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Chapter 1

Solution to exercise 1:
By (1.1), we have

E(X,) =E(X,—1)=...=E(Xy) =0
and

Var(X,) = Var z Uy | =nEU?) =n.
1<k<n

This ends the proof of the exercise.

Solution to exercise 2:

In order to come back to the origin, the walker must take an equal number of positive
and negative steps in each direction. Thus, we clearly have P (Xs,11 = 0) = 0. In addition,
since the variables U in (1.1) are independent and identically distributed, each of the

( 277 ) possible paths of the same length 2n is equally likely. This implies that

P (X3, =0) = ( 2: ) 27" x 27",

For any n > m, the walker who starts at the origin and reaches (2m) at time (2n), must
have made (n + m) steps upwards and (n — m) steps downwards, so that

_ _ 2n —(n+m) o—(n—m) _ 2n —2n
P(Xgn—Zm)—(n+m)2 2 =( e )2

This ends the proof of the exercise. [

Solution to exercise 3:
If s <t we have
N, = (N, — N,) + N,.
i No=0 No=0
By the independence property between (Ny — Ny) =" and N, =" (
that

N, — Ny), we prove
E(N:N,) = E (Nt — No)N,) + E(N7) = E(N; — No) E (N,) + E(N?).
On the other hand (NV; — N;) law N;_,, so that
E(N¢N,) =E (N;_,) E(N,) + E(N2).
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842 Chapter 1

Finally,
Y Cov(N,, N;) = E (N;_) E(N,) + E(N?) — E(N,)E(Ny).

This ends the proof of the exercise. [

Solution to exercise 4:
By construction, we have X; = (—1)™t X;. This ends the proof of the exercise. [

Solution to exercise 5:
We clearly have
E(X;) =E((-D™) E(Xo) = 0.

In addition, using the fact that
Niys = (Niws — Ni) + (N — No)
and the independence property between (Nyys — N;) and (N; — Ny), we prove that
E(XiXpws) = E((-)Y ()M N

- E ((_1)(Nt+s_Nt)) .

Recalling that (N;+s — N¢) has the same law as Ny, we conclude that

E(X:Xis) = E((-DM)
_ —As ()‘S)n n __ ,—As (_)‘S)n _ _—2Xs
= e Z o ()" =e Z = .
n>0 n>0
This ends the proof of the exercise. [

Solution to exercise 6:

We let ng < T < np be the first time a path from P, to P; hits the time axis. Reflecting
the path from Py to (7,0) w.r.t. the time axis we obtain a path from P, to (T,0), and
inversely. This procedure gives a correspondence between the set of paths from Py to P; that

hit the time axis at some time ng < T < n; and the set of all paths from Py := (ng, —Zn,)
to Py (that necessarily hit the time axis at some time ng < T < ny).
This ends the proof of the exercise. [

Solution to exercise 7:
By construction, the probability density of Z; ,, is given by

Plen = 1) % 4(0) + Blen = 0)x PEZ2D—p gq) 4 1 p PIOZPIE) ),

This shows that p; is the probability density of Z;,, for ¢ = 1,2. The independence
property of the random variables (Z; ,)n>0 is immediate, for i = 1 or ¢ = 2. We let
T=inf{n>1 : ¢, =1} be the first time ¢, = 1. We have

Z17T2Z27T and P(T>H)ZP(€1 :0,...,6n=0):P(61 ZO)nZ(l—p)n

This shows that T is a geometric random variable and so it is finite.
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This ends the proof of the exercise. ]

Solution to exercise 8:
We let X7 be the Bernoulli random variable taking the value 1 if the i-th guess is correct,
and 0 otherwise. Without any information, we have

X= )Y X'=sEX)= Y EX)= > PX'=1)= Y %:1.
1<i<n 1<i<n 1<i<n 1<i<n

If the cards are shown after each guess, the best strategy is to choose one of the cards
which has not been shown. Therefore

1 1 1 1
E(X)=—+ +...+§+1: Z;:logn.

1<i<n

This ends the proof of the exercise. ]

Solution to exercise 9:

For m = 1 the claim is obvious. We assume that the claim is true at some rank m.
At the (m + 1)-step, the element a(i) (with 1 < ¢ < m) is in position j < m only if it
was there at rank m (with probability 1/m under the induction hypothesis), and if it was
not swapped with a(m + 1) (with probability m/(m + 1); the chance to pick a(i) with
1 <4 <m). Multiplying these two probabilities gives the total probability 1/(m + 1).

The element at the last position and the location of a(m 4+ 1) are obvious.

This ends the inductive proof of the exercise. [






Chapter 2

Solution to exercise 11:
e For the Bernoulli distribution p(z) = p*(1 — p)! =%, with p € [0,1] and z € {0, 1}, we have

o(s) = E(s¥)=ps+(1—p)s"=ps+(1-p).

e For the Binomial distribution p(z) = ( Z >px(1 —p)" %, with p € [0,1] and = €

{0,...,n} for some n € N, we have

pls) = Z( . ) pr=pt
- o;n ( Z ) (sp)*(L=p)" " = (L =p) +ps)" .

e For the Poisson distribution p(x) = e *\*/z!, with A > 0 and z € N, we have

o(s) = e Zs"” AT /!

x>0

= e Z(s)\)””/x! =g MsA = A1),
x>0

e For the Geometric distribution p(z) = (1 — p)*~!p, with A > 0 and z € N — {0}, we have

p(s) = py s (1-p"!

r>1
= ps Z 7L (1 —p)" !t =ps Z(s(l —p)*=ps/(1—s(1-p)).
z>1 x>0
This ends the proof of the exercise. ]

Solution to exercise 12:
By construction, we have

E(Nni1) = E[E[ > X [N,
1<i<N,

= E{ Y E(X),|N)|=EWN,)m.

1<i<N,
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846 Chapter 2

Var(Noj1) = E(N2) — (E(Nps1))?
= E|E ( Z Xfl) | No | | = (E(Nns1))?
1<i<N,

On the other hand, we have

2
>ooX N
1<i<Nn

This implies that

NaE(X?) + N (N, — 1) (E(X))?

N,, Var(X) + N2m?

Var(Npss) = E(Ny) Var(X) + E(N2)m? — (B(No1))?
= E(N,) Var(X) + Var(Na)m? + [(E(N,) m)” = (E(Na11)’]
= m? Var(N,) + E(N,) Var(X).
We conclude that
Var(Ny11) = m® [m? Var(Nn 1) + E(Ny—1) Var(X)] + E(N,,) Var(X)
= m* Var(N,_1) + [m°E(N,—1) + E(N,,)] Var(X)
= m® Var(N,_2) + [m*'E(N,—2) + m*E(N,—1) + E(N,,)] Var(X)

= m*") Var(No) + Var(X) > m>E(N,_),
0<k<n

so that

Var(Np11) = m*"+ Var(No) + Var(X) m™ (E(No)" Y (m/E(No))*.

When Ny =1 we have Var(Np) = 0 and E(Ny) = 1. In this case, we have

n Var(X) when m=1
Var(Nn) = Var(X Z m* { Var(X) m"~' ™=l when m # 1.
0<k<n m=
This ends the proof of the exercise. ]

Solution to exercise 13:

We have

Pn(s) = E(E(s" | Nn_l)):]E( 11 ]E(SXZ,| Nn_1>)

= E(E(s*)") =E(01(9)V) = pu1 (91(5)).
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Recalling that 0° = 1, this implies that
©on(0) = E(0N") =1 x P(N,, = 0) = P(N,, = 0).

For the Bernoulli offspring distribution p(z) = p®q¢' =%, with ¢ := (1 — p),p € [0,1] and
x € {0,1}, we have

pi(s) = q+ps
©a(s) = @1(g+ps)=q+plg+ps)=q(l+p)+p’s
p3(s) = walg+ps)=q(l+p)+p*(q+ps)=q(l+p+p*) +p°s
' ' B o n— n q n T T T
on(s) = ql+p+p*+...+p" H+p S:ﬂ(l_p)—HD s=(1—p")+p"s.

The last assertion follows from the fact that ¢, (s) = (1—p™)+p™s is the moment generating
function of a Bernoulli random variable N,, with parameter p™; that is, we have that

P(N,=1)=p" and P(N,=0)=1-p".
This ends the proof of the exercise. -

Solution to exercise 14:
We set g = (g6 (j))jes. In this notation, we have

El S0 fE) g &)= > g(&)Fe.

1<i<N; 1<i<No

This implies that

El D> fE@)I&|= > G(&) f&)

1<i<N; 1<i<No
and therefore
El Y fE& )= Y m(Gf) =Now(Gf). (30.18)
1<i<Ny 1<i<No

In the same vein, we have
E( S e IN &)= E(fE)I&)= Y MPHE)
1<i<Ny 1<i<Ny 1<i<Ny
Using (30.18), we readily deduce that
Bl Y SE)|=E| > MAE) | =Nom(GM()). (30.19)
1<i<Ny 1<i<Ny
In much the same way, if we set gi = (g} (j))jeS then we have

El Y r@)lghal= > g (&) e

1<i< Ny 1<i<N,
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This implies that

El X fE) & | = > G&) f&).

El Y fE)|=E| Y G(&) fE) ] = Nom(QGS)). (30.20)

1<i<N, 1<i<N;

Arguing as above we have

El 3 s v &)= Y B(re &)= X ME).

1<i<N 1<i< Ny 1<i<N

Using (30.20) we deduce that

El Y fE) | =B > MUE) | =Nom(QGM(f)) = No no(Q*(f)).

1<i<N, 1<i<N,
(30.21)
The last assertion is proved using induction. This ends the proof of the exercise. [
Solution to exercise 15:
By construction, we have
P (X X X = — 1x, (i) + (i) (30.22)
il =1 X)) = — i 7). .
n+1 Ly--yAn n+an1<p<n Xp n+a'u

The number of different tables occupied by the first n customers is defined by
T, = Z €p
1<p<n

where €, stands for a sequence of independent Bernoulli random variables with distribution
e

a+(n—1)

This implies that

Z/ 1+t/a <E(T) = Z 7< Z/ll+t/a

1<p<n O§p<n 1<p<n

We conclude that

" dt a+n n—1 dt
/1 MW—QIOg(CM)SE(Tn)S/O mzalog(l—i—(n—l)/a),

The formula

ap(i) + Vi (4)

P (X1 =i | Xu,oo, Xn) = =

with V(i) = Y 1x,(i)

1<p<n
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is a direct consequence of (30.22).
This ends the proof of the exercise.

Solution to exercise 16:
For each s € S and = = (z1,...,2n41) we let ti(s,z) € {1,...,n + 1}, with
L,...,vnq1(s) be the times at which z, (, ;) = s. In this notation, we have

au(s) +k
P(X1:$1,...,Xn+1:1~n+1) — H H
SES 0<k<vn41(s) a+ (tg(s,z) — 1)

0<t<n $€S 0<k<vp41(s)

Mo I I e n.
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In the last assertion we have used the fact that 7 (s,x) := {tx(s,2) , k =1,...,0041(9)},

with s € S is a partition of the set {1,...,n+ 1}

UsesT (s,2) ={1,...,n+ 1}

The formula (2.6) coincides with (4.9) when a; = au(s). Following the arguments described
on page 79, we conclude that (X;);>1 can be interpreted as a sequence of independent
random variables on the set S := {1,...,d} with probability distribution given by (2.7).
By the law of large numbers, given U check that + >, <p<n 1x, (i) converges almost surely

to U;, as n 1 co. In addition, we have

1 1
E{= > 1x,( =U; ) D S
n Xp (Z) | U U; and Var XP(Z) ‘ U

1
n n
1<p<n 1<p<n

This ends the proof of the exercise.

Solution to exercise 17:
The first assertion is immediate. In addition, we have that

n

S = (; PO EARE f(Xn)>
k=0

1
= o Sn—l(f)"’m f(Xn).

By construction, we have
E(f(Xn41) [ Xo,..., Xn) =€ Su(f) + (1 =€) u(f)
In other words, this yields
E([f (Xn41) = (] | Xo,-.., Xn) = € Su(lf — u()]) -
Thus, for any function f such that zu(f) = 0, we have
E(f(Xnt1) | Xos-o s Xn) =€ Sulf) = mura(f) = € Sulf) -

Recalling that
E(f(Xnt1)) = E(B(f(Xnt1) | Xo, ..., Xn))

(Ui(1 = Uy)).
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we prove that

1
n+1

Sulf) = g Sl
n—+e

= n+1><§n71(f)

_ ont+e_ (n—1)+e 4 | yr k+e
n+1x(n—1)+1XS”Q(f)_"'_[H

E(f(Xn))

We observe that

k§t§k+1¢10g<1(1k6)> §1og(1(1t6)> §log(1(1€)>.

This implies that

Z /:H log (1 _a ; 6)) dt <logac(n)

1<k<n

logae(n) < > /:+2 log (1 _a- 6)) dt.

1<k<n K+l t

and

This ends the proof of (2.8). Using the estimates
Vo € [0,1] —%glog(l—x)g—x

we check that

and

/1% log (1 - (126)) dt > —(1 —€) log (1 +n/e).

The end of the proof of the exercise is immediate.

Solution to exercise 18:
By construction, we have

M(f)(@) = e K(/)(i))+ A —e) v(f) = [M(f)E)—M(f)(G)] =e [K)E) - KF))]
= osc(M(f)) < € osc(f).

Assuming that osc(M"(f)) < €® osc(f) is true at rank n, we have
osc(M™(f)) = ose(M(M(1))) < € ose(M(f)) < ¢+ osc(f).
Recall that
f=1=M"(f)(i) = M"(i,k) = P(X,, = k| X =1).

The end of the proof of the exercise is now clear. [
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Solution to exercise 19: The first assertion is immediate since dgt/t = W; th. To
check the second one, we observe that

Xn =an n1+b [ﬁ

with the sequence of random variables

X0—|- Z H aq bp

1<p<n |n2>g¢>p

an=1—¢€)+e, 4 =47 and b,=(1—¢,)h
Using the fact that

Law ((@1,...,Gpt1,---5an), (b1, .., bp, ..., b))

Law ((an, .-, Gnep,---501), (bny .., bp—py1,...,b1)).
we check that
la
Z H = Z - Op—p b(n p)+1 = Z [al . ~~ap} b;D—i-l
1<p<n n>q>p 1<p<n 0<p<n

The end of the proof of the exercise is now clear. [

Solution to exercise 20:
We have

]P(XT = J}maX‘XQ = .%‘)
= E (P(XT = Tmax | Xl)‘XO = I)

=p P Xr=2max | X1 =2+ 1)+(1 —p) P(Xp =2max | X1 =2 —1).

:=P(z+1) =P(z—1)

On the other hand
P(z) =pP(x)+qP(x)=p Plx+1)+q Pz — 1)

= p[P(e +1) - P(2)] = q[P(z) - P(x - 1)
= [P(e +1) - P(2)] = 2 [P() — Pz~ 1)].

Recalling that P(0) = 0, this yields

By a simple induction w.r.t. = we find that

(P(a) — P(r—1)] = (p) ()

q

_Pip) - pa-1) = (P) PO.
[P +1) - P@)] = L Pe) - Pl 1) ()P<1>
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On the other hand, we have

Plo+) = Pat ) - POl = Y Pu+D-Pel-P0) Y (2)"

0<y<z 0<y<z

We end the proof using the fact that

2 =Tmax — 1= Pz +1) = Plomax) =1=P(1) > (p>y

0<y<zmax q
so that y
P\’
rPy=1/ > () :
0<y<zmax q
This implies that
x+1
()
v p
Zo<y<x (q) Tmax U P#(
Pz +1) = ;= 1_(g)
P
ZO<y<a¢ma,X (E) (I + 1) .
if p=gq.
Tmax

This ends the proof of the exercise. ]
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Solution to exercise 21:

We have
$2+%(y—\/(1—6)$)2 = x2+% (y2+(1—6)x2—2xy\/(1—6))
1 V(1 =€)

= - (2 +9?) - 20y Y2,
€ €
By the symmetry property of the last formula w.r.t. the pair (z,y) we readily check that

A@)P(z,y) = A(y) P(y, z).

Notice that v
m(y)Ply,x) _ e VW o Ay) Py, x) _ BV W)~V ()
m(x)P(z,y) e V@ = Nax)P(z,y) '

Thus acceptance ratio of the corresponding Metropolis-Hastings algorithm is given by

oz, ) = min (17 TW(W“)) ~ min (1, eV 0=V @),

m(z)P(z,y)
When . .
Mz)=1 and P(z,y) = N exp {—2 (y — x)2] = P(y,x)

we also have
A(@)P(2,y) = Ay) Ply, @) = a(,y) = min (1, 70OV,
This ends the proof of the exercise. ]
Solution to exercise 22:

The transition probabilities M (z,y) of the Metropolis-Hastings with proposal transition
P and target distribution 7w are given got any = € N by

) m(x+1)P(x +1,z)
M 1) = P 1 1
(@ +1) (@2 + >mm(’ @) Pz, + 1)
- z41
S SO Al i) I R P S
2 er A ]2 Tz+1

and for any x > 1

Maa=1) = Plew=1) min (12020 RE =)

x—1
L = 1 (1 :E)
= — min —————— | == min (1, <.
2 T % 2 A

853
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Notice that

rT<A<y= M(z,x+1)=1 M(z,z—1) =

M(y,y—1) =

=
=
S
+
—_
N
I
N|—=
=
-
IN IV
NI =
>|8

This ends the proof of the exercise. ]

Solution to exercise 23:
For 1 < i =j < d we clearly have 7' (i)M'(i,5) = «'(j)M'(j,7). For 0 < i # j < d,
recalling that /(i) o< 7(i) we have
m(i)M' (i, ) = m())M (i, ) = m(§)M(j,4) = 7(§)M'(5,1) = «' ()M (i, ) = 7' (5)M'(5, ).

The last case is obvious.
This ends the proof of the exercise. [

Solution to exercise 24:
We clearly have

1 1
1M =1+« — M =—— < 7M =m.
xze; (z,9) ;e; card(S) (z,9) card(S) i T

This ends the proof of the exercise. [

Solution to exercise 25:
Using the regression formula (3.4), we have

2
2 —2 —2

My = My, + (yn —my) and o, °=7"°"40,".

_In
o2 + 712
Using the prediction rule (3.5) we have

~ 2 ~2 2
Mpy1 =My, and o, =0, +0°.

This implies

2 2
Mpy1 = ———> M Tn y
n - n n
724+ 02 2402
from which we conclude that
/ o 2 1 72 /
[t =mp] = s [ —mi] = gz (Mo —mal.
n 0<k<n n

We end the proof using the fact that 02, = 62 4+ 02 > ¢%. This ends the proof of the
exercise. -

Solution to exercise 26: Notice that the density of the observation variable Y,, given
X, =z, is given by the Gaussian density

1 1
P(YnlTn) = Tomr P (_w(y” - xn)Q)-
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Initially, we start by sampling N i.i.d. random copies & := (£})1<;<n of the signal Xj.

A ~.

N
Given the observation Yy = yo we sample N random variables &, := (fé)lgig ~ with the

discrete distribution v
L5 (yo—&Y)?

Z e 272

1<i<N Z1gjgN e

— Ogi.
S (yo—€h)2 S0
In other words, each random variable ?0“ is sampled according to the probability measure
6*2%2(740*53)2

1 AV
— 5.2 (yo_go)
1<j<N € T

Vie{l,....N} P =¢|&)=

During the prediction transition EO ~ & = (€1)1<i<n, we sample N ii.d. copies (W{)i<;<n
of W1 and we set S '
Vie{l,...,N} & =&+ Wi

Given the observation Y; = y; we sample N random variables &, := (E{{)lgig N with the
discrete distribution

1SN 2o1<j<N €

e—ﬁ(yl —£1)?

— Jgi.
iz (11—€7)? &

During the prediction transition 21 ~s &g = (€8)1<i< N, we sample N i.i.d. copies (Wi)i<;<n
of W5 and we set S .
Vie{l,...,N} &E=+W,

and so on.
This ends the proof of the exercise. ]
Solution to exercise 27: The solution is discussed in full details on page 55. ]

Solution to exercise 28:
Applying Doeblin-Ito differential formula to the function f(z) = 2% (= f/(x) = 2z and
f"(z) = 2) we find that
1
df(Wt) = f/(Wt) th + 5 f//(Wt)dt == thQ = 2 Wt th + dt
This implies that

t t
Wf—W@:/dezz/ W, dW, +t = E(W?) =t.
0 0

This ends the proof of the exercise. [

Solution to exercise 29: Applying Doeblin-Ito differential formula to the function
f(z) =2* (= f(z) = 42® and f"(z) = 122?) we find that

1
df (Wy) = f'(Wy) dW; + 5 f"(Wy)dt = dW = 4 W2 dW, + 6 W2dt.
This yields

t t t t
Wi = / AWl =4 / W3 dW, + 6/ W2ds=EW} =6 / E(W?) ds = 3t2.
0 0 0 0 S

=S
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This ends the proof of the exercise. ]

Solution to exercise 30:
Using (3.17), for any a € R we have

t 1 t
E(X;) =E (X{§) [exp (/ « (bS ~3 0?) ds)] x E (exp <a / O dWS>) .

0 0
Recalling that Y; := fg os dW is a centered Gaussian random variable with variance

t
Var(Yt):]E(Ytz):/ o2 ds
0

we conclude that

t 1 2 gt
E(X;) = E(X§) exp (a / (bs — = af) ds) X exp (a / a? ds)
0 2 2 Jo
t 1 t
= E(X§) exp (a / bs ds + ala=1) / o? ds).
0 2 0
This ends the proof of the exercise. [ ]

Solution to exercise 31:
We set V; := fot 0s(Xs) dWs = dV; = 04(X:) dW;. Applying the Doeblin-Ito differential
formula to the function f(z) = f/'(z) = f”(x) = e* we have
1 1
0¥ = df(V) = ' 0R) Ve 5 1) 020X dt = s (0n(X0) Wi + 5 0F(X,) ).

In the same vein, if we set

¢ I 1
Uy = / os(X,) dW, — 5/ 02(X,) ds = dU; = o4(X;) dW; — 3 o2(X,) dt
0 0

we have
dz, = df({Uy) = f'(U;) dU, + % f(Uy) o7 (Xy) dt
-z <at(xt) aw, — % o2(X)) dt+% o2(X,) dt) — 7, 04(X,) dW,.
This ends the proof of the exercise. [

Solution to exercise 32:
Applying Doeblin-Ito differential formula to the function f(z) = 2" = f/'(z) = na" !
and f"(z) =n(n — 1)z" 2

-1
dXP = nXP' [(ag+ b Xo) di 4 (r+op Xo) th]+7"(”2 )

—1
nXn [(bt—i— (”2 ) a§> dt + o th]

th_2 (Tt + 0% Xt)2 dt

n(n—1)

5 X2 r2dt.

+n X {ar + (n— Doy} dt + 1 dW,] +
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This implies that

-1
dmy} = nm} (bt+(n2 )Uf) dt

-1
+n mP ! (ag + (n — 1)704) dt + % mi=2 724,

This ends the proof of the exercise. ]
Solution to exercise 33:
Using the Doeblin-Ito formula (3.10), we have

of

df (Xt) = L(f)(X¢)dt + == Oz

(t, Xt) 0¢(Xt) dWs.

This implies that
dE = [ f(@) (rrar(@) = pu()) da = E(L(f)(X,)) dt
& [ f(x) %— de = [ L(f)() pi(e) da.

On the other hand, for any smooth function with compact support, using an integration by
parts we have

[ @ nwas = [ [ %( ) +3 0 220 ) do

- [ 1@ Lowo@ w k[ 1@ Zewe

This result being true for any function f implies that we must have

opy 0 1 02
o o Ty g i p).

This ends the proof of the exercise. ]

Solution to exercise 34: We have Y = e#+9Z with Z being standard normal. We also
note that the probabilities of the events {Y > K} and {Z > %} coincide. Hence

00 et /2
E[(Y - K)*] = /W)_H (et = K) S

= o [T g (M)
log(K)—p=02 /o o
— eu+02/2G(u_log(K)+J2)_KG<:U’_1Og(K)>'

g g
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Solution to exercise 35: For any nN — {0}, we have

P(|X]=n-1) = ]P’(n—lSX<n):/ e Mt
n—1
_ n—1 _\\n—1 _ n—
= [, =N (-e)=0-p""p
This ends the proof of the exercise. [

Solution to exercise 44: For any bounded function f on [0, co[, we have

E(f(X+Y)) = F()}b( | [/Oof<x+y> g1 e-0<w+y>dy} dx
_ F(:);b / 2 1[/ F() (2= )" Czdz} dx

a+b
_— 2% (2 — )Pt e dadz.
T e, (&2 (=) e and

This yields
Ca+b [e%e} z
E(f(X + Y)) = W/O f(Z) e_cz |:/(; x“_l (Z — .’L')b_l d(E:| dZ

To take the final step, we observe that

/Ozl’a_l (z—x)"tde = zot071 /OZ (g)afl (1_;)b 1 d:

= 2071 B(a,b)

with L
B(a,b):/ ut! (1—u)b71 du.
0

This implies that
[e’e) a-+b
E(f(X +Y)) = {B(a,b)r(“*b)} / —C f(z) 2latD1 ez g
r o I
from which we conclude that
I'(a)I'(b
X +Y ~ Gamma(a+b,¢) and B(a,b) = M.

This ends the proof of the exercise. ]
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Solution to exercise 45: For any bounded function f on [0, oo[, we have

B (1 ()

_ cotb /Oowa_l [/mf( x > yb_l e—c(ac+y) dy| d.
L(a)L'(b) Jo 0 T+y

For each x, we use the change of variables

x x x
= €e01)=y=—2+- dy=—d
< . y( 0,1]) =y T > Y 52 Z

to check that

B (1 ()

a-+b

a0 097 2 () e

= (5"
« Nz (at+b)—-1 <z dz | dz.
l/o T(a+b) ¢ o

=1

This yields

E(f (Xﬁ)) /01 f(2) Im 2071 (1fz)b71 dz.

This ends the proof of the exercise. ]

Solution to exercise 46: Using exercise 44, we have

7 = Z X; ~T( Z ai, c).

1<i<d 1<i<d
Our objective is to prove that for any Dirichlet variable
(H,...,Yd) ~ D(al,...,ad)

independent of Z, the collection (Z Y;)1<i<q forms a sequence of independent r.v. with
distribution (I'(a;, ¢));<;<4- In this situation, recalling that »,,,Y; =1 we have

Vi<i<d X;=2Y;

Xl Xd
- yeees :(Yl,...,Yd)ND(al,...,ad).
(Zl<i<dXi Z1<i<dXi>
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For any bounded function f on R?, we have
E(f (Zyla LR ZYd))

> Zlgigdai
:/ / AT T Ficisawil g g,
Ag—1 /0 I (219'5(1 al-)

C(Siza) [ 1p o
IT » dyi...dys—

X—
[i<ical'(a:) 1<i<d

Lo o ) L i e g
= ZYLy - -y 2Yd z € z
Ag_1 40 ’ ngigd ['(a;)

X H(Zyi)aFl dyy ...dya—1.
1<i<d

For each z we use the change of variables
V1<i<d z =zy; and werecall that z4:=zyg=z2z(1—y1 —...—Ya—1)
so that Zl<i<d 2zi=2,dyr...dys_1 = 2%z ...dzq_1, and finally dz = dz,. This implies

that
E(f(ZY,...,ZYy))

:/ [ (21,0, 24) H {F(Ea-) zfiil e | dzy...dzg.

1<i<d

The last assertion is a direct consequence of the additive formula presented in exercise 44.
This ends the proof of the exercise. ]

Solution to exercise 47:
By symmetry, we can assume without loss of generality that ¢ = 1. Using the fact that
I(z+ 1) = 2I'(z), we prove that

E (Uh)
F(Z1gigdai) (a1+1)—1 a;—1
=T @ fu1+.~+ud_1<1 uj 1<ci<d Ui duy ...dug_q
_ D(a1+1) F(Zlgigd a) — ay
I'(a1) F(1+2151§dai) Zlgigd @i
and )
E(U7)
F(Z1§igd“i) (a1+2)—1 a;—1
T ThicicqT(ai) fu1+m+ud—1<1 Uy H1<iSd Ui dus ... dug—
T'(a142) F(Zl<1‘,<d ai) 1+a;
= sis = x .
la1) T2+ cicq i) 14> 1 cica @ E ()
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In the above formulae, we have implicitly used the notation ug =1—73, ., _,u;. This ends
the proof of the exercise. B [

Solution to exercise 48:
For any observed sequence (z1,...,x,) € {0,1}, we have

P((X1...,Xn) = (21,...,2) | ©=0) =010 x (1 —)2rziza1720),
Using the Bayes rule, this implies that
IP(@ € db | (Xl 7Xn) = (1‘1,...,$n>)

~ Q[GJFZlSiS"w"']*l (1 B 0)[b+21ﬁi§n(l—$i)]_l 1[071](9)

from which we conclude that
a+d<icnXi
atb+cicn Xit D icn(l—X5)

EO©] (X1...,X,))

(1+ (a+0b)/n)~" %+% Y X

1<i<n

_>nToo O.

