) + π(m) λ2m

= −
(
λ1

λ2

)m−1
1

(m− 1)!
λ1 π(0) + π(m) λ2m.

This implies that

π(m) =

(
λ1

λ2

)m
1

m!
π(0).

This also yields

π(m+ 1) = π(m)

(
1 +

λ1

λ2m

)
−
[(

λ1

λ2

)m
1

m!
π(0)

]
= π(m)

λ1

λ2m
=

1

m

(
λ1

λ2

)m+1
1

m!
π(0).

Let us check by induction w.r.t. x that for any x ≥ m we have

π(x) =
1

mx−m

(
λ1

λ2

)x
1

m!
π(0).

Notice that in this case we have

λ1

λ2

1

m
π(x− 1) = π(x).

This implies that

π(x+ 1) = π(x)

(
λ1

λ2

1

m
+ 1

)
− π(x− 1)

λ1

λ2

1

m
= π(x)

λ1

λ2

1

m
.

The end of he recursion is now clear. This ends the proof of the exercise.

Solution to exercise 185: We denote by R(i,j)
θ =

(
R

(i,j)
θ (k, l)

)
1≤k,l≤N

the (N ×N)-

rotation matrix given for any 1 ≤ i < j ≤ N by

∀k 6∈ {i, j} R
(i,j)
θ (k, l) = 1k=l

with the i-th row given by

R
(i,j)
θ (i, i) = cos (θ) R

(i,j)
θ (i, j) = sin (θ) and ∀k 6∈ {i, j} R

(i,j)
θ (i, k) = 0

and the j-th row given by

R
(i,j)
θ (j, j) = cos (θ) R

(i,j)
θ (j, i) = − sin θ and ∀k 6∈ {i, j} R

(i,j)
θ (j, k) = 0.

The embedded Markov chain model Yn = (Y in)1≤i≤N is de�ned by

Yn = R
(In,Jn)
Θn

Yn−1

where (In, Jn) are i.i.d. uniform random variables on {(i, j) ∈ {1, . . . , N}2 : i < j} and
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Θn a sequence of i.i.d. uniform random variables on [0, 2π[. We also assume that (In, Jn)
and Θn are independent sequences.

We have

(Y Inn , Y Jnn ) =
(

cos (Θn) Y Inn−1 + sin(Θn) Y Jnn−1,− sin (Θn) Y Inn−1 + cos(Θn) Y Jnn−1

)
⇒
(
Y Inn

)2
+
(
Y Jnn

)2
=
(
Y Inn−1

)2

+
(
Y Jnn−1

)2

=⇒ ∀n ≥ 0
∑

1≤i≤N

(
Y in
)2

=
∑

1≤i≤N

(
Y i0
)2
.

The Markov transition M of the chain Yn is de�ned for any bounded function f on S = R2

by

M(f)(x) =
1

2π

(
2
N

) ∑
1≤i<j<N

∫ 2π

0

f
(
R

(i,j)
θ x

)
dθ.

The continuous time model is de�ned as an embedding of the chain Yn at the jump times
of a Poisson process with intensity Nλ. Thus, the in�nitesimal generator is given by L =
Nλ (M − Id).

This ends the proof of the exercise.

Solution to exercise 186: We let Pt(f)(x) = E(f(Xt) | X0 = x) be the semigroup of
the process Xt with in�nitesimal generator L. By construction, we have

f(x?) = sup
x∈S

f(x) =⇒ ∀t ≥ 0 ∀x ∈ S Pt(f)(x) ≤ f(x?).

This implies that

L(f)(x?) = lim
t↓0

Pt(f)(x?)− f(x?)

t
≤ 0.

This ends the proof of the exercise.

Solution to exercise 187:

Using (12.5) we have

d

dt
Pt(g)

t=0
= L(Pt(g))|t=0

= L(g)

⇒ d

dt
π(fPt(g))|t=0

= π(fL(g)) = −E (f, g) .

Notice that

πPt = π ⇒ Varπ(Pt(f)) = π((Pt(f)− π(f))2) = π((Pt(f))2)− (π(f))2 = ‖Pt(f)− π‖2L2(π) .

Arguing as above, we also have

d

dt
Varπ(Pt(f)) =

d

dt
π((Pt(f))2) = 2π(Pt(f)

d

dt
Pt(f)) = 2π(Pt(f)L(Pt(f)))

= −2E (Pt(f), Pt(f)) .
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Taking t = 0, we also �nd that the Dirichlet form measures the in�nitesimal changes in the
variance of the semigroup; that is, we have

E (f, f) = −1

2

d

dt
Varπ(Pt(f))|t=0

.

This ends the proof of the exercise.

Solution to exercise 188: Arguing as in the proof of exercise 187, we have

d

dt
Varπ(Pt(f)) = −2E (Pt(f), Pt(f)) .

If π satis�es a Poincaré inequality for some parameter a > 0, then we have

−a Varπ(Pt(f)) ≥ −2E (Pt(f), Pt(f))⇒ d

dt
Varπ(Pt(f)) ≤ −a Varπ(Pt(f)).

Recalling thet P0(f) = f , this implies that

Varπ(Pt(f)) ≤ e−at Varπ(f). (30.32)

Inversely, for small times t ∼ 0 we have

Pt(f) = f+ L(f) t+o(t)⇒ Varπ(Pt(f)) = π((Pt(f))2)−(π(f))2 = Varπ(f)−2t E(f, f)+o(t)

and
e−at Varπ(f) = Varπ(f)− a tVarπ(f) + o(t).

This shows that

(30.32)⇒ a t Varπ(f) + o(t) ≤ 2t E(f, f) + o(t)⇒ a Varπ(f) ≤ 2E(f, f).

This ends the proof of the exercise.

Solution to exercise 189:
We have

1

2

∑
(v1,v2)∈E

(x(v1)− x(v2))
2

= |E| −
∑

(v1,v2)∈E

x(v1)x(v2)

and for any given v ∈ V∑
u∼v

x(u) = |{u ∼ v, x(u) = 1}| − |{u ∼ v, x(u) = −1}| .

Notice that

x(v) = −1 ⇐⇒ xv,+1 6= x ⇐⇒ x(v)− xv,+1(v) = −1− 1 = −2.

Thus, for any xv,+1 6= x we have

H(x)−H(xv,+1) =
∑

(u1,u2)∈E

(
x(u1)x(u2)− xv,+1(u1)xv,+1(u2)

)
=

∑
(u1,u2)∈E, u1 6=v 6=u2

(x(u1)x(u2)− x(u1)x(u2))

+
∑
u∼v

(
x(v)− xv,+1(v)

)
x(u).
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This implies that for xv,+1 6= x we have

H(x)−H(xv,+1) = −2
∑
u∼v

x(u).

In much the same way, we have

x(v) = +1 ⇐⇒ xv,−1 6= x ⇐⇒ x(v)− xv,−1(v) = 1 + 1 = 2,

and for xv,−1 6= x we have

H(x)−H(xv,−1) = 2
∑
u∼v

x(u).

Using the fact that

x 6= xv,+1 ⇔ (xv,+1)v,−1 = x and x 6= xv,−1 ⇔ (xv,−1)v,+1 = x

we also have

x 6= xv,+1 ⇒ H(x)−H
(
xv,+1

)
= H

(
(xv,+1)v,−1

)
−H

(
xv,+1

)
= −

[
H
(
xv,+1

)
−H

(
(xv,+1)v,−1

)]
= −2

∑
u∼v x

v,+1(u).

This implies that for x 6= xv,+1 we have

πβ(xv,+1) Q(xv,+1, x) = πβ(xv,+1) Q(xv,+1, (xv,+1)v,−1)

= πβ(xv,+1) qε=−1(v, xv,+1)

∝ e−βH(xv,+1) ∧ e−β[H(xv,+1)+(H(x)−H(xv,+1))]

= e−βH(xv,+1) ∧ e−βH(x).

By symmetry, this implies

∀x ∈ S πβ(xv,+1) Q(xv,+1, x) = πβ(x) Q(x, xv,+1).

Replacing x by xv,−1 we deduce that

πβ((xv,−1)v,+1) Q((xv,−1)v,+1, xv,−1) = πβ(x) Q(x, xv,−1)

= e−βH(x) ∧ e−βH(xv,−1) ∝ πβ(xv,−1) Q(xv,−1, x).

This ends the proof of the second assertion.
On the other hand, we have

L = Q− Id⇒ Pt(f)(x) = E(f(Xt) | X0 = x) = f(x) +

∫ t

0

L(Ps(f))(x) ds.

Recalling that πβQ = πβ ⇒ πβL = 0, we conclude that

Law(X0) = πβ ⇒ E(f(Xt)) = πβ(f) +

∫ t

0

πβ(L(Ps(f))) ds = πβ(f).

This ends the proof of the exercise.
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Solution to exercise 190
By (12.12) we have

Phtn,tn+1
=

∑
0≤p≤m

1

p!
hp Lptn + O(hm+1) = Ptn,tn+1 . (30.33)

Rephrasing the proof of the theorem we conclude that

Phtp,tn = Ptp,tn + O (hm) .

For m = 1, and m = 2, the pure jump sg (12.35) takes the form

Phtn,tn+1
= Id+ λtnh (Mtn − Id) = λtnh Mtn + (1− λtnh) Id

and

Phtn,tn+1
= Id+ λtnh (Mtn − Id) + 2−1(λtnh)2 (Mtn − Id)2

= 2−1(λtnh)2 M2
tn + λtnh (1− λtnh) Mtn

+
[
1−

(
2−1(λtnh)2 + λtnh (1− λtnh)

)]
.

More generally, for any order m ≥ 1, we have

Phtn,tn+1
=

∑
0≤p≤q≤m

1

q!
(λtnh)q

(
q
p

)
(−1)q−pMp

tn

=
∑

0≤p≤m

 ∑
p≤q≤m

(−1)q−p

p!(q − p)!
(λtnh)(q−p)+p

 Mp
tn

=
∑

0≤p≤m

(λtnh)p

p!

 ∑
0≤q≤m−p

(−λtnh)q

q!

 Mp
tn

with

αhtn(p) =
(λtnh)p

p!

 ∑
0≤q≤m−p

(−λtnh)q

q!

 .

By construction, we have L0
tn = Id, and[

∀p > 0 Lptn(1) = 0
]

=⇒ Phtn,tn+1
(1) = 1.

This ensures that
Phtn,tn+1

(1) =
∑

0≤p≤m

αhtn(p) = 1.

It remains to notice that the functions θn(x) =
∑

0≤q≤n
(−x)q

q! map [0, 1] into itself.
Firstly, we prove that these functions are non negative. For odd parameters the result is
immediate since

θ2n+1(x) = (1− x) +

(
x2

2!
− x3

3!

)
+ . . .+

(
x2n

(2n)!
− x2n+1

(2n+ 1)!

)
and

x2n

(2n)!
≥ x2n

(2n+ 1)!
≥ x2n+1

(2n+ 1)!
.
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For even parameters, we conclude that

θ2(n+1)(x) = θ2n+1(x) +
x2n

(2n)!
≥ 0.

On the other hand, we have θ′n = −θn−1. This implies that θn is a non-increasing function
from θn(0) = 1 to θn(1) ≥ 0. This clearly implies that θn maps [0, 1] into itself.

This ends the proof of the exercise.

Solution to exercise 191
The martingale property of Mt has been proved in the end of section 12.5.2. Using the

fact that
E
(
dM t | Ft

)
= ϕt− E (dMt | Ft) = 0

we conclude that M t is a martingale.
In addition, recalling that

M2
t −

∫ t

0

λsds

is a martingale, we have

E
(
dM2

t − dNt | Ft
)

= E
(
dM2

t | Ft
)
− λtdt = 0.

In a similar way, we have

E
(
dM

2

t | Ft
)

= E
(
(dM t)

2 | Ft
)

= E
(

(ϕt−dMt)
2 | Ft

)
= ϕ2

t− E
(

(dMt)
2 | Ft

)
= ϕ2

t−λ
2
tdt.

This implies that M̃t is a martingale. Finally, we have

Et+dt = Et × exp

(∫ t+dt

t

ϕs−dNs −
∫ t+dt

t

λs [eϕs− − 1] ds

)
= Et × exp (ϕt−dNt) exp (−λt [eϕt− − 1] dt).

Recalling that dNt = Nt+dt −Nt is a Poisson r.v. with intensity λtdt, we prove that

E
(
eϕt−dNt | Ft

)
= e−λtdt

∑
n≥1

(λtdt)
n

n!
enϕt−

= e−λtdt eλt e
ϕt−dt = eλt (eϕt−−1)dt.

The martingale property of Et is now clear. For the constant function ϕs− = log (1 + ε) we
have

Et = exp

(
log (1 + ε) Nt − ε

∫ t

0

λs ds

)
= Eεt .

This ends the proof of the exercise.
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Solution to exercise 192:
By construction, we have

dCt = a Ct dt + dXt.

Therefore the in�nitesimal generator of Ct is given by

L(f)(x) = a x ∂xf + λ

∫
(f(x+ y)− f(x)) µ(dy),

where µ stands for the distribution of the random variables Yn.
This ends the proof of the exercise.

Solution to exercise 193:
We let Tn be the jump times of the Poisson process Nt. We start at some X0 = x0 and

we solve the system (13.40) up to time T1−. We calculate the value XT1− := ϕ0,T1−(X0)
using the �ow map of the deterministic system, and we set

XT1
= XT1− + b(XT1−).

Given XT1
, we solve the system (13.40) from T1 up to time T2−. We calculate the value

XT2− := ϕT1,T2−(XT1
) using the �ow map of the deterministic system, and we set

XT2 = XT2− + b(XT2−)

and so on.
The in�nitesimal generator of Xt is given for any di�erentiable function f by the formula

L(f)(x) = a(x)
∂f

∂x
(x) + λ (f(x+ b(x))− f(x)) .

This ends the proof of the exercise.

Solution to exercise 194:
The stochastic di�erential equation (13.38) is a particular case of the one discussed in

exercise 193. The in�nitesimal generator of Xt is given for any di�erentiable function f by
the formula

L(f)(x) = a x ∂xf(x) + λ (f(x(1 + b))− f(x)) .

We let Tn be the jump times of the Poisson processNt, with the convention (N0, T0) = (0, 0).
For t ∈ [T0, T1[ we have

Xt = eat X0

and at the jump time
XT1

= (1 + b) XT1− = (1 + b) eat X0.

985
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For t ∈ [T1, T2[ we have
Xt = eat XT1 = (1 + b) e2at X0

and at the jump time

XT2 = (1 + b) XT2− = (1 + b)2 e2at X0.

For t ∈ [T2, T3[ we have
Xt = eat XT2

= (1 + b)2 e3at X0

and at the jump time

XT3 = (1 + b) XT3− = (1 + b)3 e3at X0.

Using a simple induction, we check that t ∈ [Tn, Tn+1[ we have

Xt = eat XTn = (1 + b)n e(n+1) at X0

and at the jump time

XTn+1 = (1 + b) XTn+1− = (1 + b)n+1 e(n+1)at X0.

This ends the proof of the exercise.

Solution to exercise 195:
We let Tn be the jump times of the Poisson process Nt and ϕs,t(x) the �ow map of the

deterministic system (13.40). We start at some X0 = x0 and we solve the system (13.40)
up to time

R1 = inf{t ≥ 0 :

∫ t

0

b(ϕ0,s(X0)) ds ≥ T1}.

We calculate the value XR1− := ϕ0,R1−(X0) using the �ow map of the deterministic
system, and we set

XR1
= XR1− + 1.

We solve the system (13.40) up to time

R2 = inf{t ≥ R1 :

∫ t

R1

b(ϕR1,s(XR1
)) ds ≥ (T2 − T1)}.

We calculate the value XR2− := ϕR1,R2−(XR1
) using the �ow map of the deterministic

system, and we set
XR2 = XR2− + 1

and so on.
The in�nitesimal generator of Xt is given for any di�erentiable function f by the formula

L(f)(x) = a(x)
∂f

∂x
(x) + b(x) (f(x+ 1)− f(x)) .

This ends the proof of the exercise.

Solution to exercise 196:
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By construction, the in�nitesimal generator of Xt is given for any di�erentiable function
f by the formula

L(f)(x) = a(x)
∂f

∂x
(x) + λ(x)

∫
(f(y)− f(x)) K(x, dy).

This ends the proof of the exercise.

Solution to exercise 197:
By construction, the in�nitesimal generator of Xt is given for any di�erentiable function

f by the formula

L(f)(x) = −a(x)
∂f

∂x
(x) + λ(x)

∫
(f(x+ y)− f(x)) K(x, dy).

This ends the proof of the exercise.

Solution to exercise 198:
The jump times Tn of the storage process are de�ned by

T0 = 0 and ∀n ≥ 1 ∆Tn = Tn − Tn−1 = Zn.

Between the jumps the PDMP process is given by

∀t ∈ [Tn, Tn+1[ Xt = e−b(t−Tn) XTn .

At the (n+ 1)-th jump time we have

XTn+1
= e−b (Tn+1−Tn) XTn + Yn+1 = e−b Zn+1 XTn + Yn+1.

This ends the proof of the exercise.

Solution to exercise 199:
By applying the Doeblin-It	o formula to the function f(x) = x we have

L(f)(x) = −a f + λ

∫
y ν(dy).

This implies that
∂tEx(Xt) = −a Ex(Xt) + λ m,

from which we conclude that

Ex(Xt) = e−at
[
x+ (λm/a)

∫ t

0

aeas ds

]
= e−at

[
x+ (λm/a)

(
eat − 1

)]
= e−at x+ (λm/a)

(
1− e−at

)
= e−at (x− λm/a) + (λm/a).

This ends the proof of the exercise.
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Solution to exercise 200:
Applying the Doeblin-It	o formula to the function

f(x) = eux ⇒ ∂xf(x) = u f(x) and f(x+ y)− f(x) = f(x) [f(y)− 1]

we have

L(f)(x) = −aux f(x) + λ f(x)

∫
[f(y)− 1] ν(dy) = −aux f(x) + λ f(x) [h(u)− 1].

This yields the evolution equation

∂tgt(u) = −au E
(
Xte

uXt
)︸ ︷︷ ︸

=∂ugt(u)

dt+ λgt(u) [h(u)− 1] ,

from which we conclude that

∂tgt(u) = −au ∂ugt(u) + gt(u) V (u) with V (u) = λ [h(u)− 1] .

The solution is given by

gt(u) = exp

(∫ t

0

V
[
e−asu

]
ds

)
= exp

(
a−1

∫ u

e−atu

V (τ) /τ dτ

)
.

The r.h.s. expression is obtained using the change of variable

τ = e−asu⇒ dτ = −aτ ds.

Under our assumptions we also have

u ∈]−∞, u0[⇒ ∀s ≥ 0 e−asu ∈]−∞, u0[.

We conclude that

gt(u) = exp

(
a−1

∫ u

e−atu

∂τ log V (τ) dτ

)
= exp

(
a−1

[
log V (u)− log V

(
e−atu

)])
=

(
V (u)

V (e−atu)

)1/a

.

We check that gt satis�es the desired evolution equation using the fact that

∂tgt(u) = V
[
e−atu

]
gt(u)

and

−a u ∂ugt(u) = −
[∫ t

0

a u e−as ∂vV
[
e−asu

]
ds

]
gt(u)

=

[∫ t

0

∂s
(
e−as u

)
∂vV

[
e−asu

]
ds

]
gt(u)

=

[∫ t

0

∂s
{
V
[
e−asu

]}
ds

]
gt(u) =

[
V
[
e−atu

]
− V (u)

]
gt(u).

This implies that
∂tgt(u) = −a u ∂ugt(u) + V (u) gt(u).
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When ν(dy) = b e−by 1[0,∞[(y) dy we have

h(u) =
b

b− u

∫ ∞
0

(b− u) e−(b−u)y dy =
b

b− u
⇒ V (u) = λ

[
b

b− u
− 1

]
=
λ

b

u

1− u/b
.

In this situation, V (u) is well de�ned for any u 6= b and

V (u)/u = λ/(b− u) = −λ ∂u log (b− u)

⇒ gt(u) = exp
(
λa−1

∫ e−atu
u

∂τ log (b− τ) dτ
)

= exp
(
λa−1 log 1−e−atu/b

1−u/b

)
.

This implies that

gt(u) =

(
1− e−atu/b

1− u/b

)λ/a
−→t↑∞ g∞(u) := E(euX∞) = (1− u/b)−λ/a

for any u < b, with α := λ/a. We conclude that the invariant probability measure is given
by the Laplace distribution with shape α and rate b; that is we have that

π(dx) = P(X∞ ∈ dx) =
bα

Γ(α)
xα−1 e−βx 1]0,∞[(x) dx.

This ends the proof of the exercise.

Solution to exercise 201:
Let Xx

t and Xy
t be a couple of storage processes starting at x and y and sharing the

same sequence of random variables de�ned in exercise 198. By construction, the jump times
of the processes coincide. In addition, when a jump occur the same amount Yn are added
to the process. Thus, we have

Xx
t −X

y
t = e−at (x− y)⇒W (Law(Xx

t ),Law(Xy
t )) ≤ e−at |x− y|.

This ends the proof of the exercise.

Solution to exercise 202:
Let Xx

t and Xy
t be a couple of storage processes starting at x and y and sharing the

same jump times de�ned in terms of the sequence of random variables (Zn)n≥1 de�ned
in exercise 198. The number of jumps at time t is given by a Poisson process Nt. The
jump amplitudes are de�ned using the maximal coupling discussed in example 8.3.5. For

each n ≥ 0 and given
(
Xx
Tn+1−, X

y
Tn+1−

)
= (a1, a2) we let

(
Xx
Tn+1

, Xy
Tn+1

)
be a couple of

exponential random variables with conditional exponential distributions

P
(
Xx
Tn+1

∈ dz |
(
Xx
Tn+1−, X

y
Tn+1−

))
= b e−b(z−a1) 1[a1,∞[(z) dz

P
(
Xy
Tn+1

∈ dz |
(
Xx
Tn+1−, X

y
Tn+1−

))
= b e−b(z−a2) 1[a2,∞[(z) dz.

Using the maximal coupling described in example 8.3.5 these variables can be coupled in
such a way that

P
(
Xx
Tn+1

= Xy
Tn+1

|
(
Xx
Tn+1−, X

y
Tn+1−

))
= exp

(
−b
∣∣∣Xx

Tn+1− −X
y
Tn+1−

∣∣∣)
≥ 1− b

∣∣∣Xx
Tn+1− −X

y
Tn+1−

∣∣∣ .

https://en.wikipedia.org/wiki/Gamma_distribution
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Observe that on these successful coupling events the process is such that Xx
Tn

= Xy
Tn

for
any n ≥ 1, thus Xx

t = Xy
t for any time t as soon as Nt > 0. On the other hand, at any

time t s.t. Nt > 0 the chance of coupling is given by

P
(
Xx
TNt

= Xy
TNt
|
(
Xx
TNt−

, Xy
TNt−

))
≥ 1− b |x− y| e−aTNt−.

Using theorem 8.3.2 we conclude that

‖Law(Xx
t )− Law(Xy

t )‖tv ≤ P (Xx
t 6= Xy

t )

= 1− P (Xx
t = Xy

t ) = 1− E
(
[1− b |x− y|] e−aTNt 1Nt>0

)
= P(Nt = 0) + b |x− y| E

(
e−aTNt 1Nt>0

)
= e−λt + b |x− y| E

(
e−aTNt 1Nt>0

)
.

Given Nt = n the random variable (T1/n, . . . , Tn/t) is an ordered uniform statistic on
[0, 1] (cf. exercise 41). Given Nt = n, this shows that Tn/t has the same law as the
maximum max1≤i≤n Ui of n uniform random variables Ui on [0, 1]. Since

P
(

max
1≤i≤n

Ui ≤ u
)

= un ⇒ P
(

max
1≤i≤n

Ui ∈ du
)

= nun−1

for any u ∈ [0, 1], we conclude that

P (TNt/t ∈ du | Nt = n) = nun−1 1[0,1](u) du⇔ P (TNt/t ∈ du | Nt) = Nt u
Nt−1 1[0,1](u) du.

This implies that

E
(
e−atTNt/t 1Nt>0

)
=

∫ 1

0

e−atu E
(
Nt u

Nt−1
)
du.

Recalling that

E
(
Nt u

Nt−1
)

= e−λt
∑
n≥1

n un−1 (λt)n

n!

= λt e−λt
∑
n≥1

(λt)n−1

(n− 1)!
= λt e−λt(1−u),

we �nd that

E
(
e−atTNt/t 1Nt>0

)
= λt e−λt

∫ 1

0

eu(λ−a)t du =
λt

(λ− a)t
e−λt

[
e(λ−a)t − 1

]
=

λ

(λ− a)

[
e−at − e−λt

]
.

We conclude that

‖Law(Xx
t )− Law(Xy

t )‖tv ≤ e
−λt + b |x− y| λ

(λ− a)

[
e−at − e−λt

]
.

This ends the proof of the exercise.

Solution to exercise 203:
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Using (13.15), for any non negative and bounded function f on S = Rr we have

Ps,t(f)(x) ≥ λ?ε

∫ t

s

e−λ
?(u−s) (νPu,t)(f) du = εs,t νs,t(f),

with the probability measure

νs,t(f) :=

∫ t
s

e−λ
?(u−s) (νuPu,t)(f) du∫ t
s

e−λ?(u−s) du

and the parameter

εs,t :=
λ?
λ?

ε
(

1− e−λ
?(t−s)

)
> 0.

We also observe that(
1− e−λ

?(t−s)
)
≥ 1/2 ⇔ e−λ

?(t−s) ≤ 1/2

⇔ λ?(t− s) ≥ log 2 ⇔ (t− s) ≥ log 2/λ?.

The last assertion is a direct consequence of (8.18).
This ends the proof of the exercise.

Solution to exercise 204:
Following the analysis of switching processes developed in section 13.3.1, the in�nitesimal

generator of Xt is given for any function

f : (i, x) ∈∈ ({i} × Rri) 7→ f(i, x) ∈ R

di�erentiable w.r.t. the second component by the formula

L(f)(i, x) =
∑

1≤j≤ri

aji (x) ∂xjf(i, x) + λ(i, x)

∫
(f(j, y)− f(i, x)) K((i, x), d(j, y))

for any i ∈ J and x = (xi)1≤i≤ri .
This ends the proof of the exercise.

Solution to exercise 205:
Observe that

2−1∂t ‖Yt‖2 =
∑

1≤i≤r

ai(Xt, Yt) Y
i
t = 〈a(Xt, Yt)− a(Xt, 0), Yt − 0〉+ 〈a(Xt, 0), Yt − 0〉

≤ −V (Xt) ‖Yt‖2 + 〈a(Xt, 0), Yt − 0〉 .

We set It := ‖Yt‖2. Applying Cauchy-Schwartz inequality, we �nd that

2−1∂tIt ≤ −V (Xt) It +
√
It ‖a(Xt, 0)‖

⇒ ∂t
√
It = 1

2
√
It
∂tIt ≤ −V (Xt)

√
It + ‖a(Xt, 0)‖ .

By Gronwall's inequality we �nd that

‖Yt‖ ≤ e−
∫ t
0
V (Xs)ds ‖Y0‖+

∫ t

0

e−
∫ t
s
V (Xu)du ‖a(Xs, 0)‖ ds.
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Recalling that Y0 does not depend on Xt and using the generalized Minkowski inequality
we prove the Feynman-Kac formula

E
[
‖Yt‖β

]1/β
≤ E

(
e−β

∫ t
0
V (Xs)ds

)1/β

E
(
‖Y0‖β

)1/β

+

∫ t

0

E
[
e−β

∫ t
s
V (Xu)du ‖a(Xs, 0)‖β ds

]1/β
for any β > 1. We conclude that

E
[
‖Yt‖β

]1/β
≤ γ

[β]
t (1)1/β E

(
‖Y0‖β

)1/β

+

∫ t

0

[
γ

[β]
t (1)

γ
[β]
s (1)

]1/β (
η[β]
s (fβ)

)1/β

ds.

Using the above estimates, we have

E
[
‖Yt‖β

]1/β
≤ Cβ

[
e−tη

[β]
∞ (V ) E

(
‖Y0‖β

)1/β

+ Cβ

∫ t

0

e−(t−s)η[β]
∞ (V )

(
η[β]
s (fβ)

)1/β

ds

]
.

When f is uniformly bounded we clearly have

E
[
‖Yt‖β

]1/β
≤ Cβ e

−tη[β]
∞ (V ) E

(
‖Y0‖β

)1/β

+ C2
β ‖f‖

(
1− e−tη

[β]
∞ (V )

)
.

We further assume that a? := supx∈S ‖a(x, 0)‖ <∞ and infx∈Rr V (x) = V? > 0. In this
situation, we have

‖Yt‖ ≤ e−
∫ t
0
V (Xs)ds ‖Y0‖+

∫ t

0

e−
∫ t
s
V (Xu)du ‖a(Xs, 0)‖ ds

≤ e−
∫ t
0
V (Xs)ds

[
‖Y0‖+ (a?/V?)

∫ t

0

V (Xs) e
∫ s
0
V (Xu)du ds

]
= e−

∫ t
0
V (Xs)ds ‖Y0‖+ (a?/V?)

(
1− e−

∫ t
0
V (Xu)du

)
.

This ends the proof of the exercise.

Solution to exercise 206:
We couple the stochastic processes Xt = (Xt, Yt) and X ′t = (Xt, Y

′
t ) starting at di�erent

states X0 = (x, y) and X ′0 = (x, y′) (using with the same �rst coordinate process Xt).
We have

∂t ‖Yt − Y ′t ‖
2

= ∂t
∑

1≤i≤r

(
Y it − Y

′,i
t

)2

= 2
∑

1≤i≤r

(
Y it − Y

′,i
t

) (
ai(Xt, Yt)− ai(Xt, Y

′
t )
)

= 2 〈a (Xt, Yt)− a (Xt, Y
′
t )), (Yt − Y ′t )〉 .

Under our assumptions, we have the estimate

∂t ‖Yt − Y ′t ‖
2 ≤ −2 V (Xt) ‖Yt − Y ′t ‖

2
.

This implies that

‖Yt − Y ′t ‖ ≤ exp

(
−
∫ t

0

V (Xs) ds

)
‖y − y′‖ .
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We conclude that for any parameter β > 0

E
(
‖Yt − Y ′t ‖

β | (Y0, Y
′
0) = (y, y′), X0 = x

)
≤ Z0,t(x) ‖y − y′‖β

with the Feynman-Kac normalizing constants Zs,t(x) de�ned for any 0 ≤ s ≤ t by

Z(β)
s,t (x) := E

(
exp

(
−β

∫ t

s

V (Xs) ds

)
| X0 = x

)
.

This ends the proof of the exercise.

Solution to exercise 207:
One natural way to couple the stochastic processes Xt = (Xt, Yt) and X ′t = (X ′t, Y

′
t )

starting at di�erent states X0 = (x, y) and X ′0 = (x′, y′) is to use the coupling described in
the second statement of theorem 12.7.6. To be more precisely, we couple the �rst components
(Xt, X

′
t) until their coupling time T , and we set Xt = X ′t for any t ≥ T . In this situation

we have

E
(
‖Yt − Y ′t ‖

β
1T≤εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
= E

(
E
(
‖Yt − Y ′t ‖

β | (YT , Y
′
T ), XT = X ′T

)
1T≤εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
≤ E

(
Z(β)
T,t (XT ) 1T≤εt ‖YT − Y ′T ‖

β | (Y0, Y
′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
.

By Hölder's inequality, for any conjugate parameters 1 ≤ α, α′ ≤ ∞ (s.t. 1 = 1/α + 1/α′)
we have

E
(
‖Yt − Y ′t ‖

β
1T≤εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
≤ E

((
Z(β)
T,t (XT )

)α
1T≤εt | (X0, X

′
0) = (x, x′)

)1/α

︸ ︷︷ ︸
≤exp (−β V?(1−ε)t)

×E
(
‖YT − Y ′T ‖

α′β | (Y0, Y
′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)1/α′

.

This implies that

E
(
‖Yt − Y ′t ‖

β
1T≤εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
≤ 2 exp (−βV?(1− ε)t)

[
‖y‖β ∨ ‖y′‖β ∨ (a?/V?)

β
]
.

On the other hand, for any conjugate parameters 1 ≤ α, α′ ≤ ∞ we also have

E
(
‖Yt − Y ′t ‖

β
1T>εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
= E

(
‖Yt − Y ′t ‖

βα′ | (Y0, Y
′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)1/α′

× P (T > εt | (X0, X
′
0) = (x, x′))

1/α
.
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By theorem theorem 12.7.6 there exists some non negative parameters c and ρ > 0 s.t.

P (T > εt | (X0, X
′
0) = (x, x′)) ≤ c exp (−ρεt).

This implies that

E
(
‖Yt − Y ′t ‖

β
1T>εt | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
= 2c exp (−ρεt/α)

[
‖y‖β ∨ ‖y′‖β ∨ (a?/V?)

β
]
.

By choosing α = 1 we conclude that

E
(
‖Yt − Y ′t ‖

β | (Y0, Y
′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
≤ 2 [ exp (−βV?(1− ε)t) + c exp (−ρεt)]

[
‖y‖β ∨ ‖y′‖β ∨ (a?/V?)

β
]
.

Notice that
βV?(1− ε) = ρε⇔ ε = δβ := βV?/ (βV? + ρ)

from which we conclude that

E
(
‖Yt − Y ′t ‖

β | (Y0, Y
′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)
≤ 2(1 + c) exp (−δβt)

[
‖y‖β ∨ ‖y′‖β ∨ (a?/V?)

β
]
.

This ends the proof of the exercise.

Solution to exercise 208:
Between the jumps Xt evolves as

.

Xt= 1 so that the semigroup of the deterministic �ow
ϕs,t(x) is given by

∀x ∈ R ∀s ≤ t ϕs,t(x) = x+ (t− s).
By applying the integral formula (13.15) to Ku(x, dy) = δ0(dy) and λu(x) = λ we have

Ps,t(f)(0) = f(t− s) e−λ(t−s) +

∫ t

s

λ e−λ (u−s) Pu,t(f)(0) du.

The semigroup is time homogenous Ps,t(f)(x) = P0,t−s(f)(x), so if we set Pt = P0,t we �nd
that

Pt(f)(0) = f(t) e−λt +

∫ t

0

λ e−λ(t−s) Ps(f)(0) ds.

This yields the formula

It(f) := eλtPt(f)(0) = f(t) +

∫ t

0

λ Is(f) ds

from which we conclude that

It(f) = f(t) + λ

∫ t

0

Is(f) ds

= f(t) + λ

∫ t

0

f(s) ds+ λ2

∫ t

0

∫ s

0

Ir(f) dr

= . . .

=
∑
n≥0

(λt)n

n!
Un(f)(t),
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with

U0(f)(t) = f(t) and Un+1(f)(t) =
n+ 1

t

∫ t

0

Un(f)(s) ds.

In other words, we have

U1(f)(t) =
1

t

∫ t

0

f(s) ds

U2(f)(t) =
2

t2

∫ t

0

(∫ s2

0

f(s1) ds1

)
ds2

...

Un(f)(t) =
n!

tn

∫ t

0

∫ sn

0

. . .

[∫ s2

0

f(s1) ds1

]
ds2 . . . dsn.

We let (Sk,nt )1≤k≤n be an n-ordered uniform statistics on [0, t]

0 ≤ S1,n
t ≤ S2,n

t ≤ . . . ≤ Sn,nt ≤ t =⇒ Un(f)(t) = E(f(S1,n
t ))

We conclude that

Pt(f)(0) = e−λt
∑
n≥0

(λt)n

n!
E(f(S1,n

t )) =⇒ Xt = S1,Nt
t .

This ends the proof of the �rst part of the exercise. Next, we consider the PDMP Xt with
generator

Lt(f)(x) = λ (f(0)− f(x)) + bt(x) f ′(x)

for some some smooth and bounded drift function bt. We let xt = ϕs,t(x) be the determin-
istic �ow map of the deterministic system starting at xs = x and de�ned for any t ∈ [s,∞[
by the dynamical equations {

.

xt = bt(xt)
xs = x.

Applying the integral formula (13.15) to Ku(x, dy) = δ0(dy) and λu(x) = λ we have

Is,t(f) := eλ(t−s)Ps,t(f)(0) = f(ϕs,t(0)) +

∫ t

s

λ Iu,t(f) du.

Arguing as above, we �nd that

Is,t(f) =
∑
n≥0

(λ(t− s))n

n!

n!

(t− s)n

∫ t

s

∫ t

s1

. . .

[∫ t

sn−1

f(ϕsn,t(0)) dsn

]
dsn−1 . . . ds1︸ ︷︷ ︸

= E
(
f

(
ϕSn,ns,t ,t

(0)

))

with an n-ordered uniform statistics (Sk,ns,t )1≤k≤n on [s, t]

s ≤ S1,n
s,t ≤ S

2,n
s,t ≤ . . . ≤ S

n,n
s,t ≤ t.

This shows that
Xs = 0 =⇒ Xt = ϕ

S
Nt−s,Nt−s
s,t ,t

(0),
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where Nt stands for a Poisson random variable with parameter λt. This ends the proof of
the exercise.

Solution to exercise 209:
At some rate, say λ(Xt) the process Xt ∈ {−1, 1} changes its sign. Between the jumps

the process evolves according to{
dXt = 0
dYt = a(Yt) +Xt b(Yt) dt.

We conclude that the generator of Zt = (Xt, Yt) is de�ned by

Lt(f)(x, y) = (a(y) + xb(y)) ∂yf(x, y) + λ(x) (f(−x, y)− f(x, y)) .

Assume that (Xt, Yt) has a density given by

∀x ∈ {−1, 1} P(Xt = x , Yt ∈ dy) = pt(x, y) dy

where dy stands for the Lebesgue measure on R. Notice that∑
x∈{−1,1}

∫
R
pt(x, y) Ld(f)(x, y) dy =

∫
λ(1)

∫
R

(f(−1, y)− f(1, y)) pt(1, y) dy

+

∫
λ(−1)

∫
R

(f(1, y)− f(−1, y)) pt(−1, y) dy.

Choosing f(x, y) = 1x=1 g(y) we �nd that∑
x∈{−1,1}

∫
R
pt(x, y) Ld(f)(x, y) dy =

∫
g(y) (λ(−1) pt(−1, y)− λ(1)pt(1, y)) dy.

In this situation, for any smooth function g with compact support we have∑
x∈{−1,1}

∫
R
pt(x, y) Lct(f)(x, y) dy =

∫
R
pt(1, y) (a(y) + b(y))∂y(g)(y) dy

= −
∫
R
g(y) ∂y (pt(1, y) (a(y) + b(y))) dy.

This implies that

∂tpt(1, y) = (λ(−1) pt(−1, y)− λ(1)pt(1, y))− ∂y (pt(1, y) (a(y) + b(y))) .

In much the same way, by choosing f(x, y) = 1x=−1 g(y) we �nd that∑
x∈{−1,1}

∫
R
pt(x, y) Ld(f)(x, y) dy =

∫
R
g(y) (λ(1)pt(1, y)− λ(−1) pt(−1, y)) dy.

In this situation, for any smooth function g with compact support we have∑
x∈{−1,1}

∫
R
pt(x, y) Lct(f)(x, y) dy =

∫
R
pt(−1, y) (a(y)− b(y))∂y(g)(y) dy

= −
∫
R
g(y) ∂y (pt(−1, y) (a(y)− b(y))) dy.
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This implies that

∂tpt(−1, y) = (λ(1)pt(1, y)− λ(−1) pt(−1, y))− ∂y (pt(−1, y) (a(y)− b(y))) .

We set

q+
t (y) = pt(1, y) + pt(−1, y) q−t (y) = pt(1, y)− pt(−1, y)

λ+ = λ(1) + λ(−1) λ− = λ(1)− λ(−1).

By construction, we have

∂tq
+
t (y) = (λ(−1) pt(−1, y)− λ(1)pt(1, y))− ∂y (pt(1, y) (a(y) + b(y)))

+(λ(1)pt(1, y)− λ(−1) pt(−1, y))− ∂y (pt(−1, y) (a(y)− b(y)))

= −∂y
(
q+
t (y) a(y) + q−t (y) b(y)

)
and

∂tq
−
t (y) = 2 (λ(−1) pt(−1, y)− λ(1)pt(1, y))

−∂y (pt(1, y) (a(y) + b(y)))− ∂y (pt(−1, y) (b(y)− a(y)))

= − (λ(1)− λ(−1)) q+
t (y)− (λ(1) + λ(−1)) q−t (y)

−∂y
(
q−t (y) a(y) + q+

t (y) b(y)
)

= −
(
λ− q+

t (y) + λ+ q−t (y)
)
− ∂y

(
q−t (y) a(y) + q+

t (y) b(y)
)
.

We further assume that b > |a|. The steady state (q−(y), q+(y)) of these coupled
equations satis�es

∂tq
+(y) = 0 = ∂tq

−(y).

This implies that

q+(y) a(y) + q−(y) b(y) = c ⇒ q−(y) = −a(y)

b(y)
q+(y) +

c

b(y)

for some constant c, and

∂y
(
q−(y) a(y) + q+(y) b(y)

)
= −

(
λ− q+(y) + λ+ q−(y)

)
.

To solve this system of equations we observe that

q+(y) b(y) + q−(y) a(y) =

[
q+(y)b(y)

(
1−

(
a(y)

b(y)

)2
)

+ c
a(y)

b(y)

]

and

λ− q+(y) + λ+ q−(y) = λ− q+(y)− λ+

(
a(y)

b(y)
q+(y) +

c

b(y)

)
= q+(y)

(
λ− − λ+ a(y)

b(y)

)
− λ+

b(y)
c.

This implies that

∂y

(
q+(y)

(
b2(y)− a2(y)

)
b(y)

+ c
a(y)

b(y)

)
= q+(y)

λ+a(y)− λ−b(y)

b(y)
+

λ+

b(y)
c
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or equivalently(
b2(y)− a2(y)

)
b(y)

∂yq
+(y) = q+(y)

[
λ+a(y)− λ−b(y)

b(y)
− ∂y

((
b2(y)− a2(y)

)
b(y)

)]

+c

[
λ+

b(y)
− ∂y

(
a(y)

b(y)

)]
.

This yields the familiar ordinary di�erential equation

∂yq
+(y) = q+(y) A(y) + c B(y)

with

A(y) :=
λ+a(y)− λ−b(y)

b2(y)− a2(y)
+ ∂y log

b(y)

b2(y)− a2(y)
and B(y) =

λ+ − b(y) ∂y

(
a(y)
b(y)

)
b2(y)− a2(y)

.

The solution of the above system is given by

q+(y) = e
∫ y
c1
A(z) dz

c2 + c

∫ y

c1

e
∫ y
z
A(z) dz B(y) dy

for some constants c1, c2. Whenever c3 :=
∫∞
c1
A(z) dz we can choose c = 0.

For instance, when λ(1) = λ(−1) := λ we have λ+ = 2λ and λ− = 0. In addition, when
a = 0 and 0 <

∫∞
c1
b−1(y)dy <∞ we have

A(y) := −∂y log b(y) and B(y) = 2λ/b2(y).

In this situation, by choosing c = 0 we have

q− = 0 and q+(y) =
b(c1)

b(y)
c2.

In this case we have∫
q+
t (y) dy =

∫
(pt(1, y) + pt(−1, y)) dy = 1⇒ c2 =

1

b(c1)

(∫ ∞
c1

b−1(y)dy

)−1

.

This ends the proof of the exercise.

Solution to exercise 210:
Under appropriate regularity conditions that allow us to interchange the order of di�er-

entiation and integration this yields

∂tp
1
t (x

1) = −
∑

1≤i≤r1

∂x1
i

∫
ait(x

1, x2)pt(x
1, x2) ν(dx2).

In addition, for compactly supported drift functions ait w.r.t. the �rst coordinate we also
have the equation

∂tp
2
t (x

2) =

∫
λt(x

1, y2) pt(x
1, y2) dx1 ν(dy2)−

∫
λt(x

1, x2) pt(x
1, x2) dx1.

This ends the proof of the exercise.
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Solution to exercise 211:

By construction, the evolution equation of the number of molecules Xi
t of the i-th species

is given by

Xi
t = Xi

0 +
∑

1≤j≤ns

(
b′i,j − bi,j

)
Nj

(∫ t

0

λj (Xs) ds

)

where (Nj)1≤j≤nc stands for nc independent Poisson processes with unit intensity.
This ends the proof of the exercise.

Solution to exercise 212:

The following formula describes the process Xt = (X1
t , X

2
t ) in terms of 4 independent

Poisson processes (Nj)1≤j≤4 with unit intensity X1
t = X1

0 +N1

(∫ t
0

1X1
s=0λ1

(
X2
s

)
ds
)
−N2

(∫ t
0

1X1
s=1λ2

(
X2
s

)
ds
)

X2
t = X2

0 +N3

(∫ t
0

1X1
s=0λ3

(
X2
s

)
ds
)
−N4

(∫ t
0

1X1
s=1λ4

(
X2
s

)
ds
)
.

This ends the proof of the exercise.

Solution to exercise 213:

Following the analysis of switching processes developed in section 13.3.1 we have

L(f)(u, v) = a(u, v) ∂u(f)(u, v) + λ(u, v)

∫
S

(f(u,w)− f(u, v)) K((u, v), dw).

This ends the proof of the exercise.

Solution to exercise 214: Following the stability analysis of switching processes de-
veloped in the end of section 13.3.1 we can choose any intensity function satisfying the
following condition:

λ(u, v) q(u) = λ?(u)−
∑

1≤i≤2

ai(v) ∂ui(q)(u) ≥ 0

for some su�ciently large function λ? such that λ?(u) ≥
∑

1≤i≤2 ‖ai‖ |∂ui(q)(u)|, for any
u = (u1, u2).

This ends the proof of the exercise.

Solution to exercise 215:
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We have∑
ε∈{−1,+1}

∫
e−(b−a)|y|L(f)(ε, y) dy

=
∑

ε∈{−1,+1}

∫ ∞
0

e−(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≥0) (f(−ε, y)− f(ε, y))) dy

+
∑

ε∈{−1,+1}

∫ 0

−∞
e(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≤0) (f(−ε, y)− f(ε, y))) dy.

In addition, we have the decompositions∑
ε∈{−1,+1}

∫ ∞
0

e−(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≥0) (f(−ε, y)− f(ε, y))) dy

=

∫ ∞
0

e−(b−a)y (∂yf(1, y)+b (f(−1, y)− f(1, y))) dy

+

∫ ∞
0

e−(b−a)y (−∂yf(−1, y)+a (f(1, y)− f(−1, y))) dy.

Observe that∫ ∞
0

e−(b−a)y [(b (f(−1, y)− f(1, y))) + (a (f(1, y)− f(−1, y)))] dy

=

∫ ∞
0

(b− a) e−(b−a)y (f(−1, y)− f(1, y)) dy.

A simple integration by parts shows that∫ ∞
0

e−(b−a)y(∂y(f(1, y)− f(−1, y))) dy

= [f(−1, 0)− f(+1, 0)] +

∫ ∞
0

(b− a) e−(b−a)y (f(1, y)− f(−1, y)) dy.

We conclude that∑
ε∈{−1,+1}

∫ ∞
0

e−(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≥0) (f(−ε, y)− f(ε, y))) dy

= [f(−1, 0)− f(1, 0)] .

In much the same way, we have∑
ε∈{−1,+1}

∫ 0

−∞
e(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≤0) (f(−ε, y)− f(ε, y))) dy

=

∫ 0

−∞
e(b−a)y (∂yf(1, y)+a (f(−1, y)− f(1, y))) dy

+

∫ 0

−∞
e(b−a)y (−∂yf(−1, y)+b (f(1, y)− f(−1, y))) dy.
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Arguing as above we �nd that∫ 0

−∞
e(b−a)y(∂y(f(1, y)− f(−1, y))) dy

= [f(1, 0)− f(−1, 0)] +

∫ ∞
0

(b− a) e(b−a)y (f(−1, y)− f(1, y)) dy

and ∫ 0

−∞
e(b−a)y [(b (f(1, y)− f(−1, y))) + (a (f(−1, y)− f(1, y)))] dy

=

∫ 0

−∞
(b− a) e(b−a)y (f(1, y)− f(−1, y)) dy.

This shows that∑
ε∈{−1,+1}

∫ 0

−∞
e(b−a)y (ε ∂yf(ε, y) + (a+ (b− a) 1ε≤0) (f(−ε, y)− f(ε, y))) dy

= [f(1, 0)− f(−1, 0)] .

This implies that πL(f) = 0. This ends the proof of the exercise.

Solution to exercise 216:
Using a simple integration by parts we have∑
ε∈{−1,+1}

∫
e−V (y)L(f)(ε, y) dy

=
∑

ε∈{−1,+1}

∫
e−V (y)ε ∂yf(ε, y) dy

+
∑

ε∈{−1,+1}

∫
e−V (y) (ε∂yV (y))+ (f(−ε, y)− f(ε, y)) dy

=
∑

ε∈{−1,+1}

∫
e−V (y)(ε ∂yV ) f(ε, y) dy

+
∑

ε∈{−1,+1}

∫
e−V (y) [(−ε∂yV (y))+ − (ε∂yV (y))+] f(ε, y)) dy.

Recalling that (−a)+ = a−, we conclude that∑
ε∈{−1,+1}

∫
e−V (y)L(f)(ε, y) dy

=
∑

ε∈{−1,+1}

∫
e−V (y) {(ε ∂yV )− [(ε∂yV (y))+ − (ε∂yV (y))−]}︸ ︷︷ ︸

=0

f(ε, y)) dy.
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This shows that πL = 0. This ends the proof of the exercise.

Solution to exercise 217:
An integration by part w.r.t. the x-coordinate gives∫

a v ∂xf(v, x) e−U(x) dx µ(dv)

= −
∫ [(

a v eU(x)∂xe
−U(x)

)]
f(v, x) e−U(x) dx µ(dv)

= −
∫ [(

a v eU(x)∂xe
−U(x)

)]
+
f(v, x) e−U(x) dx µ(dv)

+

∫ [(
a v eU(x)∂xe

−U(x)
)]
−
f(v, x) e−U(x) dx µ(dv)

for any smooth function f wit compact support.
We also have∫

e−U(x)dx µ(dv)
(
a v eU(x)∂xe

−U(x)
)
−

(f(−v, x)− f(v, x))

= −
∫ [(

a v eU(x)∂xe
−U(x)

)]
−
f(v, x) e−U(x) dx µ(dv)

+

∫
e−U(x)dx µ(dv)

(
a v eU(x)∂xe

−U(x)
)
−
f(−v, x)

= −
∫ [(

a v eU(x)∂xe
−U(x)

)]
−
f(v, x) e−U(x) dx µ(dv)

+

∫
e−U(x)dx µ(dv)

(
−a v eU(x)∂xe

−U(x)
)
−︸ ︷︷ ︸

(a v eU(x)∂xe−U(x))
+

f(v, x).

We conclude that π is L-invariant. Recalling that (−a)− = a+, we check immediately that
this stochastic process coincides with the one discussed in exercise 216 when a = 1 and
µ(dv) ∝ δ−1 + δ+1. When a = 1 their generators coincide. The non uniqueness property of
the invariant measure is clear since µ(dv) represents any symmetric probability measure.

This ends the proof of the exercise.

Solution to exercise 218:
An integration by part w.r.t. the x-coordinate gives∫

a(v) ∂xf(v, x) e−U(x) dx µ(dv)

= −
∫ (

a(v) eU(x)∂xe
−U(x)

)
f(v, x) e−U(x) dx µ(dv)
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for any smooth function f wit compact support. On the other hand we have∫
e−U(x)dx µ(dv) λ(v, x)

∫
(f(v, x)− f(v, x)) µ(dv)

= −
∫

e−U(x)dx µ(dv)
(
a(v) eU(x)∂xe

−U(x)
) ∫

(f(w, x)−f(v, x)) µ(dw)

+

∫
e−U(x)dx

[
α(x) + sup

w∈R

(
a(w) eU(x)∂xe

−U(x)
)]

×
[∫

µ(dv)

∫
(f(w, x)− f(v, x)) µ(dw)

]
︸ ︷︷ ︸

=0

.

This implies that∫
e−U(x)dx µ(dv) λ(v, x)

∫
(f(v, x)− f(v, x)) µ(dv)

=

∫
e−U(x)dx µ(dv)

(
a(v) eU(x)∂xe

−U(x)
)
f(v, x)

−
∫

e−U(x)dx

[∫
µ(dv) a(v)

]
︸ ︷︷ ︸

=0

(
eU(x) ∂xe

−U(x)
) ∫

(w, x) µ(dw).

We conclude that π is L-invariant. The function

x 7→ α−(x) := sup
w∈R

(
a(w) eU(x)∂xe

−U(x)
)

is di�cult to compute in practical situations. If we only have an upper bound

sup
w∈R

(
a(w) eU(x)∂xe

−U(x)
)
≤ α+(x)

we can choose
α(x) = α+(x)− α−(x).

In this case we have

λ(v, x) = α(x) + α−(x)−
(
a(v) eU(x)∂xe

−U(x)
)

= α+(x)−
(
a(v) eU(x)∂xe

−U(x)
)
.

This ends the proof of the exercise.

Solution to exercise 219:
We clearly have

A(x)′ = (I − 2U(x)U(x)′)
′

= I − 2 (U(x)U(x)′)
′

= I − 2U(x)U(x)′

and

A(x)2 = (I − 2U(x)U(x)′)
2

= I − 4U(x)U(x)′ + 4U(x)U(x)′U(x)︸ ︷︷ ︸
=‖U(x)‖2=1

U(x)′ = I.
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This shows that A(x) is an orthogonal matrix. For any x, y ∈ Rr, we also have

〈U(x), A(x)y〉 = 〈U(x), (I − 2U(x)U(x)′) y〉
= 〈U(x), y〉 − 2〈U(x), U(x)U(x)′y〉
= 〈U(x), y〉 − 2 U(x)′U(x)︸ ︷︷ ︸

=1

U(x)′y = −〈U(x), y〉.

This implies that

〈U(x), A(x)y〉+ := max (〈U(x), A(x)y〉, 0)

= max (−〈U(x), y〉, 0) = −min (〈U(x), y〉, 0) = 〈U(x), y〉−

from which we conclude that

〈∂V (x), A(x)y〉+ = ‖∂V (x)‖ 〈U(x), A(x)y〉+
= ‖∂V (x)‖ 〈U(x), y〉− = 〈∂V (x), y〉−

and
〈∂V (x), A(x)y〉+ − 〈∂V (x), y〉+ = −〈∂V (x), y〉.

After dividing by ‖∂V (x)‖ we also have

〈U(x), A(x)y〉+ − 〈U(x), y〉+ = −〈U(x), y〉.

The in�nitesimal generator of the process Xt is given by

L(f)(x1, x2) =
∑

1≤i≤r

x2
i ∂x1

i
f(x) + λ(x)

[
f
(
x1, A(x1)x2

)
− f (x)

]
.

Observe that∫
π(dx) λ(x) f

(
x1, A(x1)x2

)
∝

∫
e−V (x1) dx1

[∫
ν(dx2) 〈∂V (x1), x2〉+f

(
x1, A(x1)x2

)]
.

Using the change of variable

y2 = A(x1)x2 ⇒ x2 = A(x1)y2

and recalling that ν is spherically symmetric we check that∫
ν(dx2) 〈∂V (x1), x2〉+ f

(
x1, A(x1)x2

)
=

∫
ν(dy2) 〈∂V (x1), A(x1)y2〉+ f

(
x1, y2

)
.

This implies that∫
e−V (x1) dx1

∫
ν(dx2) 〈∂V (x1), x2〉+

[
f
(
x1, A(x1)x2

)
− f(x)

]
=

∫
e−V (x1) dx1

∫
ν(dy2)

[
〈∂V (x1), A(x1)y2〉+ − 〈∂V (x1), y2〉+

]
f
(
x1, y2

)
= −

∫
e−V (x1) dx1

∫
ν(dy2) 〈∂V (x1), y2〉 f(x1, y2).
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By a simple integration by parts, we also have∫
e−V (x1) dx1

∫
ν(dx2)

∑
1≤i≤r

x2
i ∂x1

i
f(x)

=

∫
e−V (x1) dx1

∫
ν(dx2)

 ∑
1≤i≤r

x2
i ∂x1

i
V (x1)

 f(x)

∝
∫

π(dx) 〈∂V (x1), x2〉 f(x)

for any smooth function f with compact support. This clearly implies that πL = 0
Notice that the invariant distribution is not unique as any distribution π with spherically

symmetric distribution ν satis�es πL = 0. We can choose the centered product Gaussian
distribution, student distributions, or Laplace type distributions.

This ends the proof of the exercise.
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Solution to exercise 220:
We recall that the increments (Wt−Ws) and (Ws−W0) = Ws are independent centered

Gaussian random variables with variance (t− s) and s. Recalling Wt and Ws are centered
Gaussian with variance s and t, we prove that

Cov(Ws,Wt) = E(WsWt) = E( Ws [Ws + (Wt −Ws)] ) = E(W 2
s ) = s.

This ends the proof of the exercise.

Solution to exercise 221:
For any s ≤ t we have

Wt −Ws =
∑
i∈I

ai (W i
t −W i

s).

The process Wt is clearly a martingale w.r.t. Ft = σ
(
W i
s , i ∈ I, s ≤ t

)
, with Gaussian

independent increments. Suppose that
∑
i∈I a

2
i = 1. In this case, we have

E
(
W 2
t

)
=
∑
i∈I

a2
i t = t.

Inversely, we have
E
(
W 2
t

)
=
∑
i∈I

a2
i t = t⇒

∑
i∈I

a2
i = 1.

This ends the proof of the exercise.

Solution to exercise 222:
For any s ≤ t, we have

Cov(W 1
s ,Wt) = E

(
W 1
sWt

)
= E

(
W 1
sWs

)
= E

(
W 1
s

[
εW 1

s +
√

1− ε2 W 2
s

])
= ε E

(
W 1
sW

1
s

)
= ε s.

In much the same way, we have

Cov(W 1
t ,Ws) = E

(
W 1
sWs

)
= ε s.

This implies that
Cov(W 1

t ,Ws) = ε (t ∧ s) .

This ends the proof of the exercise.
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Solution to exercise 223:
We have

Xtk −Xtk−1
= b ε + σ

√
ε ×

[√
ε
−1 (

Wtk −Wtk−1

)]
.

The random variables
(
Wtk −Wtk−1

)
/
√
ε are independent centered and Gaussian with unit

variance. Thus the conditional densities of the sequence of state (Xt1 , . . . , Xtn) given X0 =
x0 are given by

pt1,...,tn(x1, . . . , xn | x0) ∝ exp

− 1

2σ2ε

∑
1≤k≤n

((xk − xk−1)− bε)2


= exp

− 1

2σ2ε

∑
1≤k≤n

(xk − xk−1)
2


× exp

 b

σ2

∑
1≤k≤n

(xk − xk−1)

 exp

[
−b

2tn
2σ2

]
.

In the last assertion we have used the fact that nε = tn. We also notice that∑
1≤k≤n

(xk − xk−1) = xn − x0.

On the other hand, we have

−2btn(xn − x0) + b2t2n = [(xn − x0)− btn]
2 − (xn − x0)2.

This yields

pt1,...,tn(x1, . . . , xn | x0) ∝ exp

− 1

2σ2ε

∑
1≤k≤n

(xk − xk−1)
2


× exp

[
−−2btn

2σ2tn
(xn − x0)

]
exp

[
− b2t2n

2σ2tn

]

= exp

− 1

2σ2ε

∑
1≤k≤n

(xk − xk−1)
2


× exp

[
− 1

2σ2tn

(
[(xn − x0)− btn]

2 − (xn − x0)2
)]
.

In much the same way, the conditional densities of the terminal state Xtn given X0 = x0

is given by

ptn(xn | x0) ∝ exp

[
− 1

2σ2tn
((xn − x0)− btn)

2

]
.

We conclude that the conditional densities of the sequence of state (Xt1 , . . . , Xtn−1) given
(X0, Xtn) = (x0, xn) are given by

pt1,...,tn−1
(x1, . . . , xn−1 | x0, xn) ∝ exp

− 1

2σ2ε

∑
1≤k≤n

(xk − xk−1)
2

+
1

2σ2tn
(xn − x0)2

.
The last assertion is a consequence of the above formula.
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This ends the proof of the exercise.

Solution to exercise 224:
The generator of the process is given by

L(f)(x) = λ

(
f

(
x+

1√
2λ

)
− f (x)

)
+ λ

(
f

(
x− 1√

2λ

)
− f (x)

)
.

A simple Taylor expansion implies that

f

(
x+

1√
2λ

)
− f(x) = +

1√
2λ

f ′(x) +
1

2

1

2λ
f ′′(x) + O

(
1

λ3/2

)
,

f

(
x− 1√

2λ

)
− f(x) = − 1√

2λ
f ′(x) +

1

2

1

2λ
f ′′(x) + O

(
1

λ3/2

)
.

Summing the two terms we �nd that

L(f)(x) =
1

2
f ′′(x) + O

(
1

λ1/2

)
.

Using the decomposition

∀0 ≤ s ≤ t Xt −Xs =
1√
2λ

((Nt −Ns)− (N ′t −N ′s))

we check that (Xt −Xs) is independent of Xs. In addition, we have

E(Xt −Xs) =
1√
2λ

(E(Nt −Ns)− E(N ′t −N ′s)) = 0

and

E
(
(Xt −Xs)

2
)

=
1

2λ
E
(

((Nt −Ns)− (N ′t −N ′s))
2
)

=
1

λ
E
(

(Nt −Ns)2
)

= (t− s).

Finally, we have

E(eαXt) = E(e
α√
2λ
Nt ) E(e

− α√
2λ
Nt).

Recalling that

E(eβNt) = e−λt
∑
n≥0

(
eβλt

)n
n!

= eλt (eβ−1)

we �nd that

E(eαXt) = eλt (e
α√
2λ−1) eλt (e

− α√
2λ−1)

= exp
[(
λ(e

α√
2λ − 1) + λ(e

− α√
2λ − 1)

)
t
]
.

Using the fact that

λ
(
e

α√
2λ − 1

)
= α

√
λ

2
+

1

2

α2

2
+ O

(
λ−1/2

)
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we conclude that

logE(eαXt) =
α2t

2
+ O

(
tλ−1/2

)
.

This ends the proof of the exercise.

Solution to exercise 225:
Applying the integration by parts formula (14.20), we have

d(tWt) = Wt dt+ t dWt + dtdWt︸ ︷︷ ︸
=0

= Wt dt+ t dWt.

This implies that

tWt =

∫ t

0

d(sWs) =

∫ t

0

Wsds+

∫ t

0

s dWs.

This ends the proof of the exercise.

Solution to exercise 226:
Applying the integration by parts formula (14.20), we have

d(t2Wt) = 2t Wt dt+ t2 dWt + dt2dWt︸ ︷︷ ︸
=0

= 2t Wt dt+ t2 dWt.

This implies that

Mt = t2 Wt − 2

∫ t

0

s Ws ds⇒ dMt = t2 dWt.

This clearly shows thatMt andMt/2 are martingale w.r.t. Ft = σ(Ws, s ≤ t). In addition,
we have

dMtdMt = t4 dt =⇒ 〈M〉t =

∫ t

0

s4 ds = t5/5.

This ends the proof of the exercise.

Solution to exercise 227:
Applying the integration by parts formula (14.20), we have

d(f(t)Wt) = f ′(t) Wt dt+ f(t) dWt + df(t)dWt︸ ︷︷ ︸
=0

= f ′(t) Wt dt+ f(t) dWt.

This implies that

Mt := f(t) Wt −
∫ t

0

f ′(s) Ws ds ⇒ dMt = f(t) dWt =⇒ Mt =

∫ t

0

f(s) dWs.

This clearly shows that Mt is a martingale w.r.t. Ft = σ(Ws, s ≤ t).

dMtdMt = f(t)2 dt =⇒ 〈M〉t =

∫ t

0

f(s)2 ds.

This ends the proof of the exercise.
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Solution to exercise 228:
Using an elementary Taylor expansion, we have

|V (y)− V (x)− ∂xV (x)(y − x)| ≤ c |x− y|2 .

We also have

Mh(f)(x)−Mh(f)(x) =

∫
Ph(x, dy) (a− a)(x, y) f(y)

+

(∫
Ph(x, dz) (a− a)(x, z)

)
f(x)

=

∫
Ph(x, dy) (a− a)(x, y) (f(y)− f(x)).

This implies that∥∥(Mh −Mh

)
(f)
∥∥ ≤ osc(f) sup

x∈R

∫
Ph(x, dy) |a(x, y)− a(x, y)| .

For any u, v ∈ R, we have

|min (1, eu)−min (1, ev)| ≤ 1− e−|u−v| ≤ |u− v|.

We readily check this claim by considering all possible cases: When u, v ≥ 0 the result is
obvious. When (u ∧ v) < 0 ≤ (u ∨ v) we have

|min (1, eu)−min (1, ev)| = 1− e(u∧v)

≤ 1− e−(u∨v) e(u∧v) ≤ 1− e−|u−v|.

Finally, when (u ∨ v) < 0 we have

|min (1, eu)−min (1, ev)| = e(u∨v) − e(u∧v)

= e(u∨v)
(

1− e(u∧v)−(u∨v)
)
≤ 1− e−|u−v|.

The above estimate implies that

|a(x, y)− a(x, y)| ≤ |V (y)− V (x)− ∂xV (x)(y − x)| ≤ c |x− y|2

from which we check that ∥∥(Mh −Mh

)
(f)
∥∥ ≤ c h osc(f).

In addition, for Lipschitz functions f s.t.

|f(x)− f(y)| ≤ |x− y|

we have∣∣Mh(f)(x)−Mh(f)(x)
∣∣ ≤ ∫

Ph(x, dy) |(a− a)(x, y)| |x− y|

≤ c

∫
Ph(x, dy) |x− y|3 = c h1+1/2 E

(
|W1|3

)
.
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This ends the proof of the exercise.

Solution to exercise 229:
We have

h−1 [Mh(f)(v, x)− f(v, x)]

= h−1 [f(v, x+ vh)− f(v, x)] e−(U(x+hv)−U(x))+

+ [f(−v, x)− f(v, x)] h−1
(

1− e−(U(x+hv)−U(x))+

)
.

Using the estimates provided in exercise 228 we check that

e−(U(x+hv)−U(x))+ = 1 + O(h)

and
h−1

(
1− e−(U(x+hv)−U(x))+

)
= (v ∂xU(x))+ + O(h).

On the other hand we have

h−1 [f(v, x+ vh)− f(v, x)] = v ∂xf(v, x) + O(h).

We conclude that

h−1 [Mh(f)(v, x)− f(v, x)] = v ∂xf(v, x) + (v∂xU(x))+ (f(−v, x)− f(v, x)) + O(h).

This ends the proof of the exercise.

Solution to exercise 230:
For any p ≥ 1, we have∣∣∣∣∫ Mh(x, dy) |y − x|p −

∫
Mh(x, dy) |y − x|p

∣∣∣∣
=

∣∣∣∣∫ Ph(x, dy) (a(x, y)− a(x, y)) |y − x|p
∣∣∣∣ = h1+p/2 E

(
|W1|p+2

)
= O(h1+ p

2 ).

We also notice that for any function g s.t. g(0) = 0 we have

E
(
g
(
Xh
tn+h −Xh

tn

)
| Xtn = x

)
=

∫
Mh(x, dy) g(y − x)

=

∫
Ph(x, dy) a(x, y) g(y − x)

= E
(
a(x, x+

√
h W1) g

(√
h W1

) )
,

as well as∣∣∣∣∫ [
Mh −Mh

]
(x, dy) g(y − x)

∣∣∣∣ =

∣∣∣∣∫ Ph(x, dy) (a(x, y)− a(x, y)) g(y − x)

∣∣∣∣ .
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This implies that

E
((
Xh
tn+h −Xh

tn

)
| Xtn = x

)
=

∫
Mh(x, dy) (y − x)

=

∫
(y − x) Ph(x, dy) a(x, y) + O

(
h1+1/2

)
.

To take the �nal step, we further assume that ∂xV (x) ≥ 0. In this situation, we observe
that

h−1/2

∫
(y − x) Ph(x, dy) a(x, y)

= E
(
W1 min

(
1, e−

√
h ∂xV (x) W1

))
= E (W1 1W1≤0) + E

(
W1 1W1>0 e

−
√
h ∂xV (x)W1

)
= E

(
W1 1W1>0

[
e−
√
h ∂xV (x) W1 − 1

])
.

In much the same way, when ∂xV (x) ≤ 0. In this situation, we observe that

h−1/2

∫
(y − x) Ph(x, dy) a(x, y)

= E
(
W1 min

(
1, e−

√
h ∂xV (x) W1

))
= E (W1 1W1≥0) + E

(
W1 1W1<0 e

−
√
h ∂xV (x)W1

)
= E

(
W1 1W1<0

[
e−
√
h ∂xV (x) W1 − 1

])
.

There are many ways to estimate the above quantities.We further assume that ∂xV (x) ≤
0. In this case, we can use the change of variable formula

E
(
W1 1W1>0 e

−
√
h∂xV (x)W1

)
= e

h
2 (∂xV (x))2

E
(
Uh(x) 1Uh(x)>0

)
= E

(
Uh(x) 1Uh(x)>0

)
+ O(h)

with
Uh(x) = −

√
h ∂xV (x) +W1.

This implies that
√
h E

(
W1 1W1>0 e

−
√
h∂xV (x)W1

)
= −h ∂xV (x) P

(
W1 >

√
h∂xV (x)

)
︸ ︷︷ ︸
= 1

2−P(0≤W1≤
√
h∂xV (x))

+
√
h E

(
W1 1W1>

√
h∂xV (x)

)
︸ ︷︷ ︸

=E(W1 1W1≥0)−E
(
W1 10≤W1≤

√
h∂xV (x)

)
+O(h1+1/2),

from which we prove the formula
√
h E

(
W1 1W1>0

[
e−
√
h∂xV (x)W1 − 1

])
= −h ∂xV (x)

(
1
2 − P

(
0 ≤W1 ≤

√
h∂xV (x)

))
−
√
h E

(
W1 10≤W1≤

√
h∂xV (x)

)
+ O(h1+1/2).

Notice that

E (W1 10≤W1≤a) = − 1√
2π

∫ a

0

∂we
−w2/2 dw =

1√
2π

[
1− e−a

2/2
]

= O(a2)
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and

P (0 ≤W1 ≤ a) =
1√
2π

∫ a

0

e−w
2/2 dw ≤ a√

2π
.

This yields the estimate

√
h E

(
W1 1W1>0

[
e−
√
h∂xV (x)W1 − 1

])
= −h

2
∂xV (x) + O(h1+1/2).

In much the same way, when ∂xV (x) ≤ 0 we have

E
(
W1 1W1<0 e

−
√
h∂xV (x)W1

)
= E

(
Uh(x) 1Uh(x)<0

)
+ O(h),

as well as

√
h E

(
W1 1W1<0 e

−
√
h∂xV (x)W1

)
= −h ∂xV (x) P

(
W1 <

√
h ∂xV (x)

)
︸ ︷︷ ︸
= 1

2−P(
√
h∂xV (x)≤W1≤0)

+
√
h E

(
W1 1W1<

√
h∂xV (x)

)
︸ ︷︷ ︸

=E(W1 1W1≤0)−E
(
W1 1√h∂xV (x)≤W1≤0

)
+O(h1+1/2).

Hence we prove the formula

√
h E

(
W1 1W1<0

[
e−
√
h∂xV (x)W1 − 1

])
= −h ∂xV (x)

(
1
2 − P

(√
h∂xV (x) ≤W1 ≤ 0

))
−
√
h E

(
W1 1√h∂xV (x)≤W1≤0

)
+ O(h1+1/2).

This also yields the estimate

√
h E

(
W1 1W1<0

[
e−
√
h∂xV (x)W1 − 1

])
= −h

2
∂xV (x) + O(h1+1/2).

We conclude that

h−1

∫
(y − x) Ph(x, dy) a(x, y) = −1

2
∂xV (x) + O(h1/2).

Arguing as above we have

E
((
Xh
tn+h −Xh

tn

)2 | Xtn = x
)

=

∫
(y − x)2 Ph(x, dy) a(x, y) + O

(
h2
)
.

We further assume that ∂xV (x) ≥ 0. In this situation, we observe that

h−1

∫
(y − x)2 Ph(x, dy) a(x, y)

= E
(
W 2

1 min
(

1, e−
√
h ∂xV (x) W1

))
= E

(
W 2

1 1W1≤0

)
+ E

(
W 2

1 1W1>0 e
−
√
h ∂xV (x)W1

)
= 1− E

(
W 2

1 1W1>0

[
1− e−

√
h ∂xV (x) W1

])
= 1 + O(h1/2).
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In the last display we have used the fact that e−u ≥ 1−u, for any u ≥ 0. In much the same
way, when ∂xV (x) ≤ 0 we have

h

∫
(y − x)2 Ph(x, dy) a(x, y)

= E
(
W 2

1 min
(

1, e−
√
h ∂xV (x) W1

))
= E

(
W 2

1 1W1≥0

)
+ E

(
W 2

1 1W1<0 e
−
√
h ∂xV (x)W1

)
= 1 + E

(
W 2

1 1W1<0

[
e−
√
h ∂xV (x) W1 − 1

])
= 1 + O(h1/2).

We conclude that ∫
(y − x)2 Ph(x, dy) α(x, y) = h+ O(h1+1/2)

with α = a or α = a. Similar computations imply that∫
|y − x|3 Ph(x, dy) α(x, y) = O(h1+1/2),

with α = a or α = a.
This ends the proof of the exercise.