This ends the proof of the exercise. ]

Solution to exercise 49:
The conditional density of (Y7,...,Y;,) given X is given by

1 — 2
Py1, - syn | ®) = plyi|z) . plyalz) o [T e zr@ime)
1<i<n

and
P [ Y1, yn) o< plyilz) ... plynlz) p(z)
1 2 1 2
x H exp <27‘2 (yi —ax)” — o2 (x —m) )

=pn(z | yi)

with the conditional density

Pl | 1) ox exp (—2; (& — m) — Bulys am>>>2)

n

and the parameters

Bn=ac’n/(a®c’n+7°) —a ' and p, = (a’r7+ 072/n)_1 — 7%/a%.
We get

1 2
p(x |y, ., yn) o exp 5, Z ((x = m) — Bn(y; — am))

Pn 15i<n

2
1
e L R A S T
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This clearly implies that
1
E(X | (Y1, Ya)) = (1= afy) m+ By ~ Y v, — X
1<i<n

This ends the proof of the exercise. [

Solution to exercise 50:
We observe that

Yy € {0,1} PYe=uyr | X =2) =2 (1-— x)l_y"‘ = p(yr | x)
and therefore

P(Ve=ye, 1<k<n|X=2)= [ ply|z)=aZrsrcn¥ (1 —g)" Zisken vk,
1<k<n

Using Bayes’ rule, this implies that
P(X edz | Yy =yi, 1 <k<n)

1
= PYi=uyr, 1<k<n|X=2x)lpq(x)dr
JEP(YVe =y, 1<k <n | X =u) 1oy (du) du 0.1

1 _ _
_ Un (1 — )" Fn 1 d
fol wn (1 —u)"Yndu 7 7 [0.1] (z) do

I'(n+ 2) 7 _z
= n 1 — n—yy 1 d
@, +)(n—7,+1) " (1-2) jo.y(@) dz
(n+1)! 7 =
[ S A— n 1 — n—y, 1 d
T g O T () de

with ¥, = > cp<,, Y- We recall that

' a—1 1, T(@)L(B) _
/0 ™t (1 —u)? du—m and T'(n+1)=n!

where a — I'() is the Gamma function. This ends the proof of the exercise. ]

Solution to exercise 51:
Firstly, we have that

P(Xede|Y=y) =ze ™ xa?le??=glat-l o=ty @ Lo,00((z) d

so that Law(X | V) = Gamma(a+ 1,0+ Y).
In much the same way, we find that

P(Xcdr |V =y) x a¥e®xa? el Lo,00[(7) d

platy)—1 o=(+1) = L0,00((z) da

so that Law(X | Y) = Gamma(a + Y, b + 1). This ends the proof of the exercise. ]
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Solution to exercise 52:
The prior density of the Dirichlet distribution is given by

p(z1,...,2q) X H 2 s, (1, )
1<i<d

and the multinomial likelihood is given by
IP’((Ynl,...,YT;i) =(my,....,mq) | X1 =21,..., X4 :ajd) o xyt

This implies that the posterior density is defined for any (x1,...,24) € Ag_1 by

p((@1,ma) | oowm) o | [ | > | I =0
| 1<i<d 1<i<d

_ H x(aﬁ—mi)—l

1<i<d

We conclude that
Law((X1,...,Xq) | Y1,...,Y5)) =D (a1 +ma,...,aq +myq) .

This ends the proof of the exercise. ]

Solution to exercise 53:

We have

1 i ~x
E N E X'y = _ m(Y™")
1<i<N 1<i<N

On the other hand, using the fact that

Ex(2Y) = % / fa)fet) T Mk, dat)

1<i,j<N 1<k<N

S OMAHYY+2 Y MM

1<i<N 1<i<j<N

S [MAHO) - MO+ | > MY

1<i<N 1<i<N

in the linear Gaussian model discussed here we find that

1 [ 1 [ -~
NE NZX—ENZX\JJ |y | =5%

1<i<N 1<i<N
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This ends the proof of the exercise. ]

Solution to exercise 54:
When the function f has compact support, we clearly have the integration by parts
formula

Since

we conclude that

/ <dCZU f(w)) \/12? ez W du = —/ w f(w) \/12? e v duw.

For more general functions we use an approximation argument. This ends the proof of the
exercise. [ |
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Solution to exercise 55:

We have

Vn(ar fi+az fo) = VN (N(ar fi+as fo) —nlar fi +as fo))
= VN (a1 V(1) + a2 7V (f2) — a1 n(f1) — aan(f2))
= a1 VN(fi) + az VV(fa).

This ends the proof of the exercise. ]

Solution to exercise 56:

We have
V(i) (f2) = ;lggwuuxw—Mh»uxxw—Mﬁ»
- &1;;fhuﬂ—nwmuxxw—Mh»
+;]KE%NGAX@—MhDUﬂXU—nUQ)

This implies that

EVn(Va(f) = % 30 E[GAX) —n(f)((X) —n(f)]

1<i<N

= E[(f/1(X) = n(f1)(f2(X) = n(f2))] = E(f1(X) f2(X)) = n(f1)n(f2)-

The end of the proof of the exercise is now clear. [

Solution to exercise 57:

We have

Euw»::/ﬂmmw@:/ﬂmﬂ9<@m

with the weight function

867
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Using simple calculations we find that

Nvar| g Y Fo0)) = E(FOO?) -E(FO0)°
1<i<N
_ PN
= [ (1053 e o)
= [ 2@ 55 o) do-BG)F
This ends the proof of the exercise. [

Solution to exercise 58:
We have

PUy=u)=ply=1+(1—=p) ly—g and PUj =u)=p ly=1 + (1 —p) lu—o.
This implies that

]P’(Ulzul,...,Unzun)

= H1gkgn (p Lup=1 + (1 = p) Lu,=o0)

= [H1gkgn (p e L 11"“:0)} P(U; =u1,...,U, = uy).

P Lup—1+(1—P) Tup—o

The end of the proof of the exercise is now clear. [

Solution to exercise 59: We have

E (e’\U)) = (e*+e)

N~ N

Notice that .
o) (e/\(X—]E(X))) ) (em((xfx) | X))

for an independent copy X of X. Using Jensen’s inequality, we prove that
E (e)\(X—IE(X))) - E (E (e,\(X—Y) | X)) —-F (e,\(X—Y))

E(E (V09| X, X)) =B (VX))

The last assertion follows from the fact that (X — X) and —(X — X) have the same law.
Now, we use the fact that

A2(b—a)?
2

E (e)\U(Xff) | va> < NX=X)/2 <,
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Finally, for any A > 0 and p we have

PX -E(X)2>p)=P (e/\(X_E(X)) > e’\P) <eME (e)\(X—IE(X))) <o (AP—M)

Choosing
A (b~ a)? P’ p*(b—a)® P’
A=p/(b—a)*= \p— = - =
p/(b=a)” = Ap 3 G—aZ  20—a)f  20b—a)y
we find that ,
P(X —E(X)>p) <e -2,
This ends the proof of the exercise. [

Solution to exercise 60:
For any a > 0 we have

P(X, > a) = > (Hm) JJEED)
AcC{1,...,n}, |A|>a keA kZA

We set m,, = E(X,,) = >_,<,<,, pi- For any € > 0 and A > 0 we have
P(X,>14+¢e¢my,) =P (e/\X" > e*’\(lﬁ)m’L) < e Mtgma g (e’\X") .

On the other hand, we have

B )= [ E@)= I (@-p+me)= [[ Q+m(e-1).

1<k<n 1<k<n 1<k<n

Using the elementary bound 1+ x < e*, for any x > 0, we prove that

E(M) < [ (A =1) _ gma (1)

1<k<n

and therefore .
P(X, > (1+¢em,) < el(e*=1)=A(1+e)]mn

To minimize the function f(A) = (e* — 1) — A(1 + ¢) we check that
A=log(14+€) = f'(\)=¢*—(1+¢) =0.

In this situation, we find that

e man, Ley € T
P(X, > (1 n) < [e—log (1+e€)(1+€)]mn _ 67 _ 1— € .
(Xn > (1+e)my) <e (1+¢€)l+e ¢ 14¢€

Notice that (1 —1/x)* < e~! for any > 0 (and (1 — 1/x)® increases to e~ !, as x T ), s0
1+4e

that e (1 — =< ) ° < 1. This ends the proof of the exercise. [

1+e

Solution to exercise 61:
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Firstly, we provide a simple inductive proof of (5.8). We assume without loss of generality
that the functions f; are centered, that is we have that n(f;) = 0 for any 1 <7 <d.

The result is immediate for n = 1 (with the conventions ) ; = 0 and [, = 1). We
further assume that the formula has been checked at rank n. For any (A\;)i<j<nt1 € Rn+1
we have

E (621§j§n+1 Aj VN(fj)>
=F (eVN(21§J§7l+1 Aj fj)) = 6271 n([21§9’5"+1 A fj]Q)

_1 2 B
— 62 n([zlﬁjﬁn Aj fJ] ) X 62 ! Ai+177(f5+1) X 6)‘n+1 Elgjgn Aj 77(fjfn+1)'

This implies that

E <621§j§n+1 Aj VN(fj)>

(30.23)
—F (ezlggn Y VN(fj)) w2 N A an(F21) 5 pAnt Ticyen N BV DV (i)

CVN(f
For any 1 < i <n the term [],_;,., A; in the series expansion of E (ezlggn AV (fg))

is given by E (H1gj;éz‘§n VN(fj)). Thus, the desired formula (5.8) at rank (n + 1) results
from a simple identification of the terms

)\1 . >\n+1 = H )‘j X /\n+1 )\z
1<j#i<n

in the series expansion of (30.23).
We notice that formula (5.8) is also true by a permutation of the indexes. This shows
that for any fixed index jo € {1,...,n} we have

EV(f). V() =5 > E[ J[ Vw) | xEVUEV(H))-

1<i#jo<n kg{ijo}

N —

This yields that

EV(D.- V) = 5 > E( I W) | xEVGIV()

1<i#j<n  \kg{i.j}

Loyt | [T vt | BV,

1<i<j<n kg{i,j}
(30.24)

Now we use the inductive proof of (5.9). The result is immediate for n = 1. Assuming that
it is true at rank n, we have

E H VN(fk) = Z H E(V(fk)v(fl))

ke{ij} PepPS) ({451} {kiteP
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where PQ(f{j) stands for the set of pairings of {1,...,2n} containing {7,j}. Using (30.24),
this implies that

E(WV(f)...V(fen))
= 7 Xi<i<i<n 2opertin gy Uknerutign BV VL))

=+ Y i<ici<n 2pertn  pnyer EV IRV

The end of the proof follows from the fact that each partition P € P,,, is counted n times
in the above display.
This ends the proof of the exercise. [

Solution to exercise 62:

We have
I p—1 _ -l
Oy, (xR 95) = O, E lei,jx]
1<i,j<r
= E (Lizx R}, x]+xl E RkJ:EJJr E lelk
1<s,5<r 1<5<r 1<i<r

By symmetry arguments we conclude that

faxk .Z‘R x Z Rk T;

1<i<lr

Using the fact that

EE: ]{Qk ji: }%Qi Ti = EE: jz: }%)k }%ai Ty = jg: 1i:j T = T;

1<k<r 1<i<lr 1<i<r \1<k<r 1<i<lr

we conclude that
Rjk 0, (/R '2)
1<k<r

1 . p—1 1 o p—1
- _ B%k 62:I:R mamk(e 5 'R z)
1<k<r

NN

The last assertion is checked using the integration by parts formula
E(X; f(X)) o / 2 flz) e 2 PR gy

:—ZR]k/f O, 71””% )dx

1<k<r
= Y R [ st dr=3" RjuE(0,, f(X))
1<k<r 1<k<r

This ends the proof of the exercise. [
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Solution to exercise 63:

By the Borel Cantelli lemma we have P({X,, = a, }infinitely often) = 0. Therefore for

any w € ) there exists some N(w) € N — {0} such that X,,(w) = b,, for any n > N(w). In
this case, for any such n > N(w) we have

1

-~ Z Xp(w) = @+l Z by,
1<k<n

N(w)<k<n

with some finite constant A(w) = 3>, <} () Xk(w) < co. This implies that
1 Aw)+Bw) 1
E Z Xk(w) 771 +E Z b —ntoo b
1<k<n

1<k<n
with B(w) = Zl§k<N(w) by < oo.
This ends the proof of the exercise.

Solution to exercise 64: We check the upper bound by using the fact that
te1 9 22
P(X > §) / -2 (—6_7 ) dz
5 x Ox

[1 z;]‘s 1 +°°17§d<1 1 52
—e - — — e r < — .
x too V2T Js x? T 0 Vo

To prove the lower bound we use the upper bound we just obtained to check that

+oo 1e—§ +o0 +ooe_§
IPX>6:/ — d 26/ / dr | dy.
( ) A Srbvo-3 I i : y

V2r

To continue, we use integration by parts to obtain

+oo +o00 e-%
—— dzx | dy

/5 y V2T
+oo 67%
= d
P (=)

to0 o=t teo 9 e %

= dos [ 5 (- d

too a2 82
e 2 e 2
-0 / dx + .
) V2r

We conclude that

82
2

P(X >6 >—52]P’X>5—|—5e .
( )= ( ) o
In other words, we have proved that

1) e_% 1 g
P(X >4) > = .
( )z 1462 Vor 04671 or
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This ends the proof of Mill’s inequalities.

Now, using the fact that X % _ X we have

P(|X|>a) = PX>aor X < -—a)
< PX>a)+P(X < —a)
= P(X>a)+P(-X>a)=2P(X >a)
<2 l2

- —€
a 27
If we choose a = 1/2(1 4+ ) logn, then we find that

1 1 1
VT nlto log (n) '

The last assertion is a direct consequence of the Borel-Cantelli lemma. This ends the proof
of the exercise. [

P(1X] > v2(1+a) logn) <

Solution to exercise 65: Jensen’s inequality states that for any convex function and
a random variable W s.t. f (EW) and E (f(W)) exist, the inequality

fEW) <E(f(W))

holds. Consider a random variable W defined on a interval (a, 00) and with a density that is
proportional to te*t2/2,t € (a,00). Take f(t) := 1/t. Then by applying Jensen’s inequality

we get:
——t2 2 —lt2 > — 142 >
dt / t dt < e"ztdt /
a a a

However we readily check that fa t e=3dt = e=3%° and [ e 3dt = ae 37 4
L e~ dt holds. Substituting back, we get

_1,2\2 _12 [T _ip e 2
(e 2¢ ) < ae 2 e 2" dt + e 2V dt| .
a a

If we set z := [ e~ 3 dt we are dealing with a quadratic inequality with respect to z.
Hence

/ 2 _ 0 .
74+2a a e~ 3 S/ e 3t dt.
a

This ends the proof of the exercise.

Solution to exercise 66:
We consider a pair of standard normal random variables X = (X3, X3). Suppose we
want to evaluate the quantity

P (X € A(a’a 6)) =E (IA(a,e) (X)) = 77(114((1,6))

with the Gaussian distribution 7 of X, and the indicator function 1,4 ¢ of the set

Ala,e) = {(z1,20) €R? : 22+ 22>a and 0 <arctan(zo/x1) < 2me "},
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Using the Box-Muller transformation (X, Xs2) = (U1, Us) presented in (4.5), we have
0 1 (A(a,€)) = [0,e7 x [0,e7*] C [0,1]%
If we set f = 14(4,c) © ¢ then we find that
P(X € A(a,e)) = E(f(U1,U2))
= / Lio,e—a)x[0,e—t] (U1, u2) duidug = e~ (a+b),
[0,1]?

The above equation already shows that a very small part of the cell [0,1]? is used to
compute the desired integral, as soon as a, b are too large. This shows that any fixed grid

approximation technique will fail. We let (U}, U%);>1 be a sequence of independent copies
of the variable (U, Us). If we set X' = (X?, X31) = (U}, US), then we have

1 S
nN(lA(a,e)) = N Z 1[0,6*“]><[0,e*b](U}7 U2Z)
1<i<N

The chance for a sample (U{,U3) to hit the set [0,e7%] x [0,e7?] can be extremely small
whenever a, b are too large, so that the number of samples needed to get an accurate estimate
can be too large to get a feasible solution. In this case we notice that the relative variance
is given by

N 2
™ (Laca,e)) 1
E\ |5 = (1-1(lae)).
[ N(1aa,e) Ny (La(ae) (1=n(1ag0))

This ends the proof of the exercise.
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Solution to exercise 68: In this case, we have
pp(o) oc e PV,

We let § := infyes_v+ (V(0) — Vi), with V, := infg V. Since the state space is finite we
have § > 0. We use the formulae

e~ BV () =V2)
#p(o) = S g e PVV)

and

Card(V*) < 3 e VOV = Card(V)+ Y e PV
TES TES—V,
< Card(V*) + Card(S _ V*) « e~ B9

to check that for any o € V*

Broo 1

foo(0) $— mxﬂoo(g) < 1p(0) < piso(0)

with ¢ := Card(S — V*)/Card(V*). In much the same way, we prove that for any o € S—V*
we have that

0= too(0) < p(0) < €™ Lgos 0= 1o (0).

This ends the proof of the exercise.

]
Solution to exercise 69:
The Metropolis-Hastings ratio is given by the formula
py)ea(z —y)/e) _ py)
p(@)eq((y —=)/e)  ply)
This ends the proof of the exercise.
]

Solution to exercise 70:

We have
m(x) M(z,y) x w(z,y) = w(y,z) < w(y) M(z,y)
and
> w(x) M(z,y) =7(y) Y M(z,y).
€V yey

=1

875
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This implies that
P(X1=y)=> PXg=2)P(X1=y|Xo=2)= Y n(x)M(z,y) =r(y).
zeV eV

By a simple induction w.r.t. the time parameter we prove that P (X, = z) = n(x) for any
n > 0. This ends the proof of the exercise.

]
Solution to exercise 71:
We have
p(xn—i-l | Yo, - - - 7yn) = / p($n+1’ Tn | Yo, - - - ayn) dxn
and
P(ZTrt1,Tn | Yos -5 Un) = P(@ng1 | Y05+ Yn> Tn) P(@n | Yos - -5 Yn)-
:P($n+1|$n)
Using Bayes’ rule, we also have that
PWn+11Tn+1) P(@nt1 | Yo, .- Yn)
p(xn+1 ‘ y0»~~~aynvyn+1) = = I = = 7
fp yn+1‘mn+1) p(xn+1 | Yo, - - '7yn) danrl
and
/p(yn+1|$%+1) p(x;1+1 | Yo, Yn) dx/n+1 = P(Unt1l¥0 - -+ Yn)-
The last assertion follows from the fact that
pWo--um) = [ pwrlvo,. - yx—1)
0<k<n
and
p(Yrlyo, - yk—1) = /P(yk|$k) p(Tk | Yo, -5 Yp—1) dxy,
and this ends the proof of the exercise.
]

Solution to exercise 72:

We have

Zﬂ:z exp hﬁz —|—KZ

€S i€EE inj
By symmetry, this yields
L ha L
25 = Zexp Z (t+1)+ ?’BZ i)+ax(i+1))
€S i=1 i=1
= > H T(x(i), z(i + 1))
zeSi=1

with
T(x(i),z(i+ 1)) = exp [Jgac(z)x(z +1)+ % (x(i) + (i + 1))} .
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We conclude that

Z5 = oY T((),x(2).. . T(a(L - 1),2(L)T(X (L), z(1))
s(De{-1,41}  a(L)e{-1,+1}
= Trace(T").

To diagonalize the symmetric matrix L we need to compute the eigenvalues. To this end,
we check that

det(L —Md) = (ot —\) (o7 —X) —e 2

e—h5++h5 eQJg _ e—zJﬁ
2

= A2 —2¢’% Xcosh (hg) 4 2sinh(2J5)

= (A—e’? cosh (hg))2 - (62“7‘3 cosh (h5)2 - QSinh(QJg)) .

A2 — 2)e’?

Therefore the two eigenvalues are given by

Ays = e’7cosh(hg)+ \/@Nﬁ cosh (hﬂ)2 — 2sinh(2Jp)

A = e’fcosh(hg) — \/@Nﬁ cosh (hg)® — 2sinh(2.J3).

The last assertion of the exercise follows from the spectral decomposition

._ )‘+,,8 0 _ -1 : -1 _ g7/
Dg = < 0 s > =UTU with U =U
for some unitary transformation matrix U. Therefore

T" = (U™ 'DgU)" = Trace(T*) = Trace(Df) = Ay 5+ A" 4.

We have
1
BL

1 1 PP
—logAy s+ —1o 1—1—[ : ] .
/3 g +.8 5[/ g( )\+7[3 )

A)LATQQO

log Zﬂ =

This ends the proof of the exercise.

Solution to exercise 73:

We follow the solution of exercise 26, so we only describe the first selection-mutation
transitions. In this context, the density of the observation variable Y, given X,, = x,, =

)

xﬁf) € S = R3 is given by the Gaussian density

N

1 1

Initially, we start by sampling N i.i.d. random copies & := (£§)1<;<n of the signal X.
Notice that in this situation each particle has three components

é‘i’(l)

) 0
g=1 &® [es=R.
1,(3)
&o
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Given the observation Yy = yo we sample N random variables 20 = (gé)lgig ~ with the
discrete distribution

R

Ogi -
3 13
1<i<N Z1§j§1\/ exp <—Tiz (yo — 5{)( ))2) ’

Notice that the IV selected particles have again three components

<1,(1)
_ $o
=1 &® [es=R%.
i3
&
During the prediction transition 50 ~ & = (&)1<i<n, we sample N ii.d. copies

(ei)léiSN and (Wf)lgigN of €1 and W and we set

&
Vie{l,....N} &= &® |es=Rr3
i,(3)
&
with O an o
5172)_%2) - 6111/‘22 i (1
517(3) _i?v(g) — —‘Oz2 07( ) A"’ﬂ A giv( )
g9 -59 = g¥a
and so on.
This ends the proof of the exercise.
]
Solution to exercise 74:
e Random polynomials
V()= Y Una"=Clay) =E(V(@)V(y) =EU}) Y ()"
0<n<d 0<n<d
e Cosine random field
V(z) = Uy cos(ax) + Uz sin (ax)
= C(z,y) = E(V(2)V(y)) =E(U7) (cos (az) cos (ay) + sin (az) sin (ay)]
= E(U?) cos(a(z —y)).
This ends the proof of the exercise.
(]

Solution to exercise 75: We have

E(V(@)V(©Y) =EU?) Y A on@)enly) =EUT) Cla,y).

n>1

This ends the proof of the exercise.
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Solution to exercise 76: We have

8ii]E ((V(x) > oa V(xﬁ) =92E

=0

((V(Sﬁ) > 4 V(l’j)) V(i)

1<j<n

for 37, <, a; C(zi,25) = C(z,2;). This implies that

wi () Clz1,z1) ... Clz1,24) C(z,x1)
wn(:c) C(:c,;,xl) C’(acn',xn) C(x, Tn)
C(xz,x1)
We set V = [V (z1),...,V(z,)],C = : , and
Cl(z,zp)
C(x1,z1) ... Clxy,24)
Q= ; : : =E(VV).
C(xn,x1) ... C(xp,zy)

In this notation, we have
E|(V(z)— f/(x))ﬂ = E(V(2)?) - 2E(VQ 'C) +E (C'Q'V'VQ(C)
= C(x,z)-C'Q7'C.

This ends the proof of the exercise.
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Solution to exercise 77:
By construction, we have

E(f (Xns1) | Xn)

= / S (X 4 bn(Xn) + on(Xn)w) 14 (Xn +bn(Xn) + 00 (Xn) Wii1) pngr(dw)

4 / F(Xn) 1a (X + bu(Xn) + 0n(Xn)t0) finss (du0)

_ / F@ni) 1a (@ns1) Kot (0ns dznss) + F (X0) / Lson (@ns1) Knsr(0nsdnir)
This shows that

Mn-i—l(mn;dxn-i-l) = IP)()(n—i-l € dl‘n-&-l ‘ Xn = xn)
= KnJrl(xn»danrl) 1A($n+1) + (]- - Kn+1($n7 A)) 5mn (dmn+1)

This ends the proof of the exercise.

Solution to exercise 78:

We have X, = Xo + > <, Wi
PW=+41|0)=1-P(W=-1|0)=06
Given ©, X, is a simple random walk
P(Xp1=X,+1]|X,0)=0
For any € € {—1,+1} — 1< € {0,1} we readily check that

14e

P(W=¢|©)=0"%

1 1lte

(1-e) >

This implies that

14¢; 1te;

]P (Wl = €1y .y Wn — €, | @) = @Z1gi§n 2 (]. — @)n*215i§n 2

Applying Bayes’ rule, this yields the formula

1wy

(1— e)n_ZISign 2 pu(df)

Wy

P(Ocdl| W,..., Wy) x §1<i<n —2

881
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If we set W, = > _;c,, 255 € [0,n] (= n—W,) € [0,n] we also have

PO cdd|Wy,...,W,) =P (©cdd|W,)x0"" (1-0)"""" (do)
When © is uniform on [0, 1] we have the conditional Beta distribution
P(©¢cdo|W,)

_ T(Wat1)+((n
T r(Wat1)r((n

) G001 (1) 1 6) o

n

il
-W
In other words, we have

Law (© € df | W,,) = Beta (W, +1,(n—W,) +1)
This implies that

W,+1 1

EO©|W,) = = — =
(O 1) Wo+l+n-W,)+1 n+2

(W, +1)

The mean and the variance of Beta distributions are discussed in exercises 45-47 in terms
of Dirichlet distributions. By the Law of Large Numbers, given the value of © we have

W /1 —nsoe E(W |2®)+1 _ (2@—21)+1 —0

— E(0| W) “nsee ©

More generally, when O is itself a Beta(a, b) distribution on [0, 1] we have the conditional
Beta distribution

P(O©ecdf|W,)

In this situation, we have

Wo+a+(n—W,)+b
1 — W, b
- (Wata)=—"1 M, F0
a+b+n a+b+n n a+b+n a+b
——
=E(©)

Here again, we notice that o
E(©|W,) 2 nse ©

In all the situations, we have

X, = xzo+ j{: Wi,

1<k<n

1+ W, _
= x9+2 E: +é k —n=x9+2W, —n

1<k<n
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This implies that

so that
EP(Xny1=Xn+1]X,0) | Xp)=E(P(Xpp1=X,+1|X,0) |W,)=E(©|W,)
when O is itself a Beta(a, b) distribution on [0, 1] we have

n (X, — o) +n a+b a
at+b+n 2n at+b+n a+bd

P(Xpi1=Xn+1]X,)= ~ntoo ©

This ends the proof of the exercise.

[
Solution to exercise 79:
Observe that
Yo=a+ Y by Yo, +Vi=a+b Yo 1+b Yoot ... +b Yo+V,
1<p<q
Yy
Xo = :
Y1
and

Y,

Yy

X, = :

Yo

Y,
0 0 1 0 0 0 0 Yo 0
0 0 1 0 0 0 Yi 0
=« + s L V|
0 0 0 0 0 0 1 Yi—2 0
1 by bg—1 bg—2 bg—3 by by Y1 1

—— —_————

=c =B =W

This shows that
Xi=c+BX,+W;

In the same vein, we have

Yogg = a+ Z bp Yotq—p + Vaig
1<p<gq

= a+b Yn+q—1 + bo Yn+q—2 + ..+ bq—l Yoy + bq Y, + Vn—&-q
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Yn+1
Yn+2
Xn+1 = :

YnJrq*l

Yn+q
0 0 1 0 0 ... 0 0 Y, 0
0 0 0 1 0 ... 0 0 Yot1 0
= a ] |+t : : R : +Varg |
0 0 0 0 0 ... 0 1 Yitq—2 0
1 by b1 by by_s by by Yiutqo 1

—— ——

=c =B =Whni1

This shows that
Xn+1 =c+ BX, + Wn+1

This ends the proof of the exercise.

Solution to exercise 80:

By construction, initially G fires at U, U fires at G, and B fires at G. Since nobody
fires at B the transition (GUB) ~» (GU) is not possible. Similarly, (GUB) ~» (G) and
(GUB) ~» (U) are impossible.

Initially the chain starts at the state (GUB). The next states can be

e (GUB) when all shooters missed their opponents.
(GB) when G kills U, U misses G, and B misses G.

(UB) when

— the U hits GG, G misses U, and B hits G.
— the U hits GG, G misses U, and B misses G.
— the U misses G, G misses U, and B hits G.

e (B) when

— G hits U, U hits G and B misses G
— G hits U, U hits G, and B hits G
— G hits U, U misses GG, and B hits G

From (UB) the next states can be

e (UB) when both shooters missed their opponents.
e (U) when U kills B and B misses U.

e (B) when U misses B and B kills U.

when(P) U kills B and B kills U.
From (GB) the next states can be

e (GB) when both shooters missed their opponents.
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e (G) when G kills B and B missed G.

e (B) when G missed B and B kills G.

e (0) when G kills B and B kills G.

P((GUB) ~ (GUB)
P((GUB) ~ (GB)
P((GUB) ~ (UB)

P((GUB) ~ (B)

= (1-g)1-u)(1-b)

g(1—u)(1-b)

= l-gub+(1-—gu(l-0)+1—-9g)(1L—u)d
gu(l —b) + gub + g(1 — u)b.

)
)
)
)

In the same way, we have

P((UB) ~ (UB)) = (1—u)(1-0)
P((UB) ~ (B)) = (1—u)b
P((UB) ~ (U)) = u(l-10)
P((UB) ~ (0)) ub

and

P((GB) ~ (GB)) = (1-g)(1-b)
P((GB) ~ (G)) = g(1-1)
P((GB)~ (B)) = (1—g)b
P((GB) ~ (0)) = gb

and, of course

This ends the proof of the exercise.