Solution to exercise 231:
As u→ 1, we have the expansion

1

1 + u
=

1

2− (1− u)
=

1

2

1

1− ((1− u)/2)

=
1

2

(
1 +

1− u
2

)
+ O((1− u)2) =

1

2
+

1− u
4

+ O((1− u)2)

Recalling that

|V (x)− V (y)| ≤ c1 |x− y| ⇒
∣∣∣1− eV (y)−V (x)

∣∣∣ ≤ c2 |x− y|
we �nd that

V (y) ≤ V (x)⇒ b(x, y) =
1

2
+

1− e−(V (x)−V (y))

4
+ O(|x− y|2),

as well as

V (x) > V (y)⇒ b(x, y) = e−(V (y)−V (x))

[
1

2
+

1− e−(V (y)−V (x))

4

]
+ O(|x− y|2).

We conclude that
b(x, y) = b(x, y) + O(|x− y|2),

with

b(x, y) =
1

2
+

1− e−(V (x)−V (y))

4
1V (x)≥V (y)

+e−(V (y)−V (x))

[
1

2
+

1− e−(V (y)−V (x))

4

]
1V (y)>V (x).
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Arguing as in exercise 228 we �nd that

b(x, y) = b(x, y) + O(|x− y|2).

The end the proof of the exercise follows the same lines of arguments as the one of
exercise 228, thus it is omitted.

This completes the proof of the exercise.

Solution to exercise 232:
The proof follows the same arguments as the solution of exercise 230, thus a sketch only

is given below.
We further assume that ∂xV (x) ≥ 0. Using the same arguments as in exercise 230, we

observe that

h−1/2

∫
(y − x) Ph(x, dy) b(x, y)

= −E

(
W1 1W1≥0

[
1

2
+

1− e−
√
h∂xV (x)W1

4

] )
+

E

(
W1 1W1≥0 e

−
√
h ∂xV (x)W1

[
1

2
+

1− e−
√
h ∂xV (x)W1

4

])
.

This implies that

h−1/2

∫
(y − x) Ph(x, dy) b(x, y)

= E

(
W1 1W1≥0

[
e−
√
h ∂xV (x)W1 − 1

] [1

2
+

1− e−
√
h ∂xV (x)W1

4

])

=
1

2
E
(
W1 1W1≥0

[
e−
√
h ∂xV (x)W1 − 1

])
+ O (h) .

Using the estimates derived in exercise 230 we conclude that∫
(y − x) Ph(x, dy) b(x, y) = −h

4
∂xV (x) + O(h1+1/2),

as well as ∫
(y − x)2 Ph(x, dy) b(x, y) =

h

2
+ O(h1+1/2).

This completes the proof of the exercise.

Solution to exercise 233:
The Brownian motionWt is a martingale (w.r.t. its natural �ltration Ft = σ(Ws, s ≤ t))

with angle bracket 〈W 〉 = t. The stopped martingale satis�es the property

Wt∧TD ∈ [−a, a] =⇒ |Wt∧TD | ≤ c = a2.

Applying (12.23) to the martingale Wt and its angle bracket 〈W 〉t = t we �nd that

E(〈W 〉TD ) = E(TD) ≤ a2.
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The Brownian motion starting at some x ∈ D is given byW x
t = x+Wt. In this situation,

we have

(W x
t )

2
= x2 +W 2

t + 2xWt

E(Wt∧Tx
D

)=0

=⇒ E
(
W 2
t∧TxD

)
= E(t ∧ T xD) = E

((
W x
t∧TxD

)2
)
− x2 ≤ a2 − x2.

Applying Fatou's lemma, this yields the estimate

E(T xD) ≤ (a2 − x2).

This ends the proof of the exercise.

Solution to exercise 234:
We have

E (T px ) =

∫ ∞
0

P (T px ≥ t) dt =

∫ ∞
0

P
(
Tx ≥ t1/p

)
dt.

Using the change of variable

s = t1/p ⇔ sp = t⇒ ds =
1

p
t

1
p−1 dt =

1

p
s1−p dt⇒ dt = psp−1 ds

we �nd that

E (T px ) =

∫ ∞
0

P (Tx ≥ s) psp−1 ds.

Notice that for any x ∈ D we have

‖W x
1 − x‖ > diam(D) ⇒W x

1 6∈ D ⇒ Tx < 1.

Recalling that W x
1 = x+W1 These inclusions imply that

P (Tx < 1) ≥ P (‖W x
1 − x‖ > diam(D)) = P (‖W1‖ > diam(D)) := ε > 0

=⇒ supx∈D P (Tx ≥ 1) ≤ 1− ε < 1.

We check that
sup
x∈D

P (Tx ≥ n) ≤ (1− ε)n

by induction w.r.t. the parameter n ≥ 1. The result has already been checked at rank
n = 1. Suppose it has been proved at rank n. In this situation, we have

P (Tx ≥ n+ 1) = E
(
P (Tx ≥ n+ 1 | W x

1 ) 1Wx
1 ∈D

)
=

1

(2π)r/2

∫
D

exp

[
−1

2
‖x− y‖2

]
P (Tx ≥ n+ 1 | W x

1 = y) dy

=
1

(2π)r/2

∫
D

exp

[
−1

2
‖x− y‖2

]
P (Ty ≥ n) dy

= (1− ε)n 1

(2π)r/2

∫
D

exp

[
−1

2
‖x− y‖2

]
dy (by induction )

= (1− ε)n × P (x+W1 ∈ D)

≤ (1− ε)n × P (‖W1‖ ≤ diam(D)) = (1− ε)n+1.
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This implies that

E (T px ) =

∫ ∞
0

P (Tx ≥ s) psp−1 ds ≤
∫ ∞

0

P (Tx ≥ bsc) psp−1 ds

≤
∫ ∞

0

(1− ε)bsc psp−1 ds

≤ (1− ε)−1

∫ ∞
0

(1− ε)s psp−1 ds.

We conclude that

sup
x∈D

E (T px ) ≤ p (1− ε)−1

∫ ∞
0

e−εs sp−1 ds <∞.

This ends the proof of the exercise.

Solution to exercise 235:
We have

Xt =

∫ t

0

a(u)dWu ⇒ Xt −Xs =

∫ t

s

a(u)dWu.

For piecewise constant functions a, the process Xt is clearly a Gaussian process with inde-
pendent increments. This follows from the fact that linear combinations of joint Gaussian
variables are themselves Gaussian. The general case follows by taking limits. On the other
hand, we have

E
(

[Xt −Xs]
2
)

= E

([∫ t

s

a(u)dWu

]2
)

=

∫ t

s

a2(u)du = b(t)−b(s) = E
([
Wb(t) −Wb(s)

]2)
.

We conclude that the di�usion dXt =
√
b′(t)dWt starting at X0 = 0 has the same law as

the time-changed Brownian motion Wb(t).
In addition, Xt is a martingale w.r.t. Ft = σ(Ws, s ≤ t) with angle bracket

〈X〉t =

∫ t

s

a2(u)du = b(t).

Thus, the di�usion Xt starting at X0 = 0 has the same law as the time-changed Brownian
motion W〈X〉t .

This ends the proof of the exercise.

Solution to exercise 236:
We have

∂f

∂x
= (a+

x

3
)2 and

∂2f

∂x2
=

2

3
(a+

x

3
).

By applying the Doeblin-It	o formula, this leads us to

f(Wt) = (a+
1

3
Wt)

3 ⇒ df(Wt) =

(
a+

1

3
Wt

)2

dWt +
1

3

(
a+

Wt

3

)
dt.

On the other hand, we have

Xt :=

(
a+

1

3
Wt

)3

⇒ X
1/3
t =

(
a+

1

3
Wt

)
and X

2/3
t =

(
a+

1

3
Wt

)2

.
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This shows that X0 = a3 and

dXt =
1

3
X

1/3
t dt+X

2/3
t dWt.

On the other hand Xt = 0 is also a solution of the above equation. The problem arises due
to the fact that the functions x1/3 and x2/3 are not smooth at the origin.

This ends the proof of the exercise.

Solution to exercise 237:
By applying the Doeblin-It	o formula to the function f(t, x) = x/t we have

d

(
Xt

t

)
= −Xt

t2
dt+

1

t
dXt

= −Xt

t2
dt+

1

t

(
Xt

t
dt+ t dWt

)
= dWt.

This implies that

Xt

t
= x1 +Wt −W1 ⇒ Xt = t (x1 + (Wt −W1)) .

This ends the proof of the exercise.

Solution to exercise 238:
By applying the Doeblin-It	o formula to the function f(t, x) = a(t) x we have

d (a(t)Xt) = a′(t) Xt dt+ a(t) dXt

= a′(t) Xt dt+ a(t)

(
−a
′(t)

a(t)
Xt dt+

1

a(t)
dWt

)
= dWt.

This implies that

a(t)Xt = a(t0) xt0 + (Wt −Wt0)⇒ Xt = (a(t0) xt0 + (Wt −Wt0)) /a(t).

This ends the proof of the exercise.

Solution to exercise 239:
Notice that W a

t is a continuous martingale with angle bracket

〈W a〉t = t.

We check this claim by using the fact that

dW i
t dW

j
t = 1i=j dt =⇒ dW a

t dW
a
t =

∑
1≤i≤n

a2
i dt

Levy's characterization of the Brownian motion ends the proof of the exercise.
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Solution to exercise 240:
The exercise is a direct consequence of the invariance properties (14.21) of the Brownian

motion and the Laplacian under orthogonal transformations stated in theorem 14.4.3. We
check directly the exercise following the developments of section 14.4.3 applied to r = 2 and
O = Rθ. Notice that

O′ = R′θ =

(
cos (α) sin (α)
− sin (α) cos (α)

)
=

(
cos (−α) − sin (−α)
sin (−α) cos (−α)

)
= R−θ = R−1

θ .

The end of the proof of the exercise is now easily completed.

Solution to exercise 241:
As exercise 240, this exercise is also a direct consequence of the invariance proper-

ties (14.21) of the Brownian motion and the Laplacian under orthogonal transformations
stated in theorem 14.4.3. We check directly the exercise following the developments of
section 14.4.3 applied to r = 2 and O = Rθ. Notice that

O′ = R
′
θ =

(
cos (2α) sin (2α)
sin (2α) − cos (2α)

)
= R

−1

α = Rα.

The end of the proof of the exercise is now easily completed.

Solution to exercise 242:
By applying the Doeblin-It	o formula to the function f(x) = log x

1−x , we �nd that

∂xf(x) =
1− x
x

∂x

(
x

1− x

)
=

1− x
x

(1− x) + x

(1− x)2
=

1

x(1− x)

∂2
xf(x) = − 1

x2(1− x)2
(1− 2x) ,

and

df(Xt) =
1

Xt(1−Xt)
dXt −

1

2X2
t (1−Xt)2

(1− 2Xt) dXtdXt

=

(
1

2
−Xt

)
dt+ dWt −

1

2X2
t (1−Xt)2

(1− 2Xt) X2
t (1−Xt)

2 dt

=

(
1

2
−Xt

)
dt+ dWt −

1

2
(1− 2Xt) dt = dWt.

The end of the proof of the exercise is now clearly completed.

Solution to exercise 243:
We have

∂f

∂x
= −a sin(x) = −a

b
g(x) and

∂2f

∂x2
= −a cos(x) = −f(x).

In much the same way, we have

∂g

∂x
= b cos(x) =

b

a
f(x) and

∂2g

∂x2
= −b sin(x) = −g(x).
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We set
Xt := f(Wt) and Yt = g(Wt).

Applying the Doeblin-It	o formula, we �nd that

dXt = df(Wt) = −a
b
g(Wt) dWt −

1

2
f(Wt) dt = −a

b
Yt dWt −

1

2
Xt dt

and

dYt =
b

a
f(Wt) dWt −

1

2
g(Wt) dt =

b

a
Xt dWt −

1

2
Yt dt.

Finally, we observe that

Yt = b sin(Wt) = b
√

1− cos2(Wt) = b
√

1− a−2(a cos(Wt))2

=
b

a

√
a2 −X2

t ⇒ dXt = −1

2
Xt dt−

b

a

√
(a−Xt)(a+Xt) dWt.

This ends the proof of the exercise.

Solution to exercise 244:
We have

∂f

∂x
= aα sinh(αx) = α

a

b
g(x) and

∂2f

∂x2
= aα2 cosh(αx) = α2 f(x).

In much the same way, we have

∂g

∂x
= bα cosh(αx) = α

b

a
f(x) and

∂2g

∂x2
= α2 b sinh(αx) = α2 g(x).

This implies that

df(Wt) =
∂f

∂x
(Wt) dWt +

1

2

∂2f

∂x2
(Wt) dt = α

a

b
g(Wt) dWt +

α2

2
f(Wt) dt

dg(Wt) =
∂g

∂x
(Wt) dWt +

1

2

∂2g

∂x2
(Wt) dt = α

b

a
f(Wt) dWt +

α2

2
g(Wt) dt.

Replacing f(Wt) and g(Wt) by Xt and Yt this yields the stochastic di�erential equation{
dXt = α2

2 Xt dt+ α a
b Yt dWt

dYt = α2

2 Yt dt+ α b
a Xt dWt.

This ends the proof of the exercise.

Solution to exercise 245:
The process satis�es the continuity and the Gaussian properties discussed in de�ni-

tion 14.1.2. Note that for any s ≤ t the increments

Wα
t −Wα

s =
1

α
(Wt α2 −Ws α2)

are centered Gaussian random variables, with variance 1
α2

(
t α2 − s α2

)
= (t− s).
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In much the same way, for any s ≤ t we have

E
(
W−t W

−
s

)
= tsE(W (1/t)W (1/s))

= tsE(W (1/t)[W (1/s)−W (1/t)] +W (1/t)2) = stE(W (1/t)2) =
st

t
= s.

This implies that W−t −W−s centered Gaussian random variables, with variance

E
([
W−t −W−s

]2)
= t2E(W (1/t)2) + s2E(W (1/s)2)− 2s = t+ s− 2s = t− s.

This ends the proof of the exercise.

Solution to exercise 246:
We have

P(T ≤ a) = P(T ≤ t | Wt < a) P(Wt < a) + P(T ≤ t | Wt ≥ a)︸ ︷︷ ︸
=1

P(Wt ≥ a)

and

P(Wt < a | T ≤ t) =
1

2
⇒ P(T ≤ t | Wt < a) P(Wt < a) = P(Wt < a | T ≤ t) P(T < a)

= 1
2P(T < a).

This ends the proof of the exercise.

Solution to exercise 247:
For any τt(x, y), and for any function F (x, y) = f(x) that depends on the �rst coordinate,

we clearly have have

∂xi,yjF (x, y) = 0⇒ Lt(F )(x, y) = Lt(F (., y))(x) = Lt(f)(x).

By symmetry arguments we also have Lt(F )(x, y) = Lt(g)(y) for any function F (x, y) = g(y)
that depends on the second coordinate.

Assume that
τt(x, y) = 2−1 [σt(x)σ′t(y) + σt(y)σ′t(x)] .

Using the Doeblin-It	o formula we check that the generator of the di�usion{
dXt = bt(Xt) dt+ σt(Xt) dWt

dYt = bt(Yt) dt+ σt(Yt) dWt

is given by

Lt(F )(x, y) = Lt(F (., y))(x) + Lt(F (x, .))(y) +
∑

1≤i,j≤r

τt(x, y)i,j ∂xi,yjF (x, y).

The fact that Xt and Yt have the same law asXt is immediate from the above representation.
This ends the proof of the exercise.

Solution to exercise 248:
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Observe that[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
=
[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]′
and [

I − 2 U (Xt − Yt)U (Xt − Yt)′
]2

= I.

This shows that
[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
is an orthogonal transformation so that

dVt :=
[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
dWt

is the increment of a (standard) r-dimensional Brownian motion. Recall that dWt(dWt)
′ =

I dt We can also observe that

dVt(dVt)
′ =

[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
dWt(dWt)

′ [I − 2 U (Xt − Yt)U (Xt − Yt)′
]

=
[
I − 2 U (Xt − Yt)U (Xt − Yt)′

] [
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
= Id.

This clearly implies that Xt and Yt have the same law as Xt.
Arguing as above, we have

dXt dY ′t = σt(Xt)
[
I − 2 U (Xt − Yt)U (Xt − Yt)′

]
σt(Yt)′︸ ︷︷ ︸

:=σt(Xt,Yt)

dt.

This implies that

Lt(F )(x, y) = Lt(F (., y))(x) + Lt(F (x, .))(y) +
∑

1≤i,j≤r

τt(x, y)i,j ∂xi,yjF (x, y)

with τ(x, y) = (σt(x, y) + σt(y, x))/2.
This ends the proof of the exercise.

Solution to exercise 249:
Consider a 1-dimensional Brownian motion Wt (starting at the origin) and set W ?

t :=
sup0≤s≤tWt. Let Tx the �rst time it reaches the value x so that {Tx ≤ t} = {W ?

t ≥ x}.
For any ε > 0 and any y > x+ ε, we have

P (W ?
t ≥ y , Wt ∈ [x, x+ ε]) = P (Wt ∈ [x, x+ ε] , Ty ≤ t)

= P (Wt ∈ [x, x+ ε] , Ty ≤ t) .

On the other hand, we have the key observation

Law
[(
Wt −WTy

)
| Ty ≤ t

]
= Law

[
−
(
Wt −WTy

)
| Ty ≤ t

]
.

this implies that

P (Wt ∈ [x, x+ ε] , Ty ≤ t) = P (Wt − y ∈ [x− y, x− y + ε] , Ty ≤ t)
= P (Wt − y ∈ [−(x− y + ε),−(x− y)] , Ty ≤ t)
= P (Wt ∈ [−(x− y + ε) + y,−(x− y) + y] , Ty ≤ t)
= P (Wt ∈ [2y − x− ε, 2y − x])

⇑ (2y − x > y + ε > y and (2y − x)− ε > y)

⇑ (y > x+ ε) .
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Hence
P (W ?

t ≥ y , Wt ∈ [x, x+ ε]) = P (Wt ∈ [2y − x− ε, 2y − x])

from which we readily prove that

P (W ?
t ≥ y | Wt ∈ [x, x+ ε]) =

P (Wt ∈ [2y − x− ε, 2y − x])

P (Wt ∈ [x, x+ ε])
.

Letting ε ↓ 0 we conclude that for any y ≥ x

P (W ?
t ≥ y | Wt = x) =

exp
[
− 1

2t (2y − x)2
]

exp
[
− 1

2t x
2
]

= exp

[
1

2t
[x2 − (2y − x)2]

]
= exp [−2y(y − x)/t].

The end of the proof is now completed.

Solution to exercise 250:

Using exercise 223 we have

P (X?
t ≥ y | Xt = x) = P (σ W ?

t ≥ y | σ Wt = x) .

On the other hand, using exercise 249 we have

P (W ?
t ≥ y/σ | Wt = x/σ) = exp

[
−2y(y − x)/(σ2t)

]
for any y ≥ x. Otherwise

y < x⇒ P (X?
t ≥ y | Xt = x) = 1.

Finally for any 0 ≤ y we have

P (X?
t ≥ y | X0 = 0) =

∫ y

−∞
exp

[
−2y(y − x)/(σ2t)

] 1√
2πσ2t

exp

[
− 1

2σ2t
(x− bt)2

]
dx

+

∫ +∞

y

exp

[
− 1

2σ2t
(x− bt)2

]
dx︸ ︷︷ ︸

=P(Xt≥y | X0=0)

.

To take the �nal step, observe that

4y(y − x) + (x− bt)2
= 4y2 + x2 − 2x(bt+ 2y) + (bt)2

= (x− [bt+ 2y])
2

+ 4y2 + (bt)2 − [bt+ 2y]
2

= (x− [bt+ 2y])
2 − 4ybt.

This yields
exp

[
− 1

2σ2t

[
4y(y − x) + (x− bt)2

]]
= exp

[
− 1

2σ2t (x− [bt− 2y])
2
]
× exp

[
2yb/σ2

]
,
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from which we conclude that

P (X?
t ≥ y | X0 = 0)

= exp
[
2yb/σ2

]
P (Xt + 2y ≤ y | X0 = 0) + P(Xt ≥ y | X0 = 0)

= exp
[
2yb/σ2

]
P (Xt + y ≤ 0 | X0 = 0) + P(Xt ≥ y | X0 = 0).

Finally, given X0 = 0 we have

Xt + y ≤ 0 ⇐⇒ y + bt+ σ
√
t Wt/

√
t ≤ 0

⇐⇒ −Wt/
√
t︸ ︷︷ ︸

law
= W1

≥ (y + bt) /(σ
√
t).

This implies that

P(Xt + y ≤ 0 | X0 = 0) = P
(
W1 ≥ (y + bt) /(σ

√
t)
)
.

In much the same way, we have

P(Xt ≥ y | X0 = 0) = P
(
Wt/
√
t ≥ [y − bt] /(σ

√
t)
)

= P
(
W1 ≥ [y − bt] /(σ

√
t)
)
.

The end of the proof of the exercise is now easily completed.

Solution to exercise 251:
We set X ′t := −Xt and b′ = −b. In this notation given X0 = 0 = X ′0 we have

X ′t := −Xt = −bt− σ Wt
law
= b′t+ σ Wt.

On the other hand, recalling that

inf
0≤s≤t

Xt = − sup
0≤s≤t

(−Xt)

for any y ≤ 0 = X0 we have

inf
0≤s≤t

Xt ≤ y ⇐⇒ sup
0≤s≤t

X ′t ≥ y′ = −y (≥ X ′0 = 0) .

This implies that

P
(

inf
0≤s≤t

Xt ≤ y | X0 = 0

)
= P

(
sup

0≤s≤t
X ′t ≥ y′ | X ′0 = 0

)
.

Using exercise 250 and symmetry arguments we prove that

P
(

inf
0≤s≤t

Xt ≤ y | X0 = 0

)
= P

(
sup

0≤s≤t
X ′t ≥ y′ | X ′0 = 0

)
= exp

[
2y′b′/σ2

]
P
(
W1 ≥ [y′ + b′t] /(σ

√
t)
)

+P
(
W1 ≥ [y′ − b′t] /(σ

√
t)
)

= exp
[
2ybσ2

]
P
(
W1 ≤ [y + bt] /(σ

√
t)
)

+P
(
W1 ≤ [y − bt] /(σ

√
t)
)
.
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This ends the proof of the exercise.

Solution to exercise 252:
Notice that g : x 7→ 2

π arctanx maps R into [−1, 1] and its derivative is given by

g′(x) =
2

π

1

1 + x2
.

By applying the Doeblin-It	o formula to the function

f(x) = 2
π arctan (a(x+ b))

⇒ f ′(x) = 2a
π

1
1+(a(x+b))2 and f ′′(x) = − 2a

π
1

(1+(a(x+b))2)2 2a(a(x+ b))

we �nd

dUt =
2a

π

1

1 + (a(Wt + b))2
dWt −

a

π

1

(1 + (a(Wt + b))2)2
2a(a(Wt + b)) dt.

Recalling that

Ut :=
2

π
arctan (a(Wt + b))⇔ tan

(π
2
Ut

)
= a(Wt + b) =

sin
(
π
2Ut

)
cos
(
π
2Ut

)
we conclude that

dUt =
2a

π
cos2

(π
2
Ut

)
dWt −

2a2

π
cos4

(π
2
Ut

) sin
(
π
2Ut

)
cos
(
π
2Ut

) dt
=

2a

π
cos2

(π
2
Ut

)
dWt −

2a2

π
cos3

(π
2
Ut

)
sin
(π

2
Ut

)
dt.

The end of the proof is now easily completed.

Solution to exercise 253:
Notice that the increments

W t −W s :=

∫ t

s

Ur dW
(2)
r +

∫ t

s

√
1− U2

r dW
(3)
r

and independent of W s and
E(W t −W s | Fs) = 0

with the �ltration Ft generated by the stochastic processes W (i)
t , with 1 ≤ i ≤ 3. In

addition, we have that

E
(
(W t −W s)

2
)

= E

[(∫ t

s

Ur dW
(2)
r +

∫ t

s

√
1− U2

r dW
(3)
r

)2
]

= E

[(∫ t

s

Ur dW
(2)
r

)2
]

+ E

[(∫ t

s

√
1− U2

r dW
(3)
r

)2
]

= E
[∫ t

s

U2
r dr +

∫ t

s

(1− U2
r ) dr

]
= (t− s).
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Finally, we have

E
(
W t W

(2)
t

)
= E

([∫ t

0

Ur dW
(2)
r

] ∫ t

0

dW (2)
s

)
= E

(∫ t

0

Us ds

)
and

E
(
W t W

(3)
t

)
= E

([∫ t

0

√
1− U2

r dW
(3)
r

] ∫ t

0

dW (3)
s

)
= E

(∫ t

0

√
1− U2

r ds

)
.

This ends the proof of the exercise is now easily completed.

Solution to exercise 254:
Notice that

Xt = f(W 1
t , . . . ,W

n
t ) with f(w1, . . . , wn) =

∑
1≤i≤n

(wi)2.

For any λ > 0,

E
(
e−λXt | Fs

)
=

∏
1≤i≤n

E(e−λ(W i
t )2

| W i
s).

On the other hand, we have

E(e−λ(W i
t )2

) = E(e−λ(W i
s+[W i

t−W
i
s ])2

) =
1√

2π(t− s)

∫
e−λ(W i

s+x)2− x2

2(t−s) dx.

We also observe that

λ(W i
s + x)2 + x2

2(t−s)

= λ(W i
s)

2 + x2
(
λ+ 1

2(t−s)

)
+ 2λxW i

s

= λ (W i
s)

2 + 1+2λ(t−s)
2(t−s)

(
x2 + 2x

2λ(t−s)W i
s

1+2λ(t−s)

)
= (W i

s)
2
[
λ − (2(t−s))λ2

(1+2λ(t−s))

]
+ 1+2λ(t−s)

2(t−s)

(
x+

2λ(t−s)W i
s

1+2λ(t−s)

)2

.

This implies that

λ(W i
s + x)2 +

x2

2(t− s)
=

λ

1 + 2λ(t− s)
(W i

s)
2 +

1 + 2λ(t− s)
2(t− s)

(
x+

2λ(t− s)W i
s

1 + 2λ(t− s)

)2

.

We conclude that

E(e−λ(W i
t )2

) = (1 + 2λ(t− s))−1/2
exp

(
− λ

1 + 2λ(t− s)
(W i

s)
2

)
and therefore

E
(
e−λXt | Fs

)
= (1 + 2λ(t− s))−n/2 exp

(
− λXs

1 + 2λ(t− s)

)
.
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This yields

∀s ≤ t P(Xt = 0 | Fs) = lim
λ→∞

E
(
e−λXt | Fs

)
= 0.

By applying Doeblin-It	o formula we have

dXt = 2
∑

1≤i≤n

W i
t dW

i
t + n dt.

This implies that

dW t :=
∑

1≤i≤n

1Xt 6=0
W i
t√
Xt

dW i
t =⇒ dW tdW t =

∑
1≤i≤n

1Xt 6=0
(W i

t )
2

Xt
= dt

and we now end up with

dXt = 2
∑

1≤i≤n

W i
t dW

i
t + n dt

= 2
√
Xt

∑
1≤i≤n

1Xt 6=0
W i
t√
Xt

dW i
t + n dt = 2

√
Xt dW t + n dt.

This ends the proof of the exercise.

Solution to exercise 255:
The �rst assertion is a direct consequence of theorem 14.3.1.
By applying the Doeblin-It	o lemma to the function f(t, x) = eat x we �nd that

d
(
eat Xt

)
=

∂

∂t

(
eat x

)
|x=Xt

dt+
∂

∂x

(
eat x

)
|x=Xt

dXt

+
1

2

∂2

∂x2

(
eat x

)
|x=Xt

dXtdXt

= a eat Xt dt+ eat (a (b−Xt) dt+ σ dWt)

= eat (ab dt+ σdWt) .

Integrating from 0 to t we �nd that

eat Xt = X0 + b

∫ t

0

aeas ds+

∫ t

0

eas σdWs

= X0 + b
(
eat − 1

)
+

∫ t

0

eas σdWs.

Hence we conclude that

Xt = e−at X0 + b
(
1− e−at

)
+ σ

∫ t

0

e−a(t−s) dWs.

From this formula, we easily prove that

E(Xt | X0) = e−at X0 + b
(
1− e−at

)
.
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In addition, by using the fact that

Xt − E(Xt | X0) = σ

∫ t

0

e−a(t−s) dWs

we prove that

E
(

[Xt − E(Xt | X0)]
2 | X0

)
= σ2

∫ t
0
e−2a(t−s) ds

= σ2

2a e
−2at

∫ t
0

2a e2a s ds = σ2

2a

(
1− e−2at

)
.

On the other hand, given X0 the random variable Xt is Gaussian. This ends the proof of
the exercise.

Solution to exercise 256: Using exercise 235, we check that Yt := σ2
∫ t

0
e−a(t−s) dWs

has the same law as the time-changed Brownian motion W〈Y 〉t with

〈Y 〉t =
σ2

2a

(
e2at − 1

)
= σ2

∫ t

0

e2as ds.

Recalling that E(W 2
1 ) = 1 and using the fact that d(t) ≤ σ2

2a , the moments estimates (14.22)
are direct consequences of (5.10) Using (14.22) we have

E
(
X2n
t

)1/(2n) ≤
(
σ2

2a

)1/2 (
(2n)!

n!2n

)1/(2n)

+ e−at E
(
(X0)2n

)1/(2n)
+ b

(
1− e−at

)
=

(
σ2

2a

)1/2 (
(2n)!

n!2n

)1/(2n)

+ E
(
(X0)2n

)1/(2n)
+ b.

This ends the proof of the exercise.

Solution to exercise 257:
We have

dXt = AXt dt+B dWt =⇒ dXtdX
′
t = B dWtdW

′
tB
′ = BB′ dt

where (.)′ stands for the transpose of some vector or some matrix. We have

Xt = eAtX0 +

∫ t

0

e(t−s)A B dWs.

Notice that

E

([∫ t

0

e(t−s)A B dWs

] [∫ t

0

e(t−s)A B dWs

]′)
= =

∫ t

0

e(t−s)A BB′ e(t−s)A′ ds

=

∫ t

0

esA BB′ esA
′
ds.
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This shows that Xt is a gaussian random variable with mean

E(Xt) = eAt E(X0).

Using the decomposition

Xt − E(Xt) = eAt (X0 − E(X0)) +

∫ t

0

e(t−s)A B dWs

we prove that

Pt = E
(
[Xt − E(Xt)] [Xt − E(Xt)]

′)
= eAt P0 e

A′t +

∫ t

0

esA BB′ esA
′
ds.

This shows that
.

P t = AeAt P0 e
A′t + eAt P0 e

A′tA′ + etA BB′ etA
′

= APt + PtA
′ −
∫ t

0

∂s

(
esA BB′ esA

′
)
ds+ etA BB′ etA

′

= APt + PtA
′ +BB′.

The last assertion is immediate. Observe that

AP∞ + P∞A
′ +BB′ = lim

t→∞

∫ t

0

∂s

(
esA BB′ esA

′
)
ds+BB′

= lim
t→∞

(
etA BB′ etA

′
)

= 0.

This ends the proof of the exercise.

Solution to exercise 258:
Using exercise 255 the �rst assertion is immediate. The in�nitesimal generator of the

process is given by
L(f)(x) = −x f ′(x) + f ′′(x).

The formula π (f1 Pt(f2)) = π (Pt(f1) f2) is a direct consequence of the fact that

Xt
law
=
√
εt X0 +

√
1− εt W1.

Indeed, using the above formula we check that the transition Pt(x, dy) = P(Xt ∈ dy | X0 =
x) is reversible with respect to the Gaussian distribution π, in the sense that

π(dx) Pt(x, dy) = π(dy) Pt(y, dx).

We end the proof by a simple integration of the function f1(x)f2(y).
On the other hand, we have

d

dt
Pt(f)(x) = Pt(L(f))(x)

t=0
= L(f)(x).

This implies that

d

dt
π (f1 Pt(f2)) = π

(
f1

d

dt
Pt(f2)

)
= π

(
d

dt
Pt(f1) f2

)
.
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Choosing t = 0 we conclude that

π (f1 L(f2)) = π (L(f1) f2)

with
L(f)(x) = −xf ′(x) + f ′′(x).

In addition using the Gaussian integration by parts formula stated in exercise (54) we �nd
that

π (f1 L(f2)) = −E (W1 (f1f
′
2) (W1)) + E ((f1f

′′
2 )(W1))

= −E
(

(f1f
′
2)
′
(W1)

)
+ E ((f1f

′′
2 )(W1)) = −E ((f ′1f

′
2) (W1)) .

In terms of Dirichlet forms we have proved that

E (f1, f2) = E (f2, f1) = π (f ′1f
′
2) .

Notice that

∂

∂x
Pt(f1)(x) =

∂

∂x
E
(
f1

(
e−t x+

√
1− e−2t W1

))
= e−t E

(
f ′1

(
e−t x+

√
1− e−2t W1

))
= e−t Pt (f ′) (x).

This implies that

E (Pt(f), Pt(f)) = π (Pt(f)′Pt(f)′) = e−2t

∫
π(dx) (Pt (f ′) (x))

2
.

Recalling that π = πPt we conclude that

E (Pt(f), Pt(f)) ≤ e−2t π
[
(f ′)

2
]

= e−2t E (f, f) .

To end the proof, we recall the formula

d

dt
Varπ(Pt(f)) = −2E (Pt(f), Pt(f))

which we proved in exercise 187 in the context of �nite state spaces. The same proof is
valid for general state spaces.

Varπ(Pt(f))→t→∞ 0 =⇒ Varπ(f) = 2

∫ ∞
0

E (Pt(f), Pt(f)) dt

≤ 2 E (f, f)

∫ ∞
0

e−2tdt = E (f, f) .

This ends the proof of the exercise.

Solution to exercise 259:

• For any function f with compact support on S we clearly have that

Varπ(f) := π[(f − π(f))2] = inf
c∈R

π[(f − c)2] ≤ π[(f − f(0))2].
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• For any function f with compact support on S s.t. f(0) = 0, by a simple integration by
parts we check that

π(f2) =

∫ ∞
0

f(x)2 e−x dx

= −
∫ ∞

0

(∫ x

0

∂f2

∂y
(y) dy

)
∂

∂x
(e−x) dx

=

∫ ∞
0

2f(x)f ′(x) e−x dx = 2 π(ff ′) ≤ 2π(f2)1/2 π((f ′)2)1/2.

The last assertion is a consequence of the Cauchy-Schwartz inequality.

• We readily deduce the Poincaré inequality from the fact that(
π(f2)

)2 ≤ 4 π(f2) π((f ′)2) ⇔ Varπ(f) ≤ 4 ‖f ′‖L2(π) .

This ends the proof of the exercise.

Solution to exercise 260:

The generator of Xt is de�ned by

L(f)(x) = −λ
2
sign(x) ∂xf(x) +

1

2
∂2
xf(x).

Observe that∫
e−λ|x| L(f)(x) dx

=

∫ ∞
0

e−λx
(
−λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx+

∫ x

−∞
eλx

(
λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx.

A integration by parts yields∫ ∞
0

e−λx
(
−λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx

= −λ
2

([
e−λxf(x)

]x=∞
x=0

+

∫ ∞
0

λ e−λx f(x) dx

)

+
1

2

([
e−λx∂xf(x)

]x=∞
x=0

+ λ
[
e−λxf(x)

]x=∞
x=0

+ λ2

∫ ∞
0

e−λxf(x)

)

=
λ

2

(
f(0)−

∫ ∞
0

λ e−λx f(x) dx

)
− 1

2

(
∂xf(0) + λf(0)− λ2

∫ ∞
0

e−λxf(x)

)
.

This implies that ∫ ∞
0

e−λx
(
−λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx = −1

2
∂xf(0).
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By symmetry arguments, we also have∫ 0

−∞
e−λx

(
−λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx

= −λ
2

([
e−λxf(x)

]x=0

x=−∞ +

∫ 0

−∞
λ e−λx f(x) dx

)

+
1

2

([
e−λx∂xf(x)

]x=0

x=−∞ + λ
[
e−λxf(x)

]x=0

x=−∞ + λ2

∫ 0

−∞
e−λxf(x)

)

= −λ
2

(
f(0) +

∫ ∞
0

λ e−λx f(x) dx

)
+

1

2

(
∂xf(0) + λf(0) + λ2

∫ ∞
0

e−λxf(x)dx

)
.

∫ 0

∞
e−λx

(
−λ

2
∂xf(x) +

1

2
∂2
xf(x)

)
dx =

1

2
∂xf(0).

We conclude that πL(f) = 0.
This ends the proof of the exercise.

Solution to exercise 261:
We have

dXt = d
(
U2
t + V 2

t

)
= 2Ut dUt+ 2Vt dVt + 2 dt

= 2
(
1− (U2

t + V 2
t )
)
dt+ 2

√
U2
t + V 2

t

(
Ut√

U2
t + V 2

t

dWt +
Vt√

U2
t + V 2

t

dW ′t

)
= 2 (1−Xt) dt+ 2

√
Xt dW t

with dW t = Ut√
U2
t +V 2

t

dWt+
Vt√
U2
t +V 2

t

dW ′t . By Levy's characterization, it is readily checked

that W t has the same distribution as a standard Brownian motion. We can also check this
property by recalling that the Gaussian distributions are rotation-invariant. This ends the
proof of the exercise.

Solution to exercise 262:

• The generator of Xt is given by

L(f) = 2(1− x)f ′(x) + 2x f ′′(x).

For any functions f1, f2 with compact support on S by a simple integration by parts we
check that

π(f1L(f2)) =

∫ ∞
0

f1(x) (2(1− x)f ′2(x) + 2x f ′′2 (x)) e−x dx

= 2

∫ ∞
0

f2(x)
[
−
(
f1(x) (1− x)e−x

)′
+
(
x f1(x) e−x

)′′]
dx

= π(L(f1)f2).
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The last assertion is a consequence of

− (f1(x) (1− x)e−x)
′
+ (x f1(x) e−x)

′′

= e−x(1− x) f1(x) + e−xf1(x)− (1− x)e−xf ′1(x)

+ (f1(x) e−x + x f ′1(x)e−x − x f1(x) e−x)
′

= e−x(1− x) f1(x) + e−xf1(x)−(1− x)e−xf ′1(x)

+f ′1(x)e−x − f1(x)e−x

+f ′1(x)e−x + xf ′′(x)e−x−x f ′1(x)e−x

−f1(x) e−x−xf ′1(x) e−x + x f1(x) e−x

= 1
2 L(f1)(x) e−x.

• Arguing as above, we have

π(f1L(f2)) = 2

∫ ∞
0

f ′2(x)
(
(1− x)f1(x)e−x

)
dx− 2

∫ ∞
0

f ′2(x)
(
xf1(x)e−x

)′
dx

= 2

∫ ∞
0

x f ′2(x) f ′1(x) e−x dx.

Here we used the fact that(
xf1(x)e−x

)′
=
(
(1− x)f1(x)e−x

)
+ x f ′1(x) e−x.

This ends the proof of the exercise.

Solution to exercise 263:
Using the Doeblin-It	o formula to the function f(x) = 1/x (⇒ f ′(x) = −1/x2 and

f ′′(x) = 2/x3) we prove that

d(X−1
t ) = f ′(Xt) dXt +

1

2
f ′′(Xt)dXtdXt

= − 1

X2
t

(bt Xt dt+ σt Xt dWt) +
1

X3
t

σ2
t X

2
t dt

=
(
σ2
t − bt

)
X−1
t dt − σt X

−1
t dWt.

This clearly yields

X−1
t = e

∫ t
0

(
[σ2
s−bs]−

σ2
s
2

)
ds−

∫ t
0
σs dWs

= e
−
∫ t
0

(
bs−

σ2
s
2

)
ds−

∫ t
0
σs dWs

.

By the integration by parts formula (14.20) we have

dZt = d
(
YtX

−1
t

)
= Yt d(X−1

t ) +X−1
t dYt + dYtd(X−1

t )

=
(
σ2
t − bt

)
Zt dt − σt Zt dWt +

(
atX

−1
t + bt Zt

)
dt

+
(
τtX

−1
t + σt Zt

)
dWt −

(
τtX

−1
t + σt Zt

)
σt dt

= (at − σtτt)X−1
t dt+ τtX

−1
t dWt.
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Recalling that Z0 = Y0/X0 = Y0 we obtain

Zt = Y0 +

∫ t

0

[
(as − σtτt)X−1

s ds+ τsX
−1
s dWs

]
.

Therefore

Yt = Xt

[
Y0 +

∫ t

0

(
X−1
s (as − σtτt) ds+X−1

s τs dWs

)]
= XtY0 +

∫ t

0

XtX
−1
s (as − σsτs) ds+

∫ t

0

XtX
−1
s τs dWs

with

XtX
−1
s = exp

(∫ t

s

(
br −

σ2
r

2

)
dr +

∫ t

s

σrdWr

)
.

This ends the proof of the exercise.

Solution to exercise 264:
We have

E
((
Ws −

s

t
Wt

)
Wt

)
= E(WsWt)−

s

t
E(W 2

t ).

Recalling that W0 = 0, and the increments are centered and independent we prove

E(WsWt) = E(Ws[(Wt −Ws) +Ws]) = E((Ws −W0)(Wt −Ws))︸ ︷︷ ︸
=0

+E(W 2
s ) = s.

This implies that

E
((
Ws −

s

t
Wt

)
Wt

)
= s− s

t
t = 0 = E(Ws −

s

t
Wt)× E(Wt).

This shows that the Gaussian random variables
((
Ws − s

t Wt

)
, Wt

)
are uncorrelated, thus

independent.
Since

(
Ws − s

t Wt

)
and Wt are independent, we have

0 = E(Ws −
s

t
Wt) = E(Ws −

s

t
Wt | Wt) = E(Ws|Wt)−

s

t
Wt.

We conclude that
E(Ws|Wt) =

s

t
Wt.

In much the same way, the variance is given by

Var(Ws | Wt) = E
(
(Ws − E(Ws | Wt))

2 |
)

= E
(

(Ws −
s

t
Wt)

2 | Wt

)
= E

((
Ws −

s

t
Wt

)2
)

(by independence)

= E
(
W 2
s

)
+
(s
t

)2

E(W 2
t )− 2

s

t
E(WsWt)

= s+
(s
t

)2

t− 2s
(s
t

)
= s

(
1− s

t

)
.

We conclude that Ws − s
t Wt is a Gaussian random variable with

Law (Ws | Wt) = N
(s
t
Wt, s

(
1− s

t

))
.
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This implies that

Law
(
Ws −

s

t
Wt | Wt

)
= Law

(
Ws −

s

t
Wt

)
= N

(
0, s
(

1− s

t

))
and

Law (Ws | Wt = 0) = N
(

0, s
(

1− s

t

))
= Law

(
Ws −

s

t
Wt

)
.

The last assertion follows from the fact that s ≤ t ⇒ Ws − s
t Wt = Ws − sW1. This ends

the proof of the exercise.

Solution to exercise 265:
For any �xed time horizon t, and 0 ≤ s ≤ t by applying the Doeblin-It	o formula to the

function f(s,Xs) =
Xs − b
t− s

we have

d

(
Xs − b
t− s

)
=

Xs − b
(t− s)2

ds+
dXs

t− s

=
Xs − b
(t− s)2

ds+
1

t− s

(
b−Xs

t− s
ds+ dWs

)
=
dWs

t− s
.

This implies that

∀0 ≤ r ≤ s ≤ t Xs − b
t− s

− Xr − b
t− r

=

∫ s

r

dWu

t− u
.

We conclude that

Xs = b+
t− s
t− r

(Xr − b) +

∫ s

r

t− s
t− u

dWu

= b

(
1− t− s

t− r

)
+

(t− s)
t− r

Xr +

∫ s

r

(t− s)
t− u

dWu

=
s− r
t− r

b+
t− s
t− r

Xr +

∫ s

r

t− s
t− u

dWu.

This ends the proof of the �rst assertion. We deduce that Xt = b, as well as

E (Xs | Xr) =
s− r
t− r

b+
t− s
t− r

Xr

and

Var (Xs | Xr) = E

([∫ s

r

t− s
t− u

dWu

]2
)

=

∫ s

r

(
t− s
t− u

)2

du = (t− s)2

∫ s

r

1

(t− u)2
du

= (t− s)2

∫ s

r

∂

∂u

(
1

t− u

)
du

= (t− s)2

[
1

t− s
− 1

t− r

]
= (t− s) s− r

t− r
.
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We conclude that the conditional distribution of Xs given Xr is given by the Gaussian
distribution

Law (Xs | Xr) = N
(

(t− s)Xr + (s− r)b
t− r

, (s− r) t− s
t− r

)
.

This ends the proof of the exercise.

Solution to exercise 266:
Applying the Doeblin-It	o formula to the functions b(Xt) and σ(Xt) we have

db(Xt) = L(b)(Xt)dt+ b′(Xt)σ(Xt)dWt

dσ(Xt) = L(σ)(Xt)dt+ σ′(Xt)σ(Xt)dWt

with the in�nitesimal generator L given for any smooth function f by

L(f) = bf ′ +
1

2
σ2f ′′.

This shows that for any s ≤ t we have

b(Xs) = b(Xt) +

∫ s

t

L(b)(Xr)dr +

∫ s

t

b′(Xr)σ(Xr)dWr

σ(Xs) = σ(Xt) +

∫ s

t

L(σ)(Xr)dr +

∫ s

t

σ′(Xr)σ(Xr)dWr

from which we prove that

Xt+h −Xt =

∫ t+h

t

b(Xs)ds+

∫ t+h

t

σ(Xs)dWs

=

∫ t+h

t

[
b(Xt) +

∫ s

t

L(b)(Xr)dr +

∫ s

t

b′(Xr)σ(Xr)dWr

]
ds

+

∫ t+h

t

[
σ(Xt) +

∫ s

t

L(σ)(Xr)dr +

∫ s

t

σ′(Xr)σ(Xr)dWr

]
dWs.

This yields the second order approximation

Xt+h −Xt = b(Xt) h+ σ(Xt) (Wt+h −Wt)

+

∫ t+h

t

[∫ s

t

L(b)(Xr)dr +

∫ s

t

b′(Xr)σ(Xr)dWr

]
ds

+

∫ t+h

t

[∫ s

t

L(σ)(Xr)dr +

∫ s

t

σ′(Xr)σ(Xr)dWr

]
dWs.

Using the fact that

E

[ 1

h

∫ t+h

t

[∫ s

t

f(Xr)σ(Xr)dWr

]
ds

]2
 ≤ 1

h

∫ t+h

t

E

([∫ s

t

f(Xr)σ(Xr)dWr

]2
)

=
1

h

∫ t+h

t

E
(∫ s

t

f(Xr)
2dr

)
≤ ‖f‖2 h
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for any smooth function f with bounded derivatives, we check that

Xt+h −Xt = b(Xt) h+ σ(Xt) (Wt+h −Wt) +

∫ t+h

t

[∫ s

t

σ(Xr)dWr

]
dWs +Rt,t+h

with σ := σ′σ and some second order remainder random function Rt,t+h such that

E
(
|Rt,t+h|2

)1/2

≤ (‖L(b)‖+ ‖L(σ)‖+ ‖b′σ‖) h3/2.

To take the �nal step, we apply the Doeblin-It	o formula to the functions σ

dσ(Xt) = L(σ)(Xt)dt+ σ′(Xt)σ(Xt)dWt.

This yields for any t ≤ r

σ(Xr) = σ(Xt) +

∫ r

t

L(σ)(Xu)du+

∫ r

t

σ′(Xu)σ(Xu)dWu

⇒
∫ s

t

σ(Xr)dWr = σ(Xt) (Ws −Wt) +

∫ s

t

[∫ r

t

L(σ)(Xu)du+

∫ r

t

σ′(Xu)σ(Xu)dWu

]
dWr

E

[∫ t+h

t

[∫ s

t

(∫ r

t

σ′(Xu)σ(Xu)dWu

)
dWr

]
dWs

]2


=

∫ t+h

t

E

([∫ s

t

(∫ r

t

σ′(Xu)σ(Xu)dWu

)
dWr

]2
)
ds

=

∫ t+h

t

[∫ s

t

E

((∫ r

t

σ′(Xu)σ(Xu)dWu

)2
)
dr

]
ds

=

∫ t+h

t

[∫ s

t

(∫ r

t

E
(

(σ′(Xu)σ(Xu))
2
)
du

]
dr

]
ds ≤ ‖σ′σ‖2 h3

3!
.

In much the same way, we �nd that

E

[∫ t+h

t

[∫ s

t

(∫ r

t

L(σ)(Xu)du

)
dWr

]
dWs

]2


=

∫ t+h

t

[∫ s

t

E

((∫ r

t

L(σ)(Xu)du

)2
)
dr

]
ds ≤ ‖L(σ)‖2 h4

12
.

We conclude that

Xt+h −Xt = b(Xt) h+ σ(Xt) (Wt+h −Wt) + σ(Xt)

∫ t+h

t

(Ws −Wt) dWs +Rt,t+h

with some second order remainder random function Rt,t+h such that

E
(
|Rt,t+h|2

)1/2

≤ (‖L(b)‖+ ‖L(σ)‖+ ‖b′σ‖+ ‖σ′σ‖+ ‖L(σ)‖) h3/2.
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Finally, for any �xed t and t ≤ s ≤ t+ h we have

d(Ws −Wt)
2 = 2(Ws −Wt)dWs + dWsdWs = 2(Ws −Wt)dWs + ds

⇒
∫ t+h

t

(Ws −Wt) dWs =
1

2

[
(Wt+h −Wt)

2 − h
]
.

This ends the proof of the exercise.
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Solution to exercise 267:
Recalling that the jumps times of a Poisson process are uniform on a given interval, we

sample �rst a Poisson random variable Nt with parameter (λt). Given Nt = n we sample
n uniform random variables T1, . . . , Tn in the interval [0, t], and n independent random
variables Y1, . . . , Yn with common distribution µ. The process Vt is now easily simulated.
To sample the Brownian motion we simply sample a sequence of independent and centered
Gaussian random variables (Wtk+1

−Wtk) with variance (tk+1− tk). The process Xt is now
easily simulated on the time mesh.

Since (Nt,Wt, Y ) are independent, we have

φt(u) := E(eiuXt) = eiuat E(eiubVt) E(eiucWt)

= eiuat−
(uc)2t

2 E(E(eiubVt | Nt)).

On the other hand, we also have that

E(E(eiubVt | Nt)) = E(E(eiubY1)Nt) = e−λt eλt E(eiubY1 ).

This implies that

φt(u) = exp

(
t

{
iua− (uc)2

2
+ λ (φY (u)− 1)

})
.

This ends the proof of the exercise.

Solution to exercise 268:
We have

Zt = Z0 e
Xt = Z0 e

at+bVt+cWt = Z0 e
at+cWt

∏
1≤n≤Nt

ebYn .

We let Tn be the random jump times of the Poisson process. In this notation, we have

ZTn − ZTn− = ZTn−
(
ebYn − 1

)
= ZTn− dUTn

with
Ut =

∑
1≤n≤Nt

(
ebYn − 1

)
.

Between the jump times t ∈ [Tn, Tn+1[, applying the Doeblin-It	o formula to the function
f(t, x) = eat+cx we �nd that

Zt = Z0 e
at+cWt

∏
1≤k≤n

ebYk ⇒ dZt = Z0

 ∏
1≤k≤n

ebYk

 ((
a+

c2

2

)
dt+ c dWt

)
f(t,Wt).

1041
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This implies that

∀t ∈ [Tn, Tn+1[ dZt = Zt

((
a+

c2

2

)
dt+ c dWt

)
.

We conclude that

dZt = Zt

(
a+

c2

2

)
dt+ c Zt dWt + Zt dUt.

This ends the proof of the exercise.

Solution to exercise 269:
The in�nitesimal generator of the Levy process Xt is given by

LXt (f)(x) = a f ′ +
c2

2
f ′′(x) + λ

∫
(f(x+ by)− f(x)) µ(dy).

The in�nitesimal generator of the exponential Levy process Zt is given by

LZt (f)(x) =

(
a+

c2

2

)
x f ′(x) +

(cx)2

2
f ′′(x) + λ

∫
(f(x(eby − 1))− f(x)) µ(dy).

This ends the proof of the exercise.

Solution to exercise 270:
We set

dXc
t = at(Xt)dt+ bt(Xt)dWt.

In this notation, the Doeblin-It	o formula (15.11) takes the form

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dX

c
t +

1

2

∂2f

∂x2
(t,Xt)dX

c
t dX

c
t + ∆f(t,Xt)

with the jump increment

∆f(t,Xt) := f(t,Xt + (Xt+dt −Xt))− f(t,Xt)

= f(t,Xt + ∆Xt)− f(t,Xt)

= [f(t,Xt + ct(Xt))− f(t,Xt)] dNt.

We notice that

E (∆f(t,Xt) | Ft) = λt(Xt) [f(t,Xt + ct(Xt))− f(Xt)] dt.

This implies that

df(t,Xt) =

(
∂

∂t
+ Lct

)
f(t,Xt) dt+

∂f

∂x
(t,Xt)bt(Xt)dWt

+ [f(t,Xt + ct(Xt))− f(t,Xt)] dNt

with

Lct(f)(t, x) = at(x)
∂f

∂x
(t, x) +

1

2
bt(x)2 ∂2f

∂x2
(t, x).
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In terms of the martingales

dM c
t (f) :=

∂f

∂x
(t,Xt)bt(Xt)dWt

dMd
t (f) := [f(t,Xt + ct(Xt))− f(t,Xt)] [dNt − λt(Xt)dt]

the above formula takes the following form:

df(t,Xt) =

(
∂

∂t
+ Lt

)
f(t,Xt) dt+ dMt(f)

with the martingale dMt(f) = dM c
t (f) + dMd

t (f), and the in�nitesimal generator

Lt(f) = Lct(f) + Ldt (f) with Ldt (f)(t, x) = λt(x) (f(t, x+ ct(x))− f(t, x)).

This ends the proof of the exercise.

Solution to exercise 271:
For each 1 ≤ i ≤ r we have

dXi
t := bit(Xt) dt+

∑
1≤j≤d

σij,t(Xt) dW
j
t +

∑
1≤j≤d

cit,j(x) dN j
t

with a collection of Poisson processes N i
t with intensity λ(i)

t (Xt). At rate λ
(i)
t (Xt) we have

dN i
t = 1 and the jump of the process is de�ned by

x =

 x1

...
xr

  x =

 x1 + c1t,i(x)
...

xr + crt,i(x)

 = x+ ct,i(x)

with the column vector ct,i(x) =
(
cjt,i(x)

)T
1≤j≤r

. If we set M (i)
t (x, dy) = δx+ct,i(x)(dy) then

the generator is given by
Lt = Lct + Ldt

with the generator Lct of the pure di�usion process

dXt = at(Xt) dt+ bt(Xt) dWt

and the jump generator Ldt de�ned in (15.17). This ends the proof of the exercise.

Solution to exercise 272:
For any su�ciently regular functions g(t, x) we have

dg(s,Xs) = [∂s + Ls] g(s,Xs)ds+ dMs(g)

for some martingale Ms(f) with angle bracket

〈M(g)〉s =

∫ s

0

ΓLu(Pu,s(g), Pu,s(g))(Xu) du.
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We �x a given time horizon t ≥ 0. By applying this formula to the function g(s, x) =
Ps,t(f)(x) for s ∈ [0, t] and using the backward evolution equations (15.16) we have

∂sg(s, x) + Lsgs(x) = 0⇒ Ps,t(f)(Xs) = Ms(g).

This shows that

f(Xt)− P0,t(f)(X0) = Mt(g)−M0(g)

⇒ E
[
(f(Xt)− P0,t(f)(X0))

2
]

= E (〈M(g)〉t) =
∫ t

0
ηs (ΓLs(Ps,t(g), Ps,t(g))) ds.

On the other hand, we have

E
[
(f(Xt)− E(f(Xt)))

2
]

︸ ︷︷ ︸
=ηt[(f−ηt(f))2]

= E
[
(f(Xt)− P0,t(f)(X0))

2
]

+ E
[
(P0,t(f)(X0)− E(f(Xt)))

2
]

︸ ︷︷ ︸
=η0[(P0,t(f)−η0[P0,t(f)])2]

and this ends the proof of the exercise.

Solution to exercise 273:
The �rst assertion is immediate since N−1 Xt = N−1

∑
1≤i≤N δξit is the empirical

measure associated with N independent copies of Xt.
For functions of the form f(ξt) = F (Xt(ϕ)), the Doeblin-It	o formula (15.22) takes the

form
df(ξt) = Lt(f)(ξt)dt+ dMt(f)

with a martingale with angle bracket de�ned by the formulae

〈M(f),M(f)〉t =

∫ t

0

ΓLs(f(s, .), f(s, .))(ξs) ds.

If we choose the empirical type functions

f1(ξt) = Xt(ϕ) and f2(ξt) = (Xt(ϕ))
2

= f1(ξt)
2

then we have

f1(x1, . . . , xi, . . . , xN ) = f(x1) + . . .+ f(xi) + . . .+ f(xN ) and Lt(1) = 0

⇒ L
(i)
t f1(x1, . . . , xi, . . . , xN ) = L(ϕ)(xi)

⇒ Lt(f1)(x) =
∑

1≤i≤N

L
(i)
t f(x1, . . . , xi, . . . , xN ) =

∑
1≤i≤N

L(f)(xi) = Nm(x)(f).

In much the same way, we check that

[f1(x1, . . . xi−1, yi, xi+1, . . . , xN )− f1(x)]
2

= [ϕ(yi)− ϕ(xi)]
2

⇒ Lt[(f1 − f1(x))2](x) =
∑

1≤i≤N

Lt [ϕ− ϕ(xi)]
2

(xi)

⇒ ΓLt(f1, f1)(x) = Lt[(f1 − f1(x))
2
](x) = Nm(x) (ΓLt(ϕ,ϕ)) .
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This shows that
dXt(ϕ) = Xt(Lt(ϕ)) dt+ dMt(f1)

with a martingaleMt(f1) with angle bracket

〈M(f1),M(f1)〉t =

∫ t

0

Xs (ΓLs(ϕ,ϕ)) ds.

This yields the evolution equations

µt(f) := E (Xt(ϕ))⇒ ∂tE (Xt(ϕ)) = ∂tµt(ϕ) = µt(Lt(ϕ)) = E (Xt(Lt(ϕ))) dt.

We conclude that
µ0(ϕ) = N η0(ϕ)⇒ µt(ϕ) = N ηt(ϕ).

We �x the time horizon t. Applying the Doeblin-It	o formula to the function f(s, x) =∑
1≤i≤N Ps,t(ϕ)(xi) w.r.t. s ∈ [0, t] we have

dXs(Ps,t(ϕ)) = Xs(∂sPs,t(ϕ) + Ls(Ps,t(ϕ))︸ ︷︷ ︸
=0

) ds+ dM [t]
s (ϕ) = dM [t]

s (ϕ)

with a martingale M [t]
s (ϕ) with angle bracket

∀s ∈ [0, t]
〈
M [t](ϕ),M [t](ϕ)

〉
s

=

∫ s

0

Xτ (ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ))) dτ.

We conclude that

Xt(Pt,t(ϕ))−Xs(Ps,t(ϕ)) = Xt(ϕ)−Xs(Ps,t(ϕ)) = M
[t]
t (ϕ)−M [t]

s (ϕ)

=⇒ E (Xt(ϕ) | Xs) = Xs(Ps,t(ϕ),

as well as

E
(

[Xt(ϕ)−X0(P0,t(ϕ))]
2
)

= E
(∫ t

0

Xτ (ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ)) dτ

)
= N

∫ t

0

ητ (ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ)) dτ.

On the other hand, applying the Doeblin-It	o formula to the function f(s, x) = Ps,t(ϕ)(x)
we �nd that

dPs,t(ϕ)(Xs) = (∂sPs,t(ϕ) + Ls(Ps,t(ϕ))(Xs) )︸ ︷︷ ︸
=0

ds+ dMs(P.,t(ϕ))

with a martingale Ms(P.,t(ϕ)) with angle bracket

∀s ∈ [0, t] 〈M(P
.,t(ϕ)),M(P

.,t(ϕ))〉s =

∫ s

0

(ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ)) (Xτ ) dτ.

This implies that

E
(

[Xt(ϕ)−X0(P0,t(ϕ))]
2
)

= N

∫ s

0

E ((ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ)) (Xτ )) dτ

= N E
(

[Pt,t(ϕ)(Xt)− P0,t(ϕ)(X0)]
2
)

= N E
(

[ϕ(Xt)− P0,t(ϕ)(X0)]
2
)
.
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On the other hand, we have

E
(

[X0(P0,t(ϕ))−N ηt(ϕ)]
2
)

= E
(

[X0([P0,t(ϕ)− ηt(ϕ)]]
2
)

= N η0

(
[P0,t(ϕ)− ηt(ϕ)]

2
)

from which we conclude that

E
(

[Xt(ϕ)−N ηt(ϕ)]
2
)

= E
(

[[Xt(ϕ)−X0(P0,t(ϕ))] + [X0(P0,t(ϕ))−N ηt(ϕ)]]
2
)

= E
(

[Xt(ϕ)−X0(P0,t(ϕ))]
2
)

+ E
(

[X0(P0,t(ϕ))−N ηt(ϕ)]
2
)

= N
(
E
(

[ϕ(Xt)− P0,t(ϕ)(X0)]
2
)

+ η0

(
[P0,t(ϕ)− ηt(ϕ)]

2
))

= N ηt

(
[ϕ− ηt(ϕ)]

2
)
.

Using the integration by parts formula (15.24) (or equivalently, the de�nition of the
carré du champ operator ΓLt associated with some generator Lt) we have

Lt(f2) = Lt(f2
1 ) = 2f1 Lt(f1) + ΓLt(f1, f1).

This shows that

d (Xt(ϕ))
2

= [2 Xt(ϕ) Xt(Lt(ϕ)) + Xt (ΓLt(ϕ,ϕ))] dt+ dMt(f2)

with a martingale Mt(f2). We �x the time horizon t. An application of the Doeblin-It	o

formula to the function f(s, x) =
(∑

1≤i≤N Ps,t(ϕ)(xi)
)2

w.r.t. s ∈ [0, t] leads us to

d (XsPs,t(ϕ))
2

= [2 Xs(Ps,t(ϕ)) Xs(∂sPs,t(ϕ)) + 2 Xs(Ps,t(ϕ)) Xs(Ls(Ps,t(ϕ)))

+Xs (ΓLs(ϕ,ϕ))] ds+ dM[t]
s (f)

= Xs (ΓLs(Ps,t(ϕ), Ps,t(ϕ)) ds+ dM[t]
s (f)

with some martingaleM[t]
s (f), s ∈ [0, t]. We conclude that

E
(

(Xt(ϕ))
2
)
− E

(
(X0P0,t(ϕ))

2
)

= E
(

(XtPt,t(ϕ))
2
)
− E

(
(X0P0,t(ϕ))

2
)

=

∫ t

0

E (Xs (ΓLs(Ps,t(ϕ), Ps,t(ϕ))) ds

= N

∫ t

0

ηs (ΓLs(Ps,t(ϕ), Ps,t(ϕ)) ds

= N E
(

[ϕ(Xt)− P0,t(ϕ)(X0)]
2
)
.

On the other hand, we have

E
(

(X0P0,t(ϕ))
2
)

= N η0

(
[P0,t(ϕ)]

2
)

+N(N − 1) (ηt (ϕ))
2

= N η0

([
P0,t(ϕ)− ηt(ϕ)2

])
+N2 (ηt (ϕ))

2

and

ηt

(
[ϕ− ηt(ϕ)]

2
)

= E
(

[ϕ(Xt)− ηt(ϕ)]
2
)

= E
(

[[ϕ(Xt)− P0,t(ϕ)(X0)] + [P0,t(ϕ)(X0)− ηt(ϕ)]]
2
)

= E
(

[ϕ(Xt)− P0,t(ϕ)(X0)]
2
)

+ η0

(
[P0,t(ϕ)− ηt(ϕ)]

2
)
,
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from which we prove that

E
(

(Xt(ϕ))
2
)

= N2 (ηt (ϕ))
2

+N ηt

(
[ϕ− ηt(ϕ)]

2
)
.

This ends the proof of the exercise.

Solution to exercise 274:
We follow the arguments provided in exercise 270. We have Xt := (X1

t , X
2
t ) ∈ S =

Rr=r1+r2 = (S1 × S2) = (Rr1 × Rr2).{
dX1

t = a1
t (X

1
t ) dt+ b1t (X

1
t ) dW 1

t + c1t (X
1
t ) dN1

t

dX2
t = a2

t (Xt) dt+ b2t (Xt) dW
2
t + c2t (Xt) dN

2
t .

The jumps

(x1, x2) 7→ (x1 + c1t (x
1), x2) and (x1, x2) 7→ (x1, x2 + c2t (x

1, x2))

occur at rate λ1
t (x

1), respectively at rate λ2
t (x

1, x2). Between these jumps the system evolves
according to the di�usion process{

dX1
t = a1

t (X
1
t ) dt+ b1t (X

1
t ) dW 1

t

dX2
t = a2

t (Xt) dt+ b2t (Xt) dW
2
t .

We conclude that the generator of Xt is de�ned by

Lt = Lct + Ldt

with

Lct(f)(x) =
∑

1≤i1≤r1

a1,i1
t (x1) ∂x1

i1
f(x) +

∑
1≤i2≤r2

a2,i2
t (x1) ∂x2

i2
f(x)

+
1

2

∑
1≤i1,j1≤r1

(
b1t
(
b1t
)T)

(x1) ∂x1
i1
,x1
j1
f(x)

+
1

2

∑
1≤i2,j2≤r1

(
b2t
(
b2t
)T)

(x) ∂x2
i2
,x2
j2
f(x)

and the jump generator

Ldt (f)(x) = λ1
t (x

1)
(
f
(
x1 + c1t (x

1), x2)
)
− f

(
x1, x2

))
+λ2

t (x)
(
f
(
x1, x2 + c2t (x)

)
− f

(
x1, x2

))
.

The generator L1
t = L1,c

t + L1,d
t of the process X1

t ∈ Rr1 reduces to the sum of the
generator of the di�usion

dX1
t = a1

t (X
1
t ) dt+ b1t (X

1
t ) dW 1

t

and the jump generator

L1,d
t (f)(x1) = λ1

t (x
1)
(
f
(
x1 + c1t (x

1)
)
− f

(
x1
))
.

This ends the proof of the exercise.
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Solution to exercise 275:
We further assume that N1

t = (N1,j
t )1≤i≤r1 , respectively N

2
t = (N2,j

t )1≤i≤r2 , is a column
vector of independent Poisson entries with intensities λ1,j

t (X1
t ), respectively λ2,j

t (Xt).
At rate λ1,i

t (X1
t ) we have dN1,i

t = 1 and the jump of the process X1
t is de�ned by

x1 =

 x1
1
...
x1
r1

  x =

 x1
1 + c1,1t,i (x1)

...
x1
r1 + c1,r1t,i (x1)

 = x1 + c1t,i(x
1),

with the column vector c1t,i(x
1) =

(
c1,jt,i (x1)

)T
1≤j≤r1

. In much the same way, at a rate

λ2,i
t (Xt) we have dN

2,i
t = 1 and the jump of the process X2

t is de�ned by

x2 =

 x2
1
...
x2
r2

  x =

 x2
1 + c2,1t,i (x)

...
x2
r2 + c2,r2t,i (x)

 = x2 + c2t,i(x),

with the column vector c2t,i(x) =
(
c2,jt,i (x)

)T
1≤j≤r2

. We conclude that the generator of Xt is

de�ned by
Lt = Lct + Ldt with Ldt = L1,d

t + L2,d
t .

The di�usion generator Lct is the same as the one presented in exercise 274. The jump
generators L1,d

t and L2,d
t are de�ned by

L1,d
t (f)(x) =

∑
1≤i1≤r1

λ1,i1
t (x1)

(
f
(
x1 + c1t,i1(x1), x2)

)
− f

(
x1, x2

))
L2,d
t (f)(x) =

∑
1≤i2≤r2

λ2,i2
t (x)

(
f
(
x1, x2 + c2t,i2(x))

)
− f

(
x1, x2

))
.

This ends the proof of the exercise.

Solution to exercise 276:
At some rate, say λ(Xt) the jump of the process Xt ∈ {0, 1} is de�ned by

x  1x=0 1 + 1x=1 0 = 1x=0 1.

Between the jumps the process evolves as{
dXt = 0
dYt = bt(Yt) dt+Xt σt(Yt) dWt.

We conclude that the generator of Zt = (Xt, Yt) is de�ned by

Lt = Lct + Ld

with

Lct(f)(x, y) =
∑

1≤i≤r

bit(x, y) ∂yif(x, y) +
1

2

∑
1≤i,j≤r

x2
(
σt (σt)

T
)

(x, y) ∂yi,yjf(x, y)
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and

Ld(f)(x, y) = λ(x) (f(1x=0, y)− f(x, y))

= λ(x)

∫
(f(x′, y)− f(x, y)) (1x=0 δ1(dx′) + 1x=1 δ0(dx′)) .

In other words

Ld(f)(0) = λ(0) (f(1)− f(0)) and Ld(f)(1) = λ(1) (f(0)− f(1)) .

This ends the proof of the exercise.

Solution to exercise 277: Notice that∑
x∈{0,1}

∫
Rr

pt(x, y) Ld(f)(x, y) dy =

∫
Rr

λ(0)

∫
(f(1, y)− f(0, y)) pt(0, y) dy

+

∫
Rr

λ(1)

∫
(f(0, y)− f(1, y)) pt(1, y) dy.

Choosing f(x, y) = 1x=0 g(y) we �nd that

∑
x∈{0,1}

∫
Rr

pt(x, y) Ld(f)(x, y) dy =

∫
g(y) (λ(1) pt(1, y)− λ(0)pt(0, y)) dy.

In this situation, for any smooth function g with compact support we have∑
x∈{0,1}

∫
Rr

pt(x, y) Lct(f)(x, y) dy =
∑

1≤i≤r

∫
Rr

pt(0, y) bit(x, y) ∂yig(y) dy

= −
∑

1≤i≤r

∫
Rr

∂yi
(
pt(0, y) bit(0, y)

)
g(y) dy.

This yields

∂tE(f(Xt, Yt)) = ∂tE(1Xt=0 g(Yt)) =

∫
Rr

g(y) ∂tpt(0, y) dy

=

∫
g(y)

(λ(1) pt(1, y)− λ(0)pt(0, y))−
∑

1≤i≤r

∂yi
(
pt(0, y) bit(0, y)

) dy.

This implies that

∂tpt(0, y) = [λ(1) pt(1, y)− λ(0) pt(0, y)]−
∑

1≤i≤r

∂yi
(
pt(0, y) bit(0, y)

)
.

In much the same way, by choosing f(x, y) = 1x=1 g(y) we �nd that

∑
x∈{0,1}

∫
Rr

pt(x, y) Ld(f)(x, y) dy =

∫
Rr

g(y) [λ(0) pt(0, y)− λ(1) pt(1, y)] dy.
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In this situation, for any smooth function g with compact support, we have∑
x∈{0,1}

∫
Rr

pt(x, y) Lct(f)(x, y) dy = −
∑

1≤i≤r

∫
Rr

g(y) ∂yi
(
pt(0, y) bit(1, y)

)
dy

+
1

2

∑
1≤i,j≤r

∫
g(y)

[(
σt (σt)

T
)

(x, y) ∂yi,yjpt(1, y)
]
dy.

This yields

∂tE(f(Xt, Yt)) = ∂tE(1Xt=1 g(Yt)) =

∫
Rr

g(y) ∂tpt(1, y) dy

=

∫
g(y)

[λ(0) pt(0, y)− λ(1) pt(1, y)]−
∑

1≤i≤r

∂yi
(
pt(1, y) bit(1, y)

)

+
1

2

∑
1≤i,j≤r

∂yi,yj

[(
σt (σt)

T
)

(1, y) pt(1, y)
] dy.

This implies that

∂tpt(1, y)

= [λ(0) pt(0, y)− λ(1) pt(1, y)]−
∑

1≤i≤r ∂yi
(
pt(1, y) bit(1, y)

)
+ 1

2

∑
1≤i,j≤r ∂yi,yj

[(
σt (σt)

T
)

(1, y) pt(1, y)
]
.

This ends the proof of the exercise.

Solution to exercise 278:
At the jump times Tn of the Poisson process Nt we have

dZTn =
∑

1≤p≤NTn

(Yp − 1)−
∑

1≤p≤NTn−

(Yp − 1)

=
∑

1≤p≤n

(Yp − 1)−
∑

1≤p≤n−1

(Yp − 1) = Yn − 1

so that
XTn −XTn− = XTn− dZTn = XTn− (Yn − 1) ⇒ XTn = Yn XTn−.

Between the jumps Tn ≤ t < Tn+1, the process satis�es the stochastic di�erential equation

dXt = a Xt dt + b Xt dWt.

Applying the Doeblin-It	o formula to the function f(Xt) = logXt we have

d logXt =
1

Xt
dXt −

1

2

1

X2
t

dXtdXt

=

[
a− b2

2

]
dt+ b dWt.
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This means that

∀t ∈ [Tn, Tn+1[ logXt = logXTn +

[
a− b2

2

]
(t− Tn) + b (Wt −WTn)

so that

Xt = XTn exp

([
a− b2

2

]
(t− Tn) + b (Wt −WTn)

)
= XTn−

(
Yn exp

([
a− b2

2

]
(t− Tn) + b (Wt −WTn)

))
.

This shows that

∀t ∈ [0, T1[ Xt = X0 exp

([
a− b2

2

]
t+ b Wt

)
and

XT1
= Y1 XT1− = X0 Y1 exp

([
a− b2

2

]
T1 + b WT1

)
.

For t ∈ [T1, T2[ we also have

Xt = XT1
exp

([
a− b2

2

]
(t− T1) + b (Wt −WT1

)

)
= X0 Y1 exp

([
a− b2

2

]
t+ b Wt

)
and

XT2
= Y2 XT2− = X0 Y1Y2 exp

([
a− b2

2

]
T2 + b WT2

)
.

For t ∈ [T2, T3[ we also have

Xt = XT2 exp

([
a− b2

2

]
(t− T2) + b (Wt −WT2)

)
= X0 Y1 Y2 exp

([
a− b2

2

]
t+ b Wt

)
and

XT3 = Y3 XT3− = X0 Y1Y2Y3 exp

([
a− b2

2

]
T3 + b WT3

)
.