Solution to exercise 81:
There are 3 cases to have (@) at the (n + 1)-th round:

e have () at the n-th round.
e (GB) at round n and the (n + 1)-th transition (GB) ~ (f).
e (UB) at round n and the (n + 1)-th transition (UB) ~ (0)

Recall that g;(n), g2(n) are the probabilities that the states (GB), (UB) are the result of
the n-th round. This yields

pi(n+1) = pi(n) + gb q1(n) + ub g2(n).
There are 2 cases to have (G) at the (n + 1)-th round:
e have (G) at the n-th round.
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e (G) at round n and the (n + 1)-th transition (GB) ~ (0).
e (GB) at round n and the (n + 1)-th transition (GB) ~ (G)

This yields
p2(n+1) =pa(n) + g(1 —b) ¢1(n).

There are 2 cases to have (U) at the (n + 1)-th round:
e have (U) at the n-th round.
e (G) at round n and the (n + 1)-th transition (GB) ~ (0).
e (UB) at round n and the (n + 1)-th transition (UB) ~ (U)

This yields
p3(n+1) = ps(n) + u(l —b) g2(n).

There are 4 cases to have (B) at the (n + 1)-th round:
e have (B) at the n-th round.
e (GB) at round n and the (n + 1)-th transition (GB) ~ (B).
e (UB) at round n and the (n + 1)-th transition (UB) ~ (B).
e (GUB) at round n and the (n + 1)-th transition (GUB) ~~ (B).
This yields

pa(n+1) = pa(n)+ (1 —9)b qi(n) + (1 —u)b g2(n) + [gu(l — b) + gub + g(1 — u)b] g3(n)
= pa(n) + (1= 9)b qi(n) + (1 —u)b g2(n) + [gu + g(1 — u)b] g3(n).

In much the same way, we have 2 cases to have (GB) at the (n + 1)-th round:
e (GB) at round n and the (n + 1)-th transition (GB) ~» (GB).
e (GUB) at round n and the (n + 1)-th transition (GUB) ~~ (GB).

This yields
a(n+1)=(1-g)(1-b) a(n)+g(1—u)(1l-0b) gs(n).

We also have 2 cases to have (UB) at the (n 4 1)-th round:
e (UB) at round n and the (n + 1)-th transition (UB) ~» (UB).
e (GUB) at round n and the (n + 1)-th transition (GUB) ~» (UB).

The first of these two cases yields

@n+1) = (1—=u)(1=b)gm)+[1—g)ub+ (1 —-g)u(l—b)+ (1 —-g)(1—u)] gs(n)
= (1 =uw)(1=0) g2(n) +[(1 = gJu+ (1 —g)(1 —ub] gs(n).

The second one clearly yields
g3(n+1) = (1—g)(1 —u)(1—-0) g3(n).

Notice that ¢1(0) = 0 = ¢2(0), and ¢3(0) = 1.
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We conclude that

qa(n+1)
gn+1)=1| gnr+1)
g3(n+1)
(1-9)(1-0b) 0 g(1—u)(1-0) q1(n)
= 0 (I-u)(1-b) (1-glu+(1-g)(1-u)d q2(n)
0 0 (1-9)(1—-u)(1-0b) g3(n)
and
pi(n+1)
p2(n+1)
n+1)=
pa(n+1)
p1(n) gb ub 0
n
_| ) | o0 0 0 glgn;
p3(n) 0 u(l-b) 0 q§ (n)
pa(n) (1-=9)b (I-ub gu+g(l—-u)d
This ends the proof of the exercise.
Solution to exercise 82:
For n = 1, we have
3 1 1 3 1
1 §+(§—) 22 %+(?—1) 1 (272 1 %T%
I PR SN 3|,z Loz, )TN
s+(GE-D 20 3+(3-1) 2732 1 53
We suppose the result is true at rank n. In this case, we have
(@) 2 e (110
M7L+1 _ — 2n72 277,71 2n72 % 1 %
2 1i(2nm2 1) ool Sy (2072 1) 0 1 1
L[ EETey 2 g oy
T gl 2" 2" gn-1
bEo1) 2 g o)
In the first row of the above display we have used the fact that
3 —2 2 3 2 3 —1
§+(2" —1) +2" = 5+(2><2" —1):§+(2" -1)
3 1
_ 271—2 _ 1 27’L—1 - 2’I’L—2 _ 1 — 27),—2 2%—1 271—2 — 22 2%—2 — 27L
5+ ( )+ +5+( ) + +
1 1 1
277.—2 - 27L—2 _ 1 — 2n—1 _ - = 2TL—1 _ 1 .
FlaEro Lol

In the second row, we have used the fact that

1
2n—2 4 5 271—1 -9 277,—2 — 2%—1

277,72 4 2n71 T 277,72 -9 277,71 —on.
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The last row follows the same computations as the first one. This shows that

e T
M" = 1 1L 1
St ot
T Ty 3 il T
11 1 1 0 =1 11 1
t 1 1
[ttt ) 0 0 0 ||t D
i1t 10 1 i1t
4 2 4 4 2 4

This ends the proof of the exercise.

Solution to exercise 83:

Consider a path (k, Xi)o<k<n of the simple random walk (1.1) starting in (0, X) = (0,0)
(at time n = 0) and ending at (n, X,) = (n,x) (at some terminal time n). We recall that
Xy = Xp—1+Uj with a sequence of i.i.d. copies of a Bernoulli random variable U € {—1,+1}
with P(U = +1) = P(U = —1) = 271, We let a the number of Uy, = +1 and b the number
of Uy = —1. By construction, we have

n-+x n—ax

a+b=n and a—b=z=a= and b= >

Furthermore there are ( Z > ways of choosing the time-location of the +1 in the path.

Observe that (n+z) must be even otherwise there is no admissible path going from (0, X) =
(0,0) to (n,X,) = (n,x). It remains to notice that each admissible path has the same
probability 27". We conclude that

P(X,=x|Xo=0)=2" (nﬁm )
2

On the other hand, we have
PX,=y| Xm=2)=PXn-m=(—y)| Xo=0).

It remains to compute the number of paths from (m, z) to (n,y) that remain in the positive
axis, when z,y > 0. Using the reflection principle proved in exercise 6, every path that
hits the horizontal axis H = {(n,0) ,n € N} can be reflected into a path going from (m, z)
to (n,—y). This reflection transformation is an one-to-one mapping from the paths from
(m,x) to (n,—y) into the paths from (m,z) to (n,y) that hit H at some time between m
and n. Since there are ( (n_rfn)_?;ry) ) such paths, we conclude that the number of paths

going from (m,x) to (n,y) that remains in the positive axis is given by

n—m n—m
(n—m)+@—=2) |~ | (=—m)—(z+y)
2 2

This ends the proof of the second assertion.

For any z < x V y the number of paths from (m, z) to (n,y) that remain above the axis
H, := {(n,z), n € N} coincides with the number of paths from (m,z — z) to (n,y — z) that
remain above H (use the fact that only these paths only depend on the relative positions of
x and y w.r.t. z). Using the fact that

(n—m)—((z—2)+y—2) (—-—m)—(z+y)

2 - 2 Tt
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we end the proof of the third assertion.

The number of paths (Xj)o<k<n from (0,0) to (n,z) s.t. X > 0for any 0 < k < n
coincides with the number of paths from (0,0) to (n,z) s.t. X > 2z = —1forany 0 < k < n,
which is the same as the number of paths from (0,1) to (n,z + 1) s.t. X3 > 0 for any
0 < k < n. From previous calculations, this number is given by

n n n n
nt(@+-1) )~ | n-(+@t1) = otz )= n=2
2 2 2 2

= + - + .
In the last assertion, we used the fact that

n_(m—x_l)_”+x+1:>< ! )‘ . _( 4 )
r )= o) T e e )

When z = 0 and n = 2m we have

()= 0 ) =)= ()

_ (2m)! (2m)!

ml? (m—1)(m+1)!

@m+1) 1 ! 2m + 1
S oml(m+1)! 2m+1 ((erl)im)iQm—i—l ( m >

To prove the last assertion, we recall that

P(XngQy, XkZO, O§k§2m|X0:0)

—gom [( o ) - ( m D) ﬂ

S P(Xp >0, 0<k<2m| Xo=0)

—e s () (e )

S (COR N ERREN)

This ends the proof of the exercise.

Solution to exercise 84:
The nonlinear Markov chain has the same form as the one defined in (7.27). The
corresponding mean field particle model is defined by the system of NV interacting equations

g-ga-y X m(1+(e)) +

1<j<N
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with 1 <4 < N. In the above displayed formulae, W} stands for N independent copies of
Wi.

This ends the proof of the exercise.

Solution to exercise 85:

Vn>1 Xn=AnXn1 + B, W,

where X, W,, are R%valued independent random variables such that W,, is centered.

Xn AnAn—an—Q + Aan—lwn—l + Ban

= (AnAn—lAn—Q)Xn—3

+(AnAnfl)Bn72Wn72 + Aanflwnfl + Ban
= (An.. AD)Xo+ Y (An...Ap1) B,W,

1<p<n

This implies that

E(X,) =A4,...4; E(Xy).
We use the decompositions

X —E(Xp) = (An ... A1) (X0 —E(X0)) + > (An...Ap1) B,W,

" K- ECGIX —E ()
= [(An+ A1) (Xo = E(X0)) + T1cpen (An - Aps1) By Wy |
X [(XO —E(X0)) (An - A1) + X1cpen WiB) (An .. APH)'}
= (Ay ... A1) (Xo — E(X0)) (Xo — E(X0)) (Ay... A1)
+ 21 <pgen (An - Ap1) BoW,W/ B (A ... Ag1) + Ry,
with

Ry =Y 1 cpen (An - A1) (Xo —E(Xo)) W) By, (A ... Apy1)'

+ 2 <pen (An - Apir) ByW,, (X — E(Xo)) (A ... Ay
Using the fact that

E ((Xo —E(Xo))W;) =0=E (W, (X0 — E(X0))') = E(R,) =0
we prove that the covariance matrix is given by

Cov(X,,, X,)
= (An . Al) COV(X(), Xo) (An .e Al)/

+ 21 <pen (An - Apy1) ByCov(Wy,, W) By (A ... Apia)'
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For one dimensional and time homogeneous models (A, B,,, Cov(W,,, W,,)) = (a,b,c?)
we find that

E(Xn) = a" E(XO)
Var(X,) = a®" Var(Xg) + (ob)? Z a’®®.

0<p<n

For instance, when a < 1 and E(Xy) = 0 we have E(X,,) = 0 and

2
Var(Xn) = 02 1%0/2 (1 — azn) .

This ends the proof of the exercise.

Solution to exercise 86:
We check the reversible property using the fact that

Lly—vV1i—cx)?+a?
=l -2Vl—-cay+(1—ea?)+ ?

=l -2yT—czy+a?).

This ends the proof of the exercise.

Solution to exercise 87:
For any i > 1, using the fixed point equation m = 7 M we have

n(i) = Y w(i)M(,i)
720
= 7(0) p(i) + (i + 1)
7(0) [p(G) +p(i+ 1)+ 7(i +2) = ... =7(0) P(I; > i).

On the other hand, we have

DR zi)= Y P(Li=j) =) > 1xP(l=j)=E).

i>1 j>i>1 j>11<i<;

This implies that

. 1
1—7(0) = gﬂ(Z) =m(0) E(l1) = m(0) = 1+ ED)
and P(I > )
vizl ) =1 ghy

This ends the proof of the exercise.
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Solution to exercise 90:
The transition matrix is doubly stochastic so that the invariant measure of the chain is
given by the uniform measure

0 1/2 0 1/2
12 0 1/2 0
0 1/2 0 1/2
12 0 1/2 0

1[1111] 1[1111]
m = — = —
4 bt b} 4 b B

This ends the proof of the exercise.

]
Solution to exercise 91:
The invariant measure of the chain is given by
0 1 0 0
1 1 /2 0 1/2 0
71'—6 [1,2,2,1]—6 [1,2,2,1] 0 12 0 1/2
0 0 1 0
This ends the proof of the exercise.
]
Solution to exercise 92:
The invariant measure of the chain is given by
0 1 0 0
1 1 1/3 1/3 1/3 0
0 0 1 0
This ends the proof of the exercise.
]

Solution to exercise 93:
The invariant measure of the chain is given by

U v 0 0

1 B u/2 v w2 0
™= m [U,2U72’U,U] = m [U,?U,Q’U,U] 0 u/2 v u/2
0 0 v U

This ends the proof of the exercise.

893
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Solution to exercise 94:
When p < 1/2, the invariant measure m(x) of the chain is given by

p \* 1-p
§:<1—p> S 1-2p

x>0

1-2 §

For instance, we check this claim by using the fact that

m(z—1) M(z—1,2) (ﬂp)x_llfp (1-p) = (ﬁp)z (1-p) x m(zx) M(z,z—1).

for any > 1. When p > 1/2 the chain has no invariant measure. This ends the proof of
the exercise.
]

Solution to exercise 95:
The invariant measure m(x) of the chain is given by

et ) (g (5 ey ()

d+1
1- (ng) 0<y<d 1= (ng)

For instance, we check this claim by using the fact that

m(z—1) M(z—1,2) (lp)“p (1-p) = (lfp)x (1-p) x m(x) M(z,z—1)

—-p 1-p

for any 1 <z <d.

Solution to exercise 96:

We have
prisn g = oe((F )
[(L=p) = AL —q) — Al —pg
= XA (=) +1-g)+(1-p)(l—aq) —pq

+
A2~ 2) (1—272q>+1—(p+q).

This yields

Det (M — Ad) = </\ (1 - p;”])>2 - Kl - p;q>2 ~(1-(p+q)

=((p+q)/2)?
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Det(M — AId) = </\ (1_1724%])) _(p;q>2
= A=) (A=-(1-=(p+9))-

This shows that M has two real eigenvalues

Ar=1 and X=1-(p+q (=(1-p —¢<1<=(1-p)qel01]).

Therefore

The corresponding eigenvectors are ¢; := ( ilg(l)g ), with ¢ = 1,2, and are obtained by

solving the linear equations

We observe that

if and only if we have
{ (1- ) @i(0) +ppi(1) = Xipi(0)
qpi(0) + A1 —q)pi(1) = Xiwi(1)
i ) ( 1 ) is a solution of the system.
For ¢ = 2, the linear system takes the followmg form

{ (1=p)p2(0) + pp2(1) = (1= (p+q))p2(0) (= (1 —p)p2(0) — qp2(0))
qp2(0) + (1 = q)pa(1) = (1 —(p+9))p2(1) (= (1 —q)p2(1) — ppa(1)).

These equations are equivalent to the fact that

For i = 1, we easily check that ¢, = (
t
(
(

pp2(1) = —qp2(0)

from which we conclude that oy = ( ?E(B ) = ( pq > is a solution of the system.
2

We can check immediately that

M(p1) = (1;19 ﬁq)(}):M(}):Alx@l

O

and

q 1—g¢

_ ((1p)ppq>>< [_[1*(p+q)]p )
p

qp—q(1—q)
- u—@+@](
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We equip B({0,1}) = R{%!} with the scalar product

(f1, f2) == Z fi(z)fa(z) for any f; = ( ;:Etl)g ) 1=1,2.

z€{0,1}

We consider the normalized eigenvectors @,. They are defined by

Vi ol T 5 2\ (1)
|0l ©i(0)? +i(1)? \ ¥i
for any ¢+ = 1,2. This implies that

ne () = o ()

Notice that

<¢1,¢2>=];7 = p=q
<= M symmetric
—

2 5(h)

We introduce the change of variable formula

Pi= (3,3, — < 71(0)  %,(0) ) _ < V2 pINETE )

?1(1) (1)

To compute its inverse, we observe that

r(3)=(V)

V2 —q/\/P*+ ¢

if and only if

1 _p —
Vel e
L4y =y
V2 Vp2+g?

This shows that
p+q
y=(u—v)=y=(u—1)

VPR @ p+q

This also implies that

Hence we prove that

Chapter 8
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In summary, we get

p1_ ! ( qv2 pV2 )
pta \ VPP+¢ —VPP+ ¢
We can also check that

(1/\/ p/ﬂ)( V2 pV2 >_Id.
A
0

V2 —q/\PP+ ¢ VPP+ @ VPPt

. By construction, we also have that

o

+4q
We let D <

o= (20 28 (5 1)
< AL @1(0) A2 52(0) > Y < il(o) 7,(0)

>~
]

A @1(1) A2 Pa(1)

from which we conclude that
M =PDP~!

and therefore

M?=pPDP'PDP '=pPD?’P ' = ... .= M"=PD"PL.
prp-t

1 1 0 qv2 V2
:p+q(0 A’%)(\/W \/W)
1 ( qv2 pV2 )

pH+q \ ASVp*+ ¢ —AE/Dp? + P
This shows that
M" = pD"p!
_ ! (1/\@ p/INP? + ¢ )( a2 pV2 )
pta \ 1/V2 —q/Vp+¢® )\ Nivp' +¢® VPP + ¢

_ 1 (q+/\§p p/\’ﬁp).
p+q \ 4—A3q p+Azq

This implies that

Mn:1<qp>+le<pp)
p+q \a P p+qg \ —4 ¢
Ay P —p
= mxId+ 2 ( )—)moowxld
p+q —-q (g

with the measure

_ {q p}
p+q ptq
When M is symmetric (i.e. p = ¢), we notice that

11
T=122
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as well as

111 U T TS B N

In this case we also have that
(%
M" =7 x Id+ Ny — 2 2 ).
2 \/§ < 1

This implies that

MYHO) = )+ A <\2f(0)\2f(1)> %
= 2() N F.5) B0).
M) = w(f) - A (;Qfm)—jifu)) y

= 7w(f)+ A3 {f,%2) P2(1).
This clearly implies that
Vn>1 vVeeS  M"(f)(z)=n(f)+ Ay (f,%s) Pa().

Now, we turn to the proof of (8.9). Using the fact that

(f1, fo)r = % (f1, f2)

and
V25,2 =7* =1

for any i = 1,2, we show that the functions v; := /2%, form an orthogonal basis of I»(7).
This also shows that

M) = w(f) X 14N 5 VER) VI Bale)
= w()a (@) + N (S, el ().

Solution to exercise 97:
Choosing R = R, :=2/(1 — €), we find that

O o

1 1 _ (1—¢ 4p
1+2pR (1—e)+4p (1—e€) +4p°

and

This implies that
W(z) A\W(y) = Re

4
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||M($7')_M(y,')||vp <1_1 4[)(1—6)
L+ V(x)+Voly) = 2 (1—¢)+4dp
In much the same way, when W(x) VvV W(y) < 2/(1 — €) we have
M(x,.)— My, .
M (e,) ~ M(y. )y, ()
14+ V,(z) + V,(y) 1—e¢
with o := 1 — B (M), as soon as

p<ad/8 with §:=(1—e¢).

Vp €]0,1] < 1.

If we set u :=4p/d then we have
1 4p(l—¢) 6 1
Sl S B =
2 (1—-e+4p 2 1+u 9(w)

(oz6 - 8p) = (e —2u) := h(u).

and

1—e€
On the interval u € [0, /2] (so that p < «6/8) the function g is increasing from g(0) = 0

to g(a/2) = Q‘T;‘ﬁ < 1, while the function & is decreasing from h(0) = a. to h(a./2) = 0.

These two functions intersect at a point w such that

(I4+u) 2u—ae)+ud/2=0.

(10%) <
we need to solve the equation

u? +2ua—b=(u—a)’— [a®> +b] =0
with w € [0,5]. This implies that

In other words, if we set

Qe
= ith b:= —
a wi 5

N —
DO =

O<u=+vVa2+b—a<b.
The r.h.s. inequality is checked using the fact that
Va2+b—a<b < a>+b<a®+b%>+2ab

& b<b(b+2a)=b <1+i>.

Using Taylor expansion, for any v > 0 we have

v v
Vidv=ld4-—— > 14—
v 21+ vr, — 2vV1+w
for some 7, € [0,1]. If we set v = b/a® we find that
) _ b
u=+a*+b azzm
= gw) =h(w) > g(575)
_ 85 b 1
2 2v/a2+b 1+2\/52ﬁ
b Sb

1 >
2 b4+2va24b — 142V3
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The r.h.s. estimate follows from the fact that
aVb<1/2 = b+V4a2 +4b<1/2+VI+2=(1+2V3)/2.
Choosing p = ud /4, we conclude that

M (z,.) = My, -)lly, (1—€)(1 — BB (M)
TR AR AN oglu)<1- 2(1+2v3)

By, (M) =
This ends the proof of the exercise.
Solution to exercise 98:

Since M has positive entries, by theorem 8.1.2 all the entries of v are positive. We let
v = [v(1),7(2),7(3)]- We want to solve the equation

P11 P12 P13
(v(1),7(2),73)] | p2r P22 p2s | = [v(1),7(2),~7(3)].
P31 P32 P33
In other words, we have
(1) [1 = (P12 +p13)] +7(2) pa1 +vB)ps1 = (1)
¥(1) pr2 +9(2) [1 = (pa1 +p23)] +7B)pz2 = 7(2)
(1) p13 +7(2) p2s +7(3) [L = (ps1 +p32)] = 7(3)
which is equivalent to
P21 +93) ps1 = (1) [pi2 + pi3]
p12 +93) ps2 = (2) [p21 + p2s]
) P13 +7(2) pas = Y(3) [p31 + p32] -
This yields the system
(1) pa21 + 7(1) P31 = [p12 +pi3)
pi2+ 2 1) P32 = % [p21 + p23] -
This shows that )
:{,El; p21 + Vg i p31 = [p12 +pis)
lﬁ? [P21 + p2s] — 3 P2 = P2
Multiplying the first line by [p21 + p23] and the second one by ps;, we find that
'vg; P21 [p21 + pa23] 7(:3 P31 [p21 +p23] = [pa1 +pa3] [pi2 + pis]
751) P21 [P21 + pa2s] —7(1; D21P32 = p12D21-
Then we subtract the two lines to check that
7(3) ( _
m P31 [p21 + p23] + p2ips2) = [p21 +p2s] [p12 + i3] — prepar

P21P13 + P23 [P12 + pi3) -

This implies that
¥(3)  p21p13 + p23 [pi2 + pi3)

¥(1)  pa1 [p21 + p23] + paips2
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In a similar way, by multiplying the first line by pse and the second one by ps;, we find that

% P21P32 +% P31pPs2 = P32 P12 + pis)
% P31 [p21 + p2s] —% DP31P32 = DP12P3i-
Adding the two lines we find that
7(2) _
S0 (P31 [p21 + p23] + p21p32) = P32 [P12 + P13] + P12ps1

from which we conclude that

7(2) _ P32 P12 + p13] + p12p31
v(1)  ps1[p21 + pas] + parps2

and
¥(3) () _ (1) _ poipis + po3 [pi2 + pis]

v(2) (1) ~(2) P2 (P12 + p13] + P12ps1

We conclude that

Y(1) o psi[pa1 + pa3] + paips2

= p31p21 + P23P31 + P32p21 = H Pij + H Pij + H Pi,j
(4,5) €91 (4,)€93 (4,7)€gs

with the 1-graphs {¢1, g2, g3} defined on page 214 and

¥(2) o p3a[piz + pis] + pi2psi
¥(3) o< paipiz + P23 [pi2 + 13-

This ends the proof of the exercise.

Solution to exercise 99:
For any g € G(z) and 2’ /4, the set h = gU {(z,2’)} is a directed graph on S with a
single loop at the state 2’. We let £(z’) be the set of these graphs. We clearly have that

L(z") = Uspar (G(2) U{(z,2")}) = Uswr (G(2") U{(a",2")}).
We set
M(g):= [ M(u.v).

(u,v)€g
In this notation, we have that

Yo @M@ = Y | Y M(g)| M(x,a)

T rH#x’ x : z#£x’ | geG(x)

S Y Mlgu{(a))})

v : ate’ geg(a)

Y Mh

heL(z)
S Mgu{E, o))

x : xFx’ geG(a’)

Y. @M@ x) = (') (1-M(,a")).

T xFax’
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The end of the proof of the exercise is now clear.

Solution to exercise 100:

P11 — A P12 P13
P(X) = Det D21 D22 — A P23
D31 D32 D33 — A

P22 — A pa3
= — \) Det
(P11 = ) De ( P32 p33—>\)

D21 Pba3 P21 P22 — A
— Det + Det .
P12 ( P31 P33z — A ) P13 ( P31 D32 )

P(A) = (p11—A) [(p22 — M) (p33 — A) — pazpaz]
—p12 [P21(p33 — A) — p23p3i]

+p1 3 [P21P32 — P31(p22 — N)]
= XN+ NA+)\B+C

with

A = pi1+pa2+pss

B P23P32 + P12p21 + P13P31 — (P11P22 + P11P33 + P22p3s)
C = 1-(A+B).

The last assertion follows from the fact that P(1) = 0 so that A+ B+ C = 1. We also have
that
PO =(1-X) (P+(1-A4)Ar+C)

N (1= AA+C= <>\+(12A)>2 <<1QA>20>.

We also notice that

and

1-A = 1-((1—=pi2—p13) + (1 —pa1 —p23) + (1 — p31 — p32))
= pi12 +p21 +p13 + P31+ p32 +p23 — 2.

This yields

1—-A
5 = 1—(q12+ q13 + q23)
with
i,j = (pij +pji) /2.
Therefore
1—-A\? )
—5 = 1+ (q12+ @13+ q23)" — 2(q12 + @13 + q23)

= 1+ (qfy + ais + Bs) + 2 (q12¢13 + Q12423 + q13G23)
—2(q12 + q13 + q23)-
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On the other hand, we have

p1ip2e = (1 —pi2 —p13)(1 — p21 — p23)

= 1—(p12 +p13 +pa1 + p23) + (p12p21 + P12p2s + P13p21 + P13p23)
p1ip3zs = (1 —pi2 —pi3)(1 — p31 — p32)

= 1 —(pi2 +p13 +p31 + p32) + (P12p31 + P12p32 + P13P31 + P13P32)
p22p3z = (1 —po1 —pa3)(1 — p31 — p32)

= 1 — (p21 + P23+ p31 + p32) + (P21P31 + P21P32 + P23p31 + P23ps2)

from which we conclude that

B = pospsa + prapa1 + pisps1 — [PraPez + P11P3s + P22p3s3)
= =344 (qr2+q3+¢q3)— D

with
D = (p12p23 + p21p32 + p12p32) + (P13p21 + P21P31 + Pi2p31)

+ (p13p23 + P23p31 + P13P32) -
We also have that

4q12g23 = (p12p23 + P21P32 + P12p32) + pa1p2s
4q12q13 = (p21p13 + P21p31 + Pi2p31) + piapis
4q13g23 = (p13D2s + P23p31 + P13p32) + P31032

whence
D =4 (qi2q13 + qi12923 + q13G23) — (P21D23 + P12p13 + P31P32)

(54 - ¢
= (52)’ -1+ (A+B)
= (qfy + ais + 433) + 2 (q12q13 + Q12423 + q13G23) — 2(q12 + ¢13 + G23)
+ (3 = (P12 + P21 + p13 + P31 + P32 + p23))
—-3+4 (g2 +q13+q23) — D
= (¢72 + qis + 433) — 2 (12013 + Q12423 + q13¢23)

+ [p21p23 + p12p13 + P31P32] -
This implies that

(152) ~c=sw+ow

with the parameters

Ag) = % [(fhz - Q13)2 + (q12 — 1123)2 + (q13 — Q23)2]

0(p) = [p12p13 — q12q13) + [P21P23 — G21423) + [P31P32 — ¢31932] -
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This implies that

A2 = (1= (qr12 + q13 + q23)) + VA(q) +0(p)
A3 = (1—(qi2 + qi3 + q23)) — VA(q) +6(p)

with the convention y/—a = iy/a, for any a > 0. In the reversible case, we have é(p) = 0
and

A2 = (1 — (p12 + p13 + p2s)) + VA(p)
Az = (1 = (p12 + p13+23)) — VA(p).

We also check that

1

A <1ls 3 [(p12 — p13)* + (P12 — P23)* + (P13 — P23)?] < (P12 + P13 + pas).

Since
2 [(p12 = p13)? + (P12 — p23)* + (P13 — p23)?] — (P12 + P13 + p23)

= — (p12p13 + P12P23 + P13D23)

we conclude that A3 < Ay < Aq.
This ends the proof of the exercise.

Solution to exercise 101:
We use mathematical induction to prove the claim.

e When k£ = 1, the assertion is obvious .

e Suppose there are k cards below the bottom card, and that all k! arrangements of these
cards are equally likely.

The next (k + 1)-th card, to be inserted below the original bottom card, is equally likely
to land in any of the (k4 1) possible positions among these k cards (between the original
bottom card and the first of these k cards, below the first, or the second, and finally below
the k-th one). By induction, these remaining k cards are in any of the possible k! random
orders, so that (k4 1) x k! = (k+ 1)! of the arrangements are equally likely. This ends
the proof of the induction. [

Once the bottom card reaches the top, all possible 51! permutations of the cards below are
equally likely. Therefore, when we are inserting it back at a random position, all 52 x 51!
permutations of the deck are equally likely.