Iterating this procedure, we �nd that

Xt = X0

 ∏
1≤n≤Nt

Yn

 exp

([
a− b2

2

]
t+ b Wt

)
.

This ends the proof of the exercise.

Solution to exercise 279:
Using the fact that dNt×dNt = dNt and dt×dNt = 0 = dNtdWt, we readily check that

dX
(1)
t dX

(2)
t = b

(1)
t (Xt)b

(2)
t (Xt) dNt + c

(1)
t (Xt)c

(2)
t (Xt) dt.
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Observe that the increments of the process (X(1)X(2))t = X
(1)
t X

(2)
t are given by

d(X(1)X(2))t := (X(1)X(2))t+dt − (X(1)X(2))t = X
(1)
t+dtX

(2)
t+dt −X

(1)
t X

(2)
t

= X
(1)
t dX

(2)
t +X

(2)
t dX

(1)
t + dX

(1)
t dX

(2)
t︸ ︷︷ ︸

=b
(1)
t (Xt)b

(2)
t (Xt) dNt+c

(1)
t (Xt)c

(2)
t (Xt) dt

.

This ends the proof of the exercise is now easy completed.

Solution to exercise 280:
The continuous and the pure jump parts of (Xt, Yt) are given by{

dXc
t = −Xt dt+

√
2 Yt dWt

dY ct = −Yt dt−
√

2 Xt dWt
and

{
∆Xt = a(Xt, Yt) Xt dNt
∆Yt = a(Xt, Yt) Yt dNt.

By applying the Doeblin-It	o formula (15.11) to the function f(Xt, Yt) = X2
t + Y 2

t we
have

df(Xt, Yt) = 2Xt dX
c
t + dXc

t dX
c
t + 2Yt dY

c
t + dY ct dY ct

+
(
X2
t (1 + a(Xt, Yt))

2 −X2
t + Y 2

t (1 + a(Xt, Yt))
2 − Y 2

t

)
dNt.

We observe that

2XtdX
c
t + dXc

t dX
c
t + 2YtdY

c
t + dY ct dY

c
t

= 2Xt

(
−Xt dt+

√
2 Yt dWt

)
+ 2 Y 2

t dt+ 2Yt
(
−Yt dt−

√
2 Xt dWt

)
+ 2 X2

t dt = 0.

This yields

df(Xt, Yt) =
(
X2
t

[
(1 + a(Xt, Yt))

2 − 1
]

+ Y 2
t

[
(1 + a(Xt, Yt))

2 − 1
])
dNt

=
(
X2
t + Y 2

t

) [
(1 + a(Xt, Yt))

2 − 1
]
dNt

Choosing

a(Xt, Yt) = −1 + ε

√
1 +

b(Xt, Yt)

X2
t + Y 2

t

we �nd that

(1 + a(Xt, Yt))
2 − 1 =

b(Xt, Yt)

X2
t + Y 2

t

from which we conclude that

df(Xt, Yt) = b(Xt, Yt) dNt.

Between the jump times Tn−1 and Tn of the Poisson process Nt, the process Zt = (Xt, Yt),
with t ∈ [Tn−1, Tn[ is given by the 2-dimensional di�usion{

dXt = −Xt dt+
√

2 Yt dWt

dYt = −Yt dt−
√

2 Xt dWt

starting at ZTn−1
. At the jump time Tn the process jumps from ZTn− to

ZTn = ZTn− + b (ZTn−) .
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For any t ∈ [T0, T1[ we have

d‖Zt‖2 = b(Zt) dNt = 0⇒ ‖Zt‖2 = ‖Z0‖2.

At the jump time T1 the process jumps from ZT1− to

ZT1
= ZT1− + b (ZT1−) .

For any t ∈ [T1, T2[ we have

d‖Zt‖2 = b(Zt) dNt = 0⇒ ‖Zt‖2 = ‖ZT1
‖2.

At the jump time T2 the process jumps from ZT2− to

ZT2
= ZT2− + b (ZT2−) .

This ends the proof of the exercise.

Solution to exercise 281: We have

us(x) = E [ft(Xt) | Xs = x] = E [ft (x+ σ (Wt −Ws))]

= E
[
ft
(
x+ σ

√
t− s W1

)]
=

1

σ
√

2π

1√
t− s

∫
ft (x+ w) exp

[
− w2

2σ2(t− s)

]
dw.

Using an elementary change of variable (y = x+ w (⇒ dy = dw)) we �nd that

us(x) =
1

σ
√

2π

1√
t− s

∫
ft (y) exp

[
− (y − x)2

2σ2(t− s)

]
dy.

It is now readily checked that

∂sus(x) =
1

σ
√

2π
∂s

(
1√
t− s

) ∫
ft (x+ w) exp

[
− w2

2σ2(t− s)

]
dw

+
1

σ
√

2π

1√
t− s

∫
ft (y) ∂s

(
exp

[
− (y − x)2

2σ2(t− s)

])
dy.

On the other hand, we have

∂s

(
1√
t− s

)
=

1

2(t− s)
1√
t− s

and

exp

[
(y − x)2

2σ2(t− s)

]
∂s

(
exp

[
− (y − x)2

2σ2(t− s)

])
= − (y − x)2

2σ2
∂s

(
1

(t− s)

)
= − (y − x)2

2σ2

1

(t− s)2
.

This implies that

∂sus(x) =
1

2(t− s)
us(x)

− 1

2(σ(t− s))2

1

σ
√

2π

1√
t− s

∫
ft (y) (y − x)2 exp

[
− (y − x)2

2σ2(t− s)

]
dy.



1054 Chapter 15

To take the �nal step, observe that

σ2

2
∂2
xus(x) =

1

σ
√

2π

1√
t− s

∫
ft (y)

σ2

2
∂2
x exp

[
− (y − x)2

2σ2(t− s)

]
dy

with

σ2

2
∂2
x

(
exp

[
− (y − x)2

2σ2(t− s)

])
=

1

2(t− s)
∂x

(
(y − x) exp

[
− (y − x)2

2σ2(t− s)

])
= − 1

2(t− s)
exp

[
− (y − x)2

2σ2(t− s)

]
+

1

2(t− s)
(y − x) ∂x

(
exp

[
− (y − x)2

2σ2(t− s)

])
= − 1

2(t− s)
exp

[
− (y − x)2

2σ2(t− s)

]
+

1

2(σ(t− s))2
(y − x)2 exp

[
− (y − x)2

2σ2(t− s)

]
.

This implies that

σ2

2
∂2
xus(x) = − 1

2(t− s)
us(x)

+
1

2(σ(t− s))2

1

σ
√

2π

1√
t− s

∫
ft (y) (y − x)2 exp

[
− (y − x)2

2σ2(t− s)

]
dy.

The end of the proof of the exercise is now easily completed.

Solution to exercise 282:
The �rst assertion is proved in section 15.5. If we choose g(t, x) = e−λt for some λ ∈ R

then we have

g(0, x) = 1 [∂t + Lt] g(t, .) = −λ e−λt and ΓLt(f(t, .), g(t, .)) = 0.

In this situation, the �rst assertion implies that

Mt = f(t,Xt)e
−λt − f(0, X0) +

∫ t

0

e−λs [λ f(s, .)− [∂s + Ls] f(s, .)] (Xs) ds.

In this situation, we have

Mt =

∫ t

0

e−λs dMs(f)

with the martingale dMs(f) = df(s,Xs)− [∂s + Ls] f(s,Xs) ds. This ends the proof of the
exercise is now easy completed.

Solution to exercise 283:
Arguing as in (15.32) we have

Zs,t(f) =

∫ t

s

e−
∫ r
s
Vu(Xu)du dMr(f)
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with the martingale

Mt(f) = f(t,Xt)− f(0, X0)−
∫ t

0

(∂s + Ls) f(s,Xs)ds.

We conclude that
∂tP

V
s,t(f(t, .)) = PVs,t((∂t + LVt )f(t, .)).

This ends the proof of the exercise.

Solution to exercise 284:
Using (15.25) we have

Pr,t = P
(1)
r,t +

∫ t

r

Pr,s1L
(2)
s1 P

(1)
s1,t ds1

= P
(1)
r,t +

∫ t

r

[
P (1)
r,s1 +

∫ s1

r

Pr,s2L
(2)
s2 P

(1)
s2,s1 ds2

]
L(2)
s1 P

(1)
s1,t ds1

= P
(1)
r,t +

∫ t

r

P (1)
r,s1L

(2)
s1 P

(1)
s1,t ds1 +

∫ t

r

∫ s1

r

Pr,s2L
(2)
s2 P

(1)
s2,s1L

(2)
s1 P

(1)
s1,t ds1 ds2.

Iterating and letting t = s0 we �nd the formula

Pr,s0 =
∑
n≥0

∫ s0

r

. . .

∫ sn−1

r

P (1)
r,snL

(2)
sn P

(1)
sn,sn−1

. . . L(2)
s1 P

(1)
s1,s0 dsn . . . ds1.

This ends the proof of the exercise.

Solution to exercise 285:
Using (15.27) we have

Ps,t = Qs,t +

∫ t

s

Qs,s1Ks1Ps1,t ds1

= Qs,t +

∫ t

s

Qs,s1Ks1

[
Qs1,t +

∫ t

s1

Qs1,s2Ks2Ps2,t ds2

]
ds1

= Qs,t +

∫ t

s

Qs,s1Ks1Qs1,t ds1 +

∫ t

s

∫ t

s1

Qs,s1Ks1Qs1,s2Ks2Ps2,t ds2 ds1.

Iterating and letting s = s0 we �nd the formula

Ps0,t =
∑
n≥0

∫ t

s0

. . .

∫ t

sn−1

Qs0,s1Ks1Qs1,s2 . . .KsnQsn,t dsn . . . ds1.

This ends the proof of the exercise.

Solution to exercise 286:
Given a spatially homogeneous jump rate function λt(x) = λ we have

Qs,t(f)(x) := exp [−λ(t− s)] E
(
f(X

(1)
t ) | X(1)

s = x
)

= exp [−λ(t− s)] P (1)
s,t (f)(x).
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In this situation we have

Ps0,t =
∑
n≥0

λn
∫ t

s0

. . .

∫ t

sn−1

Qs0,s1Ks1Qs1,s2 . . .KsnQsn,t dsn . . . ds1

=
∑
n≥0

λn
∫ t

s0

. . .

∫ t

sn−1

exp [−λ {(t− sn) + . . .+ (s1 − s0)}]

×P (1)
s0,s1Ks1P

(1)
s1,s2 . . .KsnP

(1)
sn,t dsn . . . ds1

=
∑
n≥0

λn e−λ(t−s0)

∫ t

s0

. . .

∫ t

sn−1

P (1)
s0,s1Ks1P

(1)
s1,s2 . . .KsnP

(1)
sn,t dsn . . . ds1.

This ends the proof of the exercise.

Solution to exercise 287:
Observe that

exp

(∫ t

s

Wu(Xu)du

)
= 1 +

∫ t

s

Wu(Xu) exp

(∫ u

s

Wv(Xv)dv

)
du.

This yields the integral decomposition

Qs,t(f)(x) = E
(
f(Xt) exp

(∫ t

s

Wu(Xu)du

)
| Xs = x

)
= E

(
f(Xt)

[
1 +

∫ t

s

Wu(Xu) exp

(∫ u

s

Wv(Xv)dv

)
du

]
| Xs = x

)
= Ps,t(f) +

∫ t

s

Qs,u (WuPu,t(f)) du.

This implies that

Qs,t = Ps,t +

∫ t

s

Qs,s1W s1Ps1,t ds1

thus �nishing the proof of the �rst assertion. Observe that

Qs,t = Ps,t +

∫ t

s

Qs,s1W s1Ps1,t ds1

= Ps,t +

∫ t

s

[
Ps,s1 +

∫ s1

s

Qs,s2W s2Ps2,s1 ds2

]
W s1Ps1,t ds1

= Ps,t +

∫ t

s

Ps,s1W s1Ps1,t ds1 +

∫ t

s

∫ s1

s

Qs,s2W s2Ps2,s1W s1Ps1,t ds2 ds1.

Iterating the argument (as in exercise 284) and letting s = r and t = s0 we �nd that

Qr,s0 =
∑
n≥0

∫ s0

r

. . .

∫ sn−1

r

Pr,snW snPsn,sn−1
. . .W s1Ps1,s0 dsn . . . ds1.

This ends the proof of the exercise.
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Solution to exercise 288:
By exercise 283, the process

Zt(f) := e
∫ t
0
V (Xs)ds f(Xt)− f(X0)−

∫ t

0

e
∫ s
0
V (Xr)dr LV f(Xs) ds

is a martingale w.r.t. Ft = σ(Xs, s ≤ t), with

LV f(i, y) := L(f)(i, y) + V (i, y)f(i, y) = L(f)(i, y) + v(i) f(i, y).

We have ∫ t

0

V (Xs)ds = 〈v, It〉 :=
∑
i∈S1

v(i) I
i

t(i) with I
i

t(i) :=

∫ t

0

1Is=i ds.

This implies that

Zt(f) := e〈v,It〉 f(Xt)− f(X0)−
∫ t

0

e〈v,Is〉 (v(Is) f(Xs) + L(f)(Xs)) ds

= e〈v,I
i
t〉 f(Xt)− f(X0)−

∑
i∈S1

∫ t

0

e〈v,Is〉

× (v(i) f(i, Ys) + Li(f(i, .))(Ys) + w(i) (f(i+ 1, Ys)− f(i, Ys))) 1Is=i ds

= e〈v,It〉 f(Xt)− f(X0)−
∑
i∈S1

∫ t

0

e〈v,Is〉

× [w(i) f(i+ 1, Ys) + (v(i)− w(i)) f(i, Ys) + Li(f(i, .))(Ys)] 1Is=i ds.

We conclude that

Zt(f) = e〈v,It〉 f(Xt)− f(X0)−
∑
i∈S1

∫ t

0

e〈v,Is〉

×
[
w(i) f(i+ 1, Ys) + Lv−wf(i, Ys)

]
1Is=i ds

with

Lv−w(f)(i, y) := L(f)(i, y) + (v(i)− w(i)) f(i, y)

= Li(f(i, .))(y) + (v(i)− w(i)) f(i, y) := Lv−wi (f(i, .)) .

This ends the proof of the exercise.

Solution to exercise 289:
By construction we have

Zt(f) = e〈v,It〉 f(It, Yt)− f(I0, Y0) +

∫ t

0

e〈v,Is〉 h(Ys) 1Is=m−1 ds.

This ends the proof of the exercise.

Solution to exercise 290:
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We have

−Lt(wc,y)(x) = wc,y

 ∑
1≤i,j≤d

(
σtσ

T
t

)
i,j

(x) yi yj −
∑

1≤i≤d

yib
i
t(x)


≥ c e−‖y‖1δ

[
ρ ‖y‖21 − ‖y‖1 ‖b‖D

]
with

δ = max
1≤i≤d

sup
x∈D

xi and ‖b‖D = max
1≤i≤d

sup
x∈D
|bit(x)|.

Choosing y s.t. ‖y‖1 = ρ−1 [1 + ‖b‖D] we have

ρ ‖y‖21 − ‖y‖1 ‖b‖D = ‖y‖1 [ρ ‖y‖1 − ‖b‖D] = ‖y‖1

and
c e−‖y‖1δ

[
ρ ‖y‖21 − ‖y‖1 ‖b‖D

]
= c e−‖y‖1δ ‖y‖1.

This implies that

c ≥ eρ
−1[1+‖b‖D]δ ρ [1 + ‖b‖D]

−1 ⇒ c e−‖y‖1δ ‖y‖1 ≥ 1.

This ends the proof of the exercise.

Solution to exercise 291:
We have the almost sure convergence of the stopped martingale

Nt := Mt∧T = →t→∞ N∞ = MT .

In addition, using Doob's stopping theorem (theorem 15.6.1), Nt is a martingale null at the
origin, so that we have E(Nt) = 0, for any t ≥ 0. In addition, we have

E
(

(Nt −Ns)2
)

= E (〈M,M〉t∧T − 〈M,M〉s∧T ) ≤ c E (|(t ∧ T )− (s ∧ T )|) .

Using the dominated convergence theorem, we also have

E(T ) <∞ =⇒ lim
s,t→∞

E (|(t ∧ T )− (s ∧ T )|) = 0 =⇒ lim
s,t→∞

E
(

(Nt −Ns)2
)

= 0.

We conclude that Nt = Mt∧T is a Cauchy sequence in L2(P). By completeness Mt∧T
converges in L2(P) to MT so that E(MT ) = 0.

When Mt is de�ned by

Mt =

∫ t

0

Xs dWs

for any s ≤ t, we have

〈M,M〉t∧T − 〈M,M〉t∧T =

∫ t∧T

s∧T
X2
s ds ≤ c ((t ∧ T )− (s ∧ T )) .

From the �rst part of the exercise,
∫ t∧T

0
Xs dWs converges to

∫ T
0

Xs dWs in L2(P) as

t ↑ ∞, and we have E
(∫ T

0
Xs dWs

)
= 0.

This ends the proof of the exercise.
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Solution to exercise 292:
The Cauchy problem is a particular case of the one discussed in (15.36). Using the

backward equation (15.16) we have

∂svs = ∂sPs,t(ft)− Ps,s(gs) +

∫ t

s

∂sPs,u(gu) du

= −gs − LsPs,t(ft)−
∫ t

s

LsPs,u(gu) du = −gs − Ls
(
Ps,t(ft) +

∫ t

s

Ps,u(gu) du

)
= −gs − Ls(vs).

We also have

vt(x) = Pt,t(ft) +

∫ t

t

Ps,u(gu) du = ft.

This ends the proof of the exercise.

Solution to exercise 293:
We have

wt(x) = E
(
f(Xt) +

∫ t

0

gs(Xt−s) ds | X0 = x

)
= Pt(f)(x) +

∫ t

0

Pt−s(gs)(x) du

with the Markov semigroup

Pt(f)(x) = E (f(Xt) | X0 = x) .

This implies that

∂twt = ∂tPt(f0) + ∂t

∫ t

0

Pt−s(gs) du+

∫ t

0

∂tPt−s(gs) du

= LPt(f) + gt +

∫ t

0

LPt−s(gs) du = L

[
P0,t(f)

∫ t

0

Pt−s(gs) du

]
+ gt

= Lwt + gt

with the initial condition w0 = f .
This ends the proof of the exercise.

Solution to exercise 294:
By a simple conditioning argument, we have

γt(f) = E
(
E
(
f(Xt) exp

(
−
∫ t

s

Vu(Xu)du

)
|Xs

)
exp

(
−
∫ s

0

Vu(Xu)du

))
= E

(
Qs,t(f)(Xs) exp

(
−
∫ s

0

Vu(Xu)du

))
= γs(Qs,t(f)).
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This implies that
γt(f) = γs(Qs,t(f)) = (γsQs,t)(f)

from which we conclude that γt = γsQs,t. On the other hand we have

(15.31)⇒ ∂tγt(f) = ∂tη0(Q0,t(f))
= η0(∂tQ0,t(f)) = η0(Q0,t(L

V
t (f)))

= γt(L
V
t (f)) = γt(Lt(f))− γt(fVt).

We also notice that

∂t log γt(1) =
1

γt(1)
∂tγt(1)

=
1

γt(1)
∂tE

(
exp

(
−
∫ t

0

Vu(Xu)du

))
= − 1

γt(1)
E
(
V (Xt) exp

(
−
∫ t

0

Vu(Xu)du

))
= −γt(Vt)

γt(1)
= −ηt(Vt).

This implies that

ηt(f) = E
(
f(Xt) exp

(
−
∫ t

0

(Vu(Xu)− ηu(Vu)) du

))
.

This shows that ηt is de�ned as γt by replacing Vt by (Vt − ηt(Vt)). We conclude that

∂tηt(f) = ηt(Lt(f))− ηt (f(Vt − ηt(Vt))
= ∂tηt(f) = ηt(Lt(f)) + ηt(f)ηt(Vt)− ηt (fVt) .

This ends the proof of the exercise.

Solution to exercise 295:
We let T s be the �rst jump time of Xt arriving at rate λt(Xt) after time s. By con-

struction, for any function f on ([0,∞[×S) we have

K(f)(s, x) = E
(
KT s(f(T s, .))(X

(1)
T s−) 1T s<∞ | Xs = x

)
=

∫ ∞
s

E
(
Kt(f(t, .))(X

(1)
t ) λt(X

(1)
t ) e−

∫ t
s
λr(X(1)

r ) dr | X(1)
s = x

)
dt.

For time homogeneous models, we have

K(f)(s, x) = E
(
K(f(T 0, .))(X

(1)
T 0−) 1T 0<∞ | X0 = x

)
=

∫ ∞
0

E
(
K(f(t, .))(X

(1)
t ) λ(X

(1)
t ) e−

∫ t
0
λ(X(1)

r ) dr | X(1)
0 = x

)
dt.

This shows that K(f)(s, x) doesn't depend on the parameter s. The Markov transitionM
is given for any function f on S by the formula

M(f)(x) =

∫ ∞
0

E
(
K(f)(X

(1)
t ) λ(X

(1)
t ) e−

∫ t
0
λ(X(1)

r ) dr | X(1)
0 = x

)
dt.
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For a constant rate function λ(x) = λ > 0 we have

M(f)(x) =

∫ ∞
0

λ e−λt E
(
K(f)(X

(1)
t ) | X(1)

0 = x
)
dt = E

(
K(f)(X

(1)
T ) | X(1)

0 = x
)

where T stands for an exponential random variable (independent of X(1)
t ) with parameter

λ. This ends the proof of the exercise.

Solution to exercise 296:
Under the minorization conditions, for any non negative function f on S we have con-

struction, we have

M(f)(x) =

∫ ∞
0

E
(
K(f)(X

(1)
t ) λ(X

(1)
t ) e−

∫ t
0
λ(X(1)

r ) dr | X(1)
0 = x

)
dt

≥ (λ?/λ
?)

∫ ∞
0

λ? e−λ
?t ν(f) dt = ε ν(f) with ε = (λ?/λ

?).

The last assertion is a direct consequence of (8.15) and the contraction theorem 8.2.13.
This ends the proof of the exercise.

Solution to exercise 297:
We have

M(f) =

∫ ∞
0

Qt (λ K(f)) dt.

This implies that
M(f) = Q(λK(f)).

Observe that

(15.31)⇒ ∂tQt(f) = Qt(L
(1)(f)−λf)⇒

∫ ∞
0

Qt(L
(1)(f)−λf)(x) dt = [Qt(f)(x)]

∞
0 = −f(x).

This implies that

L(2)(f) = λ(K(f)− f)

⇒ Q(L(f)) =
∫∞

0
Qt
(
L(1)(f) + L(2)(f)

)
dt = −f +

∫∞
0

Qt(λK(f)) dt

from which we �nd that

M(f) = Q(λK(f))⇒ Q(L(f)) = Q(λK(f))− f =M(f)− f.

This clearly implies that

µL(f) ∝ πQ(L(f)) = −π(f) + π(M(f)) = 0.

This ends the proof of the exercise.

Solution to exercise 298:
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Given t ∈ [Tn−1, Tn[ we have the Doeblin-It	o formula

f(Xt)− f(XTn−1) =

∫ t

Tn−1

Ls(f)(Xs) ds+

∫ t

Tn−1

dMs(f)

for some (conditional) martingale (Ms(f))s∈[Tn−1,Tn[ with (conditional) angle bracket

d〈M(f)〉s = ΓLs(f, f)(Xs) ds.

At every time Tn we also have

f(XTn)− f(XTn−) = E (f(XTn)− f(XTn−) | XTn−)︸ ︷︷ ︸
LDTn−(f)(XTn−)

+MD
Tn(f)−MD

Tn−(f)

with the martingale increment

MD
Tn(f)−MD

Tn−(f) = f(XTn)− f(XTn−)− E (f(XTn)− f(XTn−) | XTn−)

= f(XTn)− E (f(XTn) | XTn−) = f(XTn)−KTn−(f)(XTn−)

and the operator LDs de�ned by

LDs (f)(x) = 1D(x)

∫
(f(y)− f(x)) Ks(x, dy).

We set
∀t ∈ [Tn−1, Tn[ MD

t (f) = MD
Tn−(f).

In this notation we have

MD
Tn(f)−MD

Tn−(f) =

∫ Tn

Tn−1

dMD
s (f).

This yields the decomposition

f(Xt)− f(X0)

=
∑
n≥1

(∫ Tn∧t

Tn−1∧t
(Ls(f)(Xs) ds+ dMs(f)] + LDt∧Tn−(f)(Xt∧Tn−) +

∫ Tn∧t

Tn−1∧t
dMD

s (f)

)

=

∫ t

0

[
Ls(f)(Xs) ds+ LDs (f)(Xs) µ

D(ds)
]

+M t(f)

with the martingale

M t(f) =

∫ t

0

(
dMs(f) + dMD

s (f)
)

and the random empirical measure µD =
∑
n≥1

δTn− .

The last assertion is immediate. This ends the proof of the exercise.

Solution to exercise 299:

L(f)(x) = x2 f ′′(x) + x f ′(x) and V (x) = −(x2 − n2) = (n− x)(n+ x).
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We look for a solution of the form

v(x) = xn
∑
i≥0

ai x
i.

We use the convention a−2 = a−1 = 0 so that

x2v(x) = xn
∑
i≥0

ai x
i+2 = xn

∑
i≥2

ai−2 x
i.

We have

v′(x) = n xn−1
∑
i≥0

ai x
i + xn

∑
i≥0

i ai x
i−1

v′′(x) = n(n− 1) xn−2
∑
i≥0

ai x
i + 2 n xn−1

∑
i≥0

i ai x
i−1 + xn

∑
i≥0

i (i− 1) ai x
i−2.

This yields

x v′(x) = n xn
∑
i≥0

ai x
i + xn

∑
i≥0

i ai x
i

x2 v′′(x) = n(n− 1) xn
∑
i≥0

ai x
i + 2 n xn

∑
i≥0

i ai x
i + xn

∑
i≥0

i (i− 1) ai x
i

from which we prove that

x2 v′′(x) + x v′(x) + (x2 − n2) v(x) = 0

⇐⇒ xn
∑
i≥0

[
n ai + i ai + n(n− 1) ai + 2n i ai + i (i− 1) ai + ai−2 − n2 ai

]
xi = 0.

We conclude that
i(i+ 2n) ai + ai−2 = 0.

On the other hand, we have

a−1 = 0 ⇒ a1 = 0 ⇒ a3 = 0 ⇒ a2k+1 = 0.

For the even indices we �nd the recursion

2i(2i+ 2n) a2i + a2i−2 = 0 ⇒ a2i =
(−1)

22 i (i+ n)
a2(i−1) = . . . =

(−1)i

22i i! (n+ i)!
n! a0.

By choosing a0 = 2−n n! we conclude that

a2i =
(−1)i

22i+n i! (n+ i)!
⇒ v(x) =

(x
2

)n ∑
i≥0

(−1)i

i!(n+ i)!

(x
2

)2i

= Bn(x).

This ends the proof of the exercise.

Solution to exercise 300:
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The Dirichlet-Poisson problem has the form (15.38) with (L, V, h) =
(

1
2∂

2
x, 0, 0

)
. The

operator L = 1
2∂

2
x is the generator of Xt = X0 +Wt. Using (15.42) we have

v(x) = E

(∫ TD

0

g(Xs) ds | X0 = x

)
.

The second assertion is immediate after choosing the unit function g = 1.
This ends the proof of the exercise.

Solution to exercise 301:
We have

d (u(Xt)− tL(u)(Xt)) = L(u)(Xt)dt+ dMt(u)− L(u)(Xt)dt− t L2(u)(Xt)dt− tdMt(L(u))

= −t L2(u)(Xt)dt− tdMt(L(u)) + dMt(u)

from which we prove that

Nt(u) = u(Xt)− tL(u)(Xt)− u(X0) +

∫ t

0

s L2(u)(Xs)ds =

∫ t

0

(sdMs(L(u)) + dMs(u))

and

E (Nt(u) | X0) = E
(
u(Xt)− tL(u)(Xt) +

∫ t

0

s L2(u)(Xs)ds | X0

)
− u(X0) = 0.

On the other hand, using the fact that{
L2u(x) = 0 if x ∈ D

(u(x), Lu(x)) = (f(x), g(x)) if x ∈ ∂D

we prove that

u(x) = E
(
u(XTD )− TDL(u)(XTD ) +

∫ t

0

s L2(u)(Xs)ds | X0 = x

)
= E (f(XTD )− TD g(XTD ) | X0 = x) .

This ends the proof of the exercise.

Solution to exercise 302:
We �x the time horizon t and we let us, s ∈ [0, t] be the solution of

∂sus(x) +
σ2

2
∂2
xus(x) = 0 for any (s, x) ∈ ([0, t]×]− a, a[)

us(x) = 0 for any (s, x) ∈ ([0, t]× {−a,+a})
ut(x) = 1 for any x ∈]− a, a[.

By (15.50) the solution is given by

D =]− a, a[⇒ us(x) = E
(

1
T

(s)
D >t

| Xs = x
)

= E
(

1
T

(0)
D >(t−s) | X0 = x

)
= vt−s(x)
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with the function
vt(x) := E

(
1
T

(0)
D >t

| X0 = x
)
.

By construction, we have

∀s ≤ t ∂sus(x) = −∂rvr(x)|r=t−s = −σ
2

2
∂2
xvr(x)|r=t−s ⇒ ∀r ≥ 0 ∂rvr =

σ2

2
∂2
xvr

as well as the boundary conditions

∀x ∈]− a, a[ v0(x) = ut(x) = 1 and ∀(t, x) ∈ ([0,∞[×{−a,+a}) v0(x) = ut(x) = 0.

This ends the proof of the �rst assertion. Finally we have

∑
n≥0

bn cos
(

(2n+ 1)
π

2

x

a

)
∂t exp

(
−σ

2

2

(
(2n+ 1)

π

2

1

a

)2

t

)

= −σ
2

2

∑
n≥0

bn ∂
2
x

(
cos
(

(2n+ 1)
π

2

x

a

))
exp

(
−πσ

2

8a2
(2n+ 1)2 t

)
.

For x ∈ {−a, a} we have

∀n ≥ 0 cos
(

(2n+ 1)
π

2

)
= 0 = cos

(
−(2n+ 1)

π

2

)
and for t = 0 and x ∈]− a, a[ we have the boundary condition

v0(x) =
∑
n≥0

bn cos
(

(2n+ 1)
π

2

x

a

)
= 1,

with the Fourier series coe�cients

bn =
1

a

∫ a

−a
1 cos

(
(2n+ 1)

π

2

x

a

)
dx =

4

(2n+ 1)π
(−1)n.

Further details on these Fourier expansions can be found in section 5.8 in the textbook by
Russel L. Herman [148].

This ends the proof of the exercise.

Solution to exercise 303:
We have

vn(x) = sin ((nπ/a)x)⇒ v′n(x) = (nπ/a) cos ((nπ/a)x)⇒ v′′n(x) = −(nπ/a)2 sin ((nπ/a)x).

This shows that

L = ∂2
x ⇒ L(vn) = λn vn with λn = −(nπ/a)2.

On the other hand, we clearly have

vn(0) = sin (0) = 0 = sin (nπ) = vn(a).

This ends the proof of the �rst assertion. The proof of the last assertion follows the same
arguments. This ends the proof of the exercise.
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Solution to exercise 304:

D = ([0, a1]× [0, a2])

⇒ ∂D = ({a1} × [0, a2])︸ ︷︷ ︸
∂1D

∪ ([0, a2]× {a2})︸ ︷︷ ︸
∂2D

∪ ({0} × [0, a2])︸ ︷︷ ︸
∂3D

∪ ([0, a2]× {0})︸ ︷︷ ︸
∂4D

.

We also have

N⊥ = 1∂1D

(
1
0

)
+ 1∂2D

(
0
1

)
+ 1∂3D

(
−1
0

)
+ 1∂4D

(
0
−1

)
.

Arguing as in exercise 303

vn(x) := vn1,n2
(x1, x2) = sin ((n1π/a1)x1) sin ((n2π/a2)x2)

⇒ ∀i ∈ {1, 2} ∂2
xivn = λni vn with λni := −(niπ/ai)

2

⇒
∑

1≤i≤2

∂2
xivn = λn vn with λn =

∑
1≤i≤2

λni

and clearly vn(x) = 0 for any x ∈ ∂D. This ends the proof of the �rst assertion. The
proof of the last assertion follows the same arguments. To check that Neuman condition,
we observe that

vn(x) = cos (n1πx1/a1) cos (n2πx2/a2)

⇒ ∇vn(x) =

(
∂x1

vn
∂x2vn

)
= −

(
(n1π/a1) sin (n1πx1/a1) cos (n2πx2/a2)
(n2π/a2) cos (n1πx1/a1) sin (n2πx2/a2)

)
.

This yields

−∇vn(x) = 1∂1D(x) (n2π/a2) (−1)n1

(
0

sin (n2πx2/a2)

)
+1∂2D(x) (n1π/a1) (−1)n2

(
sin (n1πx1/a1)

0

)
+1∂3D(x) (n2π/a2)

(
0

sin (n2πx2/a2)

)
+1∂4D(x) (n1π/a1)

(
sin (n1πx1/a1)

0

)
.

This clearly implies that 〈∇v(x), N⊥(x)〉 = 0 for any x ∈ ∂D.
This ends the proof of the exercise.

Solution to exercise 305:
We �x the time horizon t and we let us, s ∈ [0, t] be the solution of

∂sus(x) +
σ2

2
∂2
xus(x) = 0 for any (s, x) ∈ ([0, t]×]0, a[)

us(x) = 0 for any (s, x) ∈ ([0, t]× {0, a})
ut(x) = f for any x ∈]0, a[.
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By (15.50) the solution is given by

D =]0, a[⇒ us(x) = E
(

1
T

(s)
D >t

f(Xt) | Xs = x
)

= E
(

1
T

(0)
D >(t−s) f(Xt−s) | X0 = x

)
= vt−s(x)

with the function

vt(x) := E
(

1
T

(0)
D >t

f(Xt) | X0 = x
)
.

By construction, we have

∀s ≤ t ∂sus(x) = −∂rvr(x)|r=t−s = −σ
2

2
∂2
xvr(x)|r=t−s ⇒ ∀r ≥ 0 ∂rvr =

σ2

2
∂2
xvr

as well as the boundary conditions

∀x ∈]0, a[ v0(x) = ut(x) = f and ∀(t, x) ∈ ([0,∞[×{0,+a}) v0(x) = ut(x) = 0.

This ends the proof of the �rst assertion. Finally we have

λn = −
(nπ
a

)2

⇒ ∂t

(
eσ

2λnt/2
)

sin (nπx/a) =
(
eλnt

) σ2

2
∂2
x sin (nπx/a)

as well as

∀n ≥ 0 sin (nπ) = 0.

This shows that

vt(x) =
∑
n≥1

bn(f) e
σ2

2 λnt sin (nπx/a)

satis�es the desired boundary conditions as soon as for t = 0 and x ∈]0, a[

v0(x) =
∑
n≥1

bn(f) sin (nπx/a) = f(x).

The coe�cients bn(f) are determined by the Fourier Sine series on [0, a]

bn(f) =
2

a

∫ a

0

f(x) sin (nπx/a) dx.

Further details on these Fourier expansions can be found in section 5.8, p.301, and section
5.10 in the textbook by Russel L. Herman [148].

When f(x) = sin (x) and a = π we have directly

v0(x) = sin (x) = b1(f) sin (1 πx/π)⇒ b1(f) = 1.

This yields the solution

λ1 = −1 =⇒ vt(x) = e−
σ2t
2 sin (x).
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When f(x) = x(1− x) and a = 1, using twice an integration by parts we �nd that

bn(f) = 2

∫ 1

0

x(1− x) sin (nπx) dx

=

[
2x(1− x)

cos (nπx)

nπ

]0

1

+
2

nπ

∫ 1

0

(1− 2x) cos (nπx) dx

=
2

nπ

∫ 1

0

(1− 2x) cos (nπx) dx

=
2

n2π2
[(1− 2x) sin (nπx)]

0
1 +

(
2

nπ

)2 ∫ 1

0

sin (nπx) dx

=

(
2

nπ

)2 ∫ 1

0

sin (nπx) dx

=
1

nπ

(
2

nπ

)2

[cos (nπx)]
1
0 =

1

nπ

(
2

nπ

)2

(cos (nπ)− 1) .

This implies that

b2n(f) = 0 and b2n+1(f) = −
(

2

(2n+ 1)π

)3

.

We conclude that

vt(x) = −
∑
n≥0

(
2

(2n+ 1)π

)3

e−
σ2

2 (2n+1)2π2t sin ((2n+ 1)πx).

This ends the proof of the exercise.

Solution to exercise 306:
We follow the same arguments as the ones we used in solving exercise 305.

Qt(f)(x) = E (f(Xt) 1TD>t | X0 = x0) =

∫ 1

0

qt(x, y) f(y) dy.

We have the forward and backward formulae

∂tQt(f)(x) =
1

2
∂xQt(f)(x) = Qt

(
1

2
∂yf

)
.

Using an integration by parts, for any function f s.t. f(0) = 0 = f(1) = 0 we have

Qt

(
1

2
∂2
yf

)
(x) =

∫ 1

0

qt(x, y)
1

2
∂2
yf(y) dy =

∫ 1

0

1

2
∂2
yqt(x, y) f(y) dy.

This implies that

∂tqt(x, y) =
1

2
∂2
yqt(x, y).

We try to �nd a solution of the form

qt(x, y) =
∑
n≥1

αn(t) un(x) un(y)
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with the basis functions un(y) = sin (nπy) (recall that un/
√

2 form an orthonormal basis).
Observe that∑

n≥1 ∂tαn(t) un(x) un(y) = ∂tqt(x, y)

= 2−1σ2 ∂2
yqt(x, y) = −2−1σ2

∑
n≥1

(nπ)2 αn(t) un(x) un(y).

This implies that
∂tαn(t) = −2−1σ2 (nπ)2 αn(t)

from which we conclude that

αn(t) = αn(0) exp
[
−2−1σ2 (nπ)2 t

]
.

This shows that

qt(x, y) =
∑
n≥1

αn(0) exp
[
−2−1σ2 (nπ)2 t

]
un(x) un(y).

For t = 0 we have

f(x) = 2
∑
n≥1

un(x)

∫
f(y) un(y) dy

= Q0(f)(x) =
∑
n≥1

αn(0) un(x)

∫
f(y) un(y) dy ⇒ αn(0) = 2.

We conclude that

qt(x, y) =
∑
n≥1

exp
[
−2−1σ2 (nπ)2 t

]
sin (nπx) sin (nπy).

This ends the proof of the exercise.
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Solution to exercise 307:
By (16.8), we have the evolution equations

∂tγt(f) = γt
(
LV (f)

)
and ∂tηt(f) = ηt (Lηt(f))

with the Schrödinger operator
LV = L− V

and the collection of jump type generators

Lη(f)(0) = L(f)(0) + V (0) (f(1)− f(0)) η(1)

Lη(f)(1) = L(f)(1) + V (1) (f(0)− f(1)) η(0).

The nonlinear jump process Xt in S = {0, 1} with generator Lηt changes its state 0 with
a rate V (0)ηt(1). In other words, it jumps from 0 to 1 at rate V (0)ηt(1)), and from 1 to 0
at rate V (1)ηt(0). Between these jumps it evolves as a Markov process on S with generator
L.

The mean �eld particle model is de�ned by a Markov process ξt = (ξit)1≤i≤N ∈ {0, 1}.
Each particle ξit jumps from 0 to 1 at rate V (0)ηNt (1), and from 1 to 0 at rate V (1)ηNt (0),
with ηNt = 1

N

∑
1≤i≤N δξit . Notice that

V (0)ηNt (1) = V (0)
1

N

∑
1≤i≤N

1ξit=1 and V (1)ηNt (0) = V (1)
1

N

∑
1≤i≤N

1ξit=0.

Between these interacting jumps, each particle evolves independently as as a Markov process
on S with generator L.

The N -mean �eld particle model can be interpreted as an epidemic propagation process.
The state 1 represents the infected individuals, while 0 represents the susceptible ones. The
transitions 0  1  0 represent transitions of a Susceptibe-Infected-Susceptible epidemic
model. These models are called SIS models in biology and statistical inference. In these
settings, the parameters of the Feynman-Kac model can be interpreted as follows:

λ(0) = rate of infection from an external source

λ(1) = rate of recovering of infected individuals

V (0)ηNt (1) = infection rate of susceptible individuals by the infected ones

V (1)ηNt (0) = recovering rate of infected individuals interacting with susceptible ones

= (often null).

This ends the proof of the exercise.
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Solution to exercise 308: Notice that

L(10)(0) = −λ(0) = L(11)(0) and L(10)(1) = λ(1) = −L(11)(1).

This yields

Lη(10)(0) = −λ(0)− V (0)η(1) = −Lη(11)(0)

Lη(10)(1) = λ(1) + V (1)η(0) = −Lη(11)(1)

from which we conclude that

ηLη(10) = η(0) Lη(10)(0) + η(1) Lη(10)(1)

= −η(0) [λ(0) + V (0) (1− η(0))] + (1− η(0)) [λ(1) + V (1)η(0)]

= (V (0)− V (1)) η(0)2 − η(0) ((V (0)− V (1)) + (λ(0) + λ(1))) + λ(1).

This yields the evolution equation

∂tηt(0) = ∂tηt(10) = ηtLηt(10) = a ηt(0)2 − b ηt(0) + c

with
a := [V (0)− V (1)] , b := a+ c+ λ(0), and c := λ(1).

When V (0) = V (1) (i.e. a = 0) the equation takes the form

∂tηt(0) = −b ηt(0) + c with b := c+ λ(0).

In this situation, the solution is given by

P(Xt = 0) = ηt(0) = e−bt
[
η0(0) +

c

b

∫ t

0

bebs ds

]
= e−bt η0(0) +

c

b

(
1− e−bt

)
.

Another simple case occurs when c = 0, and b ≥ a > 0. In this case, the evolution
equation takes the form

∂tηt(0) = ∂tηt(10) = ηtLηt(10) = a ηt(0)2 − b ηt(0).

The solution is given by the formula

ηt(0) =
b

a

η0(0)

η0(0) + ebt
(
b
a − η0(0)

) = e−bt
η0(0)

1− a
b η0(0) (1− e−bt)

.

To check this claim we observe that

∂tηt(0) =
b

a

η0(0)[
η0(0) + ebt

(
b
a − η0(0)

)]2 (
−b
[
ebt

(
b

a
− η0(0)

)
+ η0(0)

]
+ b η0(0)

)
= −b ηt(0) + aηt(0)2.

More generally, we need to solve the Riccati equation

x′ = a x2 − b x+ c with a ∧ c > 0 and b ≥ a+ c > 0.

The solution of this equation has the form

x(t) = −1

a

y′(t)

y(t)
with y′′ + by′ + acy = 0.
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We check this claim by using the fact that

x = −1

a

y′

y
⇒ x′ = −1

a

y′′

y
+

1

a

(
y′

y

)2

= −1

a

y′′

y
+ a x2

⇒ −1

a

y′′

y
= −b x+ c =

b

a

y′

y
+ c⇒ y′′ + by′ + acy = 0.

The characteristic polynomial p(z) of the second order di�erential equation

y′′ + by′ + acy = 0

is given by

p(z) = z2 + bz + ac =

(
z +

b

2

)2

−

((
b

2

)2

− ac

)
.

Under our assumptions, using the fact that a2 + c2 ≥ 2ac we have

b ≥ (a+ c)⇒ b2 ≥ a2 + c2 + 2ac ≥ 4ac⇒
(
b

2

)2

− ac ≥ 0.

Observe that

b2 = 4ac⇒ b = 2
√
a
√
c ≥ a+ c =

(√
a−
√
c
)2

+ 2
√
a
√
c⇒ a = c.

In other words, when b ≥ (a+ c) we have

b2 = 4ac ⇐⇒ a = c = b/2.

We examine the two cases

b2 = 4ac and b2 > 4ac.

• The case b2 = 4ac is associated with the parameters a = c = b/2. In this case, we have

x′ = a x2 − b x+ c = a
(
x2 − 2 x+ 1

)
= a(1− x)2.

If we set x = (1− x), then we have

x′ = −ax2 ⇔ x(t) =
x(0)

1 + ax(0)t
.

Notice that

a = c = b/2 ⇐⇒ [V (0)− V (1)] = λ(1) =
1

2
{[V (0)− V (1)] + λ(1) + λ(0)}

⇐⇒ [V (0)− V (1)] = λ(1) and λ(0) = 0.

We conclude that

ηt(1) = 1− ηt(0) =
η0(1)

1 + λ(1) η0(1) t
−→t↑∞ 0

as soon as η0(1) > 0.
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• In the case b2 > 4ac, the solution of y′′ + by′ + acy = 0 is given by

y(t) = c1 e
z1t + c2 e

z2t

with the two di�erent roots

z1 = −1

2

(
b+

√
b2 − 4ac

)
≤ z2 = −1

2

(
b−

√
b2 − 4ac

)
< 0

of the characteristic polynomial

p(z) =

z +
b

2
−

√(
b

2

)2

− ac

z +
b

2
+

√(
b

2

)2

− ac

 = (z − z2)(z − z1),

and a couple of constants c1, c2 determined by the initial conditions

y(0) = c1 + c2 and y′(0) = c1z1 + c2z2.

A simple calculation shows that

z1y(0) = c1z1 + c2z1

y′(0) = c1z1 + c2z2

z2y(0) = c1z2 + c2z2

⇒
{
c1(z2 − z1) = z2y(0)− y′(0)
c2(z2 − z1) = y′(0)− z1y(0).

To check that y(t) = c1 e
z1t + c2 e

z2t satis�es y′′ + by′ + acy = 0 for any choice of c1, c2
we notice that  acy(t) = c1 ac e

z1t + c2 ac e
z2t

by′ = c1 bz1 e
z1t + c2 bz2 e

z2t

y′ = c1 z
2
1 e

z1t + c2 z
2
2 e

z2t.

Recalling that
p(z1) = z2

1 + bz1 + ac = 0 = z2
2 + bz2 + ac = p(z2)

we end the proof of the desired result.

On the other hand, using the fact that y′(0) = −ax(0)y(0), we �nd that

c1(z2 − z1) = z2y(0)− y′(0) = y(0) (ax(0) + z2)

c2(z2 − z1) = y′(0)− z1y(0) = −y(0) (ax(0) + z1).

This shows that

−a x(t) =
c1 z1 e

z1t + c2 z2 e
z2t

c1 ez1t + c2 ez2t

=
(ax(0) + z2) z1 e

z1t − (ax(0) + z1) z2 e
z2t

(ax(0) + z2) ez1t − (ax(0) + z1) ez2t

=
(ax(0) + z1) z2 − (ax(0) + z2) (z1−z2 + z2) e−(z2−z1)t

(ax(0) + z1)− (ax(0) + z2) e−(z2−z1)t

= z2 +
(ax(0) + z2) (z2 − z1) e−(z2−z1)t

(ax(0) + z1)− (ax(0) + z2) e−(z2−z1)t
.

Observe that the function

θ(t) = (ax(0) + z1)− (ax(0) + z2) e−(z2−z1)t
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is monotone, starts at θ(0) = −(z2 − z1) < 0 and converges to (ax(0) + z1) as t ↑ ∞. Let
us show that (ax(0) + z1) < 0 so that θ(t) cannot change its sign and never crosses the
null axis. We have

ax(0) + z1 ≤ a−
1

2

(
b+

√
b2 − 4ac

)
=

(
a− b

2

)
−

√(
b

2

)2

− ac.

Notice that

a− b

2
≤ 0⇒

(
a− b

2

)
−

√(
b

2

)2

− ac < 0 =⇒ ax(0) + z1 < 0

since b2 > 4ac.

On the other hand, if a− b
2 > 0 then we have

(
a− b

2

)
<

√(
b

2

)2

− ac ⇔ a2 +

(
b

2

)
− ab <

(
b

2

)2

− ac

⇔ a2 − ab < −ac⇔ b > (a+ c)⇒ ax(0) + z1 < 0.

Last but not least, we need to examine the case b = (a+ c). Then we have

b2 = (a2 + c2 + 2ac) > 4ac ⇐⇒ (a− c)2 > 0 ⇐⇒ a 6= c

and (
a− b

2

)
−

√(
b

2

)2

− ac =
1

2

(
(a− c)−

√
a2 + c2

)
.

It is readily checked that

a < c⇒ 1

2

(
(a− c)−

√
a2 + c2

)
< 0 =⇒ ax(0) + z1 < 0

and when a > c we have

(a− c) <
√
a2 + c2 ⇐⇒ a2 + c2 − 2ac ≤ a2 + c2

⇐⇒ ac > 0 =⇒ ax(0) + z1 < 0.

We conclude that x(t) is well de�ned for any t and an initial condition, and it is given by
the formula

x(t) = −z2

a
+
(
x(0) +

z2

a

) (z2 − z1) e−(z2−z1)t

(ax(0) + z2) e−(z2−z1)t − (ax(0) + z1)︸ ︷︷ ︸
>0

.

Finally we observe that

a > 0 ⇒ − z2

a
=

b

2a
−

√(
b

2a

)2

− c

a
≥ 0.

Let us check that

b

2a
−

√(
b

2a

)2

− c

a
≤ 1.
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When b
2a < 1 the result is trivial. When b

2a ≥ 1 we have

0 ≤ b

2a
− 1 ≤

√(
b

2a

)2

− c

a
⇔

(
b

2a

)2

+ 1− b

a
≤
(
b

2a

)2

− c

a

⇔ 1 +
c

a
≤ b

a
⇔ b ≥ a+ c.

This ends the proof of the exercise.

Solution to exercise 309:
We have

Lηt(10)(0) = −λ(ηt, 0) = −a(ut) and Lηt(10)(1) = λ(ηt, 1) = b(ut).

This implies that

∂tηt(0) = ηt(0) Lηt(10)(0) + ηt(1) Lηt(10)(1) = −ut a(ut) + vt b(ut)

and

∂tηt(1) = −∂tηt(0)

= −ηt(0) Lηt(10)(0)− ηt(1) Lηt(10)(1) = ut a(ut)− vt b(ut).

The nonlinear jump process Xt in S = {0, 1} with generator Lηt changes its state x with
a rate λ(ηt, x). In other words it jumps from 0 to 1 at rate λ(ηt, 0) and from 1 to 0 at rate
λ(ηt, 1).

The mean �eld particle model is de�ned by a Markov process ξt = (ξit)1≤i≤N ∈ {0, 1}.
Each particle ξit jumps from 0 to 1 at rate λ(ηNt , 0) and from 1 to 0 at rate λ(ηNt , 1), with
ηNt = 1

N

∑
1≤i≤N δξit .

When λ(ηt, 0) = ηt(1) and λ(ηt, 1) = ηt(0). The limiting system takes the form

∂tηt(0) = −ηt(0) ηt(0) + ηt(1) ηt(1) = 1− 2ηt(0).

In this situation, we have

ηt(0) = e−2t

[
η0(0) +

∫ t

0

e2sds

]
= e−2tη0(0) +

1

2
(1− e−2t)

=
1

2
+ e−2t

(
η0(0)− 1

2

)
.

When λ(ηt, 0) = ηt(1) and λ(ηt, 1) = ηt(0). The limiting system takes the form

∂tηt(0) = −ηt(1) ηt(0) + ηt(0) ηt(1) = 0 = ∂tηt(1).

Hence in this case we have ηt(x) = η0(x), for any x ∈ S.
This ends the proof of the exercise.

Solution to exercise 310:
By integration by parts, we have

∂tηt(f) =

∫
f(x) ∂tpt(x) dx

=

∫
f(x) ∂2

xpt(x) dx−
∫

f(x) ∂x (pt (pt ? a)) (x) dx

=

∫
∂2
xf(x) pt(x) dx+

∫
∂xf(x) b(x, ηt) pt(x) dx =

∫
Lηt(f)(x) pt(x) dx.
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The corresponding nonlinear Markov process is de�ned by

dXt = b(Xt, ηt)dt+
√

2 dWt.

The mean �eld model ξt = (ξit)1≤i≤N associated with this nonlinear di�usion process is
given by {

dξit = b(ξit, η
N
t )dt+

√
2 dW i

t

i = 1, . . . , N
with ηNt :=

1

N

∑
1≤i≤N

δξit

with N independent copies W i
t of Wt. When a(u) = αu+ β we have

b(x, ηt) = α(x−
∫ ∫

y ηt(dy)) = α(x− E(Xt)).

In this situation, the nonlinear model takes the form

dXt = α (Xt − E(Xt)) dt+
√

2 dWt

and the N -mean �eld particle model is de�ned by

dξit = α

ξit − 1

N

∑
1≤i≤N

ξjt

 dt+
√

2 dW i
t =

α

N

∑
1≤i≤N

(
ξit − ξ

j
t

)
dt+

√
2 dW i

t .

Notice that

dXt = α (Xt − E(Xt)) dt+
√

2 dWt ⇒ dE(Xt) = 0⇒ E(Xt) = E(X0).

This ends the proof of the exercise.

Solution to exercise 311:
Reversing the integration order, we have

∂tηt(f) = −ηt(fH(., pt)) +

∫
f(x)

[∫ x

−∞
q(x− y) pt(y) dy

]
dx

= −ηt(fH(., pt)) +

∫
H(x, pt)

[∫
f(y) 1[x,∞[ q(y − x) dy

]
pt(x) dx

= −ηt(fλ(., ηt)) +

∫
λ(x, ηt)

[∫
f(y) 1[x,∞[ q(y − x) dy

]
ηt(dx)

= ηt(Lηt(f)).

The nonlinear jump process Xt with generator Lt,ηt evolves as a time inhomogeneous pure
jump model. At jumps times Tn arriving at rate λ(x, ηt) it jumpsXTn−  XTn = XTn−+Un
where Un stands for a sequence of independent random variables with distribution q(u)du.
When h = 1 the jump intensity resumes to

λ(x, ηt) =

∫ +∞

x

ηt(dy) = P(Xt > x) ↑x↑∞ 1.

Using (16.5), the generator of the mean �eld model ξt = (ξit)1≤i≤N associated with this
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nonlinear jump process is given for any su�ciently regular function F by the formula

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N

∫ +∞

xi
h

(
y −

∫ +∞

−∞
z m(x)(dz)

)
m(x)(dy)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
]
M(xi, dy),

with m(x) := 1
N

∑N
j=1 δxj . For each 1 ≤ i ≤ N , at rate∫ +∞

ξit

h

(
y −

∫ +∞

−∞
z m(ξt)(dz)

)
m(ξt)(dy)

=
1

N

∑
1≤j≤N

1[ξit,∞[(ξ
j
t ) h

ξjt − 1

N

∑
1≤k≤N

ξkt


each particle ξit performs a jump to the right with an amplitude U . When h = 1, the jump
rate of each particle ξit coincides with the proportion of particles ξjt in the r.h.s. of ξit; more
formally, we have∫ +∞

ξit

h

(
y −

∫ +∞

−∞
z m(ξt)(dz)

)
m(ξt)(dy)

h=1
=

1

N

∑
1≤j≤N

1[ξit,∞[(ξ
j
t ).

This ends the proof of the exercise.

Solution to exercise 312:
We have

Lη(f)(x) =

∫
(f((1− ε)x+ εy)− f(x)) κ(x, y) η(dy)

= λ (x, ηt)

∫
(f((1− ε)x+ εy)− f(x)) Kηt(x, dy),

with the intensity function

λ (x, ηt) :=

∫
κ(x, y) ηt(dy)

and with the Markov jump transitions

Kηt(x, dy) =
κ(x, y) ηt(dy)∫
κ(x, z) ηt(dz)

.

This shows that the process Xt is a pure jump process, with a jump rate λ (Xt, ηt).
When a jump occurs at some time t the process jumps from Xt− to Xt = ((1−ε)Xt−+εY ),
where Y is chosen according to the Markov transition Kηt(Xt−, dy).

The N -mean �eld particle model is de�ned in terms of a system of N particles ξt =(
ξit
)

1≤i≤N ∈ S
N . We set ηNt = 1

N

∑
1≤i≤N δξit . At rate

λ
(
ξit, η

N
t

)
=

∫
κ(ξit, y) ηNt (dy) =

1

N

∑
1≤i≤N

κ(ξit, ξ
j
t )
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the particle ξit− jumps to a new opinion ξit = ((1−ε)ξit−+εY it ) where Y it is chosen according
to the Markov transition

KηNt
(ξit−, dy) :=

∑
1≤j≤N

κ(ξit−, ξ
j
t−)∑

1≤l≤N κ(ξit−, ξ
l
t−)

δξit−(dy).

Solution to exercise 313:
For symmetric densities k(x, y) = k(y, x), choosing the multidimensional function f1(x) =

x we have

∂tηt(f1) = ε

∫
(y − x) κ(x, y) ηt(dx)ηt(dy) = 0.

This shows that ∫
x ηt(dx) =

∫
x η0(dx) = 0.

In addition, choosing f2(x) = ‖x‖2 = 〈x, x〉 we have

∂tηt(f2) = ε2
∫
‖y − x‖2 κ(x, y) ηt(dx)ηt(dy)− 2ε

∫
〈x− y, x〉 κ(x, y) ηt(dx)ηt(dy).

By symmetry arguments, observe that∫
〈x− y, x〉 κ(x, y) ηt(dy)ηt(dy) =

∫
〈y − x, y〉 κ(x, y) ηt(dx)ηt(dy)

= −
∫
〈x− y, y〉 κ(x, y) ηt(dx)ηt(dy).

This yields

∂tηt(f2) = −ε(1− ε)
∫
‖y − x‖2 κ(x, y) ηt(dx)ηt(dy) ≤ 0⇒ ηt(f2) ≤ η0(f2).

This ensures the existence of the limiting second moment limt↑∞ ηt(f2) < ∞ as soon as
η0(f2) <∞.

When κ = 1 we have

∂tηt(f2) = −2ε(1− ε) ηt(f2) ⇒ ηt(f2) = e−2ε(1−ε)t η0(f2).

In addition, for any Lipschitz function ‖f(x) − f(y)‖ ≤ ‖x − y‖ using Cauchy-Schwartz
inequality we prove that

1

2
∂t‖ηt(f)‖2 = 〈∂tηt(f), ηt(f)〉

=

∫
〈(f((1− ε)x+ εy)− f(x)), ηt(f)〉 ηt(dx)ηt(dy)

≤ ε ‖ηt(f)‖
∫
‖y − x‖ ηt(dx)ηt(dy) ≤

√
2 ε ‖ηt(f)‖e−ε(1−ε)t (η0(f2))

1/2
.

In the last assertion we have used the fact that(∫
‖y − x‖ ηt(dx)ηt(dy)

)2

≤
∫
‖y − x‖2 ηt(dx)ηt(dy) ≤ 2 ηt(f2).
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This implies that

∂t‖ηt(f)‖
(

= ∂t
√
‖ηt(f)‖2

)
=

1

2

1

‖ηt(f)‖
∂t‖ηt(f)‖2 ≤

√
2 ε e−ε(1−ε)t (η0(f2))

1/2

from which we conclude that

‖ηt(f)‖ ≤ ‖η0(f)‖+ (2η0(f2))
1/2

ε

∫ t

0

e−ε(1−ε)s ds

= ‖η0(f)‖+ (2η0(f2))
1/2

(1− ε)
(

1− e−ε(1−ε)t
)
.

This ends the proof of the exercise.

Solution to exercise 314: A simple integration by parts shows that

∂tηt(f) =

∫
f(x) ∂tpt(x) dx

= −
∫

f(x) ∂x (Bηt pt) dx+
1

2

∫
f(x) ∂2

x

(
D2
ηt pt

)
dx

=

∫
Bηt(x) ∂xf(x) pt(x) dx+

1

2

∫
D2
ηt(x) ∂2

xf(x) pt(x) dx = ηt(Lηt(f)).

The nonlinear process Xt with distribution ηt is given by the stochastic di�erential equation

dXt = Bηt(Xt) dt+Dηt(Xt) dWt.

Here Wt denotes the 1-dimensional Brownian motion. The N -mean �eld particle approxi-
mation of the nonlinear di�usion is de�ned by{

dξit = BηNt (ξit) dt+DηNt
(ξit) dW

i
t

i = 1, . . . , N with ηNt = 1
N

∑
1≤j≤N δξjt

,

where W i
t = (W i,j)1≤j≤r stands for N independent copies of the r-dimensional Brownian

motion Wt. Notice that

BηNt (x) = α

(∫ x

−∞
ηNt (dy)

)
= α

 1

N

∑
1≤j≤N

1]−∞,x](ξ
j
t )


and

DηNt
(x) = β

 1

N

∑
1≤j≤N

1]−∞,x](ξ
j
t )

 .

This shows that{
dξit = α

(
1
N

∑
1≤j≤N 1]−∞,ξit](ξ

j
t )
)
dt+ β

(
1
N

∑
1≤j≤N 1]−∞,ξit](ξ

j
t )
)
dW i

t

i = 1, . . . , N.

This ends the proof of the exercise.

Solution to exercise 315:
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We have dXi
t =

[
∂xiV1(Xt) +

∫
∂xiV2(Xt − x) ηt(dx)

]
dt+

∑
1≤j≤r

σij(Xt) dW
j
t

i = 1, . . . , r

with ηt(dx) = P(Xt ∈ dx). The generator of Xt is given by

Lt,ηt(f)(x) =
∑

1≤i≤r

[
∂xiV1(x) +

∫
∂xiV2(x− y) ηt(dy)

]
∂xif(x)

+
1

2

∑
1≤i,j≤r

(σσT )i,j(x) ∂xi,xjf(x).

The N -mean �eld particle approximation of the nonlinear di�usion is de�ned by dξit = ∂V1(ξit) dt+
1

N

∑
1≤j≤N

∂V2(ξit − ξ
j
t ) dt+ σ(ξit) dW

i
t

i = 1, . . . , N

where W i
t = (W i,j)1≤j≤r stands for N independent copies of the r-dimensional Brownian

motion Wt. As discussed in the beginning of section 16.1, the nonlinear di�usion can be
interpreted as a time inhomogeneous di�usion. Therefore, by (15.21) the density pt(x)
satis�es the nonlinear Fokker-Planck equation

∂tpt(x) = −
d∑
i=1

∂i
(
bit,pt pt

)
+

1

2

d∑
i,j=1

∂i,j

((
σt(σt)

T
)
i,j

pt

)
,

with the drift functions

bit,pt(x) = ∂xiV1(x) +

∫
∂xiV2(Xt − x) pt(x) dx.

This ends the proof of the exercise.

Solution to exercise 316:
Notice that

x+ ρi1/N (x) =

x1 +
1

N
, . . . , xi−1 +

1

N
, 0︸︷︷︸

i−th

, xi+1 +
1

N
, . . . , xN +

1

N


so that

ρi1/N (x) = ρi0(x) + εi with εi = (εij)1≤j≤N and εij =
1

N
1j 6=i =

1

N
− 1

N
1i=j .

We recall the �rst order Taylor expansions

f(y)− f(x) =
∑

1≤j≤N

∫ 1

0

∂xjf(x+ t(y − x)) (yj − xj) dt

=
∑

1≤j≤N

∂xjf(x) (yj − xj)

+
∑

1≤j,k≤N

[∫ 1

0

(1− t) ∂xj ,xkf(x+ t(y − x)) dt

]
(yj − xj) (yk − xk).
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This implies that

f(x+ ρi1/N (x))− f(x+ ρi0(x))

=
∑

1≤j≤N

∂xjf(x+ ρi0(x)) εij +
∑

1≤j,k≤N

[∫ 1

0

(1− t) ∂xj ,xkf(x+ ρi0(x) + tεi) dt

]
εij ε

i
k

=
1

N

∑
1≤j≤N

∂xjf(x)− 1

N
∂xif(x)−

∑
1≤j≤N

[∫ 1

0

∂xi,xjf(x+ tρi0(x)) dt

]
xi ε

i
j

+
∑

1≤j,k≤N

[∫ 1

0

(1− t) ∂xj ,xkf(x+ ρi0(x) + tεi) dt

]
εij ε

i
k

from which we �nd that∑
1≤i≤N

λ(xi)
(
f(x+ ρi1/N (x))− f(x+ ρi0(x))

)

=
∑

1≤j≤N

 1

N

∑
1≤i≤N

λ(xi)

 ∂xjf(x)− 1

N

∑
1≤i≤N

λ(xi) ∂xif(x)

−
∑

1≤i,j≤N

λ(xi)

[∫ 1

0

∂xi,xjf(x+ tρi0(x)) dt

]
xi ε

i
j

+
∑

1≤i,j,k≤N

λ(xi)

[∫ 1

0

(1− t) ∂xj ,xkf(x+ ρi0(x) + tεi) dt

]
εij ε

i
k.

We conclude that

L(f)(x1, . . . , xN ) = G(f)(x1, . . . , xN )− 1

N

∑
1≤i≤N

λ(xi) ∂xif(x)

−
∑

1≤i,j≤N

λ(xi)

[∫ 1

0

∂xi,xjf(x+ tρi0(x)) dt

]
xi ε

i
j

+
∑

1≤i,j,k≤N

λ(xi)

[∫ 1

0

(1− t) ∂xj ,xkf(x+ ρi0(x) + tεi) dt

]
εij ε

i
k.

For empirical functions f(x) = m(x)(ϕ) = 1
N

∑
1≤i≤N ϕ(xi) we have

∂xjf(x) =
1

N
ϕ′(xj) and ∂xj ,xkf(x) = 1j=k

1

N
ϕ′′(xj).

A simple calculation shows that

N [L − G] (f)(x1, . . . , xN ) =
1

N

∑
1≤i≤N

λ(xi) ϕ
′(xi)

+
1

N2

∑
1≤i 6=j≤N

λ(xi)

[∫ 1

0

(1− t) ϕ′′(xj + t/N) dt

]
.
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Observe that

f(x+ ρi0(x))− f(x) = m(x+ ρi0(x))(ϕ)−m(x)(f) =
1

N
(ϕ(0)− ϕ(xi)).

This implies that

G(f)(x) =
1

N

∑
1≤i≤N

λ(xi) (ϕ(0)− ϕ(xi))

+
1

N

∑
1≤i≤N

a
xi − 1

N

∑
1≤j≤N

xj

+
1

N

∑
1≤i≤N

λ(xi)

 ϕ′(xi)

= m(x)
(
Lm(x)(ϕ)

)
,

with

Lη(ϕ)(u) = λ(u) (ϕ(0)− ϕ(u)) +

[
a

(
u−

∫
v η(dv)

)
+

∫
λ(v) η(dv)

]
ϕ′(u).

At a rate λ(Xt), the process jumps from Xt to 0. The resulting jump increment is given
by ∆Xt = Xt −Xt− = 0 −Xt−. Between the jumps, the process evolves according to the
deterministic evolution equation

dXt = [a (Xt − E(Xt)) + E (λ(Xt))] dt.

We conclude that

dXt = [a (Xt − E(Xt)) + E (λ(Xt))] dt − Xt− dNt

where Nt stands for a Poisson process with intensity λ(Xt).
This ends the proof of the exercise.

Solution to exercise 317:
We have

ηt(f)ηt(Vt)− ηt (fVt) =

∫
ηt(dx) Vt(x)

[∫
(f(y)− f(x)) ηt(dy)

]
.

This implies that
∂tηt(f) = ηt(Lt,ηt(f))

with

Lt,ηt(f) = Lt(f)(x) + Vt(x)

∫
(f(y)− f(x)) ηt(dy).

The nonlinear jump-di�usion process Xt with generator Lt,ηt evolves as a jump-di�usion
model with generator Lt between jumps times Tn arriving at rate Vt(Xt). At these jump
times, it jumps XTn−  XTn to a new state XTn = x distributed with the probability
measure ηTn(dx).

Using (16.5), the generator of the mean �eld ξt = (ξit)1≤i≤N associated with this model
is given for any su�ciently regular function F by the formula

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N

L
(i)
t (F )(x1, . . . , xi, . . . , xN ) +

∑
1≤i≤N

Vt(x
i)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
]
m(x)(dy),
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with m(x) := 1
N

∑N
j=1 δxj . By construction, between jumps the particles evolve indepen-

dently as a jump-di�usion process with generator Lt. At rate Vt, the particles jump to a
new, randomly selected location in the current population.

This ends the proof of the exercise.

Solution to exercise 318:
Replacing Vt by (−Vt), the evolution of the normalized Feyman-Kac measures ηt is given

by
∂tηt(f) = ηt(Lt(f)) + ηt (fVt)− ηt(f)ηt(Vt).

In this situation, we use the formula

ηt (fVt)− ηt(f)ηt(Vt) =

∫
ηt(dx)

[∫
(f(y)− f(x)) Vt(y) ηt(dy)

]
.

This implies that
∂tηt(f) = ηt(Lt,ηt(f))

with

Lt,ηt(f) := Lt(f)(x) +

∫
(f(y)− f(x)) Vt(y) ηt(dy).

The nonlinear jump-di�usion process Xt with generator Lt,ηt evolves as a jump-di�usion
model with generator Lt between jumps times Tn arriving at rate Vt(Xt). At these jump
times, it jumps XTn−  XTn to a new state XTn = x distributed with the probability
measure ηTn(dx).

Using (16.5), the generator of the mean �eld model ξt = (ξit)1≤i≤N associated with this
model is given for any su�ciently regular function F by the formula

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N

L
(i)
t (F )(x1, . . . , xi, . . . , xN ) +

∑
1≤i≤N

m(x)(Vt)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
] Vt(y) m(x)(dy)

m(x)(Vt)
,

with m(x) := 1
N

∑N
j=1 δxj . By construction, between jumps the particles ξt = (ξit)1≤i≤N

evolve independently as a jump-di�usion process with generator Lt. At rate m(ξt)(Vt), the
particles jump to a new location in the current population with distribution

ΨVt(m(ξt))(dy) =
∑

1≤i≤N

Vt(ξ
i)∑

1≤j≤N Vt(ξ
j)
δξit(dy).

This ends the proof of the exercise.

Solution to exercise 319:
Take empirical test functions of the form

F (x) = m(x)(f) =
1

N

N∑
j=1

f(xj)
for each �xed i

=
1

N
f(xi) +

1

N

∑
1≤j 6i≤N

f(xj).
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Recalling that L(1) = 0 for any in�nitesimal generator, we �nd that

L
(i)
t,m(x)(F )(x1, . . . , xi, . . . , xN ) =

1

N
Lt,m(x)(f)(xi) +

1

N

∑
1≤j 6i≤N

f(xj) L
(i)
t,m(x)(1)︸ ︷︷ ︸

=0

=
1

N
Lt,m(x)(f)(xi).

This implies that

Lt(F )(x1, . . . , xN ) :=
1

N

∑
1≤i≤N

Lt,m(x)(f)(xi) = m(x)
(
Lt,m(x)(f)

)
.

In much the same way, we have

ΓLt (F, F ) (x) := Lt
[
(F − F (x))

2
]

(x)

=
∑

1≤i≤N

L
(i)
t,m(x)

(
F − F (x1, . . . , xN )

)2
(x1, . . . , xN ).

Notice that

F (x) =
1

N

N∑
j=1

f(xj)⇒ F (y)− F (x) =
1

N

N∑
j=1

(f(yj)− f(xj))

and for any �xed x we have

Gx(y) := (F (y)− F (x))2 =

 1

N

N∑
j=1

(f(yj)− f(xj))

2

.

On the other hand, for each �xed i we have

Gx(x1, . . . , xi−1, yi, xi+1, . . . , xN ) =
(
F (x1, . . . , xi−1, yi, xi+1, . . . , xN )− F (x1, . . . , xN )

)2
=

(
1

N
(f(yi)− f(xi))

)2

.

This implies that

ΓLt (F, F ) (x) =
∑

1≤i≤N

L
(i)
t,m(x)(Gx)(x1, . . . , xN )

=
1

N

∑
1≤i≤N

Lt,m(x)((f − f(xi))2)(xi) =
1

N
m(x)

(
ΓLt,m(x)

(f, f)
)
.

This ends the proof of the exercise.

Solution to exercise 320:
Using (16.10) the Bolztmann-Gibbs measures

t 7→ πβt(dx) =
1

Zβt
e−βtV (x) λ(dx)
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on Rd, coincide with the Feynman-Kac model

piβt(f) = ηt(f) := γt(f)/γt(1) with γt(f) := E
(
f(Xt) exp

(
−
∫ t

0

β′s V (Xs)ds

))
.

In addition, we have the exponential formula

exp

(
−
∫ t

0

β′s ηs(V )ds

)
= Zβt/Zβ0

.

On the other hand, using the Feynman-Kac jump interpretations developed in section 16.1.3,
we have

d

dt
ηt(f) = ηt (Lt,ηt(f))

with the generator

Lt,ηt(f)(x) = Lct(f)(x) + β′t V (x)

∫
(f(y)− f(x)) ηt(dy).

In the above display, Lct = −βt ∇V · ∇ +4 stands for the in�nitesimal generator of the
Langevin di�usion

dXt = −βt ∇V (Xt) +
√

2 dBt.

Using (16.12), the in�nitesimal generator of theN -mean �eld particle model ξt := (ξit)1≤i≤N ,
is given

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N

L
c,(i)
t (F )(x1, . . . , xi, . . . , xN ) +

∑
1≤i≤N

β′tVt(x
i)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
]
m(x)(dy).

Between the jumps, the particles ξit follow independently the same evolution as the
di�usion Xt with generator Lct . At jump times T in, occurring with the stochastic rate
β′tVt(ξ

i
t), the i-th particle ξiT in−  ξiT in

jumps to a new location, say ξiT in
= y, randomly

chosen with the distribution m
(
ξT in−

)
(dy) = 1

N

∑
1≤j≤N ξ

j
T in−

(dy).
This ends the proof of the exercise.
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Solution to exercise 321:
We apply (17.6) to the functions

b(x) = −(α+ β x) and σ2(x) = τ2.

In this situation, we have

2

∫ x

0

b(y)

σ2(y)
dy = − β

τ2

∫ x

0

(
2
α

β
y + y2

)′
dy = − β

τ2

[(
x+

α

β

)2

−
(
α

β

)2
]
.