This ends the proof of the exercise.

Solution to exercise 102:
We use the decomposition

M (z,dy) — ev(dy)

M(z,dy) = (1 —€) M(x,dy) + ev(dy) with M (x,dy) := 1
—€

to check that
osc(M(f)) = (1 —¢€) xosc(M) <(1—e€)osc(f).
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This implies that (M) < 1.
This ends the proof of the exercise.

Solution to exercise 103:
Since XJ =0 = X3, we have
(T=1)=0 and (T'=2)=(X{=1=X7).

This implies that
P(T=1)=0 and P(T =2)=pu(1)>

In much the same way, we have

T=3=(Xl=2=X}) = BT=3=u@"

The chain X,, may return to the origin after 4 steps using only two possible random paths.
More precisely, we have that

(XOZOI—)Xl:3HX2:2’—>X3:1I—>X4:0):(X1:3)

and
(XOZOHXl:1’—)X2:0'—>X3:1|—>X4:O):(X1:1:X3)

This implies that
(T'=4) = {X] =3=X}}
U{X]=3&X{=1=X2} U {X]l=1=X1}& X?=3}
from which we conclude that

P(T = 4) = p(3)* + 2u(3)u(1)*.

The chain X,, may return to the origin after 5 steps using only two possible random paths.
More precisely, we have that

(XOZOF—)Xl:2%—)X2:1l—>X3:0l—>X4:1*—)X5:0)
=(X;=2 X;=1)

and
(XOZOI—)Xl:1’—)X2:0|—>X3:2|—>X4:1’—)X5:0)

=(X;1=1, X5=2).
This implies that
(T=5)={(X} =2 X} =1) & (X} =1, X} =2)}
U{(X3=2 Xi=1) & (X{ =1, Xj=2)}

from which we conclude that
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e The chain X,, may return to the origin after 6 steps using only four possible random paths
A, B,C, D described below

A=(Xp=0—~ X1 =1 Xo=0—>X3=1—~ X, =0

= X5 =1 X¢=0)
= (X1 =X3=X;=1)
B=Xo=0—»X1=1—=Xo0=0—~X5=3— X, =2

= X5 =1+ Xg=0)
= (X, =1, X3=3)
C=Xo=0»X1=83—>X0=2X35=1—X4,=0

= Xs5=1— X=0)
=(X;=3, X5=1)
D=Xp=0—»X;1=2—>X=1—-X3=0—~ X, =2

l—>X5:1’—>X6=0)

= (X, =2=X4).

Eliminating the combinations of paths that meet the origin strictly before time 6, and
with some obvious abuse of notation we find that

(T:6>:{(X17X2):(A7D)} U {(X17X2):(D7A)}
U{(Xl,XQ):(B,C')} U {(Xl,X2):(C’,B)}
U{(Xl,XQ):(B,D)} U {(Xl,XZ):(B,D)}

u{(X*X?)=(C,D)} U {(X',X?)=(D,C)}

from which we conclude that

P(T=6) = 2x (u(1)®x p(2)® +p(1)*w(3)* + 2 p(1) x u(3) x u(2)*)
= 2u(1) (p(1)*1(2)* + p(1)u(3)* + 2p(3)u(2)?) -

e For the geometric distribution with success parameter p €]0,1[, we have

p@)=1-p) 'p=pl)=p, w2 =p(l-p), uB)=pl-p?
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In this situation, we find that

PT=1) = 0

P(T=2) = p?

P(T=3) = p*(1-p)°

P(T=4) = p*(1-p)*+2p°(1-p)°
P(T=5) = 2p*(1-p)’

P(T=6) = 2p°(1—p)*+6p*(1—p)*

This ends the proof of the exercise.

Solution to exercise 104:
We use the decomposition

T

n=1 n>1

Notice that

VE>1 {T=k}eo(Xi,....,X)] = {T>n}=0—{T <n} €o(Xo,...

This implies that

=E(X)P(T>n)
E| Y Xu| = E|> E(Xnlrenl| (Xo...,Xn1))
1<n<T n>1
= E(X)E(T).

This ends the proof of the first assertion. When E(X) = 0, we have

2

Var Z X, | =E Z Xn
1<n<T 1<n<T
On the other hand, is we set X, = >3, ., Xz we have
2
2 =2 =2
S x| =Xp=> (X0 -X0) 1z
n>1

1<n<T —_———
=X24+2X, 1X,

907

7Xn71)~

with the convention Xy = 0. Arguing as in the proof of the first assertion, we prove the

desired result. This ends the proof of the exercise.

Solution to exercise 105:
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When €’ = 0, for each 1 < i < r, the Markov chain reduces to the deterministic evolution
equation
Xpt1=Xn+7 [VXn) - Xp]=0—7) Xpn + 7 V(Xn).

In this situation, we have

Xpy1—a2¢ = (1—7) Xo + 7 V(Xp) — (mna™ + (1 — 7,)2™)
= (1-m) (Xp—2%) + 7 (V(X,)—=V(z")).

This implies that

[Xnpr =2 < (L=m) [|Xn—2"[| + 7 (1-p) [[Xn —27

IN

A=7up) X =2 <...<¢ J] Q=mp)p [Xo—2*].
0<k<n

Recalling that log (1 — z) < —z, for any « € [0, 1], we conclude that

10— ot <exp [ =0 32 7| 1Ko~ 2]~ 0
0<k<n

We have

1717171

and therefore

(W) @) (V(z)—2) = (z—a*V(z)—2)
= (z—a",V(x)=V(z")) — (v —z*,z — z)
lz = &*|[ [V (@) = V(@) = o = 2*||”
= (A=p)le—a*| = llz = 2> = —p o —a*|* <0

A

for any x # x*. Clearly, we also have that
OW(x*)=0 and (z* —z, V(z)—2)>p ||lz*—z|*.
We also have

E[I(V(@) +e) - o]

E[I(V(@) - V(@) + (@* = o) + ]
E[(IV(@) = V(@) + l* =l + le])’]
< 3 (V@ = V) + 2" =2l +E [Jel]) -

IN

In the last assertion we have used the variance estimate ((a +b+c)/3)? < (a® 4+ b +¢?)/3,
which is valid for any a, b, c € R. This shows that

E[II(V(2)+¢) =] <3 max (1= p)2 + D.E [el]) (142" —al*).

=c
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We have
In+1 = ||Xn+1 - m*”Q
(Xn =2+ 70 [(V(Xn) +€n) = Xu], X — 2" + 7 [(VI(Xy) + €n) — X))

= In+2m (V(Xy) +en) — Xnl, Xn —2%) + Ti I(V(Xn) + €n) — Xn]||2 .

We have
By | Fa) = Lo+ 25 {[V(Xa) = X, Xo = 2%) + 72E (J[(V(X0) + €0) = Xl * | X)

< Lo=2mp X -2 P 472 e (141X —27))

= Li—-71(2p—1y0¢) In—i—Tﬁ c.
We have

M, =I,+c1?—¢ Z 7,320
0<k<n
and
E(Muys1 | Fn) = My + (E (It | Fo) — 1) —c 72

= M,—1,2p—71n¢) I, < M,.
This shows that M, is a non negative super-martingale such that

supE (M,,) <E(My)=E (||X0 — x*|\2) +c 72
n>0

By Doob’s convergence theorem (theorem 8.4.23) we conclude that lim, oo M, = My
exists. On the other hand, we have

E(Mp+1) = E(My) =70 (20— 7m0 ) E(I,)

= E(Mo) - Tk (2p — 7 ¢) E (1) = 0.
0<k<n

This implies that

Notice that
Tk —ktoo 0= 3Jko > 1 s.t. 2p—1T, c>p.

This yields

0< Y m@p—mc) BEU)+pE | Y 7 I | <E(M).
0<k<ko ko<k

We conclude that

Z =00 = lim I, =0 — M., =0.

n— oo
ko<k

This ends the proof of the exercise.
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Solution to exercise 106:

We follow the proof of the exercise 105 but replace the function V(x) + ¢ — x by U(z,€)
and V(z) —x by U(z).

When U(x,€) = U(x), the Markov chain reduces to the deterministic evolution equation

Xnt1=Xn + 10 UXy).
In this situation, we have

(Xpi1— 2%, Xpy1 —2%) = (X, —2%, X, —2%) +2 7,(X,, — 2, U(X,)) + 72(U(X,), U(Xn))
(1—(2p—ctp)Tn) (Xp — 2%, X, —2*) +c12
(I—an) (Xp—a*, X, —2")+ b,

IN

with
an = (2p — ct)7, and b, = cr2.

Notice that 2p — ¢, > p for n > ny and some sufficiently large ng > 1. This implies that
[Xnp1 —2*[I° < (1= (2p—cra)m) [ X0 — 2*||° + e
= (1—a)) (X, —2", X, —2") + b,
for any n > ng with a), = p7,,. Observe that

b c
ai?'l =Tn 27p —ntoo 0 and H(l - a;.) < e P LnzoTn —ntoc 0.
n n>0

This implies that || X, — 2*|| =ntec 0. We check this claim using the fact that

Ve>0 3dn(e) >1 s.t. Vn>n(e) b, <ea, and H(l —a)) <e.
n>0

In this case, for any n > n(e) we have

IXpir —2**—e < (1—ap,) | Xp—a*|* +eay —¢

= (—dl) X -2l = e —ah) = (1 —ay) (1% -2 =)

The end of the proof is now clear.
Arguing as in the proof of exercise 105 we prove that

In+1 = <Xn —z* + T U(Xn, 6n)v)(n —z* + Tn u(Xna 6n)>
In+ 270 (U(Xn,€n), Xn — %) + 77 UK, €0)])?

and therefore
E(Tnt1 | Fa) = In+270 (U(X0), Xn = 2%) + 72E (JUXn, )] | X )
< Iy =27p | Xn —a*|P 472 ¢ (1 + | Xy — :c*|\2)
= Li—7m(2p—Tpc) I, +72c.

The end of the proof follows the one of exercise 105, thus it is omitted.
The final assertion is a direct application of the above results to the functions U(z) =
a—W(zx), U(x,e) =a—W(z,€), with 2* =z, and U(z,) = a — W(z,) = 0.
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This ends the proof of the exercise.

]

Solution to exercise 107:

We have

X, =X,-1 xexp(alU, +b) = E(X, | Frno1) = Xpo1 E (exp (aU,, + b)) .
On the other hand, we have
p et +e
E (exp (aU,, + b)) =€ — = 1 <= b = —logcosh(a).

This ends the proof of the exercise.

]

Solution to exercise 108:
After 2a consecutive jumps in the same direction the chain X, exits the set [—a,a].
Thus, we have

PT>2a+n|T>n) < P(|Xoutn| <al |X,|<a)

1
= 1-P(|Xoqtn|>a] |X”|<a)§1_ﬁ'
21/22(1
This implies that
P(T > 2a+mn) 1
P(T > 2 T _ T\ zaarn) 4 2
(T'>2a+n|T>n) e =

and by induction
22a
By Borel Cantelli lemma we conclude that P(T' < oco) = 1. Finally, we observe that

E(T) = Y P(T>k)

k>0

= > > P(T > k)

n>02na<k<2(n+1l)a

1 n
< 20 Y P(T>2an)<2a 2(1—22a> — ¢ 920+1,

n>0 n>0

P(T > 2an) < (1 - 1)71.

This ends the proof of the exercise.

Solution to exercise 109:
For any m < n we have

Fm CFn = B(Zn | Frn) = B(E(X | Fo) | Fin) = E(X | Fin) = Zim.

This ends the proof of the exercise.
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Solution to exercise 110:

We have
E(Y, | Foo1) = II Xpp xEXn| Faor) =Yoo B(X,) =Y,y
1<p<(n—1)

This ends the proof of the exercise.

Solution to exercise 111:
Using the Markov property, we have

E(Vit1 | Fr) = EE(fn(Xn) | Xpt1) | Xi) = E(fn(Xn) | Xi) = V5.

This ends the proof of the exercise.

Solution to exercise 112:
We have

MV)@) = V(z) = E(|o+b@)+o@W]|* - )

lz + b(z)|* = ]| + tr (o(2) o (2)) -

The last assertion comes from the fact that

lz +b(z) + o (@)W = (z+bx)+o(@W) (x+ blx) + o(x)W)
= (z+b@) (x+bx)+2(@+bx) o)W +Wo(r)o(x)W

and for any square (r x r)-matrix A = (4; ;)1<i j<r we have

E(W'AW) = Z E(W'A; ;W) = Z A = tr(A).
N—————

1<4,5<r 1<i<lr
=Aiili=;

This yields the formula
M(V)(@) = V(@) =2 (2,b(@)) + [[b()|]* + tr (o(2) o (2)) .
This implies that
M Sup| o0 2 (2, 0(2)) + [[b(2)]|* + tr (o(x) o (x)) < 0
= (3R > 0 s.t. V||z|| > R we have M(V)(x) —V(z) <0)
(otherwise we arrive at a contradiction). In much the same way, we have
lm sup 00 2 (2, 0(2)) + b(x)|)* + tr (o(z) o(x)) < —1

= (3R > 0 s.t. V|jz|| > R we have M(V)(z)—-V(z) < -1).
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This ends the proof of the exercise.

Solution to exercise 113: The r.h.s. condition is clearly met for constant diffusion
matrices o(x) = o for any

p2 >tr(o’c) and for any R > 1.

We can obviously choose ps = € r, where € stands for the maximal eigenvalue of the

symmetric matrix o’o.
The L.h.s. conditions are also met for linear drift functions b(z) = Ax associated with a

symmetric matrix A with a maximal eigenvalue —a, for some a > 0, with pg = a = \/p1. In
this situation, we clearly have

Ib(z)||> =’A’A 2 <a® 2’z and (z,b(z)) =2'A 2z < —a 2'x.
For any = ¢ B(0, R) we have
V(z) = ||l=[|* > R

= [M(V)(z) - V(z)] /V(z) e (@ b@) + G2 @) + et (o) o(2)
p1+ p2 — 2po.

IA

We conclude that
po > (p1+ p2)/2

— V)@ -Vl < - (- 25 2) Vi < - (- 252 2

We return to the example discussed above. We further assume that o = ¢'/2 Id for
some € > 0 s.t. 7e < 1. In this situation we have ps = r € and

p0>#<:>1—(1—a)2>re<:>1—\/1—re<a<1—|—\/1—re.

This ends the proof of the exercise.

Solution to exercise 114:
By (8.47) the stochastic process

My =M, (V) = V(X)) = V(Xo) = > (M(V)=V)(X,)

1<p<n

is a martingale. By the optional stopping theorem (theorem 8.4.12) the stopped process

Mpnn = V(Xroa) = V(X)) + > (V=MV))(X,)

1<p<TaAn 1

remains a martingale. On the other hand, we have

Mo = Mpiam-1) = V(Xrian) = V(Xria@-1) + (V= M(V)) (X(1400)-1)
V(X1ian) — V(XTAA(TL*U) +1

v
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and

Nn = V(XTA/\n) — V(Xo) + (TA A TL)

= Nn _anl = V(XTA/\n) — V(XTA/\(n—l)) + (TA A ’I’L) - (TA A (n — 1))

=lr =n

é V(XTA/\n) - V(XTA/\(n—l)) +1 S MTA/\n - MTA/\(n—l)~

We readily conclude that
E(Nn ‘ fnfl) _anl < E(MTA/\n | fnfl) - MTA/\(n—l) =0.

This ends the proof of the exercise.

Solution to exercise 115:
Using exercise 114, the stochastic process N, := V(X7 an) — V(Xo) + (Ta An) is a
supermartingale. Using Fatou’s lemma, this implies that

IA

E(V(Xr,) +Ta | Xo=x0) — V(0) E (N, | Xo = x0)

< E(Nn_l | X():l’o) S SE(NO | X():IO):O.
On the other hand, we have

E(V(XTA) —|—TA | XQ = CC()) Z II€1£V(I‘) —|—E(TA | XO = 1‘0) .

We conclude that
xr

This ends the proof of the exercise.

Solution to exercise 116:

Arguing as in exercise 114 we check that the stochastic process N, := V(X1,an) is a
super-martingale. By the optional stopping theorem (theorem 8.4.12) the stopped process
Nroan = V(XToaTsan) 18 also a super-martingale. This implies that

V(@)=EWy | Xo=2) > ENpar, | Xo=2) =E(V(Xrorrann) | Xo=1x).
Applying Fatou’s lemma, and recalling that V' is non negative we check that

V(z) = EWNo | Xo=2)
EWNz. | Xo =2) =E(V(Xront,) | Xo =)
E(Vv()(Tc/\TA) 1TA:oo | XO == -'17) Z C P(TA =0 | XO = 3;) .

(AVARLYS

This implies that
P(Ty=00) <V(r)/¢c —nsoc 0

from which we conclude that P (T4 < 0o | Xog =) = 1.
This ends the proof of the exercise.
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Solution to exercise 117:
Using exercise 114, the stochastic process N, := V(X7p,an) — V(Xo) + (Ta An) is a

supermartingale.
In addition, following the proof of exercise 115 and recalling that V' is a non negative

function, for any = € S we have

E(Ta| Xo=2)—V(z) <E(V(Xr,)+Ta | Xo=2)—V(z) <EWNy | Xo =12)=0.

We conclude that
E(Ta | Xo=2x) <V(z).

We have T = inf{n >1 : X,, € A}, thus for any = € A we have

E(Th | Xo=2)=E(E(T} | X1) | Xo=2) <E(V(X1) | Xo =12) = M(V)(2).

This ends the proof of the exercise.
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Solution to exercise 119:

For any z €]a,b], we have

i) = 7 (V< o)
_ F(m)—F(a) _ [y Md2) _ E(lz<:lap(2))
F(b) = Fla)  [%\(dz) E (114,5/(2)
= E(lz<.| Z€la, b)) =P(Z<z| Z €a,b|).

This ends the proof of the exercise.

Solution to exercise 120:

The elementary transitions of the chain are given by
My(f)(v,z) = f(v,2 +vh) e”WEThI=U@DL 4 £y ) (l—e’(U@*h”)*U(Im) :

Using a change of variable and recalling that p is symmetric we have
/ w(d(v, 7)) e~ TEHI-V@) (4 24 ph)
e V@) dg p(dv) e~ WEth)=U@D. r(y 2 4 vh)
e VW=h) gy pu(dv) e WW=UW=vM) £y 4 (y = &+ vh = x =y — vh)

e VWHn) gy ju(dv) e WW=UW+oh)y £y ) (since p is symmetric)

K
— — — —

e VW p(dv) e Wtvh)=UW) gy o= U@=Uly+vh), £y 4)

:/ U0 () e~ UGHm VW) gy o~ UHm=U)_ f(_y

The last assertion follows from the property (—a); = a_. Using the fact that
(U(y +vh) = U(y)) = Uy +vh) = U(y)), — (U(y +vh) = U(y))

917
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we conclude that

/w(d(v,az)) o~ (U(z+hv)=U()) f(v,x +vh)
oc/ e VW) dy p(dv) e~ WWHvh=UWy £y 4)

O(/ w(d(v,)) e~ UEHM-U@), £y p).
This clearly implies that
wM(f) = [ [ wdv,2) f(-v,z) = ().

Hence we see that any probability distribution 7(d(v,z)) o< e=V®) dx u(dz) is an invariant
measure, as soon as g is a symmetric distribution. For instance, p can be a centered
Gaussian, a Laplace distribution u(dv) o< e~ I*! dv, or the discrete measure p o< (5_1 4 641).
This ends the proof of the first part of the exercise.

Notice that

Mu(f)(v, )

:/ flw, + vh) e~ WEHD U@, (du) + / Jwz) (1= TEHRITE ) pi(dw)

= K(f)(v,x +vh) e-UEtho)=U@) L K(f)(—v,z) (1 _ e—(U(z+hv)—U(z))+) .

This clearly implies that M), = M, K.
The last assertion stems from the fact that

W' W — dy P(y,dz) = dz P(z,dy).
The r.h.s. can be checked using the fact that
/ dy f(y) P(y,dx) g(z) = / f(y) dy p(dw) g(y + w)
[ #a = w) do ulaw) (o)
[ 9@ do utdw) 1o+ w) = [ ds @) Plady) olo)

This completes the proof of the exercise. [

Solution to exercise 121:

The chain being defined as a Gibbs sampler, the chain Z,, is reversible w.r.t. the prob-
ability measure . Next we provide a direct proof without using this property. We further
assume that Zy = (Xo,Yp) is a random variable with distribution 7.

B0 | (60100 = 5o [ 000 1 iz i)
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This implies that
E (f(le YI) | (X()» YO))

( m J X)) 1 iy e (9) dy | (X07Y0)>
=/ Iy ﬁ vz v (¥)

1
x \/W - Y02,+ﬁ]( x) dzdy.

P (Yo € dyo) = QM Li0,11(%0) dyo

Using the fact that

we conclude that

E(f(X1,Y1))

=E (2\/117)(12 J Iy 1 ey e () dy | (X07Y0))

1
:/ f(z,y) o/l 22 L =z 4 vi=az) ()

<[ 1y @) o) dw| dady.
=1 /imam i o)

This implies that
E(f(X1,11))

— [ ) 1 i ) dody = ().

Let (X,Y) be a uniform random variable the circle {(z,y) : z? +y?> = 1}. Observe
that

—P(X edx) —P(Yedy | X=z)
P(X €da,Y €dy) — % ﬁ opaf(z) de x % [6 sz + 0 ] (dy)
= i\/llin i) dy x5 [0 s+ ] ()
o e —P(Xedz | Y=y)

The Gibbs samplers are based on sampling the second coordinate Y given the first X, and
the first given the second. Starting from Z ) it is immediate to check that any of these

Gibbs samplers gets stuck on the four states

) 03)(5)00))
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(+/) X
+Y

y? = 1}, but starting from a given state ( zo > the resulting Gibbs samplers fail to con-
0

Of course the random states ( ) are uniform random variables the circle {(x,y) : 2%+

verge to the desired uniform target measure.
This ends the proof of the exercise.

]
Solution to exercise 122:
Vo e N—{0,1} mz - DE(@=1z) (f:ll)' =2 a(z :10—1)—1/\E
’ () K(z,z —1) A A ’ B A
and
@+ DE(@+1,2) oot A A
s , (z+1)!
Vr e N—{0 = = H=1AN——.
ve {0} m(z)K(z,x + 1) A s+l a(z,e +1) r+1
In addition 0)K(0.1) () )
0 T
! =a(l.0) =2 —= =2/\ 1,0)=1A—
and (MEL,0) 1 71) A A
™ T
)2 =2 0,1)=1AZ.
TOK0.1) 270 2 = A0 2
This ends the proof of the exercise.
(]
Solution to exercise 123:
We have
m(y)K(y,x) 7(y) 1 2 2
K - K = = _— — — —
1 T+y
= a(z,y) =1Aexp [02( ) ( 3 mﬂ
This ends the proof of the exercise.
]

Solution to exercise 124
The proposal transition K.(z,dy) is symmetric in the sense that

dx K.(z,dy) = dy K(y,dz).
The Metropolis-Hastings ratio resumes to

p(y)dy Kc(y,dz)  p(y)

p(z) do Kc(z,dy)  p(x)

as soon as p(x) > 0. The resulting transition of MCMC chain is defined as follows: Given
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some g s.t. p(xg) > 0, we pick randomly a state yo in B(xg,€). We move to x1 = yo with

probability a(zg,y0) :== 1A %. Otherwise we stay in zg; that is we set z1 = x.

This ends the proof of the exercise.

Solution to exercise 125:
For any bounded function f we have

nM(f) = /V(du) / dt [/ p(z) jmf(x—i—tu) d:c].

The change of variable y = = + tu (= dz = dy) in the z-integral yields

nir) = [ wtaw) [ | [ ot B ) a]
- [row | emgti ] e

On the other hand, another change of variable 7 = ¢ — s in the s-integral shows that
py — tu) / py — tu)
dt = [ dt ———————=1
/ [ ply+ (s = t)u) ds [ ply = ru) dr
We conclude that nM = 7. This above formulae are also valid if we replace v by v(du) =
Su, (du), for some ug € S"~1. In this situation we have

M(f)(@) = 1o (f) = / D) Do (d2) = (nM)(d2) = (dz2).

When the density p(z) is supported by an open bounded subset S C R" we replace
New(dz) , with & € S by the distribution

fs(x,u) p(x + tu) dt

z,u dz) =
e (d2) fS(Lu) p(x + su) ds

5m+tu (dZ)

with
Sxu)={teR : z+tueS}.

The above hit-and-run sampler will always have the desired target measure for any
choice of the measure v, as soon as the change of variable and the restriction of 7 to the
line A(x,u) are well defined. For instance we can choose v(du) with a positive density and
7 with a positive and bounded density. Some clear drawbacks of these samplers are strong
correlations and jams around the corner of the set S.

When r = 2, using the change of variables

a1 (0,1) € (10,27] x]0,00[) = y = ¥ (0,8) € R —{y : yo = a2}

given by

B [ y1 = z1+t cos(h)
y~_wa:(9at) _(y; = gj;+t Sln(9)>

=t=t,(y) = \/(y1 —21)2 4 (y2 —22)? and 6 =10,(y) = arctan 527712

1—T1
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and cutting the [0, 27]-integral w.r.t. the angles |0, 7/2[U]37/2, 27| and |7 /2, 37 /2] we find

that
21
q x1 +t cos(0) _l/ o=t
. (i) wa =2 [ s el a

_( cos(6) Y-z
We set ug = < sin (0) ) and vy, = To=al"
In this notation, we have

°n p(x + tug) f (x + tuy) _ p(y) llz —yl~*
dt do = y
(0,00 fS(I gy P(@ + su9) ds fs(m) p(z +tv,,) dt

We conclude that o
M(z,dy) =m(z,y) dy

with the probability density

_ 1 p(y) /
== v.y) ds.
m((E,y) - ||1'— / S y) p(x—l—sv $y) S

yl|

When p is bounded, we have

(2, y) = (wdiam(S)||pl|6) " p(y)

with
diam(S) := sup |z —y| and sup A(S(z,vzy)) =9.
(z,y)es? Ty

Here A(S (z,vs,y)) is the Lebesgue measure of the set S (z,v,,). Using (8.15) and theo-
rem 8.2.13 we conclude that

|udT" = < =o" u—nl,

for any initial distribution & on S.
We further assume that v = 23", . 6., where e; = (1;(j))1< < stands for the r unit
vectors of R". In this situation, for each selected 1 < i < r we have

[ p(z +te;) dt

Mo (d2) = [ p(z + se;) ds

Sptte, (d2).

On the other hand, we have

/p(z+sei) ds = /p(;z:l, e L1, T S, Ty ey ) A8 = P (T, T, Ty - e L)
where p_; stands for the density of X_;. In much the same way, we have

Nae; (f) 0</ plz +te;) f(z +te;) dt = /p(xlauwxiflayiaxi + 8, Tig1, - T) f(Yys) dys.

This shows that
nx.e; = Law (X; [ X_;).

The resulting Markov transition coincides with the one discussed in (9.13). This ends the
proof of the exercise. n
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Solution to exercise 126:
In terms of Bayes’ formula we have

p(d(x,y)) = n(dzx) K(z,dy) = (nK)(dy) M(y,dz).

p(dz)p(dy|z) p(dy)p(dz|y)

In this notation a Gibbs sampler wit target measure p(d(z,y)) is defined by the following
synthetic diagram:

Xn==2 - XnJr%
Yo = Y YnJr%

This ends the proof of the exercise.

ﬂf/N(XYZy)) (XnH ' )
— , , .
Y Y1 y~Y | X=2)

Solution to exercise 127:

We have
E(G(Y)1X) = 5 UX+D+ XD = [ £0) 5 Bxor + ) (d)
and by a change of variables
1
BUW) = 5 [ e+ D)+ fw-1) pla) do

[ 7w 3 It + 1)+ 5y - 1)
This shows that

P(Y € dy) = 5 Iply+1) +ply— D) dy and P(Y €dy| X)= 5 [5x 1+ 0x1] (dy).

We set

_ p(Y —1) B
"Wy e 1YY

In this notation, we have

p(Y +1)
Y +1)+pY-1)

FOY +1).

p(Y —1)
Y +1)+p(Y — 1)

E(g(V)A(Y)) = E(gm [p( Fv - 1)

p(Y +1)
P D) 1Y — 1) f(Y“)D
1

5 [ 9@ pt-1 fu-Ddy+ 3 [ 9w sty 1) -+ 1) dy,

This implies that

E@WRY) = 5 [ @+ 1) p) fla) dat 5 [ e~ 1) ple) fa) do

Il
—
E o |
=
=
>
Il
&
g
&
=
B
<
=2
Il
=
=
>
=N
=



924 Chapter 9

We conclude that
h(Y)=E(f(X)]Y).

The target distribution 7 = Law(X,Y’) can be written as follows

P(X,Y)ed(z,y) = PY edy|X =x) P(X €dz)
P(Xedx |Y =y) P(Y € dy)

with the couple of conditional distributions

P(Y €dy| X)

[0x—1+ dx41] (dy)

P(Xede|Y) = e fggpl(; - Sy—1(dz) +

DN | =

p(Y +1)
p(Y +1)+p(Y —1)

5y+1(dl‘).

A Gibbs sampler with target measure 7 is defined by the following synthetic diagram:

= I~ = —
(Xn:x > N < Xn+2 = 7z (X‘Y y) ) N ( Xnt1 = (E: ) )
Y,=y Yn+ = v Yoi1 = yN(Y|X=3;‘)

2

|

|

When U is an uniform random variable on {—h, +h} the same analysis applies. In this case
we have

B(Y € dy)= 3 [ply+h) +ply — )] dy and B(Y €dy | X)= 3 Bxn+oxsal (d9)
as well as
P(X €de|Y)= pl¥Y = h) Sy _n(dw) + pY 1) Sy 4 (da).

p(Y +h) +p(Y —h) p(Y +h)+p(Y —h)

This ends the proof of the exercise.

Solution to exercise 128:
We have the conditional distributions

P((U,Z) €d(u,z) | X)=v(du) / w(dt) dxu(d2)

" P(Zcds|U)= { / =z —tU) plde) ] dz.

We check these formula using the fact that

B2 X) = [ vldu) ) f (0, X + ).

E(f(U,2)) = /p ) da v(du) p(dt) f (u,x + tu)
- / o [/ (dt) (z—tu)} dz f (u,2).
B@(2)10) = [ po) ot glo+ )= [ | [ o) utan)] g(:)
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We set J p(Z—sU) f(Z—sU) p(ds)
_ p —5 —° ne

In this notation, we have

E(g(U,2) h(U,Z2))
_ / 9 (u,2) h(u,2) v(du) [ / (= — 1) u(dt’)} dz

o I PG S sy T T
= [ gtuz) FEO= LBt M sy [ [ ote =) i) | a

:/ U 9(u,2) p(z—su) f(z—su) dz} v(du) u(ds).

This implies that
E(g(U,2) h(U,2))

-/ [ [ stwas s p@) @ dx} v(du) p(ds) = E (g (U.2) [ (X))

from which we conclude that

E(f(X) U, 2)=h(U,2).

Equivalently, we have

P(X eds| (V.2) = [ AT 5y o)

A Gibbs sampler wit target measure 7 = Law(X,Y") is defined by the following synthetic

diagram:

( Y2 0z (s )

( Koy = ¥~ (X [(U,2) = (u,2)) )
_)

D= Nl

Yop1 = (Un+%7Zn+%) = (u, 2)
N Xn+1 = a
Yopr = =(Unt1,Zp41) = (W, 2") ~ (U, 2) | X =2') )~

This ends the proof of the exercise.

Solution to exercise 129:
Using the change of variables g(z) = y (recalling that the Lebesgue measure is invariant

w.r.t. rotations) we have

E(f(g(X)) o /S F(g(x)) da = /

o f(y) dy:/ f(y) ng(dy).
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This shows that g(X) has the uniform distribution 1, on g(S); that is, we have that

1y = Law(g(X)).

For any = € ¢(S) we let T,.x be a random variable with distribution M(z,dy) on g(S). In
this notation we have o
My(z,dy) =P(g7'T,.9(z) € dy).

For any g € G and any function f on S we have

E (f (97T,-9(X))) /S n(dz) £ (g~'T,.9(x))
/S n(de) / @) [ e ay) /S ey () £(0)

/(S) /Sn(dl') Mg(9($)7dy’) f (gil(y/))

=1, s M (d2) My (a’ dy")=n, (dy")

which yields the fixed point formula

E(f(97'T,9(X))) o /

9(S)

f (o) dy = /S f(x) do =E(f(X)).

We conclude that o l
n=nM, & g 'T,9(X) = X.

By Fubini’s theorem we check immediately that
Vge G n=nM,=n=nM with M(z,dy)= /G w(dg) M y(x, dy).
This ends the proof of the first part of the exercise. We further assume that
n(dzr) o p(z) 1s(x) do
for some density function p(z) w.r.t. the Lebesgue measure dz. We also set

ng = Law(g(X)) & P(g(X) € dr) := ng(dw) o 1y(s)(x) p(g~" (2)) da.

Notice that
/ plg~1(2)) do = / p() dz.
g(S) S

In this situation, we have

E(f (¢(X)) [3 p(z) f(g(x) dz
- / p(g7 (@) f(z) de o / ny(de) (z).
g(S) g(S)

Assume that 1y = 73M,. In this situation, by Fubini’s theorem we also have
W) = [ [ e, )
g9

- / 0 (d2)M, (=, dy) F g~ () = / no(dy) Fg~ () = 1(F).
g(S) g(S)
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Arguing as above, we conclude that n = M.

The extension of these formulae to any transformation group G and any target distri-
bution 7 follows the same lines of arguments. Let 7, be the distribution of g(X) with a
random sample X with distribution 7. In this case, we also have

E(f (67T, 9(X))) = / n(dz) f (57T, g(x))

— /g . /S n(dz) /g (S)(Sg(x)(dx') My(z', dy') /S Sg-1(y1) (dy) fy)-

=ng(dy’)

This implies that
E(f (97 Ty-9(X))) =E(f (97" (9(X)))) =E(f(X)).

This ends the proof of the exercise.

Solution to exercise 130:
Observe that

/S p(z) dz K(z,dg) f(g(x))

_ ) dee p(g(x)) |0g(x)/0x] N
= [ v T p(h(z)) [9h(a)/oa] vian) |9 Vd9)

Using the change of variables
v=g"'y) = du=109""(y)/0y| dy

and recalling that
09/ 0]y, [Oh(y)/Oy| = |0(g o h)/Ox|,

we check that

/S p(z) dz K(z,dg) f(g(x))

B . p(y) 109/, |09~ (y) /Y]
- J, fre o) sy \ah/ax|g_1(y> Ay 1))

plg™ () |09~ (v)/0y| ,
/ dy/ TP ) |ah/ax| vy 10910 /0] (@) V1%

!39 Y(y)/0y| v(dg)
/ dy/ fp ) [0(hog~1)()/0y| v(dh) °

=1

In the last assertion we have used the fact that

H~v=VYheG@ Hoh™' ~u
( )

= [ p(h(g7 () |0(hog=")(y)/0y| v(dh) = [ p(g(y)) |0g9(y)/dy| v(dg)
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and
(H ~vsH' ~0) = / p(a(v)) 199(w)/0y| v(dg) = / p(o () |89~ (v)/0y| v(dg).

This ends the proof of the exercise.

Solution to exercise 131:
Notice that

Ngo (dx) = n(dx) o< 1j_q q)(x1) X 1[—1,1)(w2) dx1dzs.

A Gibbs sampler with target uniform measure on S starts with a given state (x1,xz3) € S.
Then we change x5 by sampling a random sample 2 in the set [—1, 1]. Given that state we
change x; by a random sample z} in the set [—1,1], and so on. Notice that after two steps
the Gibbs sampler is at equilibrium; that is the random states have the desired distribution
7 after two steps.

We let gg the rotation with angle 6 € [0,2x]. In this notation, we notice that

90(S) = A{go(z) : z €5}
= {(cos (0)x; — sin (0)xa,sin (A)x; + cos (A)xz) : z= € S}.

We also have

g@(s> = Uzle[f(cos 0+sin (0)),cos 6+sin (0)] ({CIJ]} X A270($1))
= UZEQE[—(COS 0+sin (0)),cos O+sin (6)] (AI,O (xQ) X {1'2})

for any 6 € [0, 7/2[ with the sections

Al,g(xl) = {iCQ eR : z= (xhl'g) S 90(5)},
Asg(xe) == {m eR : z=(x1,22) € go(5)}.

This implies that

Ngo (d2) = pro(dar) Ky (@1, dus) = poo(dws) KV (w2, dr)
for some probability measures p; o on [—(cos 8 + sin (0)), cos 6 + sin (0)] (the i-th marginal
of ng,), some Markov transitions Kj ¢ from x5 € [—(cos + sin(6)), cos8 + sin (9)] into
Aj g(x1) (the ng,-conditional distribution of the first coordinate given the second one) and

Ky from x1 € [—(cos® +sin (6)), cosf + sin (#)] into Az g(x2) (the 7y,-conditional distri-
bution of the second coordinate given the first one) . For instance, for § = w/4 we have

ngw/z;(dx)
x (1[0.,@(%2) U (Vo) (VE—a)) (1) 1o ymg(22) 1[—<ﬁ+zz>,<\/§+m>](“’1)) dz1dzs

= (1[0,\/51 (1) 1[7(\57931),(\/57301)}(”2) +1g0(@1) L (Vaten), (vVata)] (”32)> dz1dzs.

The following diagram illustrates the rotation of the cell and the new direction axis of the
Gibbs sampler.
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y=v2+a /‘y—\/z—r
.\-. o

V2 V2

- Vids &
Y v z / / =2+

In this case, we have

(2
K7T/4

(.’El,dl'g)
1
o L0,v3(21) 570y H-(vE-a1),(vE-a1)] (22)d22
1
Hlvan(®) 575y - waten, (vare) (#2422

and by symmetry arguments we also have

ey

7r/4(1:2’ dl‘l)

1
o Lo,v31(22) 5700y Lo (va-22), (VE-2a)] (21)d21
1
Hvz0)(©2) gvare) - (VErea). (vVE+an)] (T1)dE1.
A Gibbs sampler with target uniform measure on g./4(S) starts with a given state
(w1,22) € gr/a(S), with say x5 € [0, v/2]. Then we change z; by a random sample z in

the set [—(V2 — 22), (V2 — 22)]. Given that state 2, say in [0, v/2] we sample a state z
uniformly on [—(v/2 — 1), (V2 — 21)], and so on. The resulting Gibbs sampler transition
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from g, /4(S) into itself is given by My, = M;BAL Méi% with

MY (w1, 22),d(y1,y2)) = Oy (dyz) KOy (wa, dyn),
MP) ((w1,22),d(y1,92)) = Oy (dyn) K&y (w1, dyo).

We can alternatively use the transition

1 1 1 2
My, =5 Mg, +5 M2 .

Notice that Mg(i)(m’, dy’) coincides with the distribution of a random state =’ + T;(x') e;
where T;(z') is a uniform random variable on 7;(z’). For instance for i = 1, g = g, /4, and

2’ € g(S) s.t. b € [0,v/2] we have

T (@) = {teR: <2>+t(é>eg(5)}

— frem:ahre e [-(VE-a). (VE-sp)]).

In this situation, we have

MO () h) o / dt f (@' + ter)

Tig(x)

A ! (1) (! ’ ’o
B (VZ—a1) f(t23) dt Kg (z3,dyy) [ (y1,23)-
— (Vo

More generally, we can show that the Markov transitions Méi) defined in the exercise state-
ment coincide with the transitions defined by

Mg(;)((‘rlyl.2>7d(y1uy2)) = 6zz(dy2) Kg(l)(x27dy1)7
Méf)((ﬂfhxz)’d(yhyz)) = g (dy1) K(SZ)($17dy2)-
For any z € S, g € SO(2) and any i = 1,2 we have
Ty(x) = x +te; = g 'Tyg(a) =g " (9(x) +te;) =a+ t g~ (ei).

This shows that
(M(l) +M(2))
with

7
M (z,dy) oc/ wu(dg) / dt Opitg—1(e)(dY)-
G Ti,g(9(2))

Also observe that
Tig(g(x)) = {teR : g(z)+te; € g(9)}
and

{z + tg " e;) 1 te Tiglg@)} = {z+ tg " es) : ts.t. gx) +te; € 9(5)}
= {z+tg(e) : tst.x+tg (e;) €S}
= ‘C(xagil(ei))v
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where L£(x, g !(e;)) stands for the line segment in S passing through z with a direction

vector g~!(e;). This yields the formula

(%)
T (@, dy) = /G 1(dg) Priag1(ery) (),

where Pg(; g-1(c,)) (dy) stands for the uniform distribution on £(z, g~ '(e;)). To be more
precise, let us assume that we are given a line segment £ of he following form

L = {(z,y) ER® : ax+b=y withz € [z,,2"]}

= {(z,y) €R® : ax+b=y withyE€ [y.,y"]}

for some parameters (a,b) € R?, a # 0, z, < v* and y, < y*. In this situation, the uniform

mesure P, on L is given by

1
Pr(d(z,y)) = pr— Lig, o) (%) d2 Sazyu(dy)

= 1y () dy Sy e (d).
— () (¥) dY O(y—b)a(d)

The following diagram illustrates the rotation of the cell and the new direction axis of

the Gibbs sampler for any angle 6.
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y = tan (0)x + 1/ cos (0)
O — - —=

b
Cos (0) + sin (0)

y = —cot (0)x + 1/ sin (0)

T
|
|
I
I
|
I
A

— (cos () — sin (0)) \ \ cos [0) + sin (0) 2 axis

¢ - -|---=

®

-1 . —
— (cos|(0) + sin (0)) / N cos (0) —sin(0) 1

@

| 1

! 1

I // \ 1

! ’ \\ I

1o N |

/
|»® /:/ AN I
/1 \ !
N\
/’ 1 Q- == === R e [
\
L/ : — (cos (0) —sin(0)) \
N\
- \ : ’ T -1 ~
y = —cot (0)x — 1/sin (0) / X \

1
|

y = tan (0)x — 1/ cos (0)

The main difference between this sampler and the one discussed above arises from the
random directions explored by the sampler. More precisely, mapping back and forth the
samples of the Gibbs sampler with target 7y, to the original set S we define a Gibbs
sampler on S that differs from the one discussed above by only rotating the random direction
of the samples. Equivalently, the sampling according to the transition My amounts to
replacing the coordinate exploration axis (0,21) and (0, z2) of the usual Gibbs sampler by
rotating these directions by an angle 6.

Therefore, sampling according to M first amounts to choosing randomly an angle 6.
Then, we explore the space coordinate by coordinate, according to the couple directions
defined by the #-rotation of the coordinate exploration axis (0,z1) and (0, z2).

This ends the proof of the exercise.

Solution to exercise 132:

We consider the Rotation group MCMC sampler discussed in exercise 129 when r = 2.
Assume that S is given by the boundary of the cell discussed in exercise 131; that is, we
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have
S = 8([_151] X [_151]) = ({_1?1} X [_17”)U([_1?1] X {_171})
Let n be the uniform probability measure on S is given in cartesian coordinates by

n(d(xl, (EQ)) 0.8 (5,1(d.’£1) + 51(d.’£1)) 1[_171} (.’EQ) d.’EQ
+ 1[_171] (Il) dIl (5_1(df£2) + 51(d£€2)) .

One way to sample a random variable X with probability 1 on S is given below: Firstly we
choose randomly one of the states

v () G)-C)-()-(4))

Given Y € (1) , _01 we sample a random variable Z uniformly on [—1, 1] and
Y1 . 0 0 .
we set X = 7 ) Given Y € 1l we sample a random variable Z
uniformly on [—1,1] and we set X = vo | Two equivalent ways of sampling X are
2

given below: First we sample a random variable X; on [—1, 1], then given X; we choose
Xs in {—1,1}. By symmetry, we can also also start by sampling a random variable X5 on
[—1,1], and then given X5 we choose X; in {—1,1}.

In all cases, for any subset C' C S of length ¢ we have

P(X € C)=¢/8.
For instance, the chance to have X € ([a,b] x {1}) with the first sampling technique is the

same as the chance (1/4) for Y to select and the chance (b — a)/2 for Z (uniformly

0
1
on [—1,1]) to hit the set [a,b]. This yields

P(Xe[a,b]x{l}):]P’<Y:<(1)>>><IP’<Z€[a,b} ‘Y:((f)):i b;“.

In much the same way the uniform measure on g.,4(S) is given in cartesian coordinates
by

Ngya(d(@1,22)) Ly m(e1) day (5_( Vi (d22) + 6 5, (das)
+1[7\/§,0](1‘1) dl‘l (57(\/§+I1)(d$2) +5\/§+$1 (dl‘g))

1[07\/5}(5(}2) dx2 (67(\/§7m2)(dl‘1) + (5\@7x2(d$1))

)

1y (02) 4oz (0310 (d21) + 675, (d1) )

The sampling of these distributions follows the same arguments as the one above.

The Gibbs samplers with the target measures 7,4, are defined as the ones discussed in
exercise 131. First we notice that the conditional distribution of one coordinate given the
other one resumes to a discrete measure. For instance, given z; say in [0, \/5], the second
coordinate is randomly chosen in the set {—(v/2 — 21), +(v/2 — 21)}. It is readily checked
that the resulting Gibbs sampler discussed above evolves between the 4 states

W witan ) (oo, ) (mevtan ) (Cogtay )}
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In cartesian coordinates, the Gibbs sampler evolves on a boundary of some bounded
regular domain embedded in R" using the conditional distributions of one coordinate given
the other ones. These distributions are discrete probability measures, thus they are easy to
sample (as soon as we identify the possible states).

This ends the proof of the exercise.

Solution to exercise 133:
Let S = 0D be the boundary of some smooth convex surface D. It is readily checked
that

/
re =7, and r; =7,

In addition, we have

(u,n(x)) = 0= (ro(u),n(x)) = n(@)re(u) =n(z) (Id -2 n(z)n(z)’) (u)
= —n(z)u=—(u,n(x)) <0.

We conclude that the mapping 7, is the reflection w.r.t. the tangent line T, (D) at the
surface at x € 0D.
For any (z,u) € (S x S}) we set

t(z,u) :=inf{t >0 : x+tuec OD}.
By construction, we have

-z
y=a+t@uu=teu)=lly-z|>y=a+y -z u=u= uz—W
as soon as = # y (otherwise we set t(z,u) = 0 for any u € SL).

The uniform measure on the S! is given by

1 1 1
v(d(uy,us)) = p 17’“2 1],111[(111) duq 3 (5_m+ (5_\/@) (du2).
-

We let v, be the restriction of v to the hemisphere Si and U, be a random variable with
distribution v,. Now

B (o + e, Un)U) = s [ Flat tauu) 1, () via)

We further assume that 9D is the null level set 9D = ¢~ ({0}) of a continuously differ-
entiable function s.t. 9,,¢(y) # 0 on 9D. By the implicit function theorem, for any
given y € 9D (s.t. 9,,(y) # 0) there exists a product of open sets y € O := (01 x O3) C R?
and some height function h : z; € O1 — h(z1) = 22 € Og such that

{z=(21,22) €0 : p(2) =0} ={(21,h(21)) : z1 € O1}.

For a given x € dD and a given direction u € S. we set y = z + t(z,u)u. We let h be
the height function defined above. We assume that O; is chosen sufficiently small so that
we can find some open subset U € S s.t.

O1={z+t(z,u)u : welU}.


https://en.wikipedia.org/wiki/Implicit_function_theorem
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We use the change of variables from u € U into z; € O; given by
z1=x1 +t(x,u)uy =21 + ||z — || wr with 2z = (z1,22) = (21, h(21)).

We have

21 — X1

V(a1 —21)2 4 (h(z1) — 22)?

1 (1 _ (Zl — 1'1)2 + (21 — .’1?1)(]1(21) — xg)ah(21)>
\/(21 —x1)? + (h(21) — 22)? (21 —21)? + (h(21) — 22)? .

This implies that

Uy =

— azlul =

(h(z1) — 2)
azl uy = 3 h z21) —x2) — (21 — 21 oh 2
[(z1 —21)? + (h(z1) — x2)2]3/ ((h(z1) ) —( )Oh(z1))

- [<zl—m1>(j(+21<)<_?) )" (Cacy ) ()
)

= M) (22 ) Vi e

Iz — 2| |z —all’

with the outward pointing unit normal vector n(z) at z € 9D given by

n(z) = —— (;h(zl))Q ( —3f;(zl) )

On the other hand, we have

—u? = — (21— 21) _ |h(z1) — o
\/i \/1 (21 — 21)2 + (h(21) — 22)2 Iz — 2| .

This yields the change of variable formula

du 1 zZ—T
1]—1,1[(161) ! = <

1-uf llz—af \llz-=

() ) n(da)
with the surface measure in the coordinate system associated with the height function h
given by

pn(dz1) = \/1 4 (8h(z1)) dz1.

We conclude that

E(f(x+ e, U)UL) o | fz) — <|Z‘m,n<z>> o(d2)

oD Iz =zl \llz—=|

with the surface measure o(dz) (to be more rigorous, we can use the patching techniques
discussed on pages 595 and 648 to perform the change of variable discussed above on the
whole state space).

The following diagram illustrates this change of variable formula.
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almost 7/2 when o(du) is small

4

o(du)  oy(du)
1= ly==l

sina =~

oy,(du)
a(dy)

=+ ™) = c05(0uy) =

) — axis

The following diagram illustrates the stochastic billiard when S = 9D = {x € R? : |jz| =
R}.
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20,,+ (0. —0,) ==

4

(F2) cos (0,,) = sin (a‘” ; 9")

c0s (0z.)

)=

=1/(2R)

A list of trigonometric formulae can be found in the wikipedia website. In this situ-
ation, we have

M(z,dy) o« ! < y— g (y)> o(dy) c0s (0.4 o(dy) o o(dy).

n =T
ly == \ly—=zl’ ly — ||

The following diagram illustrates the Gibbs sampler on the boundary and the one asso-
ciated with the a-rotation of the state.


https://en.wikipedia.org/wiki/List_of_trigonometric_identities
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x
0+«
Gibbs-sampler in go(9D) starting from ga ()
|
|
\

&« (Gibbs-sampler in g, (D) starting from g(x))

@, — axis

Gibbs-sampler in dD starting from x

This ends the proof of the exercise.

Solution to exercise 134:
When v, is replaced by the measure

Vg w(du) o kg (Wvg(du)  with  ky(u) = —(u,n(z)) = |(u, n(x))|

using the same arguments as above we have

B+ U0 x [ g6 e (Fo5) i (Egn) olae)

Iz ==l ) Iz — |

- /BD 1) HzixH <||i:i||»n($)> <”i:i”,n(2)> o(dz).

When S = 0D = {x € R? : ||z|| = R}, using the diagram presented in exercise 133 we

have
. 0, — 0y
(750

M(x,dy) o< o(dy).

This ends the proof of the exercise.

Solution to exercise 135:
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By construction, we have

P((X,Y)€d(ry) = plz)de ﬁ 1o (®) 4y,

= ljop@)n(¥y) dody=1,-1(ycop(z) dzdy
P(Y edy) = [/ 1p1([y’oo[)(:l:/)} dy.

Observe that

1
= J L1ty .cop (@) da’ Ly (i oop (@) d [/ 1p1([y,oo[)(a?’)] dy

=P(Xedz | Y=y) =P(Yedy)

P((X,Y) ed(z,y

This implies that
1

1,- .
f 1p71([y700[)(x/) dx’ p 1([9700[)(37) dx

P(X edz|Y)=

A Gibbs sampler wit target measure 7 = Law(X,Y") is defined by the following synthetic
diagram:

(Xn = $>_><Xn+; = Jj/N(X|Y:y)>_><Xn+1 = 7 >
Y, =y Yoy =y Yopr = Yy~ |z=2) )

This ends the proof of the exercise.

[
Solution to exercise 136:
We have
(nK)(dy) x M (y,dz)
—_——~
oK) @) = [ ) Kedy) My(ado)
SX xSY
= [ @R x [ Mpdo) Mo ds).
SY SX
M (y,dx)
This implies that
i)y = [ @) M) = [ ') K dy) = i),
=n(dz’) K(z',dy)
This ends the proof of the exercise.
[

Solution to exercise 137:
The first assertion is a direct consequence of the formula

Va>0 E(fah) = | flou)du= 2 Oa Fw) du:/ f(u)éqo,a](u) du

0 a
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which is valid for any bounded function f. This shows that (aU;) is an uniform random
variable on [0, a].
This implies that

K(z,dy) = P({Y edy| X =x)

= H e Vi) 1[o,evi<m)](yi) dy.

1<i<r
In the above display, dy = dy; X ... X dy, stands for an infinitesimal neighborhood of the
state y = (y1,---,Yr)-
We conclude that

P(X,Y)ed(z,y) = PY edy|X=2)xP(X €dx)

- H 1[0,6Vi<m>}(yz‘) Adzx) dy.

1<i<r
This shows that
1
P Xede|Y=y)=—=—— 1 o1 (Ui A(d
(X € da | y) Z0) 1SHZ§T [0,cvi] (¥i) ¢ Aldz)

for some normalizing constant (here the density of the sequence Y w.r.t. dy). The last

assertion is easily completed using exercise 136 (and running a Markov chain with transition
K').
This ends the proof of the exercise.

Solution to exercise 138:
The conditional density of the observation sequence (Y ;)i jye(rx.s) given (X;)ier =z,
Z =z, (V1,V2) = (v1,v2) is given for any y = (yi,j)(i,j)e(IxJ) by

1 1
p(y | T, V1, U2, Z) = H \/m €xXp _% Z(yi,j _xi)g

and

1 1
p(z | v1, ve, 2) = H N exp (21}1 (x; 2)2>

icl
On the other hand we have

p(l’ | Y, V1, V2, Z) OCP(?J | X, Ui, U2, Z) p(.’I} | U1, U2, Z)

1 1 1 1
xTLier vism o0 (—2% Sjesis —)?) viker oxp (= 5k (2 - 2)%).
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Using the fact that

1 1
— D Wiy — )+ — (2 —2)°
vy

v
jeJ 1

1 1
T Do lvi + i = 2miyi ) + o (@7 + 2% - 2;2)

jer
1 |J z 1 1 z
=a? 7+U -2z —+*Zyi,j |- Zy?,]%-*
v v v vz Y2 ey v

2
2 z 1 .
_ i+|i| x__%+izj€invj B (E‘FEZjGJyz,J) B iz _2__’_1
v Uy ! 1 1 s L

V1 V2 v1 V2 JjeJ

we prove that

1 1
p(x |y, vi, v2, 2) = H T &XP <20 [xi — Oé((yi,j)jeJ,vl,UQ)]z), (30.25)

iy 2ro2(v) 2(v)
with
- L ) ot 0 Yjes Vi
o 2(1)1,1)2) ==+ u and « ((yi,j)jEJyvla 1}2) _u Vg JJE
vy V2 1, M
v1 %)

We also notice that
p(vr |z, y, 2, va) =p(vr | 2, 2) cp(z | 2, v1) p(vr | 2) = p(x | 2, v1) p(v1).  (30.26)
Now we use the fact that

p(x | 2, v1) p(v1)

! 1 2 1 by
- _ 1 o 1 _bYy g
X Vamol eXP( 201 Z(m J ) vt exp< vl) Josf (1)

1 1 (1
e, OP <U1 (2 > (@i —2)*+ bl)) Ljo,c0f(v1)-
v?

iel

This shows that the conditional distribution of V1 given X = (X;)ier = 2, Y = (Yi ;)i j)e(rx) =
y and (Z,V3) = (z,v3) coincides with the conditional distribution of V; given X = x and

Z = z and it is given by an inverse Gamma distribution with shape parameter A;(a;) and
scale parameter B;(z) given by

I 1
Al = % + aq and Bl(Z) = b1 + 5 ;(mz - 2)2-

In much the same way, we have

p(v2 |z, y, 2z, v1) =pv2 |y, ®) ocp(y |z, v2) plva | ) =p(y | =, va) p(v2). (30.27)
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Notice that
p(y | z, v2) p(va)

2v9 V2

1 1 1 by
X T XP | —5— Z (yij — $i)2 W exp <) 1]0700[(112)
V2 (,5)E(IXJ) 2

1 1 1 9
08 W €xXp _v: by + ) Z (yz‘,j - xz) 1]0,oo[(UQ)~
2 (i,5)E(Ix J)

This shows that the conditional distribution of V5 given X = (X;)ier = 2, Y = (Yi ;)i j)erxs) =
y and (Z,V1) = (z,v1) coincides with the conditional distribution of V5 given Y = y and

X =z and it is given by an inverse Gamma distribution with shape parameter As(as) and
scale parameter By(z,y) given by

I 1
Ay = % taz and By(z,y) =b2+ 5 > iy — )
(i,7)e(I X J)

Finally, we have
p(z,x |y, v1, va) =p(z,x | v1) xpx | 2z, v1) p(z | v1) =p(z | 2, v1) p(2). (30.28)
To take the final step, we notice that

p(x | 2, v) p(z)

1
X 7‘” exp _T
\/271'1}1 U1 icl

Using the fact that

1 1
S @i— )+ (- m)’
17
i€l
1 I 1 1
= quLu 292y — leerQJrfmZ—QZm
V1 < (%
i€l iel

2 2
m 1 m 1
Il 1 (7 + o el xi) (? + o el xi) 1 5, 1 2

( - : (ﬂ + 1) v vy ZGZI ’

U1 v
V1 v

we conclude that

e Loy v ) e (= o= B
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with

1
(% + 3 Dier x,-)

B+
U1 v

Now we can design a Gibbs sampler using the conditional distributions computed above
as follows.

Suppose we are given the random state X, = (X () Z(*), Vl(k), VQ(k)) = (z(®) (k) v§k), vék))
at the k-th iteration. The transition

7_2(1)1) = (1111 + 3}) and fB(x,vp) =

Xk — Xk+1 — (X(k+1)7 Z(kJrl)7 ‘/1(16-'!‘1)’ ‘/2(k+1)) — (x(k+1)’ Z(k+1),vgk+l),vék+l))

is defined in 4 steps:
e Firstly, we sample X(**1) = z(*+1) with the conditional Gaussian distribution (30.25)

given (}/, Z7 ‘/1, ‘/2) = (?J7 Z(k)7 ’Uik)a Uék))

e Then we sample Vl(kH) = vgkﬂ) with the inverse Gamma distribution (30.26) with shape
parameter A; and scale parameter By (z(*)).

e At the third step, we sample VQ(kH) = vékﬂ) with the inverse Gamma distribution (30.27)
with shape parameter A, and scale parameter By (1) 4).

e Finally, we sample Z(*+1) = 2(k+1) with the Gaussian distribution (30.28) with mean and
variance (B(z(F+1), vgkﬂ))7 T2(U§k+1)))

—ap (k1) _ [ 1 (k+1)\ _
O )-(W‘FU and  B(z,v;" ") =

m (k+1)
(? + 1711 Dier i )
I
(st +1)
1

This ends the proof of the exercise.