We conclude that the Gaussian distribution

π(dx) =
1√

π τ2/β
exp

[
− β

τ2

(
x+

α

β

)2
]
dx

is the invariant measure of the di�usion (17.25).
This ends the proof of the exercise.

Solution to exercise 322: Notice that Xt = 0 is a solution of the Landau-Stuart
di�usion process (17.26). Therefore, starting with X0 = x0 > 0, the solution will remain
positive, so that Xt ∈ S = [0,∞[ for any X0 ∈ S. We apply (17.6) to the functions

b(x) = α x (1− x2) and σ(x) =
√

2 τ x ⇒ σ2(x)/2 = τ2x2.

Observe that ∫ x

c

2b(y)

σ2(y)
dy

c=1
=

α

τ2

∫ x

1

[
1

y
− y
]
dy

=
α

τ2

(
log (x)− 1

2
(x2 − 1)

)
.

This implies that
π(dx) ∝ 1S(x) x

α
τ2−2 e−

α
2τ2 x2

dx.

This ends the proof of the exercise.

Solution to exercise 323: We apply (17.6) to the functions

b(x) = −(α+ β x) and σ2(x) = τ2 + ρ x

for some parameters (α, β, τ, ρ), with α < 0, and β, ρ > 0. In this situation, we have

τ2 + ρ x ≥ 0 ⇐⇒ x ∈ S := [m,+∞[ with m := −τ
2

ρ
.
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The corresponding di�usion is clearly given by the square root process (17.27) In addition,
for any y > m we have

b(y)

σ2(y)
= −β

ρ

y + α/β

y −m
= −β

ρ

[
1 +

m+ α/β

y −m

]
.

This implies that

2

∫ x

m+ε

b(y)

σ2(y)
dy

= −2β

ρ
[(x−m) + (m+ α/β) log (x−m)] +

2β

ρ
(ε+ (m+ α/β) log (ε))

for any ε > 0. Using the fact that 2
σ2(x) ∝ (x − m)−1, we conclude that the invariant

measure is given by the shifted Gamma distribution

π(dx) ∝ 1[m,∞[(x) e−ν1(x−m) (x−m)
ν0−1

dx

with

ν0 := −2β

ρ

(
α

β
+m

)
=

2β

ρ

(
|α|
β

+
τ2

ρ

)
and ν1 :=

2β

ρ
(> 0).

The re�ned analysis of general square root di�usion processes of the form (17.27) is rather
technical, thus it will not be discussed in this book. For |α| ≥ βm+ ρ

2 it can be shown that
the state m is unattainable. Otherwise it acts as a re�ecting boundary [160].

The particular case (α, β, τ, ρ) = (−2, 2, 0, 4) has been worked out in exercise 262

Solution to exercise 324:
Notice that the centered process Yt = (Xt −m) satis�es the di�usion equation

dYt = (γ − βYt) dt+
√
ρYt dWt with γ := |α| − βm. (30.34)

Let us suppose that γ = nρ/4, for some integer n ≥ 1. We consider a sequence Ut =(
U

(1)
t , . . . , U

(n)
t

)
of n independent Ornstein-Uhlenbeck processes of the following form

∀1 ≤ i ≤ n dU
(i)
t = −β

2
U

(i)
t dt+

√
ρ

2
dW

(i)
t

with n independent Brownian motion W (i)
t . If we set Zt := ‖Ut‖2 =

∑
1≤i≤n(U

(i)
t )2, then

we have

d
(
U

(i)
t

)2

=
(ρ

4
− β (U

(i)
t )2

)
dt+

√
ρ U

(i)
t dW

(i)
t

from which we conclude that

dZt =
(nρ

4
− β Zt

)
dt+

√
ρ Zt dW t with dW t :=

∑
1≤i≤n

U
(i)
t√
Zt

dW
(i)
t .

Arguing as in exercise 254, we check that W t is a Brownian motion. This shows that

Y
law
= Z and X

law
= m+ Z.
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This ends the proof of the exercise.

Solution to exercise 325: We apply (17.6) to the functions

b(x) = −(α+ β x) = −β
(
x+

α

β

)
and σ2(x) = τ2 (x− γ1) (γ2 − x)

for x ∈ S := [γ1, γ2] and some parameters (α, β, τ, γ1, γ2), with γ1 < γ2 and α+ βγ1 < 0 <
α+ βγ2. The corresponding di�usion is clearly given by the Jacobi process (17.28).

In this situation, we have

2b(y)

σ2(y)
= −2β

τ2

y + α/β

(y − γ1) (γ2 − y)

= −2β

τ2

[
γ1 + α/β

γ2 − γ1

1

y − γ1
+
γ2 + α/β

γ2 − γ1

1

γ2 − y

]
.

This implies that∫ x

γ1+γ2
2

2b(y)

σ2(y)
dy = α0 log

y − γ1

(γ2 − γ1)/2
+ β0 log

γ2 − y
(γ2 − γ1)/2

with

α0 := − 2

τ2

α+ βγ1

γ2 − γ1
and β0 :=

2

τ2

βγ2 + α

γ2 − γ1
,

from which we conclude that π is given by the Beta distribution

π(dx) ∝ 1S(x) σ−2(x) exp

[∫ x

γ1+γ2
2

2b(y)

σ2(y)
dy

]
dx ∝

(
x− γ1

γ2 − γ1

)α0−1 (
γ2 − x
γ2 − γ1

)β0−1

dx

for any x ∈ S. For instance, for

(γ1, γ2) = (0, 1) β > 0 − α

β
= m ∈]0, 1[ and τ2 = 2βν with ν > 0

we have α+ βγ1 = α < 0 and α+ βγ2 = α+ β = β (1−m) > 0

α0 :=
m

ν
and β0 :=

1−m
ν

.

When (α, β) = (0, 1), τ2 = 2 and (γ1, γ2) = (−1, 1), we have

S := [−1, 1] and α+ βγ1 = −1 < 0 < α+ βγ2 = 1.

In this situation, the di�usion process Xt on S = [−1, 1] is de�ned by

dXt = −Xt dt+
√

2(1−X2
t ) dWt

and its generator is de�ned by

L(f)(x) = −x f ′(x) + (1− x2) f ′′(x) =
√

1− x2 ∂x

(√
1− x2 ∂xf

)
. (30.35)

In addition, we have π(dx) ∝ 1S(x) (1 − x2)−1/2. The r.h.s. formula in the above display
can be checked directly or can be proved using the general Sturm-Liouville formula (17.7).
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When (α, β) = (0, 2), τ2 = 2 and (γ1, γ2) = (−1, 1), we have

S := [−1, 1] and α+ βγ1 = −2 < 0 < α+ βγ2 = 2.

In this situation, the di�usion process Xt on S = [−1, 1] is de�ned by

dXt = −2Xt dt+
√

2(1−X2
t ) dWt

and its generator is de�ned by

L(f)(x) = −2x f ′(x) + (1− x2) f ′′(x) = ∂x
(
(1− x2) ∂xf

)
. (30.36)

In addition, we have π(dx) = 1
2 1[−1,1](x). Here again, the r.h.s. formula in the above

display can be checked directly or can be proved using the general Sturm-Liouville formula
(17.7).

This ends the proof of the exercise.

Solution to exercise 326: We apply (17.6) to the functions

b(x) = −(α+ β x) = −β
(
x+

α

β

)
and σ(x) = τ x

for some parameters (α, β, τ) with τ > 0 and α < 0. The corresponding di�usion process is
clearly given by the equation (17.29). In this situation, we have∫ x

1

2b(y)

σ2(y)
dy = − 2

τ2

(
α

∫ x

1

1

y2
dy + β

∫ x

1

1

y
dy

)
= − 2

τ2

(
α

(
1− 1

x

)
+ β log x

)
.

This implies that the invariant measure is the inverse Gamma distribution

π(dx) ∝ 1S(x) σ−2(x) exp

[∫ x

1

2b(y)

σ2(y)
dy

]
dx ∝ 1S(x)

(
1

x

) 2β

τ2 +2

exp

(
2α

τ2

1

x

)
dx.

This ends the proof of the exercise.

Solution to exercise 327:
We apply (17.6) to the functions

b(x) = −(α+ β x) = −β
(
x+

α

β

)
and σ2(x) = τ2 (x+ γ1) (x+ γ2)

for some parameters (α, β, τ, γ1, γ2), s.t. α/β < γ1 < γ2 and 2β+τ2 > 0. The corresponding
di�usion is clearly given by the di�usion process (17.30) on S :=]−γ1,∞[. In this situation,
we have

2b(y)

σ2(y)
= −2β

τ2

y + α/β

(y + γ1) (γ2 + y)

= −2β

τ2

[
γ2 − α

β

γ2 − γ1

1

y + γ2
+

α
β − γ1

γ2 − γ1

1

γ1 + y

]
.
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This implies that

π(dx) ∝ 1S(x) σ−2(x) exp

[∫ x

1

2b(y)

σ2(y)
dy

]
dx

∝ 1S(x)
1

x+ γ1
(x+ γ2)

− 2β

τ2

(
1−

α
β
−γ1

γ2−γ1

)
−1

(x+ γ1)
− 2β

τ2

α
β
−γ1

γ2−γ1 dx.

This formulae can be rewritten in the following form

π(dx) ∝ 1S(x)
1

x+ γ1

(
x+ γ1

x+ γ1 + δ

)d1/2 (
1

x+ γ1 + δ

)d2/2

dx,

with

δ := γ2 − γ1 d1/2 =
2β

τ2

γ1 − α
β

γ2 − γ1
> 0 and d2/2 = 1 +

2β

τ2
> 0.

If X denotes a random variable with distribution π, then Y = d2

d1

(
X+γ1

δ

)
is distributed

according to the Fisher distribution

P (Y ∈ dy) ∝ 1]0,∞[(y)
1

y

(
d1y

d1y + d2

)d1/2 (
d2

d1y + d2

)d2/2

dy.

For instance when

(γ1, γ2) = (0, 1) β > 0 − α

β
= m > 0 and τ2 = 2βν with ν > 0

we have S :=]0,∞[, as well as α/β = −m < γ1 = 0 and 2β + τ2 > 0. In this case, we also
have

d1/2 =
m

ν
> 0 and d2/2 = 1 +

1

ν
> 0.

This ends the proof of the exercise.

Solution to exercise 328: We apply (17.6) to the functions

b(x) = −(α+ β x) and σ2(x) = τ2
(
(α+ β x)2 + γ2

)
for some parameters (α, β, τ, γ)), with β > 0. The corresponding di�usion is clearly given
by the equation (17.31). In this situation, we have

2b(y)

σ2(y)
= − 1

τ2β

2β(α+ β y)

((α+ β x)2 + γ2)
= − 1

τ2β

(
log
[
(α+ β y)2 + γ2

])′
.

This implies that

π(dx) ∝ 1S(x) σ−2(x) exp

[∫ x

0

2b(y)

σ2(y)
dy

]
dx ∝

[
(α+ β x)2 + γ2

]−( 1
τ2β

+1
)
dx

∝

[
1 +

(
x+ α

β

γ

)2
]−( 2

τ2β
+1

)
+1

2

=

[
1 +

(
x+ α

β

γ

)2
]−κ+1

2

with κ := 1 +
2

τ2β
.

This shows that π is a Student's t-distribution T
(
κ, γ,−αβ

)
with a scaling parameter γ, a

tail index κ, and a location parameter −αβ . This ends the proof of the exercise.
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Solution to exercise 329:
We have

Hn (x) := Hn(h(x))⇒ H′n (x) = H′n(h(x)) h′(x)⇒ H′n(h(x)) = H′n (x) /h′(x).

Therefore

2 (h′)2(x) h(x) H′n(h(x)) = 2h(x)h′(x) H′n (x) = (h2)′(x) H′n (x) .

On the other hand, we also have

H′′n (x) = H′′n(h(x)) (h′(x))2 + H′n(h(x)) h′′(x)

= H′′n(h(x)) (h′(x))2 + H′n (x) h′′(x)/h′(x)

= H′′n(h(x)) (h′(x))2 + H′n (x) (log h′)
′
(x).

This implies that

H′′n(h(x)) = (h′(x))−2
[
H′′n (x)−H′n (x) (log h′)

′
(x)
]
.

By (17.20) we have

H′′n(h(x))− 2h(x)H′n(h(x)) = −2n Hn(h(x)).

In terms of Hn, this can be rewritten as

(h′)−2
[
H′′n −

(
h2 + log h′

)′ H′n] = −2n Hn.

We conclude that
Lh(Hn) = −2n Hn

with the generator

Lh(f) := (h′)−2 Lh(f) and Lh := f ′′ −
(
h2 + log h′

)′
f ′.

By (17.5), the reversible probability measure πh of Lh is given by

πh(dx) ∝ e−(h2+log h′) dx =
1

h′(x)
e−h

2(x) dx.

Using (17.3), the reversible probability measure πh of Lh is given by

πh(dx) ∝ (h′(x))2 πh(dx) ∝ h′(x) e−h
2(x) dx.

The claim that 2n/2
√
n!Hn forms an orthonormal basis of L2(πh) is a consequence of the

fact that ∫
Hn(x) Hm(x) πh(dx) ∝

∫
Hn(h(x)) Hm(h(x)) h′(x) e−h

2(x) dx

=

∫
Hn(y) Hm(y) e−y

2

dy = 1m=n 2nn!.
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Applying this result to

h(x) =

√
a

σ2

(
x+

b

a

)
⇒ h′(x) =

√
a

σ2
and Lh :=

2

σ2

(
1

2
σ2 f ′′ − (ax+ b) f ′

)
we have

Lh(f) =
2

a

(
1

2
σ2 f ′′ − (ax+ b) f ′

)
=

(
σ2

a
f ′′ − 2

(
x+

b

a

)
f ′
)
.

We conclude that the reversible probability measure of any of the generators Lh, Lh or

L(f) = − (ax+ b) f ′ +
1

2
σ2 f ′′

is given by the Gaussian distribution

πh(dx) = πh(dx) = π(dx) :=

√
a

πσ2
e−

a
σ2 (x+ b

a )
2

dx.

In addition, we have

L(Hn) = −2n
a

2
Hn = −na Hn.

This implies that
L(Ĥn) = −na Ĥn

with the orthonormal sequence of polynomials in L2(π) de�ned by

Ĥn (x) := 2n/2
√
n! Hn

(√
a

σ2

(
x+

b

a

))
.

This ends the proof of the exercise.

Solution to exercise 330:
Observe that

t = tm :=
m

m+ 1
⇒ 1− t = 1− m

m+ 1
=

1

m+ 1
⇒ t

1− t
= m.

This yields

e−mx = (1− tm)(α+1) Stm(x) = (1− tm)(α+1)
∑
n≥0

In(x)
tnm
n!
.

The Sturm-Liouville formula

L(f) = x−α ex ∂x
(
xα+1 e−x ∂x(f)

)
is a direct consequence of (17.7) applied to σ2(x) = 2x and b(x) = ((α+ 1)− x).

Also notice that I0(x) = 1. We have

− xt

1− t
= x

(
1− 1

1− t

)
⇒ ∂t

(
− xt

1− t

)
= − x

(1− t)2
.
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Therefore

∂tSt(x) = e−
xt

1−t

[
(α+ 1) (1− t)−(α+2) − (1− t)−(α+1) x

(1− t)2

]
= e−

xt
1−t (1− t)−(α+2)

(
α+ 1− x

1− t

)
=

1

1− t

(
α+ 1− x

1− t

)
St(x).

This implies that

(1− t)2 ∂tSt(x) + (x− (α+ 1)(1− t)) St(x) = 0. (30.37)

On the other hand, we have

S′t(x) = ∂xSt(x) = − t

1− t
(1− t)−(α+1) e−

xt
1−t = − t

1− t
St(x).

Therefore
(1− t) S′t(x) + t St(x) = 0. (30.38)

Using (30.38) we have∑
n≥0

I′n(x) (1− t) t
n

n!
+
∑
n≥0

In(x)
tn+1

n!
= 0.

In other words, we have that

I′0(x)︸ ︷︷ ︸
=0

+
∑
n≥0

I′n+1(x)
tn+1

(n+ 1)!
=
∑
n≥0

I′n(x)
tn

n!
=
∑
n≥0

(n+ 1) (I′n(x)− In(x))
tn+1

(n+ 1)!

from which we conclude that

I′n+1 = (n+ 1) (I′n − In) ⇐⇒ ((n+ 1) In − In+1)
′

= (n+ 1)In. (30.39)

On the other hand, using (30.37) we have

(1− 2t+ t2) ∂tSt(x) + (x− (α+ 1)) St(x) + (α+ 1) t St(x) = 0

= (1− 2t+ t2)
∑
n≥0 In+1(x) tn

n!

+ (x− (α+ 1))
∑
n≥0 In(x) tn

n! + (α+ 1)
∑
n≥0 (n+ 1)In(x) tn+1

(n+1)!

= (1− 2t+ t2)
∑
n≥0 In+1(x) tn

n!

+ (x− (α+ 1))
∑
n≥0 In(x) tn

n! + (α+ 1)
∑
n≥1 nIn−1(x) tn

n!

= (1− 2t+ t2)
∑
n≥0 In+1(x) tn

n!

+ (x− (α+ 1)) I0(x)︸ ︷︷ ︸
=1

+
∑
n≥1 ((x− (α+ 1)) In(x) + n(α+ 1)In−1(x)) tn

n! .

Using the fact that

(1− 2t+ t2)
∑
n≥0

In+1(x)
tn

n!
=

∑
n≥0

In+1(x)
tn

n!
−
∑
n≥1

2nIn(x)
tn

n!

+
∑
n≥2

n(n− 1)In−1(x)
tn

n!
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we check that

In+1(x)− 2nIn(x) + n(n− 1)In−1(x) + ((x− (α+ 1)) In(x) + n(α+ 1)In−1(x))

= In+1(x) + (x− (α+ 1)− 2n)︸ ︷︷ ︸
=x−(n+1)−(α+n)

In(x) + n (n+ α) In−1(x) = 0

for any n ≥ 2. From the above decompositions, we also have

I1(x) = ((α+ 1)− x)

and
I2(x)− 2I1(x) + ((x− (α+ 1)) I1(x) + (α+ 1)I0(x)) = 0

⇒ I2(x) = (x− (α+ 1))
2 − 2 (x− (α+ 1))− (α+ 1)

= (x− (α+ 2))
2 − (α+ 2).

This yields

xIn(x) + (n+ α) (n In−1(x)− In(x)) = (n+ 1) In(x)− In+1(x).

Taking the derivative w.r.t. x, using (30.39) we deduce that

In(x) + xI′n(x) + (n+ α) nIn−1 = (n+ 1)In(x)

⇐⇒ (n+ α) nIn−1 = nIn(x)− xI′n(x)

⇐⇒ xI′n(x) + (n+ α) (nIn−1 − In(x)) + αIn(x) = 0.

(30.40)

Taking once more the derivative w.r.t. x we have

I′n(x) + xI′′n(x) + (n+ α) nIn−1 + αI′n(x) = 0.

Finally, using (30.40) we conclude that

I′n(x) + xI′′n(x) + nIn(x)− xI′n(x) + αI′n(x)

= xI′′n(x) + ((α+ 1)− x) I′n(x) + nIn(x) = 0.

We consider the Gamma distribution

π(dx) =
1

Γ(α+ 1)
1[0,∞[(x) xα e−x dx.

We have

π (SsSt) =
∑
m,n≥0

π (InIm)
sm

m!

tn

n!

=
((1− t)(1− s))−(α+1)

Γ(α+ 1)

∫ ∞
0

e−x
t

1−t e−x
s

1−s xα e−x dx

=
((1− t)(1− s))−(α+1)

Γ(α+ 1)

∫ ∞
0

e−x[1+ t
1−t+ s

1−s ] xα dx

=
((1− t)(1− s))−(α+1)

Γ(α+ 1)

∫ ∞
0

e−x
1−st

(1−t)(1−s) xα dx.
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The last assertion follows from the fact that

1 +
t

1− t
+

s

1− s
=

1

1− t
+

s

1− s
=

(1− s) + s(1− t)
(1− t)(1− s)

=
1− st

(1− t)(1− s)
.

Changing the integration variable

y = x
1− st

(1− t)(1− s)
⇒ dx =

(1− t)(1− s)
1− st

dy and x =
(1− t)(1− s)

1− st
y

we check that

π (SsSt) =
((1− t)(1− s))−(α+1)

Γ(α+ 1)

(
(1− t)(1− s)

1− st

)1+α ∫ ∞
0

e−y yα dy

=
1

(1− st)1+α
=
∑
n≥0

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
(st)n.

The last assertion follows from the fact that for any u 6= 1 we have

(
1

1− u

)α+1

=

∑
n≥0

un

α+1

=
∑
n≥0

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
un. (30.41)

We check this claim by using the fact that

∂u

(
1

1− u

)α+1

= (α+ 1)

(
1

1− u

)α
× ∂u

(
1

1− u

)
= (α+ 1)

(
1

1− u

)α+2

∂2
u

(
1

1− u

)α+1

= (α+ 1) ∂u

(
1

1− u

)α+2

= (α+ 1)(α+ 2)

(
1

1− u

)α+3

,

and by a simple induction

∂nu

(
1

1− u

)α+1

= (α+ 1)(α+ 2) . . . (α+ n)

(
1

1− u

)α+n+1

=
Γ(α+ n+ 1)

Γ(α+ 1)

(
1

1− u

)α+n+1
u=0
=

Γ(α+ n+ 1)

Γ(α+ 1)
.

This yields ∑
m,n≥0

π (InIm)
sm

m!

tn

n!
=
∑
n≥0

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
(st)n

from which we conclude that

π (InIm) = 1m=n
Γ(α+ n+ 1)Γ(n+ 1)

Γ(α+ 1)
.

This shows that √
Γ(α+ 1)

Γ(α+ n+ 1)Γ(n+ 1)
In

is an orthonormal subset of L2(π). A simple induction shows that

In(x)− (−1)n xn = a polynomial of order (n− 1).
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Therefore to check that the normalized Laguerre polynomials are a dense subset of L2(π)
we use the same arguments as the ones we used on page 491 to prove that the Hermite
polynomials form a Schauder basis.

Using (30.41) we have

St(x) =
∑
n,m≥0

(−xt)n

n!

= 1
m! (α+n+m)(α+n+(m−1))...(α+n+1)︷ ︸︸ ︷

Γ(α+m+ n+ 1)

Γ(α+ n+ 1)Γ(m+ 1)
tm

=
∑
k,m≥0

 ∏
1≤l≤m

(α+ k + l)

 (−xt)k

k!

tm

m!
.

On the other hand, using the Leibniz formula

∂nx (fg) =
∑

0≤m≤n

n!

(n−m)!m!
∂n−mx f ∂mx g (30.42)

we have

∂nx
(
e−x xn+α

)
=

∑
0≤m≤n

n!

(n−m)!m!
∂n−mx (e−x) ∂mx

(
xn+α

)
.

Recalling that

∂n−mx (e−x) = (−1)n−m and ∂mx
(
xn+α

)
=

 ∏
0≤p<m

(α+ n− p)


︸ ︷︷ ︸∏

1≤l≤m(α+(n−m)+l)

xα+(n−m)

we check that

ex x−α∂nx
(
e−x xn+α

)
=

∑
0≤m≤n

n!

m!

 ∏
1≤l≤m

(α+ (n−m) + l)

 (−x)(n−m)

(n−m)!

and therefore

∑
n≥0

ex x−α∂nx
(
e−x xn+α

) tn

n!
=
∑
m≥0

∑
k(:=m−n)≥0

 ∏
1≤l≤m

(α+ k + l)

 tm

m!

(−xt)k

k!
.

This implies that
In(x) = ex x−α∂nx

(
e−x xn+α

)
.

This ends the proof of the exercise.

Solution to exercise 331:
Using the fact that

1

1− teiθ
=
∑
n≥0

(teiθ)n =
∑
n≥0

(cos (nθ) + i sin (nθ)) tn



1098 Chapter 17

and
1

1− teiθ
=

1

(1− t cos (θ))− it sin (θ)
=

(1− t cos (θ)) + it sin (θ)

(1− t cos (θ))2 + t2 sin2 (θ)
,

by taking the real part, we check that∑
n≥0

cos (nθ) tn =
(1− t cos (θ))

(1− t cos (θ))2 + t2(1− cos2 (θ))
=

(1− t cos (θ))

1− 2t cos (θ) + t2
.

This shows that∑
n≥0

cos (nθ) tn =
∑
n≥0

Tt(cos θ) tn =⇒ Tn(cos θ) = cos (nθ).

Using the change of variable

x = cos (θ) ⇒ dx = − sin (θ) dθ ⇒ 1√
1− x2

dx = −dθ

it is readily checked that π is the probability distribution of cos Θ where Θ is an uniform
random variable on [0, π].

This implies that∫
π(dx) Tn(x) Tm(x) =

1

π

∫ π

0

Tn(cos θ) Tm(cos θ) dθ =
1

π

∫ π

0

cos (nθ) cos (mθ) dθ.

Recalling that
cos (θ1 + θ2) = cos (θ1) cos (θ2)− sin (θ1) sin (θ2)

we readily check that

cos (nθ) cos (mθ) =
cos ((n+m)θ)− cos (n−m)θ)

2
.

On the other hand, we have

1

2π

∫ π

0

cos ((n+m)θ) dθ =
1

2π(n+m)
[sin ((n+m)θ)]

π
0 = 0

and for any m 6= m

1

2π

∫ π

0

cos ((n−m)θ) dθ =
1

2π(n−m)
[sin ((n−m)θ)]

π
0 = 0.

For n = m we also have
1

2π

∫ π

0

cos ((n−m)θ) dθ =
1

2
.

This implies that ∫
π(dx) Tn(x) Tm(x) = 1m=n

1

2
.

We conclude that
√

2Tn forms an orthonormal subset of L2(π).
For instance, we have

T0(x) = 1 T1(x) = x and T2(x) = 2x2 − 1.
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The r.h.s. formula follows from

cos (2θ) = 2 cos2 (θ)− 1.

In the same vein, it is also readily checked that

e(n+1)iθ + e(n−1)iθ = eniθ
(
eiθ + e−iθ

)
⇒ 2 cos (θ) cos (nθ) = cos ((n+ 1)θ) + cos ((n− 1)θ).

This implies that

xTn(x) =
1

2
(Tn+1(x) + Tn−1(x)) (and xT0(x) = T1(x)) .

x2 = xT1(x) =
1

2
(T2(x) + T0(x))

x3 = x(xT1)(x) =
1

2
(xT2(x) + xT0(x))

=
1

2

(
1

2
(T3(x) + T1(x)) + T1(x)

)
x4 = x(x(xT1)(x)) =

1

2

(
1

2
(xT3(x) + xT1(x)) + xT1(x)

)
=

1

2

(
1

2

(
1

2
(T4(x) + T2(x)) +

1

2
(T2(x) + T0(x))

)
+

1

2
(T2(x) + T0(x))

)
.

A simple induction shows that

xn =
∑

0≤k≤n

ak,n Tk(x).

Therefore to check that the normalized Tchebyshev polynomials are a dense subset of L2(π)
we use the same arguments as the ones we used on page 491 to prove that the Hermite
polynomials form a Schauder basis.

Finally we have

∂θ (Tn(cos (θ))) = − (∂xTn) (cos (θ)) (sin (θ))

and
∂2
θ (Tn(cos (θ))) =

(
∂2
xTn

)
(cos (θ)) (sin (θ))2 − (∂xTn) (cos (θ)) (cos (θ)).

Recalling that

Tn(cos (θ)) = cos (nθ)⇒ ∂2
θ (Tn(cos (θ))) = −n∂θ (sin (nθ)) = −n2 cos (nθ) = −n2 Tn(cos (θ))

we conclude that
(1− x2) ∂2

xTn(x)− x ∂xTn(x) = −n2Tn(x).

Finally, using (30.35), we also have the Sturm-Liouville formula

−
√

1− x2 ∂x

(√
1− x2 ∂xTn(x)

)
= n2Tn(x).

This ends the proof of the exercise.
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Solution to exercise 332:
Notice that

∂kxJn =
(−1)n

2nn!
∂n+k
x Jn ∝ ∂n+k

x Jn. (30.43)

On the other hand, we have

J ′n(x) = −2nx (1− x2)n−1 ⇒ (1− x2) J ′n(x) + 2nxJn(x) = 0.

Thus, using the Leibniz formula (30.42) we check that

∂n+1
x

(
(1− x2) J ′n(x)

)
=
∑

0≤k≤2

(
n+ 1
k

)
∂kx(1− x2) ∂

((n+1)−k)+1
x Jn(x)

= (1− x2) ∂
(n+2)
x Jn(x)− 2x(n+ 1) ∂

(n+1)
x Jn(x)− n(n+ 1) ∂nxJn(x).

In much the same way, we have

∂n+1
x (2nxJn(x)) = 2n

∑
0≤k≤1

(
n+ 1
k

)
∂kxx ∂

((n+1)−k)
x Jn(x)

= 2nx ∂(n+1)
x Jn(x) + 2n(n+ 1) ∂nxJn(x).

This implies that

∂nx
(
(1− x2) J ′n(x) + 2nxJn(x)

)
= (1− x2) ∂

(n+2)
x Jn(x)− 2x(n+ 1) ∂

(n+1)
x Jn(x)− n(n+ 1) ∂nxJn(x)

+2nx ∂
(n+1)
x Jn(x) + 2n(n+ 1) ∂nxJn(x)

= (1− x2) ∂
(n+2)
x Jn(x)− 2x ∂

(n+1)
x Jn(x) + n(n+ 1) ∂nxJn(x) = 0

and therefore

(30.43) =⇒ (1− x2) J′′n(x)− 2x J′n(x) = −n(n+ 1) Jn(x).

Using the Leibniz formula (30.42), for any k < n we have

∂kxJn(x) = ∂kx((x− 1)n(x+ 1)n) =
∑

0≤l≤k

(
k
l

)
∂lx(x− 1)n ∂k−lx (x+ 1)n

=
∑

0≤l≤k

k!

l!(k − l)!
n!2

(n− l)!(n− (k − l))!
(x− 1)n−l (x+ 1)n−(k−l).

The last assertion follows from the fact that for any k < n we have

∂kx(x− 1)n =
n!

(n− k)!
(x− 1)n−k and ∂kx(x+ 1)n =

n!

(n− k)!
(x+ 1)n−k.

This clearly implies that

∀k < n ∂kxJn(−1) = ∂kxJn(+1) = 0.
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Thus, for any n > m using a simple integration by parts we �nd that∫ 1

−1
∂nxJn(x) ∂mx Jm(x) dx

=
[
∂n−1
x Jn(x) ∂mx Jm(x)

]1
−1
−
∫ 1

−1
∂n−1
x Jn(x) ∂m+1

x Jm(x) dx

= −
∫ 1

−1
∂n−1
x Jn(x) ∂m+1

x Jm(x) dx

= (−1)2
∫ 1

−1
∂n−2
x Jn(x) ∂m+2

x Jm(x) dx = · · · = (−1)n
∫ 1

−1
Jn(x) ∂m+n

x Jm(x) dx.

Recalling that Jm(x) is a polynomial of degree 2m we have

∀n > m (⇒ m+ n > 2m) ∂m+n
x Jm = 0 and ∂2m

x Jm = (−1)m (2m)!.

This shows the orthogonality property

∀m 6= n π(JmJn) = 0.

For m = n we have

π(J2
n) =

1

22n+1n!2

∫ 1

−1

(∂nxJn)
2

(x) dx =
(2n)!

22n+1n!2

∫ 1

−1

Jn(x) dx.

With the change of variables

y =
x+ 1

2
⇒ dx = 2dy (x+ 1) = 2y and (x− 1) = 2(y − 1)

we can easily see that∫ 1

−1
(1− x)n (1 + x)n dx = 22n+1

∫ 1

0
yn (1− y)n dy

= 22n+1 n!2

(2n+1)! (⇐ Beta distribution with parameters (n+ 1, n+ 1)) .

Hence we conclude that

π(J2
n) =

1

2n+ 1
.

Since any monomial xn can be described in terms of Legendre polynomials, the completeness
of the Legendre polynomials can be proved using Weierstrass approximation theorem that
states that the set of polynomials on [−1, 1] is dense in L2(π).

By construction we have

Jn(x) = (1− x2)n =
∑

0≤m≤n

(
n
m

)
(−1)n−m x2(n−m).

Recalling that
∂kxx

m = 1m≥k (m)k x
(m−k)

with the Pochhammer symbol representing the falling factorial

(m)k := m (m− 1) . . . (m− (k − 1)) = m!/(m− k)!,
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we check that

∂nxJn(x) =
∑

0≤m≤n

(
n
m

)
(−1)n−m 12(n−m)≥n (2(n−m))n x

2(n−m)−n

=
∑

0≤m≤bn/2c

(−1)n+m n!

(n−m)!m!

(2(n−m))!

(n− 2m)!
xn−2m.

This implies that

∑
n≥0

Jn(x) tn =
∑
n≥0

 ∑
0≤m≤bn/2c

jm,n−m(x)

 tn

with the polynomials

∀0 ≤ m ≤ q jm,q(x) :=
(2q)!

(q −m)! q! m!

(−1)m

22q
(2x)q−m.

Changing the summation order with the summation indices p = n−m ≥ 0 andm ≥ n−m =
p we have ∑

0≤n

∑
0≤m≤bn/2c

jm,n−m(x) t(n−m)+m =
∑
m≥0

∑
0≤p≤m

jp,m(x) tp+m.

This yields∑
n≥0

Jn(x) tn =
∑
m≥0

∑
0≤p≤m

(2m)!

(m− p)! m! p!

(−1)p

22m
(2x)m−p tp tm

=
∑
m≥0

(−t)m

22m

(2m)!

m!2

∑
0≤p≤m

m!

(m− p)!p!
(−2x)m−p tp

=
∑
m≥0

(−1)m

22m

(2m)!

m!2
ut(x)m with ut(x) = t2 − 2xt.

We recall the binomial formula

(1 + u)α =
∑
m≥0

(
α
m

)
um with

(
α
m

)
=

(α)m
m!

which is valid for any α ∈ R. In the above display (α)n stands for the extended Pochhammer
symbol

(α)m := α (α− 1) . . . (α− (m− 1)).

Notice that

α = −1/2 ⇒ (α)m = (−1)m
1

2
(
1

2
+ 1)(

1

2
+ 2) . . . (

1

2
+ (m− 1))

= (−1)m
1

2m
(1× 3× 5× (1 + 2(m− 1)))

= (−1)m
1

2m
(2m)!

2× 4× . . .× 2m
= (−1)m

1

22m

(2m)!

m!
.

Using this formula, we have

(1 + ut(x))−
1
2 =

∑
m≥0

(−1)m

22m

(2m)!

m!
ut(x)m =

∑
n≥0

Jn(x) tn.

This ends the proof of the exercise.
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Solution to exercise 333:
We consider the 1-dimensional di�usion given by

(dXt = b dt+ dWt and X0 = W0 = 0)⇔ Xt = bt+Wt

for some given parameter b and a Wiener process.
We �x a time horizon t and we set X = (Xs)s∈[0,t] and W = (Ws)s∈[0,t]. Using the

Cameron-Martin density formula (18.9) we have

P(X ∈ dω) = exp

[
b ωt −

b2

2
t

]
P(W ∈ dω).

Equivalently, the Girsanov theorem yields the integration formulae

E
[
F
(

(Ws)s∈[0,t]

)
Z

(b)
t

]
= E

[
F
(

(Xs)s∈[0,t]

)]
= E

[
F
(

(Ws + bs)s∈[0,t]

)]
for any function F on the path space C([0, t],R), with the change of probability measure

Z
(b)
t = exp

[
b Wt −

b2

2
t

]
⇒ dZ

(b)
t = Z

(b)
t b dWt.

This clearly implies that Z(b)
t is a martingale w.r.t. Ft = σ(Ws, s ≤ t). We can also check

the martingale property using the fact that

∀s ≤ t Z
(b)
t = Z(b)

s × exp

[
b (Wt −Ws)−

b2

2
(t− s)

]
.

Recalling that (Wt − Ws) is independent of Ws and (Wt − Ws) is a centered Gaussian
random variable with variance (t− s) we have

E
(
Z

(b)
t | Fs

)
= Z(b)

s × E
(

exp

[
b (Wt −Ws)−

b2

2
(t− s)

]
| Fs

)
= Z(b)

s × E
(

exp

[
b (Wt −Ws)−

b2

2
(t− s)

])
︸ ︷︷ ︸

=1

.

This ends the proof of the exercise.

Solution to exercise 334:
Using exercise exercise 223 we have

E
[
F
(

(Xs)s∈[0,t]

)
| Xt = x

]
= E

[
F
(

(σWs)s∈[0,t]

)
| σWt = x

]
.

1103
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This implies that

E
[
F
(

(Xs)s∈[0,t]

)]
=

∫
E
[
F
(

(Xs)s∈[0,t]

)
| Xt = x

] 1√
2πσ2t

e−
1

2σ2t
(x−bt)2

dx

=

∫
E
[
F
(

(σWs)s∈[0,t]

)
| σWt = x

] 1√
2πσ2t

e−
1

2σ2t
x2

e
1

2σ2 (2xb−b2t) dx

= e−
t
2 ( bσ )

2

E
[
F
(

(σWs)s∈[0,t]

)
e
bWt
σ

]
.

This ends the proof of the exercise.

Solution to exercise 335: Observe that

E
[
F
(

(Xs)s∈[0,t]

)]
= e−

t
2 ( bσ )

2

E
[
F
(

(σ Ws)s∈[0,t]

)
e(

b
σ2 )σWt

]
.

Replacing F
(

(Xs)s∈[0,t]

)
by

F
(

(Xs)s∈[0,t]

)
× exp

(
−
(
b

σ2

)
(Xt − bt)−

t

2

(
b

σ

)2
)

and recalling that σWt = (Xt − bt) we �nd that

E
[
F
(

(Xs)s∈[0,t]

)
exp

[
−
(
b
σ

)
Wt − t

2

(
b
σ

)2]]
= e−

t
2 ( bσ )

2

E
[
F
(

(σ Ws)s∈[0,t]

)
exp

(
−
(
b
σ2

)
(σWt − bt)− t

2

(
b
σ

)2
+
(
b
σ2

)
σWt

)]
= E

[
F
(

(σ Ws)s∈[0,t]

)]
.

This ends the proof of the exercise.

Solution to exercise 336:
Following the remark at the end of section 18.2.3, the exercise is a direct consequence

of theorem 18.2.2.
This ends the proof of the exercise.

Solution to exercise 337:
We set

X ′ := E(ZX|G)/E(Z|G).

In this notation, for any A ⊂ G we have

E′ (1A X ′) = E (1A Z X ′)

= E (E (1A Z | G) X ′) = E (1A E (Z | G) X ′)

= E (1A E (Z|G) E(ZX|G)/E(Z|G))

= E (1A E (ZX|G)) = E (E (ZX1A|G)) = E (ZX1A) = E′ (X1A) .
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This implies that
E′ (X|G) = E(ZX|G)/E(Z|G).

This ends the proof of the exercise.

Solution to exercise 338: The process Yt is a particular case of the di�usion process
(18.8). In our situation we have

b(y) = x⇒ dYt = x dt+ dVt ⇐⇒ Yt = xt+ Vt.

Using the time inhomogeneous version of (18.11) (discussed in the end of section 18.2.3) we
have

E
(
F ((Ys)s≤t) exp

(
−
∫ t

0

hs dYs +
1

2

∫ t

0

h2
s ds

))
= E (F ((Vs)s≤t)) .

We observe that

dYs := hsds+ dVs

⇒ exp
(
−
∫ t

0
hs dVs − 1

2

∫ t
0
h2
s ds

)
= exp

(
−
∫ t

0
hs dYs + 1

2

∫ t
0
h2
s ds

)
.

Using (18.10) we also have

E (F ((Ys)s≤t)) = E
(
F ((Vs)s≤t) exp

(∫ t

0

hs dVs −
1

2

∫ t

0

h2
s ds

))
.

This ends the proof of the exercise.

Solution to exercise 339:
Observe that

Lt(1i)(k) =
∑

1≤j≤n

(1i(j)− 1i(k)) Qt(k, j) = Qt(k, i)− 1i(k) λt(k)

with
λt(k) :=

∑
1≤j≤n

Qt(k, j).

This yields

ηt(Lt(1i)) =
∑

1≤k≤n

ηt(k) (Qt(k, i)− 1i(k) λt(k))

= (ηtQt)(i)− ηt(i)λt(i) = (ηt [Qt − diag(λt)]) (i)

with the diagonal matrix

diag(λt) :=

 λt(1) 0 · · · 0 0
... · · ·

...
0 0 · · · 0 λt(n)

 .
On the other hand, we also have

ηt(1i(ht − ηt(ht)) = ηt(i) (ht(i)− ηt(ht)) = (ηtdiag(ht − ηt(ht))) (i)
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with the diagonal matrix

diag(ht − ηt(ht)) :=

 ht(1)− ηt(ht) 0 · · · 0 0
... · · ·

...
0 0 · · · 0 ht(n)− ηt(ht)

 .
Using (18.25) we �nd that

dηt(i) = (ηt [Qt − diag(λt)]) (i) dt+ (ηtdiag(ht − ηt(ht))) (i) σ−2
t (dYt − ηt(ht)dt),

with the vector and matrix notation

ηt(ht) = [ηt(1), · · · , ηt(n)]

 ht(1)
...

ht(n)

 =
∑

1≤i≤n

ηt(i) ht(i)

and

ηtQt = [ηt(1), · · · , ηt(n)]

 Qt(1, 1) · · · Qt(1, n)
... · · ·

...
Qt(n, 1) · · · Qt(n, n)

 = [(ηtQt)(1), · · · , (ηtQt)(n)] .

This implies that

dηt = ηt [Qt − diag(λt)] dt+ ηtdiag(ht − ηt(ht)) σ−2
t (dYt − ηt(ht) dt).

This ends the proof of the exercise.

Solution to exercise 340:
We apply the �ltering equation derived in exercise 339 to the situation

Qt = λ

[
0 1
1 0

]
⇒ diag(λt) := λ× I2×2

and

ht(x) = x⇒ ηt(ht) = ηt(1)⇒ diag(ht − ηt(ht)) =

[
0− ηt(1) 0

0 1− ηt(1)

]
.

In this case, we have

ηt [Qt − diag(λt)] = λ× [ηt(0), ηt(1)]

[
−1 1
1 −1

]
= λ× [ηt(1)− ηt(0), ηt(0)− ηt(1)]

and

ηtdiag(ht−ηt(ht)) = [ηt(0), ηt(1)]

[
0− ηt(1) 0

0 1− ηt(1)

]
= [−ηt(0)ηt(1), ηt(1)(1− ηt(1))] .

This implies that

dηt(1) = λ (1− 2ηt(1)) dt+ ηt(1)(1− ηt(1)) (dYt − ηt(1) dt)
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and
dηt(0) = λ (1− 2ηt(0)) dt− ηt(0)(1− ηt(0)) (dYt − (1− ηt(0)) dt).

This ends the proof of the exercise.

Solution to exercise 341:
Using (18.27) we have{

dX̂t =
(
A X̂t + a

)
dt+ Pt (C/σ2

2)
(
dYt −

(
CX̂t + c

)
dt
)

∂tPt = −P 2
t (C/σ2)2 + 2APt + σ2

1 ,

with the initial conditions (X̂0, P0) given by the mean and covariance matrix (E(X0), P0)
of the initial condition X0.

• When C = 0 the signal and the observations are independent. In this situation, the
Kalman �lter resumes to(

X̂t, Pt

)
= (E(Xt),Var(Xt)) =⇒

{
dX̂t =

(
A X̂t + a

)
dt

∂tPt = 2APt + σ2
1 .

The solution is given by

X̂t = eAt
[
X̂0 + a

∫ t

0

e−As ds

]
= eAt

[
X̂0 +

a

A

(
1− e−At

)]
= eAt X̂0 +

a

A

(
eAt − 1

)
and

Pt = e2At

[
P0 + σ2

1

∫ t

0

e−2As ds

]
= e2At

[
P0 +

σ2
1

2A

(
1− e−2At

)]
= e2At P0 +

σ2
1

2A

(
e2At − 1

)
.

We clearly have

lim
t→∞

(
X̂t, Pt

)
=

 (0, 0) if A < 0
(E(X0), P0) if A = 0
(+∞,+∞) if A > 0.

• When σ1 = 0 , the signal is purely deterministic. In this situation we have

Xt =

{
eAt X0 + a

A

(
eAt − 1

)
if A 6= 0

X0 + at if A = 0.

In this situation, the randomness in the signal only comes from the initial condition X0.
In addition, if (CP0) ∧ (Aσ2) 6= 0 we have

Pt =
2Aσ2

2P0

C2P0 (1− e−2At) + 2Aσ2
2e
−2At

.

Notice that
|A| ∧ σ2

2 ∧ P0 = 0 =⇒ Pt = 0.
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To check that Pt satis�es the Riccati equation we use the fact that

∂tPt =
2Aσ2

2P0

(
2A
[(

2Aσ2
2 − C2P0

)
e−2At + C2P0

]
− 2AC2P0

)
[C2P0 (1− e−2At) + 2Aσ2

2e
−2At]

2

= 2APt − (C/σ2)
2
P 2
t .

Notice that
A > 0 =⇒ C2P0

(
1− e−2At

)
+ 2Aσ2

2e
−2At > 0

and
(A > 0 and P0 6= 0) =⇒ lim

t→∞
Pt = 2A(σ2/C)2.

In the reverse angle we have

A < 0 =⇒ C2P0

(
e2|A|t − 1

)
+ 2|A|σ2

2e
2|A|t > 0

=⇒ Pt =
2|A|σ2

2P0

C2P0

(
e2|A|t − 1

)
+ 2|A|σ2

2e
2|A|t > 0

as soon as P0 6= 0. In this situation, we have

(A < 0 and P0 6= 0) =⇒ lim
t→∞

Pt = 0.

• Assume that C 6= 0 and σ2 > 0 and set Qt = (C/σ2)
2
Pt. We have

∂tQt = 2A (C/σ2)
2
Pt − (C/σ2)

4
P 2
t + (C/σ2)

2
σ2

1 = −Q2
t + 2AQt +B2

with B := |C(σ1/σ2)| ≥ 0. In this notation the Kalman-Bucy �lter takes the following
form {

dX̂t =
(
A X̂t + a

)
dt+QtC

−1
(
dYt −

(
CX̂t + c

)
dt
)

∂tQt = −Q2
t + 2AQt +B2.

When A = 0 = σ1 we have A = 0 = B and the Riccati equation resumes to

∂tQt = −Q2 ⇒ Qt =
Q0

1 +Q0t
⇒ Pt =

P0

1 + (C/σ2)
2
P0t
−→t→∞ 0.

When |A| ∨ σ2
1 > 0 (⇒ |A| ∨ |B| > 0), the characteristic polynomial of the equation is

given by

q(z) = z2 − 2Az −B2

= (z −A)
2 −

(
A2 +B2

)
= (z − z1) (z − z2) ,

with the two di�erent roots

z1 = A−
√
A2 +B2 < 0 < z2 = A+

√
A2 +B2.

In this situation, the solution of the Riccati equation is given by

Qt = ∂t logRt =
∂tRt
Rt

with ∂2
tRt = 2A ∂tRt +B2Rt.
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To check this claim, we recall that

∂tQt = −Q2
t + 2AQt +B2 = −Q2

t + 2A
∂tRt
Rt

+B2

= ∂t

(
∂tRt
Rt

)
= −

(
∂tRt
Rt

)2

+
∂2
tRt
Rt

= −Q2
t+

∂2
tRt
Rt

.

This implies that

2A
∂tRt
Rt

+B2 =
∂2
tRt
Rt

⇐⇒ 2A∂tRt +B2Rt = ∂2
tRt.

The solution of the second order di�erential equation is given by

Rt = c1 e
z1t + c2 e

z2t ⇒
{
R0 = c1 + c2
.

R0 = c1z1 + c2z2 = R0Q0

⇒
{
c1(z2 − z1) = R0(z2 −Q0)
c2(z2 − z1) = R0(Q0 − z1).

This yields the formulae

Qt =
c1z1 e

−(z2−z1)t + c2z2

c1 e−(z2−z1)t + c2

= z2 −
[
c1(z2 − z1) e−(z2−z1)t

]
× (z2 − z1)[

c1 e−(z2−z1)t + c2
]
× (z2 − z1)

= z2 − (z2 − z1)
(z2 −Q0) e−(z2−z1)t

(z2 −Q0) e−(z2−z1)t + (Q0 − z1)
.

Notice that

(z2 −Q0) e−(z2−z1)t + (Q0 − z1) = z2e
−(z2−z1)t −z1︸︷︷︸

>0

+Q0

(
1− e−(z2−z1)t

)
> 0.

We conclude that

lim
t→∞

Qt := Q∞ = z2 = A+
√
A2 +B2 = A+

√
A2 +

(
σ1

σ2

)2

C2

and

lim
t→∞

Pt := P∞ = (σ2/C)
2
Q∞.

The �nal assertion is a consequence of the fact that

Qt − z2 = Qt −Q∞ = ∂t log
(

(z2 −Q0) e−(z2−z1)t + (Q0 − z1)
)
.

This yields

exp

(∫ t

0

(Q∞ −Qs) ds
)

= exp

(
−
∫ t

0

∂s log
(

(z2 −Q0) e−(z2−z1)s + (Q0 − z1)
)
ds

)
=

(
z2 −Q0

z2 − z1
e−(z2−z1)t +

Q0 − z1

z2 − z1

)−1

.
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Recalling that
A−Q∞ = −

√
A2 +B2 = −(z2 − z1)/2

we conclude that

exp

(∫ t

0

(A−Qs) ds
)

= exp

(∫ t

0

(A−Q∞) ds

)
× exp

(∫ t

0

(Q∞ −Qs) ds
)

= e−(z2−z1)t/2 (z2 − z1)

(z2 −Q0) e−(z2−z1)t + (Q0 − z1)

≤ e−(z2−z1)t/2 (1 + |z2/z1|) .

The last assertion follows from the fact that

(z2 −Q0) e−(z2−z1)t + (Q0 − z1) = z2 e
−(z2−z1)t − z1 +Q0

(
1− e−(z2−z1)t

)
≥ −z1 > 0.

This ends the proof of the exercise.

Solution to exercise 342:
Using exercise 337, we have

E′(Mt | Fs) = Ms ⇔ E(ZtMt|Fs)/E(Zt|Fs) = Ms

⇔ E(ZtMt|Fs) = Ms E(Zt|Fs) = MsZs.

The r.h.s. formula in the above display follows from the fact that Zt is a martingale. The
last assertion follows from the fact that

Z−1
s E(MtZt|Fs) = Ms = E′(Mt | Fs).

This ends the proof of the exercise.

Solution to exercise 343:
Using exercise 342, we need to check that (M ′sZs)s∈[0,t] is a martingale on (Ωt,Ft,Pt).
We have

M ′sZs = ZsMs − [Z,M ]s︸ ︷︷ ︸
martingale on (Ωt,Ft,Pt)

+ [Z,M ]s − Zs
∫ s

0

Z−1
r+ d [Z,M ]r

and

Us = Zs

∫ s

0

Zr+ d [Z,M ]r ⇒ ∆Us = Zs Z
−1
s d [Z,M ]s +

(∫ s

0

Z−1
r+ d [Z,M ]r

)
∆Zs

= d [Z,M ]s +

(∫ s

0

Z−1
r+ d [Z,M ]r

)
∆Zs︸ ︷︷ ︸

martingale increment

.

This ends the proof of the exercise.
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Solution to exercise 344:
We apply exercise 343 to the model

Ms = Ws ⇒M ′s := Ws −
∫ t

0

Z−1
s d 〈Z,W 〉s .

Recalling that

dZs = Zs b(Ws) dWs ⇒ d 〈Z,Ws〉s = dZsdWs = Zs b(Ws)ds

we check that

M ′s := Ws −
∫ s

0

Z−1
r Zr b(Wr) dWrdWr = Ws −

∫ s

0

b(Wr) dr.

This ends the proof of the exercise.

Solution to exercise 345:
We apply exercise 343 to the model

Ms = Ns − s⇒M ′s := (Ns − s)−
∫ s

0

Z−1
r+ d [Z,M ]r .

At jump times of the exponential martingale Zs de�ned in (18.4) we have

Zr+ = Zr λ
′
r(Nr).

Arguing as in section 18.1.3 we have

dZr = Zr [(λ′r(Nr)− 1) dNr − (λ′r(Nr)− 1) dr]

⇒ (Zr λ
′
r(Nr))

−1
dZrdMr = (Zr λ

′
r(Nr))

−1
Zr (λ′r(Nr)− 1) dNr =

1

λ′r(Nr)
dNr − dNr.

This implies that

M ′s :=

∫ s

0

1

λ′r(Nr)
dNr − s

is a martingale on (Ωt,Ft,P′t). The last assertion follows from the formula∫ s

0

λ′r(Nr) dM
′
r = Ns −

∫ s

0

λ′r(Nr)dr.

This ends the proof of the exercise.

Solution to exercise 346:
We have

M
(1)
t = Mt := exp

(
−λ
∫ t

0

(ef(s) − 1)ds

) ∏
0≤s≤t

(
1 +

(
ef(s) − 1

)
∆Ns

)
.
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In terms of the martingale

M t =
(
ef(t) − 1

)
(dNt − λt) =

(
ef(t) − 1

)
dNt︸ ︷︷ ︸

=∆Mt

−λ
(
ef(t) − 1

)
dt

we also have the decomposition

Mt = eMt

∏
0≤s≤t

((
1 + ∆Ms

)
e−∆Ms

)
.

This implies that

dMt = Mt+dt −Mt

= Mt

(
e(Mt+dt−Mt)−∆Mt

(
1 + ∆M t

)
− 1
)

= Mt

(
e−λ(e

f(t)−1)dt (1 + ∆M t

)
− 1
)

= Mt

((
1− λ

(
ef(t) − 1

)
dt
) (

1 + ∆M t

)
− 1
)
.

Using the fact that dNt × dt = 0 we conclude that

dMt = Mt

(
−λ
(
ef(t) − 1

)
dt+ ∆M t

)
= Mt dM t.

Notice that
f = log (1 + g) =⇒ M

(1)
t = M

(2)
t .

This ends the proof of the exercise.

Solution to exercise 347:
Two di�erent proofs can be used. The �rst one is based on the fact that Xs,t =∫ t

s
f(r)dWr, s ≤ t is independent of Fs. In addition, Xs,t is a centered Gaussian random

variable with variance

E(X2
s,t | Fs) = E(X2

s,t) = E

([∫ t

s

f(r)dWr

]2
)

=
1

2

∫ t

s

f(r)2dr := σ2
s,t.

In this case, we have

E
(
eX

2
s,t | Fs

)
= eσ

2
s,t/2 ⇐⇒ E(Mt | Fs) = Ms.

The second proof is based on Doeblin-It	o lemma applied to the function

g(t,Xt) = exp

(
Xt −

1

2

∫ t

0

f(s)2ds

)
with Xt =

∫ t

0

f(s)dWs.

We have

dg(t,Xt) =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt) dXtdXt

= g(t,Xt)

[
−1

2
f(t)2 dt + f(t) dWt +

1

2
f(t)2 dt

]
= g(t,Xt) f(t) dWt.
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On the other hand, for any 0 ≤ s ≤ t we have

E(

∫ t

s

g(r,Xr) f(r) dWr)

(
= E

(∫ t

s

g(r,Xr) f(r) E ( dWr | Fr) | Fs
))

= 0.

This shows that

Mt = Ms +

∫ t

s

g(r,Xr) f(r) dWr is a Ft-martingale starting at M0 = 1.

This ends the proof of the exercise.

Solution to exercise 348: Using (18.15) and (18.16), we have

E (F ((Xs)s≤t) | X0 = x0)

= ϕ0(x0) E
(
F ((Xϕ

s )s≤t)ϕ
−1
t (Xϕ

t ) exp
(∫ t

0
V ϕs (Xϕ

s )ds
)
| Xϕ

0 = x0

)
with V ϕt = ϕ−1Lt(ϕ), and the process Xϕ

t has in�nitesimal generator

L
[ϕ]
t (f) := Lt(f) + ϕ−1ΓLt(ϕ, f).

After integrating w.r.t. η0(dx0), the proof of the exercise is easily completed.

Solution to exercise 349:
The �rst part of the exercise is a direct consequence of exercise 348 applied to the

function

F ((Xs)s≤t) = f(Xt) exp

(
−
∫ t

0

V (Xs)ds

)
.

Notice that
V ϕ = V − ϕ−1L(ϕ) = ϕ−1H(ϕ)

with the Hamiltonian operator H de�ned for any su�ciently regular function g by H(g) :=
−L(g) + V g.

This ends the proof of the exercise.

Solution to exercise 350:
For any couple of su�ciently regular functions f1 and f2 we notice that

µ
(
ϕ2 f1 L

[ϕ](f2)
)

= µ
(
ϕ2 f1 L(f2)

)
+ µ

(
ϕ2 f1

[
ϕ−1ΓL(ϕ, f2)

])
= µ

(
ϕ2 f1 L(f2)

)
+ µ

(
ϕ2 f1

[
ϕ−1L(ϕf2)− L(f2)− ϕ−1f2L(ϕ)

])
= µ (ϕ f1 L(ϕf2))︸ ︷︷ ︸

=µ(ϕ f2 L(ϕf1))

−µ (ϕ f1 f2L(ϕ)) = µ
(
ϕ2 f2 L

[ϕ](f1)
)
.

This shows that L[ϕ] is reversible w.r.t. Ψϕ2(µ).
This ends the proof of the exercise.
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Solution to exercise 352:
In the Euclidian space R2 = V = Vect(e1, e2) we have π = Id so that ∇ = ∂ and

∇2 = δ2. This implies that

∇F =

(
∂x1F
∂x2

F

)
and ∇2F =

(
∂x1,x1F ∂x1,x2F
∂x2,x1

F ∂x2,x2
F

)
.

We also have that

∆F = tr
(
∇2F

)
= ∂x1,x1

F + ∂x2,x2
F := ∂2

x1
F + ∂2

x2
F.

This ends the proof of the exercise.

Solution to exercise 352:
We have

‖∇F‖2 = (∂x1
F )

2
+ (∂x2

F )
2

and
1

2
∆
(
‖∇F‖2

)
=

1

2
∂2
x1

(
(∂x1

F )
2

+ (∂x2
F )

2
)

+
1

2
∂2
x2

(
(∂x1

F )
2

+ (∂x2
F )

2
)
.

Observe that
1

2
∂x1

(
(∂x1

F )
2

+ (∂x2
F )

2
)

= (∂x1
F )
(
∂2
x1
F
)

+ (∂x2
F ) (∂x1,x2

F )

and
1
2 ∂

2
x1

(
(∂x1F )

2
+ (∂x2F )

2
)

= ∂x1

[
(∂x1

F )
(
∂2
x1
F
)

+ (∂x2
F ) (∂x1,x2

F )
]

=
(
∂2
x1
F
)2

+ (∂x1,x2
F )

2
+ (∂x1

F )
(
∂3
x1
F
)

+ (∂x2
F )
(
∂x2

∂2
x1
F
)
.

By symmetry arguments, we also have that

1
2 ∂

2
x2

(
(∂x1

F )
2

+ (∂x2
F )

2
)

= ∂x2

[
(∂x2

F )
(
∂2
x2
F
)

+ (∂x1
F ) (∂x1,x2

F )
]

=
(
∂2
x2
F
)2

+ (∂x1,x2F )
2

+ (∂x2F )
(
∂3
x2
F
)

+ (∂x1F )
(
∂x1∂

2
x2
F
)
.

This implies that

1
2 ∆

(
‖∇F‖2

)
=
(
∂2
x2
F
)2

+ 2 (∂x1,x2
F )

2
+
(
∂2
x1
F
)2

+ (∂x1
F )
(
∂3
x1
F
)

+ (∂x2
F )
(
∂x2

∂2
x1
F
)

+ (∂x2
F )
(
∂3
x2
F
)

+ (∂x1
F )
(
∂x1

∂2
x2
F
)
.
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On the other hand, we have

∇2F ∇2F =

(
∂2
x1
F ∂x1,x2

F
∂x2,x1

F ∂2
x2
F

)(
∂2
x1
F ∂x1,x2

F
∂x2,x1

F ∂2
x2
F

)
=

(
(∂2
x1
F )2 + (∂x1,x2F )2 (∂2

x1
F + ∂2

x2
F )(∂x1,x2F )

(∂2
x1
F + ∂2

x2
F )(∂x1,x2

F ) (∂2
x2
F )2 + (∂x1,x2

F )2

)
.

This implies that

tr
(
∇2F ∇2F

)
= (∂2

x1
F )2 + 2(∂x1,x2F )2 + (∂2

x2
F )2.

Finally, we observe that

(∂x1
F )
(
∂3
x1
F
)

+ (∂x2
F )
(
∂x2

∂2
x1
F
)

+ (∂x2
F )
(
∂3
x2
F
)

+ (∂x1
F )
(
∂x1

∂2
x2
F
)

=

〈(
(∂x1

F )
(∂x2F )

)
,

(
∂3
x1
F + ∂x1

∂2
x2
F

∂3
x2
F + ∂x2∂

2
x1
F

)〉
= 1

2 〈∇F,∇(∆F )〉 .

The last assertion follows from the fact that

1

2
∇(∆F ) =

1

2

(
∂x1(∆F )
∂x2

(∆F )

)
=

(
∂3
x1
F + ∂x1∂

2
x2
F

∂3
x2
F + ∂x2

∂2
x1
F

)
.

The end the proof of the exercise is now easily completed.

Solution to exercise 353:
We consider a �rst and second order generator L1 and L2 de�ned by

L = L1 + L2

with

L1(f) = ∂b(f) :=
∑

1≤i≤r

bi ∂i(f) and L2(f) =
1

2
∂2
a(f) :=

1

2

∑
1≤i,j≤r

ai,j ∂i,j(f)

for some drift function b = (bi)1≤i≤r and some symmetric matrix functional a = (ai,j)1≤i,j≤r
on Rr. To simplify notation we use Einstein notation and we write bi ∂i and ai,j ∂i,j instead
of
∑

1≤i≤r b
i ∂i and

∑
1≤i,j≤r a

i,j ∂i,j .
We clearly have

∂i(fg) = f∂ig + g∂if ⇒ L1(fg) = f L1(g) + g L1(f).

In much the same way, we have

∂i,j(fg) = ∂j (f∂ig + g∂if) = f∂i,jg + g∂i,jf + (∂jf∂ig + ∂if∂jg) ,

from which we prove that

ai,j ∂i,j(fg)− f ai,j ∂i,j(g)− g ai,j ∂i,j(f) = 2 ai,j ∂if ∂jg.

This clearly implies that

L1(fg) = f L1(g) + g L1(f) + ΓL1
(f, g) with ΓL1

(f, g) := 0
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and

L2(fg) = f L2(g) + g L2(f) + ΓL2
(f, g) with ΓL2

(f, g) := ai,j ∂if ∂jg.

Finally, we clearly have

ΓL(f, g) = L(fg)− fL(g)− gL(f)

= (L1(fg)− fL1(g)− gL1(f)) + (L2(fg)− fL2(g)− gL2(f))

= ΓL2
(f, g).

This ends the proof of the exercise.

Solution to exercise 354:
Since the matrix a is symmetric, the operator

(f, g) 7→ ΓL(f, g) = ai,j ∂if ∂jg

is clearly a symmetric bilinear form. On the other hand (f, g) 7→ ΓL(f, g) is a �rst order
di�erential operator w.r.t. each coordinate. This yields

ΓL(f, gh) = gΓL(f, h) + hΓL(f, g)

for any smooth functions (f, g, h).
We consider collections of smooth functions f =

(
f i
)

1≤i≤n and g =
(
gj
)

1≤j≤m on
Rr, and some smooth functions F (x1, . . . , xn) and G(x1, . . . , xm) on Rn and Rm, for some
m,n ≥ 1.

For smooth functions of the form

F (f) = F (f1, . . . , fn) and G(g) = G(g1, . . . , gm)

we have

∂i(F (f)) = (∂kF )(f) ∂i(f
k)

=
∑

1≤k≤n

(∂kF )(f) ∂i(f
k)


∂i(G(g)) = (∂lG)(g) ∂i(g

l)

=
∑

1≤l≤m

(∂lG)(g) ∂i(g
l)

 .

This yields

ΓL (F (f), G(g)) = ai,j ∂i(F (f)) ∂i(G(g))

= (∂kF )(f)(∂lG)(g) ΓL(fk, gl).

In much the same way, we have

∂i,j(F (f)) = ∂j
(
(∂kF )(f) ∂i(f

k)
)

= (∂k,lF )(f) ∂i(f
k)∂j(f

l) + (∂kF )(f) ∂i,j(f
k).

This implies that

L(F (f)) = bi∂i(F (f)) +
1

2
ai,j ∂i,j(F (f))

= (∂kF )(f)

[
bi ∂i(f

k) +
1

2
ai,j ∂i,j(f

k)

]
+ (∂k,lF )(f)

1

2
ai,j ∂i(f

k)∂j(f
l)

= (∂kF )(f) L(fk) +
1

2
(∂k,lF )(f) ΓL(fk, f l).
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This ends the proof of the exercise.

Solution to exercise 355:
We have

ai,j ∂if a
k,l ∂k,l(∂jg) = ak,l

(
ai,j ∂if ∂j(∂k,l(g))

)
= ak,l ΓL(f, ∂k,lg).

This yields

ai,j ∂if L(∂jg) = ai,j ∂if b
k∂k∂jg +

1

2
ak,l ΓL(f, ∂k,lg)

= bk
(
ai,j ∂if ∂j(∂kg)

)
+

1

2
ak,l ΓL(f, ∂k,lg)

= bk ΓL(f, ∂kg) +
1

2
ak,l ΓL(f, ∂k,lg). (30.44)

This ends the proof of the �rst assertion.
To check the second one, we observe that

ΓL(f, L(g)) = ΓL(f, bi∂ig) +
1

2
ΓL(f, ai,j∂i,jg)

= biΓL(f, ∂ig) +
1

2
ai,j ΓL(f, ∂i,jg)

+ΓL(f, bi) ∂ig +
1

2
ΓL(f, ai,j) ∂i,jg.

The last assertion follows from the formula

ΓL(f, gh) = g ΓL(f, h) + h ΓL(f, g)

which we proved in exercise 354. Using (30.44) we check that

ΓL(f, L(g)) = ai,j ∂if L(∂jg) + ΓL(f, bi) ∂ig +
1

2
ΓL(f, ai,j) ∂i,jg.

By symmetry arguments, we also have

ΓL(g, L(f)) = ai,j ∂ig L(∂jf) + ΓL(g, bi) ∂if +
1

2
ΓL(g, ai,j) ∂i,jf.

Summing the two expressions yields

ΓL(f, L(g)) + ΓL(g, L(f)) = ai,j

=L(∂if∂jg)−ΓL(∂if,∂jg)︷ ︸︸ ︷
(∂if L(∂jg) + ∂ig L(∂jf))

+ΓL(f, bi) ∂ig +
1

2
ΓL(f, ai,j) ∂i,jg

+ΓL(g, bi) ∂if +
1

2
ΓL(g, ai,j) ∂i,jf.

On the other hand, we have

L (ΓL(f, g)) = L
(
ai,j∂if∂jg

)
= ai,j L (∂if∂jg) + L

(
ai,j
)
∂if∂jg + ΓL

(
ai,j , ∂if∂jg

)
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and
ΓL
(
ai,j , ∂if∂jg

)
= ΓL

(
ai,j , ∂jg

)
∂if + ΓL

(
ai,j , ∂if

)
∂jg.

We conclude that

Γ2,L(f, g)

= L (ΓL(f, g))− ΓL(f, L(g))− ΓL(g, L(f))

=
[
L
(
ai,j
)
∂if ∂jg − ΓL(f, bi) ∂ig − ΓL(g, bi) ∂if

]
+ ai,j ΓL(∂if, ∂jg)

+
[
ΓL
(
ai,j , ∂jg

)
∂if + ΓL

(
ai,j , ∂if

)
∂jg
]
− 1

2

[
ΓL(ai,j , f) ∂i,jg + ΓL(ai,j , g) ∂i,jf

]
.

This ends the proof of the exercise.

Solution to exercise 356: Using the formulae

ΓL(f, bi) = ak,l ∂kf ∂lb
i ΓL

(
ai,j , ∂if

)
= ak,l∂la

i,j ∂k∂if

and
ΓL(ai,j , f) = ak,l ∂kf ∂la

i,j

we �nd that

Γ2,L(f, g) =
(
L
(
ai,j
)
−
{
ai,l ∂lb

j + aj,l ∂lb
i
})

∂if ∂jg

+

(
ak,l ∂la

i,j − 1

2
ai,l ∂la

k,j

)
[∂if ∂j,kg + ∂ig ∂j,kf ] + ai,j ak,l ∂i,kf ∂j,lg.

This ends the proof of the exercise.

Solution to exercise 357:
By the de�nitions of the operators Γ2,L and ΓL we have

Γ2,L(f, gh) = L (ΓL(f, gh))− ΓL (L(f), gh)− ΓL (f, L(gh))

L(gh) = gL(h) + hL(g) + ΓL(g, h).

Recalling that ΓL is a bilinear form, we have

ΓL (f, L(gh)) = ΓL (f, gL(h) + hL(g) + ΓL(g, h))

= ΓL (f, gL(h)) + ΓL (f, hL(g)) + ΓL (f,ΓL(g, h)) ,

as well as

ΓL (L(f), gh) = g ΓL (L(f), h) + h ΓL (L(f), g)

ΓL (f, gL(h)) = g ΓL (f, L(h)) + L(h) ΓL (f, g)

ΓL (f, hL(g)) = h ΓL (f, L(g)) + L(g) ΓL (f, h).

On the other hand, we have

ΓL(f, gh) = g ΓL(f, h) + h ΓL(f, g).
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This yields

L (ΓL(f, gh)) = L (g ΓL(f, h) + h ΓL(f, g))

= L (g ΓL(f, h)) + L (h ΓL(f, g))

= g L (ΓL(f, h)) + L (g) ΓL(f, h) + ΓL (g,ΓL(f, h))

+h L (ΓL(f, g)) + L (h) ΓL(f, g) + ΓL (h,ΓL(f, g)) .

Combining these formulae, we check directly that

Γ2,L(f, gh) = ΓL (g,ΓL(f, h)) + ΓL (h,ΓL(f, g))− ΓL (f,ΓL(g, h))

+g L (ΓL(f, h))− g ΓL (f, L(h))− g ΓL (L(f), h)

+h L (ΓL(f, g))− h ΓL (f, L(g))− h ΓL (L(f), g).

This implies that

Γ2,L(f, gh)− hΓ2,L(f, g)− gΓ2,L(f, h)

= ΓL (g,ΓL(f, h)) + ΓL (h,ΓL(f, g))− ΓL (f,ΓL(g, h)) .

This ends the proof of the exercise.

Solution to exercise 358:
We use the di�erential formulae

∂if ∂j(gh) = g ∂if ∂j(h) + h ∂if ∂j(g)

∂if ∂j,k(gh) = ∂if ∂j (g ∂kh+ h ∂kg)

= ∂if (∂jg ∂kh+ ∂jh ∂kg + g ∂j,kh+ h ∂j,kg)

= g [∂if ∂j,kh] + h [∂if ∂j,kg] + ∂if (∂jg ∂kh+ ∂jh ∂kg),

as well as

∂i(gh) ∂j,k(f) = g ∂i(h) ∂j,k(f) + h ∂i(g) ∂j,k(f)

∂i,kf ∂j,l(gh) = ∂i,kf (∂jg ∂lh+ ∂jh ∂lg + g ∂j,lh+ h ∂j,lg)

= g (∂i,kf ∂j,lh) + h (∂i,kf ∂j,lg) + ∂i,kf (∂jg ∂lh+ ∂jh ∂lg).

The terms in red correspond to the linear terms in the formula

Γ2,L(f, gh)−h Γ2,L(f, g)− g Γ2,L(f, h)

=

(
ak,l ∂la

i,j − 1

2
ai,l ∂la

k,j

)
∂if (∂jg ∂kh+ ∂jh ∂kg)

+ ai,j ak,l ∂i,lf (∂jg ∂kh+ ∂jh ∂kg).

This ends the proof of the exercise.

Solution to exercise 359:
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We clearly have V = Vect (U1, U2) ⊂ R3 with the orthogonal vectors

U1 =
1√
2

 1
−1
0

 and U2 =
1√
6

 1
1
−2

 .

The orthogonal projection on V is given for any vector W =

 W 1

W 2

W 3

 by

πV(W ) =
∑

1≤i≤2

〈Ui,W 〉 Ui

=
W 1 −W 2

2

 1
−1
0

+
W 1 +W 2 − 2W 3

6

 1
1
−2


=

 W 1−W 2

2 + W 1+W 2−2W 3

6
W 2−W 1

2 + W 1+W 2−2W 3

6
2W 3−W 1−W 2

3


=

1

3

 3W 1−3W 2+W 1+W 2−2W 3

2
3W 2−3W 1+W 1+W 2−2W 3

2
2W 3 −W 1 −W 2

 =
1

3

 2W 1 −W 2 −W 3

2W 2 −W 1 −W 3

2W 3 −W 1 −W 2

 .

We conclude that

πV =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

This ends the proof of the exercise.

Solution to exercise 360:
For any curve t ∈ [0, 1] 7→ C(t) :=

(
C1(t), C2(t), C3(t)

)
∈ S, with C(0) = x and

dCi

dt (0) = V i(x), with i = 1, 2, 3 we have

ϕ(C(t)) = 0⇒ 0 =
d

dt
ϕ(C(t))t=0 =

∑
1≤i≤3

(∂xiϕ) (C(t))t=0
dCi

dt
(0).