Solution to exercise 139:

The filtering problem (9.103) has the same form as the filtering problem discussed in
(6.7) and in section 9.9.2.

e Using some abusive Bayesian notation, we set
P, (d(zg,...,xn)) :=P((Xo,...,Xn) € d(zo,...,2n)) = p(x0,...,2n) dzg...dx,.

Notice that

p(Zo, ..., xy) dxg ... dx, = p(xo)dag H p(zr | Tr—1)dxy
—_————
:=no(dzo) 1sk<n =My (x)—1,dx)

with ny = Law(Xy) and for any k > 1

1 1
Mk(l’k_l,dl'k) = P(Xk € dxy, ‘ Xp_1 = xk—l) = \/% exp <2(f£k — ak(a:k_l))2> dzy,.
We let (yn)n>0 be a given sequence of observations. Consider the sequence of likelihood
functions

Vn >0 Gn(xn) = p(yn|$n) = exp (_ (yn - bn(xn))2>
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Using Bayes’ rule, we have

B((Xor... Xa) € d(on...20) | Yi =y 0< k <)
=p((x0, -, Zn)|(Yoy -+ -, Yn—1)) dxo ... dxy

1
=———— <[] pwlee) p plao,...,2n) dao ... day,
p(yOM"aynfl) 1<k<n

L TT Gelan) b Pad(@o - 30) = Qu(d(zo, - 22))

T Z,
" | o<k<n

with the normalizing constant

Zy=pWo,- - yn-1) = J[ pWrlyo.-. yx—1)
0<k<n

and
P(YklYo, - yr—1) = /p(yklwk) p(zklyo, - yk-1) doy.
——
We use the convention p(yolyo,--.,y—1) = p(%o), for k = 0.

We let 7, be the n-th time marginal of the path space measure Q,, defined above. From
previous calculations, we have

N = Law(X, | Yi=yr, 0<k<n)

Qn = Law((Xo,.., X,) | Y =yp, 0 <k <n)

Z, = p(y()»"'aynfl): H nk(Gk):’yn(]-)
0<k<n

with the unnormalized Feynman-Kac measures v, defined in (9.23).

e Using (9.30) the sequence of distributions 7, satisfies the nonlinear updating-prediction
equation

M =VYa,_,(Mn-1)My.

This ends the proof of the exercise.

Solution to exercise 140:
e We use the mean field particle models described in section 9.6.1. We let €, any positive

number s.t. €,G,(z,) <1 for any z,, € R. For instance we can choose ¢, = 0, or

€n = V21 = €,Gp () = exp (—; (yn — bn(xn))2> € [0,1].
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The particle filter starts with N i.i.d. copies & = (&))1<i<n € R of the initial state Xo.
The evolution of the particles is decomposed into 2 transitions

updatlng —~ =~ prediction ;
n = (E1<isy —— & = (E1<isy —— &np1 = (§r1)1<i<n-

During the updating-selection transition, for each 1 < i < N we set f’ = ¢ with a
probability € G,,(&!); otherwise we set fl = 5 where SZ denotes a random variable with

distribution . (5)
1§§:N Zlgjgzv n(&h)

Here 1} is the occupation measure 0}’ = & >,y 0¢i of the particles &, = (&})1<n-
During the prediction-mutation transition, we sgmiple N independent copies (W} 41) of
W41 and we set

VISi<SN - & =an@)+ W,

In other words, during the prediction transition we sample N independent random vari-
ables £, with distribution My (E,@, d:z:k+1>, with 1<i < N.
By (9.49) we have

1

1<i<N

e Using the product formula (9.50) an unbiased particle approximation of the normalizing
constant 7, (1) is given by the formula

= I ote=T1 o= 5 & e (- - nuieh)?).
0<k<n 0<k<n 1<i<N
By (9.50), for any function f on R we also have
T () =70 (1) X (F) —Nree Ta(f).
e Using the Feynman-Kac models on path space discussed in (9.6.2), the ancestral lines
VISiSN - (§m€ln - €nin )

of the individuals &}, ,, = &, can be interpreted as a mean field particle approximations of
the Feynman-Kac models on path space. Using (9.55), we have

> Oeh el i)~ N0 Qn = Law((Xo, ..., X0) | Ye =y, 0 <k <m).
1<i<N o

e Notice that the likelihood functions GG,, and the Markov transitions M, satisfy the regu-
larity property (9.56)

Gn—l(xn—l) Mn(xn—la dxn)

dz,,

—exp (= (= bulaa))?) x 030 (= (20 an(on0)) G

2 2T

= Hn(xn—ly xn) An(dzn)
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dxy,
with A, (day) = —; and
iy

[ = bu(a))? + (2 an(xn_l))ZD.

N | =

Hn(xn—la-rn) = eXp <_
The backward particle model (9.58) is given by

QY (d(wo, ..., xn)) = n (dzn) H My 1,08 (Tk+1, d2k) —Ntoo Qn

0<k<n
with the backward Markov transitions

Hy1 (&, wrr1)

MkJrl’ N($k+1,d1}k) = - 551' (d:ck)
e 19ng Z1§j§N Hyy1 (8§ h41) "
This ends the proof of the exercise.
Solution to exercise 141:

e By construction, we have

0 0

— = —E X

89p9(y0’ s Yn) 20 ( Gox( k))

0<k<n
0
= E _
(80 [ Ge,k(Xk)])
0<k<n
with ) )
Gor(Xg) = —= (yr — er(Xg) — 0di(X))? ).
(30 = = o (= (o~ u(X) — 00u(X0))
Using the fact that
i I Goxxo)| = | Y 210gG¢9 k(Xk) I Gor(xx)
00 ’ 00 ’ ’
0<k<n 0<k<n 0<k<n

and

% log Go1(Xk) = (yr — cx(Xi) — 0di(Xy)) die(Xk) := lo,1(Xk)

we prove that

0
%pe(yo,---,yn):E (Ln,G(X()v'--;Xn) H Ge,k(Xk))

0<k<n

with the additive functional

Lnﬂ(XOa"'aXn): Z le,k(Xk)

0<k<n
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We conclude that 5
90 log po (Yo, - - -, Yn) = @n+1,9(£n+1,9)

with
£n+1,9(X07 s 7Xn7 X’I’L+1) = Ln,@(XO7 e 7Xn)

e We fix the parameter 0. With a slight abuse of notation we let 7} = & >, ;< d¢; and

(féyn, .. 75;,n)1§i§N be the occupation measures and the ancestral lines of the genetic
type N-particle model associated with the likelihood-selection fitness functions (G g)k>0
defined in (9.104).

Using the Feynman-Kac particle approximation on path-space in terms of ancestral lines
we have

1 . . .
N ZlgigN £n+1,9(§6,n+1v gi,n—i—la IR a§;+1,n+1)

E(Lny1,0(Xo0,Xnt1) Tlocpen Go.u(Xk))

T ?Ntoo E(TTo<k<n GS,k(Xk))

= Qn+179(£n+1 9) 90 Inge(yOa ce 7yn)-

On the other hand, using the backward particle approximation

N
QN1 o(d(@o, ..., ng1)) = 00y (dTnyr) I | Mk+1 N (Thy1,dxr) —Ntoo Quii
0<k<n

with the collection of transitions M;C 41, defined as M1 , by replacing Gy, by the function
G0 defined in (9.104). This yields the particle approximation

QnN+1(£n+1 9 Z nn+1Mn+1 nN .- Mk:—i—l,n,]cv (197]@) .

0<k<n

This ends the proof of the exercise.

Solution to exercise 142:

e The Feynman-Kac measures (y,,7,) are described in exercise 139. The one step optimal
predictor
N = Law(X,, | Yo =yr, 0< k <n)

is defined by the Feynman-Kac model

() = m(f)/ (1) with . (f) =E | f(Xn) H GP(X

0<p<n

for any function f on R, and with the likelihood potential functions

Gn(zn) = p(YnlTn) = \/% €xXp (_; (Yn — bn(xn))Q)'

e We consider the genetic-type particle filter approximation of the ld-nonlinear filtering
problem defined in (9.103):

updating ~ =~ prediction ;
&n = (§)1<ish — > &n = (E1<isv —— &ng1 = (Ei<i<n,  (30.29)
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starting with N ii.d. copies & = (&)1<i<y € R of the initial state X,. During the
updating transition, we sample N random variables (5@)195 ~ with distribution

Gn ;
3 (&n)

- 5%.
1<i<N Zlgjgzv Gn(8h)

During the prediction-mutation transition, we sample N independent copies (W}, ) of
Wip+1 and we set

VISi<N €, =an(@)+W.

By (9.49) and (9.50) we have

1
ny = N > b —Ntee mn and Y (F) =N 1) x 0} (f) —Ntee W(f)-
1<i<N

e The many-body Feynman-Kac measures (7,,,7,,) associated with (v, 7,,) are the Feynman-

Kac measures on RY defined for any function f on S = RY by

0<p<n

In the above display, X, := (&,),...y € 57 and the collection of particle likelihood

functions G,, on R are defined by
o 1 ,
Gn(Xy) = ng(Gn) =N Z Gn(&r)

We recall that

This ends the proof of the exercise. ]

Solution to exercise 143:
e For path-space models, the conditional distributions
nn = Law((X(,...,X,) | Ye =ug, 0<k<n)=Law(X,, | Vi =yg, 0<k<n)

are defined for any function f, on S, = R"*! by the Feynman-Kac model

M (fn) = ¥ (f)/ (1) with v (fn) =E | f(Xn) H Gp(Xp)

0<p<n

In the above display, the likelihood potential functions G,, on the path space are defined
for any z,, = (zf,...,2) € S, = R""! by

) n

Colin) 1= Gl(a) 1= plyalely) = — exp(—l <yn—bn<x;>>2).

§
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e The corresponding genetic type particle model (30.29) is defined in terms of path-particles
€= (Gl o €hn) and &= (G0 8- E) € Sa =R™L

We also start with N i.i.d. copies & = (&})1<i<n € R of the initial state Xo = XJ.

During the updating transition, we sample N random paths (E;)ISZSN with the weighted
distribution

(y i
2i<j<n Gulén) doi<jen Gr&nn) Somnrinn

1<i<N 1<i<N

During the prediction-mutation transition, we sample N independent copies (W}, ) of
Wip+1 and for each 1 < ¢ < N we set

5;-5-1 = ((56,n+17 §§,n+17 s »gfz,n-s-l) 7§;+1,n+1)

~ ~ ~ ~ . ~ . 9
((g(l),nafi,n? 5571'7,7 s 75’2,71) 7521-&-1,71-5—1) (Z (5:1’ 7Z’L+1,n+1>) € Rn+

with ‘ N ‘
£ZL+1,TL+1 = an( :z,n) + sz

By (9.49) and (9.50) we have

1
m = > be —Ntoe Tnand AN (fa) = (1) x 0) (£2) —Ntoo Tn(fn)-
1<i<N

e The many-body Feynman-Kac measures (%,,,7,,) associated with (v,,7,) are the Feynman-
Kac measures on (R"*1)" defined for any function f, on S, = (R**H)¥ by

F&) I G(x)

0<p<n

T (Fn) =7 (Fn)/7,(1)  with 7,(f,) :=E

In the above display, the reference Markov chain X, is the path-space particle model

and the collection of particle likelihood functions G,, on (R"*1)¥ is defined by

GE) =y X Gl =5 X Gl
1<i<N 1<i<N
We recall that 1

1<i<N

o We consider the Feynman-Kac measures on Sy, = (So X ... x S,,) defined for any bounded
function f,, on S, by
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In the above display, X, := (Xo,...,X») € Sp = (So x...xS,) is the historical process
associated with the path-particle Markov chain (30.30).

We design a particle Metropolis-Hastings algorithm with a target measure 7,, following
the methodology developed in section 9.7.2.

More precisely, we fix the time horizon n and we define the particle Metropolis-Hastings
Markov chain (X)g>0 on S, as follows.

Given some historical trajectory of the path-particle model
Xk =T = (To,-.-,Tp) € S =(So X ... xSy)
we sample an independent trajectory
Vi =Yn = (To,--Tn) € Sn
of the historical process X, := (X, ..., X,). With a probability
o<ken Gr @)
[o<k<n Gr(Th)

we set Xi+1 = Vi, otherwise we set X411 = Xj. By construction, X} is a Markov chain
with invariant measure 7,,. In addition, for any function of the form

a (Enayn) =1 A

- _ 1 i
1<i<N
with o ‘ ‘ A ‘
Xn=(8)cicny and VI<i<N & =(&,.....8,) e R
we have B
ﬁn(fn) = nn(fn) = E(fn(X(/J’ s 7X7/z) ‘ Y=y, 0<k< ’I’L)
This ends the proof of the exercise. [

Solution to exercise 144:

e The posterior distributions of X,, = (X{,...,X/) € R"*! given the sequence of observa-
tions (Y)o<k<n = (¥))o<k<n are defined by the Feynman-Kac measures (7, 7,) defined
in (9.23) with

Gu(X,) = G = i exp (=504~ B (X)),

e The genealogical tree based particle approximation of the measures 7, are discussed in
full details in section 9.6.2.The many-body Feynman-Kac measures associated with the
mean field particle interpretation of the measures 7,, are defined in section 9.7.1. The dual
mean field model with frozen trajectory X,, is described in full details in section 9.7.3,
and a couple of particle Gibbs-Glauber algorithms are presented is section 9.7.4.

This ends the proof of the exercise. ]
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Solution to exercise 145:
Since N, is a Poisson random variable with parameter At, we have

E(Nt) = e_At Zn @ =\t e—)\t Z (At)n_l — )\

= n! = (n—1)! -
and
E(N?) = ¢S (n(n—1)+n) (A;!)" ZE(N) + ()2 MY E;tzn;; = A+ (M)
n>1 >2
This ends the proof of the exercise. [
Solution to exercise 146:
e For any s € [0,t], we have
P(Th <s|N:=1) = P(N,=1|N;=1)
_ P(No=1, (N= Ny =0)  GpFer Qg
P(N; =1) QBT o—xt t

1l
This shows that the conditional distribution of T given N; = 1 is the uniform distribution
on [0,¢].

e For any s € [0,¢], we have

P(Ty<s|N,=2) = P(N,>1|N,=2)
P(No=1 (N =Nj)=1) PN, =2 (N~ N,)=0)
P(N: = 2) P(N; = 2)
B ()\15!)1 e_)\s ()\(tis))l e_)\(t_s) . ()\25‘)2 e_>\5 ()\(t&s))o e—)\(t—s)
= (A;I)Ze_At (/\Qt!)ze_)‘t
s(t—s) &% 2st—s? s s\ 2 6N 2
= 2 Gl :2ff<f) :17(177).
7P 2 i ;

This shows that the conditional distribution of T} given N; = 2 is the distribution on [0, ¢]
with density

0 1 s
RN < = = _ —_—— .
GBI <s| N=2)=2 (1 t)

e For any s € [0,t], we have

P(To<s|Ny=2) = P(Nyg>1|N;=2)
B P(Né _ 27 (Nt _ Né) — O) B ()\25!)267)\5 (A(t&s))o ef/\(tfs) B (§>2
B P(N; = 2) - Q02 e —\t/)

2!
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This shows that the conditional distribution of T given N; = 2 is the distribution on [0, ¢]
with density

0 1 s
—P(T5 < Ny =2)=2 — —.
st 28| Ne=2) tt
This ends the proof of the exercise. ]
Solution to exercise 147:
We have
P(N(t)=n) = > P(Ni(t) =m)P(Ny(t) =n—m)

0<m<n

= o~ (atrat Z (Aat)™ (Ait)™™

0mn m! (n—m)!
1 n!
— 7(A1+)‘2)t7 - )\ t m )\ t n—m
‘ n!0<;<nm!(n—m)!(2) (at)

1 n
= e_(’\ﬁ')‘?)’fﬁ (M + X0t

This shows that N(t) is a Poisson random variable with parameter (A; + A2)¢. The condi-
tional distribution of Ny(t) given N (t) is given for any 0 < m < n by

P(N1(t) = m No(t) =n —m)

P(Ni(t) =m [ N(t) =n) =

- n! )\1 m )\2 nom
- m'(n—m)' A1+ Ao AL+ Ao '

This is clearly a binomial distribution. This ends the proof of the exercise. [

Solution to exercise 148: Clearly N,, ~ Bin(n,p) is a Binomial random variable with
parameters n and p. We have

m<n= N, — N, = Z Er law Np—m ~ Bin(n —m, p).

m<k<n
In addition N,, and (N,, — N,;;) are independent. More generally,
(Npys Npy = Nioyy oo oy Ny — Ny,
are independent Binomal random variables with parameters
((n1,p), (n2 —n1)p, ..., (nk — nk—1)p)

for any sequence of parameters 1 <nj; < ... < ng.
Finally, we observe that

(Ty<n)=(N,>1)=Q— (N, =0) =PI} <n)=1-P(N, =0) =1 — (1—p)".
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Therefore, we have

(Ty=n) = (T1 < n) - (T} < (n—1))

=PTi=n)=1-(1-p")—(1-1=-p) ) =0-p)" '(1-(1-p)=p(l-—p"*

We conclude that T; is a Geometric random variable with (success) parameter p.
Finally, we have

(Th=k) = (To<k)N(Th>k-1)
= (Ng>n)N(Ng—1 <n)=(Ng>n)N(Ng—1 = (n—1))
= (Nea=m-1)N(E&=1)

This implies that S, is distributed according to the negative binomial probability

k—1 P —1)—(n—
e G L Y
_ kE—1 n k—n
This ends the proof of the exercise. [

Solution to exercise 149:

The key idea is to run a Poisson process N (t) with intensity A = A1 + A2. At each jump
time, Ni(t) jumps with a probability /\111/\2 (and N»(t) does not jump), and Ny (¢) jumps
with a probability >\1>-\|r2/\2 (and N;(¢) does not jump). Among the first (n 4 (m — 1)) jumps

of N(t), N1(t) jumps at least n times. Therefore we have

P (N; jumps n times before Ny jumps m times)

n+ (m—1) R N, (M —1))—k
= Zn§k<m+n k (A1+>\2) (Al-‘r)\z) ’

This ends the proof of the exercise.

]
Solution to exercise 150:
By construction, we have Ng(Téa)l) = Nég) + (n—1) so that
(1) 1)
r@ oo T T,
n n—1 (2) :
ANG™ + (n—1))
This ends the proof of the exercise. ]

Solution to exercise 151:
Combining

P((Ty,...,Tn) € d(t1,...,tn))

= | TT i, soeilts) N, dty| exp (—fot" As ds)l[tn_lyoo[(tn) dt,,

1<p<n
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and

P(T, € dt) = % A exp (—/Otxs ds) dt

with the Bayes formula we prove
P((Ty,...,Th-1) €d(ty,... th1) | T = tn)

At dt,

= (n - 1)! 10S’¢1§~~Stn—1§tn H J"t )\ dS.
0 S

1<p<n

This ends the proof of the exercise.

]
Solution to exercise 152:
We have
Xt - Xt, == dXt =a Xt, dNt =a th (Nt — Nt,).
Thus, at the first jump time say 77 of N; we have
X7, =Xo+a Xo=(1+a)¥ X,.
Let T5 be second jump time of N;. By construction, we have
VI <t<Ty Xe=Xp=0+a) Xy =1+a)™ X,
and
X, =X, +a X =04a) 1+a)" Xo=(1+a)V-! Xg=(1+a)" X,.
Iterating the argument, we prove that
X, =(1+a) Xo.
This ends the proof of the exercise.
]
Solution to exercise 153:
Using the same arguments as in exercise 152, we find that
Xi=Xo [] (+an)=Xo II «+a).
0<k<N; 0<s<t ,dN,=1
This ends the proof of the exercise.
]

Solution to exercise 154:
Between two jump times, say T,, <t < T,,41 the process X; satisfies the linear equation

dXt = (bt - A at) thdt.

This implies that

t
VT, <t <Thy1 X:=Xr, exp (/ (bs — A as)ds).
0
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Using the same arguments as in exercise 153, we find that

X, = X exp</0t(bs)\as)ds) II @ +an).

0<E<N:

This ends the proof of the exercise.
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Solution to exercise 155:

The process X; = Yy, can be interpreted as the embedding of a Markov chain Y,, with
transition probabilities K, with a Poisson process N; with intensity A >. We let (T},)n>0
be the jump times of the process IV; defined by

1
To=0 Vn21 T —T,=—5 logl,

where U, stands for a sequence of independent uniform random variables on ]0, 1 (inde-
pendent of the sequence (Y,),>0). We recall that E,, = f% log U,, forms a sequence of
independent exponential random variables with parameter \.

Given N; = n we have
Vn>0 Vte [l Tanl Xi=Xg, =Y,
This implies that

/OTn vixgd = Y

0<k<n

/ o1 V(Xy) dt = Z V(X7,) (Tis1 — Ty).

T 0<k<n

Therefore
Tn
E <f(XTn) exp </ V(Xs) ds) | (To, .- - ,Tn)>
0
=E(fvn) ] e VOO (1, 1) |,
0<k<n
as well as
Tn
E (f(XTn) exp (/ V(Xs) ds)) = E| f(Y,) H BV (V)
0 0<k<n

We also find that

Tn Ty t
O 0 T’L

= Y V(Xn) (Tepr — Ti) + V() (t—To).
0<k<n

E (f(Xt) exp (/Ot V(X.) ds) | N, = n>

=TF f(Yn)e(t_ZO§k<nEk)V(Yn) H eEeV (Vi)

0<k<n

This yields

957
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This ends the proof of the exercise.

Solution to exercise 156:
Reversing the integration order, we have

ontf) = —nh)+ [ 1@ [ ae-v) ) do] as
= —nt(f)+/ [/ FW) Lizoo 9y — 2) dy} pi(x) dz = ni(L(f)),

with the pure jump generator

L)@ = [ ()~ £@) K(a,dy)
and the Markov transition

K(z,dy) = 1i3,001(y) q(y — x) dy.

Notice that a random sample from M (z, dy) is simply defined by x + U where U stands for
a random variable with probability density ¢ on [0,00[. The embedded Markov model Y,
is defined by

Yo=Y, 14U,=...=Xo+V, with V,:= Z U;

1<i<n

where X is a random variable with probability density pg and U, stands for a sequence of
independent copies of U. By (11.12) we have

X; =Yy, and P(f)(z)=E(f(z+ Wy,)).
Also observe that
(L)) = m(K(F) = m(f) = E(F(X: +U)) — E(F(X2)) = DE(F(X).  (3031)
We consider (whenever their exist) the Laplace transforms
(N) == E(@X) and p(\) = E(),

Notice that
E(eAX,,JrU) — E(e)\Xt) ]E(@AU).

Therefore, choosing f(r) = e** in (30.31) we find that
e (N) = ¢ (N) (p(N) = 1) = de(N) = do(N) exp ( (p(A) — 1))

This shows the existence and uniqueness of ¢;() for any A s.t. ¢(\) < co. For instance,
for exponential jumps with parameter a > 0 we have

o) = 0 € T f(n) = o) = @) =~ [T (o mwja o -

for any A < «. In this situation

o0 =an) exp (1 (225 -1) ) =) e (225).
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For exponential jumps (cf. exercise 41), the random variables V,, are Gamma with parameter

(n, ).
Un—l

P(V, € dv) = CES

xa' em ™ 1 oof(v) dv.
This shows that

n —af

xa e W 1 i(y) dy

K (D)) =B+ V) = [ 1) o

from which we conclude that

_ " (y -zt —a(y—
ot v n ,—a(y—r)
Puady) = et 3 1 s e e ) dy
n>0
This ends the proof of the exercise. [

Solution to exercise 157:
The infinitesimal generator of the process is given by

L)1) = A1) (f(2) = (1) and  L(f)(2) = M2) (f(1) = f(2)).

We have
dne(f) = me(L(f)).

On the other hand, we have

f@) =1(z) = L(11)(1) = L(1,1) = —A(1) and L(1;)(2) = L(2,1) = A(2).
By symmetry arguments, we also have

f(@) =1a(z) = L(1o)(1) = L(1,2) = A(1) and L(15)(2) = L(2,2) = —A(2).
This implies that

Cn(1) = (L) = (I + (@) L(1)() = -ADm(1) + A2 (2)

and

%Ut(z) =nt(L(12)) = n:(1)L(12)(1) 4+ 1¢(2) L(12)(2) = AM(1)n:(1) — A(2)m¢(2)-

Notice that

% AMn(1) = A@2)ne(2)) = AL [=AW)0: (1) + A2)ne(2)] = A2) [MD)me(1) = A2)m:(2)]

= — (A1) +A2) AD)me(1) = M2)m(2)) -
This implies
A (1) = A2)m(2) = e~ QWP (X(1)o(1) — A(2)m0(2)) -
Recalling that n,(2) = 1 — n,(1) we conclude that

(A(L) + A2)) ne(1) = M(2) + e~ QDT (A(1)5(1) — A(2)m0(2)) -
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Therefore

ne(1) =

A(2) 1 _ .
D@ A AL = A ().

By symmetry arguments, we also have

This ends the proof of the exercise.
]
Solution to exercise 158:
L(z,z+1) = Ay (x) L(z,z—1)=A_(2) and L(z,z) =M (z)+ A_(2).
For any x € N — {0} we have
(rL)(x) = w(r—=1) Ap(z = 1) =m(z) A (@) + A (2)] + m(z +1) A(z+1)
= [rle+1) M@+ 1) = w(@Ai (@)] - @A (@) — 72— 1) Ay (@ — 1))
For x = 0, we find that
(rL)(0) = (1) A—(1) = 7(0) A1 (0) = 0.
Using induction w.r.t. = we conclude that
@A (@) —m@ - A(@-1)=0= n(@) = 55D r(z-1)
= [Mosyew 5525 | 7(0).
Finally, we have
N0 I B 2w |
; L<l;[< ot 1)] (0) =1 = 7(0) (;) L<];[< e 1)]) .
This ends the proof of the exercise.
]

Solution to exercise 159:
For any n € S := N the infinitesimal generator L of V; is defined by

L)) =A[fln+1) = f(n)] < Ln,m) = A [lugpi(m) = 1u(m)].

For any m > 1

Conlm) = 3 m(n) L) = X lm — 1) ~ ()]

n>0
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Since Ny = 1, we have 19(m) = 1o(m) and

Dp(0) = =X m(0) = mi(0) = e

d t
%m(l) =X [e M —n(1)] = (1) = / e MmN e ds = At e M,
0

We use mathematical induction. Assuming that n,(n) = (/\Z!)n e, we find that

d )"
%m(n+ 1)=2A [(n') e M —m(n+ 1)] :
Therefore
t n
n(n+1) = / e ME=s) [/\ (As) e M ds
0

n!
= M /t)\ (As)" ds = ()\s)nJrl e M,

This ends the proof of the exercise.

Solution to exercise 160:
The process jumps up by +1 unit at rate A and jumps down by —1 unit at the same
rate. We conclude that the generator of X; is defined by

L@ = A(f@+1)— @)+ N (Fo—1) - f(z))
@+Av[ Fle+1) - f) +

(f(z —1) = f(x))

A [
DY PEY

QA/“U@yfﬂm>K@@w,

with the Markov transition

/

A
K(z,dy) = dev1(dy) + SV

= m de—1(dy).

On the other hand, for any bounded function f on S = Z we have

ome(f) = Z f(@) Oumu(x) = ne(L(f))

TEL
= A @) (fle+1) = f@) + N Y nel) (fl@ = 1) = f(x))
T€EZ TEZL
=AY ((z=1) —me(2)) f@)+ N Y (e +1) —m(2)) f(x)
T€EZ TE€Z
= > (e = 1) = m(@) + X (e + 1) = m(@)] f(=).
TEZL

By choosing f = 1., we conclude that

e (x) = A(ne(x — 1) = ne(2)) + N (e (2 + 1) — ne()) -
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We have
Ohge(2) = Z O () 2"
T€EZ
= D 2 Panle = 1) = A+ X)) + Ny + 1))
TEL
= Z 2" (= 1) Az = 2%n() A+ N) + 25 (e + 1) N2
TEZ

= glz) P2 = A+ X))+ N
This implies that
g:(z) = exp ([)\ 2= A+ N)+ )\’271} t) go(z) .
Hence

gi(z) = e~ AFAE o (Ae4A271) ¢,

This ends the proof of the exercise.

Solution to exercise 161:
By construction, X; jumps at rate A with an amplitude Y. Thus, its infinitesimal gener-
ator of X, is given by

L(f)(x) = A / (F(x+9) — f(2)) p(dy).
We have

P(X;<2)=EPX;<z|N))=e Z

n>0 ' 1<i<n

Since ), ;., Yi is a centered Gaussian with variance n, we have

S vt E Y =B Y Yi<a) = BY <a/vh).