This shows that

〈(∂ϕ) (x), V (x)〉 = 〈

 (∂x1
ϕ) (x)

(∂x2ϕ) (x)
(∂x3ϕ) (x)

 ,

 V 1(x)
V 2(x)
V 3(x)

〉 = 0.

We conclude that (∂ϕ) (x) is orthogonal to the tangent vectors V (x) at x ∈ S. Thus, the
equation of the tangent plane at x is given by the equation

〈

 (∂x1
ϕ) (x)

(∂x2
ϕ) (x)

(∂x3ϕ) (x)

 ,

 y1 − x1

y2 − x2

y3 − x3

〉 = 0.
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• For the hyperboloid ϕ(x) = x2
1 − x2

2 − x2
3 − 4 = 0, we have (∂x1ϕ) (x)

(∂x2ϕ) (x)
(∂x3

ϕ) (x)

 = 2

 x1

−x2

−x3

 .

• For the circular cone ϕ(x) = x2
1 + x2

2 − x2
3 = 0, we have (∂x1ϕ) (x)

(∂x2ϕ) (x)
(∂x3

ϕ) (x)

 = 2

 x1

x2

−x3

 .

This ends the proof of the exercise.

Solution to exercise 361:
For any parametric curve t ∈ [0, 1] 7→ ψ(θ(t)) := ψ(θ1(t), θ2(t)), we have

d

dt
ψ(θ1(t), θ2(t)) = (∂θ1ψ) (θ)

dθ1

dt
(t) + (∂θ2ψ) (θ)

dθ2

dt
(t).

This shows that the vector �elds

(∂θ1ψ) (θ) =

 −r sin(θ1) cos(θ2)
−r sin(θ1) sin(θ2)

r cos(θ1)

 and (∂θ2ψ) (θ) =

 −(R+ r cos(θ1)) sin(θ2)
(R+ r cos(θ1)) cos(θ2)

0


are tangent to the surface at the point ψ(θ). The normal vector n(θ) of the tangent plane
at that point is given by the cross (vector) product

n(θ)

=

 n1(θ)
n2(θ)
n3(θ)


= (∂θ1ψ) (θ) ∧ (∂θ2ψ) (θ)

=

 −r cos(θ1)(R+ r cos(θ1)) cos(θ2)
−r cos(θ1)(R+ r cos(θ1)) sin(θ2)

−r sin(θ1) cos(θ2)(R+ r cos(θ1)) cos(θ2)− r sin(θ1) sin(θ2)(R+ r cos(θ1)) sin(θ2)

 .

The surface unit normal is given by the formula

n(x, y) =
n(θ)

‖n(θ)‖
=

n(θ)√
〈n(θ), n(θ)〉

.

The equation of the tangent plane at x = ψ(θ) is given by the equation

〈

 n1(θ)
n2(θ)
n3(θ)

 ,

 y1 − x1

y2 − x2

y3 − x3

〉 = 0.

This ends the proof of the exercise.
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Solution to exercise 362:
The tangent vector space at

x = ψ(θ) =

 ψ1(θ)
ψ2(θ)
ψ3(θ)

 =

 θ1

θ2

h(θ)

 ∈ S ⇒ θ := φ(x) = ψ−1(x)

is spanned by the vectors

V1(x) = (∂θ1ψ)φ(x) =


(
∂θ1ψ

1
)
φ(x)(

∂θ1ψ
2
)
φ(x)(

∂θ1ψ
3
)
φ(x)

 =

 1
0

(∂θ1h)φ(x)

 =

 1
0

(∂x1
h)x


and

V2(x) = (∂θ2ψ)φ(x) =


(
∂θ2ψ

1
)
φ(x)(

∂θ2ψ
2
)
φ(x)(

∂θ2ψ
3
)
φ(x)

 =

 0
1

(∂θ2h)φ(x)

 =

 0
1

(∂x2
h)x

 .

The orthogonal tangent vector space T⊥x (S) is spanned by the vector

V ⊥1 (x) = (∂ϕ)x =

 (∂x1ϕ)x
(∂x2ϕ)x
(∂x3

ϕ)x

 =

 (∂x1h)x
(∂x2h)x
−1

 . (30.45)

The metric g(x) on Tx(S) is given by the matrix

g(x) =

(
g1,1(x) g1,2(x)
g2,1(x) g2,2(x)

)
=

(
〈V1(x), V1(x)〉 〈V1(x), V2(x)〉
〈V2(x), V1(x)〉 〈V2(x), V2(x)〉

)
=

(
1 + (∂x1

h)
2
x (∂x1

h)x (∂x2
h)x

(∂x1h)x (∂x2h)x 1 + (∂x2h)
2
x

)
.

The metric g⊥(x) on Tx(S) is given by the function

g⊥(x) = 〈V ⊥1 (x), V ⊥1 (x)〉 = 1 + (∂x1
h)

2
x + (∂x2

h)
2
x .

This ends the proof of the exercise.

Solution to exercise 363:
The inverse of the matrix g(x) is given by

g(x)−1 =

(
g1,1(x) g1,2(x)
g2,1(x) g2,2(x)

)
=

1

1 + (∂x1h)
2
x + (∂x2h)

2
x

(
1 + (∂x2

h)
2
x − (∂x1

h)x (∂x2
h)x

− (∂x1
h)x (∂x2

h)x 1 + (∂x1
h)

2
x

)
.

The orthogonal projection π(x) of the vector �eld W (x) =

 W 1(x)
W 2(x)
W 2(x)

 is de�ned by

π(x)(W (x)) =
∑

i,j=1,2

gi,j(x) 〈Vj(x),W (x)〉 Vi(x)
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and

π(x)(W (x)) =
1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

〈V ⊥1 (x),W (x)〉 V ⊥1 (x).

Notice that

〈V1(x),W (x)〉 = W 1(x) + (∂x1
h)x W 3(x)

〈V2(x),W (x)〉 = W 2(x) + (∂x2
h)x W 3(x)

and [
g1,1(x) 〈V1(x),W (x)〉+ g1,2(x) 〈V2(x),W (x)〉

]
V1(x)

=
1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

{[
1 + (∂x2

h)
2
x

] [
W 1(x) + (∂x1

h)x W 3(x)
]

− (∂x1h)x (∂x2h)x
[
W 2(x) + (∂x2

h)x W 3(x)
]}  1

0
(∂x1

h)x


=

1

1 + (∂x1h)
2
x + (∂x2h)

2
x

{[
1 + (∂x2

h)
2
x

]
W 1(x)− (∂x1

h)x (∂x2
h)x W 2(x)

+ (∂x1
h)x W 3(x)

}  1
0

(∂x1h)x

 .

In much the same way, we have[
g2,1(x) 〈V1(x),W (x)〉+ g2,2(x) 〈V2(x),W (x)〉

]
V2(x)

=
1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

{
− (∂x1

h)x (∂x2
h)x

[
W 1(x) + (∂x1

h)x W 3(x)
]

+
[
1 + (∂x1h)

2
x

] [
W 2(x) + (∂x2h)x W 3(x)

]}  0
1

(∂x2
h)x


=

1

1 + (∂x1h)
2
x + (∂x2h)

2
x

{
− (∂x1

h)x (∂x2
h)xW

1(x) +
[
1 + (∂x1

h)
2
x

]
W 2(x)

+ (∂x2
h)x W 3(x)

}  0
1

(∂x2h)x

 .

This implies that π(x)(W (x)) =

 π(x)(W (x))1

π(x)(W (x))2

π(x)(W (x))3

 with

π(x)(W (x))1 =
1

1 + (∂x1h)
2
x + (∂x2h)

2
x

×
{[

1 + (∂x2
h)

2
x

]
W 1(x)− (∂x1

h)x (∂x2
h)x W 2(x) + (∂x1

h)x W 3(x)
}
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and

π(x)(W (x))2 =
1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

×
{
− (∂x1

h)x (∂x2
h)xW

1(x) +
[
1 + (∂x1

h)
2
x

]
W 2(x) + (∂x2

h)x W 3(x)
}
,

as well as

π(x)(W (x))3 =
1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

×
[{
− (∂x1

h)x (∂x2
h)

2
xW

1(x) +
[
1 + (∂x1

h)
2
x

]
(∂x2

h)x W 2(x) + (∂x2
h)

2
x W 3(x)

}
+
{[

1 + (∂x2
h)

2
x

]
(∂x1

h)xW
1(x)− (∂x1

h)
2
x (∂x2

h)x W 2(x) + (∂x1
h)

2
x W 3(x)

}]
=

1

1 + (∂x1h)
2
x + (∂x2h)

2
x

×
[{

(∂x1h)xW
1(x) + (∂x2h)x W 2(x) +

(
(∂x1h)

2
x + (∂x2h)

2
x

)
W 3(x)

}]
.

We conclude that

π(x)

=

 π1
1(x) π1

2(x) π1
3(x)

π2
1(x) π2

2(x) π2
3(x)

π3
1(x) π3

2(x) π3
3(x)


=

1

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

×


[
1 + (∂x2

h)
2
x

]
− (∂x1

h)x (∂x2
h)x (∂x1

h)x

− (∂x1
h)x (∂x2

h)x

[
1 + (∂x1

h)
2
x

]
(∂x2

h)x

(∂x1
h)x (∂x2

h)x (∂x1
h)

2
x + (∂x2

h)
2
x

 .

(30.46)
Finally, the orthogonal projection π⊥(x) of a vector �eld W (x) is given by

π⊥(x)(W (x)) = g−1
⊥ (x) 〈V ⊥1 (x),W (x)〉 V ⊥1 (x)

=
1

1 + (∂x1h)
2
x + (∂x2h)

2
x

(
(∂x1

h)xW
1(x) + (∂x2

h)xW
2(x)−W 3(x)

) (∂x1
h)x

(∂x2
h)x
−1

 .

This implies that

π⊥(x) =
1

1 + (∂x1h)
2
x + (∂x2h)

2
x

×

 (∂x1
h)

2
x (∂x1

h)x (∂x2
h)x − (∂x1

h)x
(∂x1

h)x (∂x2
h)x (∂x2

h)
2
x − (∂x2

h)x
− (∂x1

h)x − (∂x2
h)x 1

 .
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Notice that

π⊥(x) =
1

‖(∂ϕ)x‖
2 (∂ϕ)x (∂ϕ)

T
x and π(x) = Id− π⊥(x)

with the vector (∂ϕ)x given in (30.45). This ends the proof of the exercise.

Solution to exercise 364:
Combining (19.24) with (30.46) we have

(∇F )(x)

:= π(x) (∂F ) (x)

=
1

1 + (∂x1h)
2
x + (∂x2h)

2
x

×


[
1 + (∂x2

h)
2
x

]
− (∂x1

h)x (∂x2
h)x (∂x1

h)x

− (∂x1
h)x (∂x2

h)x

[
1 + (∂x1

h)
2
x

]
(∂x2

h)x

(∂x1
h)x (∂x2

h)x (∂x1
h)

2
x + (∂x2

h)
2
x


 (∂x1F )(x)

(∂x2F )(x)
(∂x3

F )(x)

 .

Using (19.36) and (30.45), the mean curvature vector H(x) is given by

H(x) =
∑

1≤i≤3

∂xi

(
V
⊥,i
1

)
(x) V

⊥
1 (x) (30.47)

with

V
⊥
1 (x) =

 V
⊥,1
1 (x)

V
⊥,2
1 (x)

V
⊥,3
1 (x)

 =
1√

1 + (∂x1
h)

2
x + (∂x2

h)
2
x

 (∂x1h)x
(∂x2h)x
−1

 .

Finally, using (19.71) we have

(∆F )(x) = tr
(
π(x)(∂2F )(x)

)
− 〈H(x), (∂F )(x)〉

with the projection matrix π(x) de�ned in (30.46).
This ends the proof of the exercise.
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Solution to exercise 365:
The graph of the function h is de�ned as the null level set of the function

ϕ(x1, x2) = h(x1)− x2 ⇒ ∂ϕ(x) =

(
∂x1

h
−1

)
⊥
(

1
∂x1

h

)
.

This implies that
T⊥(S) = Vect

(
V ⊥
)

and T (S) = Vect (V )

with the unit vector �elds

V ⊥(x) =
∂ϕ(x)

‖∂ϕ(x)‖
=

1√
1 + (∂x1

h)2

(
∂x1h
−1

)
and V (x) =

1√
1 + (∂x1

h)2

(
1

∂x1
h

)
.

In this situation, the mean curvature vector H is given by the formula

H(x) =

∂x1

(
V
⊥,1

(x)
)

+

=0︷ ︸︸ ︷
∂x2

(
V
⊥,2

(x)
) V

⊥
(x)

= ∂x1

(
∂x1

h√
1 + (∂x1

h)2

)
1√

1 + (∂x1
h)2

(
∂x1

h
−1

)
Observe that

∂x1

(
∂x1h√

1 + (∂x1
h)2

)
=

1√
1 + (∂x1

h)2
∂2
x1
h− (∂x1

h)2

1 + (∂x1
h)2

∂2
x1
h√

1 + (∂x1
h)2

=
1

(∂x1h)2

1√
1 + (∂x1

h)2
∂2
x1
h.

This implies that

H(x) =
∂2
x1
h

(∂x1
h)2

1

1 + (∂x1
h)2

(
∂x1

h
−1

)
.

On the other hand, the projection matrix on Tx(S) is de�ned by

π(x) = Id− V ⊥(x)V ⊥(x)T

=

(
1 0
0 1

)
− 1

1 + (∂x1
h)2

(
(∂x1

h)2 −∂x1
h

−∂x1
h 1

)
=

1

1 + (∂x1h)2

(
1 ∂x1

h
∂x1h (∂x1h)2

)
.

The di�usion equation of the Brownian motion on the manifold S is now de�ned by the
formula (20.7) with the mean curvature vector and the projection matrix de�ned above.
This ends the proof of the exercise.
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Solution to exercise 366:
The ellipsoid can be interpreted as the hyper surface S = ψ−1(0) de�ned by the function

ϕ(x) := ‖x‖a − 1 with the norm ‖x‖2a :=

(
x1

a1

)2

+

(
x2

a1

)2

+

(
x3

a1

)2

.

We have

∂xiϕ(x) =
1

a2
i

xi
‖x‖a

⇒ ∂ϕ(x) =
1

‖x‖a

 x1/a
2
1

x2/a
2
2

x3/a
2
3

 .
In this situation, the orthogonal space T⊥x (S) is the one dimensional space spanned by the
unit normal vector

V
⊥

(x) :=
∂ϕ(x)

‖∂ϕ(x)‖
=

1√∑
1≤i≤3 (xi/a2

i )
2

 x1/a
2
1

x2/a
2
2

x3/a
2
3

 .
In addition the mean curvature vector H is de�ned by the formula

H(x) =

 ∑
1≤i≤3

∂xi

(
V
⊥,i

(x)
) V

⊥
(x).

After some elementary computations we �nd that

∂xi

(
V
⊥,i

(x)
)

=
a−2
i√∑

1≤i≤3 (xi/a2
i )

2

(
1− (xi/a

2
i )

2∑
1≤i≤3 (xi/a2

i )
2

)

=⇒ H(x) =
∑

1≤i≤3 a
−2
i

(
1− (xi/a

2
i )

2∑
1≤i≤3 (xi/a2

i )
2

)
1√∑

1≤i≤3 (xi/a2
i )

2
V
⊥

(x)

=
∑

1≤i≤3 a
−2
i

(
1− (xi/a

2
i )

2∑
1≤i≤3 (xi/a2

i )
2

)
1∑

1≤i≤3 (xi/a2
i )

2

 x1/a
2
1

x2/a
2
2

x3/a
2
3

 .
The projection matrix on Tx(S) is also de�ned by the matrix

π(x) = Id− V ⊥(x)V
⊥

(x)T .

The Brownian motion on the ellipsoid is now de�ned by the formula (20.7) with the mean
curvature vector and the projection matrix de�ned above. This ends the proof of the
exercise.

Solution to exercise 367:
The Brownian motion on the manifold S = ϕ−1(0) is given by (20.10) with the mean

curvature vector H(x) de�ned in (30.47) and the projection matrix de�ned in (30.46). This
ends the proof of the exercise.
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Solution to exercise 368:
By (20.10), the Stratonovitch formulation of

dXt = b(Xt) dt+ σ(Xt) dWt

is given by

∂Xt =

[
b(Xt)−

1

2
σ(Xt)σ

′(Xt)

]
∂t+ σ(Xt) ∂Bt.

This ends the proof of the exercise.

Solution to exercise 369:
By (20.10), the Stratonovitch formulation of

dXt = a Xt dt+ b Xt dWt

is given by

∂Xt =

(
a− b2

2

)
Xt ∂t+ b Xt ∂Wt.

Since the Stratonovitch calculus follows the standard rules of di�erential calculus, we have

∂ logXt =
1

Xt
∂Xt =

(
a− b2

2

)
∂t+ b ∂Wt

from which we conclude that

log (Xt/X0) =

∫ t

0

1

Xs
∂Xs =

(
a− b2

2

)
t+ b Wt.

This ends the proof of the exercise.

Solution to exercise 370:
We have

dXt = aXt + bXt dWt ⇔ ∂Xt =

(
a− b2

2

)
Xt ∂t+ b Xt ∂Wt.

Replacing a by a+ b2

2 we �nd that

dXt =

(
a+

b2

2

)
Xt + bXt dWt ⇔ ∂Xt = a Xt ∂t+ b Xt ∂Wt.

Arguing as in exercise 369 we have

log (Xt/X0) =

∫ t

0

1

Xs
∂Xs = a t+ b Wt.

This ends the proof of the exercise.
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Solution to exercise 371:
Using (20.11), the projection of Yt into S is given by the di�usion

dXt = π(Xt)σ(Xt) dBt −
1

2
Hσ(Xt) dt

with the curvature vector de�ned in (20.12), and the projection matrix de�ned in (30.46).
Using (20.13), we have

dF (Xt) = L(F )(Xt) dt+ dMt(F )

with the in�nitesimal generator

L(F ) =
1

2
tr
(
σT∇ σT∇F

)
and the martingale

dMt(F ) = 〈∇F (Xt), σ(Xt)dBt〉 .

In the above displayed formula (∇F )(x) = π(x)(∂F )(x), with the gradient (∂F )(x) of F
evaluated at x, and the projection matrix de�ned in (30.46).

This ends the proof of the exercise.

Solution to exercise 372:
We follow the developments outlined in the end of section 20.1. In this situation, the

unit sphere Sp ⊂ Rp+1 is de�ned by the equation ‖x‖ = 1 we have

ϕ(x) = ‖x‖ − 1⇒ ∂ϕ(x) = x/‖x‖ and π(x) = Id− ∂ϕ(x)∂ϕ(x)T = Id− xxT

xTx
.

In addition, using (20.4) the mean curvature vector is de�ned for any x 6= 0 byH(x) = p x
xT x

.
This yields the di�usion equation:

dXt = −1

2
H(Xt) dt+ π(Xt) dBt = −p

2

Xt

XT
t Xt

dt+

(
Id− XtX

T
t

XT
t Xt

)
dBt. (30.48)

This ends the proof of the exercise.

Solution to exercise 373:
We have from (30.48)

dXt = −1

2
H(Xt) dt+ π(Xt) dBt = − Xt

XT
t Xt

dt+

(
Id− XtX

T
t

XT
t Xt

)
dBt.

Using (20.7), this equation can be rewritten as follows{
dXk

t =
∑

1≤j≤3

[
1
2 ∂πj (π

k
j )(Xt) dt+ πkj (Xt) dB

j
t

]
k = 1, 2, 3.

Using the rule (20.10) we conclude that

∂Xt = π(Xt) ∂Bt.
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This ends the proof of the exercise.

Solution to exercise 374:
Following the arguments provided in section 20.2.3, a discrete time numerical simulation

is given by

Xε
tn = projS2

(
Xε
tn−1
−

Xtn−1

XT
tn−1

Xtn−1

ε+

(
Id−

Xtn−1
XT
tn−1

XT
t Xt

)
√
ε Bn

)
,

where Bn stands for a sequence of i.i.d. centered and normalized Gaussian r.v. on R3. Recall
that the projection on the sphere is given by projS2(x1, x2, x3) = 1√

x2
1+x2

2+x3
3

(x1, x2, x3).

This ends the proof of the exercise.
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Solution to exercise 375:
Recalling that

Γ∆g (f1, f2) = 2 〈∇gf1,∇gf2〉g
and using the di�erential rule

∇g(f2f3) = f2 ∇gf3 + f3 ∇gf2

we �nd that

Γ∆g
(f1, f2f3) = 2 〈∇gf1,∇g(f2f3)〉g

= 2 f2 〈∇gf1,∇gf3〉g + 2 f3 〈∇gf1,∇gf2〉g
= f2 Γ∆g

(f1, f3) + f3Γ∆g
(f1, f2) .

This ends the proof of the exercise.

Solution to exercise 376:
Using the derivation formula discussed in exercise 375, the proof is the same as the

algebraic proof given in exercise 357.
This ends the proof of the exercise.

Solution to exercise 377:

• The elliptic paraboloid
(x1

a

)2

+
(x2

b

)2

=
x3

c
can be parametrized for any θ = (θ1, θ2) by

ψ(θ) =

(
θ1, θ2, c

[(
θ1

a

)2

+

(
θ2

b

)2
])

. (30.49)

Notice that
φ = ψ−1 ⇒ ∀x ∈ S φ(x) = (φ1(x), φ2(x)) = (x1, x2) .

The tangent plane at x = ψ(θ) is spanned by the vectors

(∂θ1ψ)φ(x) =

 1
0

2c
a2 x1

 and (∂θ2ψ)φ(x) =

 0
1

2c
b2 x2

 .

• The hyperbolic paraboloid
(x2

a

)2

−
(x1

b

)2

=
x3

c
can be parametrized by

ψ(θ1, θ2) =

(
θ1, θ2, c

[(
θ2

a

)2

−
(
θ1

b

)2
])

. (30.50)
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Arguing as above, the tangent plane at x = ψ(θ) is spanned by the vectors

(∂θ1ψ)φ(x) =

 1
0

− 2c
b2 x1

 and (∂θ2ψ)φ(x) =

 .0
1

2c
a2 x2

 .

• The sphere x2
1 + x2

2 + x2
3 = r2 can be parametrized by the spherical coordinates

ψ(θ1, θ2) = (r sin(θ1) cos(θ2), r sin(θ1) sin(θ2), r cos(θ1)) , (30.51)

with the restrictions Sψ = {(θ1, θ2) : θ1 ∈ [0, π], θ2 ∈ [0, 2π]}. Arguing as above, we
notice that ϕ−1(x) := φ(x) = (φ1(x), φ2(x)) with

(r sin(θ1) cos(θ2), r sin(θ1) sin(θ2), r cos(θ1)) = (x1, x2, x3)

⇒ φ1(x) = arctan

(√
x2

1 + x2
2

x3

)
= θ1 and φ2(x) = arctan

(
x2

x1

)
= θ2.

Arguing as above, the tangent plane at x = ψ(θ) is spanned by the vectors

(∂θ1ψ)φ(x) =

 r cos(φ1(x)) cos(φ2(x))
r cos(φ1(x)) sin(φ2(x))
−r sin(φ1(x))


and

(∂θ2ψ)φ(x) =

 −r sin(φ1(x)) sin(φ2(x))
r sin(φ1(x)) cos(φ2(x))

0

 .

• The cylinder x2
1 + x2

2 = r2 and x3 ∈ R can be parametrized by the coordinates

ψ(θ1, θ2) = (r sin(θ1), r cos(θ1), θ2) , (30.52)

with the restrictions Sψ = {(θ1, θ2) : θ1 ∈ [0, 2π], θ2 ∈ R}. Arguing as above, we notice
that ϕ−1(x) := φ(x) = (φ1(x), φ2(x)) with

(r sin(θ1), r cos(θ1), θ2) = (x1, x2, x3)

⇒ φ1(x) = arctan

(
x1

x2

)
= θ1 and φ2(x) = x3 = θ2.

Arguing as above, the tangent plane at x = ψ(θ) is spanned by the vectors

(∂θ1ψ)φ(x) =

 r cos(φ1(x))
−r sin(φ1(x))

0

 and (∂θ2ψ)φ(x) =

 0
0
1

 .

This ends the proof of the exercise.

Solution to exercise 378:
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• The elliptic paraboloid
(x1

a

)2

+
(x2

b

)2

=
x3

c
can be described as the null level set

S = ϕ−1(0) of the function ϕ de�ned for any x = (x1, x2, x3) ∈ R3 by

ϕ(x) :=
(x1

a

)2

+
(x2

b

)2

− x3

c
.

We have

∂ϕ(x) =

 2a−2 x1

2b−2 x2

−c−1

 and ‖ϕ(x)‖ = 4a−2 (x1/a)2 + 4b−2 (x2/b)
2 + c−2.

The unit normal at x is given by

n(x) =
∂ϕ(x)

‖ϕ(x)‖
⇒ π(x) = Id− n(x)n(x)T .

• The hyperbolic paraboloid
(x2

a

)2

−
(x1

b

)2

=
x3

c
can be described as the null level set

S = ϕ−1(0) of the function ϕ de�ned for any x = (x1, x2, x3) ∈ R3 by

ϕ(x) :=
(x2

a

)2

−
(x1

b

)2

− x3

c
.

In this situation, we have

∂ϕ(x) =

 −2b−2 x1

2a−2 x2

−c−1

 and ‖ϕ(x)‖ = 4b−2 (x1/b)
2 + 4a−2 (x2/a)2 + c−2.

• The sphere x2
1 + x2

2 + x3
3 = r2 can be described as the null level set S = ϕ−1(0) of the

function ϕ de�ned for any x = (x1, x2, x3) ∈ R3 by

ϕ(x) := x2
1 + x2

2 + x3
3 − r2.

In this situation, we have

∂ϕ(x) = 2

 x1

x2

x3

 and ‖ϕ(x)‖ = 4⇒ n(x) = x⇒ π(x) = Id− xxT .

• The sphere x2
1 + x2

2 = r2 and x3 ∈ R can be described as the null level set S = ϕ−1(0) of
the function ϕ de�ned for any x = (x1, x2, x3) ∈ R3 by

ϕ(x) := x2
1 + x2

2 − r2.

In this situation, we have

∂ϕ(x) = 2

 x1

x2

0

 and ‖ϕ(x)‖ = 4 (x2
1 + x2

2)

⇒ n(x) = 1√
x2

1+x2
2

 x1

x2

0

 and π(x) = Id− n(x)n(x)T .
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This ends the proof of the exercise.

Solution to exercise 379:

• The Riemannian scalar product g on the tangent spaces T (Sψ) associated with the
parametrization ψ of the elliptic paraboloid de�ned in (30.49) is given by the matrices

g1,1(θ) := 〈∂θ1ψ(θ), ∂θ1ψ(θ)〉 = 1 +

(
2c

a2

)2

θ2
1,

g2,2(θ) = 1 +

(
2c

b2

)2

θ2
1

and

g1,2(θ) := 〈∂θ1ψ(θ), ∂θ2ψ(θ)〉

=

〈 1
0

2c
a2 θi

 ,

 0
1

2c
b2 θ2

〉 =

(
2c

ab

)2

θ1θ2.

• For the hyperbolic paraboloid parametrization (30.50), we �nd that

g1,1(θ) = 1 +

(
2c

b2

)2

θ2
1,

g2,2(θ) = 1 +

(
2c

a2

)2

θ2
2 and g1,2(θ) =

(
2c

ab

)2

θ1θ2.

• For the spherical parametrization (30.51), we �nd that

g1,1(θ) := 〈∂θ1ψ(θ), ∂θ1ψ(θ)〉 = r2

g2,2(θ) = r2 sin2(θ1)

and g1,2(θ) = 0.

• For the cylindrical parametrization (30.52), we �nd that

g1,1(θ) := r2,

g2,2(θ) = 1 and g1,2(θ) = 0.

This ends the proof of the exercise.

Solution to exercise 380:
We recall (cf. for instance (21.9)) that the orthogonal projections on T (S) are de�ned

by the inverses g−1 = (gi,j)1≤i,j≤2 of the matrices g = (gi,j)1≤i,j≤2 associated with the
Riemannian scalar product derived in exercise 379. The matrices g−1 can be computed
using the formula

g =

(
g1,1 g1,2

g2,1 g2,2

)
=⇒ g−1 =

(
g1,1 g1,2

g2,1 g2,2

)
=

1

g1,1g2,2 − g1,2g2,1

(
g2,2 −g1,2

−g2,1 g1,1

)
.
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• For the elliptic paraboloid (30.49) we have

g =

(
1 +

(
2c
a2

)2
θ2

1

(
2c
ab

)2
θ1θ2(

2c
ab

)2
θ1θ2 1 +

(
2c
b2

)2
θ2

1

)
so that

g1,1g2,2 − g1,2g2,1 =

(
1 +

(
2c

a2

)2

θ2
1

)(
1 +

(
2c

b2

)2

θ2
1

)
−
(

2c

ab

)4

θ2
1θ

2
2

= 1 +

(
2c

a2

)2

θ2
1 +

(
2c

b2

)2

θ2
1.

This implies that

g−1 =
1

1 +
(

2c
a2

)2
θ2

1 +
(

2c
b2

)2
θ2

1

(
1 +

(
2c
b2

)2
θ2

1 −
(

2c
ab

)2
θ1θ2

−
(

2c
ab

)2
θ1θ2 1 +

(
2c
a2

)2
θ2

1

)
.

• The matrices g−1 for the hyperbolic paraboloid parametrization (30.50) are de�ned as the
ones of the elliptic paraboloid (30.49) replacing (a, b) by (b, a).

• For the sphere (30.51) we have

g = r2

(
1 0
0 sin2(θ1)

)
=⇒ g−1 =

1

r2 sin2(θ1)

(
sin2(θ1) 0

0 1

)
up to the angles θ1 ∈ {0, π}.

• For the cylinder parametrization (30.52) we have

g =

(
r2 0
0 1

)
=⇒ g−1 =

(
r−2 0
0 1

)
.

This ends the proof of the exercise.

Solution to exercise 381: Using the formula (21.21) the Riemannian gradient ∇gf =
g−1∂f is easily computed using the inverse matrix formula derived in exercise 380. For
instance on the sphere (30.51) we have

1

r2

(
1 0
0 sin−2(θ1)

)(
∂θ1f
∂θ2f

)
=

1

r2

(
∂θ1f

sin−2(θ1) ∂θ2f

)
.

Solution to exercise 382:
Following the detailed calculation on the 2-sphere S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 +

x2
3 = 1} presented in section 24.1.2, the Christo�el symbols Cki,j are given by

C1
1,1 = 0 = C1

1,2 = C1
2,1 = C2

1,1 = C2
2,2

C1
2,2(θ) = − sin(θ1) cos(θ1) and C2

1,2(θ) = C2
2,1(θ) =

cos(θ1)

sin(θ1)
.

By (21.50), we have

∇2
g(f) = g−1Hessg(f) with (Hessg(f))m,m′ = ∂θm,θm′ f −

∑
1≤j≤p

Cjm,m′ ∂θjf.
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In this situation, we have

(Hessg(f))1,1 = ∂θ1,θ1(f)

(Hessg(f))2,2 = ∂θ2,θ2f + sin(θ1) cos(θ1) ∂θ1f

(Hessg(f))1,2 = ∂θ1,θ2f −
cos(θ1)

sin(θ1)
∂θ2f.

This implies that

∇2
g(f) =

(
1 0
0 sin−2(θ1)

)(
∂2
θ1

(f) ∂θ1,θ2f − cot (θ1) ∂θ2f
∂θ1,θ2f − cot (θ1) ∂θ2f ∂θ2,θ2f + sin(θ1) cos(θ1) ∂θ1f

)
=

(
∂2
θ1

(f) ∂θ1,θ2f − cot (θ1) ∂θ2f

sin−2(θ1) (∂θ1,θ2f − cot (θ1) ∂θ2f) sin−2(θ1) ∂2
θ2
f + cot(θ1) ∂θ1f

)
.

Hence we can substitute to obtain

∆g(f) = tr
(
∇2
g(f)

)
= cot(θ1) ∂θ1f + ∂2

θ1f +
1

sin2 (θ1)
∂2
θ2f

=
1

sin (θ1)
∂θ1 (sin (θ1) ∂θ1f) +

1

sin2 (θ1)
∂2
θ2f.

This ends the proof of the exercise.

Solution to exercise 383:
Each (0, z)-section of the cone S de�ned by a z =

√
x2 + y2 is a circle of radius a z, for

some a > 0. The natural polar parametrization is given by the function

ψ : θ = (θ1, θ2) ∈ [0,∞[×[0, 2π] 7→ ψ(θ1, θ2) =

 a θ1 cos (θ2)
a θ1 sin (θ2)

θ1

 ∈ S.
The tangent plane Tψ(θ)(S) is spanned by the vectors

∂θ1ψ =

 a cos (θ2)
a sin (θ2)

1

 ⊥ ∂θ2ψ = a θ1

 − sin (θ2)
cos (θ2)

0

 .

The Riemannian metric is given by the diagonal (2× 2)-matrix

g =

(
1 + a2 0

0 a2θ2
1

)
⇒ ∀θ1 > 0 g−1 =

(
(1 + a2)−1 0

0 a−2θ−2
1

)
.

The Riemannian gradient on the cone is given by the formula

∇gf = (1 + a2)−1 ∂θ1f + a−2θ−2
1 ∂θ2f.

To compute the second derivative, we observe that

∂2
θ1ψ =

 0
0
0

 ∂2
θ2ψ = −a θ1

 cos (θ2)
sin (θ2)

0

 and ∂θ1,θ2ψ = a

 − sin (θ2)
cos (θ2)

0

 .
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We clearly have
∂2
θ2ψ ⊥ ∂θ2ψ and ∂θ1,θ2ψ ⊥ ∂θ1ψ

as well as 〈
∂2
θ2ψ, ∂θ1ψ

〉
= −a2θ1 and 〈∂θ1,θ2ψ, ∂θ2ψ〉 = a2θ1.

This shows that the Christo�el symbols are all null except for

C2
1,2 = g2,2 〈∂θ2ψ, ∂θ1,θ2ψ〉 =

1

θ1

and

C1
2,2 = g1,1

〈
∂θ1ψ, ∂

2
θ2ψ
〉

= − a2θ1

1 + a2
.

By (21.50), the Hessian can be computed in terms of the Christo�el symbols with the
formula

∇2
g(f) = g−1Hessg(f) with (Hessg(f))m,m′ = ∂θm,θm′ f −

∑
1≤j≤p

Cjm,m′ ∂θjf.

In this situation, we have

(Hessg(f))1,1 = ∂2
θ1f,

(Hessg(f))2,2 = ∂2
θ2f +

a2θ1

1 + a2
∂θ1f and (Hessg(f))1,2 = ∂θ1,θ2f −

1

θ1
∂θ2f

and

∇2
gf =

 (1 + a2)−1∂2
θ1
f (1 + a2)−1

[
∂θ1,θ2f − 1

θ1
∂θ2f

]
a−2θ−2

1

[
∂θ1,θ2f − 1

θ1
∂θ2f

]
a−2θ−2

1

[
∂2
θ2
f + a2θ1

1+a2 ∂θ1f
]  .

This implies that

∆g(f) = tr
(
∇2
g(f)

)
= (1 + a2)−1∂2

θ1f + a−2θ−2
1 ∂2

θ2f + (θ1(1 + a2))−1 ∂θ1f.

This ends the proof of the exercise.

Solution to exercise 384:
The spherical parametrization of the ellipsoid S is de�ned by

ψ(θ1, θ2) =

 a1 sin(θ1) cos(θ2)
a2 sin(θ1) sin(θ2)

a3 cos(θ1)


with the restrictions Sψ = {(θ1, θ2) : θ1 ∈ [0, π], θ2 ∈ [0, 2π]}. The tangent plane Tψ(θ)(S)
is spanned by the vectors

∂θ1ψ =

 a1 cos(θ1) cos(θ2)
a2 cos(θ1) sin(θ2)
−a3 sin(θ1)

 ⊥ ∂θ2ψ =

 −a1 sin(θ1) sin(θ2)
a2 sin(θ1) cos(θ2)

0

 .

We have

〈∂θ1ψ, ∂θ1ψ〉 = a2
1 cos2(θ1) cos2(θ2) + a2

2 cos2(θ1)
(
1− cos2(θ2)

)
+ a2

3

(
1− cos2(θ1)

)
=

[(
a2

1 − a2
2

)
cos2(θ2) +

(
a2

2 − a2
3

)]
cos2(θ1) + a2

3

〈∂θ2ψ, ∂θ2ψ〉 = a2
1 sin2(θ1) sin2(θ2) + a2

2 sin2(θ1)
(
1− sin2(θ2)

)
=

[(
a2

1 − a2
2

)
sin2(θ2) + a2

2

]
sin2(θ1).
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This implies that

g =

( [(
a2

1 − a2
2

)
cos2(θ2) +

(
a2

2 − a2
3

)]
cos2(θ1) + a2

3 0
0

[(
a2

1 − a2
2

)
sin2(θ2) + a2

2

]
sin2(θ1)

)
from which we prove that

g−1 =

( ([(
a2

1 − a2
2

)
cos2(θ2) +

(
a2

2 − a2
3

)]
cos2(θ1) + a2

3

)−1
0

0
([(

a2
1 − a2

2

)
sin2(θ2) + a2

2

])−1
sin−2(θ1)

)

up to the angles θ1 ∈ {0, π}. The Riemannian gradient on the ellipsoid is given by the
formula

∇gf =
([(

a2
1 − a2

2

)
cos2(θ2) +

(
a2

2 − a2
3

)]
cos2(θ1) + a2

3

)−1
∂θ1f

+
([(

a2
1 − a2

2

)
sin2(θ2) + a2

2

])−1
sin−2(θ1) ∂θ2f.

Observe that

∂θ1,θ1ψ = −

 a1 sin(θ1) cos(θ2)
a2 sin(θ1) sin(θ2)

a3 cos(θ1)

 .

This yields

〈∂θ1,θ1ψ, ∂θ1ψ〉 = −
[
(a2

1 − a2
3) cos2(θ2) + (a2

2 − a2
3) sin2(θ2)

]
cos(θ1) sin(θ1)

= −
[
(a2

1 − a2
2) cos2(θ2) + (a2

2 − a2
3)
]

cos(θ1) sin(θ1)

= −1

2

[
(a2

1 − a2
2) cos2(θ2) + (a2

2 − a2
3)
]

sin(2θ1)

and

〈∂θ1,θ1ψ, ∂θ2ψ〉 = (a2
1 − a2

2) sin2(θ1) sin(θ2) cos(θ2) =
1

2
(a2

1 − a2
2) sin2(θ1) sin(2θ2).

This implies that

C1
1,1 = g1,1 〈∂θ1ψ, ∂θ1,θ1ψ〉+ g1,2 〈∂θ2ψ, ∂θ1,θ1ψ〉

= g1,1 〈∂θ1ψ, ∂θ1,θ1ψ〉 = −1

2

[
(a2

1 − a2
2) cos2(θ2) + (a2

2 − a2
3)
]

sin(2θ1)

[(a2
1 − a2

2) cos2(θ2) + (a2
2 − a2

3)] cos2(θ1) + a2
3

and

C2
1,1 = g2,1 〈∂θ1ψ, ∂θ1,θ1ψ〉+ g2,2 〈∂θ2ψ, ∂θ1,θ1ψ〉

= g2,2 〈∂θ2ψ, ∂θ1,θ1ψ〉 =
1

2

(a2
1 − a2

2) sin(2θ2)[
(a2

1 − a2
2) sin2(θ2) + a2

2

] .
In much the same way, we have

∂θ2,θ2ψ = −

 a1 sin(θ1) cos(θ2)
a2 sin(θ1) sin(θ2)

0

 .

This yields

〈∂θ2,θ2ψ, ∂θ1ψ〉 = −
(
(a2

1 − a2
2) cos2(θ2) + a2

2

)
sin(θ1) cos(θ1)

= −1

2

(
(a2

1 − a2
2) cos2(θ2) + a2

2

)
sin(2θ1)
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and

〈∂θ2,θ2ψ, ∂θ2ψ〉 =
(
a2

1 − a2
2

)
sin2(θ1) cos(θ2) sin(θ2) =

1

2

(
a2

1 − a2
2

)
sin2(θ1) sin(2θ2).

This yields

C1
2,2 = g1,1 〈∂θ2,θ2ψ, ∂θ1ψ〉+ g1,2 〈∂θ2,θ2ψ, ∂θ2ψ〉

= g1,1 〈∂θ2,θ2ψ, ∂θ1ψ〉 = −1

2

(
(a2

1 − a2
2) cos2(θ2) + a2

2

)
sin(2θ1)

[(a2
1 − a2

2) cos2(θ2) + (a2
2 − a2

3)] cos2(θ1) + a2
3

and

C2
2,2 = g2,1 〈∂θ2,θ2ψ, ∂θ1ψ〉+ g2,2 〈∂θ2,θ2ψ, ∂θ2ψ〉

= g2,2 〈∂θ2,θ2ψ, ∂θ2ψ〉 =
1

2

(
a2

1 − a2
2

)
sin(2θ2)[

(a2
1 − a2

2) sin2(θ2) + a2
2

] .
Finally, we have

∂θ1,θ2ψ =

 −a1 cos(θ1) sin(θ2)
a2 cos(θ1) cos(θ2)

0

 .

This yields

〈∂θ1,θ2ψ, ∂θ1ψ〉 = −
(
a2

1 − a2
2

)
cos2(θ1) cos(θ2) sin(θ2)

= −1

2

(
a2

1 − a2
2

)
cos2(θ1) sin(2θ2)

〈∂θ1,θ2ψ, ∂θ2ψ〉 =
(
(a2

1 − a2
2) sin2(θ2) + a2

2

)
sin(θ1) cos(θ1)

=
1

2

(
(a2

1 − a2
2) sin2(θ2) + a2

2

)
sin(2θ1).

This implies that

C1
1,2 = g1,1 〈∂θ1,θ2ψ, ∂θ1ψ〉+ g1,2 〈∂θ1,θ2ψ, ∂θ2ψ〉

= g1,1 〈∂θ1,θ2ψ, ∂θ1ψ〉 = −1

2

(
a2

1 − a2
2

)
cos2(θ1) sin(2θ2)

[(a2
1 − a2

2) cos2(θ2) + (a2
2 − a2

3)] cos2(θ1) + a2
3

and

C2
1,2 = g2,1 〈∂θ1,θ2ψ, ∂θ1ψ〉+ g2,2 〈∂θ1,θ2ψ, ∂θ2ψ〉

= g2,2 〈∂θ1,θ2ψ, ∂θ2ψ〉 =
1

2

(
(a2

1 − a2
2) sin2(θ2) + a2

2

)
sin(2θ1)[

(a2
1 − a2

2) sin2(θ2) + a2
2

]
sin2(θ1)

.

By (21.50), the Hessian can be computed in terms of the Christo�el symbols with the
formula

∇2
gf = g−1Hessg(f) with (Hessg(f))m,m′ = ∂θm,θm′ f −

∑
1≤j≤p

Cjm,m′ ∂θjf.

This ends the proof of the exercise.

Solution to exercise 385:
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The tangent plane at Tψ(θ)(S) is spanned by the vectors

∂θ1ψ =

 ∂θ1u(θ1) cos (θ2)
∂θ1u(θ1) sin (θ2)

1

 ⊥ ∂θ2ψ = u(θ1)

 − sin (θ2)
cos (θ2)

0

 .

This implies that

g =

(
1 + (∂θ1u(θ1))

2
0

0 u(θ1)2

)
and g−1 =

( (
1 + (∂θ1u(θ1))

2
)−1

0

0 u(θ1)−2

)
,

up to the parameters θ1 s.t. u(θ1) = 0. The Riemannian gradient operator on the revolution
surface is given by the formula

∇g =
(

1 + (∂θ1u(θ1))
2
)−1

∂θ1 + u(θ1)−2 ∂θ2 .

The second derivatives are clearly given by the formulae

∂2
θ1ψ = ∂2

θ1u

 cos (θ2)
sin (θ2)

0

 ⊥ ∂θ2ψ

∂θ1,θ2ψ = ∂θ1u

 − sin (θ2)
cos (θ2)

0

 = (∂θ1 log u) ∂θ2ψ ⊥ ∂θ1ψ

∂2
θ2ψ = −u

 cos (θ2)
sin (θ2)

0

 ⊥ ∂θ2ψ.

The Christo�el symbols are given by

C1
1,1 = g1,1

〈
∂2
θ1ψ, ∂θ1ψ

〉
=

∂2
θ1
u ∂θ1u

1 + (∂θ1u)
2 = ∂θ1 log

√
1 + (∂θ1u)

2

C1
2,2 = g1,1

〈
∂2
θ2ψ, ∂θ1ψ

〉
= − u ∂θ1u

1 + (∂θ1u)
2 = −1

2

∂θ1(u2)

1 + (∂θ1u)
2

C2
1,2 = C2

2,1 = g2,2 〈 ∂θ1,θ2ψ, ∂θ2ψ〉 =
u ∂θ1u

u2
= ∂θ1(log u)

and C1
1,2 = C2

1,1 = C2
2,2 = 0.

By (21.50), the Hessian can be computed in terms of the Christo�el symbols with the
formula

∇2
g(f) = g−1Hessg(f) with (Hessg(f))m,m′ = ∂θm,θm′ f −

∑
1≤j≤p

Cjm,m′ ∂θjf.

In this situation, we have

(Hessg(f))1,1 = ∂2
θ1f − ∂θ1 log

√
1 + (∂θ1u)

2
∂θ1f

(Hessg(f))2,2 = ∂2
θ2f +

1

2

∂θ1(u2)

1 + (∂θ1u)
2 ∂θ1f

(Hessg(f))1,2 = ∂2
θ1,θ2f − ∂θ1(log u) ∂θ2f = (Hessg(f))2,1



Chapter 21 1143

and therefore

∇2
gf =


(

1 + (∂θ1u)
2
)−1

(
∂2
θ1
f − ∂θ1 log

√
1 + (∂θ1u)

2
∂θ1f

) (
1 + (∂θ1u)

2
)−1 (

∂2
θ1,θ2

f − ∂θ1(log u) ∂θ2f
)

u−2
(
∂2
θ1,θ2

f − ∂θ1(log u) ∂θ2f
)

u−2

(
∂2
θ2
f + 1

2

∂θ1 (u2)

1+(∂θ1u)
2 ∂θ1f

)
.

This also implies that

∆g =
1

1 + (∂θ1u)
2 ∂2

θ1 +
1

u2
∂2
θ2 +

1

1 + (∂θ1u)
2 ∂θ1 log

(
u/

√
1 + (∂θ1u)

2

)
∂θ1 .

This ends the proof of the exercise.

Solution to exercise 386:
When u(θ1) = c + cos (θ1)(> 0) with c > −1 we have u′(θ1) = − sin (θ1) and u′′(θ1) =

− cos (θ1).
When u(z) = c+ cos z with c > −1 we have

∂θ1ψ =

 − sin(θ1) cos (θ2)
− sin(θ1) sin (θ2)

1

 ⊥ ∂θ2ψ = (c+ cos(θ1))

 − sin (θ2)
cos (θ2)

0

 .

This implies that

g =

(
1 + sin2(θ1) 0

0 (c+ cos(θ1))2

)
and g−1 =

( (
1 + sin2(θ1)

)−1
0

0 (c+ cos(θ1))−2

)
for any (θ1, θ2). The corresponding Riemannian gradient operator is given by the formula

∇g =
(
1 + sin2(θ1)

)−1
∂θ1 + (c+ cos(θ1))−2 ∂θ2 .

We also have that

C1
1,1 =

sin (θ1) cos (θ1)

1 + sin2 (θ1)
=

1

2

sin (2θ1)

1 + sin2 (θ1)

C1
2,2 =

(c+ cos (θ1)) sin (θ1)

1 + sin2 (θ1)
and C2

1,2 = C2
2,1 = − sin (θ1)

(c+ cos (θ1))
.

Therefore

∇2
gf =

 (
1 + sin2 (θ1)

)−1
(
∂2
θ1
f − 1

2
sin (2θ1)

1+sin2 (θ1)
∂θ1f

) (
1 + sin2 (θ1)

)−1
(
∂2
θ1,θ2

f + sin (θ1)
(c+cos (θ1)) ∂θ2f

)
(c+ cos (θ1))−2

(
∂2
θ1,θ2

f + sin (θ1)
(c+cos (θ1)) ∂θ2f

)
(c+ cos (θ1))−2

(
∂2
θ2
f − (c+cos (θ1)) sin (θ1)

1+sin2 (θ1)
∂θ1f

) .
This implies that

∆g =
1

1 + sin2 (θ1)
∂2
θ1 +

1

(c+ cos (θ1))2
∂2
θ2

− sin (θ1)

1 + sin2 (θ1)

(
cos (θ1)

1 + sin2 (θ1)
+

1

c+ cos (θ1)

)
∂θ1 .

This ends the proof of the exercise.
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Solution to exercise 387:
When u(z) = cosh (z) we have u′(θ1) = sinh (θ1) = eθ1−e−θ1

2 and u′′ = u. In this
situation, following the calculations provided in the proof of exercise 385 the tangent plane
at Tψ(θ)(S) is spanned by the vectors

∂θ1ψ =

 sinh (θ1) cos (θ2)
sinh (θ1) sin (θ2)

1

 ⊥ ∂θ2ψ = cosh (θ1)

 − sin (θ2)
cos (θ2)

0

 .

Recalling that cosh2 (θ1) = sinh2 (θ1) + 1 this implies that

g = cosh2 (θ1)

(
1 0
0 1

)
and g−1 = cosh−2 (θ1)

(
1 0
0 1

)
.

∇g = cosh−2 (θ1) ( ∂θ1 + ∂θ2) .

The Christo�el symbols reduce to

C1
1,1 = C2

1,2 = C2
2,1 = −C1

2,2 = tanh (θ1)

C1
1,2 = C1

2,1 = C2
1,1 = C2

2,2 = 0.

This yields

∇2
gf = cosh−2 (θ1)

 (
∂2
θ1
f − tanh (θ1) ∂θ1f

) (
∂2
θ1,θ2

f + tanh (θ1) ∂θ2f
)(

∂2
θ1,θ2

f + tanh (θ1) ∂θ2f
) (

∂2
θ2
f + tanh (θ1) ∂θ1f

)
.

Therefore

∆g = cosh−2 (θ1)
(
∂2
θ1 + ∂2

θ2

)
.

This ends the proof of the exercise.

Solution to exercise 388:
By de�nition of the Christo�el symbols we have

∂θi,θjψ =
∑
k=1,2

Cki,j ∂θkψ + Ωi,j n⊥

with the orthogonal component

Ωi,j =
〈
∂θi,θjψ, n

⊥〉 .
We clearly have

c′(t) = α′1(t) (∂θ1ψ)α(t) + α′2(t) (∂θ2ψ)α(t)

c′′(t) = α′′1(t) (∂θ1ψ)α(t) + α′′2(t) (∂θ2ψ)α(t) +
∑

1≤i,j≤2

α′i(t) α
′
j(t)

(
∂θi,θjψ

)
α(t)

= c′′tan(t) + c′′⊥(t)
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with the tangential acceleration

c′′tan(t) :=
∑
k=1,2

α′′k(t) +
∑

1≤i,j≤2

Cki,j(α(t)) α′i(t) α
′
j(t)

 (∂θkψ)α(t) ∈ Tc(t)(S)

and the normal component

c′′⊥(t) :=

 ∑
1≤i,j≤2

Ωi,j(α(t)) α′i(t) α
′
j(t)

 n⊥(α(t)) ∈ T⊥c(t)(S).

This ends the proof of the exercise.

Solution to exercise 389:
Recalling that ω′(t) = ‖c′(t)‖ we �nd that

ω(τ(s)) = s⇒ ω′(τ(s))τ ′(s) = 1⇒ τ ′(s) =
1

‖c′(τ(s))‖
.

This implies that

c′(s) =
c′(τ(s))

‖c′(τ(s))‖
∈ Tc(s)(S)⇒ Tc(s)(S) = Vect

(
c′(s), c′(s) ∧N⊥c(s)

)
.

Also observe that
‖c′(s)‖ = 1 =⇒ 〈c′′(s), c′(s)〉 = 0.

If we let let πc(s) and π⊥c(s) the orthogonal projections on Tc(s)(S) and T⊥c(s)(S), then we
have

c′′tan(s) := πc(s) (c′′(s)) =
〈
c′′(s), c′(s) ∧N⊥c(s)

〉 (
c′(s) ∧N⊥c(s)

)
.

On the other hand, we also have that

c′(s) = c′(τ(s)) τ ′(s) ⇒ c′′(s) = c′′(τ(s)) (τ ′(s))2 + c′(τ(s)) τ ′′(s)

=
c′′(τ(s))

‖c′(τ(s))‖2
+ c′(τ(s)) τ ′′(s).

To compute τ ′′(s) we �rst observe that

ω′(τ(s))τ ′(s) = 1 ⇒ ω′(τ(s)) τ ′′(s) = −ω′′(τ(s)) (τ ′(s))2

= − ω′′(τ(s))

‖c′(τ(s))‖2

adn we also have

ω′(t) = ‖c′(t)‖ =
√
〈c′(t), c′(t)〉 ⇒ ω′′(t) =

〈c′′(t), c′(t)〉
‖c′(t)‖

=

〈
c′′(t),

c′(t)

‖c′(t)‖

〉
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from which we �nd that
ω′(τ(s)) τ ′′(s) = ‖c′(τ(s))‖ τ ′′(s)

and

ω′(τ(s)) τ ′′(s) = − ω′′(τ(s))

‖c′(τ(s))‖2

= − 1

‖c′(τ(s))‖2

〈
c′′(τ(s)),

c′(τ(s))

‖c′(τ(s))‖

〉
= ‖c′(τ(s))‖ τ ′′(s).

We conclude that

c′(τ(s)) τ ′′(s) = − 1

‖c′(τ(s))‖2

〈
c′′(τ(s)),

c′(τ(s))

‖c′(τ(s))‖

〉
c′(τ(s))

‖c′(τ(s))‖

= − 1

‖c′(τ(s))‖2
〈c′′(τ(s)), c′(s)〉 c′(s).

Finally we have the formula

c′′(s) =
c′′(τ(s))

‖c′(τ(s))‖2
− 1

‖c′(τ(s))‖2
〈c′′(τ(s)), c′(s)〉 c′(s)︸ ︷︷ ︸
∈Tc(s)(S)

.

This clearly implies that

c′′⊥(s) := π⊥c(s) (c′′(s))

=
1

‖c′(τ(s))‖2
π⊥c(s) (c′′(τ(s)))

=
1

‖c′(τ(s))‖2
〈
c′′⊥(τ(s)), N⊥(c(s))

〉
N⊥(c(s))

=

∑
1≤i,j≤2 Ωi,j(α(τ(s))) α′i(τ(s)) α′j(τ(s)∑
1≤i,j≤2 gi,j(α(τ(s))) α′i(τ(s))α′j(τ(s))

N⊥(c(s))

and

c′(s) ⊥ c′(s)∧N⊥c(s) ⇒
〈
c′′(s), c′(s) ∧N⊥c(s)

〉
=

1

‖c′(τ(s))‖2
〈
c′′(τ(s)), c′(s) ∧N⊥c(s)

〉
=

1

‖c′(τ(s))‖2
〈
c′′tan(τ(s)), c′(s) ∧N⊥c(s)

〉
.

.

By construction we also have

‖c′′(s)‖2 = ‖c′′tan(s)‖2 + ‖c′′⊥(s)‖2

=

∥∥∥∥ c′′tan(τ(s)

‖c′(τ(s))‖2

∥∥∥∥2

+

∥∥∥∥ c′′⊥(τ(s)

‖c′(τ(s))‖2

∥∥∥∥2

= κ2
tan(c(s)) + κ2

⊥(c(s)) := κ2(c(s))

with the tangential and the normal curvature

κtan(c(s)) :=

∥∥∥∥ c′′tan(τ(s))

‖c′(τ(s))‖2

∥∥∥∥

=

 ∑
1≤k,l≤2

gk,l(α(τ(s)))


α′′k(τ(s)) +

∑
1≤i,j≤2

Cki,j(α(τ(s))) α′i(τ(s)) α′j(τ(s))

α′′l (τ(s)) +
∑

1≤i,j≤2

Cli,j(α(τ(s))) α′i(τ(s)) α′j(τ(s))


1/2

∑
1≤i,j≤2

gi,j(α(τ(s))) α′i(τ(s)) α′j(τ(s))
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κ⊥(c(s)) :=

∥∥∥∥ c′′⊥(τ(s))

‖c′(τ(s))‖2

∥∥∥∥ =

∑
1≤i,j≤2 Ωi,j(α(τ(s))) α′i(τ(s)) α′j(τ(s))∑
1≤i,j≤2 gi,j(α(τ(s))) α′i(τ(s)) α′j(τ(s))

.

This ends the proof of the exercise.

Solution to exercise 390: The �rst assertion is proved in the solution of exercise 389.
Notice that

R(v1, v2) := k ⇒ P (v1, v2) :=
∑

1≤i,j≤2

Ωi,j(φ(x)) vi vj − k
∑

1≤i,j≤2

gi,j(φ(x)) vi vj .

Taking the derivatives w.r.t. v1 and v2 we �nd that

∂v1
P = 2Ω1,1v1 +

(
Ω1,2 + Ω2,1

)
v2 − k (2g1,1v1 + (g1,2 + g2,1)v2) = 0

∂v2P = 2Ω2,2v2 +
(
Ω1,2 + Ω2,1

)
v1 − k (2g2,2v2 + (g1,2 + g2,1)v1) = 0.

Or equivalently (Recalling that g1,2 = g2,1 and Ω1,2 = Ω2,1)(
Ω1,1 − k g1,1 Ω1,2 − k g1,2

Ω1,2 − k g1,2 Ω2,2 − k g2,2

)(
v1

v2

)
= 0.

Notice that

det

(
Ω1,1 − k g1,1 Ω1,2 − k g1,2

Ω1,2 − k g1,2 Ω2,2 − k g2,2

)
=
(
Ω1,1 − k g1,1

) (
Ω2,2 − k g2,2

)
−
(
Ω1,2 − k g1,2

)2
= k2

(
g1,1g2,2 − g2

1,2

)
− k

(
Ω1,1g2,2 + g1,1Ω2,2 − 2Ω1,2g1,2

)
+
(
Ω1,1Ω2,2 − (Ω1,2)2

)
= det(g) (k − k1) (k − k2) = det(g)

[
k2 − 2k (k1+k2)

2 + k1k2

]
= 0

with

k1 =
k1 + k2

2
−

√(
k1 + k2

2

)2

− (k1k2)
2

k2 =
k1 + k2

2
+

√(
k1 + k2

2

)2

− (k1k2)
2
,

and the sum and product given by

k1 k2 = det(Ω)/det(g) and
(k1 + k2)

2
=

1

2

(
Ω1,1g2,2 + g1,1Ω2,2 − 2Ω1,2g1,2

)
/det(g).

Notice that

k1 + k2 =
∑

1≤i,j≤2

gi,jΩj,i = tr(g−1Ω).

The last assertion follows from the fact that

g =

(
g1,1 g1,2

g2,1 g2,2

)
=⇒ g−1 =

1

det(g)

(
g2,2 −g1,2

−g2,1 g1,1

)
.
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This ends the proof of the exercise.

Solution to exercise 391:
By the de�nition of the unit normal �eld on the surface S = ϕ−1(0) we have

n⊥(θ) = N⊥ψ(θ) =
(∂ϕ)ψ(θ)∥∥∥(∂ϕ)ψ(θ)

∥∥∥ .
Clearly ∥∥n⊥(θ)

∥∥2
=
〈
n⊥(θ), n⊥(θ)

〉
= 1 ⇒ ∀i = 1, 2

〈
∂θin

⊥(θ), n⊥(θ)
〉

= 0

⇒ ∀i = 1, 2 ∂θin
⊥(θ) ∈ Tψ(θ)(S).

This implies that
∂θin

⊥ =
∑

k,l=1,2

gk,l
〈
∂θkψ, ∂θin

⊥〉 ∂θlψ.
On the other hand we also have that

〈
∂θkψ, n

⊥〉 = 0 ⇒ ∀i = 1, 2

=Ωi,k︷ ︸︸ ︷〈
∂θi,θkψ, n

⊥〉+
〈
∂θkψ, ∂θin

⊥〉 = 0.

This implies that

∂θin
⊥ = −

∑
l=1,2

∑
k=1,2

gl,k Ωk,i

 ∂θlψ.

Notice that

Sl,i = (g−1Ω)l,i = (Ωg−1)i,l =
∑
k=1,2

gl,k Ωk,i =
∑
k=1,2

Ωi,kgk,l.

This yields

k1 + k2 = tr(g−1Ω) =
∑

1≤i≤2

Si,i = tr(S).

This ends the proof of the exercise.

Solution to exercise 392:
With a slight abuse of notation, we write Cki,j instead of Cki,j ◦ ψ for the Christo�el

symbols in the parameter space Sψ. We also recall that Ω is a symmetric matrix and hence
Cmi,j = Cmj,i holds.

Using the formulae derived in exercise 388 we have

∂θk,θi,θjψ =
∑
l=1,2

(
Cli,j ∂θk,θlψ + ∂θkC

l
i,j ∂θlψ

)
+ ∂θkΩi,j n⊥ + Ωi,j ∂θkn

⊥

=
∑
m=1,2

∂θkCmi,j +
∑
l=1,2

Cli,jC
m
l,k

 ∂θmψ

+

∂θkΩi,j +
∑
l=1,2

Cli,j Ωl,k

 n⊥ + Ωi,j ∂θkn
⊥.
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The last formula follows from the fact that

∂θk,θlψ =
∑
m=1,2

Cmk,l ∂θmψ + Ωk,l n⊥.

By exercise 391 we also have

∂θkn
⊥ = −

∑
m=1,2

Sm,k ∂θmψ.

This yields the formula

∂θk,θi,θjψ

=
∑
m=1,2

∂θkCmi,j +
∑
l=1,2

Cli,jC
m
l,k − Ωi,j Sm,k

 ∂θmψ +

∂θkΩi,j +
∑
l=1,2

Cli,j Ωl,k

 n⊥
.

By symmetry arguments we also have

∂θk,θi,θjψ = ∂θj ,θi,θkψ

=
∑
m=1,2

∂θjCmi,k +
∑
l=1,2

Cli,kC
m
l,j − Ωi,k Sm,j

 ∂θmψ +

∂θjΩi,k +
∑
l=1,2

Cli,k Ωl,j

 n⊥
.

This implies that

∂θjC
m
i,k +

∑
l=1,2

Cli,kC
m
l,j − Ωi,k Sm,j = ∂θkC

m
i,j +

∑
l=1,2

Cli,jC
m
l,k − Ωi,j Sm,k

for any m = 1, 2; or equivalently

Rmi,j,k := ∂θjC
m
k,i − ∂θkCmj,i +

∑
l=1,2

[
Clk,iC

m
j,l − Clj,iCml,k

]
= Ωi,k Sm,j − Ωi,j Sm,k.

In much the same way, identifying the normal components we �nd that

∂θjΩ
i,k − ∂θkΩi,j =

∑
l=1,2

[
Cli,j Ωl,k − Cli,k Ωl,j

]
.

Finally, recalling that S = g−1Ω we have

Rmi,j,k =
∑
l=1,2

(
Ωi,k Ωl,j − Ωi,j Ωl,k

)
gl,m

and therefore∑
m=1,2 gn,m Rmi,j,k =

(
Ωi,k Ωn,j − Ωi,j Ωn,k

)
=⇒

∑
m=1,2 gn,m Rmi,n,i = Ωi,i Ωn,n − Ωi,nΩn,i

=⇒
∑
m=1,2 g2,m Rm1,2,1 =

∑
m=1,2 g1,m Rm2,1,2 = Ω1,1 Ω2,2 − Ω1,2 Ω2,1 = det(Ω).
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Since S = g−1Ω, we also have that

Rmi,m,k = Ωi,k Sm,m − Ωi,m Sm,k ⇒ Ri,k =
∑

1≤m≤2

Rmi,m,k = Ωi,k tr(S)− (ΩS)i,k

⇒ tr(g−1R) = (tr(S))
2 − tr(S2) = 2det(S) = 2 κGauss.

The last assertion follows from the fact that for any (2× 2)-matrix A we have

(tr(A))
2

= tr(A2) + 2 det(A).

We check this claim by using a brute force calculation. If we set A :=

(
a b
c d

)
then we

clearly have

A =

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
⇒ (tr(A))

2 − tr(A2) = a2 + d2 + 2ad− a2 − bc− cb− d2 = 2(ad− bc) = 2 det(A)

.

This ends the proof of the exercise.
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Solution to exercise 393:
We use the formula (22.2). We consider the polar coordinates on S = R2 as discussed

in (21.8). In this situation we have

∂θ1ψ =

(
cos(θ2)
sin(θ2)

)
⊥ ∂θ2ψ =

(
−θ1 sin(θ2)
θ1 cos(θ2)

)
.

The matrices g and g−1 are clearly given by

g =

(
1 0
0 θ2

1

)
and g−1 =

(
1 0
0 θ−2

1

)
.

By (21.40), the mappings (∆φ1)ψ and (∆φ2)ψ reduce to

(∆φ1)ψ =
1

2
g2,2 ∂θ1g2,2 =

1

θ1
and (∆φ2)ψ = 0.

The formula (22.2) reduces to the formulation of the Laplacian in polar coordinates

∆g =
1

θ1
∂θ1 + ∂2

θ1 +
1

θ2
1

∂2
θ2 .

This ends the proof of the exercise.

Solution to exercise 394:
We use the same lines of arguments as in the proof of exercise 393. The spherical

coordinates on S = R3 are given by

ψ(θ) =

 ψ1(θ) = θ1 sin (θ2) cos(θ3)
ψ2(θ) = θ1 sin (θ2) sin(θ3)
ψ3(θ) = θ1 cos (θ2)

In this situation we have the orthogonal tangent vector �elds

∂θ1ψ =

 sin (θ2) cos(θ3)
sin (θ2) sin(θ3)

cos (θ2)

 ⊥ ∂θ2ψ =

 θ1 cos (θ2) cos(θ3)
θ1 cos (θ2) sin(θ3)
−θ1 sin (θ2)


⊥ ∂θ3ψ =

 −θ1 sin (θ2) sin(θ3)
θ1 sin (θ2) cos(θ3)

0

 ⊥ ∂θ2ψ.
In this situation g and g−1 are clearly given by the diagonal matrices

g =

 1 0 0
0 θ2

1 0
0 0 θ2

1 sin2 (θ2)

 and g−1 =

 1 0 0
0 θ−2

1 0
0 0 θ−2

1 sin−2 (θ2)

 .

1151
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By (21.40), the mappings (∆φi)ψ i = 1, 2, 3 reduce to

(∆φ1)ψ =
1

2

(
g2,2∂θ1g2,2 + g3,3∂θ1g3,3

)
=

2

θ1

(∆φ2)ψ =
1

2
g2,2 g3,3∂θ2g3,3 =

1

θ2
1

cos (θ2)

sin (θ2)
and (∆φ3)ψ = 0.

The formula (22.2) reduces to the formulation of the Laplacian in spherical coordinates

∆g =
2

θ1
∂θ1 +

1

θ2
1

cos (θ2)

sin (θ2)
∂θ2 + ∂2

θ1 +
1

θ2
1

∂2
θ2 +

1

θ2
1 sin2 (θ2)

∂2
θ3 .

This ends the proof of the exercise.

Solution to exercise 395:
Solving exercise 384, we get the Christo�el symbols Cki,j associated with the spherical

coordinates. We then set

C1 :=

(
C1

1,1 C1
1,2

C1
1,2 C1

2,2

)
and C2 :=

(
C2

1,1 C2
1,2

C2
1,2 C2

2,2

)
.

Using (21.43) and (21.10) for i = 1, 2 we have(
∆φi

)
ψ

= −tr
(
g−1Ci

)
and

(
∇φi

)
ψ

= gi,i (∂θ1ψ) .

By (22.6) the Brownian motion on the ellipsoid equipped with the spherical coordinates is
de�ned by the equations

dΘi
t =

1

2

(
∆φi

)
ψ

(Θt) dt+
(
∇φi

)T
ψ

(Θt) dBt

where Bt stands for a standard r-dimensional Brownian motion on R3.
This ends the proof of the exercise.

Solution to exercise 396: Following the solution of exercise 383, the Christo�el sym-
bols associated with the spherical coordinates are given by the matrices

C1 =

(
C1

1,1 C1
1,2

C1
1,2 C1

2,2

)
=

(
0 0

0 − a2θ1
1+a2

)
and

C2 =

(
C2

1,1 C2
1,2

C2
1,2 C2

2,2

)
=

(
0 1

θ1
1
θ1

0

)
.

In addition we have proved in exercise 383 that

∂θ1ψ =

 a cos (θ2)
a sin (θ2)

1

 ⊥ ∂θ2ψ = a θ1

 − sin (θ2)
cos (θ2)

0


and

g−1 =

(
(1 + a2)−1 0

0 a−2θ−2
1

)
.
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A simple calculation shows that

g−1C1 =

(
0 0
0 − 1

θ1(1+a2)

)
and g−1C2 =

(
0 1

θ1(1+a2)
1

θ3
1a

2 0

)
.

Using (21.43) we �nd that(
∆φ1

)
ψ

= −
∑

1≤j,k≤2

gj,k C1
k,j = −tr

(
g−1C1

)
=

1

θ1(1 + a2)

as well as (
∆φ2

)
ψ

= −
∑

1≤j,k≤2

gj,k C2
k,j = −tr

(
g−1C2

)
= 0.

On the other hand using (21.10) we have

(
∇φ1

)
ψ

= g1,1 ∂θ1ψ =
1

1 + a2

 a cos (θ2)
a sin (θ2)

1


and (

∇φ2
)
ψ

= g2,2 ∂θ2ψ =
1

a θ1

 − sin (θ2)
cos (θ2)

0

 .

By (22.6) the Brownian motion on the cone is de�ned by the equations

dΘ1
t =

1

2

(
∆φ1

)
ψ

(Θt) dt+
(
∇φ1

)T
ψ

(Θt) dBt

=
1

2Θ1
t (1 + a2)

dt+
1

1 + a2

[
a cos (Θ2

t ) dB1
t + a sin (Θ2

t ) dB2
t + dB3

t

]
dΘ2

t =
1

2

(
∆φ2

)
ψ

(Θt) dt+
(
∇φ2

)T
ψ

(Θt) dBt

=
1

aΘ1
t

[
− sin (Θ2

t ) dB1
t + cos (Θ2

t ) dB2
t

]
where Bt stands for a standard Brownian motion on R3.

Next we check that the generator Lg of the above di�usion coincides with half of the
Laplacian operator presented in exercise 383. To this end we simply notice that

dΘ1
tdΘ2

t = 0, dΘ1
tdΘ1

t =
dt

1 + a2
and dΘ2

tdΘ2
t =

dt

a2(Θ1
t )

2
.

Using Doeblin-It	o fomula, this implies that

Lg =
1

2(1 + a2)
∂2
θ1 +

1

2a2θ2
1

∂2
θ2 +

1

2θ1(1 + a2)
∂θ1 .

Notice that Lg is also the generator of the di�usion process

dΘ1
t =

1

2Θ1
t (1 + a2)

dt+
1√

1 + a2
dB1

t

dΘ2
t =

1

aΘ1
t

dB2
t
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with a couple (B1
t , B

2
t ) of independent Brownian motions on R. This ends the proof of the

exercise.

Solution to exercise 397:
In view of the Laplacian generator derived in exercise 385 a Brownian motion on S is

de�ned by the di�usion

dΘ1
t =

1

4
∂θ1

(
log

(
u2

1 + (∂θ1u)
2

))
(Θ1

t ) dt+
1√

1 + (∂θ1u)
2

(Θ1
t )
dB1

t

dΘ2
t =

1

u (Θ1
t )
dB2

t ,

with a couple (B1
t , B

2
t ) of independent Brownian motions on R.

This ends the proof of the exercise.

Solution to exercise 398:
When u(θ1) = c+ cos (θ1)(> 0) with c > −1 we have

dΘ1
t = −1

2

(
sin (2Θ1

t )

2
(
1 + sin2 (Θ1

t )
) +

sin (Θ1
t )

c+ cos (Θ1
t )

)
dt+

1√
1 + sin2 (Θ1

t )
dB1

t

dΘ2
t =

1

c+ cos (Θ1
t )
dB2

t .

This ends the proof of the exercise.

Solution to exercise 399:
The tangent space Tψ(θ)(S) is spanned by the vector �elds

∂θ1ψ =

 cos (θ2)
sin (θ2)

0

 ⊥ ∂θ2ψ =

 −θ1 sin (θ2)
θ1 cos (θ2)

1

 .

The normal vector �eld is de�ned by

∂θ1ψ ∧ ∂θ2ψ =

 cos (θ2)
sin (θ2)

0

 ∧
 −θ1 sin (θ2)

θ1 cos (θ2)
1

 =

 sin (θ2)
− cos (θ2)

θ1

 .

Thus, the unit normal vector �eld n⊥ is given by

n⊥ =
∂θ1ψ ∧ ∂θ2ψ
‖∂θ1ψ ∧ ∂θ2ψ‖

=
1√

1 + θ2
1

 sin (θ2)
− cos (θ2)

θ1

 .

The Riemannian metric is given by the matrix

g =

(
1 0
0 1 + θ2

1

)
⇒ g−1 =

(
1 0
0 (1 + θ2

1)−1

)
.
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We also have ∂2
θ1
ψ =

 0
0
0

, and
∂θ1ψ ⊥ ∂θ1,θ2ψ =

 − sin (θ2)
cos (θ2)

0

 ⊥ ∂2
θ2ψ = −θ1

 cos (θ2)
sin (θ2)

0

 = −θ1 ∂θ1ψ.

This implies that C1
1,1 = C2

1,1 = C1
1,2 = C2

2,2 = 0 and

C1
2,2 := g1,1

〈
∂θ1ψ, ∂

2
θ2ψ
〉

= −θ1

C2
1,2 = g2,2 〈∂θ2ψ, ∂θ1,θ2ψ〉 =

θ1

1 + θ2
1

.

In other words the Christo�el symbols are de�ned by the matrices

C1 =

(
0 0
0 −θ1

)
and C2 =

θ1

1 + θ2
1

(
0 1
1 0

)
.

This yields

g−1C1 =

(
1 0
0 (1 + θ2

1)−1

)(
0 0
0 −θ1

)
=

(
0 0

0 − θ1
1+θ2

1

)
and

g−1C2 =
θ1

1 + θ2
1

(
1 0
0 (1 + θ2

1)−1

)(
0 1
1 0

)
=

θ1

1 + θ2
1

(
0 1
1

1+θ2
1

0

)
.

Using (21.43) we �nd that(
∆φ1

)
ψ

= −
∑

1≤j,k≤2

gj,k C1
k,j = −tr

(
g−1C1

)
=

θ1

1 + θ2
1(

∆φ2
)
ψ

= −
∑

1≤j,k≤2

gj,k C2
k,j = −tr

(
g−1C2

)
= 0.

On the other hand using (21.10) we have

(
∇φ1

)
ψ

= g1,1 ∂θ1ψ =

 cos (θ2)
sin (θ2)

0


and (

∇φ2
)
ψ

= g2,2 ∂θ2ψ =
1

1 + θ2
1

 −θ1 sin (θ2)
θ1 cos (θ2)

1

 .

Therefore, by (22.6) the Brownian motion on the helicoid is de�ned by the di�usion

dΘ1
t =

1

2

(
∆φ1

)
ψ

(Θt) dt+
(
∇φ1

)T
ψ

(Θt) dBt

=
1

2

Θ1
t

1 + (Θ1
t )

2
dt+

(
cos (Θ2

t ) dB
1
t + sin (Θ2

t ) dB
2
t

)
dΘ2

t =
1

2

(
∆φ2

)
ψ

(Θt) dt+
(
∇φ2

)T
ψ

(Θt) dBt

=
1

1 + (Θ1
t )

2

(
−Θ1

t sin (Θ2
t ) dB

1
t + Θ1

t cos (Θ2
t ) dB

2
t + dB3

t

)
,
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where Bt = (B1
t , B

2
t , B

3
t ) stands for a standard 3-dimensional Brownian motion on R3.

Notice that

dΘ1
tdΘ1

t = dt dΘ2
tdΘ2

t =
dt

1 + (Θ1
t )

2
and dΘ1

tdΘ2
t = 0.

Using Doeblin-It	o formula we check that the generator of the di�usion on the helicoid is
given by the operator

Lg =
1

2
∂2
θ1 +

1

2

1

1 + θ2
1

∂2
θ2 +

1

2

θ1

1 + θ2
1

∂θ1 .

Finally we observe that Lg is also the generator of the di�usion process

dΘ1
t =

1

2

Θ1
t

1 + (Θ1
t )

2
dt+ dB1

t

dΘ2
t =

1√
1 + (Θ1

t )
2
dB2

t

with a couple (B1
t , B

2
t ) of independent Brownian motions on R. This ends the proof of the

exercise.

Solution to exercise 400:
We observe that

ϕ(x1, x2, x2) = x2 cos (x3)− x1 sin (x3)

=⇒ (ϕ ◦ ψ)(θ) = θ1 sin (θ2) cos (θ2)− θ1 cos (θ2) sin (θ2) = 0.

This shows that ψ is a parametrization of the helicoid de�ned by the null level set S = ϕ−1(0)
of the smooth function ϕ. The unit normal vector �eld on S is given by

N⊥ :=
∂ϕ

‖∂ϕ‖
= − 1√

1 + (x2 sin (x3) + x1 cos (x3))
2

 sin (x3)
− cos (x3)

(x2 sin (x3) + x1 cos (x3))

 .

π(x) = Id− 1

‖∂ϕ‖2
∂ϕ∂ϕT

= Id+
1

1 + (x2 sin (x3) + x1 cos (x3))
2

×

 sin2 (x3) − cos (x3) sin (x3) sin (x3)(x2 sin (x3) + x1 cos (x3))
− cos (x3) sin (x3) cos2 (x3) − cos (x3)(x2 sin (x3) + x1 cos (x3))

(x2 sin (x3) + x1 cos (x3)) sin (x3) −(x2 sin (x3) + x1 cos (x3)) cos (x3) (x2 sin (x3) + x1 cos (x3))2

 .

By (20.2) the mean curvature vector H is given by

H =

 ∑
1≤i≤3

∂xi

(
∂xiϕ

‖∂ϕ‖

) ∂ϕ

‖∂ϕ‖
.

We set A(x) := x2 sin (x3) + x1 cos (x3) and we observe that

∂xi

(
1√

1 +A2

)
= − 1√

1 +A2

A

1 +A2
∂xiA

= −1

2

1√
1 +A2

∂xi log (1 +A2)
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as well as

∂x1
A = cos (x3) ∂x2

A = sin (x3) and ∂x3
A = x2 cos (x3)− x1 sin (x3).∑

1≤i≤3

∂xi

(
∂xiϕ

‖∂ϕ‖

)

=

=0︷ ︸︸ ︷
sin (x3) ∂x1

(
1√

1 +A2

)
− cos (x3) ∂x2

(
1√

1 +A2

)
+A ∂x3

(
1√

1 +A2

)
+

∂x3A√
1 +A2

=
(

1− A2

1+A2

) ∂x3
A√

1 +A2
=

x2 cos (x3)− x1 sin (x3)

(1 + [x2 sin (x3) + x1 cos (x3)]2)
3/2

.

This implies that

H(x) = − x2 cos (x3)− x1 sin (x3)

(1 + [x2 sin (x3) + x1 cos (x3)]2)
2

 sin (x3)
− cos (x3)

(x2 sin (x3) + x1 cos (x3))

 .

By (20.7) the Brownian motion on the helicoid in the ambient space R3 is de�ned by the
di�usion equation

dXt = −1

2
H(Xt) dt+ π(Xt) dBt.

This ends the proof of the exercise.

Solution to exercise 401:
Solving exercise 387 we have seen that

∂θ1ψ =

 sinh (θ1) cos (θ2)
sinh (θ1) sin (θ2)

1

 ⊥ ∂θ2ψ = cosh (θ1)

 − sin (θ2)
cos (θ2)

0


as well as

g−1 = cosh−2 (θ1)

(
1 0
0 1

)
.

In addition, the Christo�el symbols are de�ned by the matrices

C1 = tanh (θ1)

(
1 0
0 −1

)
and C2 = tanh (θ1)

(
0 1
1 0

)
.

This yields

g−1C1 = tanh (θ1) cosh−2 (θ1)

(
1 0
0 −1

)
g−1C2 = tanh (θ1) cosh−2 (θ1)

(
0 1
1 0

)
.

Using (21.43) we �nd that (
∆φ1

)
ψ

=
(
∆φ2

)
ψ

= 0.
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On the other hand using (21.10) we have

(
∇φ1

)
ψ

= g1,1 ∂θ1ψ =
1

cosh2 (θ1)

 sinh (θ1) cos (θ2)
sinh (θ1) sin (θ2)

1


and (

∇φ2
)
ψ

= g2,2 ∂θ2ψ =
1

cosh2 (θ1)

 − cosh (θ1) sin (θ2)
cosh (θ1) cos (θ2)

0

 .

Therefore, by (22.6) the Brownian motion on the catenoid is de�ned by the di�usion

dΘ1
t =

(
∇φ1

)T
ψ

(Θt) dBt

=
1

cosh2 (Θ1
t )

(
sinh (Θ1

t ) cos (Θ2
t ) dB

1
t + sinh (Θ1

t ) sin (Θ2
t ) dB

2
t + dB3

t

)
dΘ2

t =
(
∇φ2

)T
ψ

(Θt) dBt

=
1

cosh2 (Θ1
t )

(
− cosh (Θ1

t ) sin (Θ2
t ) dB

1
t + cosh (Θ1

t ) cos (Θ2
t ) dB

2
t

)
,

where Bt = (B1
t , B

2
t , B

3
t ) stands for a standard 3-dimensional Brownian motion on R3.

Notice that

dΘ1
tdΘ1

t =
dt

1 + sinh2 (Θ1
t )

dΘ2
tdΘ2

t =
dt

cosh2 (Θ1
t )

and dΘ1
tdΘ2

t = 0.

Using Doeblin-It	o fomula we check that the generator of the di�usion on the helicoid is
given by the operator

Lg =
1

2

1

cosh2 (θ1)
∂2
θ1 +

1

2

1

cosh2 (θ1)
∂2
θ2 .

Finally we observe that Lg is also the generator of the di�usion process

dΘ1
t =

1

cosh (Θ1
t )
dB1

t and dΘ2
t =

1

cosh (Θ1
t )
dB2

t

with a couple (B1
t , B

2
t ) of independent Brownian motions on R.

This ends the proof of the exercise.

Solution to exercise 402:
The detailed construction of the Brownian motion on the unit circle equipped with the

polar coordinates is provided in section 22.3.1.

Solution to exercise 403:
The detailed construction of the Brownian motion on the unit 2-sphere equipped with

the spherical coordinates is provided in section 22.3.2.
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Solution to exercise 404:
A construction of the Brownian motion on the unit p-sphere in the ambient space (in

terms of orthogonal projections on the tangent space) is presented in (20.8).

Solution to exercise 405:
A construction of the Brownian motion on the cylinder in the ambient space (in terms

of orthogonal projections on the tangent space) is presented in (20.9).

Solution to exercise 406:
The detailed construction of the Brownian motion on the 2-Torus equipped with the

polar coordinates is provided in section 22.4

Solution to exercise 407:
The detailed construction of the Brownian motion on the p-simplex. is provided in

section 22.5.
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Solution to exercise 408:
We have

1

2
∂t‖∇F (Cx(t))‖2 = ∂t 〈∇F (Cx(t)),∇F (Cx(t))〉

= 〈∂t [∇F (Cx(t))] ,∇F (Cx(t))〉

with

∂t [∇F (Cx(t))] =

 ∂t [∇F (Cx(t))]1
...

∂t [∇F (Cx(t))]r

 .
We recall that

∇F =

 [∇F ]1
...

[∇F ]r

 = π∂F =

 ∂π1
F
...

∂πrF

 and ∂W∇F =

 ∂W∂π1
F

...
∂W∂πrF

 ,
with the orthogonal projection matrix π on T (S). For each 1 ≤ i ≤ r we have

∂t [∂πiF (Cx(t))] =
∑

1≤j≤r

(∂xj∂πF )(Cx(t)) W j(Cx(t)) = (∂W∂πi) (Cx(t)).

Therefore
∂t [∇F (Cx(t))] = (∂W∇F ) (Cx(t)).

This implies that

1

2
∂t‖∇F (Cx(t))‖2 = 〈(∂W∇F ) (Cx(t)),∇F (Cx(t))〉 = 〈(∇W∇F ) (Cx(t)),∇F (Cx(t))〉

with ∇W = π∂W . By (19.55), (19.57) and (19.51) we have

〈∇W∇F,∇F 〉 =
1

2
∂W 〈∇F,∇F 〉 = 〈∇∇F∇F,W 〉 = ∇2F (∇F,W ) :=

〈
∇F, (∇2F )W

〉
.

This ends the proof of the �rst assertion. If we choose

W = −∇F with ∇2F ≥ λ Id

then we �nd that 〈
∇F, (∇2F )W

〉
= −

〈
∇F, (∇2F )∇F

〉
≤ −λ ‖∇F‖2 .

This clearly implies that

1

2
∂t‖∇F (Cx(t))‖2 ≤ −λ ‖∇F (Cx(t))‖2.

1161
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By Gronwall's lemma we conclude that

‖∇F (Cx(t))‖ ≤ e−λt ‖∇F (x)‖.

Using (23.5) we have

.

Cx (t) = −∇F (Cx(t))

=⇒ 0 ≤ F (x)− F (Cx(t)) =

∫ t

0

‖∇F (Cx(s))‖2 ds

≤ ‖∇F (x)‖2
∫ t

0

e−2λs ds ≤ 1

2λ
‖∇F (x)‖2.

This ends the proof of the exercise.

Solution to exercise 409:
We consider a couple of r-dimensional vectors U =

(
U i
)

1≤i≤r and V =
(
V i
)

1≤i≤r ∈ Rr.
Using the decomposition of U and V in the unit basis vectors ei of Rr

U =
∑

1≤i≤r

U i ei and V =
∑

1≤j≤r

V j ej

and recalling the rules ei ∧ ei = 0 and (ei ∧ ej) = −(ej ∧ ei) we check that

U ∧ V =
∑

1≤i,j≤r

U iV j (ei ∧ ej)

=
∑

1≤i<j≤r

U iV j (ei ∧ ej) +
∑

1≤i>j≤r

U iV j (ei ∧ ej)

=
∑

1≤i<j≤r

(
U iV j − U jV i

)
(ei ∧ ej) .

On the other hand (ei ∧ ej) are mutually orthogonal so that

〈U ∧ V,U ∧ V 〉 =
∑

1≤i<j≤r

(
U iV j − U jV i

)2
= ‖U ∧ V ‖2 .

We are now in position to check the Lagrange identity. Using elementary manipulations,
we have

‖U‖2 × ‖V ‖2 − |〈U, V 〉|2 =

 ∑
1≤i≤r

(U i)2

 ∑
1≤i≤r

(V i)2

−
 ∑

1≤i≤r

U iV i

2

=
∑

1≤i,j≤r

(U i)2(V j)2 −
∑

1≤i,j≤r

U iU j V iV j

=
∑

1≤i≤r

(U iV i)2 +
∑

1≤i<j≤r

[
(U i)2(V j)2 + (U j)2(V i)2

]
−
∑

1≤i≤r

(U iV i)2 − 2
∑

1≤i<j≤r

U iU j V iV j

=
∑

1≤i<j≤r

[
(U iV j)2 − 2(U iV j)(U jV i) + (U jV i)2

]
.
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This implies that

‖U‖2 × ‖V ‖2 − |〈U, V 〉|2 =
∑

1≤i<j≤r

[
U iV j − U jV i

]2
= ‖U ∧ V ‖2 .

This ends the proof of the exercise.

Solution to exercise 410:
Recall that the volume of a parallepiped P(W1,W2,W3) in R3 formed by three indepen-

dent vectors (W1,W2,W3) is the surface of the base-parallelogram P(W1,W2) in R2 formed
by the vectors (W1,W2) multiplied by the height H.

On the other hand, we have

Surface (P(W1,W2)) = h× ‖W1‖ with sin (b) =
h

‖W2‖
and cos (a) =

H

‖W3‖
.

This implies that

Volume (P(W1,W2,W3)) = H h× ‖W1‖ = cos (a) sin (b) ‖W1‖ ‖W2‖ ‖W3‖ .

It is also well known that

‖W1 ∧W2‖ = sin (b) ‖W1‖ ‖W2‖.

We conclude that

Volume (P(W1,W2,W3)) = cos (a) ‖W1 ∧W2‖ ‖W3‖
= |〈W1 ∧W2,W3〉| = |det (W1,W2,W3)〉| .

The last assertion follows from (23.14). This ends the proof of the exercise.

Solution to exercise 411:
The geodesics of the unit sphere have been computed in some details in the end of

section 24.1.2. Next, we provide a more detailed discussion. Section 24.1.2 contains the
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derivation of the Christofell symbols associated with spherical coordinates ψ : θ = (θ1, θ2) ∈
(]0, π[×]0, 2π[) 7→ S

ψ(θ) =

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)

 = (∂ϕ)ψ(θ).

These parameters are given by

C1
1,1 = 0 = C2

1,1 = 0 = C2
2,2 , C1

1,2 = 0 = C1
2,1

and

C2
1,2(θ) = C2

2,1(θ) =
cos(θ1)

sin(θ1)
, C1

2,2(θ) = − sin(θ1) cos(θ1).

This ends the proof of the exercise. By (23.2), the geodesics curves c(t) =
(
c1(t), c2(t)

)
∈ Sψ

starting at c0 = (θ1, θ2) with some initial velocity
.

c0= (
.

θ1,
.

θ2) are de�ned by
..

c
1

t = sin(c1t ) cos(c1t )
(
.

c
2

t

)2

..

c
2

t = −2
cos(c1t )

sin(c1t )

.

c
1

t

.

c
2

t

with

{
c10 = θ1

.

c
1

0 =
.

θ1

c20 = θ2
.

c
2

0 =
.

θ2 .

These equations are rather complex to solve numerically. Nevertheless, we notice that
rotations are isometries on the sphere so we can rotate the sphere so that the initial starting
point is c0 = (θ1, θ2) =

(
π
2 , 0
)
. Now, we rotate the sphere w.r.t. the (0, x1) axis so that

.

θ1= 0. The di�erential equations of the geodesic curve remain the same and the solution is
now given by

c(t) =

( π
2

.

θ2 t

) (
⇒..

c
1

t=
..

c
2

t=
.

c
1

t= cos(c1t ) = 0
)
.

Finally, we observe that

C(t) = ψ(c(t)) =


sin
(
π
2

)
cos
(
.

θ2 t
)

sin
(
π
2

)
sin
(
.

θ2 t
)

cos(π2 )

 =


cos
(
.

θ2 t
)

sin
(
.

θ2 t
)

0

 .

This shows that this geodesic reduces to the equator of the sphere, that is the intersection
of S2 with the plane {x = (x1, x2, x3) : x3 = 0}. Since all rotations transform the equator
into great circles we conclude that the great circles are the geodesics of the sphere.

This ends the proof of the exercise.

Solution to exercise 412: Notice that

C(t) = ψ(c(t)) = ψ(c1(t), c2(t))⇒ d

dt
C(t) = (∂θ1ψ)c(t)

.

c1 (t) + (∂θ2ψ)c(t)
.

c2 (t)

for the curve c : t ∈ [a, b] 7→ c(t) ∈ Sψ. This implies that

‖C(t)‖2 =
〈[

(∂θ1ψ)c(t)
.

c1 (t) + (∂θ2ψ)c(t)
.

c2 (t)
]
,
[
(∂θ1ψ)c(t)

.

c1 (t) + (∂θ2ψ)c(t)
.

c2 (t)
]〉

=
〈

(∂θ1ψ)c(t) , (∂θ1ψ)c(t)

〉
.

c1
2

(t) + 2
〈

(∂θ1ψ)c(t) , (∂θ2ψ)c(t)

〉
.

c1 (t)
.

c2 (t)

+
〈

(∂θ2ψ)c(t) , (∂θ2ψ)c(t)

〉
.

c2
2

(t)

= g1,1(c(t))
.

c1
2

(t) + 2 g1,2(c(t))
.

c1
2

(t) + g2,2(c(t))
.

c2
2

(t).
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This shows that

s =

∫ b

a

‖C(t)‖ dt =

∫ b

a

∥∥.c (t)
∥∥
g(c(t))

dt.

We consider the cylinder S de�ned by x2
1 + x2

2 = r and x3 ∈ R, equipped with the
parametrization

θ = (θ1, θ2) 7→ ψ(θ) =

 ψ1(θ) = r cos(θ1)
ψ2(θ) = r sin(θ1)
ψ3(θ) = θ2.

In this situation, we have

∂θ1ψ = r

 − sin(θ1)
cos(θ1)

0

 ⊥ ∂θ2ψ =

 0
0
1

⇒ g1,1 = r2 g1,2 = 0 = g2,1 and g2,2 = 1.

This implies that

L(C, [a, b]) =

∫ b

a

√
r2 .

c1
2

(t)+
.

c2
2

(t) dt.

Finally, we have

C1(t) = ψ(αt, β) ⇒ .

c1 (t) = α and
.

c2 (t) = 0.

This implies that

L(C1, [a, b]) = rα

∫ b

a

1 dt = αr (b− a).

In the same way, we prove that

L(C0, [a, b]) = rα

∫ b

a

1 dt = αr (b− a) = L(C1, [a, b]).

Also

L(C2, [a, b]) = rα

∫ b

a

2t dt = αr (b2 − a2) = (a+ b) L(C1, [a, b]).

This ends the proof of the exercise.

Solution to exercise 413:
We consider the disk parametrization (23.17). We also recall (cf. (21.14)) that

W = 〈W,∇φ1〉 (∂θ1ψ)φ + 〈W,∇φ2〉 (∂θ2ψ)φ

with the inverse mapping φ = ψ−1 and is covariant derivatives

∇φi = gi,1φ (∂θ1ψ)φ + gi,2φ (∂θ2ψ)φ .

In the above display we have used the notation gi,jφ = gi,j ◦ φ with the entries gi,j of g−1,
and (∂θ2ψ)φ = (∂θ2ψ) ◦ φ. In this situation we have

〈ψ, ∂θ1ψ〉 = −R2(1− θ1) and 〈ψ, ∂θ2ψ〉 = 0

and

g−1 =

(
R−2 0

0 R−2(1− θ1)−2

)
.
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This implies that

W ◦ ψ =
1

2
ψ ⇒ 〈W ◦ ψ, (∇φ1) ◦ ψ〉 = −1

2
(1− θ1) and 〈W ◦ ψ, (∇φ2) ◦ ψ〉 = 0.

Therefore

W ◦ ψ = V 1 ∂θ1ψ + V 2 ∂θ1ψ with V 1 = −1

2
(1− θ1) and V 2 = 0.

We conclude that∫
S

div(W ) dµS =

∫
]0,1[×]0,2π[

divg(V ) dµg

=

∫
]0,1[×]0,2π[

[
∂θ1

(√
det(g) V 1

)
+ ∂θ2

(√
det(g) V 2

)]
dθ1dθ2

= R2

∫ 2π

0

[∫ 1

0

∂θ1

(
−1

2
(1− θ1)2

)
dθ1

]
dθ2 = π R2.

This result coincides with the one obtained in (23.18). In the present exercise, we have
computed the integral without using the divergence theorem.

This ends the proof of the exercise.

Solution to exercise 414:
We parametrize the sphere S with the spherical coordinates

ψ(θ1, θ2) =

 r sin(θ1) cos(θ2)
r sin(θ1) sin(θ2)

r cos(θ1)

 .

We have

∂θ1ψ =

 r cos(θ1) cos(θ2)
r cos(θ1) sin(θ2)
−r sin(θ1)

 ⊥ ∂θ2ψ =

 −r sin(θ1) sin(θ2)
r sin(θ1) cos(θ2)

0

 .

In this situation, the surface Riemannian metric is given by

g = r2

(
1 0
0 sin2(θ1)

)
⇒ det(g)((θ1, θ2)) = r4 sin2(θ1)

as soon as θ1 6∈ {0, π}. The corresponding Riemannian surface measure is de�ned by

µg(d(θ1, θ2)) =
√
det(g)(θ1, θ2) dθ1dθ2 = r2 sin (θ1) dθ1dθ2

where dθ1dθ2 stands for an in�nitesimal neighborhood of some point (θ1, θ2) ∈ ([0, π] ×
[0, 2π[) := Sψ Observe that the outward-pointing normal at some point x = ψ(θ) is given
by

n⊥ = N⊥(ψ(θ)) =
1

r
ψ(θ1, θ2).

On the other hand, we have

W (x) =
1

3

 x1

x2

x3

 =⇒ W ◦ ψ =
1

3
ψ =⇒ 〈W ◦ ψ,N⊥ ◦ ψ〉 =

1

3
〈ψ,ψ〉 =

r

3
.
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This implies that∫
S
〈W,N⊥〉 dµS =

∫
Sψ
〈W ◦ ψ,N⊥ ◦ ψ〉 dµg

=
r3

3

∫ 2π

0

(∫ π

0

sin (θ1) dθ1

)
︸ ︷︷ ︸

[cos(θ1)]0π=2

dθ2 =
4r3π

3
.

Using the fact that div(W ) = 1 we check that

µB (B) =

∫
B
div(W ) dµB =

∫
∂B
〈W,N⊥〉 dµ∂B =

4r3π

3
.

For any x ∈ S, we also have

N⊥(x) =
x

‖x‖
=
x

r
⇒ 〈W,N⊥〉 =

1

3r
〈x, x〉 =

r

3

from which we �nd that∫
∂B
〈W,N⊥〉 dµ∂B =

r

3
µ∂B (∂B) =

4r3π

3
⇒ µ∂B (∂B) = 4r2π.

This ends the proof of the exercise.

Solution to exercise 415: We parametrize the 3-Ball B with the coordinates

ψ0(θ0, θ1, θ2) =

 r(1− θ0) sin(θ1) cos(θ2)
r(1− θ0) sin(θ1) sin(θ2)

r(1− θ0) cos(θ1)


with (θ0, θ1, θ2) ∈ ([0, 1]× [0, π]× [0, 2π[) := Bψ0 . We have

ψ0 ({0} × ([0, π]× [0, 2π[)) = = ∂B.

In addition, the parametrization of the boundary ∂B is given by the spherical coordinates
discussed in exercise 414 and de�ned by the trace mapping

(θ1, θ2) ∈ (∂B)ψ0 = [0, π]× [0, 2π[= Sψ 7→ ψ(θ1, θ2) = ψ0(0, θ1, θ2).

On the other hand, we have

∂θ1ψ0 = r(1− θ0)

 cos(θ1) cos(θ2)
cos(θ1) sin(θ2)
− sin(θ1)

 ⊥ ∂θ2ψ0 = r(1− θ0)

 − sin(θ1) sin(θ2)
sin(θ1) cos(θ2)

0


as well as

∂θ1ψ0 ⊥ ∂θ0ψ0 = −r n⊥ ⊥ ∂θ2ψ0

with the unit outward pointing normal on the sphere

n⊥(θ1, θ2) :=

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)

 .
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After some elementary manipulations, we have

∂θ1ψ0 ∧ ∂θ2ψ0 = r2(1− θ0)2 sin(θ1)

 sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)

 = r2(1− θ0)2 sin(θ1) n⊥(θ1, θ2).

This implies that

〈(∂θ1ψ0 ∧ ∂θ2ψ0) ,−∂θ0ψ0〉 = r3(1− θ0)2 sin(θ1)

and
‖(∂θ1ψ0 ∧ ∂θ2ψ0)‖ = r2(1− θ0)2 sin(θ1).

In this situation, the Riemannian metric on the 3-Ball is given by the (3 × 3)-diagonal
matrix

g =

 〈∂θ0ψ0, ∂θ0ψ0〉 〈∂θ0ψ0, ∂θ1ψ0〉 〈∂θ0ψ0, ∂θ2ψ0〉
〈∂θ1ψ0, ∂θ0ψ0〉 〈∂θ1ψ0, ∂θ1ψ0〉 〈∂θ1ψ0, ∂θ2ψ0〉
〈∂θ2ψ0, ∂θ0ψ0〉 〈∂θ2ψ0, ∂θ1ψ0〉 〈∂θ2ψ0, ∂θ2ψ0〉


=

 r2 0 0
0 r2(1− θ0)2 0
0 0 r2(1− θ0)2 sin2(θ1)

 .

In much the same way, the Riemannian metric on the 2-sphere S = ∂B is given by the
(2× 2)-diagonal matrix

g∂ =

(
〈∂θ1ψ, ∂θ1ψ〉 〈∂θ1ψ, ∂θ2ψ〉
〈∂θ2ψ, ∂θ1ψ〉 〈∂θ2ψ, ∂θ2ψ〉

)
=

(
r2 0
0 r2 sin2(θ1)

)
.

The corresponding volume and surface measures on B and ∂B = S are given by

µg(d(θ0, θ1, θ2)) = r (1− θ0)2 dθ0 µg∂ (d(θ1, θ2)) with µg∂ (d(θ1, θ2)) := r2 sin(θ1)dθ1dθ2.

From previous calculations, we have

µg(d(θ0, θ1, θ2)) = 〈(∂θ1ψ0 ∧ ∂θ2ψ0) ,−∂θ0ψ0〉 dθ0dθ1dθ2

=
〈
−∂θ0ψ0, n

⊥〉 dθ0 × ‖(∂θ1ψ0 ∧ ∂θ2ψ0)‖ dθ1dθ2.

This ends the proof of the exercise.

Solution to exercise 416:
We use the same notation as in the solution of exercise 415. Expressed in the local

coordinate ψ0 any vector �eld W on B takes the form

W ◦ ψ0 = V 0 ∂θ0ψ0 + V 1 ∂θ1ψ0 + V 2 ∂θ2ψ0

for some vector �eld V =
(
V i
)

0≤i≤2
which can be computed using the formula (21.14).

Recalling that

(∂θ1ψ0) (θ) ⊥ (∂θ0ψ0) (θ) = −r n⊥(θ1, θ2)

= −r
(
N⊥ ◦ ψ0

)
(0, θ1, θ2)

= −r
(
N⊥ ◦ ψ

)
(θ1, θ2) ⊥ (∂θ2ψ0) (θ) ⊥ (∂θ1ψ0) (θ)



Chapter 23 1169

for any θ = (θ0, θ1, θ2) we have〈
(W ◦ ψ) (θ1, θ2),

(
N⊥ ◦ ψ

)
(θ1, θ2)

〉
= −r V 0(0, θ1, θ2) (30.53)

so that ∫
∂B

〈
W,N⊥

〉
dµ∂B =

∫
Sψ
− r V 0(0, θ1, θ2) µg∂ (d(θ1, θ2))

= −r3

∫ 2π

0

[∫ π

0

V 0(0, θ1, θ2) sin (θ1) dθ1

]
dθ2.

Also,

ψ0(θ0, θ1, 0) = (1− θ0)

 r sin(θ1)
0

cos(θ1)

 = ψ0(θ0, θ1, 2π)

⇒ (W ◦ ψ0) (θ0, θ1, 0) = (W ◦ ψ0) (θ0, θ1, 2π)

which implies that

〈(W ◦ ψ0) (θ0, θ1, 0), (∂θ0ψ0) (θ0, θ1, 0)〉

= r2 V 0(θ0, θ1, 0)

= r2 V 0(θ0, θ1, 2π) = 〈(W ◦ ψ0) (θ0, θ1, 2π), (∂θ0ψ0) (θ0, θ1, 2π)〉 .

In much the same way we �nd that

r2 (1− θ0)2 V 1(θ0, θ1, 0) = r2 (1− θ0)2 V 1(θ0, θ1, 2π)

and
r2 (1− θ0)2 sin2 (θ1) V 2(θ0, θ1, 0) = r2 (1− θ0)2 sin2 (θ1) V 2(θ0, θ1, 2π).

We conclude that
∀i = 0, 1, 2 V i(θ0, θ1, 0) = V i(θ0, θ1, 2π) (30.54)

for any θ0 ∈ [0, 1[ and θ1 ∈]0, π[.
We are now in position to compute the divergence integral∫

B div(W ) dµB =
∫
Bψ0

divg(V ) dµg

=
∫ 2π

0

[∫ π
0

[∫ 1

0

[
∂θ0

(
V 0
√
det(g)

)
+ ∂θ1

(
V 1
√
det(g)

)
+ ∂θ2

(
V 2
√
det(g)

)]
dθ0

]
dθ1

]
dθ2.

Recalling that
√
det(g) = r3 (1− θ0)2 sin (θ1), the �rst integral is given by∫ 2π

0

[∫ π

0

[∫ 1

0

∂θ0

(
V 0
√
det(g)

)
dθ0

]
dθ1

]
dθ2

= r3

∫ 2π

0

[∫ π

0

[∫ 1

0

∂θ0
(
V 0(θ0, θ1, θ2) (1− θ0)2

)
dθ0

]
sin (θ1)dθ1

]
dθ2

=

∫ 2π

0

[∫ π

0

(−rV 0(0, θ1, θ2)) r2 sin (θ1)dθ1

]
dθ2

=

∫
]0,π[×]0,2π[

〈
(W ◦ ψ) ,

(
N⊥ ◦ ψ

)〉
dµg∂ .
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The last assertion follows from (30.53).
The second integral is equal to zero due to∫ 2π

0

[∫ 1

0

[∫ π

0

∂θ1

(
V 1
√
det(g)

)
dθ1

]
dθ0

]
dθ2

= r3

∫ 2π

0

∫ 1

0

[
sin (θ1) V 1(θ0, θ1, θ2)

]π
0︸ ︷︷ ︸

=0

dθ0

 dθ2 = 0.

and by (30.54) the third one is also equal to zero. We conclude that∫
B
div(W ) dµB =

∫
Sψ

〈
(W ◦ ψ) ,

(
N⊥ ◦ ψ

)〉
dµg∂ =

∫
∂B
〈W,N⊥〉 dµ∂B.

This ends the proof of the exercise.

Solution to exercise 417:
The Langevin di�usion reduces to the linear Ornstein-Uhlenbeck process given by

Xt = e−tb/m X0 +
σ

m

∫ t

0

e−(t−s)b/m dWs.

It is readily checked that Xt is a Gaussian random variable with mean and variance given
by:

E(Xt) = e−tb/m E(X0),

Var(Xt) = e−2tb/m Var(X0) +
( σ
m

)2
∫ t

0

e−(2b/m)s ds

= e−2tb/m Var(X0) +
σ2

2mb

(
1− e−(2b/m)t

)
.

We have

dXt = −β ∂xV (Xt) dt+ σ dWt with V (x) = x2/2 β = b/m and σ = σ/m.

Notice that
2β

σ2

x2

2
= 2

b

m

m2

σ2

x2

2
=
bm

σ2
x2.

Using (23.23) the invariant measure is given by the Gaussian

π(dx) ∝ exp

(
−bm
σ2

x2

)
dx.

From previous calculations, we have

Xt = e−tb/m X0 +
σ

m

(∫ t

0

e−(2b/m)s ds

)1/2 ∫ t
0
e−(t−s)b/m dWs(∫ t

0
e−(2b/m)s ds

)1/2

= e−tb/m X0 +
σ√
2mb

(
1− e−(2b/m)t

)1/2

V (t)
s
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with the centered Gaussian random variable V (t)
s with unit variance given by

V (t)
s =

∫ t
0
e−(t−s)b/m dWs(∫ t

0
e−(2b/m)s ds

)1/2
⇒ Law

(
σ√
2mb

V (t)
s

)
= π.

Using the estimates provided in example 8.3.10, we �nd that

W (Law(Xt), π) ≤ e−tb/m
(
E(X0) +

σ2

2mb
e−(b/m)t

)
.

This ends the proof of the exercise.

Solution to exercise 418:
By (20.3) and (20.4) the orthogonal projection and the mean curvature vector on S2 are

given by

π(x) = Id− xxT

xTx
and H(x) = 2

x

xTx
.

On the other hand we have

V (x) = xTAx =
∑

1≤i≤3

xi
∑

1≤j≤3

ai,jxj ⇒ (∂V )(x) = (A+AT )x.

Thus, using (23.28) we prove that

dXt =

(
Id− XtX

T
t

XT
t Xt

) (
−(A+AT )(Xt)dt+ dBt

)
− Xt

XT
t Xt

dt

=
(
Id−XtX

T
t

) (
−(A+AT )(Xt)dt+ dBt

)
−Xt dt (⇐ ‖Xt‖ = 1)

has the desired reversible measure π.
This ends the proof of the exercise.

Solution to exercise 419:
Using the spherical coordinates ψ de�ned in (30.51), the Riemannian scalar product is

given by the matrix

g(θ) =

(
g1,1(θ) g1,2θ)
g1,2θ) g2,2θ)

)
=

(
1 0
0 sin2(θ1)

)
.

⇒
√

det(g(θ)) = sin(θ1)⇒ µg(dθ) = sin(θ1)dθ1dθ2

with θ = (θ1, θ2) ∈ Sψ = ([0, π]× [0, 2π]). On the other hand, we have

V (x) = xTAx⇒ U(θ) := V (ψ(θ)) = ψ(θ)TAψ(θ).

Using the fact that

g−1(θ) =

(
g1,1(θ) g1,2θ)
g1,2θ) g2,2θ)

)
=

(
1 0
0 sin−2(θ1)

)
⇒
√
g−1(θ) =

(
1 0
0 sin−1(θ1)

)
.

By (23.29), the Brownian motion Bt on the Riemannian manifold Sψ is de�ned for any
1 ≤ i ≤ p by

dB
1

t = dB1
t +

1

2
cot(Θ1(t)) dt.
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This ends the proof of the exercise.

Solution to exercise 420:
The generator L of the di�usion X εt = (Xt, Vt) is given for any smooth function f(x, v)

by

Lε(f)(x, v) = ε ∂vU
V (v) ∂xf(x, v)−

[
∂vU

V (v) + ε∂xU
X(x)

]
∂vf(x, v) + ∂2

vf(x, v)

= ε
[
∂vU

V (v) ∂xf(x, v)− ∂xUX(x) ∂vf(x, v)
]
−∂vUV (v) ∂vf(x, v) + ∂2

vf(x, v).

For any smooth functions f(x, v) and g(x, v) with compact support we have

π(gLε(f)) ∝
∫
e−(UX(x)+UV (v)) g(x, v)

×
[
ε∂vU

V (v) ∂xf(x, v)−
[
∂vU

V (v) + ε∂xU
X(x)

]
∂vf(x, v) + ∂2

vf(x, v)
]
dxdv.

By integration by parts, we have∫
e−(UX(x)+UV (v)) g(x, v) ∂vU

V (v) ∂xf(x, v) dxdv

= −
∫
e−(UX(x)+UV (v))

∂vUV (v) eU
X(x) ∂x

(
g(x, v) e−U

X(x)
)

︸ ︷︷ ︸
=−g(x,v)∂xUX(x)+∂xg(x,v)

f(x, v) dxdv

and

−
∫
e−(UX(x)+UV (v)) g(x, v) ∂vU

V (v) ∂vf(x, v) dxdv

=

∫
e−(UX(x)+UV (v))

[
eU

V (v)∂v

(
g(x, v) e−U

V (v) ∂vU
V (v)

)]
f(x, v) dxdv,

as well as

−
∫
e−(UX(x)+UV (v)) g(x, v) ∂xU

X(x) ∂vf(x, v) dxdv

=

∫
e−(UX(x)+UV (v))

∂xUX(x) eU
V (v)∂v

(
g(x, v)e−U

V (v)
)

︸ ︷︷ ︸
=−g(x,v)∂vUV (v)+∂vg(x,v)

f(x, v) dxdv.

Finally we have∫
e−(UX(x)+UV (v)) g(x, v) ∂2

vf(x, v) dxdv

=

∫
e−(UX(x)+UV (v))

eUV (v) ∂2
v

(
g(x, v) e−U

V (v)
)

︸ ︷︷ ︸
=−∂v(g(x,v)e−UV (v)∂v(UV )(v))+∂v(e−UV (v)∂vg(x,y))

f(x, v) dxdv.

Summing these terms we �nd that

π(gLε(f)) ∝
∫
e−(UX(x)+UV (v)) f(x, v)

×
[
ε
(
∂xU

X(x)∂vg(x, v)− ∂vUV (v)∂xg(x, v)
)
−∂vUv(v)∂vg(x, v) + ∂2

vg(x, v)
]
dxdv

= π (fLε,?(g)) ,
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with

Lε,?(g)(x, v) = −ε
[
∂vU

V (v) ∂xg(x, v)− ∂xUX(x) ∂vg(x, v)
]
−∂vUV (v) ∂vg(x, v)+∂2

vg(x, v).

This shows that Lε,? = L−ε.
This ends the proof of the exercise.
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Solution to exercise 421:
Using the fact that (−1)ε

in law
= U , we check that

∆Yn := Yn − Yn−1 = v (−1)Nn = v (U1 . . . Un) .

We set Xn = U1 . . . Un The sequence (Xn, Yn) is a Markov chain with transitions de�ned
by the equation {

Xn+1 = XnUn+1

∆Yn+1 = vXn+1.

K(f)(x, y) = E(f(Xn+1, Yn+1) | (Xn, Yn) = (x, y))

= f(x, y + vx) e−a + f(−x, y − vx)
(
1− e−a

)
.

We clearly have

a = log 2 and v = v0t⇒ wt(y) = E(g(Yn+1) | (Xn, Yn) = (1, y)) =
g(y + v0t) + g(y − v0t)

2

and

∂2
twt(y) = v2

∂2
yg(y + v0t) + ∂2

yg(y − v0t)

2
= v2

0∂
2
ywt(y)

with the initial condition
w0 = g and ∂tw|t=0 = 0.

When v = bh and a = λh we have

h−1 [Kh(f)(x, y)− f(x, y)]

= h−1[f(x, y + bh)− f(x, y)] e−αh + [f(−x, y − bh)− f(x, y)] h−1
(
1− e−αh

)
−→h↓0 b ∂yf(x, y) + λ [f(−x, y)− f(x, y)] := L(f)(x, y).

The generator L is a jump process with a �rst order term corresponding to a deterministic
transport given the �rst variable. The Markov process with generator L is de�ned by{

Xt = (−1)Nt

dYt = Xt b dt

where Nt denotes a Poisson process with intensity λ. Notice that Xt changes its sign at a
rate λ. In addition, given the "sign process" Xt, the second component Yt is a deterministic
process with drift function (Xt × b).

The process (Xt,Yt) coincides with the random 2-velocity process discussed in exer-
cise 209 when b(x) = b, a(x) = 0 and λ(+1) = λ(−1) := λ.

This ends the proof of the exercise.

1175
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Solution to exercise 422:
Following the solution of exercise 209 we have

∂tpt(1, y) = λ ( pt(−1, y)− pt(1, y))− b∂ypt(1, y)

and
∂tpt(−1, y) = λ (pt(1, y)− pt(−1, y)) + b∂ypt(−1, y).

This implies that

∂tq
+
t (y) = −b ∂yq−t (y) and ∂tq

−
t (y) = −2λ q−t (y)− b ∂yq+

t (y).

Taking the partial derivative of the l.h.s. w.r.t. t and the r.h.s. w.r.t. y we �nd that

∂2
t q

+
t (y) = −b ∂t,yq−t (y) and ∂y,tq

−
t (y) = −2λ ∂yq

−
t (y)︸ ︷︷ ︸

=− 1
b ∂tq

+
t (y)

−b ∂2
yq

+
t (y)

from which we conclude that

∂2
t q

+
t (y) + 2λ ∂tq

+
t (y) = b2 ∂2

yq
+
t (y).

We also have

E(Y2
t ) =

∫
y2 (pt(1, y) + pt(−1, y)) dy =

∫
y2 q+

t (y) dy

and ∫
y2 ∂2

t q
+
t (y) dy + 2λ

∫
y2 ∂tq

+
t (y) = b2

∫
y2∂2

yq
+
t (y) dy

= b2
∫
∂2
y(y2) q+

t (y) dy = 2b2.

This yields
∂2
t E(Y 2

t ) + 2λ ∂tE(Y 2
t ) = 2b2.

The solution associated with the initial conditions E(Y 2
0 ) = m0 and m′0 = ∂tE(Y 2

t )t=0 > −1
is given by

E(Y 2
t ) =

b2

λ

1

1 +m′0

(
m0 + (1 +m′0)t− 1

2λ

(
1− e−2λt

))
.

To check this result we notice that

2λ ∂tE(Y 2
t ) = 2b2

1

1 +m′0

(
(1 +m′0)− e−2λt

)
∂2
t E(Y 2

t ) = 2b2
1

1 +m′0
e−2λt.

This ends the proof of the exercise.

Solution to exercise 423:
Following the developments of section 14.4.3 the random state XTS(x,ρ) is uniformly

distributed on the sphere S(x, ρ). See also the exercise 240 on the rotational invariance of
the 2-dimensional Brownian motion. We also refer the reader to the discussion on 444.
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The Dirichlet-Poisson problem has the form (15.38) with (V, g) = (0, 0). Using (15.42)
we have

v(x) = E (h(x+WTD ))

This ends the proof of the exercise.

Solution to exercise 424:When c = 1 we recall that Bn+Wn = N+n withN = b+w.
Thus the Markov chain model is de�ned by

Bn+1 = Bn + 1Un+1∈[0,Bn/(N0+n)]

with a sequence of i.i.d. uniform random variables Un on [0, 1].
This ends the proof of the exercise.

Solution to exercise 425:
By construction, we have

E
(
f(Xn+1) | Xn

)
=

1

2
f(Xn) +

1

2

∑
i: Xin=1

µ(i)

 f(Xn − 1)

+

1

2

∑
i: Xin=0

µ(i)

 f(Xn + 1).

When µ is the uniform probability, for any function f on {1, . . . , d} we �nd that

E
(
f(Xn+1) | Xn

)
=

1

2
f(Xn) +

Xn

2d
f(Xn − 1) +

d−Xn

2d
f(Xn + 1).

This shows that Xn is a Markov chain with transitions

M(k, l) =
1

2
1k(l) +

k

2d
1k−1(l) +

d− k
2d

1k+1(l)(
b
k

)
M(k, l)

= (b− 1)! 1
2

(
b

k!(b−k)!1k(l) + 1
(b−l)!(l−1)! 1k(l − 1) + 1

(b−(l+1))!l! 1k(l + 1)
)
.

This yields∑
0≤k≤b

(
b
k

)
M(k, l) = (b− 1)!

1

2

(
b+ l + (b− l)

(b− l)! l!

)
=

b!

(b− l)!l!
=

(
b
l

)
.

The lazy chain being aperiodic, the invariant measure is unique. Using Kac's formula, we
have

E(Tk | X0 = k) =
1

π(x)
=
k!(b− k)!

b!
2k.

When k = 0, we the expected return time is given by E(T0 | X0 = 0) = 2100 ' 2.27 1030.
This ends the proof of the exercise.
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Solution to exercise 426: When d = 2, the number of steps up/down should be the
same. This also holds for the number of steps left/right. We �nd that the number of paths
with k steps up, and k steps down, (n− k) up and (n− k) down is given by(

2n
k k (n− k) (n− k)

)
=

(2n)!

k!2(n− k)!2
.

Recalling that
∑

0≤k≤n

(
n
k

)2

=

(
2n
n

)
, this implies that

P (X2n = (0, 0) | X0 = (0, 0))

=
∑

0≤k≤n
(2n)!

k!2(n−k)!2

(
1
4

)2n
= (2n)! 2−4n

n!2

∑
0≤k≤n

n!2

k!2(n−k)!2 = (2n)! 2−4n

n!2

∑
0≤k≤n

(
n
k

)2

=
(

2−2n (2n)!
n!2

)2

' 1
πn .

For d = 3, we observe that the chain needs to do the same number k of steps left/right,
the same number l of steps up/down, and the same number (n − k − l) of steps for-
ward/backward. The number of such paths is given by(

2n
k k l l (n− k − l) (n− k − l)

)
=

(2n)!

k!2l!2(n− k − l)!2
.

This implies that

P (X2n = (0, 0, 0) | X0 = (0, 0, 0))

=
∑

0≤k+l≤n

2n!

k!2l!2(n− k − l)!2

(
1

6

)2n

=
(2n)!

n!2
2−2n

∑
0≤k+l≤n

n!2

k!2l!2(n− k − l)!2

(
1

3

)2n

=
(2n)!

n!2
2−2n

×
∑

0≤k+l≤n P (placing n balls in three boxes with k, l, (n− k − l) balls)2
.

Since the probability of placing these n balls in three boxes with k, l, (n − k − l) balls is
maximal when k ' l ' n− k − l ' n

3 (use Stirling's formula to convince yourself), we have

P (X2n = (0, 0, 0) | X0 = (0, 0, 0))

≤ (2n)!

n!2
2−2n ×

(
n!

3nbn/3c!3

)
×
∑

0≤k+l≤n P (placing n balls in three boxes with k, l, (n− k − l) balls)︸ ︷︷ ︸
=1

.
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Now, by Stirling's formula, we have

n!

3nbn/3c!3
'

√
2πn nn e−n

3n2π(n/3)
√

2πn/3 (n/3)n e−n
=

1

2π(n/(3
√

3))
.

This result combined with (25.1) implies that

P (X2n = (0, 0, 0) | X0 = (0, 0, 0)) ≤ c/n3/2

with some positive constant c.
This ends the proof of the exercise.

Solution to exercise 427:
Using the same line of reasoning as the one we used in section 25.6.2, we �nd that

E (f(X1, . . . , Xn) | (B0,W0) = (b, w))

=
∑

0≤k≤n

∑
x1+...+xn=k

f(x1, . . . , xn)

×
C
(
b
c +

∑
1≤i≤n xi

)
Γ
(
w
c + (n−

∑
1≤i≤n xi)

)
Γ
(
b+w
c + n

) ×

(
Γ
(
b
c

)
Γ
(
w
c

)
Γ
(
b+w
c

) )−1

=

∫ 1

0

∑
0≤k≤n

∑
x1+...+xn=k

f(x1, . . . , xn)

×u
∑

1≤i≤n xi (1− u)
(n−

∑
1≤i≤n xi) p( bc ,

w
c )(u) du.

This ends the proof of the �rst assertion. On the other hand, we readily check that Bn =
Bn−1 + c Xn and Bn +Wn = Bn−1 +Wn−1 + c, from which we prove that

E
(

Bn
Bn +Wn

| Fn−1

)
=

1

Bn−1 +Wn−1 + c

(
Bn−1 + c

Bn−1

Bn−1 +Wn−1

)
=

Bn−1

Bn−1 +Wn−1

E
(
eit

Bn
Bn+Wn | (B0,W0) = (b, w)

)
=

∫ 1

0

∑
0≤k≤n

(
n
k

)
eit

b+kc
b+w+nc uk (1− u)

(n−k)
p( bc ,

w
c )(u) du

= e
itb

b+w+nc

∫ 1

0

 ∑
0≤k≤n

(
n
k

)
eit

kc
b+w+nc uk (1− u)

(n−k)

 p( bc ,
w
c )(u) du

= e
itb

b+w+nc

∫ 1

0

e itc
b+w+nc u+ (1− u)︸ ︷︷ ︸

1+itu c
b+w+nc


n

p( bc ,
w
c )(u) du.
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This implies that

lim
n→∞

E
(
eit

Bn
Bn+Wn | (B0,W0) = (b, w)

)
=

∫ 1

0

eitu p(b/c,w/c)(u) du

from which we conclude that Bn
Bn+Wn

converges in law, as n→∞, to U(b/c,w/c). This ends
the proof of the exercise.

Solution to exercise 428:
In exercise 427, we proved that Pn := Bn

N0+n converges in law, as n ↑, to a random
variable P∞ with Beta(b, w) distribution. We consider the re-scaled continuous process

Xt = PbNtc =
BbNtc

N + bNtc
.

When h ↓ 0 and N ↑ ∞ have

1← 1 + (h/t)

1 + (2/(Nt))
≤ bN(t+ h)c
bNtc+ 1

<
N(t+ h) + 1

Nt
= 1 + (h/t) + 1/(Nt)→ 1.

This shows that bN(t+ h)c = bNtc+ 1 and

∆hBbNtc = BbN(t+h)c −BbNtc = BbNtc+1 −BbNtc.

By construction, we have

P
(
∆hBbNtc = 1 | Xt

)
= Xt = 1− P

(
∆hBbNtc = 0 | Xt

)
⇒ E

(
∆hBbNtc | Xt

)
= Xt.

Also

Var
(
∆hBbNtc | Xt

)
= E

((
∆hBbNtc −Xt

)2 | Xt

)
= E

((
∆hBbNtc

)2 | Xt

)
+X2

t − 2XtE
(
∆hBbNtc | Xt

)
= 1×Xt −X2

t = Xt(1−Xt).

On the other hand, we have

∆hXt := Xt+h −Xt =
BbN(t+h)c

N + bN(t+ h)c
−Xt

=
BbNtc+1

N + bNtc+ 1
−Xt =

BbNtc + ∆hBbNtc

N + bNtc+ 1
−Xt

=
(N + bNtc) Xt + ∆hBbNtc

N + bNtc+ 1
−Xt =

∆hBbNtc −Xt

N + bNtc+ 1
.

From previous calculations, we prove that

E (∆hXt | Xt) =
E
(
∆hBbNtc | Xt

)
−Xt

N + bNtc+ 1
= 0

E
(

(∆hXt)
2 | Xt

)
=

1

(N + bNtc+ 1)2
E
((

∆hBbNtc −Xt

)2 | Xt

)
=

Xt(1−Xt)

(N + bNtc+ 1)2
.
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Finally observe that

1

(N + bNtc+ 1)
=

1

N

(
1

1 + t
−
[

1

1 + t
− 1

(1 + bNtc/N + 1/N)

])
=

1

N

1

1 + t

(
1− (bNtc/N − t) + 1/N

1 + bNtc/N + 1/N

)
︸ ︷︷ ︸

∈[1−2/N,1]

.

The last assertion is due to

0 ≤ bNtc/N − t ≤ 1/N ⇒ 0 ≤ (bNtc/N − t) + 1/N

1 + bNtc/N + 1/N
≤ 2/N.

For h = 1/N , this implies that

E
(

(∆hXt)
2 | Xt

)
=

1

N

Xt(1−Xt)

(1 + t)2
h (1− εt(N)) with εt(N) ∈ [0, 2/N ].

The Wright-Fisher di�usion approximation on some time mesh tn−1 < tn s.t. (tn −
tn−1) = h = 1/N is given by the increments

Ytn+h − Ytn =
1

1 + tn

√
Ytn(1− Ytn)

N

√
h Vn

with some centered Gaussian random variable Vn with unit mean. We then check immedi-
ately that

E(Ytn+h − Ytn | Ytn) = 0

and

E((Ytn+h − Ytn)2 | Ytn) =
1

(1 + tn)2

Ytn(1− Ytn)

N
h.

This shows that the processes Xt and Yt follow the same evolution as h = 1/N and N ↑ ∞.
This ends the proof of the exercise.

Solution to exercise 429: We have

∀i ∈ S P (An(i)) =
∏

1≤p≤n

P (Xp 6= i) =

(
1− 1

d

)n
= P (An(1)) .

Using the fact that

(T > n) = {∃i ∈ S : ∀1 ≤ p ≤ n Xp ∈ S − {i}}
= ∪i∈S{∀1 ≤ p ≤ n Xp ∈ S − {i}} = ∪i∈SAn(i)

we prove that

P (T > n) ≤
∑
i∈S

P (An(i)) = d

(
1− 1

d

)n
≤ d e−n/d.

Hence we conclude that

P (T > d log (d) +md ) ≤ d exp

(
−d log (d) +md

d

)
= e−m.
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This ends the proof of the exercise.

Solution to exercise 430: We have that

ψ : θ ∈ T := R/ (2πZ) 7→ ψ(θ) = eiWt ∈ C = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}.

For any function F on C we set f = F ◦ψ. We also denote byW t = {Wt+2kπ : k ∈ Z} the
class of equivalence of the state Wt in the 1-dimensional Torus R/ (2πZ). In this notation
we have

∀k ∈ Z ψ(Wt + 2kπ) = ψ(Wt) := ψ
(
W t

)
.

Furthermore we have

E (F (ψ(Wt)) | W0 = w0) =
1√
2πt

∫ +∞

−∞
F (ψ(w)) e−

1
2t (w−w0)2

dw

=
∑
n∈Z

1√
2πt

∫ 2(k+1)π

2kπ

F (ψ(w)) e−
1
2t (w−w0)2

dw

=
∑
n∈Z

1√
2πt

∫ 2π

0

F (ψ(v)) e−
1
2t (v−w0+2kπ)2

dv

=

∫ 2π

0

F (ψ(v)) pt(v − w0) dv =

∫ 2π

0

f(v) pt(v − w0) dv

:= E(f(W t) | W 0 = w0) = E(f(w0 +W t) | W 0 = 0)

with

pt(v) :=
1√
2πt

∑
n∈Z

e−
1
2t (v+2nπ)2

=
1

2π

∑
n∈Z

E
(
e−inWt

)
einv.

The r.h.s. equality comes from the Poisson summation formula applied to the 2π-periodic
function

h(v) =
∑
n∈Z

p(v + 2nπ) =
∑
n∈Z

p̂(n) einv

with the Fourier coe�cient

p̂(n) =
1

2π

∫ +∞

−∞
p(v) e−inv dv.

We check this claim taking the Fourier transform of h

ĥ(n) =
1

2π

∑
n∈Z

∫ 2π

0

p(v + 2nπ) e−inv dv =
1

2π

∫ +∞

−∞
p(v) e−inv dv = p̂(n).

On the other hand, we have

E
(
e−inWt

)
= e−n

2t/2 ⇒ pt(v) =
1

2π

∑
n∈Z

e−n
2t/2 einv.

We conclude that

pt(v) =
1

2π
+

1

2π

∑
n∈Z−{0}

e−n
2t/2 einv ⇒

∣∣∣∣pt(v)− 1

2π

∣∣∣∣ ≤ 1

π

∑
n≥1

e−n
2t/2.
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This implies that

‖Pt(f)− µ(f)‖ ≤ 1

π

∑
n≥1

e−n
2t/2 →t→∞ 0,

which ends the proof of the exercise.
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Solution to exercise 431:
We let Tq→(q−1) be the random time needed to move from state q to q−1. By construc-

tion, Tq→(q−1) is a geometric random variable with success probability
(

1− (d)q
dq

)
, and we

have the decomposition

T ′ = TR0→(R0−1) + T(R0−1)→(R0−2) + . . .+ T2→1.

Given R0 = q, we have

T ′ − (R0 − 1) =
(
TR0→(R0−1) − 1

)
+
(
T(R0−1)→(R0−2) − 1

)
+ . . .+ (T2→1 − 1) .

E
(
et

T ′−(R0−1)
d | R0

)
=

∏
1≤q<R0

E
(
et

Tq+1→q−1

d

)
.

For any geometric random variable N with success probability α ∈]0, 1[, and for any
0 ≤ t < −d log (1− α) we have

E(et(N−1)/d) = α
∑
n≥1

(1− α)n−1et(n−1)/d =
α

1− (1− α)et/d
.

Applying this formula to

1− α = βq :=
(d)q
dq
≤ e−

q(q−1)
2d and 0 ≤ t < q(q − 1)

2
(≤ −d log (1− α))

we �nd that

E
(
et

Tq→(q−1)−1

d

)
=

1− βq
1− βq et/d

.

We consider for any x > 0 the function

f : x ∈
[
0, e−t/d

]
7→ 1− x

1− x et/d
.

An elementary calculation shows that

f ′(x) =
−(1− x et/d)− (1− x)(−et/d)

(1− x et/d)2
=

et/d − 1

(1− x et/d)2
≥ 0.

Therefore we conclude that f is increasing and

βq ≤ e−
q(q−1)

2d ⇒ 1− βq
1− βq et/d

≤ 1− e−
q(q−1)

2d

1− e−
q(q−1)

2d et/d
.

We consider for any x > 0 the function

g : y ∈ [0, x] 7→ g(y) = x
(
1− ey−x

)
+ (y − x)

(
1− e−x

)
.

1185
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Notice that g(0) = g(x) = 0 and

g′(y) = −x ey−x + (1− e−x) ≥ 0⇔ ex − e0

x− 0
= eθ(x) ≥ ey

with the state θ(x) ∈ [0, x] given by the mean value theorem. This shows that g(y) is
increasing for y ∈ [0, θ(x)] and decreasing for y ∈ [θ(x), x]. Since g(0) = g(x) = 0, we
conclude that

∀y ∈ [0, x] g(y) ≥ 0

⇓

∀y ∈ [0, x[
1− e−x

1− ey−x
=

1− e−x

1− e−x/e−y
≤ x

x− y
=

1

1− (y/x)
.

Applying this inequality to x = q(q−1)
2d ≥ y = t/d, we �nd that

∀0 ≤ t ≤ q(q − 1)

2

1− e−
q(q−1)

2d

1− e−
q(q−1)

2d et/d
≤ 1

1− t
q(q−1)/2

.

Hence

E
(
et

Tq→(q−1)−1

d

)
≤ 1

1− t
q(q−1)/2

for any 0 ≤ t < 1
(
≤ q(q−1)

2

)
.

This implies that on the event R0 > 1

∀t ∈ [0, 1[ E
(
et

T ′−(R0−1)
d | R0

)
=

∏
1≤q<R0

1

1− t
q(q+1)/2

.

On the other hand, for any exponential random variable Eq with parameter λq = q(q +
1)/2(> 1) we have

∀0 ≤ t < 1(≤ λq) E
(
et Eq

)
=

1

1− t/λq
.

This implies that for any 0 ≤ t < 1

E
(
et

T ′−(R0−1)
d | R0

)
≤ E

(
et
∑

1≤q<R0

2
q(q+1)

Eq | R0

)
≤ h(t) := E

(
et
∑

1≤q<∞
2

q(q+1)
Eq
)

=
∏
q≥1

1
1− t

q(q+1)/2

where Eq stands for a sequence of independent exponential random variables with unit
parameter.

P
(
T ′−(R0−1)

d ≥ n | R0

)
= E

(
1T ′−(R0−1)

d ≥n e
−t T ′−(R0−1)

d et
T ′−(R0−1)

d | R0

)
≤ e−tn h(t).
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This implies that

P ( T ′ ≥ m | R0 ) ≤ e−t
(
m−(R0−1)

d

)
h(t) ≤ e−mt/d et h(t) ≤ ae

1− t
e−mt/d

with the �nite constant

a :=
∏
q≥2

1

1− 1
q(q+1)/2

.

The proof of the last estimate follows from the fact that

∀0 ≤ t < 1 eth(t) =
et

1− t
∏
q≥2

1

1− t
q(q+1)/2

≤ e

1− t
a.

We conclude that

P ( T ′ ≥ m | R0 ) ≤ ae inf
t∈[0,1[

e−mt/d

1− t
.

By zeroing out the derivative on the r.h.s., we see directly that the in�mum is attained
when t = 1− d/m since

∂

∂t

e−mt/d

1− t
=

e−mt/d

(1− t)2

(
1− m

d
(1− t)

)
= 0⇔ t = 1− d/m.

This shows that for any m ≥ 2d

sup
1≤q≤d

P ( T ′ ≥ m | R0 = q ) ≤ ae e−m(1−d/m)/d

1− (1− d/m)
= a

m

d
e−(m/d−1).

This ends the proof of (26.19).
Since q(q + 1)/2 ≥ 3 ≥ 2 for any q ≥ 2, using the given estimate of the logarithm we

prove that

log a := −
∑
q≥2

log

(
1− 1

q(q + 1)/2

)
≤ 2

∑
q≥2

1

q(q + 1)
+ 2

∑
q≥2

1

q(q + 1)

1

q(q + 1)/2︸ ︷︷ ︸
≥2

≤ 3
∑
q≥2

1

q(q + 1)
= 3

∑
q≥2

[
1

q
− 1

(q + 1)

]
= 3/2.

This implies that

sup
1≤q≤d

P ( T ′ ≥ m | R0 = q ) ≤ m

d
exp

[
−
(
m

d
− 5

2

)]
.

This ends the proof of the exercise.

Solution to exercise 432:
Recalling that

Y ∼ Geo(p)⇒ E(Y ) =
1

p
and Var(Y ) = E((Y − E(Y ))2) =

1− p
p2
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for any success parameter p ∈]0, 1], we readily check that

E(T ) =
∑

1≤i≤d

E(Ti) = d
∑

1≤i≤d

1

i
' d log d.

We can use the upper bounds (30.55) to estimate more precisely these expectations. On
the other hand, we also have that

Var(T ) =
∑

1≤i≤d

E((Ti − E(Ti))
2)

=
∑

1≤i≤d

1− (i/d)

(i/d)2

= d2
∑

1≤i≤d

(
1

i2
− 1

d i

)
= d2

 ∑
1≤i≤d

1

i2
−
∑

1≤i≤d

1

d i

 ≤ 2d2.

We note that V ar(T ) stabilizes asymptotically to π2

6 d
2 and does not exceed 2d2 for any d.

This ends the proof of the exercise.

Solution to exercise 433:
The following analysis follows the book of D. A. Levin and Y. Peres [180]. We let T be

the stopping time associated with the �rst time all cards are marked in the transposition
shu�e introduced on page 715. We denote by Ln and Rn the card chosen by the left hand
and the one chosen by the right hand. We denote by Mn ∈ {1, . . . , d} the set of cards
marked up to time n (included); and we let Pn ∈ {1, . . . , d} be the set of positions occupied
by the cardsMn after the n-th transposition.

Given the triplet (n,Mn,Pn), all the permutations of the cards inMn on the positions
Pn are equally likely. We prove this assertion by induction w.r.t. the time parameter n.
For n = 1, the result is immediate since at the original cards are all unmarked (we mark
a single R1 for any pair of chosen cards (L1, R1)). We assume that the assertion is true at
some rank n. We choose the cards Ln+1 and Rn+1:

• When no card is marked we haveMn+1 =Mn:

� (Ln+1, Rn+1) are already marked, thus Pn+1 = Pn. In this case, the shu�e produces
a uniform random transposition inMn, all permutations ofMn remain equally likely
(by the induction hypothesis).

� Ln+1 is unmarked but Rn+1 was already marked. In this case, after the shu�e, Pn+1

is deduced from Pn by deleting the position of Rn+1 and adding the one of Ln+1.
For a given set of positions Pn the choices of Rn+1 ∈ Pn are equally likely. The
permutations of Mn on Pn being equally likely (by the induction hypothesis), the
permutations of the new setMn on Pn+1 remain equally likely.

• If Rn+1 is marked, then Ln+1 is equally likely to be any element ofMn+1 =Mn∪{Rn+1}.
We also have Pn+1 = Pn ∪ {the position of Ln+1 at time n}. Any permutation of Mn

on Pn∪{the position of Ln+1 at time n} uniquely determines a permutation ofMn+1 on
Pn+1. Thus, all such permutations are equally likely.

In all cases, the set of permutations of Mn on Pn makes equal contributions to all
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possible permutations of Mn+1 on Pn+1. Summing over all the con�gurations discussed
above, we prove that all permutations ofMn+1 on Pn+1 are equally likely.

This ends the proof of the exercise.

Solution to exercise 434:

1. When the selected card ci = c′i has the same position in both decks, the trans-
position does not a�ect the number of cards Nn+1 = Nn that occupy the same
position (only their position level is changed).

c1 c′1
...

...

ci

transposition

++

card ci // c′i = cioo

transposition

ss

...
...

cj
position j // c′joo

...
...

cd cd′

2. The selected card ci is not in the same position, say c′k = ci. In this case the
transposition diagram below shows that after the transposition the cards at the
j-th position c′k = ci become equal. We notice that in this case, we have ci 6= c′i
by construction, but also ck 6= c′k since we have ci 6= ck and c′i 6= c′k (otherwise if
ck = c′k we would have ci 6= ck 6= c′k ⇒ ci 6= c′k and we arrive at contradiction to
our assumption).

c1 c′1
...

...

ck c′k = ci

yy

zz

...
...

ci

))

99

c′i
...

...

cj
position j // c′joo

...
...

cd cd′

Transposition
 c1 c′1

...
...

ck
position k // c′joo

...
...

cj
position i // c′ioo

...
...

ci
position j // c′k = cioo

...
...

cd cd′

In this situation, three cases may occur
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(a) cj = c′j : In this situation, we lose this alignment but we have also created a
new one since the cards at the j-th position c′k = ci becomes equal. In this
case, Nn+1 = Nn.

(b) cj 6= c′j : In this case, as argued above at least one alignment has been made
at the j-th position.
i. If ck 6= c′j and cj 6= c′i then Nn+1 = Nn + 1.
ii. If ck 6= c′j but cj = c′i then Nn+1 = Nn + 2.
iii. If ck = c′j but cj 6= c′i then Nn+1 = Nn + 2.
iv. If ck = c′j but cj = c′i then Nn+1 = Nn + 3.

This ends the proof of (26.11). The proof of (26.12) follows from the fact that

E (Nn+1 | Nn) ≥ Nn +

(
1− Nn

d

)
=

(
1− 1

d

)
Nn + 1.

E (Nn | N0) ≥
(

1− 1

d

)
E(Nn−1 | N0) + 1

=

(
1− 1

d

)n
N0 +

∑
0≤p<n

(
1− 1

d

)p
=

(
1− 1

d

)n
N0 + d

(
1−

(
1− 1

d

)n)
= d−

(
1− 1

d

)n
(d−N0).

This ends the proof of the exercise.

Solution to exercise 435:
We have

E(T ) = 1 + d2
∑

1≤i<d

1

i× (d− (i− 1))

= 1 +
d2

d+ 1

∑
1≤i<d

(
1

i
+

1

d− (i− 1)

)
' 2d log (d).

We can use the upper bound ∑
1≤i<d

∫ i+1

i

1

t
dt

 = log (d+ 1)

≤
∑

1≤i≤d

1

i
≤

1 +
∑

2≤i≤d

∫ i

i−1

1

t
dt

 = (1 + log d)

(30.55)

to check that

E(T ) = 1 +
d2

d+ 1

2
∑

1≤i≤d

1

i
−
(

1 +
1

d

)
≤ 1 +

d2

d+ 1

(
2 log d+

(
1− 1

d

))
≤ 2d log d+ d+ 1 ≤ 2d(1 + log d).



Chapter 26 1191

The last assertion is a direct consequence of theorem 8.3.18. This ends the proof of the
exercise.

Solution to exercise 436:
A each time step, say n, of have d2 = d(d−1)+d possible choices of the pair (Ln, Rn) =

(i, j) ∈ {1, . . . , d}d

• After the �rst card, say m1, has been marked, we have 1 × (d − 1) + 1 = 1 × d possible
pairs (m1, j) with j ∈ {1, . . . , d}− {m1} and (m1,m1), for which the right hand card will
be marked; This random time is a Geometric r.v. with success probability

p1 =
1× d
d2

• After the second card, saym2, has been marked, we have two marked cardsm1 andm2. In
this situation, we have 2×(d−2)+2 = 2×(d−1) possible pairs (m, j) with m ∈ {m1,m2}
and j ∈ {1, . . . , d} − {m1,m2}, and (mi,mi)1≤i≤2 for which a new right hand card will
be marked. Therefore, the random time T2 is a Geometric r.v. with success probability

p2 =
2× (d− 1)

d2

• After the third card, say m3, has been marked, we have three marked cards m1,m2 and
m3. In this situation, we have 3 × (d − 3) + 3 = 3 × (d − 2) possible pairs (m, j) with
m ∈ {m1,m2,m3} and j ∈ {1, . . . , d}−{m1,m2,m3}, and (mi,mi)1≤i≤3 for which a new
right hand card will be marked. Therefore, the random time T2 is a Geometric r.v. with
success probability

p2 =
3× (d− 2)

d2

• More generally, after the i-th card, say mi, has been marked, we have i marked cards
(mk)1:leqk≤i. In this situation, we have i × (d − i) + i = i × (d − (i − 1)) possible pairs
(m, j) with m ∈ {m1, . . . ,mi} and j ∈ {1, . . . , d} − {m1, . . . ,mi}, and (mk,mk)1≤k≤i
for which a new right hand card will be marked. Therefore, the random time Ti is a
Geometric r.v. with success probability

pi =
i× (d− (i− 1))

d2

This ends the proof of (26.14).
The proof of the exercise is completed.

Solution to exercise 437:
We have

E(T ) =
∑
n≥1

P (T > n) =

log2 d
2∑

n=1

(
1− e− d

2

2n

)
+

∑
n>log2 d

2

(
1− e− d

2

2n

)

≤ log2 d
2 +

∞∑
n=1+log2 d

2

d2

2n

= log2 d
2 +

∑
n≥1

d2/2n+log2 d
2

= log2 d
2 +

∑
n≥1

2−n = 1 + log2 d
2.
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In the r.h.s. of the �rst line we have used the fact that 1− e−x ≤ x, for any x ≥ 0.
This ends the proof of the exercise.

Solution to exercise 438:
We observe that

‖Xn − Yn‖F =

(
1

2

)n ∑
k≥1

2−k ‖x‖Kk

=

(
1

2

)n ∑
k≥1

2−k k

=

(
1

2

)n+1 ∑
k≥1

k 2−(k−1) =

(
1

2

)n−1

(30.56)

with the constant (random) function

Yn(x) =
∑

0≤p<n

1

2p
In−p

Law
=

∑
0≤p<n

1

2p
Ip+1 = Zn.

The r.h.s. bound in (30.56) is due to the fact that

∑
k≥1

k 2−(k−1) =

 ∂

∂λ

∑
k≥0

xk


x=1/2

= (1/(1− 1/2)2) = 4.

Using the inequalities

‖Yn+1 − F‖F − 2−n ≤ ‖Xn+1 − F‖F ≤ ‖Yn+1 − F‖F + 2−n

whenever the limits exists we also check that

lim
n→∞

P (‖Xn+1 − F‖F ≤ ε) = lim
n→∞

P (‖Yn+1 − F‖F ≤ ε)

= lim
n→∞

P (‖Zn+1 − F‖F ≤ ε) . (30.57)

To take the �nal step, we have the almost sure convergence

Zn+1 =
∑

0≤p≤n

1

2p
Ip+1 →n→∞

∑
p≥0

1

2p
Ip+1 = Z∞

and

Z∞ − Zn+1 =
∑

p≥n+1

1

2p
Ip+1 =

1

2n+1
In+2 +

1

2n+2
In+3 + . . .

=
1

2n+1

(
In+2 +

1

2
In+3 + . . .

)
︸ ︷︷ ︸

:=Z′n,∞
Law
= Z∞

.

‖Z∞ − F‖F −
1

2n+1

∥∥Z ′n,∞∥∥F = ‖Z∞ − F‖F − ‖Zn+1 − Z∞‖F
≤ ‖Zn+1 − F‖F
≤ ‖Zn+1 − Z∞‖F + ‖Z∞ − F‖F

= ‖Z∞ − F‖F +
1

2n+1

∥∥Z ′n,∞∥∥F .
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Thus, we have the almost sure convergence

lim
n→∞

‖Zn+1 − F‖F = ‖Z∞ − F‖F .

By (30.57) we conclude that

lim
n→∞

P (‖Xn+1 − F‖F ≤ ε) = P (‖Z∞ − F‖F ≤ ε) .

This ends the proof of the exercise.

Solution to exercise 439:
These functions are clearly contractions of the unit interval

|f0(x)− f0(y)| = |f1(x)− f1(y)| = 1

2
|x− y| < |x− y|.

In both cases S is reduced to a half:

S = (S0 ∪ S1) with S0 = f0(S) =

[
0,

1

2

]
and S1 = f1(S) =

[
1

2
, 1

]
.