1<i<n 1<i<n

This ends the proof of the exercise.

Solution to exercise 162:

e We have n individuals after the (n—1)-th split (2 individuals at the first split, 2+1 = 3 at
the second split, and so on). The splitting time of each individual is an exponential random
variable with parameter A\. These variables being independent, the first splitting time T,
after 7T}, _1 is the minimum between these n splitting times and it is an exponential random
variable with parameter \ x n. The splitting time of each offspring being independent of
the last splitting times, the random time T, is independent of (T%)1<k<n.

We conclude that T}, are independent exponential random variables with parameters Axn,
with n > 1.
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o T, = > 1<p<n Ik is the sum of independent exponential random variables T}, with param-
eter \k. Suppose n students are starting an exam at time ¢ = 0. Each of them completes
the exam at an exponential rate with parameter A. Arguing as above, the time the first
student leaves is an exponential random variable S;, with parameter An; the time the sec-
ond student leaves is an (independent) exponential random variable S,,_; with parameter
A(n — 1), and so on. This shows that T, can be interpreted as the time at which all
students have left, so that

P(Tnﬁt):P(Slgt,...,Sngt): H ]P?(Skgt):(l_efz\t)n’
1<k<n

e Notice that B
(X >n}={T, <t} =>P(X;>n)= (1-e)".

This implies that
P(X, =n) =P(X; > n)-B(X, > n) = (1-e )" = (1 e M) = e Mx(1-e )"

for any n > 1. In addition, we have

E(X)=> P(X;>n)=> (1-e )" =eM

n>0 n>0

This ends the proof of the exercise.

Solution to exercise 163:
e For any s < ¢, we have
MY — M® = (N, — N,) — A\t — s).

Since (N; — N;) is independent of (N, )o<r<s and (IV; — Ny) is a Poisson random variable
with parameter \(¢ — s) we conclude that

E(Ny — Ng) = A(t — s)
and

E (29 = MO | F) = E(((N = No) = Mt = ) | Fo) = E((N; = Ny) = At = ))) = 0.

e For any s <t, (N; — N;) is a Poisson random variable with parameter A(t — s). Thus, we
have

Var (N, — N,) =E ([(Nt N, - At — s)]2> = A\t — 9).
M - M@ = (MO + ) = M) = (M) A s)
- (Mt(l) - M,Sl))2 +oMO Y — MO) = At —s)
= (N = Ny) = At — )2+ 2MD (M — MDY — At — s).
Arguing as above, we find that
E (MO - MO) [ F) = MO E (g = M) | ) =0

and
E(M? - MP | F)=0sE (M| F) = M2,

S
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e For any s < t, (N;y — N;) is a Poisson random variable with parameter \(¢ — s) and
(N¢ — Ny) is independent of (N, )o<r<s. Thus, have

E (ea(Nths)fk(tfs)(eafl) \E) - E (ea(Nths)fk(tfs)(eafl)>

o Mt=s) Z (At —s)" an—A(t—s)(e*~1)

n!
n>0

_ —A(t—s)e® (EO‘)\(t — S))n -1
e T;J =1

This implies that
E (eaNt—)\t(ea—l) | fé) — eaNS—)\s(e“—l).

This shows that Mt(g) is a martingale.
e Notice that

when a = log (1 + b)

MY = (14 b)N e = exp (log (1 + b)N; — Abt) M.

This ends the proof of the exercise.

Solution to exercise 164:

e At an arrival time, X; jumps to X; + 1, whereas at the end of service times it jumps to
X;— 1. If X; =0, at rate A; it jumps up by one unit. If X; = 2 > 0, at rate A; + Ay (we
recall that the minimum of a couple of independent exponential random variables with
parameters \; and \o is an exponential random variable with parameter A; +\y). At that
time, with a probability A;/(A\1 + A2) it jumps up by one unit; otherwise it jumps down by
one unit (we recall that the probability that F; coincides with the minimum of exponential
random variables F; and E, with parameters A; and \q is equal to A1 /(A1 + A2)).

o We have X; = Yy, where IV, is a Poisson process with rate A := A; + 2, and the embedded
Markov chain Y,, on N is given by

]P)(Yn = Yn—l +1 ‘ Yn—l = y) = )\1/(A1 —|—)\2) =1- P(Yn = Yn—l - 1| Yn—l = y)
for any y > 0, with P(Y,, =1 | Y,,—1 = 0)=1 for y = 0.

This ends the proof of the exercise.

Solution to exercise 165: Firstly, suppose that « = 2. When X; = 0 at rate \; it
jumps up by one unit. When X; = 1 at rate A; + Ao, with a probability A;/(A1 + A2) it
jumps up by one unit, otherwise it jumps down by one unit.

When X; = x > a = 2, the two customers are served independently at a rate A\y. Thus,
one of them is served at a rate 2\y (here again, we recall that the minimum of a couple
of independent exponential random variables with parameters A, is an exponential random
variable with parameter 2)\2). On the other hand (and independently of the random service
times), a new arrival occurs at a rate \;. Therefore, X; with jump at a rate A\; + 2Xs. At
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the jump time, with a probability A1 /(A1 +2A2) it jumps up by one unit, otherwise it jumps
down by one unit.

We have X; = Yy, where N; is a Poisson process with rate A := A; + 2)X2, and the
embedded Markov chain Y,, on N given by

)\1 CL>\2

]P)(Yn = Yn,1 +1 | Yn,1 = y) and P(Yn = Yn,1 — ].| Yn,1 = y)

TN Fa M+ ads
for any y > a = 2. In much the same way, we have
/\1 y>‘2
P(Y, =Y, _ 1Y, 1=y = —— d PY,=Y,1-1Y,.1=9y) = ———
( n n—1 1 | n—1 Z/) )\1+y)\2 an ( n n—1 | n—1 y) )\1+y)\2

for any 0 < y <1 = a — 1, with the convention P(Y;, = 1| Y,,—; = 0)=1 for y = 0. The
same formulae are valid for any a > 2. This ends the proof of the exercise.
]

Solution to exercise 166:
By construction, we have

P(A, =k [T}, ,n>0)
=P (U1 > Ay Ut > Ay, U S gy [Ty n20)

AT/ AT’,
= {H1§l<k (1 - Al)} X =

Integrating out the uniform random times 7}, [ < k, we find that

[ \ods [ A\ods
P(A=k)=(1-=C . .
(A=) ( Y; Y,

This shows that A; is a geometric r.v. with success probability given by the area ratio
f(f Asds/(At). In particular, we have

E(4,) = A [1 /Otxsds]l.

Now

1 [t 1—et
AN = et <X=A=1 = E/ Asds = te wl/tToo 0
0

t

= E(4)= o

TtToo + o0.

This ends the proof of the exercise.

Solution to exercise 167:
The jump times 7,, are defined by

t
Tn—inf{tZTn_l : / As dszlogUn}.
Thn-1
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Notice that

T T 1-T,
/ )\sds:—/ dslog (1 — s) ds = log — =L = _log U,

Tn-1 Tn-1 1-T,
as soon as
1-T,
—=U, <= (1-T))=0-T,-1)U,
1- Tn—l

= T, = 1_(1_Tn71)Un: (1—Un)+Tn,1Un
This yields

(1 _Tn) = U, (1 _Tn—l)
UnUnfl (1 _Tn72) EalR (UnUl) (1 —To) = H Uk~

1<k<n

On the other hand

BUY) = 5 + E(1=T,)) = BU")" = 0+ )"

By Borel-Cantelli lemma, this clearly implies that T;, =, 00 Too = 1.
This ends the proof of the exercise.

Solution to exercise 168
If we consider the random times defined in (11.19), for some A, > 1 then we have that

PITo< Y Nt+t+2 | > N2Vi|>1-et
1<p<n 1<p<n

In the explosive case, using the fact that A2 > \,, > 1, we find that

A=) A< A=) A < oo

p>1 p>1

In this case we have
P (Tn <Al + 4 2[A x/i) >1—et

and by the monotone convergence theorem
P (TOO <t+ AL+ 2\/£)) >P (Too < A1+ + 2\ \/i) >1-et.
If we choose ¢ = 3 then we find that
P (Too <3+ A1+ 2\/§)> >1-e3> .95

For )\, = n?, we have |\|; = 72/6

11
P(TOO <3472 (6+\/§> < 10.35) >1—e3>0.95.
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Using Markov inequality, we have

P(Too >t) <t 'E(To) =t"" D> A\ =t""72/6<.005=05x10">

n>1
when ¢ > 10 72 /3 ~ 32.9. This inequality implies that
P (T < 32.9) > 0.95.

Theorem 11.3.7 also provides an estimate of the T, even in the case where 3 -, )\;1 =

oo. For instance, for time homogeneous models A\, = 1 we find that
P(T, <ntt+2vit) =P (VT < va+vi) 2 1-e.
If we choose ¢ = 3 then we find that

T,<n+3+2V3n

with a probability larger than 95%. For instance the seventh jump time occurs before 20
units of time, with a probability 95%; and the 103-th time occurs before 1.1113 x 10 units
of time, with a probability larger than 95%.

This ends the proof of the exercise.
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Solution to exercise 169:
Let T, be the jump times of the Poisson process N¢. At jump times the process X, —
jumps to
Xr, =X, —2X7,_ =—Xp, _.

In other words, the process changes its sign at a rate A\. Recalling that Xy = 1 we conclude
that X; = (—1)¢. This also shows that the generator of X; is given by

L(f)(x) = A(f(=2) = ().

This ends the proof of the exercise.

]
Solution to exercise 170:
We have
L(10)(0) = =A(0) and L(1g)(1) = A(1).
By (12.5) this implies that
me(0) = me (L(1o)) = ne(0) L(10)(0) + me(1) L(10)(1)
= —n(0) A(0) + (1) A1)
= —m(0) AM0) + (1 = 7:(0)) A1) = A(1) = ne(0) (A(0) + A(1)).
In much the same way, we have
ne(1) =1 =n(0) = 9me(1) = = (0) = 1:(0) A(0) — m(1) A(L).
The solution is given by the formula
m(0) = e MO [%(0) + / e ) dS}
_ AL) - )t A(L)
= st (10 - )
This ends the proof of the exercise.
]

Solution to exercise 171: We consider the compound Poisson process discussed in
exercise 161. We recall that the infinitesimal generator of X; is given by

L(f)() = A / (F(x+9) — f(2) pldy)

with the carré du champ

)= A / @+ ) — F@)]? uldy).

969
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Notice that
fz) =2 = L)) = AE(Y) and Ty, (f,f)() = A E(Y?).
Therefore, applying the Doeblin-Ito formula (12.25) to f(x) = z we have
dXy = AEY) dt +dM; = X, = XEY) t + M,
for the martingale M, with the angle bracket
(M); = NE(Y?) t.
This implies
E(X) = -AE(Y)t
Var(X,) = E[(X, - AE(YV)t)| = E(MP) = A E(Y?)
We assume that E(Y) = 0 = E(Y?). In this situation we have
E(X;) =0 and E(X?)= Var(X;)=\E(Y?)t.
Also, observe that
flx) =2 = L(f)(x) = XE(Y?) and Tp,(f,f)(x)=X (E(Y*) +42*E(Y?)).
By applying the Doeblin-Ito formula (12.25) to f(z) = 2% we have
dX? = NE(Y?) dt +dM; = X7 = M\t E(Y?) + M,

with a martingale M,; with angle bracket
t
(M) = X (E(Y4) t+4E(Y?) / X2 ds)
0

— E((M)) = A (E(YY) t+2 A2 E(V?2)?).
This implies that
E(X7) = -AE(Y?)t
Var (X2) = E [(Xf Y E(Y2))2] —E(M?) =\ (E(Y*) t+2 X 2 E(Y?)?).

This ends the proof of the exercise.

Solution to exercise 172:
Suppose we start from some Xy = e;,, with 1 < ¢y < r. Before the first jump time we
have

:1_7':1‘0

dX,= Y (ei—e)) lejieq,) dNSD = 37 (e —eg) AN,
1<iAj<r 1<i<r, iio
Let Ty := T be the first jump time of some Poisson process N(1:0) for some index

1< <, i1 fo. At that time, the process jumps from Xp,_ = e;, to

XT1 = XT1— + (eil - eiu) = €, + (eil - eio) = €iy-
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Before the next jump time, we have

=lj=i;

L, J s
dX: = Z (ei —e;) {ej,ein) dNt(w) = Z (ei —esy) dNt(z’Zl).

1<i#j<r 1<i<r, izio

Let T, := T be the first jump time of some Poisson process N(2:11) for some index
1 <iy < ig A1. At that time, the process jumps from X, = e;, to

X1, =€ + (eiz - 611) = Ciy
and so on. This shows that X; is an S-valued Markov process with generator

L(f)e) = > AGA) (fle) = fleg)).

1<i<r : i#j

For any function f : S+ R we have

om(f) = Y. fle) dm(G) =mL(f)= D m()AGD) (fle) = fle;)

1<j<r 1<i#j<r
= Y fle) | DD mAG)| = DD flep) ml) Y. AG)
1<i<r 1<j<r, j#i 1<5<r 1<i<r, i#j

= > fe) | X m@AGH-mG) Y AGH

1<j<r 1<i<r, i#j 1<i<r, i#j

This yields
o)=Y m@AGLH) -mG) D AG)

1<i<r, i#j 1<i<r, i#j
In vector form:
One = [0em(1), ..., 0me(r)]
(= ) A9 A(1,2) A1,3) .- A1,7) ]
1<i<r, i#l
A2,1) — D A2i0) A@23) - A2,7)
= 1<i<r, i#2

A(r, 1) A(r,2) A(r,3) - — Z A(r, 1)

L 1<i<r, i#r

Observe that

— 3T MG =AGH) - Y AGH)

1<i<r, i#j 1<i<r

for any choice of the diagonal terms A(%, 7).
This ends the proof of the exercise.

Solution to exercise 173:
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For any function F(x,y) = f(x) that depends on the first coordinate, we have

=LU@)@)=0  =L(/)@)
LF)(2,y) = lagy |L(F(z,)(y)+ LIF(,y))(@) | + La=y / [f(y) = f(2)] Q(z,dy)

= Loz L(f)(2) + Loy L(f)(x) = L(f) ().

By symmetry arguments we also have L(F')(x,y) = L(g)(y) for any function F(x,y) = g(y)
that depends on the second coordinate. This implies that X; and ); have the same law as
X;. This ends the proof of the exercise.

]

Solution to exercise 174: For any function F(z,y) = f(z) that depends on the first
coordinate, we have

L)) = [ UG- I@) (4o Aalw.2) Adz)
+ [ @) - 1@ ae2) - alw2), Ad2)
= [ ) - 1@) afe.2) Mdz) = LU 2)
The last assertion follows from the fact that

(Q(mv Z) A Q(y’ Z)) + (q(xa Z) - q(y, Z))+ = ]-q(gc,z)zq(y,z) [(I(yv Z) + ((J(l', Z)fq(ya Z))]
+1q(z,z)<q(y,z) [Q(l‘7 Z) + O] = Q(xv Z)

By symmetry arguments we also have L(F)(z,y) = L(g)(y) for any function F(x,y) = g(y)
that depends on the second coordinate. This implies that X; and ); have the same law as
X,.

This ends the proof of the exercise.

Solution to exercise 175:
The exercise is a direct consequence of theorem 12.7.6. To be more precise, we let P; be
the Markov semigroup of X;. Combining theorem 12.7.6 with theorem 8.3.2 we find that

||5acPt - 5ac’Pthv <c €Xp (*pet)
for some non negative parameters ¢ and p > 0. This implies that the Dobrushin contraction
coefficient 8(P;) of P; is less than 1 for ¢ sufficiently large. Thus we conclude by using

theorem 8.2.13.
This ends the proof of the exercise.

Solution to exercise 176:

We have

MK =X = X(e™" L(f)) cc A(K — Id)f)) = ME(f)) = A(f) = 0.
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When K is A-reversible we have

Mg K(f)=A(f K(9))

from which we check that
Ae™ g L(f)) < Ag (K = Id)(f)) = A(f (K = Id)(9)) x A (™" g L(f)) -

This ends the proof of the exercise.

Solution to exercise 177:

We have
E {8,5 exp (—B /t V(Xs) ds)]
0
t

BE [v<Xt>exp (—ﬂ [vee) d)} = 4P W) = g (V) AP ).

am[ﬁ] (1)

This implies that

1
otog{1(1) = —— o) = -8 7 (v)
v (1)

from which we prove that

77(1) = exp (—6 /01t P (v) ds).

The end of the proof of the second assertion is now clear.
Under our assumptions we have

t
(V) — 5 < — / (V) ds < —tP)(V) + cs.

Taking the exponential this implies that

1/8
<

ot (V) 051 < o Py ds _ [%[ﬁ](l)} e—tn[o’i](V)cB.

This ends the proof of the exercise.

Solution to exercise 178:
We clearly have

L(f)(x) = z+u) = f(2)) gi(z,u) du
)

|
|

y) — F(2)) g,y —z) dy = / (FW) - F(@)) qulz,y) dy,
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with ¢(z,y) = g:(x,y — x). By construction, we have the integral evolution equation
om(f) = [ £e) dilo) do = (La()
= [ () - 1) ni@) aulo.) dady

/f pe(y) ¢y, v) dedy — /f [/thydy] W(2) da
- /f </ y) @y, x)dy — [/ pe(z) g, y) dy] ) da

This implies that

Oipe(r) = / [pt(y) Qt(yax)_pt(x) Qt(x,y)] dy.

We also observe that

dipr(z) = / D) 9uly. — y) — pue) golary — )] dy
/ Pz — (@ — ) gz — (@ —y)s e — y) — po(@) gulars (@ — )] dy

+o0 Foo
=/_ m(w—(m—y))gt<x—<x—y>,x—y>dy—mx)/_ g, —(x — y)) dy

— —A:o pe(x — 2) gi(x — 2, 2) dz + pe () A:O gi(z, —2) dz
— /_:O pe(x — 2) gi(x — 2, 2) dz — pi () /_:O gi(z, —2) dz.

This implies that
Ope(z) = / pe(z — 2) g2 — 2, 2) dz — pe() / gi(x, —z) dz
= [ e =2 gle = 52) - o) o)
The last assertion is a consequence of the fact that

+oo —0o0 +oo
/ gi(x,—2) dz = —/ gi(z,2) dz = / gi(z, z) dz.
—00 +oo —0o0

Using the Taylor’s expansion,

(-1
n!

e —2) glo—22) = @) g )+ S T 0 y@)gu(e,2)

n>1

we find that the formula

o) = X EL [ o) o

([/ %) dZ] Pt@)) = 0 ) pata)

I
S|
— | =

=
<3
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This ends the proof of the exercise.

Solution to exercise 179:
It clearly suffices to check the result for A = 1. In this case, we have

p(x + h)
p(z) 4+ p(z + h)
p(z —h) -
mm+Mxm}d
p(z +h) p(z +h)

- / p(x) f(z+h) ORI d:L‘—/ p(z) f(z) 2@ + plz + 1) dz

p($ _ h) p(T - h,)
#f vt o) ST s e [ o) o) P

o) = [ o [<f<x+h>—f<x>>
F(fa—h) — f())

The change of variables y = x 4+ h yields

p(xz+ h) - _ ey
R e e Ll EURLRE v el

p(x —h)
/ Ple) 1) ey o )

By symmetry (h ~» —h) we also have

gy Pk ) PEER)
/p(x)f(x " @ e —m ¢ /p()f()p(x)+p(a:+h)d'

We conclude that nLp(f). This ends the proof of the exercise.

Solution to exercise 180: The proof of first part of the exercise follows the same
arguments as the proof of exercise 178, so it is skipped. The last assertion is immediate.
This ends the proof of the exercise.

]

Solution to exercise 181:

In exercise 171 we proved that the process X; and M; = X? — (X)), = X? — At E(Y?)
are both martingales starting at 0 € [—a, a]. Therefore we can apply directly (12.23) to the
martingale X; and its angle bracket (X); = A t E(Y?). Otherwise we reformulate the proof
of (12.23). By the optional stopping theorem the stopped process Mia7,, is a martingale so
that

E(Miar,) =0= ANE(tATp) E(Y?) =E(Xjhp,) <a® = E(tATp) <a®/(AE(Y?)).

Applying Fatou’s lemma, we find that

E(Tp) =E (}i&(t A TD)> < liminfE (¢ A Tp) < a®/(AE(Y?)).

Too

The compound process starting at some z € D is given by X/ = x + X;. In this
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situation, we have
(X7)? =2 + X7 + 22X,
HuTp)=0 g (XEATB> = AE(tATE) E(Y?) =E ((XgATB)Q) — 2% <a?— a2
Arguing as above, this yields the estimate
E(Tp) < (a* — 2®)/(AE(Y?)).

This ends the proof of the exercise.

Solution to exercise 182:

e Since customers wait in line before entering in the first free server, the number of customers
being served X;, at some given time ¢, varies between 0 and d. Transitions z ~» x — 1
depend on the number = of customers being served. The departure rate of customers is
related to the minimum of x exponentials with parameter A». Thus, the departure rate
happens to be

Az) = Aoz,

The arrival rate is constant and it is equal to \;.
e The infinitesimal generator of X, is given for any = € {1,...,d — 1} by
L(f)(z) = Xz (fz —1) = f(z)) + M (f(z+1) — f(2))
and
L(f)(0) = A1 (f(1) = f(0)) and L(f)(d) = Aed (f(d —1) = f(d)).
By choosing f = 1,_1:
L(f)(@) = L(Le—1)(x) = Liz,x — 1) = Aoz
In the same vein, we find that
L(z,z+1) =\ = L(0,1) L(d,d) = —Xod and L(z,z) = — (\ + Aoz).
In the other situations we have L(z,y) = 0.
e For any z € {1,...,d— 1}
0=(rL)(x) = =(z—1)Llx—1,2)+n(z)L(z,2)+r(z+1) Lz +1,2)
m(x—1) A — 7(@) (A + doz) + 7(@+1) Ag(z + 1)
and
0= (xL)(d) = 7(d— 1) L(d — 1,d) + w(d) L(d,d) = 7(d — 1) Ay — 7(d) Aod.

We conclude that
7T(d— 1) /\1 —F(d) )\de 0

and
[r(z —1) Ay — w(x)dex] = [m(x) A1 —7(xz+ 1) Aa(z+ 1)].
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By a simple backward induction w.r.t.  we conclude that for any =z € {1,...,d}
1

(&) 4o

A1 L
mx—1) A\ —7m(x)dox =0=7(z) = o e —1)=---= % "
and AT ] .
> (1> — 7(0) =1 = 7(0) =
' x
Az v 2 0<ui<d (i;) 2

0<z<d

This ends the proof of the exercise.

Solution to exercise 183:
The solution follows the arguments developed in exercise 182 but with a countable

number of servers.
In this situation we have

A1

A2

0 = (7L)(0) = 7(0)L(0,0) + m(1) L(1,0) = —A\y7(0) + w(1)Ag = m(1) =

and
[T(@)A1 —7(z4+1) Ae(z+1)]=[n(x—1) Ay —7(x)dozx] = =7(0) Ay — w(1)Ag = 0.
This implies
m(x) = i\\—; % m(x —1).
Thus, the invariant measure is the Poisson distribution given for any x € N by
o= (L) Fro-cF () 5

This ends the proof of the exercise.

Solution to exercise 184:
Since the queue has m servers, the infinitesimal generator of X; is defined for any

0<z<mby
L(f)(z) =Xz (fz —1) = f(z)) + M (f(z+1) = f(2))

and for any = > m

L(f)(@) = dem (f(z —1) = f(2)) + A (f(z+1) = f(2)).

In this situation, the invariant measure is the Poisson distribution given for any 1 < z <

m by AV
o= (1) L e,

0=(rL)(a) =

= T

For any x > m, we have
m(x—1) L(z — 1,2) + n(z)L(z,z) + m(x + 1) L(z + 1, 2)
(x —1) A\ —7(x) (M 4+ Aam) + w(x 4+ 1) Aam.
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For x = (m — 1) we find that
0 = 7(m—=2) A\ —a(m—1)(A\ + Xa(m —1)) + 7(m) Aam

_ G;)m_l ﬁ M 7(0) + 7(m) Ao,

This implies that

This also yields

rm+1) = m(m) (HQ;@) - Ki;)m % W(O)}

— n(m) A1 (i;)mﬂ iﬂ(o).

Aam m m!

Let us check by induction w.r.t. x that for any x > m we have

w(z) = mim (i;) % (0).

Notice that in this case we have

M1 w(z —1) = n(zx).

)\Qm

This implies that

m(z+1) =n(z) (i: Tln—&—l)—w(m—l) i—; %zw(m) M l

The end of he recursion is now clear. This ends the proof of the exercise.

L]
Solution to exercise 185: We denote by Ré.i’j) = (Réi’j)(k‘,l))Kk’KN the (VN x N)-
rotation matrix given for any 1 <i < j < N by -
Vk & {i,5} RSP (k,1) = 1y
with the i-th row given by
R (i i) =cos(0)  R$P(i,j)=sin(f) and Vk ¢ {i,j} RSV (i,k)=0
and the j-th row given by
R (G, j) =cos(0)  RUVV(ji)=—sin and Vk¢{i,j} RV (jk)=0.
The embedded Markov chain model Y,, = (Y,!);<;<n is defined by
Y, = Rg"y,
where (I, J,) are i.i.d. uniform random variables on {(i,j) € {1,...,N}? : i < j} and
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©,, a sequence of i.i.d. uniform random variables on [0,27]. We also assume that (I, .J,)
and ©,, are independent sequences.
We have

(Vi Vi) = (005 () Vi1, +sin(©,) Y;/1,, —sin (0) V[, + cos(0,) V2,

= ) ) = () () = wze Y )P Y 00

1<i<N 1<i<N

The Markov transition M of the chain Y,, is defined for any bounded function f on S = R?
by

The continuous time model is defined as an embedding of the chain Y,, at the jump times
of a Poisson process with intensity NA. Thus, the infinitesimal generator is given by L =
NX (M — Id).

This ends the proof of the exercise.

Solution to exercise 186: We let P;(f)(z) = E(f(X:) | Xo = ) be the semigroup of
the process X; with infinitesimal generator L. By construction, we have

fl@*) = sggf(m) =Vi>0 VeSS P(f)(x) < f(zh).
This implies that

oy _ o P)E) = f(a*)
L(f)(x )—ltlﬁ)l " <0.

This ends the proof of the exercise.

Solution to exercise 187:
Using (12.5) we have

d

1@ = L9 = L(9)

= (P = 7TL(9) = € (1,0).
Notice that
7P, =7 = Vara(P(f) = w((Pdf) ~ 7(F)?) = w((BUH) = () = 1AL = 7l

Arguing as above, we also have

d d
g Var(B(f) = S (P()*) = 2n(P(f)

= =2E(P(f),P(f)).

d

P = 20 (P(f)L(P(F)))
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Taking t = 0, we also find that the Dirichlet form measures the infinitesimal changes in the
variance of the semigroup; that is, we have
1d
Ef,f)=—=—
(D=5

This ends the proof of the exercise.

Varr (Bi(f))),-0-

Solution to exercise 188: Arguing as in the proof of exercise 187, we have

G Var (Pu(1)) = ~2€ (PF), PLS)).

If 7 satisfies a Poincaré inequality for some parameter a > 0, then we have

—a Varg(P(f)) = =28 (Pi(f), P (f)) = %Varw(Pt(f)) < —a Varg (P(f)).

Recalling thet Py(f) = f, this implies that
Var, (P;(f)) < e~ Var,(f). (30.32)

Inversely, for small times ¢ ~ 0 we have

P(f) = f+ L(f) t+o(t) = Varz(P(f)) = m((P(f))*) = (7(f))* = Varx(f) =2t E(f, f)+o(t)

and
e~ Var, (f) = Vary(f) — a tVar(f) + o(t).

This shows that
(30.32) = a t Var,(f) + o(t) <2t E(f, f) + o(t) = a Var,(f) < 2E(f, f).

This ends the proof of the exercise.

Solution to exercise 189:

We have )
B S (@) —x(w)’ =1El - > x(vi)z(v)

(vi,v2)€E (v1,v2)€E
and for any given v € V

Yo alu) = Hu~o, 2(u) = 1} = {u~ v, 2(u) = ~1}|.

Notice that
z(v)=-1 = ot Ly — z(v) — x”*“(v) —_1-1=-2.
Thus, for any z¥" 7! # = we have

H(z)—H@") = Y (z(uw)(u) — 2" ()" (up))

(u1,u2)€EE

— 3 (z(u1)z(uz) — z(ur)z(uz))

(u1,u2)€E, urF#vFusz

+ Z (x(v) — x”’“(v)) z(u).

u~v
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This implies that for z%t! # x we have

H(z)— H@") = -2 a(u).

u~v

In much the same way, we have
r(v) =41 = 29 42 = z) -2 v)=1+1=2,
and for V' ~! # z we have

H(z) - Hz""") =2 z(u).

u~v

Using the fact that
T # PR (:c“’Jrl)”’*1 =z and z#29'e (:c”’*l)“’+1 =z
we also have
z# 20t = H(x)— H (x”*Jrl) = H ((a:””Ll)”’*l) - H (:c”’Jrl)
= [H (@) - H (@) Y)] = —25, 0, 2t ().
This implies that for = # 2V T! we have

F5($U’+1) Q(xv,—l-l’x) 7_(_B(:Ev,+1) Q(l‘v’+1, (x11,+1)1),—1)

’U,-‘rl)

= (2" ") g1 (v,
e BH@ ) N =B[H (") +(H (z)~H (z" )]

= e BH@E"TY) § —BH(2),
By symmetry, this implies
Ve e S ma(x ) Q2 x) = ma(z) Q(z, V).
Replacing = by ¥ ~! we deduce that

(G e (R LS

ma(r) Qz, 2" )

= e PHE) e BHETY o 1oz QY z).