Arguing as in section 26.2, we have

Xn(x) =
x

2n
+

1

2

∑
0≤p<n

εn−p
2p

Law
=

x

2n
+
∑

1≤p≤n

εp
2p
→n↑∞ X∞ :=

∑
n≥1

εn
2n

and
1

2
X∞ +

ε0
2

=
∑
n≥0

εn
2n+1

law
=
∑
n≥0

εn+1

2n+1
= X∞.

Our next objective is to prove that X∞ is a conversion to base 2 of a random number

U = ε1
1

2
+ ε2

1

22
+ . . .+ εn

1

2n
+ . . . (30.58)

that is uniformly chosen in [0, 1]. We check the �rst claim using the binary decomposition

2U := b2Uc︸ ︷︷ ︸
=ε1

+ {2U}︸ ︷︷ ︸
=U1

 2U1 := b2U1c︸ ︷︷ ︸
=ε2

+ {2U1}︸ ︷︷ ︸
=U2

.

Now, we observe that

P (ε1 = 0 , U1 ≤ u1) = P (0 ≤ 2U < 1 , 2U ≤ u1)

=
1

2
× u1

= P (ε1 = 0) P (U1 ≤ u1 | ε1 = 0) .

This shows that ε1 is a Bernoulli random variable with parameter 1/2, and given ε1 the
random variable U1 can be seen as an independent uniform on [0, 1]. Iterating this reasoning,

we check that U
law
= X∞.

Recalling that Ua,b = a+ (b− a)U is uniform on [a, b] ⊂ [0, 1] and

U
law
= ε U0,a + (1− ε) Ua,1 (30.59)
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with a Bernoulli random variable P(ε = 1) = 1−P(ε = 0) = a (cf.exercice 439), we can also
notice that

U
law
= ε1 U0,1/2 + (1− ε1) U1/2,1

= ε1
U

2︸︷︷︸
U0,1/2

+(1− ε1)

[
1

2
+

(
1− 1

2

)
U

]
︸ ︷︷ ︸

U1/2,1

= fε1(U).

To prove (30.59) we use the conditioning formulae

P (ε U0,a + (1− ε) Ua,1 ≤ u | ε = 1) = P (U0,a = aU ≤ u)

=
u

a
1[0,a](u) + 1[a,1](u)

P (ε U0,a + (1− ε) Ua,1 ≤ u | ε = 0) = P (Ua,1 = a+ (1− a)U ≤ u)

=
(u− a)

(1− a)
1[a,1](u).

We get
P (ε U0,a + (1− ε) Ua,1 ≤ u)

= u 1[0,a](u) + a 1[a,1](u) + (u− a) 1[a,1](u)

= u− a 1[a,1](u) + a1[a,1](u) = u.

Finally, using the fact that lip(fi) = 1/2 we prove that

W(Law(Xn(x)),Law(Xn(y))) ≤ 2−n |x− y|.

Due to proposition 8.3.13 we also readily have that

W(Law(Xn(x)), π) = W(δxM
n, πMn) ≤ 2−n

∫
π(dy) |x− y|

with the Markov transitionM of the chain and its invariant uniform distribution π on [0, 1].
This implies that

sup
x∈[0,1]

W(Law(Xn(x)), π) ≤ 2−n.

This ends the proof of the exercise.

Solution to exercise 440:
We have

Full-length(Jn) = Full-length
(
∪nk=1

(
∪2k−1

l=1 Jk,l

))
=

n∑
k=1

2k−1∑
l=1

Full-length(Jk,l)

=

n∑
k=1

2k−1 1

3k
=

1

3
×

1−
(

2
3

)n
1− 2

3

= 1−
(

2

3

)n
↑ Full-length(J∞) = 1 lorsque n ↑ ∞

=⇒ Full-length(In) ↓ Full-length(I∞) = 0.
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This ends the proof of (26.17).
We use the fact that

Xn =
1

3
Xn−1 +

2

3
εn

=
1

32
Xn−2 +

2

3

(
1

3
εn−1 + εn

)
=

1

33
Xn−3 +

2

3

(
1

32
εn−2 +

1

3
εn−1 + εn

)
.

Iterating this procedure we prove (26.18).
We prove the last assertion by induction w.r.t. the time parameter. The result is

immediate for n = 0. We further assume that the result has been veri�ed at rank (n− 1).
For any function ϕ on [0, 1] we have

E(ϕ(Xn)) = E(ϕ(fεn(Xn−1))) = E(E(ϕ(fεn(Xn−1)) | Xn−1))

=
1

2
× E (ϕ (f0(Xn−1)) + ϕ (f1(Xn−1))) .

Under our induction hypothesis, we have

E (ϕ (f0(Xn−1) + ϕ(f1(Xn−1))))

=
(

3
2

)n−1
[∫
Sn−1

ϕ(f0(x)) dx+
∫
Sn−1

ϕ(f1(x)) dx
]

= 3
(

3
2

)n−1 ∫
f(Sn−1)

ϕ(x) dx = 3
(

3
2

)n−1 ∫
Sn

ϕ(x) dx.

We conclude that

E(ϕ(Xn)) =

(
3

2

)n ∫
Sn

ϕ(x) dx =

∫
ϕ(x)

(
3

2

)n
1Sn(x) dx︸ ︷︷ ︸

=P(Xn∈dx)

.

This ends the proof of the exercise.
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Solution to exercise 441:
We have 

dY 1
t = b1t (Yt) dt := Y 2

t dt
dY 2

t = −
(
α Y 2

t +m−1 ∂xUt(Y
1
t )
)︸ ︷︷ ︸

b2t (Yt)

dt+ σ dWt.

The Fokker-Planck equation is given by

∂tpt(y) = −∂y1

(
b1t pt

)
(y)− ∂y2

(
b2t pt

)
(y) +

1

2
σ2∂2

y2
pt(y)

= −y2 ∂y1 (pt) (y) +m−1 ∂xUt(y1) ∂y2 (pt) (y) + α ∂y2 (y2 pt) (y) +
1

2
σ2∂2

y2
pt(y).

Rewritten in terms of the variables (x, v) = (y1, y2) the equation takes the form

∂tpt = −v ∂xpt +m−1 ∂xUt ∂vpt + α ∂v (v pt) +
1

2
σ2∂2

vpt.

Letting 2−1σ2/α = κT/m we obtain the desired equation.
This ends the proof of the exercise.

Solution to exercise 442:
Following the arguments developed in exercise 441, the desired equation resumes to the

traditional Fokker-Planck equation associated with the di�usion

dXt = bt(Xt) dt+ τ dWt

with
bt(x) := (mα)−1 ∂xUt and τ := σ/α.

In this situation, we have

mα ∂tpt = ∂x (∂xUt pt) +
mα

2
σ2∂2

xpt

= ∂x (∂xUt pt) (y) + κ T ∂2
xpt.

This ends the proof of the exercise.

Solution to exercise 443:
Notice that∑

i≥0 e−tEi 〈f, ϕi〉 ϕi(x)∑
i≥0 e−tEi 〈1, ϕi〉 ϕi(x)

=
〈f, ϕ0〉 ϕ0(x) +

∑
i≥1 e−t(Ei−E0) 〈f, ϕi〉 ϕi(x)

〈1, ϕ0〉 ϕ0(x) +
∑
i≥1 e−t(Ei−E0) 〈1, ϕi〉 ϕi(x)

.
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This implies that

et(E1−E0)

[
Qt(f)(x)

Qt(1)(x)
− 〈f, ϕ0〉
〈1, ϕ0〉

]

=
∑
i≥1

e−t(Ei−E1) 〈1, ϕi〉 ϕi(x)

〈1, ϕ0〉 ϕ0(x) +
∑
j≥1 e−t(Ej−E0) 〈1, ϕj〉 ϕj(x)

[
〈f, ϕi〉
〈1, ϕi〉

− 〈f, ϕ0〉
〈1, ϕ0〉

]
.

We conclude that
Qt(f)(x)

Qt(1)(x)
− 〈f, ϕ0〉
〈1, ϕ0〉

= O
(
e−t(E1−E0)

)
.

This ends the proof of the exercise.

Solution to exercise 444:
We have

LV (ϕ) = −Eiϕ⇒ ∂tQt(ϕi) = Qt(L
V (ϕ)) = −Ei Qt(ϕ)⇒ Qt(ϕi) = e−Eit ϕi

and
f =

∑
i≥0

〈f, ϕi〉 ϕi(x)⇒ Qt(f) =
∑
i≥0

e−Eit 〈f, ϕi〉 ϕi.

Observe that
µ(f2) =

∑
i≥0

〈f, ϕi〉2.

This implies that

eE0t Qt(f) =

〈f, ϕ0〉 ϕ0 +
∑
i≥1

e−(Ei−E0)t 〈f, ϕi〉 ϕi


from which we conclude that

e2E0t µ
(
Qt(f)2

)
= 〈f, ϕ0〉2 +

∑
i≥1

e−(Ei−E0)t 〈f, ϕi〉2 ≤ µ(f2).

For �nite spaces S with cardinality r we have the crude estimate

eE0t ‖Qt(f)‖ ≤ sup
1≤i≤r

[|〈f, ϕi〉| ‖ϕi‖]

1 +
∑

1≤i≤r

e−(Ei−E0)t

 ≤ r ‖f‖ sup
1≤i≤r

[
‖ϕi‖2

]
.

For f = 1 we also have

e−‖V ‖t ≤ Qt(1)(x) = E
(
e−
∫ t
0
V (Xs)ds | X0 = x

)
≤ c e−E0t .

This ends the proof of the exercise.

Solution to exercise 445:
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We notice that

LV (ϕ0) = L(ϕ0)− V ϕ0 = E0ϕ0 ⇒ V = ϕ−1
0 L(ϕ0)− E0.

Using the exponential change of probability measures discussed in section 18.3, this implies
that

γt(f) := E
(
f(Xt) e

−
∫ t
0
V (Xs)ds

)
= eE0t E

(
f(Xt) e

−
∫ t
0 [ϕ−1

0 L(ϕ0)](Xs)ds
)

= eE0t E
(
ϕ0(X0)

ϕ0(Xt)
f(Xt)

ϕ0(Xt)

ϕ0(X0)
e−
∫ t
0 [ϕ−1

0 L(ϕ0)](Xs)ds
)

= eE0t η0(ϕ0) E
(
ϕ−1

0 (Xϕ0

t ) f(Xϕ0

t )
)
,

with a Markov process Xϕ0

t with initial distribution η[ϕ0]
0 = Ψϕ0(η0) and an in�nitesimal

generator
L[ϕ0](f) = L(f) + ϕ−1

0 ΓL(ϕ0, f).

For d = 1 and L = 1
2∂

2
x we have

2 ΓL(ϕ0, f) = ∂x(ϕ0∂xf + f∂ϕ0)− ϕ0∂
2
x(f)− f∂2

x(ϕ0) = 2∂ϕ0∂f

and

L[ϕ0](f) =
1

2
∂2
xf + ϕ−1

0 ∂xϕ0∂xf = ∂x(logϕ0) ∂x(f) +
1

2
∂2
xf.

This ends the proof of the exercise.

Solution to exercise 446:
The �rst assertion is proved in section 16.1.3. To check the second claim, we observe

that
µ (f1L(f2)) = µ (L(f1)f2) =⇒ µ (f1H(f2)) = µ (H(f1)f2) (30.60)

for any couple of smooth functions f1, f2. This shows that H is reversible w.r.t. µ.
On the other hand, we have

H(ϕ0) = E0ϕ0 ⇒ µ(H(ϕ0)) = −

=µ(L(1)ϕ0)=0︷ ︸︸ ︷
µ(L(ϕ0)) +µ(V ϕ0) = E0 µ(ϕ0)⇒ Ψϕ0

(µ)(V ) = E0.

This yields

Ψϕ0
(µ)(H(f))−Ψϕ0

(µ)(V )Ψϕ0
(µ)(f) =

1

µ(ϕ0)
[µ(ϕ0H(f))−Ψϕ0

(µ)(V )µ(ϕ0f)]

=
1

µ(ϕ0)
[µ(H(ϕ0)f)−Ψϕ0

(µ)(V )µ(ϕ0f)]

= Ψϕ0(µ)(f) [E0 −Ψϕ0(µ)(V )] = 0.

We conclude that

η∞(Lη∞(f)) = η∞(L(f))− η∞(fV ) + η∞(f)η∞(V )

= − [η∞(H(f))− η∞(f)η∞(V )] = 0.

This ends the proof of the exercise.
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Solution to exercise 447:

When V (0) = V (1) we have

P(Xt = 0) = e−bt η0(0) +
c

b

(
1− e−bt

)
−→t→∞ µ(0) :=

c

b
= 1− µ(1)

with b = λ(0) + λ(1) and c = λ(1). It is readily checked that

µ(0) =
λ(1)

λ(0) + λ(1)
⇒ µ(0)λ(0) =

λ(1)λ(0)

λ(0) + λ(1)
= µ(1)λ(1).

This yields

µ(fL(g)) = µ(0)f(0)λ(0) (g(1)− g(0)) + µ(1)f(1)λ(1) (g(0)− g(1)),

= − λ(1)λ(0)

λ(0) + λ(1)
([g(1)− g(0)][f(1)− f(0)]) = µ(gL(f)).

In the further development we assume that V (0) > V (1).

We observe that

LV (ϕ)(0) = λ(0) (ϕ(1)− ϕ(0))− V (0)ϕ(0) = − (λ(0) + V (0))ϕ(0) + λ(0) ϕ(1),

LV (ϕ)(1) = λ(1) (ϕ(0)− ϕ(1))− V (1)ϕ(1) = λ(1) ϕ(0)− (λ(1) + V (1))ϕ(1).

This yields

LV (ϕ) = −E ϕ⇔
(
E − (λ(0) + V (0)) λ(0)

λ(1) E − (λ(1) + V (1))

)(
ϕ(0)
ϕ(1)

)
=

(
0
0

)
.

The eigenvalues E0, E1 are the roots of the determinant

det

(
E − (λ(0) + V (0)) λ(0)

λ(1) E − (λ(1) + V (1))

)
= (E − E0)(E − E1)

= [E − (λ(0) + V (0))] [E − (λ(1) + V (1))]− λ(0)λ(1)

=
[
E −

(
λ(0)+V (0)+λ(1)+V (1)

2

)]2
−
[(

λ(0)+V (0)+λ(1)+V (1)
2

)2

− (λ(0) + V (0)) (λ(1) + V (1)) + λ(0)λ(1)

]
.

(30.61)
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On the other hand, we have(
λ(0) + V (0) + λ(1) + V (1)

2

)2

=

(
V (0)− V (1) + λ(0) + λ(1)

2
+ V (1)

)2

=

(
V (0)− V (1) + λ(0) + λ(1)

2

)2

+ V (1) (V (0)− V (1) + λ(0) + λ(1)) + V (1)2

=

(
b

2

)2

+ V (1) (V (0) + λ(0)) + V (1)λ(1)

=

(
b

2

)2

+ V (1) (V (0) + λ(0)) + V (0)λ(1)− λ(1)(V (0)− V (1))︸ ︷︷ ︸
=ac

.

We conclude that

det

(
E − (λ(0) + V (0)) λ(0)

λ(1) E − (λ(1) + V (1))

)
=
[
E −

(
λ(0)+V (0)+λ(1)+V (1)

2

)]2
−
[(

b
2

)2 − ac] .
Notice that

λ(0) + V (0) + λ(1) + V (1)

2
= V (1) +

V (0)− V (1) + λ(0) + λ(1)

2
= V (1) +

b

2
.

This yields the roots

E0 = V (1) +
b

2
−

√(
b

2

)2

− ac = V (1)− z2,

E1 = V (1) +
b

2
+

√(
b

2

)2

− ac = V (1)− z1 ≥ E0.

By (30.61) we also have the formula

E0E1 = (λ(0) + V (0)) (λ(1) + V (1))− λ(0)λ(1),

E0 + E1 = (λ(0) + V (0)) + (λ(1) + V (1)) . (30.62)

• When c = λ(1) = 0, and (b = a+ λ(0) ≥)a = V (0)− V (1) > 0, we have µ(1) = 1 and the
eigenvalues are given by

E0 = V (1) < E1 = V (0) + λ(0).

In addition, we have

ηt(0) = e−bt
η0(0)

1− a
b η0(0) (1− e−bt)

−→t→∞ η∞(0) := 0

as well as ηt(1) −→t→∞ η∞(1) := 1. This implies that

ηt(0) = −1

a
∂t

(
log
(

1− a

b
η0(0)

(
1− e−bt

)))
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and therefore ∫ t

0

ηs(V )ds = V (1)

∫ t

0

(1− ηs(0))ds+ V (0)

∫ t

0

ηs(0)ds

= V (1)t+ a

∫ t

0

ηs(0)ds

= V (1)t+
[
log
(

1− a

b
η0(0)

(
1− e−bs

))]s=t
s=0

= V (1)t+ log
[
1− a

b
η0(0)

(
1− e−bt

)]
.

We conclude that

1
t log γ(1) =

1

t

∫ t

0

ηs(V )ds

= η∞(V ) +
1

t
log

[
1− V (0)− V (1)

[V (0)− V (1)] + λ(0)
η0(0)

(
1− e−{[V (0)−V (1)]+λ(0)}t

)]
.

By de�nition of ϕ0 we have

LV (ϕ0)(0) = L(ϕ0)(0)− V (0)ϕ0(0) = −E0 ϕ0(0) = −V (1) ϕ0(0)

⇔ L(ϕ0)(0) = (V (0)− V (1)) ϕ0(0)

⇔ λ(0) (ϕ0(1)− ϕ0(0)) = (V (0)− V (1)) ϕ0(0)

⇔ λ(0) ϕ0(1) = ((V (0)− V (1)) + λ(0)) ϕ0(0).

We also notice that

λ(1) = 0⇒ µ(0) = π0(0) = 0 = 1− µ(1) = 1− π0(1)⇒ µ = π0 = η∞.

We have then

Lπ0
(f)(0) = λ(0) (f(1)− f(0)) + V (0) (f(1)− f(0)) π0(1)

= (f(1)− f(0)) (λ(0) + V (0))

Lπ0
(f)(1) = 0.

This implies that

π0Lπ0(f) = π0(0) Lπ0(f)(0) + π0(1) Lπ0(f)(1) = 0.

• When b2 = 4ac > 0, we recall that a = c = b/2 > 0 ⇔ a = V (0) − V (1) = λ(1) > 0 and
λ(0) = 0, so that

µ(0) = 1 and E0 = E1 = V (0) := E.

In addition, we have

ηt(1) = 1− ηt(0) =
η0(1)

1 + aη0(1) t
=

1

a
∂t (log (1 + aη0(1) t)) −→t→∞ η∞(1) := 0,
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as well as ηt(0) −→t→∞ η∞(0) := 1. This shows that∫ t

0

ηs(V )ds = V (1)

∫ t

0

ηs(1)ds+ V (0)

∫ t

0

(1− ηs(1))ds

= V (0)t− (V (0)− V (1))

∫ t

0

ηs(1)ds

= V (0)t− [log (1 + a η0(1) s)]
s=t
s=0 = V (0)t− log (1 + a η0(1) t).

We conclude that

1

t

∫ t

0

ηs(V )ds =

=V (0)︷ ︸︸ ︷
η∞(V )−1

t
log (1 + aη0(1) t).

For any function ϕ we have

LV (ϕ)(0) =

=0︷ ︸︸ ︷
L(ϕ)(0)−V (0)ϕ(0) = −E ϕ(0).

and
LV (ϕ)(1) = L(ϕ)(1)− V (1)ϕ(1) = −E ϕ(1)

⇔ λ(1) ϕ(0) = [λ(1) + (V (1)− V (0))]︸ ︷︷ ︸
=0

ϕ(1)⇔ ϕ(0) = 0.

In this situation we have η∞(0) := µ(0) = 1 and µ(ϕ0) = 0.

• When b2 > 4ac and a = V (0) − V (1) > 0 (i.e. V (0) > V (1), λ(0), λ(1) > 0) we have
checked that

ηt(0) +
z2

a
=
(
η0(0) +

z2

a

) (z2 − z1) e−(z2−z1)t

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1)
−→t→∞ 0.

This shows that

ηt(0) −→t→∞ η∞(0) = 1− η∞(1) = −z2

a

with

−z1

a
> −z2

a
=

 b

2a
−

√(
b

2a

)2

− c

a

 ∈ [0, 1].

In this situation, we recall that

b > a+ c⇒ −z1 > a⇒ − (aη0(0) + z1) > −(a+ z1) > 0

and

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1) > 0.

After some elementary computations, we �nd that

ηt(0) = −1

a
∂t

(
log
[(
η0(0) +

z2

a

)
ez1t −

(
η0(0) +

z1

a

)
ez2t

])
.
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This yields∫ t

0

ηs(V )ds = V (1)t+ a

∫ t

0

ηs(0) ds

= V (1)t−
[
log
((
η0(0) +

z2

a

)
ez1s −

(
η0(0) +

z1

a

)
ez2s

)]s=t
s=0

= (V (1)− z2) t+ log

[
(z2 − z1)

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1)

]
.

Observe that

η∞(V ) = η∞(0) V (0) + η∞(1) V (1) = −z2

a
(V (0)− V (1)) + V (1) = V (1)− z2.

This implies that

1

t

∫ t

0

ηs(V )ds

= η∞(V ) +
1

t
log

[
(z2 − z1)

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1)

]
.

Using the fact that

E1 − E0 = z2 − z1 > 0 and a = V (0)− V (1) > 0

we have

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1)

= a
{

(η0(0) + z2/a) e−(E1−E0)t − (η0(0) + z2/a− (E1 − E0)/a)
}

= −a
{

(η0(0)− η∞(0))
(
1− e−(E1−E0)t

)
+ (E1 − E0)/(V (1)− V (0))

}
.

This yields the formula

1

t

∫ t

0

ηs(V )ds

= η∞(V ) +
1

t
log

[
(E1 − E0)/(V (1)− V (0))

(η0(0)− η∞(0))
(
1− e−(E1−E0)t

)
+ (E1 − E0)/(V (1)− V (0))

]
.

By the de�nition of ϕ0 we have

LV (ϕ0)(0) = L(ϕ0)(0)− V (0)ϕ0(0) = −(V (1)− z2) ϕ0(0)

⇔ λ(0)(ϕ0(1)− ϕ0(0)) = (a+ z2) ϕ0(0)

⇔ λ(0)ϕ0(1) = (a+ z2 + λ(0)) ϕ0(0) = (b+ z2 − λ(1)) ϕ0(0).

In much the same way, we have

LV (ϕ0)(1) = L(ϕ0)(1)− V (1)ϕ0(1) = −(V (1)− z2) ϕ0(1)

⇔ λ(1)(ϕ0(0)− ϕ0(1)) = z2 ϕ0(1)⇔ λ(1)ϕ0(0) = (z2 + λ(1)) ϕ0(1).
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This shows that
ϕ0(1)

ϕ0(0)
=
a+ z2 + λ(0)

λ(0)
=

λ(1)

z2 + λ(1)
.

Notice that
a+ z2 + λ(0)

λ(0)
=

λ(1)

z2 + λ(1)
⇐⇒ z2

2 + bz2 + ac = 0

with b := a+ λ(0) + λ(1) and c := λ(1).

Consider the probability measure π0 = Ψϕ0(µ) on S de�ned by

π0(0) :=
ϕ0(0)

µ(ϕ0)
µ(0) = 1− π0(1)

with the L-reversible measure µ de�ned above. We have

LV (ϕ0) = L(ϕ0)− V ϕ0 = −η∞(V ) ϕ0 ⇐⇒ µ(V ϕ0) = η∞(V ) µ(ϕ0)

⇐⇒ π0(V ) = η∞(V ).

We recall that

Lπ0(f)(x) = L(f)(x)− V (x) (π0(f)− f(x))

⇒ π0 (Lπ0
(f)) = π0 (L(f)) + π0(fV )− π0(V )π0(f).

Using the L-reversibility property of µ we have

π0 (L(f)) =
µ(ϕ0L(f))

µ(ϕ0)
=
µ(fL(ϕ0))

µ(ϕ0)
=
µ(fϕ0V )

µ(ϕ0)
− η∞(V )

µ(fϕ0)

µ(ϕ0)

= π0(fV )− π0(V )π0(f).

We conclude that
π0 (Lπ0

(f)) = 0⇒ π0 = η∞.

We can also check directly that π0 = η∞ using the formula

π0(0) =
ϕ0(0)µ(0)

ϕ0(0)µ(0) + ϕ0(1)µ(1)
=

λ(1)

λ(1) + λ(0) ϕ0(1)/ϕ0(0)

and
ϕ0(1)

ϕ0(0)
=
a+ z2 + λ(0)

λ(0)
⇒ π0(0) =

1

1 + a+z2+λ(0)
λ(0)λ(1)

so that

π0(0) = η∞(0) = −z2/a ⇔ a

z2
+ 1 +

a+ z2 + λ(0)

λ(0)λ(1)
= 0

⇔ z2
2 + bz2 + ac = 0.

In much the same way we check that

ϕ1(1)

ϕ1(0)
=
λ(0) + (V (0)− V (1)) + z1

λ(0)
=

λ(1)

λ(1) + z1
.
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Our next objective is to check that µ(ϕ0ϕ1) = 0. Observe that

µ(ϕ0ϕ1) = µ(0)ϕ0(0)ϕ1(0) + µ(1)ϕ0(1)ϕ1(1)

∝ λ(1)ϕ0(0)ϕ1(0) + λ(0) ϕ0(0)ϕ1(0)
λ(1)

λ(1) + z1

λ(1)

λ(1) + z2

= λ(1)ϕ0(0)ϕ1(0)

(
1 +

λ(0)λ(1)

(λ(1) + z1)(λ(1) + z2)

)
.

On the other hand, recalling that z1 = V (1)− E1 and z2 = V (1)− E0 we have

λ(0)λ(1) + (λ(1) + z1)(λ(1) + z2)

= λ(0)λ(1) + (λ(1) + V (1)− E1)(λ(1) + V (1)− E0)

= E0E1 − (λ(1) + V (1)) (E0 + E1) + (λ(1) + V (1))
2

+ λ(0)λ(1) = 0.

The last assertion is checked using (30.62).

This ends the proof of the exercise.

Solution to exercise 448:
We have

∂tα(t) = − i
2

√
k

m
α(t) ⇒ i~∂tψ(t, x) =

~
2

√
k

m
ψ(t, x).

In much the same way, we have

∂2
xψ0(x) = −c

√
km

~2
∂x

(
x exp

(
−1

2

√
km

~2
x2

))

= −c
√
km

~2
ψ0(x) + c

km

~2
x2 ψ0(x).

This implies that

− ~2

2m
∂2
xψ(t, x) =

(
~
2

√
k

m
− km

2
x2

)
ψ(t, x) = i~∂tψ(t, x)− km

2
x2 ψ(t, x).

This ends the proof of the exercise.

Solution to exercise 449:
The Feynman-Kac formula is a direct consequence of the exponential change of proba-

bility measures discussed in section 18.3.
Using the fact that L is reversible with respect to some non negative measure µ, for any

couple of smooth functions f1 and f2 we have

µ
(
ϕ2
T f1 L

[ϕT ](f2)
)

= µ
(
ϕ2
T f1 L(f2)

)
+ µ

(
ϕ2
T f1

[
ϕ−1
T ΓL(ϕT , f2)

])
= µ

(
ϕ2
T f1 L(f2)

)
+ µ

(
ϕ2
T f1

[
ϕ−1
T L(ϕT f2)− L(f2)− ϕ−1

T f2L(ϕT )
])

= µ (ϕT f1 L(ϕT f2))︸ ︷︷ ︸
=µ(ϕT f2 L(ϕT f1))

−µ (ϕT f1 f2L(ϕT )) = µ
(
ϕ2
T f2 L

[ϕT ](f1)
)
.
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This ends the proof of the exercise.

Solution to exercise 450:

Expressing any normalized function ϕ ∈ L2(µ) by using the basis of orthonormal eigen-
functions ϕi, i ≥ 0, we �nd that

ϕ =
∑
i≥0

〈ϕ,ϕi〉 ϕi ⇒ 〈ϕ,H(ϕ)〉 =
∑
i≥0Ei 〈ϕ,ϕi〉2 〈ϕi, ϕi〉

=
∑
i≥0Ei 〈ϕ,ϕi〉2 ≥ E0

∑
i≥0 〈ϕ,ϕi〉2 = E0 〈ϕ,ϕ〉.

(30.63)
The last assertion follows from

〈ϕ,ϕ〉 =
∑
i,j≥0

〈ϕ,ϕi〉 〈ϕ,ϕj〉 〈ϕi, ϕj〉︸ ︷︷ ︸
1i=j

=
∑
i≥0

〈ϕ,ϕi〉2.

This yields the variational principle

〈ϕ,H(ϕ)〉
〈ϕ,ϕ〉

≥ E0. (30.64)

Replacing ϕ by ϕ0 in (30.63) we have∑
i≥0

Ei 〈ϕ0, ϕi〉2︸ ︷︷ ︸
1i=0

= E0 = E0 〈ϕ0, ϕ0〉.

This implies that

E0 =
〈ϕ0,H(ϕ0)〉
〈ϕ0, ϕ0〉

= inf
ϕ∈L2(µ)

〈ϕ,H(ϕ)〉
〈ϕ,ϕ〉

.

The last assertion is a direct consequence of:

VT = ϕ−1
T H(ϕT )⇒ Ψϕ2

T
(µ)(VT ) =

µ(ϕ2
T VT )

µ(ϕ2
T )

=
〈ϕT ,H(ϕT )〉
〈ϕ,ϕ〉

≥ E0.

This ends the proof of the exercise.

Solution to exercise 451:

For any given state q ∈ Λ we set

fq : x ∈ {0, 1}Λ 7→ fq(x) = x(q).

We have

L(fq) (x) =
∑
p∈Λ

x(p) rd
(
xp,0(q)− x(q)

)
+
∑
p∈Λ

(1− x(p)) rb
∑
s∼p

x(s)
(
xp,1(q)− x(q)

)
.

Recalling that

xp,e(q) =

{
x(q) if q 6= p

e if q = p.
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we �nd that

L(fq) (x) = x(q) rd
(
xq,0(q)− x(q)

)
+ (1− x(q)) rb

∑
s∼q

x(s)
(
xq,1(q)− x(q)

)
= −rd x(q)2 + rb

∑
s∼q

x(s) (1− x(q))
2

= −rd x(q) + rb
∑
s∼q

x(s) (1− x(q)) = −rd fq(x) + rb
∑
p∼q

fp(x) (1− fq(x)) .

This yields

∂tηt(fq) = ηt(L(fq)) = −rd ηt(fq) + rb
∑
p∼q

∫
ηt(dx) fp(x) (1− fq(x))

from which we conclude that

µt(q) = ηt(fq)⇒ ∂tµt(q) = −rd µt(q) + rb
∑
p∼q

µt(p)(1− µt(q))−
∑
p∼q

Covt(p, q),

with

Covt(p, q) :=
∑
p∼q

∫
ηt(dx) (fp(x)− ηt(fp)) (fq(x)− ηt(fq)).

For regular homogeneous lattices we have

∀p, q ∈ Λ ηt(fq) = ηt(fp) := zt and ‖{s ∈ Λ : s ∼ p}‖ = ‖{s ∈ Λ : s ∼ q}‖ := n.

In this situation, we �nd that
.

zt= −rd zt + rb n zt(1− zt)− nVart(p) with Vart(p) := Covt(p, p).

This ends the proof of the exercise.

Solution to exercise 452:

.

zt = −rd zt + rb n zt(1− zt) = −rb n z2
t + (rb n− rd) z

= a z2
t + b z = z (a zt + b) with a = −rb n and b = (rb n− rd).

There are two stationary solutions

zt = 0 and zt = −b/a

corresponding to the roots of the characteristic polynomial p(z) = z (a z + b). If we set
λ := rb/rd, then we observe that

a

b
=

1
1
nλ − 1

> 0⇔ λ <
1

n
.

In this situation, using the same arguments as in the proof of exercise 308, the solution is
given by

zt = ebt
z0

1− a
b z0 (1− ebt)

=
z0

e−bt + a
b z0 (1− e−bt)

=
b

a
+

(
z0 −

b

a

)
e−bt

e−bt + a
b z0 (1− e−bt)

.
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This ends the proof of the exercise.

Solution to exercise 453:
We let Pt(x, y) = P(Xt = y | X0 = x) be the probability transitions of Xt. By construc-

tion, we have
f = 1y ⇒ Pt(f)(x0) = E (f(Xt) | X0 = x) = Pt(x, y).

We also have the forward equation

f = 1y ⇒ ∂tPt(x, y) = ∂tPt(f)(x) = L (Pt(f)) (x) =
∑
p∈Λ

λ(p, x) (Pt(x
p, y)− Pt(x, y)) .

We choose

λ(p, x) =
e−βv(p,x)x(p)

eβv(p,x) + e−βv(p,x)
with v(p, x) = h(p, x) +

∑
q∈Λ−{p}

j(p− q) x(q).

Since j is symmetric and j(0) = 0, for any �xed p ∈ Λ we have

1

2

∑
r∈Λ

∑
s∈Λ

j(r − s) x(r)x(s)

1

2
x(p)

∑
s∈Λ

j(p− s) x(s) +
1

2

∑
r∈Λ−{p}

∑
s∈Λ

j(r − s) x(r)x(s)

= x(p)
∑

q∈Λ−{p}

j(p− q) x(q) +
1

2

∑
r∈Λ−{p}

∑
s∈Λ−{p}

j(r − s) x(r)x(s).

Also notice that λ(p, x) stands for the rate at which x jumps to y = xp. In addition, starting
from y = xp, the rate at which y comes back to x is given by λ(p, xp). Thus, to check the
reversibility property it su�ces to check that

∀p ∈ Λ ∀x ∈ S π(x) λ(p, x) = π(xp) λ(p, xp). (30.65)

To be more precise, suppose that the above property is satis�ed. In this case for any
functions f and g on S we have∑

(p,x)∈(Λ×S)

π(x)λ(p, x) f(x) g(xp) =
∑

(p,x)∈(Λ×S)

π(xp)λ(p, xp) f(x) g(xp).

Since
y = xp ⇔ yp = x,

by using the change of variable y = xp we readily check that∑
(p,x)∈(Λ×S)

π(xp)λ(p, xp) f(x) g(xp) =
∑

(p,y)∈(Λ×S)

π(y)λ(p, y) f(yp) g(y)

=
∑

(p,x)∈(Λ×S)

π(x)λ(p, x) f(xp) g(x).

This yields the formula∑
(p,x)∈(Λ×S)

π(x)λ(p, x) f(x) g(xp) =
∑

(p,x)∈(Λ×S)

π(x)λ(p, x) f(xp) g(x).
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This implies that

π(fL(g)) =
∑

(p,x)∈(Λ×S)

π(x)λ(p, x) f(x) (g(xp)− g(x))

=
∑

(p,x)∈(Λ×S)

π(x)λ(p, x) g(x) (f(xp)− f(x)) = π(L(f)g).

We conclude that π is L-reversible.
To check (30.65) we use the balance equation(

eβv(p,x) + e−βv(p,x)
)
π(x) λ(p, x)

= exp

−β
h(p) +

∑
q∈Λ−{p}

j(p− q) x(q)

x(p)

+
β

2

∑
(r,s)∈Λ2

j(r − s) x(r)x(s) + β
∑
q∈Λ

h(q) x(q)


= exp

β
2

∑
(r,s)∈(Λ−{p})2

j(r − s) x(r)x(s) + β
∑

q∈Λ−{p}

h(q) x(q)


=
(
eβv(p,xp) + e−βv(p,xp)

)
π(xp) λ(p, xp).

The last assertion comes from the fact that

v(p, xp) = h(p) +
∑
q∈Λ−{p} j(p− q) xp(q) = h(p) +

∑
q∈Λ−{p} j(p− q) x(q) = v(p, x)

⇒ λ(p, xp) =
e−βv(p,xp)xp(p)

eβv(p,xp) + e−βv(p,xp)
=

eβv(p)x(p)

eβv(p) + e−βv(p)
,

and

H(xp) = −1

2

∑
(r,s)∈Λ2

j(r − s) xp(r)xp(s)−
∑
r∈Λ

h(r) xp(r)

= −1

2

∑
(r,s)∈(Λ−{p})2

j(r − s) x(r)x(s)−
∑

r∈Λ−{p}

h(r) x(r)

+ x(p)

 ∑
r∈Λ−{p}

j(r − s) x(r) + h(p)


︸ ︷︷ ︸

=v(p)

.

This shows that

β (−H(xp)−v(p, xp)xp(p))

=
β

2

∑
(r,s)∈(Λ×Λ−{p})

j(r − s) x(r)x(s) + β
∑

r∈Λ−{p}

h(r) x(r)− βx(p)v(p).

This ends the proof of the exercise.
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Solution to exercise 454:
The idea is to look for solutions of the form

Xt =
Yt

1 +
∫ t

0
Ysds

with dYt = aYtdt+ bYtdWt ⇒ Yt = Y0e
(a− b22 )t+bWt .

We also set Y0 = X0. Applying The Doeblin-It	o formula, we have

dXt =
dYt

1 +
∫ t

0
Ysds

+ Yt d

(
1

1 +
∫ t

0
Ysds

)

=
aYtdt+ bYtdWt

1 +
∫ t

0
Ysds

−

(
Yt

1 +
∫ t

0
Ysds

)2

dt = Xt(a−Xt) dt+ bXtdWt.

Choosing a = λ and b = σ we obtain the solution

Xt = X0
e(λ−σ2

2 )t+σWt

1 +X0

∫ t
0
e(λ−σ2

2 )s+σWsds
=

Yt

1 +
∫ t

0
Ysds

with Yt = X0e
(λ−σ2

2 )t+σWt . This ends the proof of the exercise.

Solution to exercise 455:
We have

Xt =
Yt

1 + a
b

∫ t
0
Ysds

with dYt = aYtdt+ σYtdWt ⇒ Yt = X0e
(a−σ2

2 )t+σWt .

We also set Y0 = X0. Applying The Doeblin-It	o formula, we have

dXt =
dYt

1 + a
b

∫ t
0
Ysds

+ Yt d

(
1

1 + a
b

∫ t
0
Ysds

)

=
aYtdt+ σYtdWt

1 + a
b

∫ t
0
Ysds

− a

b

(
Yt

1 + a
b

∫ t
0
Ysds

)2

dt = a Xt

(
1− Xt

b

)
dt+ σXtdWt.

This ends the proof of the exercise.

Solution to exercise 456:
Recall that

N
1

t := N1

(∫ t

0

λ1 X(s)

(
1− X(s)

N

)
ds

)
1211
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is a Poisson process with stochastic intensity

λ1
t =

∫ t

0

λ1 X(s)

(
1− X(s)

N

)
ds.

In the same way, the process

N
2

t := N2

(∫ t

0

λ2 x(s)

(
1 + α2

x(s)

N

)
ds

)
is a Poisson process with stochastic intensity

λ2
t =

∫ t

0

λ2 x(s)

(
1 + α2

x(s)

N

)
ds.

Therefore the process Xt evolves according to two transitions. The birth type transitions
Xt  Xt + 1 arise at rate λ1

t . The death type transitions Xt  Xt − 1 arise at rate λ2
t .

When the process hits 0 it remains at 0. We conclude that the generator of the process Xt

coincides with the birth and death generator (28.6).
This ends the proof of the exercise.

Solution to exercise 457:
We have

dX2
t = 2XtdXt + σ2X2

t dt

= 2a X2
t

((
1 +

σ2

2a

)
− X2

t

b

)
dt+ 2σ X2

t dWt

= a X2
t

(
1− X2

t

b

)
dt+ σ X2

t dWt

with

a = 2a

(
1 +

σ2

2a

)
= 2a+ σ2 b = b

(
1 +

σ2

2a

)
and σ = 2σ.

Using exercise (455) we have

X2
t =

Yt

1 + a
b

∫ t
0
Ysds

with Yt = X2
0 exp

[
(a− σ2

2
) t+ σWt

]
.

Notice that
a

b
= 2

a

b
and a− σ2

2
= 2a+ σ2 − 2σ2 = 2a− σ2.

This ends the proof of the exercise.

Solution to exercise 454:
A commonly used stochastic version is given by the 2-d di�usion{

dXt = Xt (a1 − b1,1Xt + b1,2Yt) dt+ (σ1,1Xt + σ1,2Yt) dW 1
t

dYt = Yt (a2 − b2,2Yt + b2,1Xt) dt+ (σ2,1Xt + σ2,2Yt) dW 2
t

with a 2-dimensional Brownian motion, and some positive parameters σi,j . These di�usions
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can be approximated using Euler type schemes on some time mesh. This ends the proof of
the exercise.

Solution to exercise 459:
We readily check that

x′t + y′t = 0⇒ xt + yt = x0 + y0 = N.

The equilibrium states of the system (28.18) are de�ned by

λc
N

xy = (λb + λr) y ⇒ (x, y) = (N, 0) or (x, y) =

(
N

λb + λr
λc

, N

(
1− λb + λr

λc

))
.

The �rst equilibrium state occurs when λb + λr ≤ λc, while the second one occurs when
λb + λr > λc.

Recalling that xt = N − yt, the equation (28.18) reduces to a single evolution model

y′t =
λc
N

y(N − y)− (λb + λr) y.

The stochastic version is often de�ned by

dYt =

(
λc
N

Yt(N − Yt)− (λb + λr) Yt

)
dt +

(
λc
N

Yt(N − Yt)− (λb + λr) Yt

)1/2

dWt.

This ends the proof of the exercise.

Solution to exercise 460:
The �rst assertion is immediate. We use the same arguments as in the proof of exer-

cise 456. Recall that

N i

[∫ t

0

λi(X(s), Ys)) ds

]
are Poisson processes with stochastic intensities λi(X(s)). At rate λ1(X(t), Y (t))) :=

a X(t) dt the process jumps from

(
X(t)
Y (t)

)
to

(
X(t) + 1
Y (t)

)
. In much the same way,

at rate λ2(X(t), Y (t))) := b X(t) dt the process jumps from

(
X(t)
Y (t)

)
to

(
X(t)− 1
Y (t)

)
.

At rate λ3(X(t), Y (t))) := c Y (t) dt the process jumps from

(
X(t)
Y (t)

)
to

(
X(t)

Y (t)− 1

)
;

and �nally at rate λ4(X(t), Y (t))) := d X(t)Y (t) dt the process jumps from

(
X(t)
Y (t)

)
to(

X(t)
Y (t) + 1

)
. We conclude that the generator of the process

(
X(t)
Y (t)

)
is given by

L(f)(x, y) = λ1(x, y) (f(x+ 1, y)− f(x, y)) + λ2(x, y) (f(x− 1, y)− f(x, y))

+λ3(x, y) (f(x, y − 1)− f(x, y)) + λ4(x, y) (f(x, y + 1)− f(x, y)).

This ends the proof of the exercise.
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Solution to exercise 461:
For any function f on the state space S = N, we set pt(f) =

∑
x∈N f(x)pt(x). In this

notation, we have

d

dt
pt(f)

=
∑
x≥1

[(a1 (x− 1) + b) pt(x− 1) + a2 (x+ 1) pt(x+ 1)− [b+ (a1 + a2) x] pt(x)] f(x)

−f(0) [bf(0)pt(0)− a2 pt(1)]

=
∑
x≥0

(a1 x+ b) pt(x) f(x+ 1) +
∑
x≥2

a2 x pt(x) f(x− 1)

−
∑
x≥1

[(a1x+ b) + a2 x ] pt(x) f(x)− f(0) [bf(0)pt(0)− a2 pt(1)] .

This yields

d

dt
pt(f) =

∑
x≥0

(a1 x+ b) pt(x) f(x+ 1) +
∑
x≥0

a2 x pt(x) f(x− 1)

−
∑
x≥0

[(a1x+ b) + a2 x ] pt(x) f(x)

=
∑
x≥0

{(a1 x+ b) [f(x+ 1)− f(x)] + a2 x [f(x− 1)− f(x)]} pt(x) = pt(L(f)),

with the generator

L(f)(x) = (a1 x+ b) [f(x+ 1)− f(x)] + a2 x [f(x− 1)− f(x)] .

We conclude that Xt is a birth and death process with linear birth rate λbirth(x) = (a1 x+b)
and linear death rate λdeath(x) = a2 x.

The equilibrium distribution π satis�es

∀x ≥ 1 (a1 (x− 1) + b) π(x− 1) + a2 (x+ 1) π(x+ 1)− [b+ (a1 + a2) x] π(x) = 0

and

−bπ(0) + a2π(1) = 0 ⇒ π(1) =
b

a2
π(0).

Choosing x = 1 in the �rst equation we �nd that that

0 = b π(0) + 2a2 π(2)− [b+ (a1 + a2)] π(1)

= b π(0) + 2a2 π(2)− [b+ (a1 + a2)]
b

a2
π(0)

= 2a2 π(2)− b

a2
[b+ a1] π(0) ⇒ π(2) =

b

2a2
2

[b+ a1] π(0).
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Substituting x = 2 in the same equation, we have

0 = (a1 + b) π(1) + 3a2 π(3)− [b+ 2(a1 + a2)] π(2)

= 3a2 π(3)− b

a2
2

[
1

2
[b+ 2(a1 + a2) ]− a2

]
[b+ a1] π(0)

= 3a2 π(3)− b

2a2
2

[b+ 2a1] [b+ a1] π(0) ⇒ π(3) =
b

3!a3
2

[b+ 2a1] [b+ a1] π(0).

We further assume that

π(x) =
1

x! ax2

 ∏
0≤k<x

[b+ k a1]

 π(0) =
1

x!

(
a1

a2

)x  ∏
0≤k<x

[
b

a1
+ k

] π(0) (30.66)

and will prove (30.66) by mathematical induction. Assume that the formula is true for for
any x ∈ {0, . . . , n}. Choosing x = n in the Kolmogorov equation we have

0 = (a1 (n− 1) + b) π(n− 1) + a2 (n+ 1) π(n+ 1)− [b+ (a1 + a2) n] π(n)

= a2 (n+ 1) π(n+ 1)− [[b+ (a1 + a2) n] π(n)− (a1 (n− 1) + b) π(n− 1)] .

On the other hand, we have

[[b+ (a1 + a2) n] π(n)− (a1 (n− 1) + b) π(n− 1)]

=

[
[b+ na1 + a2n]

1

n!
− 1

(n− 1)!
a2

]
π(0)

b

an2

∏
1≤k≤(n−1)

[b+ k a1]

= π(0)
1

n!an2

∏
0≤k≤n

[b+ k a1] .

After substituting back in the Kolmogorov equation we get

π(n+ 1) = π(0)
1

(n+ 1)!an+1
2

∏
0≤k≤n

[b+ k a1]

and this �nalises the proof by induction.
Notice that (30.66) can be rewritten in terms of generalized binomial coe�cients

∀x ≥ 0 π(x) = π(0)

(
a1

a2

)x (
b
a1

+ (x− 1)

x

)
with π(0) = (1− a1/a2)

b/a1 . The last assertion follows from the fact the generalized hyper-
geometric series formula applied to c = b/a1 and β = a1/a2 gives

(c ∈ R α = 1− β ∈ [0, 1])⇒ 1 = αc
1

(1− β)c
= αc

∑
x≥0

(
c+ (x− 1)

x

)
βx.

This ends the proof of the exercise.
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Solution to exercise 462:
Let us look into the chance that α(x) hits the origin provided that it starts from a

certain state X0 = x ∈ N = S; that is, into the probability of extinction of the population
starting with x individuals.

If we denote by T the �rst time the chain hits the origin, then we have

α(x) := P (T <∞ | X0 = x)

=
∑
y∈S

P (T <∞ | X1 = y,X0 = x) P (X1 = y | X0 = x)

= p(x) α(x+ 1) + q(x)α(x− 1) + α(x)(1− p(x)− q(x)).

m

(α(x+ 1)− α(x)) =
q(x)

p(x)
(α(x)− α(x− 1))

= . . . =

{
x∏
y=1

q(y)

p(y)

}
(α(1)− α(0)).

This implies that

α(y + 1) = α(0) +

y∑
x=0

(α(x+ 1)− α(x))

= 1− (1− α(1))

y∑
x=0

{
x∏
y=1

q(y)

p(y)

}
.

The case W :=
∑
x≥0

{∏x
y=1

q(y)
p(y)

}
=∞ forces α(1) = 1, and therefore α(y) = 1 for any

y ∈ N. Hence the chain is recurrent.
In the opposite case, any choice of α(1) < 0 such that

1− (1− α(1))
∑
x≥0

{
x∏
y=1

q(y)

p(y)

}
= 1− (1− α(1)) W ≥ 0

satis�es the equation. The case where the l.h.s. is null provides the minimal solution

1 + (α(1)− 1) W = 0 ⇒ α(1) = 1− 1

W

⇒ α(y + 1) = 1− 1

W

y∑
x=0

{
x∏
y=1

q(y)

p(y)

}

=
∑
x>y

{
x∏
y=1

q(y)

p(y)

}
/
∑
x≥0

{
x∏
y=1

q(y)

p(y)

}
.

It remains to check that the extinction probability α(x) coincides with the minimal
solution. For any solution β(x) (28.19) such that β(0) = 1 we have for any x > 0

β(x) :=
∑
y>0

M(x, y)β(y) +M(x, 0)β(0)

= M(x, 0) +
∑
y1≥0

M(x, y1)1 6=0(y1)β(y1).
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By induction w.r.t. the number of summations we prove that

β(x) = M(x, 0) +
∑
y1≥0

M(x, y1)1 6=0(y1)M(y1, 0)

+
∑
y1≥0

∑
y2≥0

M(x, y1)1 6=0(y1)M(y1, y2)1 6=0(y2)β(y2)

= . . .

=
∑

1≤p≤n

P (T = p | X0 = x)

+
∑

y1,...,yn≥0

 ∏
1≤p≤n

M(x, yp)1 6=0(yp)

 β(yn).

This shows that

β(x) = P (T ≤ n | X0 = x) + E (1T>n β(Xn) | X0 = x)

≥ P (T ≤ n | X0 = x) ↑n↑∞ α(x).

This ends the proof of the exercise.

Solution to exercise 463:
The proof of the exercise is a simple combination of the proofs of the exercises 317

and 318, thus it is omitted and left to the reader. See also (15.31) and the developments of
section 16.1.3 and section 16.2.

This ends the proof of the exercise.

Solution to exercise 464:
We have

∂tγt(1) = γt(Wt) + µ(1) = γt(1) ηt(Wt) + µ(1) with Wt = Ut − Vt.

This implies that

γt(1) = e
∫ t
0
ηs(Ws)ds γ0(1) +

[∫ t

0

e
∫ t
s
ηr(Wr)dr ds

]
µ(1).

Observe that

∂tηt(f) =
1

γt(1)
∂tγt(f)− γt(f)

γt(1)

1

γt(1)
∂tγt(1)

=
1

γt(1)
[γt(Lt(f)) + γt(Wtf) + µ(f)]− γt(f)

γt(1)

1

γt(1)
[γt(1) ηt(Wt) + µ(1)]

= ηt(Lt(f)) + ηt(Wtf) +
µ(1)

γt(1)
µ(f)− ηt(f)

[
ηt(Wt) +

µ(1)

γt(1)

]
.

This yields

∂tηt(f) = ηt(Lt(f)) + ηt(Wtf)− ηt(f)ηt(Wt) +
µ(1)

γt(1)
(µ(f)− ηt(f)) .
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We conclude that

∂tηt(f) = ηt
(
Lt,γt(1),ηt(f)

)
with Lt,γt(1),ηt = Lt,ηt(f) + L0

t,γt(1),ηt
.

The mean �eld approximation ηNt = 1
N

∑
1≤i≤N δξit associated with these model is de�ned

in terms of a Markov chain ξt = (ξit)1≤i≤N with �xed population size with a generator
Lt,γNt (1),ηNt

that depends on the total mass approximating equation

∂tγ
N
t (1) = γNt (1) ηNt (Wt) + µ(1).

This ends the proof of the exercise.

Solution to exercise 465:
By de�nition of the branching process, the occupation measures X it :=

∑
1≤i≤Nt δξi,jt

are conditionally independent given the initial con�guration ξ0 =
(
ξi0
)

1≤i≤N0
. This implies

that
∀1 ≤ i ≤ N0 E

(
X it (ϕ) | ξi0 = xi0

)
= Q0,t(ϕ)(xi0)

as well as

Xt(ϕ) =
∑

1≤i≤N0

X it (ϕ)⇒ X t =
1

N0

∑
1≤i≤N0

X it =
1

N0
Xt ⇒ E

(
X t(ϕ)

)
= γt(ϕ).

We also have the variance formula

E


 1

N0

∑
1≤i≤N0

X it (ϕ)− γt(ϕ)

2
 =

1

N0
E
([
X 1
t (ϕ)− γt(ϕ)

]2)
.

We further assume that N0 = 1. Using the analysis developed in section 28.4.3.2 we
have

dXt(ϕ) = Xt
(
LWt (ϕ)

)
dt+ dM

(1)
t (ϕ)

with a martingale M (1)
t (ϕ) w.r.t. Ft = σ(ξs, s ≤ t) with angle bracket

∂t

〈
M (1)(ϕ),M (1)(ϕ)

〉
t

= Xt
[
ΓLt(ϕ,ϕ) + (Ut + Vt) ϕ

2
]
.

Choosing ϕ = 1, this shows that

Nt = Xt(1) =⇒ dNt = Xt (Wt) dt+ dM
(1)
t (1)

with a martingale M (1)
t (1) w.r.t. Ft = σ(ξs, s ≤ t) with angle bracket

∂t

〈
M (1)(1),M (1)(1)

〉
t

= Xt [(Ut + Vt)] .

This implies that

E(Nt) = γt(1) = 1 +

∫ t

0

γs(Ws) ds ⇔ ∂tE(Nt) = γt(Wt).

When Wt = 0 we clearly have E(Nt) = N0 = 1. When Ws ≥ ε we have

∂tE(Nt) = γt(Wt) ≥ ε E(Nt)⇒ ∂t logE(Nt) ≥ ε⇒ logE(Nt) ≥ εt⇒ E(Nt) ≥ eεt.
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In much the same way, we check that

Ws ≤ −ε⇒ E(Nt) ≤ e−εt.

Applying the Doeblin-It	o formula to the function

f(s, x) =
∑

1≤i≤N

Qs,t(ϕ)(xi)

w.r.t. time parameter s ∈ [0, t] we obtain the formula

dXs(Qs,t(ϕ)) = Xs


=0︷ ︸︸ ︷

∂s(Qs,t(ϕ)) + LWs (Qs,t(ϕ))

 dt+ dM (2)
s (ϕ) = dM (2)

s (ϕ)

with a martingale M (2)
s (ϕ), s ∈ [0, t], with angle bracket

∂s

〈
M (2)(ϕ),M (2)(ϕ)

〉
s

= Xs
[
ΓLs(Qs,t(ϕ), Qs,t(ϕ)) + (Us + Vs) (Qs,t(ϕ))

2
]
.

We conclude that

E
(

[Xt(ϕ)−X0(Q0,t(ϕ))]
2
)

= E
(

[Xt(Qt,t(ϕ))−X0(Q0,t(ϕ))]
2
)

= E
([
M

(2)
t (ϕ)−M (2)

0 (ϕ)
]2)

= E
(〈
M (2)(ϕ),M (2)(ϕ)

〉
t

)
=

∫ t

0

γs

[
ΓLs(Qs,t(ϕ), Qs,t(ϕ)) + (Us + Vs) (Qs,t(ϕ))

2
]
ds.

On the other hand, we have

∂s

(
γs

(
[Qs,t(ϕ)]

2
))

= γs

(
∂s [Qs,t(ϕ)]

2
)

+ (∂sγs)
(

[Qs,t(ϕ)]
2
)

= −2γs
(
Qs,t(ϕ) LWs Qs,t(ϕ)

)
+ γsL

W
s

(
[Qs,t(ϕ)]

2
)

= γs

(
ΓLs(Qs,t(ϕ), Qs,t(ϕ)) + (Us − Vs) (Qs,t(ϕ))

2
)

= ∂sE
(〈
M (2)(ϕ),M (2)(ϕ)

〉
s

)
− 2 γs

(
Vs (Qs,t(ϕ))

2
)
.

This implies that

E
(

[Xt(ϕ)−X0(Q0,t(ϕ))]
2
)

= E
(〈
M (2)(ϕ),M (2)(ϕ)

〉
t

)
= γt

(
ϕ2
)
− η0

(
[Q0,t(ϕ)]

2
)

+ 2

∫ t

0

γs

(
Vs (Qs,t(ϕ))

2
)
ds,

and

E
(

[Xt(ϕ)− η0(Q0,t(ϕ))]
2
)

= E
(

[Xt(ϕ)−X0(Q0,t(ϕ))]
2
)

+ E
(

[X0(Q0,t(ϕ))− η0(Q0,t(ϕ))]
2
)

= γt
(
ϕ2
)
− η0

(
[Q0,t(ϕ)]

2
)

+ η0

[
(Q0,t(ϕ)− η0(Q0,t(ϕ)))

2
]

+ 2

∫ t

0

γs

(
Vs (Qs,t(ϕ))

2
)
ds.
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We conclude that

E
(

[Xt(ϕ)− γt(ϕ)]
2
)

= E
(

[Xt(ϕ)− η0(Q0,t(ϕ))]
2
)

= E
(

[Xt(ϕ)−X0(Q0,t(ϕ))]
2
)

+ E
(

[X0(Q0,t(ϕ))− η0(Q0,t(ϕ))]
2
)

= γt
(
ϕ2
)
− γt (ϕ)

2
+ 2

∫ t

0

γs

(
Vs (Qs,t(ϕ))

2
)
ds.

This ends the proof of the exercise.

Solution to exercise 466 :
We follow the developments of section 28.4.3.1 and section 28.4.3.2. For functions of the

form

F (x1, . . . , xp) =
∑

1≤i≤p

f(xi) = p m(x)(f) with m(x) =
1

p

∑
1≤i≤p

δxi

for any x = (x1, . . . , xp) ∈ Sp, for some p ≥ 1, we have

Lm(F )(x) = pm(x)(L(f)).

In much the same way, we have

K(F )(x)− F (x) =

∫
K(x, dy) (F (y)− F (x))

=
1

p

∑
1≤i≤p

∑
k≥1

αk [F (θki (x))− F (x)]

with
F (θki (x))− F (x) = (k − 1)f(xi).

This implies that

λt(x) [Kt(F )(x)− F (x)] = p λ m(x)(f)

∑
k≥1

αk k − 1

 = p λ m(x)(f) (α− 1) .

We conclude that

L(F )(x) = pm(x)(Lt(f)) + p λ m(x)(f) (αt − 1) .

In much the same way, we have

p λ

∫
Kt(x, dy) (F (y)− F (x))2 = λ

∑
1≤i≤p

∑
k≥1

αt,k (k − 1)2f2(xi)

= λ p m(x)(f2)
∑
k≥1

αk (k − 1)2.
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The �rst moment of the branching process is given by

γt(f) = E

 ∑
1≤i≤Nt

f(ξit)

 = E (Xt(f)) with Xt =
∑

1≤i≤Nt

δξit .

Applying the Doeblin-It	o formula (28.9) we �nd that

dXt(f) = Xt(L(f)) + λ Xt(f) (α− 1) dt+ dMt(f)

with a collection of martingales Mt(f) with angle-bracket given by the formulae

∂t 〈M(f),M(f)〉t =
[
Xt (ΓL(f, f)) + σ2 Xt(f2)

]
.

Choosing f = 1 we �nd that

dNt = λ Nt (α− 1) dt+ dMt

with a martingale Mt with angle-bracket given by the formulae

∂t 〈M,M〉t = σ2 Nt.

This also implies that
∂tγt(f) = γt(L(f)) + λ Xt(f) (α− 1)

and now we can easily check that

γt(f) := N0 E [f(Xt)] exp {λ (α− 1) t}.

By choosing f = 1 we conclude that

E(Nt/N0) = eλ(α−1)t.

If we consider the model (28.14) we have αk = 1k=2, λ = 1. In this situation, we have

α− 1 :=
∑
k≥1

αk k − 1 = 1 and σ2 := λ
∑
k≥1

αk (k − 1)2 = 1.

In this case,

Nt −N0 =

∫ t

0

Ns ds+Mt ⇒ E(Nt/N0) = et

with a martingale Mt with angle-bracket given by the formulae

∂t 〈M,M〉t = Nt.

This ends the proof of the exercise.

Solution to exercise 467 :
We consider regular polynomial/product test functions f on S = ∪p≥0S

p of the form

∀p ≥ 0 ∀x = (x1, . . . , xp) ∈ Sp f(x) =
∏

0≤i≤p

f(xi).
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Using the developments of section 28.4.3.4, the function

x ∈ S 7→ vt(x) := P0,t(f)(x) = E(f(ξt)) = E

 ∏
1≤i≤Nt

f
(
x+ ξit

)
satis�es the Kolmogorov-Petrovskii-Piskunov equations (28.14) with the initial condition
v0 = P0,0(f) = f . This ends the proof of the exercise.

Solution to exercise 468 :Using exercise 467, the solution of the Kolmogorov-Petrovskii-
Piskunov equation (28.14) , with the initial condition v0 = 1[0,∞[ is given by

vt(x) = E

 ∏
1≤i≤Nt

1[0,∞[

(
x+ ξit

) = P
(

inf
1≤i≤Nt

ξit ≥ −x
)
.

By symmetry arguments, we have

P
(

sup
1≤i≤Nt

−ξit ≤ x
)

= P
(

sup
1≤i≤Nt

ξit ≤ x
)
.

This shows that

vt(x) ∈ [0, 1] lim
x→∞

ut(x) and lim
x→−∞

ut(x) = 0.

In addition, for any y ≥ x also have

vt(y)− vt(x) = P
(

sup
1≤i≤Nt

ξit ≤ y
)
− P

(
sup

1≤i≤Nt
ξit ≤ x

)
= P

(
x ≤ sup

1≤i≤Nt
ξit ≤ y

)
> 0.

We conclude that the function vt is strictly increasing from 0 to 1. Therefore, for any
ε ∈]0, 1[ there exists some xε(t) such that

vt(xε(t)) = ε ⇐⇒ xε(t) = v−1
t (ε).

This ends the proof of the exercise.

Solution to exercise 469:
Choosing a constant function x ∈ R 7→ f(x) = r, for some r ∈]0, 1[ we �nd that

vt(x) = P0,t(f)(x) = E
(
rNt
)

=: gt(r)

satis�es the equation

∂tgt(r) = gt(r)
2 − gt(r) = gt(r) (gt(r)− 1)

with the initial condition

N0 = 1 =⇒ E
(
rN0
)

=: g0(r) = r.
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The solution is given by

1

gt(r)
= et

1

g0(r)
−
∫ t

0

et−s ds = et
1

r
−
(
et − 1

)
.

We check this claim using the fact that

∂tgt(r) = gt(r)
2 − gt(r) ⇐⇒ ∂t

1

gt(r)
=

1

gt(r)
− 1.

This implies that

gt(r) =
re−t

1− r (1− e−t)
=

re−t

(1− r) + re−t
.

When r > 1 the solution blows up at

re−tb = r − 1⇔ e−tb = 1− 1/r ⇔ tb = − log (1− 1/r).

This ends the proof of the exercise.
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Solution to exercise 470:
The generator Lu,s of the controlled di�usion

dXs = (Xs − u) as ds + u [bs ds+ σt dWs] = [(Xs − u) as + u bs] ds + u σs dWs

is given by

Lu,s(f)(x) = [(x− u) as + u bs] f
′(x) +

1

2
(u σs)

2
f ′′(x).

Using (29.19) we have

−∂sVs(x) = sup
u∈[0,∞[

[Lu,s (Vs) (x)]

= sup
u∈[0,∞[

[
[(x− u) as + u bs] V

′
s (x) +

1

2
(u σs)

2
V ′′s (x)

]
for any x > 0 and s ∈ [0, t]. We further assume that the value function has the form

Vs(x) = βs x
α 1x≥0

for some functions s ∈ [0, t] 7→ βs. This assertion is clearly met at the �nal time horizon
s = t since we have

Vt(x) = xα 1x≥0.

The HJB equation is given for any x > 0 by

−∂sVs(x) = −∂sβs xα 1x≥0

= sup
u∈[0,∞[

[
[(x− u) as + u bs] βs f

′(x) +
1

2
(u σs)

2
βs f

′′(x)

]
= sup

u∈[0,∞[

[
[(x− u) as + u bs] βs α x

α−1 +
1

2
(u σs)

2
βs α(α− 1) xα−2

]
= sup

u∈[0,∞[

[
[(1− u/x) as + (u/x) bs] βs α x

α +
1

2
σ2
s (u/x)2βs α(α− 1) xα

]
= α xα sup

u∈[0,∞[

[
[(1− u) as + u bs] βs +

1

2
σ2
s u

2βs (α− 1)

]
.

We observe that

[(1− u) as + u bs] βs + 1
2 σ

2
s u

2βs (α− 1)

= as βs + σ2
sβs (α− 1)

{
−u [bs−as]

σ2
s(1−α) + 1

2 u2
}

= as βs + 1
2 σ

2
sβs (1− α)

{[
[bs−as]
σ2
s(1−α)

]2
−
[
u− [bs−as]

σ2
s(1−α)

]2}
,

1225
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from which we conclude that

∂s log βs = −α

[
as +

1

2

[bs − as]2

σ2
s(1− α)

]
with the terminal condition βt = 1. This yields

∀s ∈ [0, t] βs = exp

(
α

∫ t

s

[
ar +

1

2

[br − ar]2

σ2
r(1− α)

]
dr

)
.

The optimal control is given by

vs(x) =
[bs − as]
σ2
s(1− α)

x.

This ends the proof of the exercise.

Solution to exercise 471:
To check this claim, we observe that[
u+R−1Sx

]′
R
[
u+R−1Sx

]
= u′Ru+

[
R−1Sx

]′
Ru+ u′Sx+

[
R−1Sx

]′
Sx

= u′Ru+ x′S′u+ u′Sx+ x′S′R−1Sx

= u′Ru+ 2 u′Sx+ x′S′R−1Sx.

In the last assertion we have used the fact that R−1 is a symmetric matrix and x′S′u =
(u′Sx)′ = u′Sx. When R is de�nite negative we clearly have

sup
u∈U

[u′Ru+ 2 u′Sx] = −x′S′R−1Sx

and the supremum is attained for

u = v(x) = −R−1Sx.

We check that
∀0 ≤ k ≤ n Vk(x) := x′Pkx+ αk

by using a backward induction w.r.t. the parameter k. The result is immediate for k = n
since we have

αn = 0 =⇒ Vn(x) := x′Pnx = fn.

We further assume that the result has been checked at rank (k+ 1). The Bellman equation
(29.12) has the form

Vk(x) = sup
u∈U

[
x′Qkx+ u′Rku+ αk+1 + Eu

(
X ′k+1Pk+1Xk+1 | Xk = x

)]
= x′Qkx+ αk+1 + sup

u∈U

[
u′Rku+ Eu

(
X ′k+1Pk+1Xk+1 | Xk = x

)]
.

On the other hand, given Xk = x and the control Uk = u we have

X ′k+1Pk+1Xk+1 = (Ak+1x+Bk+1u+ Ck+1Wk+1)
′
Pk+1 (Ak+1x+Bk+1u+ Ck+1Wk+1)

= (Ak+1x+Bk+1u)
′
Pk+1 (Ak+1x+Bk+1u)

+2 (Ak+1x+Bk+1u)
′
Pk+1Ck+1Wk+1 +W ′k+1C

′
k+1Pk+1Ck+1Wk+1.
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The last assertion follows from the fact that Pk+1 is symmetric. Taking the expectations
w.r.t. the distribution of Wk+1, we have

Eu
(
X ′k+1Pk+1Xk+1 | Xk = x

)
− tr

(
C ′k+1Pk+1Ck+1

)
= (Ak+1x+Bk+1u)

′
Pk+1 (Ak+1x+Bk+1u)

= x′
(
A′k+1Pk+1Ak+1

)
x+ 2u′B′k+1Pk+1Ak+1x+ u′

(
B′k+1Pk+1Bk+1

)
u.

This implies that

Vk(x) = x′
[
Qk +

(
A′k+1Pk+1Ak+1

)]
x+ αk+1 + tr

(
C ′k+1Pk+1Ck+1

)
+ supu∈U

[
u′
[
Rk +

(
B′k+1Pk+1Bk+1

)]
u+ 2u′

(
B′k+1Pk+1Ak+1

)
x
]
.

The supremum is attained for

u = vk (x) := −
[
Rk +

(
B′k+1Pk+1Bk+1

)]−1 (
B′k+1Pk+1Ak+1

)
x

and we have

Vk(x) = x′
[
Qk +

(
A′k+1Pk+1Ak+1

)]
x+ αk+1 + tr

(
C ′k+1Pk+1Ck+1

)
−x′

(
B′k+1Pk+1Ak+1

)′ [
Rk +

(
B′k+1Pk+1Bk+1

)]−1 (
B′k+1Pk+1Ak+1

)
x.

This shows that

Pk = Qk +A′k+1Pk+1Ak+1 −A′k+1Pk+1Bk+1

[
Rk +

(
B′k+1Pk+1Bk+1

)]−1 (
B′k+1Pk+1Ak+1

)
and

αk = αk+1 + tr
(
C ′k+1Pk+1Ck+1

)
.

This ends the proof of the induction, and the proof of the exercise is now completed.
Solution to exercise 472:
The exercise is a direct consequence of the martingale optimality principle (29.13).

Solution to exercise 473:
Let Wt = (W i

t )1≤i≤p be an p-dimensional Brownian motion. Consider the linear con-
trolled Rq-valued di�usion

dXt = (AtXt +Btut) dt+ CtdWt

with ut ∈ U := Rr, and matrices (At, Bt, Ct) with appropriate dimensions. We consider the
stochastic control problem (29.15) with

ft(x) = x′Ptx and gs(x, u) = x′Qsx+ u′Rsu

for some de�nite negative and symmetric square matrices (Pt, Qs, Rs) with appropriate
dimensions.

The collection of generators associated with the controlled di�usion are given by

Lt,u(f)(x) = (∂f)(x)′(Atx+Btu) +
1

2
tr
(
C ′t∂

2fCt
)
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for any (x, u) ∈ (Rq × Rr), with the column gradient vector ∂f = (∂xif)1≤i≤q and the
Hessian matrix ∂2f =

(
∂xi,xjf

)
1≤i,j≤q.

Let us check that
∀0 ≤ s ≤ t Vs(x) := x′Psx+ αs,

with the boundary terminal condition αt = 0, some symmetric matrices Ps and some
parameters αs. Notice that

∂sVs(x) = x′∂sPsx+ ∂sαs,

as well as

∂Vs = 2Ps x and
1

2
∂2Vs = Ps.

The Bellman equation (29.19) takes the form

−∂sVs(x) = −x′∂sPsx− ∂sαs

= x′Qsx+ sup
u∈U

[
u′Rsu+ (∂Vs)(x)′(Asx+Bsu) +

1

2
tr
(
C ′s∂

2VsCs
)]

= x′Qsx+ tr (C ′sPsCs) + 2x′Ps Asx+ sup
u∈U

[u′Rsu+ 2x′Ps Bsu].

Observe that
x′Ps Asx = (x′Ps Asx)

′
= x′A′sPsx

and
x′Ps Bsu = (x′Ps Bsu)

′
= u′B′sPsx.

This implies that

−∂sVs(x) = −x′∂sPsx− ∂sαs
= x′Qsx+ tr (C ′sPsCs) + x′ (A′sPs + PsAs)x+ sup

u∈U
[u′Rsu+ 2u′ (B′sPs)x].

Using the �rst part of exercise 471, we prove that the supremum is attained for

u = vs(x) = −R−1
s (B′sPs)x

and

sup
u∈U

[u′Rsu+ 2u′ (B′sPs)x] = −x′ (B′sPs)
′
R−1
s (B′sPs)x = −x′PsBsR−1

s B′sPsx.

This yields the formula

−x′∂sPsx− ∂sαs = tr (C ′sPsCs) + x′
(
Qs +A′sPs + PsAs − PsBsR−1

s B′sPs
)
x+

and we conclude that

−∂sPs = Qs +A′sPs + PsAs − PsBsR−1
s B′sPs

−∂sαs = tr (C ′sPsCs) .

This ends the proof of the exercise.

Solution to exercise 474:
Next, we examine the 1-dimensional situation with As = Bs = Cs = Qs = Rs = 1, and
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a null terminal condition Pt = 0. In this situation, the parameters Ps and αs satisfy the
backward equations

−∂sPs = 1 + 2Ps − P 2
s

−∂sαs = Ps

with the boundary terminal conditions αt = Pt = 0. The optimal policy is given by the
feedback control

vs(x) = −Psx.

Finally, we assume that As = Qs = 0, Bs = Cs = 1, Pt = P (< 0), Rs = R(< 0) (and
the boundary condition αt = 0). In this situation, we have

∂sPs = R−1 P 2
s ⇔ ∂sP

−1
s = R ⇔ P−1

s = P−1 +R−1(t− s)

−∂sαs = Ps ⇔ αs =

∫ t

s

Pτdτ.

We conclude that

Ps =
RP

R+ P (t− s)
and αs = −R log

(
R

R+ P (t− s)

)
.

The optimal policy is given by the feedback control

vs(x) = −R−1Psx = − P

R+ P (t− s)︸ ︷︷ ︸
>0

x.

Notice that s ∈ [0, t] 7→ P
R+P (t−s) ∈]0,∞[ is an increasing function. For any starting state

X0 the optimal controlled di�usion is given for any s ∈ [0, t] by

dXs = vs(Xs) ds + dWs = − P

R+ P (t− s)
Xs ds+ dWs.

Finally, using the martingale optimality principle (29.22),

Vs(v) := αs +X ′sPsXs +

∫ s

0

[
X ′rQrXr + vr (Xr)

′
Rrvr (Xr)

]
dr

= −R log

(
R

R+ P (t− s)

)
+

RP X2
s

R+ P (t− s)
+R

∫ s

0

[
PXr

R+ P (t− r)

]2

dr

is a martingale w.r.t. to Fs = σ (Xr, r ≤ s) ending at Vt(v) = X ′tPtXt. Thus, the end
of the exercise is a direct consequence of the martingale optimality principle (29.22). This
ends the proof of the exercise.

Solution to exercise 475:
The exercise is a direct consequence of the martingale optimality principle (29.22).

Solution to exercise 476:
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The generator of the controlled di�usion is given by

Lt,u(f)(x) = (Atx+Btu+ Ct) ∂xf(x) +
1

2
(atx+ btu+ ct)

2
∂2
xf(x).

Let us check that
∀0 ≤ s ≤ t Vs(x) := Psx

2 + βsx+ αs

with the boundary terminal condition αt = βt = 0, some negative parameter Ps and some
(αs, βs) ∈ R2.

Notice that
∂sVs(x) = ∂sPs x

2 + ∂sβs x+ ∂sαs

as well as

∂Vs = 2Ps x+ βs and
1

2
∂2Vs = Ps.

The Bellman equation (29.19) takes the form

−∂sVs(x) = −∂sPs x2 − ∂sβs x− ∂sαs

= Qsx
2 + sup

u∈U

[
Ss x u+Rsu

2 + (Asx+Bsu+ Cs)∂Vs(x)

+
1

2
(asx+ bsu+ cs)

2
∂2
xVs(x)

]
= Qsx

2 + sup
u∈U

[
Ss x u+Rsu

2 + (Asx+Bsu+ Cs) (2Psx+ βs)

+(asx+ bsu+ cs)
2
Ps

]
= Qsx

2 + (Asx+ Cs) (2Psx+ βs) + (asx+ cs)
2
Ps

+ sup
u∈U

[
u2(Rs + b2sPs) + 2u [Ssx/2 + (Psx+ βs/2)Bs + (asx+ cs) bsPs]

]
.

Observe that
Ssx/2 + (Psx+ βs/2)Bs + (asx+ cs) bsPs

= x [Ss/2 + (asbs +Bs)Ps] + [Bsβs/2 + bscsPs]

and

u2(Rs + b2sPs) + 2u (x [Ss/2 + PsBs + asbsPs] + [Bsβs/2 + bscsPs])

= (Rs + b2sPs)︸ ︷︷ ︸
<0

(
u+

x [Ss/2 + (asbs +Bs)Ps] + [Bsβs/2 + bscsPs]

Rs + b2sPs

)2

− (x [Ss/2 + (asbs +Bs)Ps] + [Bsβs/2 + bscsPs])
2

Rs + b2sPs
.

We readily check that the supremum is attained for

u = vs(x) = −x (asbs +Bs)Ps + Ss/2

Rs + b2sPs
− bscsPs +Bsβs/2

Rs + b2sPs
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and

−∂sVs(x) = −∂sPs x2 − ∂sβs x− ∂sαs

= Qsx
2 + (Asx+ Cs) (2Psx+ βs) + (asx+ cs)

2
Ps

− (x [Ss/2 + (asbs +Bs)Ps] + [bscsPs +Bsβs/2])
2

Rs + b2sPs
.

This implies that

−∂sPs = Qs +
(
a2
s + 2As

)
Ps −

(
Rs + b2sPs

)−1
((asbs +Bs)Ps + Ss/2)

2

and

−∂sβs = Asβs + 2 (ascs + Cs)Ps

−2
(
Rs + b2sPs

)−1
((asbs +Bs)Ps + Ss/2) [bscsPs +Bsβs/2] ,

as well as

−∂sαs = Csβs + c2sPs −
(
Rs + b2sPs

)−1
[bscsPs +Bsβs/2]

2
.

This ends the proof of the exercise.

Solution to exercise 477:
By construction, we have

Fk,n(X, v) :=
∑
k≤l<n

Zk,l(X, ν) gl(Xl, vl) + Zk,n(X, ν) fn(Xn)

= gk(Xk, vk) + zk(vk, Xk)

×

 ∑
k+1≤l<n

Zk+1,l(X, ν) gl(Xl, vl) + Zk+1,n(X, ν) fn(Xn)


= gk(Xk, vk) + zk(vk, Xk) Fk+1,n(X, v).

The value function (29.11) associated with the payo� function Fn(X, v) takes the form

Vk(xk) := sup
v∈Vk,n−1

Ev (Fk,n(X, v) | Xk = xk) .

For k = n, we have
Vn(xn) = fn(Xn).

For k = (n− 1), we have

Fn−1,n(X, v) := gn−1(vn−1, Xn−1) + zn−1(vn−1, Xn−1) fn(Xn).

Vn−1(x) := sup
u∈Un−1

[gn−1(u, x) + zn−1(u, x) Eu(fn(Xn) | Xn−1 = x)] .

For k = (n− 2), we have

Fn−2,n(X, v) := gn−2(vn−2, Xn−2) + zn−2(vn−2, Xn−2) Fn−1,n(X, v).
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Arguing as in the proof of the Bellman equation (29.12) we check that

Vn−2(x) = sup
(u,v)∈Vn−2,n−1

[
gn−2(u, x) + zn−2(u, x) E(u,v)(Fn−1,n(X, v) | Xn−2 = x)

]
= sup

u∈Un−2

[
gn−2(u, x) + zn−2(u, x) sup

v∈Vn−1

E(u,v)(Fn−1,n(X, v) | Xn−2 = x)

]

= sup
u∈Un−2

[
gn−2(u, x) + zn−2(u, x) sup

v∈Vn−1

Ev(Vn−1(Xn−1) | Xn−2 = x)

]
.

Iterating this reasoning we conclude that

Vl(xl) = sup
u∈Ul

[gl(xl, u) + zl(u, xl) Eu(Vl+1(Xl+1) | Xl = xl)]

= sup
u∈Ul

[gl(xl, u) + zl(u, xl) Mu,l+1 (Vl+1) (xl)],

with 0 ≤ l < n and the terminal (a.k.a. boundary) condition Vn = fn.
This ends the proof of the exercise.

Solution to exercise 478:
The discrete time approximation of the value functions are given by

Fhtn(Xh, u) :=
∑

0≤k<n

Zhtk(X, ν) gtk(Xh
tk
, utk) h+ Zhtn(X, ν) ftn(Xh

tn),

with

Zhtl(X, ν) :=
∏

0≤k<l

zhtk(utk , X
h
tk

) and zhtk(utk , X
h
tk

) = exp (Htk(utk , Xtk) h).

We have the �rst order approximations

zhtk(u, x) = 1 +Htk(u, x) h+ O(h2)

Phu,tn(ϕ) = ϕ+ Ltn,u(ϕ) h + O
(
h2
)
.

This yields

V htl (x) = sup
u∈U

[
gtl(x, u) h+ zhtl(utl , x) Phu,tl+1

(
V htl+1

)
(x)
]

= sup
u∈U

[
gtl(x, u) h+ (1 +Htk(u, x) h)

(
V htl+1

+ Ltn,u(V htl+1
) h
)

(x) + O
(
h2
)]
.

This implies that

−h−1
[
V htl+1

(x)− V htl (x)
]

= sup
u∈U

[
gtl(x, u) +Htk(u, x) V htl+1

+ Ltn,u(V htl+1
)(x) + O (h)

]
.

Taking formally the limit as h ↓ 0 with tl ↓ s we �nd that the value function

lim
h↓0

V htl (x) := Vs(x)

= sup
v∈Vs,t

Ev
(∫ t

s

Zs,r(X,u) gr(Xr, vr(Xr)) dr + Zs,t(X,u) ft(Xt) | Xs = x

)
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satis�es the equation

−∂sVs(x) = sup
u∈U

[
gs(x, u) + LHs,u (Vs) (x)

]
with terminal condition Vt = ft and the Schrödinger operator

LHs,u(ϕ)(x) = Ls,u(ϕ)(x) +Hs(u, x) ϕ(x).

As in the discrete time case, the optimal strategy is obtained by applying the optimal control
charts x 7→ vs(x) computed in the one step backward recursion (29.19).

This ends the proof of the exercise.

Solution to exercise 479:
Using the Doeblin-It	o formula we have

Vs2(X(v)
s2 ) = Vs1(X(v)

s1 ) +

∫ s2

s1

[
∂sVs(X

(v)
s ) + Lvs,s(Vs)(X

(v)
s )
]
ds+Ms2(V )−Ms1(V )

for some F (v)
s -martingale Ms(V ) and for any 0 ≤ s1 ≤ s2 ≤ t. This implies that

Vs1(X(v)
s1 ) = E

[
Vs2(X(v)

s2 )−
∫ s2

s1

[
∂sVs(X

(v)
s ) + Lvs,s(Vs)(X

(v)
s )
]
ds | F (v)

s1

]
.

Using (29.20) we �nd that

Vs1(x) ≥ Ev
(∫ s2

s1

gs(Xs, vs(Xs)) ds+ Vs2 (Xs2) | Xs1 = x

)
with the equality on optimal control policies. This implies that

E
[
Vs2(Xs2)−

∫ s2
s1

[∂sVs(Xs) + Lvs,s(Vs)(Xs)] ds | Xs1 = x
]

≥ Ev
(∫ s2

s1
gs(Xs, vs(Xs) ds+ Vs2 (Xs2) | Xs1 = x

)
⇒ (s2 − s1)−1Ev

(∫ s2
s1

[∂sVs(Xs) + gs(Xs, vs(Xs)) + Lvs,s(Vs)(Xs)] ds | Xs1 = x
)
≤ 0,

with the equality on optimal control policies. Taking the limit s2 → s1 we �nd that

−∂sVs(x) ≥ gs(x, u) + Lu,s(Vs)(x)

for any u ∈ U , with the equality on optimal ones; that is, we have that

−∂sVs(x) = sup
u∈U

(gs(x, u) + Lu,s(Vs)(x)).

This ends the proof of the exercise.

Solution to exercise 480:
The collection of generators associated with the controlled di�usion are given by

Lu,t(f)(x) = (∂f)(x)′ (bt(x) + σt(x) u) +
1

2
tr
(
σt(x)′∂2f(x)σt(x)

)
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for any (x, u) ∈ (Rr × Rr), with the column gradient vector ∂f = (∂xif)1≤i≤r and the
Hessian matrix ∂2f =

(
∂xi,xjf

)
1≤i,j≤r. The Bellman equation (29.19) takes the form

−∂sVs(x) = sup
u∈U

[
hs(x) +

1

2
u′Rsu+ (∂Vs)(x)′ (bs(x) + σs(x) u)

+
1

2
tr
(
σs(x)′∂2Vs(x)σs(x)

)]
= hs(x) + (∂Vs)(x)′ bs(x) +

1

2
tr
(
σs(x)′∂2Vs(x)σ(x)

)
+

1

2
sup
u∈U

[ u′Rsu+ 2 u′σs(x)′(∂Vs)(x)].

Using the �rst part of exercise 471 (replacing the vector Sx by the vector σs(x)′(∂Vs)(x)),
we prove that the supremum is attained for

u = vs(x) := −R−1
s σs(x)′(∂Vs)(x)

and
sup
u∈U

[ u′Rsu+ 2 u′σs(x)′(∂Vs)(x)] = −(∂Vs)(x)′σs(x)R−1
s σs(x)′(∂Vs)(x).

This yields the Hamilton-Jacobi-Bellman equation

−∂sVs = hs + (∂Vs)
′ bs −

1

2
(∂Vs)

′σsR
−1
s σ′s(∂Vs) +

1

2
tr
(
σ′s∂

2Vsσs
)
.

We further assume that Rs = λ Id, for some λ < 0, where Id stands for the (r × r)-
identity matrix. We also set

as(i, j)(x) = (σs(x)σ′s(x))i,j =
∑

1≤k≤r

σis,k(x)σjs,k(x)

and we set
Vs(x) = −λ log qs(x)

with the terminal condition Vt = −λ log qt = ft.
Observe that

∂sVs = −λq−1
s ∂sqs and ∂Vs = −λq−1

s ∂qs,

as well as

∂2Vs = −λq−1
s ∂2qs + λ q−2 ∂qs (∂qs)

′
= −λq−1

s ∂2qs + λ−1∂Vs (∂Vs)
′
.

This yields

tr
(
∂2Vsas

)
=

∑
1≤i,j≤r

as(i, j) ∂xi,xjVs

= −λq−1
s

∑
1≤i,j≤r

as(i, j)∂xi,xjqs + λ q−2
s

∑
1≤i,j≤r

as(i, j) ∂xiqs∂xjqs.

Recalling that
∂xiVs = −λq−1

s ∂xiqs

we prove that

λ q−2
s

∑
1≤i,j≤r

as(i, j) ∂xiqs∂xjqs = λ−1
∑

1≤i,j≤r

as(i, j) ∂xiVs∂xjVs = λ−1 (∂Vs)
′as(∂Vs).
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Therefore we conclude that

tr
(
∂2Vsas

)
= −λq−1

s tr
(
∂2qsas

)
+ λ−1 (∂Vs)

′as(∂Vs).

In this situation (recalling that tr(AB) = tr(BA)) we have

−∂sVs = λq−1
s ∂sqs

= hs − λq−1
s (∂qs)

′
bs −

1

2
λq−1
s tr

(
∂2qsas

)
.

This implies that

−∂sqs = −λ−1hsqs + (∂qs)
′
bs +

1

2
tr
(
∂2qsas

)
.

Arguing as in the end of section 29.3.3, this equation can be rewritten as follows:

−∂sqs = L(qs) + hs qs

with the potential function hs = −λ−1hs and the in�nitesimal generator L of the di�usion
process

dYs = bs(Ys) ds+ σs(Ys) dWs.

The solution of this equation is given by the Feynman-Kac formula

qs(y) = Qs,t

(
eft
)

:= E
[
exp

(
f t(Yt)

)
exp

(∫ t

s

hr(Yr)dr

)
| Ys = y

]
with f t = −λ−1ft.

This ends the proof of the exercise.

Solution to exercise 481:
We consider the optimal stopping problem de�ned in section 29.4.2 by replacing the

maximization problem (29.33) my the minimization problem

Uk := inf
T∈Tk

E (fT (XT ) | Fk) .

−Uk := sup
T∈Tk

E (gT (XT ) | Fk) with gk(x) = −fk(x).

The solution of the problem is given by the sequence of stopping times de�ned using the
backward induction

Tk = k 1fk(Xk) ≤ E(fTk+1
(XTk+1) | Fk) + Tk+1 1fk(Xk) > E(fTk+1

(XTk+1
) | Fk)

with the terminal condition Tn = n. The optimal stopping times formula (29.31) takes the
form

Tk := inf {l ∈ {k, k + 1, . . . , n} : Ul = fl(Xl) }.

Using (29.32) Snell envelope (−Uk) = (−Vk(Xk)) is solved using the functions Vk de�ned
by the backward induction

Vk(xk) = fk(xk) ∧ E(Vk+1(Xk+1) | Xk = xk), (30.67)

with the terminal condition Vn = fn.
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This ends the proof of the exercise.

Solution to exercise 482:
We have

Vn(x) = x = x ∨ (−∞) = x ∨m0

Vn−1(x) = x ∨ E(Xn) = Xn−1 ∨m1

Vn−2(x) = x ∨ E (Xn−1 ∨ E(Xn)) = x ∨m2

... =
...

Vn−k(x) = x ∨mk

... =
...

V0(x) = x ∨mn.

The optimal stopping strategy (29.31) is given by given by

Tk = inf {l ∈ {k, k + 1, . . . , n} : Xl ∨mn−l = Xl}
= inf {l ∈ {k, k + 1, . . . , n} : Xl ≥ mn−l}.

For i.i.d. copies Xk of an uniform random variable X on [0, 1] we have

m1 = E(X) = 1/2

m2 = E(X ∨ (1/2)) = 1/2 P(X < 1/2) + E(X 1X≥1/2)

= 1/4 +

∫ 1

1/2

x dx = 1/4 + (1/2− 1/8) = 1/8 + 1/2 = 5/8

... =
...

mk+1 = E(X ∨mk) = mk P(X < mk) + E(X 1X≥mk)

= m2
k +

∫ 1

mk

x dx = m2
k +

1

2

(
1−m2

k

)
=

1

2

(
m2
k + 1

)
.

For i.i.d. copies Xk of an exponential random variable X with parameter λ we have

m1 = E(X) =
1

λ
mk+1 = E(X ∨mk) = mk P(X < mk) + E(X 1X≥mk)

= mk

∫ mk

0

λ e−λxdx+

∫ +∞

mk

λ x e−λxdx

= mk

∫ mk

0

λ e−λxdx+

(
1

λ
−
∫ mk

0

λ x e−λxdx

)
=

1

λ
+ e−mk

∫ mk

0

λ (mk − x) eλ(mk−x) dx

=
1

λ
+ e−mk

∫ mk

0

λ x eλx dx =
1

λ
+mk −

1

λ

[
1− e−λmk

]
= mk +

1

λ
e−λmk .

The last assertion is checked using the integration by parts∫ mk

0

λx eλx dx =
[
x eλx

]mk
0
−
∫ mk

0

eλx dx

= mk e
λmk − 1

λ

[
eλx
]mk
0

= mk e
λmk − 1

λ

[
eλmk − 1

]
.
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This ends the proof of the exercise.

Solution to exercise 483:
We have

fn(1) = (1− p) ∂p

∑
k≥0

pk

 = (1− p)/(1− p)2 = 1/(1− p).

Following the arguments presented in exercise 481 and in exercise 482, the Snell envelope
is given by

Vn−(k+1)(x) = fn−(k+1)(x) ∧ E(Vn−k(X)) = fn−(k+1)(x) ∧mk+1 ≤ fn−(k+1)(x)

= ((k + 1) 1x=0 +∞ 1x=1) ∧mk+1

= 1x=0 [(k + 1) ∧mk+1] + 1x=1 mk+1,

with the non increasing sequence of parameters (mk)1≤k≤n given by the recursion

mk+1 := E(Vn−k(X)) = (1− p) Vn−k(0) + p Vn−k(1)

= (1− p) [k ∧mk] + p mk ≤ mk ∧ k ≤ mk

and the initial condition

m1 = E(Vn(X)) = E(fn(X)) = fn(1) p = p/(1− p) (=⇒ fn(0) = 0) .

The optimal stopping times at rank k are given by

Tk := inf

l ∈ {k, k + 1, . . . , n} :

=Vl(Xl)︷ ︸︸ ︷
fl(Xl) ∧mn−l = (n− l) 1Xl=0 +∞ 1Xl=1︸ ︷︷ ︸

fl(Xl)

.
Notice that

fl(Xl) ∧mn−l = fl(Xl) ⇐⇒ Xl = 0 and (n− l) ≤ mn−l.

This yields the stopping rules

Tk := inf {l ∈ {k, k + 1, . . . , n} : Xl = 0 and mn−l ≥ n− l }.

This ends the proof of the exercise.

Solution to exercise 484:
By (29.31), the optimal stopping rule at time k = 0 is given by

T := inf {l ∈ {0, . . . , n} : Vl(Xl) ≤ fl(Xl)}
= inf {l ∈ {0, . . . , n} : [fl(Xl) ∨ E(Vl+1(Xl+1) | Xl)] ≤ fl(Xl)}
= inf {l ∈ {0, . . . , n} : fl(Xl) ≥ E(Vl+1(Xl+1) | Xl)},

where Vl stands for the Snell envelope de�ned by the backward recursion (29.32). We recall
that Vk(Xk) ≥ fk(Xk), for any 0 ≤ k ≤ n. We have

S > l ⇒ ∀0 ≤ k ≤ l fk(Xk) < E (fk+1(Xk+1) | Xk) (≤ E (Vk+1(Xk+1) | Xk))

⇒ ∀0 ≤ k ≤ l fk(Xk) < E (Vk+1(Xk+1) | Xk)⇒ T > l.
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In the reverse angle, we have

{S = l} =
⋂

0≤k<l

{fk(Xk) < E (fk+1(Xk+1) | Xk)} ∩ {fl(Xl) ≥ E (fl+1(Xl+1) | Xl)}

⊂
⋂

0≤k<l

{fk(Xk) < E (Vk+1(Xk+1) | Xk)}

∩
⋂

l<m≤n

{fm−1(Xm−1) ≥ E (fm(Xm) | Xm−1)}.

This implies that
{T ≤ l} ⊂ {S ≤ l}.

Thus, on the event {S = l} we have

fn−1(Xn−1)
(m=n)

≥ E (fn(Xn) | Xn−1) ⇒ Vn−1(Xn−1) = fn−1(Xn−1)

fn−2(Xn−2)
(m=(n−1))

≥ E (fn−1(Xn−1) | Xn−2)
= E (Vn−1(Xn−1) | Xn−2) ⇒ Vn−2(Xn−2) = fn−2(Xn−2)

...
...

...
...

...

fl(Xl)
(m=(l+1))

≥ E (fl+1(Xl+1) | Xl)
= E (Vl+1(Xl+1) | Xl) ⇒ Vl(Xl) = fl(Xl).

This yields the inclusion

{S = l} ⊂ {T ≥ l} ∩
⋂

l≤m≤n

{Vm(Xm) = fm(Xm)} = {T = l}.

Hence we have

{T ≤ l} ⊂ {S ≤ l} ⊂ {T ≤ l} =⇒ {S ≤ l} = {T ≤ l} =⇒ {S > l} = {T > l}

from which we conclude that

{S = l} = {S ≤ l} ∩ {S > (l − 1)} = {T ≤ l} ∩ {T > (l − 1)} = {T = l}.

This ends the proof of the exercise.

Solution to exercise 485:
We have

fn(Xn) = X1
nX

2
n = εn X

1
n−1

(
X2
n−1 +Wn

)
= εn fn−1(Xn−1) + εn X

1
n−1 Wn ≥ εn fn−1(Xn−1).

We also readily check that

E (fn(Xn) | Fn−1) = E
(
εn fn−1(Xn−1) + εn X

1
n−1 Wn | Fn−1

)
= E (ε) fn−1(Xn−1) + E (ε W ) X1

n−1

= p fn−1(Xn−1) + p w X1
n−1,

from which we prove that

fn−1(Xn−1)− E (fn(Xn) | Fn−1) = (1− p) fn−1(Xn−1)− p w X1
n−1.
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This yields

fn(Xn)− E (fn+1(Xn+1) | Fn)

= (1− p) fn(Xn)− p w X1
n

= (1− p)
(
εn fn−1(Xn−1) + εn X

1
n−1 Wn

)
− p w εn X

1
n−1

= εn [fn−1(Xn−1)− E (fn(Xn) | Fn−1)] + (1− p) εn X1
n−1 Wn

≥ εn [fn−1(Xn−1)− E (fn(Xn) | Fn−1)] .

This shows that the optimal stopping problem is monotone. Using exercise 484 the optimal
stopping rule on any �nite time horizon is de�ned by

S = inf {n ≥ 0 : fn(Xn) ≥ E (fn+1(Xn+1) | Xn)}
= inf

{
n ≥ 0 : X1

n X
2
n ≥ p X1

n X
2
n + p w X1

n

}
= inf

{
n ≥ 0 : X1

n = 0 or X2
n ≥ pw/(1− p)

}
.

This shows that the best strategy (before to be caught) is to stop as soon as the accumulated
earnings are at least pw/(1− p).

This ends the proof of the exercise.

Solution to exercise 486:
We have

E (fn+1(Xn+1) | Fn)− fn(Xn) = E ([(Xn ∨Wn+1)−Xn] | Fn)− a
= E

(
[Wn+1 −Xn] 1Wn+1≥Xn | Xn

)
− a

= E
(
[Wn+1 −Xn]+ | Xn

)
− a

=

∫ ∞
Xn

(w −Xn) µ(dw)− a.

Notice that

Xn+1 −Xn ≥ 0⇒
∫ ∞
Xn

(w −Xn) µ(dw) ≥
∫ ∞
Xn+1

([(w −Xn+1) + (Xn+1 −Xn)] µ(dw)

≥
∫ ∞
Xn+1

(w −Xn+1) µ(dw).

This implies that

E (fn+1(Xn+1) | Fn)− fn(Xn) ≥ E (fn(Xn) | Fn−1)− fn−1(Xn−1).

We conclude that the optimal stopping problem is monotone. Using exercise 484 the optimal
stopping rule on any �nite time horizon is de�ned by

S = inf {n ≥ 0 : fn(Xn) ≥ E (fn+1(Xn+1) | Xn)}
= inf {n ≥ 0 : E (fn+1(Xn+1)|Xn)− fn(Xn) ≤ 0}

= inf

{
n ≥ 0 :

∫ ∞
Xn

(w −Xn) µ(dw) ≤ a
}
.
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When W is an exponential random variable with parameter λ > 0 we have∫ ∞
x

(w − x) µ(dw) = −e−λx
∫ ∞
x

(w − x) ∂w

(
e−λ(w−x)

)
dw

= −e−λx
[
(w − x) e−λ(w−x)

]w=∞

w=x︸ ︷︷ ︸
=0

+
e−λx

λ

∫ ∞
x

λ e−λ(w−x) dw

=
e−λx

λ
.

In this situation, we have

S = inf

{
n ≥ 0 : Xn ≥ −

1

λ
log (λa)

}
.

When (λa) ≥ 1, the best strategy is to sell the asset immediately. When (λa) ≤ 1, the
optimal stopping time is given by

S = inf

{
n ≥ 0 : Xn ≥

1

λ
|log (λa)|

}
.

When W is an uniform random variable on [w1, w2], for any x,w ∈ [w1, w2] we have∫ ∞
x

(w − x) µ(dw) =
1

2

∫ w2

x

∂w
(
(w − x)2

)
dw =

1

2
(w2 − x)

2
.

In this situation, we have

S = inf
{
n ≥ 0 : (Xn − w2)

2 ≤ 2a
}

= inf
{
n ≥ 0 :

(
Xn − w2 −

√
2a
)(

Xn − w2 +
√

2a
)
≤ 0
}

= inf
{
n ≥ 0 : Xn ∈

[
w2 −

√
2a,w2 +

√
2a
]}
.

This ends the proof of the exercise.

Solution to exercise 487:
For any m ≥

∑
1≤k≤n wk we have

P
(
Nn = m−

∑
1≤k≤n wk, W1 = w1, . . . ,Wn = wn

)
= e−λ

λm

m!

m!

w1!(m− w1)!
pw1(1− p)m−w1 × (m− w1)!

w2!(m− w1 − w2)!
pw2(1− p)m−w1−w2

× . . .× (m− w1 − . . .− wn−1)!

wn!(m− w1 − . . .− wn)!
pwn(1− p)m−w1−...−wn

= e−λ(1−(1−p)n)

 ∏
1≤k≤n

λwk
pwk

wk!


 ∏

1<k≤n

(1− p)wk+...+wn


× e−λ(1−p)n (λ(1− p)n)

m−w1−...−wn

(m− w1 − . . .− wn)!
.



Chapter 29 1241

This yields

P (W1 = w1, . . . ,Wn = wn)

=
∑
m≥

∑
1≤k≤n wk

P
(
Nn = m−

∑
1≤k≤n wk, W1 = w1, . . . ,Wn = wn

)

= e−λ(1−(1−p)n)

 ∏
1≤k≤n

λwk
pwk

wk!


 ∏

1<k≤n

(1− p)wk+...+wn

 ,

from which we check that

P

Nn = m−
∑

1≤k≤n

wk | W1 = w1, . . . ,Wn = wn

 = e−λ(1−p)n (λ(1− p)n)
m−w1−...−wn

(m− w1 − . . .− wn)!
.

We conclude that for any m ≥ 0

P (Nn = m | W1 = w1, . . . ,Wn = wn) = e−λ(1−p)n (λ(1− p)n)
m

m!
.

This implies that

fn(Xn) = E (na1 + (N −Xn) a2 | Xn) = na1 + E (Nn | Xn) a2 = na1 + λ(1− p)na2.

On the other hand

E (fn+1(Xn+1) | Fn)− fn(Xn)

= a1 + λ
[
(1− p)n+1 − (1− p)n

]
a2 = a1 − λ p(1− p)n a2.

This shows that
n 7→ E (fn+1(Xn+1) | Fn)− fn(Xn)

is an increasing function, from which we conclude that

E (fn+1(Xn+1) | Fn)− fn(Xn) ≥ E (fn(Xn) | Fn−1)− fn−1(Xn−1).

This shows that the optimal stopping problem is monotone (recall that we are dealing with
a minimization problem).

Using exercise 484 the optimal stopping rule on any �nite time horizon is de�ned by

S = inf {n ≥ 0 : fn(Xn) ≤ E (fn+1(Xn+1) | Xn)}
= inf {n ≥ 0 : E (fn+1(Xn+1)|Xn)− fn(Xn) ≥ 0}
= inf {n ≥ 0 : λ p(1− p)n ≤ a1/a2}.

This ends the proof of the exercise.

Solution to exercise 488:
We check this claim by using backward induction. At the �nal time horizon n the result

is immediate:
Vn(xn) :=

∑
0≤l<n

g′l(x
′
l) + V ′n(x′n),
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with V ′n = f ′n. We further assume that the result has been checked at some rank (k + 1).
The backward formula (29.32) implies that

Vk(xk)

=
[∑

0≤l<k g′l(X
′
l) + f ′k(X ′k)

]
∨
[∑

0≤l≤k g′l(x
′
l) + E(V ′k+1(x′) | X ′k = x′k)

]
=
∑

0≤l<k g′l(X
′
l) +

[
f ′k(X ′k) ∨

[
g′k(x′k) + E(V ′k+1(x′) | X ′k = x′k)

]]︸ ︷︷ ︸
:=V ′k(x′k)

.

We conclude that the result is satis�ed at rank k. This ends the proof of the claim.
This ends the proof of the exercise.

Solution to exercise 489:
As in exercise 488, we check this claim by using backward induction. At the �nal time

horizon n the result is immediate since we have

Vn(xn) :=

 ∏
0≤l<n

g′l(X
′
l)

× V ′n(X ′k)

with V ′n = f ′n. We further assume that the result has been checked at some rank (k + 1).
The backward formula (29.32) implies that

Vk(xk)

=
[{∏

0≤l<k g′l(X
′
l)
}
f ′k(X ′k)

]
∨
[{∏

0≤l≤k g′l(x
′
l)
}

E(V ′k+1(x′) | X ′k = x′k)
]

=
{∏

0≤l<k g′l(X
′
l)
}
×
[
f ′k(X ′k) ∨

[
g′k(x′k) E(V ′k+1(x′) | X ′k = x′k)

]]︸ ︷︷ ︸
:=V ′k(x′k)

.

We conclude that the result is satis�ed at rank k. This ends the proof of the claim.
This ends the proof of the exercise.

Solution to exercise 490:
By (29.1) the fortune of the gambler is given by

Mn+1 = Mn+Hn Xn+1 = Mn+αMn Xn+1 = (1 + α Xn+1)Mn = M0

∏
1≤k≤n+1

(1 + α Xk) .

The growth rate is given by

Ln(α) =
1

n
log (Mn/M0) =

1

n

∑
1≤k≤n

log (1 + α Xk).

By the Law of Large Numbers, we have

L∞(α) = lim
n→∞

Ln(α) = E (log (1 + α X1))

= (1− q) log (1− α) + q log (1 + α).
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We also have

∂αL∞(α) = (q − 1)
1

1− α
+ q

1

1 + α

=
q(1− α) + (q − 1)(1 + α)

1− α2
=

(2q − 1)− α
1− α2

.

This shows that the optimal proportion is de�ned by α? = 2q−1 = E(X) = (1−q)×(−1)+
q × (1). In addition:

L∞(α?) = (1− q) log (1− (2q − 1)) + q log (1 + (2q − 1))

= (1− q) log (2(1− q)) + q log (2q)

= log (2) + (1− q) log (1− q) + q log (q).

In the second part of the exercise, we have

Mn+1 = Mn + (1− α) Mn r + αMn Xn+1

= (1 + α Xn+1 + (1− α) r) Mn = M0

∏
1≤k≤n+1

(1 + α Xk + (1− α) r) .

The growth rate is now given by the formula

Ln(α) =
1

n
log (Mn/M0) =

1

n

∑
1≤k≤n

log (1 + α Xk + (1− α) r).

By the Law of Large Numbers, we have

L∞(α) = lim
n→∞

Ln(α) = E (log (1 + α X1 + (1− α) r))

= E (log ((1 + r) + α(X1 − r))) = E
(

log

(
(1 + r)

[
1 + α

(X1 − r)
1 + r

]))
= log (1 + r) + E

(
log

[
1 + α

(X1 − r)
1 + r

])
= log (1 + r)︸ ︷︷ ︸

L∞(0)≥0

+q log [1 + α δr] + p log [1− α],

with δr = (1− r)/(1 + r) ∈]0, 1[. In this case, we have

∂αL∞(α) = q
δr

1 + α δr
− p 1

1− α
=
qδr(1− α)− p(1 + α δr)

(1− α)(1 + αδr)
.

Observe that
∂αL∞(α) ≥ 0

if and only if
qδr(1− α) ≥ p(1 + α δr)⇔ (1 ≥) q − p/δr ≥ α .

Recalling that p/q ∈ [0, 1] and δr ∈ [0, 1] need to consider the two cases: 1) δr ≤ p/q or
2) p/q ≤ δr.

In the �rst case, we have q − p/δr ≤ 0. This shows that L∞ : α ∈ [0, 1] 7→ L∞(α)
is decreasing from L∞(0) = log (1 + r). In this situation, the optimal strategy is given by
α = α? = 0.

In the �rst case, we have 1 ≥ αr := q − p/δr ≥ 0. This shows that L∞ : α ∈
[0, 1] 7→ L∞(α) is increasing for α ∈ [0, αr] ⊂ [0, 1] from L∞(0) = log (1 + r) to L∞(αr);
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and decreasing for α ∈ [q − p/δr, 1] ⊂ [0, 1] from L∞(αr) to L∞(1). In this situation the
optimal strategy is given by α = α? = αr.

This ends the proof of the exercise.

Solution to exercise 491:
We simply use the Bayes' rule. Let D1, D2, D3 be the three doors. We assume that

the contestant �rst selects the door D1 with nothing behind, and then Monty opens the
second door D2 with nothing behind. We denote by H the event "Monty chooses the door
D2 and nothing is behind", and we let Pi be the event "the price is hidden behind Di" with
i = 1, 2, 3.

We have the three cases

P (P1 | H) =

=1/2︷ ︸︸ ︷
P(H | P1)

P(H)︸ ︷︷ ︸
1/2

=1/3︷ ︸︸ ︷
P(P1) = 1/3

P (P2 | H) =

=0︷ ︸︸ ︷
P(H | P2)

P(H)︸ ︷︷ ︸
1/2

=1/3︷ ︸︸ ︷
P(P2) = 0

and �nally

P (P3 | H) =

=1︷ ︸︸ ︷
P(H | P3)

P(H)︸ ︷︷ ︸
1/2

=1/3︷ ︸︸ ︷
P(P3) = 2/3.

Since P (P1 | H) < P (P3 | H) the best strategy is to switch the door.

If we have 1000 doors D1, D2, . . . , D1000, we let H be the event "Monty chooses all the
doors D2; . . . , D999 and nothing is behind". In this case, when the host chooses the 998 doors
D2; . . . , D999 among the 999 with nothing behind. If the door chosen by the contestant is
the correct one, Monty could have selected only one of the 999 sequences of 998 doors among
{D2, . . . , D1000} excluding D2, or D3,. . . , or D1000. This yields the Bayes' formula

P (P1 | H) =

=1/999︷ ︸︸ ︷
P(H | P1)

P(H)︸ ︷︷ ︸
1/999

=1/1000︷ ︸︸ ︷
P(P1) = 10−3.

When the prize is behind one of the doorsDi selected by the host for some i = 2, . . . , 999,
we have

P (Pi | H) =

=0︷ ︸︸ ︷
P(H | Pi)
P(H)︸ ︷︷ ︸
1/999

=1/1000︷ ︸︸ ︷
P(Pi) = 0.
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Finally, we have

P (P1000 | H) =

=1︷ ︸︸ ︷
P(H | P1000)

P(H)︸ ︷︷ ︸
1/999

=1/1000︷ ︸︸ ︷
P(P1000) = 0.999.

Clearly, switching is the best strategy. This ends the proof of the exercise.

Solution to exercise 492:
We have

∆Yn := Yn − Yn−1

= X2
n −X2

n−1 − c2 = (Xn−1 + ∆Xn)2 −X2
n−1 − c2 with ∆Xn = Xn −Xn−1

= 2Xn−1∆Xn + (∆Xn)2 − c2.

In addition, we have

E((∆Xn)2 | Fn−1) =
1

2
c2 +

1

2
(−c)2 = c2

and
E(2Xn−1∆Xn | Fn−1) = 2Xn−1∆Xn E(∆Xn | Fn−1)︸ ︷︷ ︸

= 1
2 c+ 1

2 (−c)=0

.

This shows that
E(∆Yn | Fn−1) = 0 =⇒ Yn is a martingale.

By the optional stopping theorem, theorem 8.4.16 (after checking that T is �nite and has a
�nite mean, cf. lemma 8.4.18), we have

0 = E(YT )− E(Y0) = E(X2
T )− c2E(T ) ≤ (a2 ∨ b2)− c2E(T )⇒ E(T ) ≤ a2 ∨ b2

c2
.

This ends the proof of the exercise.

Solution to exercise 493:
Recall that −1 = 2 mod(3)

M :=

 M(0, 0) M(0, 1) M(0, 2) = M(0,−1)
M(1, 0) M(1, 1) M(1, 2)

M(2, 0) = M(2, 3) M(2, 1) M(2, 2)



=

 0 pm qm
q 0 p
p q 0

 =

 0 1
10

9
10

1
4 0 3

4
3
4

1
4 0

 .

When ε = 0, the probability P (n) to win game (G2) at time n is given by

P (n) = P(Yn = 0) pm + P(Yn ∈ {1, 2}) p = P(Yn = 0)
1

10
+ (1− P(Yn = 0))

3

4
.
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Notice that

[5, 2, 6]

 0 1
10

9
10

1
4 0 3

4
3
4

1
4 0

 =

[
2

4
+

18

4
,

1

2
+

6

4
,

9

2
+

3

2

]
= [5, 2, 6] .

This shows that π = 1
13 [5, 2, 6] is the invariant measure of M . Thus, the stationary proba-

bility P to win game (G2) after long runs is given by

P = π(0) pm + (1− π(0)) p =
5

13

1

10
+

8

13

3

4
=

1

26
+

6

13
=

13

26
=

1

2
.

When ε > 0, the transition of the chain is given by

Mε :=

 0 1
10 − ε

9
10 + ε

1
4 + ε 0 3

4 − ε
3
4 − ε

1
4 + ε 0

 .

Using exercise 98, the invariant measure πεMε = πε is given by

πε(0) ∝ Mε(1, 0)Mε(2, 0) +Mε(1, 2)Mε(2, 0) +Mε(2, 1)Mε(1, 0)

=

(
1

4
+ ε

)(
3

4
− ε
)

+

(
3

4
− ε
)2

+

(
1

4
+ ε

)2

= 1−
(

1

4
+ ε

)(
3

4
− ε
)

=
13

16
− 1

2
ε + ε2,

πε(1) ∝ Mε(0, 1)Mε(2, 1) +Mε(0, 2)Mε(2, 1) +Mε(2, 0)Mε(0, 1)

=

(
1

10
− ε
)(

1

4
+ ε

)
+

(
9

10
+ ε

)(
1

4
+ ε

)
+

(
3

4
− ε
)(

1

10
− ε
)

=

(
1

10
− ε
)

+

(
9

10
+ ε

)(
1

4
+ ε

)
=

13

40
+

3

20
ε+ ε2,

and

πε(2) ∝ Mε(0, 2)Mε(1, 2) +Mε(0, 1)Mε(1, 2) +Mε(1, 0)Mε(0, 2)

=

(
9

10
+ ε

)(
3

4
− ε
)

+

(
1

10
− ε
)(

3

4
− ε
)

+

(
1

4
+ ε

)(
9

10
+ ε

)
=

(
9

10
+ ε

)
+

(
1

10
− ε
)(

3

4
− ε
)

=
39

40
+

3

20
ε+ ε2.

Thus, the normalizing constant is given by

13

4

[
1

4
+

1

10
+

3

10

]
− 1

2

(
1− 3

5

)
ε + 3ε2 =

13

4

13

20
− 1

5
ε + 3ε2.
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We conclude that

πε(0) =
13
16 −

1
2 ε + ε2

13
4

13
20 −

1
5 ε + 3ε2

=
5

13

1− 8
13 ε+ O(ε2)

1− 16
132 ε+ O(ε2)

=
5

13

(
1− ε 1

13

(
8− 16

13

))
+ O(ε2) = π(0)− 40

11

133
ε+ O(ε2).

The stationary probability Pε to win game (G2) after long runs is given by

Pε = πε(0)

(
1

10
− ε
)

+ (1− πε(0))

(
3

4
− ε
)

= πε(0)
1

10
+ (1− πε(0))

3

4
− ε

=
1

2
−
(

1− 2
11

132

)
ε+ O(ε2) = P − 147

132
ε+ O(ε2).

In game (G1) the transition matrix of the chain Yn is given by

M ε :=

 M ε(0, 0) M ε(0, 1) M ε(0,−1)
M ε(1, 0) M ε(1, 1) M ε(1, 2)
M ε(2, 3) M ε(2, 1) M ε(2, 2)



=

 0 1
2 − ε

1
2 + ε

1
2 + ε 0 1

2 − ε
1
2 − ε

1
2 + ε 0

 .

This implies that in game (G3) the transition matrix of the chain Yn is given by

M̂ε =
1

2
(Mε +M ε)

=
1

2

 0 1
2 − ε

1
2 + ε

1
2 + ε 0 1

2 − ε
1
2 − ε

1
2 + ε 0

+

 0 1
10 − ε

9
10 + ε

1
4 + ε 0 3

4 − ε
3
4 − ε

1
4 + ε 0


=

 0 3
10 − ε

7
10 + ε

3
8 + ε 0 5

8 − ε
5
8 − ε

3
8 + ε 0

 .

Using exercise 98, the invariant measure π̂εM̂ε = M̂ε is given by

π̂ε(0) ∝ M̂ε(1, 0)M̂ε(2, 0) + M̂ε(1, 2)M̂ε(2, 0) + M̂ε(2, 1)M̂ε(1, 0)

=

(
3

8
+ ε

)(
5

8
− ε
)

+

(
5

8
− ε
)2

+

(
3

8
+ ε

)2

= 1−
(

3

8
+ ε

)(
5

8
− ε
)

=

(
7

8

)2

− 1

4
ε + ε2,
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by

π̂ε(1) ∝ M̂ε(0, 1)M̂ε(2, 1) + M̂ε(0, 2)M̂ε(2, 1) + M̂ε(2, 0)M̂ε(0, 1)

=

(
3

10
− ε
)(

3

8
+ ε

)
+

(
7

10
+ ε

)(
3

8
+ ε

)
+

(
5

8
− ε
)(

3

10
− ε
)

=

(
3

10
− ε
)

+

(
7

10
+ ε

)(
3

8
+ ε

)
=

45

80
+

3

40
ε+ ε2,

and �nally by

π̂ε(2) ∝ M̂ε(0, 2)M̂ε(1, 2) + M̂ε(0, 1)M̂ε(1, 2) + M̂ε(1, 0)M̂ε(0, 2)

=

(
7

10
+ ε

)(
5

8
− ε
)

+

(
3

10
− ε
)(

5

8
− ε
)

+

(
3

8
+ ε

)(
7

10
+ ε

)
=

(
7

10
+ ε

)
+

(
3

10
− ε
)(

5

8
− ε
)

=
71

80
+

3

40
ε+ ε2.

Thus, the normalizing constant is now given by(
7

8

)2

+
116

80
− 1

10
ε+ 3ε2 =

1

82

709

5
− 1

10
ε+ 3ε2.

This implies that

π̂ε(0) =

(
7
8

)2 − 1
4 ε + ε2

1
82

709
5 −

1
10 ε+ 3ε2

=
245

709

1−
(

4
7

)2
ε +

(
8
7ε
)2

1− 32
709 ε+ (8ε)2 15

709

' 0.35 + O(ε).

The stationary probability Pε to win game (G3) after long runs is given by

P̂ε = π̂ε(0)

(
3

10
− ε
)

+ (1− π̂ε(0))

(
5

8
− ε
)

=
1

2

727

709
+ O(ε) >

1

2
= P when ε is su�ciently small.

The e�ect we just observed is the �Parrondo's paradox". As we have just realised, two
losing games, when alternated in a periodic or random fashion, can produce a winning game.

This ends the proof of the exercise.

Solution to exercise 494:
At each point in time n, the gambler bets a×S(Xn) with the re-scaled gambling strategy

de�ned by

S(Xn) :=

{
Xn if Xn ≤ 1/2

1−Xn if 1/2 ≤ 1−Xn ≤ 1
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When the relative fortune x ≤ 1/2 (i.e. real fortune ax := y ≤ a/2) he bets the relative
amount x (i.e. the real amount y := ax) and wins 2x (i.e. the real amount 2y := 2ax). (Of
course, the win is zero when he loses.) Thus, when x ≤ 1/2⇔ y = ax ≤ a/2 we have

P (y) = P (Reach the fortune a | Y0 = y)

= P (Reach the fortune a | Y1 = 2y)P(Y1 = 2y | Y0 = y)

+P (Reach the fortune a | Y1 = 0)P(Y1 = 0 | Y0 = y)

= p P (2y) + q 0.

In other words

x := y/a ∈ [0, 1] and Q(y/a) := P (y) =⇒ Q(x) = p Q(2x).

When the relative fortune 1/2 ≤ x ≤ 1 (i.e. real fortune a ≥ ax := y ≥ a/2) to reach
the rescaled fortune 1 (i.e. the real target fortune a,) one needs to bet the relative amount
1− x (i.e. the real amount a− ax = a− y.) Arguing as above we �nd that

P (y) = P (Reach the fortune a | Y0 = y)

= P

Reach the fortune a | Y1 = 2y︸ ︷︷ ︸
≥2 a/2=a


︸ ︷︷ ︸

=1

P(Y1 = 2y | Y0 = y)

+P (Reach the fortune a | Y1 = y − (a− y))P(Y1 = y − (a− y) | Y0 = y)

= p + q P (2y − a).

In other words:

x := y/a and Q(y/a) := P (y) =⇒ Q(x) = p+ q Q(2x− 1).

The probability to reach the fortune a starting with an initial fortune y ∈ [0, a] is de�ned
by the function Q(y/a) with

Q(x) :=

{
p Q(2x) if x ≤ 1/2

p+ q Q(2x− 1) if 1/2 ≤ x ≤ 1,

with the boundary conditions (Q(0), Q(1)) = (0, 1).
Now compute Q(i/2n) for i < 2n and n = 1, 2, 3. For n = 1 and i = 1 we have we have

Q(1/2) = p Q(1) = p.

For n = 2 and i = 1, 2, 3, we have

Q(1/4) = p Q(1/2) = p2 and Q(3/4) = p+ q Q

(
2

3

4
− 1

)
= p+ q Q(1/2) = p(1 + q).

For n = 3 and i ∈ {1, . . . , 7} we have

Q(1/8) = pQ(1/4) = p2Q(1/2) = p3

Q(3/8) = pQ(3/4) = p2(1 + q)

Q(4/8) = Q(1/2) = p
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and

Q(5/8) = p+ q Q

(
2

5

8
− 1

)
= p+ q Q

(
1

4

)
= p+ p2q = p(1 + pq)

Q(6/8) = Q (3/4) = p(1 + q)

Q(7/8) = p+ q Q

(
2

7

8
− 1

)
= p+ q Q

(
3

4

)
= p+ qp(1 + q) = p (1 + q(1 + q)) .

This ends the proof of the exercise.

Solution to exercise 495:
After n = (a + b) votes are counted, the di�erence of A votes and B votes is given by

Xn = (a− b). For any k such that 0 ≤ k ≤ n we let Xk be the di�erence of A votes and B
votes after counting k votes. After counting k votes, A has k+Xk

2 votes while B has k−Xk
2

votes. Given Xk+1, the di�erence of votes Xk can be Xk+1 + 1 if the (k + 1)-th vote was
for B; or Xk+1 − 1 if the (k + 1)-th vote was for A. In addition, we have

P(Xk = Xk+1 + 1 | Xk+1) =
[(k + 1)−Xk+1]/2

k + 1

P(Xk = Xk+1 − 1 | Xk+1) =
[(k + 1) +Xk+1]/2

k + 1
.

If we set

Mk :=
Xn−k

n− k
(⇒ M0 = (a− b)/(a+ b))

then we have

E(Mk | M0,M1, . . . ,Mk−1)

= E(
Xn−k

n− k
| Xn, Xn−1, . . . , X(n−k)+1) = E(Xn−k | X(n−k)+1)

=
[((n− k) + 1)−X(n−k)+1]/2

(n− k) + 1

(
X(n−k)+1 + 1

n− k

)

+
[((n− k) + 1) +X(n−k)+1]/2

(n− k) + 1

(
X(n−k)+1 − 1

n− k

)

=
1

2(n− k) + 2

[({
1 +

1

n− k

}
−
X(n−k)+1

n− k

)(
X(n−k)+1 + 1

)
+

({
1 +

1

n− k

}
+
X(n−k)+1

n− k

)(
X(n−k)+1 − 1

)]

=
1

2(n− k) + 2

[
2

(
1 +

1

n− k

)
X(n−k)+1 − 2

X(n−k)+1

n− k

]
=

X(n−k)+1

(n− k) + 1
= Mk−1.

In addition we have |Mk| ≤ n. We let T be the �rst time k = 0, . . . , n we have Xk = 0. At
that time 2 situations may occur:

• The candidate A is always ahead if and only if we have T = (n− 1) and MT = Mn−1 =
X1 = 1
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• Otherwise, as some time Xk hits the null axis and XT = 0 = MT .

We conclude that

E(MT ) = E(M0) =
Xn

n
=
a− b
a+ b

⇒ a− b
a+ b

= P(MT = 1) × 1 + P(MT = 0) × 0⇒ P(MT = 1) =
a− b
a+ b

.

This ends the proof of the �rst assertion.
Now we turn to the path counting problems.

• The number of permutations of the (a+b) ballots is clearly given by the number of possible
positions of A or B among (a+ b) ballots. One instance of a position is:

AA . . . AAA︸ ︷︷ ︸
a-times

BBBB . . . B︸ ︷︷ ︸
b-times

.

This number is clearly given by

(
a+ b
a

)
=

(
a+ b
b

)
.

• We need to �nd the number of paths with a up-steps and b down-steps where no step
ends on or below the (0, x)-axis. We observe that for k = n, Pn is the set of all the(
a+ b− 1

a

)
bad paths starting with a down-step (1,−n), and ∪0≤k≤nPk coincides

with all the possible "bad" paths.

Let P = P1P2 be a path in Pk, with k < n and path P1 ending with the �rst bad step
ending k units below (0, x). We denote by Q1 the path obtained by rotating P1 by π and
exchanging the end-points. By construction Q = Q1P1 starts with a down-step so that
Q ∈ Pn (and inversely). This shows that Card(Pn) = Card(Pk) for any k.

We deduce that

Card(P) =

(
a+ b
a

)
−
∑

0≤k≤n

Card(Pk)

=

(
a+ b
a

)
− (n+ 1)

(
a+ b− 1

a

)
=
a− nb
a+ b

(
a+ b
a

)
The last assertion follows trivially from:(

a+ b− 1
a

)
=

(a+ b− 1)!

a!(b− 1)!
=

b

a+ b

(
a+ b
a

)

=⇒ 1− (n+ 1)b

a+ b
=
a− nb
a+ b

.

• Checking the formulae Nn(a, 0) = 1 and Nn(nb, b) = 0 for any a, b > 0 is direct. The
recurrence formula is

Nn(a, b) = Nn(a− 1, b) +Nn(a, b− 1).

To show it inductively using the previous result, we calculate the r.h.s. in detail:

Nn(a− 1, b) +Nn(a, b− 1) =
(a− 1)− nb
(a− 1) + b

(
(a− 1) + b
a− 1

)
︸ ︷︷ ︸
= a
a+b

 a+ b
a


+
a− n(b− 1)

a+ (b− 1)

(
a+ (b− 1)

a

)
︸ ︷︷ ︸
= b
a+b

 a+ b
a


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The last assertion provides a proof by induction. Indeed:

a
(a− 1)− nb
(a− 1) + b

+ b
a− n(b− 1)

a+ (b− 1)

= a
((a− 1) + b)− (n+ 1)b

(a− 1) + b
+ b

(a+ (b− 1))− (n+ 1)(b− 1)

a+ (b− 1)

= (a+ b)− (n+ 1)b
a+ (b− 1)

(a− 1) + b
= a− nb.

This ends the proof of the exercise.

Solution to exercise 496:

• The random variables Xk are independent with distribution

P(Xn = 1) = . . . = P(Xn = n) = 1/n.

• The chance for Yk = q1 coincides with the probability that the candidate with quali�-
cation q1 appears among the �rst k interviewed candidates. This implies that P(Yk =
q1 | X1, . . . , Xk) = 1Xk=1

k
n .

• We have

P(YT = q1) =
∑

1≤k≤n

E (1T=nE (1Yn=q1 | (X1, . . . , Xn))) = E(fT (XT )).

• The Snell envelope associated with this optimal stopping problem is de�ned by the back-
ward induction

Vk(x) = fk(x) ∨ E(Vk+1(Xk+1) | Xk = x) = Max

fk(x),
1

k + 1

∑
1≤l≤(k+1)

Vk+1(l)


with the terminal condition Vn = fn.

We let mn be the �rst and unique value k : 2 ≤ k ≤ n such that

1

k
+

1

k + 1
+ . . .+

1

n− 1
≤ 1 <

1

k − 1
+

1

k + 1
+ . . .+

1

n− 1
.

For any n we notice that

Vn(x) = 1x=1 =⇒ 1

n

∑
1≤l≤n

Vn(l) =
1

n
.

This implies that

Vn−1(x) = Max

1x=1
n− 1

n
,

1

n

∑
1≤l≤n

Vn(l)


= Max

(
1x=1

n− 1

n
,

1

n

)
=
n− 1

n
Max

(
1x=1,

1

n− 1

)
,



Chapter 29 1253

so that
1

n− 1

∑
1≤l≤(n−1)

Vn−1(l) =
n− 2

n

(
1

n− 2
+

1

n− 1

)
.

In the same way, when (n− 1) ≥ mn we have

Vn−2(x) = Max

(
1x=1

n− 2

n
,
n− 2

n

(
1

n− 2
+

1

n− 1

))
=

n− 2

n
Max

(
1x=1,

(
1

n− 2
+

1

n− 1

))
,

so that

1

n− 2

∑
1≤l≤(n−2)

Vn−2(l) =
1

n

(
1 + (n− 3)

(
1

n− 2
+

1

n− 1

))

=
n− 3

n

(
1

n− 3
+

1

n− 2
+

1

n− 1

)
.

Iterating we �nd that

Vk(x) =
k

n
Max

(
1x=1,

(
1

n− 1
+ . . .+

1

k + 1
+

1

k

))
for any k ≥ mn with

1

k

∑
1≤l≤k

Vk(l) =
1

n

(
1 + (k − 1)

(
1

n− 1
+ . . .+

1

k + 1
+

1

k

))

=
k − 1

n

(
1

n− 1
+ . . .+

1

k
+

1

k − 1

)
.

Notice that for k = mn we have

1

mn

∑
1≤l≤mn

Vmn(l) =
mn − 1

n

(
1

n− 1
+ . . .+

1

mn
+

1

mn − 1

)
︸ ︷︷ ︸

>1

.

This implies that the function Vmn−1 is the constant function

Vmn−1(x) =
mn − 1

n

(
1

n− 1
+ . . .+

1

mn
+

1

mn − 1

)
so that

1

mn − 1

∑
1≤l≤mn−1

Vmn−1(l) = Vmn−1(x).

This implies that

Vmn−2(x) =
mn − 1

n
Max

mn − 2

mn − 1︸ ︷︷ ︸
<1

,

(
1

n− 1
+ . . .+

1

mn
+

1

mn − 1

)
︸ ︷︷ ︸

>1


and therefore

Vmn−2 = Vmn−1.
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Iterating this procedure, we prove that

∀k < mn Vk = Vmn−1.

This implies that

sup
T∈Tn

P(YT = q1) = V1(1) =
mn − 1

n

(
1

n− 1
+ . . .+

1

mn
+

1

mn − 1

)
.

• The optimal policy is de�ned by

T = inf {1 ≤ k ≤ n : k 1Xk=1 = n Vk(Xk)}
= inf {mn ≤ k ≤ n : k 1Xk=1 = n Vk(Xk)} = inf {mn ≤ k ≤ n : Xk = 1}.

The last assertion follows from the fact that

∀mn ≤ k ≤ n ∀x ∈ {2, . . . , n} (0 < n Vk(x) <)n Vk(1) = k.

We conclude that the optimal strategy is to reject the �rst mn − 1 candidates, and to
continue the interviewing until we �nd the best candidate among those examined so far.

This ends the proof of the exercise.
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Solution to exercise 497:
If we set

P
(
S1 = s0,1 | S0 = s0

)
=

s0,2 − s0

s0,2 − s0,1

P
(
S1 = s0,2 | S0 = s0

)
=

s0 − s0,1

s0,2 − s0,1
= 1− s0,2 − s0

s0,2 − s0,1

then we �nd that

E
(
S1 | S0 = s0

)
= s0,1

s0,2 − s0

s0,2 − s0,1
+ s0,2

s0 − s0,1

s0,2 − s0,1

=
s0s0,2 − s0s0,1

s0,2 − s0,1
= s0.

In the same way, if we set

P
(
S2 = s(0,1),1 | S1 = s0,1

)
=

s(0,1),2 − s(0,1)

s(0,1),2 − s(0,1),2

P
(
S2 = s(0,1),2 | S1 = s0,1

)
=

s(0,1) − s(0,1),1

s(0,1),2 − s(0,1),1
= 1−

s(0,1),2 − s(0,1)

s(0,1),2 − s(0,1),1

and

P
(
S2 = s(0,2),1 | S1 = s(0,2)

)
=

s(0,2),2 − s(0,2)

s(0,2),2 − s(0,2),2

P
(
S2 = s(0,2),2 | S1 = s(0,2)

)
=

s(0,2) − s(0,2),1

s(0,2),2 − s(0,2),1
= 1−

s(0,2),2 − s(0,2)

s(0,2),2 − s(0,2),1

then we have

E
(
S2 | S1 = s(0,1)

)
= s(0,1) and E

(
S2 | S1 = s(0,2)

)
= s(0,2).

This ends the proof of the exercise.

Solution to exercise 498:
Applying the Doeblin-It	o formula to the function

g(t, x) = exp

(
σx+ t

(
r − σ2

2

))
we �nd that

dg(t,Wt) = ∂tg(t,Wt) dt+ ∂xf(t,Wt) dWt +
1

2
∂2
xf(t,Wt)dWtdWt

=

(
r − σ2

2

)
g(t,Wt) dt+ σ g(t,Wt) dWt +

1

2
σ2 g(t,Wt)dt

= r g(t,Wt)dt+ σ g(t,Wt) dWt.

1255
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We conclude that

(St/S0) = g(t,Wt) =⇒ d(St/S0) = r (St/S0) dt+ σ (St/S0) dWt

⇐⇒ dSt = r St dt+ σ St dWt.

This ends the proof of the exercise.

Solution to exercise 499:
We have

Sαt := exp
(
σWαt + αt

(
r − σ2

2

))
≥ Sβt := exp

(
βσWt + βt

(
r − σ2

2

))
⇔ (β − α)

(
r
σ −

σ
2

)
t ≤ (Wαt − βWt) = (Wαt −Wt) + (1− β)Wt.

Observe that
(Wαt −Wt) + (1− β)Wt

is a centered Gaussian random variable with variance

E
(

[(Wαt −Wt) + (1− β)Wt]
2
)

= E
(

(Wαt −Wt)
2
)

+ (1− β)2 E
(
W 2
t

)
=

[
(α− 1) + (1− β)2

]
t.

This implies that

P
(
Sαt ≥ Sβt

)
= P

(
W1 ≤

(β − α)
(
r
σ −

σ
2

)√
[(α− 1) + (1− β)2]

√
t

)
.

This ends the proof of the exercise.

Solution to exercise 500:
By (30.12) the process St is an Ft-martingale. In addition by (30.8) we have

St := S0 exp

(
σWt −

σ2t

2

)
= e−rt St.

This implies that

E (e−rt St | Fs) = E
(
St | Fs

)
= Ss = e−rs Ss

=⇒ E (St | Fs) = er(t−s) Ss.

This ends the proof of the exercise.

Solution to exercise 501:
Using the elementary formula a = a+−a− which is valid for any real number a ∈ R, we

check that
P call
t − Pput

t = E
(
ST | S0

)
−KT = S0 −KT .

This ends the proof of the exercise.
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Solution to exercise 502:
We clearly have V2 = f . Using the neutral probability obtained in exercise 497, we have

V1(s0,1) := E
(
f(S2) | S1 = s0,1

)
= f(s(0,1),1)

s(0,1),2 − s(0,1)

s(0,1),2 − s(0,1),2
+ f(s(0,1),2)

s(0,1) − s(0,1),1

s(0,1),2 − s(0,1),1

and

V1(s0,2) := E
(
f(S2) | S1 = s0,2

)
= f(s(0,2),1)

s(0,2),2 − s(0,2)

s(0,2),2 − s(0,2),2
+ f(s(0,2),2)

s(0,2) − s(0,2),1

s(0,2),2 − s(0,2),1
.

Finally, for k = 0 we have

V0(s0) := E
(
f(S2) | S0 = s0

)
= E

(
E
(
f(S2) | S1

)
| S0 = s0

)
= E

(
V1(S1) | S0 = s0

)
= V1(s0,1)

s0,2 − s0

s0,2 − s0,1
+ V1(s0,2)

s0 − s0,1

s0,2 − s0,1
.

This ends the proof of the �rst assertion. Now we turn to the self-�nancing portfolio
strategy. The idea is to have

∀0 ≤ k ≤ 2 Pk(b) = Vk(Sk).

This shows that P0(b) = V0(s0), and

∆Pk(b) = bk−1 ∆Sk = ∆Vk(Sk) = Vk(Sk)− Vk−1(Sk−1).

Considering the two cases S1 ∈ {s0,1, s0,2}, this implies that{
b0 (s0,1 − s0) = V1(s0,1)− V0(s0)
b0 (s0,2 − s0) = V1(s0,2)− V0(s0)

}
⇒ b0 =

V1(s0,2)− V1(s0,1)

(s0,2 − s0,1)
.

In much the same way, if S1 = s0,1, then we have{
b1 (s(0,1),1 − s0,1) = V2(s(0,1),1)− V1(s0,1)
b1 (s(0,1),2 − s0,1) = V2(s(0,1),2)− V1(s0,1)

}
⇒ b1 =

V2(s(0,1),2)− V2(s(0,1),1)

(s(0,1),2 − s(0,1),1)

and when S1 = s0,2 we have{
b1 (s(0,2),1 − s0,2) = V2(s(0,2),1)− V1(s0,2)
b1 (s(0,2),2 − s0,2) = V2(s(0,2),2)− V1(s0,2)

}
⇒ b1 =

V2(s(0,2),2)− V2(s(0,2),1)

(s(0,2),2 − s(0,2),1)
.

In summary, the strategy is given by

b1 =
V2(s(0,1),2)− V2(s(0,1),1)

(s(0,1),2 − s(0,1),1)
1S1=s0,1

+
V2(s(0,2),2)− V2(s(0,2),1)

(s(0,2),2 − s(0,2),1)
1S1=s0,1

.

The initial value of the portfolio corresponds to the price of the call option. This ends the
proof of the exercise.

Solution to exercise 503:
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• We have

In = a+ b (In−1 − a) + σ Wn = α+ bIn−1 + σWn with α = a(1− b)
= α+ b (α+ bIn−2 + σWn−1) + σWn

= α(1 + b) + b2In−2 + bσWn−1 + σWn

= α(1 + b) + b2 (α+ bIn−3 + σ Wn−2) + σ (b Wn−1 +Wn)

= α(1 + b+ b2) + b3In−3 + σ
(
b2Wn−2 + b Wn−1 +Wn

)
.

Iterating this procedure, we �nd that

In = bnI0 + a(1− b)
∑

0≤k<n

bk + σ
∑

0≤k<n

bkWn−k = a+ bn(I0 − a) + σ
∑

0≤k<n

bkWn−k.

Notice that

Law

 ∑
0≤k<n

bkWn−k

 = Law

 ∑
0≤k<n

bkWk

 = N

0,
∑

0≤k<n

b2k

 = N
(

0,
1− b2n

1− b2

)
.

This yields

lim
n↑∞

Law (In) = N
(
a,

σ2

1− b2

)
.

On the other hand, we have

Law (I0 − a) = N
(

0,
σ2

1− b2

)
⇒ Law (I1 − a) = Law (b (I0 − a) + σ Wn)

= N
(

0, b2 σ2

1−b2 + σ2
)

= N
(

0, σ2

1−b2

)
.

The �rst assertion is now easily completed.

• We have

Mn = b−n (In − a) = (I0 − a) + σ
∑

0≤k<n

b−(n−k)Wn−k

= (I0 − a) + σ
∑

1≤k≤n

b−kWk = Mn−1 + b−nWn.

This implies that Mn is a martingale. In addition, we have

M2
n −M2

n−1 =
(
Mn−1 + b−nWn

)2 −M2
n−1

= 2b−n Mn−1 Wn + b−2nW 2
n .

This yields

Mn −Mn−1 = (1− b2)
[ (

M2
n −M2

n−1

)
− b−2nσ2

]
= (1− b2) b−n

[
2Mn−1Wn + b−n

(
W 2
n − σ2

)]
.

This clearly implies that Mn is a martingale.

This ends the proof of the exercise.

Solution to exercise 504:
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By construction, we have

E(Mn | L0, . . . , Ln−1)

=
∑

0≤k≤Ln−1

(
Ln−1

k

)(
ln
ln−1

)k (
1 + α

ln

)k (
1− ln

ln−1

)Ln−1−k

=
(

ln
ln−1

(
1 + α

ln

)
+
(

1− ln
ln−1

))Ln−1

=
(

1 + α
ln−1

)Ln−1

= Mn−1.

This ends the proof of the exercise.

Solution to exercise 505:
In the time homogeneous settings, formula (30.6) is clearly given by

Shtn+h = Shtn exp
(
−rh+ εnσ

√
h
)

with a collection of independent {−1,+1}-valued Bernoulli random variables with common
law

ph = P (εn = −1) =
eσ
√
h − erh

eσ
√
h − e−σ

√
h

qh = P (εn = +1) =
erh − e−σ

√
h

eσ
√
h − eσ−

√
h
.

This shows that the one step transitions Th of the Markov chain Mh
tn on a time step h are

given for any bounded function f by the formula

Th(f)(x) = f (x yh) ph + f (x zh) qh

with
yh = e−rh−σ

√
h and zn = x e−rh+σ

√
h.

A simple Taylor expansion of the second order gives

f (x yh)− f(x) = f ′(x) x(yh − 1) +
1

2
f ′′(x) x2 (yh − 1)2 + O(h

√
h)

f (x zh)− f(x) = f ′(x) x(zh − 1) +
1

2
f ′′(x) x2 (zh − 1)2 + O(h

√
h).

On the other hand, we have

(zh − 1) qh =
[
e−rh+σ

√
h − 1

] erh − e−σ
√
h

eσ
√
h − eσ−

√
h

=
1

2 sinh (σ
√
h)

{[
eσ
√
h + e−σ

√
h
]
−
[
erh + e−rh

]}
=

1

sinh (σ
√
h)

[
cosh (σ

√
h)− cosh (rh)

]
,

and

(yh − 1) ph =
[
e−rh−σ

√
h − 1

] eσ
√
h − erh

eσ
√
h − e−σ

√
h

= −
[
e−σ
√
h − erh

]
e−rh

erh − eσ
√
h

eσ
√
h − e−σ

√
h

= −(zh − 1) qh.
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This implies that

[Th(f)(x)− f(x)]

= [f (x yh)− f(x)] ph + [f (x zh)− f(x)] qh

= 1
2 f
′′(x) x2

[
(yh − 1)2ph + (zh − 1)2qh

]
+ O(h

√
h).

To take the �nal step, we observe that

(yh − 1)2ph + (zh − 1)2qh = [zh − yh] [zh − 1] qh

= e−rh
[
σ
√
h − e−σ

√
h
]

[zh − 1] qh

= 2e−rh sinh (σ
√
h) [zh − 1] qh

= 2 e−rh
[
cosh (σ

√
h)− cosh (rh)

]
= σ2h+ O(h2).

This ends the proof of the exercise.

Solution to exercise 506:
By construction, we have

qs(x) = PVs,t(1)(x)

with the Feynman-Kac semigroup

PVs,t(f)(x) := E
(
f(Xt) exp

[
−
∫ t

s

V (Xr) dr

]
| Xs = x

)
.

By (15.31) we have

∂sP
V
s,t(1) = −LVs (PVs,t(1))⇐⇒ ∂sqs = −LVs (qs).

In the �rst situation, we have

Xt = Xs + b (t− s) + σ (Wt −Ws).

This implies that

qs(x) = E
(

exp

[
−
∫ t

s

[x+ b (r − s) + σ (Wr −Ws)] dr

]
| Xs = x

)
= e−x(t−s)−b (t−s)2/2 E

[
exp

[
−σW t−s

]]
with

W t−s :=

∫ t−s

0

Wr dr.

We also notice that W s is a centered and Gaussian random variable with variance

E

[(∫ t−s

0

Wr dr

)2
]

=

∫ s

0

∫ s

0

E [Wr1Wr2 ] dr1dr2

= 2

∫ s

0

[∫ r2

0

r1 dr1

]
dr2 = s3/3.
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The last assertion comes from symmetry arguments and the fact that

r1 ≤ r2 ⇒ E (Wr1Wr2) = E (Wr1Wr1) +

=0︷ ︸︸ ︷
E (Wr1(Wr2 −Wr1)) = r1.

This implies that

E
[
exp

[
−σW t−s

]]
= exp

[
σ2 E

(
W

2

t−s

)
/2
]

from which we conclude that

log [qs(x)] = −x(t− s)− b (t− s)2/2 + σ2(t− s)3/6.

In the second case, using the exercise 255, we have

Xt −X0 =

∫ t

0

a (b−Xs) ds+ σ Wt

= abt− a

∫ t

0

Xs ds+ σWt.

This implies that

−
∫ t

0

Xs ds =
Xt −X0

a
− bt− σ

a
Wt.

On the other hand, by exercise 255 we have

Xt −X0

a
=

(b−X0)

a

(
1− e−at

)
+
σ

a

∫ t

0

e−a(t−s) dWs.

This implies that

−
∫ t

0

Xsds =
(b−X0)

a

(
1− e−at

)
− bt +

σ

a

[ ∫ t

0

e−a(t−s) dWs −Wt

]
=

(b−X0)

a

(
1− e−at

)
− bt − σ

a

∫ t

0

(
1− e−a(t−s)

)
dWs.

To take the �nal step, observe that W s,t :=
∫ t

0

(
1− e−a(t−s)) dWs is a centered and

Gaussian random variable with variance

E

[(∫ t

0

(
1− e−a(t−s)

)
dWs

)2
]

=

∫ t

0

(
1− e−a(t−s)

)2

ds =

∫ t

0

(
1− e−as

)2
ds

= t− 2

a

(
1− e−at

)
+

1

2a

(
1− e−2at

)
=: α(t).

This implies that

qs(x) = E
(

exp

[
−
∫ t

s

Xrdr

]
| Xs = x

)
= E

(
exp

[
−
∫ t−s

0

Xrdr

]
| X0 = x

)
= exp

[
(b− x)

a

(
1− e−a(t−s)

)
− b(t− s)

]
E
[
exp

[
−σ
a
W s,t

]]
= exp

[
(b− x)

a

(
1− e−a(t−s)

)
− b(t− s) +

1

2

(σ
a

)2

α(t− s)
]
.

This ends the proof of the exercise.
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Solution to exercise 507:
By (15.31) we have

∂sus(x) = − [Ls(us)− rsus] (x) = −x rs(x)∂xus(x)− 1

2
σs(x)x2∂2

xus(x) + rs(x)us(x)

with the terminal condition ut = ft for s = t. In the above display Ls stands for the
generator of the di�usion Xs de�ned by

Ls(f)(x) = rs(x) x ∂x(f)(x) +
1

2
σs(x) x2 ∂2

x(f)(x).

This ends the proof of the �rst assertion.
To check the second one, by (15.31) we have the forward equation

∀t ∈ [s,∞[ ∂tQs,t(f) = Qs,t(Lt(f))− rtf

with the initial condition Qs,s(f) = f . Using the fact that

Qs,t(f)(x) =

∫
qs,t(x, y) f(y) dy

a simple integration by parts yields

∂tQs,t(f)(x) = =

∫
[∂tqs,t(x, y)] f(y) dy

=

∫
qs,t(x, y) y rt(y) ∂yf(y) dy

+
1

2

∫
qs,t(x, y) σt(y)y2 ∂2

yf(y)−
∫

qs,t(x, y) f(y) rt(y) dy

= −
∫
∂y (y rt(y) qs,t(x, y)) f(y) dy

+

∫ [
1

2
∂2
y

(
σt(y)y2qs,t(x, .)

)
+ rt(y)qs,t(x, y)

]
f(y) dy

for any smooth function f with compact support. We conclude that the density function
(t, y) 7→ qs,t(x, y) is a weak solution of the forward equation

∂tqs,t(x, y) = −∂y (y rt(y) qs,t(x, y)) +
1

2
∂2
y

(
σt(y)y2qs,t(x, y)

)
− rt(y)qs,t(x, y)

for any t ∈ [s,∞[, with the initial condition qs,s(x, y)dy = δx(dy). This yields

∂zvs,t(x, z) = −
∫ ∞
z

qs,t(x, y) dz ⇒ ∂2
zvs,t(x, z) = qs,t(x, z).

This ends the proof of the exercise.