This ends the proof of the second assertion.
On the other hand, we have

L=Q~1d= A(f)@) =E(f(X) | X0 =2) = @)+ [ L)@ ds

Recalling that m3Q = mg = mgL = 0, we conclude that

Law(X) = 15 = E(f(X,)) = 75(f) + / r(L(PA(f))) ds = 75 (f).

This ends the proof of the exercise.
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Solution to exercise 190
By (12.12) we have

1
Pl = D W IL +0(0"™ ) =P, (30.33)

tostnt1 n1
0<p<m
Rephrasing the proof of the theorem we conclude that
Pl =P, +0(™).
For m = 1, and m = 2, the pure jump sg (12.35) takes the form
ph

tn,tnt1

=Id+ M, h (M, —Id) =M, h My, + (1 — M\ h) Id
and

Pt’}wtw = Id+ M\, h (M, —Id)+27Y(\, h)? (M, —Id)?
= 27 (A, h)® MP + X h(1— A h) My,
+ 1= (27 (A k)2 4+ A h (1= A h))] -

More generally, for any order m > 1, we have

1 q _
Ptibl,tn+1 = Z 7. ()\tnh)q ( P > (_]')q thZ:L

0<p<g<m
v (a—p)+ p
= )' (Mg, h)\—prre My
0<p<m p<qg<m p. —P)
B (A, (=M, h) »
= ' )
0<p<m 0<qg<m—p ¢
with
(e, h)P (=, h)?
04?" (p) = 0 T
P 0<qg<m—p T

By construction, we have Lton = Id, and

Vp>0 LY (1)=0]= P, (1)=1.

tn,tnta

This ensures that

Pt}:,tn+1<1) = Z a?n (p> =L

0<p<m

It remains to notice that the functions 6, () = > o< <, “q—f)q map [0, 1] into itself.
Firstly, we prove that these functions are non negative. For odd parameters the result is

immediate since

Ooni1(r)=(1—2)+ (gj - g?) +...+ (é:;; - (25?1)!)

Z,Zn x2n x2n+1

@) = @il - @nr )

and
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For even parameters, we conclude that

x2n
O2(nt1) (%) = O2n41(2) + 2n)! > 0.
On the other hand, we have 6/, = —0,,_;. This implies that 6,, is a non-increasing function

from 6,,(0) =1 to 6,,(1) > 0. This clearly implies that 6,, maps [0, 1] into itself.
This ends the proof of the exercise.

Solution to exercise 191
The martingale property of M; has been proved in the end of section 12.5.2. Using the
fact that
E (dM; | F;) = @i E(dM; | F¢) =0

t
ME—/ Ayds
0

E (dM7 — dN, | ) = E (dM? | Fy) — Adt = 0.

we conclude that M, is a martingale.
In addition, recalling that

is a martingale, we have

In a similar way, we have
E(dM; | ) = E(dM)*|F)
= E((pdM)’ | F)

P E (M)’ | i) = pi At

This implies that ]\Z is a martingale. Finally, we have

t4dt tdt
Eivar = & Xexp (/ ©s_dNy —/ As [ePsm —1] ds)
t ¢

= & xexp (pi—dNy) exp (—=\; [eP— — 1] dt).

Recalling that dN; = Nyyqr — N, is a Poisson r.v. with intensity A\;dt, we prove that

Aedt)”
]E(egat,dNt | .Ff) — ef)\tdt E ( ) enPt—
n!
n>1
e*Atdt e)\t eft—dt — e)\t (e“ptffl)dt'

The martingale property of &; is now clear. For the constant function ¢, = log (1 + €) we
have

¢
E = exp (log(1—|—6) Ny —€ / As ds) =¢&f.
0

This ends the proof of the exercise.
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Solution to exercise 192:
By construction, we have
dCt =a Ct dt + dXt

Therefore the infinitesimal generator of C; is given by

L(f)(x) = az 0.f + A / (F(z+y) — F(@)) pldy),

where p stands for the distribution of the random variables Y.
This ends the proof of the exercise.

Solution to exercise 193:

We let T, be the jump times of the Poisson process N;. We start at some Xy = x¢ and
we solve the system (13.40) up to time T3—. We calculate the value Xp,_ := o1, —(Xo)
using the flow map of the deterministic system, and we set

XT1 = XTI, + b(XTI,).

Given Xr,, we solve the system (13.40) from T3 up to time To—. We calculate the value
Xr,— =1, 1,—(X7,) using the flow map of the deterministic system, and we set

XT2 = XTQ* + b(XTzf)

and so on.
The infinitesimal generator of X; is given for any differentiable function f by the formula

L(f)(x) = a(x)%(x) +A (e +b(z)) - f(2).

This ends the proof of the exercise.

Solution to exercise 194:

The stochastic differential equation (13.38) is a particular case of the one discussed in
exercise 193. The infinitesimal generator of X; is given for any differentiable function f by
the formula

L(f)(x) = ax 0pf(x) + A (f(z(1+0)) = f(2)).

We let T;, be the jump times of the Poisson process Ny, with the convention (Ny, Tp) = (0,0).
For t € [Ty, T1[ we have
Xt = eat XO

and at the jump time
XT1 = (1 + b) XTl— = (1 + b) eat X().

985
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For ¢ € [Ty, T>[ we have
X, =e" X, = (14b) e* X,

and at the jump time

X7, = (1+0b) Xr,m = (14b)* ™ X,.
For t € [Ty, T3] we have

X, =e™ Xp, = (1+b)? 3 X,

and at the jump time

X1, = (1+0b) Xp,— = (14b)° e’ X,.
Using a simple induction, we check that t € [T, T, 41 we have

X;=e® Xp, = (1+0)" D) ot X,
and at the jump time
Xr,,, = (14b) X7~ = (14 )" elrtat X,

This ends the proof of the exercise.

Solution to exercise 195:

We let T, be the jump times of the Poisson process N; and ¢, ((x) the flow map of the
deterministic system (13.40). We start at some Xy = z¢ and we solve the system (13.40)
up to time

t
Ry —inf{t >0 / b(o.o(Xo)) ds > T1}.
0

We calculate the value Xg,_ := ¢ r,—(Xo) using the flow map of the deterministic

system, and we set
Xg, =Xp, - +1
We solve the system (13.40) up to time
t
R2 = inf{t Z Rl : / b((PRl,s(XRl)) ds Z (T2 — Tl)}
Ry

We calculate the value Xg,_ := ¢r, r,—(Xg,) using the flow map of the deterministic

system, and we set
)(—R2 = XRQ, +1

and so on.
The infinitesimal generator of X, is given for any differentiable function f by the formula

LUP(@) = al@) 2L @) + () (o +1) — f(a)

This ends the proof of the exercise.

Solution to exercise 196:
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By construction, the infinitesimal generator of X; is given for any differentiable function
f by the formula

L)@ =@ 3 @) + @) [ ()~ (@) K(w.dy).

This ends the proof of the exercise.

Solution to exercise 197:
By construction, the infinitesimal generator of X; is given for any differentiable function
f by the formula

L)) = —al@) @)+ M@) [ (o+9) - Fle) Ko dy)

This ends the proof of the exercise.

]
Solution to exercise 198:
The jump times T;, of the storage process are defined by
To=0 and Vn>1 AT, =T,—Th 1=2,.
Between the jumps the PDMP process is given by
Vte [T, Tny1|  Xe=e 00T X0
At the (n + 1)-th jump time we have
Xp,y =e b T =T) X 4 V0 =e P 2 X 4 Vi,
This ends the proof of the exercise.
]

Solution to exercise 199:
By applying the Doeblin-Ito formula to the function f(x) = = we have

L(f)(@) = —a f + A / y v(dy).

This implies that
(‘3tEw(Xt) = —a Ex(Xt) + )\ m,

from which we conclude that

E.(X})

e [x + (/\m/(JL)/0 ae”® ds} =e " [z+ (Mm/a) (e —1)]
= a4 (Amfa) (1) =™ (@ = Am/a) + (Am/a).

This ends the proof of the exercise.
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Solution to exercise 200:
Applying the Doeblin-Ito formula to the function

flx)=e"" = 0:f(x) =u f(x) and f(z+y) - f(z)=f(2) [f(y) -1
we have
L(f)(z) = —auzx f(z) + A f(x) / [f(y) — 1] v(dy) = —auz f(z)+ X f(z) [A(u) —1].
This yields the evolution equation
99t (u) = —au E (Xe"™) dt + Agi(u) [h(u) —1],

—_————
=0ug¢(u)

from which we conclude that
Orge(u) = —au Oygi(u) + ge(u) V(u) with  V(u) = X [h(u) — 1].

The solution is given by

st ([ Vi ) o [ v o)

The r.h.s. expression is obtained using the change of variable
T=e “u=dr = —ar ds.
Under our assumptions we also have
u €] — 00, up[= Vs >0 e~ *u €] — 0o, upl.

We conclude that

gi(u) = exp (a‘l / ’ d, log V(7) dT)

7atu
1/a

_ — — V (u) )
1 at

= exp(a " |logV (u) —logV (e"%u)|) = | =————
s (o o8 () = oz ¥ (e~*'0)]) = (0
We check that g; satisfies the desired evolution equation using the fact that

Orgi(u) =V [e”"u] gi(u)

and
—auBugi(u) = — [ /0 Cauwe o, el ds} g:(u)
_ { /0 "o (e ) 0,V [eul ds} ge(w)
-/ oAV o]} ] i) = [V [e=*ta] - Vi) (o)

This implies that
Ogr(u) = —a u Oyge(u) + V(u) ge(u).
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When v(dy) = b e " 1 o0[(y) dy we have

b b b A u
h(u) = b—u) e WY gy = — =\ -1 == .
() /0 (b-uye v T VW [b—u } b1 —u/b

b—u
In this situation, V' (u) is well defined for any « # b and
V(u)/u=X/(b—u)=—X0,log(b—u)

= gi(u) = exp ()\afl fj"”u 8, log (b — 7) dT) — exp ()\afl log lfle:i:t/z/b )
This implies that
1— ety /b\ M e
ge(u) = <1—u/b/> — oo JoolU) 1= ]E(e“XM) =(1—u/b) i

for any u < b, with a := A/a. We conclude that the invariant probability measure is given
by the Laplace distribution with shape « and rate b; that is we have that

(3

I(a)

m(dz) = P(Xo € dz) = 2t e P 1y o((2) dx.

This ends the proof of the exercise.

Solution to exercise 201:

Let X7 and X! be a couple of storage processes starting at = and y and sharing the
same sequence of random variables defined in exercise 198. By construction, the jump times
of the processes coincide. In addition, when a jump occur the same amount Y,, are added
to the process. Thus, we have

Xf— X! =e ™ (x—y) =W (Law(X7), Law(X})) < e |z — y|.

This ends the proof of the exercise.

Solution to exercise 202:

Let X® and X! be a couple of storage processes starting at # and y and sharing the
same jump times defined in terms of the sequence of random variables (Z,,),>1 defined
in exercise 198. The number of jumps at time ¢ is given by a Poisson process N;. The
jump amplitudes are defined using the maximal coupling discussed in example 8.3.5. For

each n > 0 and given (Xm XY ) = (a1, az) we let (Xx

Y
Trng1—7 " Thg1— Ty’ XTn,+1) be a Couple of

exponential random variables with conditional exponential distributions

P(x5, eds| (X5, X0, ) = be e 1y, (2) dz
P(xy eds| (X5, X0, ) = be ") 1, (2) dz,

Using the maximal coupling described in example 8.3.5 these variables can be coupled in
such a way that

(X, =Xb,, | (X5, XE,, ) = ew(-b|x., Xt )

1-b|xF,, - - XY,

Y]
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Observe that on these successful coupling events the process is such that X7 = X%n for
any n > 1, thus X¥ = X7 for any time ¢ as soon as N; > 0. On the other hand, at any
time ¢ s.t. N; > 0 the chance of coupling is given by

P (X%Nt = X7, | (X%vaX%N 7)) >1—blz—y| e 9T,
Using theorem 8.3.2 we conclude that

[Law(X[) — Law(X{)[,, < P(XF#XY)
— 1P =XV = 1—E([L—ble—yll e Ly,50)
= P(Ny=0)+blz—y| E(e*™ 1y,50)
e M4blr—y| E(e ™ 1y,50) -
Given N; = n the random variable (T} /n,...,T,/t) is an ordered uniform statistic on

[0,1] (cf. exercise 41). Given N; = n, this shows that T/t has the same law as the
maximum maxi<;<n, U; of n uniform random variables U; on [0, 1]. Since

P (121?5(” U; < u) =u"=>P (f;liaéxn U; € du) =nu"!
for any u € [0, 1], we conclude that
P(Tn,/t €du | Ny =n)= nu™ ! 1[071](u) du <P (Tn,/t € du| Ny) = Ny uNe 1 1[071](u) du.
This implies that

1
0

Recalling that

)™
E(Nt uNt_l) _ e—/\t Z n un—l (n')

n>1

_ Xt AN —w

= Me Z(n—l)!_)\te ,

n>1
we find that
1
0 (A—a)t
A

We conclude that

[Law(XF) ~ Law(XP)l, < e bl —yl 2 [ =],

This ends the proof of the exercise.

Solution to exercise 203:
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Using (13.15), for any non negative and bounded function f on S = R" we have

Ps,t(f)(x) > A€ / e_A*(u_S) (VPu,t)(f) du = €s,t Vs,t(f)7

with the probability measure

Jo e (nPu)(f) du
f; e (u=5) dy

Vs,t(f) =

and the parameter

A .
€st 1= )\—: € (1 —e (t_s)) > 0.

We also observe that
(1-eME9) 2172 o M <1y
& A(t—s)>log2 & (t—s)>log2/A\".

The last assertion is a direct consequence of (8.18).
This ends the proof of the exercise.

Solution to exercise 204:
Following the analysis of switching processes developed in section 13.3.1, the infinitesimal
generator of X; is given for any function

f(Gx)ee ({i} xR™) — f(i,z) eR
differentiable w.r.t. the second component by the formula
LG = Y al@) 0, fGa) +7iw) [ () = 16.0) K((i.).d(.0)
1<j<r;

for any i € J and = = (x;)1<i<r;-
This ends the proof of the exercise.

Solution to exercise 205:
Observe that

2710, |V " a (X, Y0) Vi = (a(X,,Y;) — a(X,,0),Y; — 0) + (a(X,,0),Y; — 0)

1<ilr

< V(X)) IIY)* + (a(X,0),Y: - 0).
We set I; := HY}H2 Applying Cauchy-Schwartz inequality, we find that
2_18tlt S —V(Xt) It + \/E ||G(Xt,0)H

= 0T = 577 0Ly < —V(Xy) VI + |la(Xe, 0)]].

By Gronwall’s inequality we find that

t
IVill < e J5 Vs |y 4 / e~ SV o (X, 0)]| ds.
0
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Recalling that Yy does not depend on X; and using the generalized Minkowski inequality
we prove the Feynman-Kac formula

1/8 ¢ 1/B 1/B
E[vl?] " < E(e#hVEae) B (1y)°)

¢ ¢ 1/8
+/ E[e’ﬂfs VXA (X, 0))? ds}
0
for any S > 1. We conclude that
1/8
1/6 st [P 1/8
elmlr]” < APare(v) [ 152 ()" as
o [

Using the above estimates, we have

1/8 —tnlB( Lt $)pl8] 1/8
Bl < Gl e (1) s [ et o () as).

When f is uniformly bounded we clearly have

1/6 gl 1/8 o
E(IvIP] 7 < Cpe RO E(I)?) T+ IIfl (1-e R0,

We further assume that a* := sup g [la(z,0)|| < co and inf,er- V(x) = Vi > 0. In this
situation, we have

t
IVl < e JoVEdds |y 4+ / e~ [ VI g( X, 0)] ds

< e~ Jo V(Xa)ds |:||YO|+( V) / V(X,) efo V(Xy)du ds]
= e JoV(Xs)ds 1Yol + (a*/ Vi) (1 e sV Xu)du) .

This ends the proof of the exercise. [

Solution to exercise 206:

We couple the stochastic processes Xy = (X¢,Y:) and X} = (X;,Y]/) starting at different
states Xy = (z,y) and AJ = (z,y’) (using with the same first coordinate process X;).

We have

a |y, - v/

I \
v
NN
—~
1 -3
=
N

—Y/") (d'(Xe V) — @ (X0, Y)))
= 2 {0 (X0 YD) — a(Xe V) (Vi Y))).
Under our assumptions, we have the estimate

%Y -Y|IP < —2V(Xy) IV - Y|

t
W=yl < e (< [ Ve as) - vl
0

This implies that
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We conclude that for any parameter 5 > 0
E (1 =Y/ | (%, %) = (1), Xo = ) < Zou(a) lly— /)"

with the Feynman-Kac normalizing constants Z; ;(x) defined for any 0 < s < ¢ by

t
z8(@)=E <exp (-5 / V(X,) ds> | Xo = x) .
S
This ends the proof of the exercise. [

Solution to exercise 207:

One natural way to couple the stochastic processes X; = (X;,Y;) and &) = (X],Y/)
starting at different states Xp = (z,y) and X[ = (2/,y’) is to use the coupling described in
the second statement of theorem 12.7.6. To be more precisely, we couple the first components
(Xt, X}) until their coupling time T, and we set X; = X/ for any ¢ > T. In this situation
we have

E (¥ = Y1 Lrea | (Y0.Y9) = (4., (X0, X) = (@,2"))
=E(E (I = Y/I17 | (V. YE), Xr = X5 ) rsa | (Yo, Y3) = (9:9), (Xo, X¢) = (2,2"))

<E (2{)(X1) lr<a 1V = Y31 | (¥6,Y0) = (%), (X0, Xp) = (2,2")) .

By Holder’s inequality, for any conjugate parameters 1 < a, a0/ < oo (s.t. 1 =1/a+1/a’)
we have

E (1Y = ¥/ Lrea | (0,¥9) = (4:), (X0, X) = (@,2"))

<B((28000)" trea | (50,55 = @) "

<exp (=B Vi(l—e)t)

o 1/a’
<E ([[Ve = Y4I1*7 | (Y0.¥8) = (4.9/), (X0, X0) = (,2"))

This implies that

E (1 = Y1 Trsa | (0,3) = (4,9), (Xo, X§) = (@,2"))
<2 exp (—AVi(L—e)t) [[lyl° Vv [y v (a*/Vi)°
=~ exp * € Yy Yy a * .
On the other hand, for any conjugate parameters 1 < «, @’ < oo we also have
E (1Y = ¥/I1” Lrsa | (Y6, Y9) = (5:3/), (X0, Xp) = (2.2"))
Ba/ 1/0/
=E (v = YI™ | (Y0, ¥9) = (w9), (X0, Xp) = (,2"))

x P(T > et | (Xo, X4) = (z,2'))"/".
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By theorem theorem 12.7.6 there exists some non negative parameters ¢ and p > 0 s.t.
P(T > et | (Xo, X)) = (x,2")) < ¢ exp (—pet).
This implies that

E (1Y = Y17 rsa | (0,5) = (4,), (Xo, X§) = (w,2"))

= 2¢ exp (—pet/a) [yl v IlyII” v (a*/V2)°] -
By choosing o = 1 we conclude that

E (1Y = ¥/I1” | (¥6.Y9) = (4., (X0, Xp) = (2,"))

<2[ exp (=BVa(1 = ) + ¢ exp (—pet)] Iyl v IIy/I17 v (@/V2)°] .

Notice that
ﬁv*(l - 6) =pE= €= 56 = BV*/ (6‘/* +p)
from which we conclude that

E (I = Y1 | (Y0, ¥8) = (1), (Xo, Xp) = ("))

<21+ ¢) exp (=85t) [Iyl* v ly'I* v (@*/V2)°).

This ends the proof of the exercise.

Solution to exercise 208:
Between the jumps X; evolves as X;= 1 so that the semigroup of the deterministic flow

@s,t(2) is given by
VreR Vs<t psp(z) =+ (t—s).

By applying the integral formula (13.15) to K, (z,dy) = do(dy) and A\, (x) = A we have

Poy(f)(0) = f(t —s) e M7 + /t A e () Py (£)(0) du.

The semigroup is time homogenous Ps ;(f)(x) = Po.i—s(f)(2), so if we set P, = Py we find
that

PA)(0) = () e + / X e =9 P (£)(0) ds.

0
This yields the formula

t
B = MPO) = [0+ [ A1) ds
from which we conclude that
t
|10 ds

W = 10+ [ 5
/Ot F(s) ds + X2 /O /OSL-(f) dar

= D U@,

n>0

+ A
= f&)+A
o0
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with
n+1

O =10 and Upa (D0 = "= [ U as.

In other words, we have
1t
G = 5 [ s
0
2

a0 = 2 [ ([ s s ) ds
Un(f)(0) : ZZ/;/OUO Fls1) dsl] dsy ... ds».

We let (SF™);<p<n be an n-ordered uniform statistics on [0, ¢]

~

0< S < S < . <SP <t = U,(f)(t) = E(f(57™)

We conclude that

P()(0)=e ™ Y E(f(S;™) = X, =S,

n>0

This ends the proof of the first part of the exercise. Next, we consider the PDMP X, with
generator

Le(f)(z) =X (f(0) = f(z)) + be(z) f'(2)
for some some smooth and bounded drift function b;. We let z; = ¢, () be the determin-
istic flow map of the deterministic system starting at x; = « and defined for any t € [s, 00|
by the dynamical equations
{ Ty, = be(x¢)
Ty = .

Applying the integral formula (13.15) to K, (z,dy) = do(dy) and A, (x) = A we have

Loi(f) = 0P, (£)(0) = F(pas(0) + / A Lo(f) du.

Arguing as above, we find that

Lap=y, K /[ [ feaao) dsn] dsnos..dsy

n>0 Sn—1
)

with an n-ordered uniform statistics (Sftn Ji<k<n ON [8,1]

1,n 2,n mn,n
s< S <SI <SSt

This shows that
X,=0 = X;=pm_.n. ,(0),
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where N, stands for a Poisson random variable with parameter At. This ends the proof of
the exercise.
]

Solution to exercise 209:
At some rate, say A(X;) the process X; € {—1,1} changes its sign. Between the jumps
the process evolves according to

dX; = 0
dY, = a(Yy)+ X, b(Y,) dt.

We conclude that the generator of Z; = (X;,Y;) is defined by
Li(f)(z,y) = (a(y) + 2b(y)) Oy f (z,y) + AMx) (f(==z,y) — f(z,y)).
Assume that (Xy,Y;) has a density given by
Vo e {-1,1} P(X;=a, Y, €dy) =p(z,y) dy

where dy stands for the Lebesgue measure on R. Notice that

T / pr(y) L) () dy = / AL) / (F(~Ly) — F(Ly)) pe(Ly) dy

ze{—1,1}
+ / A(-1) / (F(Ly) — F(~1.9)) pe(~1.y) dy.

Choosing f(x,y) = 1,21 g(y) we find that

S [ wlaw) L@ dy= [ o) N1 m(-19) = ADpil19) d.

ze{—1,1}

In this situation, for any smooth function g with compact support we have

3 / pilay) L) (w,y) dy = / pi(1,y) (aly) + b(u))0, (9)(y) dy

ze{-1,1}
- / 9(y) 9y (m(1,9) (aly) +b(y))) dy.
This implies that
Oipe(1,y) = (M(=1) pe(—1, ) = AMD)pe(1, ) — 0y (pe(1,y) (aly) +b(y))) -

In much the same way, by choosing f(z,y) = 1,——1 ¢g(y) we find that

S piley) L)@ y) dy = / a(y) AWpe(1,5) = A(=1) pe(—1,)) dy.

we{-1,1} 'R

In this situation, for any smooth function g with compact support we have

> /Rpt(:c,y) Li(f)(z,y) dy = /Rpt(*l,y) (a(y) — b(y))9y(9)(y) dy

ze{—1,1}

- / 9() 8, (r(~1,9) (aly) — b(y))) dy.
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This implies that
Ope(—1,y) = AD)pe(L,y) = A(=1) pe(=1,9)) — 0y (pe(=1,9) (aly) —b(y))) -
We set
@ (W) = pLy)+p-Ly) ¢ @) = p(ly) —p(-1y)
A= AL + A=) A o= A(D) = A(=1).
By construction, we have

g (y) = (M=1) pe(=1,9) = M1L)pe(Ly)) — 8y (pe(L,y) (aly) +b(y)))
+ADW)pe(L,y) = AM(=1) pe(=1,9)) = 9y (pe(=1,9) (aly) —b(y)))
= =0, (¢ (v) aly) + q; (v) b(v))

and
e (y) = 2N =1) pe(=1,y) = AM(D)pe(1, )
=0y (pe(1,y) (aly) +b(y))) — 9y (pe(=1,9) (b(y) — a(y)))
= — (A1) =A=D) ¢ (¥) = A1) + A1) ¢ (v)

= -V G WA G W) -9y (6 () aly) + a4 () b(y)) -

We further assume that b > |a|. The steady state (¢~ (y),q"(y)) of these coupled
equations satisfies

Aq " (y) =0=0q™ (y).
This implies that
" (y) ay) +a W by)=c = ¢ (Y =750 Y+~
for some constant ¢, and

9y () aly) +¢* () by) == (A" ¢ W)+ A" ¢ (v).

To solve this system of equations we observe that

7t (y) b(y) + ¢~ (y) aly) = lq+(y)b(y) (1 (a(y)) >+C a(;/)]

b(y) b(y)
and
AT AT () = AT () - AT (Zgzi g (y) + b(cy))
_ - a(y) AT
- q+(y) <)\ — )\er(y)) — @ C.

This implies that

d, (q*(y) ¢ (y)b(_y)a W) ., Z((g) =q"( )ﬁa(y) —Ahy) AT
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or equivalently

(b*(y) — a*(v))
TR

oy oy [MTaly) = aTbly) L [ (P(y) - dP(y)
(v) = ¢ () ay< 0 )

b(y) 1
+ a
i =2 (i)

This yields the familiar ordinary differential equation

yat (y) = q" (y) Aly) + ¢ B(y)

AMa(y) = A7b(y) My -
Ply) - Ry ey M BW=

The solution of the above system is given by

Aly) =

y Yy
() = EA@ / eJIAE) &= ) dy

1

for some constants ¢y, ca. Whenever ¢z := f;o A(z) dz we can choose ¢ = 0.
For instance, when A(1) = A\(—1) := X we have AT = 2\ and A~ = 0. In addition, when
a=0and 0 < [*b7(y)dy < oo we have

A(y) = —0,logb(y) and B(y) =2X/b°(y).

In this situation, by choosing ¢ = 0 we have

b(er)
b(y)

¢~ =0 and q¢"(y) = co.

In this case we have

[ adwdi= [ G p-1) di=12 o= < /jw(y)dy)_l.

This ends the proof of the exercise. ]

Solution to exercise 210:
Under appropriate regularity conditions that allow us to interchange the order of differ-
entiation and integration this yields

ot == Y o [l et ) vide?),

1<i<m

In addition, for compactly supported drift functions a! w.r.t. the first coordinate we also
have the equation

Btpf(xQ) = //\t(xl,yQ) pe(xt,y?) dxt v(dy?) —/ Ne(zt, %) py(at, 2?) dat.

This ends the proof of the exercise.
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Solution to exercise 211:
By construction, the evolution equation of the number of molecules X of the i-th species
is given by

t
th = Xé + Z (b;,j - bi,j) N; </ /\j (Xs) dS)
1<j<n, 0
where (N;)1<j<n. stands for n. independent Poisson processes with unit intensity.
This ends the proof of the exercise.

Solution to exercise 212:
The following formula describes the process X; = (X}, X?) in terms of 4 independent
Poisson processes (IV;)1<;<4 Wwith unit intensity

Xi
X?

X§+ N1 (fo 1xizoh (X2)ds) — No (f7 1xazihe (X2)ds
X2+ N3 (fy Ixi—ohs (X2)ds) — Na (f7 1xi-1ha (X2)ds

This ends the proof of the exercise.

]
Solution to exercise 213:
Following the analysis of switching processes developed in section 13.3.1 we have
L(f)(u,v) = a(u,v) 0u(f)(u,v) + Au, v) /S (f (u,w) = f(u,v)) K((u,v),dw).
This ends the proof of the exercise.
]

Solution to exercise 214: Following the stability analysis of switching processes de-
veloped in the end of section 13.3.1 we can choose any intensity function satisfying the
following condition:

Al ) qlu) = N (w) — 3 ai(v) Byig)(w) > 0

1<i<2

for some sufficiently large function A* such that \*(u) > >7, ;<5 lla?|| |0u:(q)(u)]|, for any
u = (ul,u?).

This ends the proof of the exercise.

Solution to exercise 215:
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We have

3 /—(b D L(F)(e,y) dy

ee{—1,+1}

= ¥ /OO e T (e 0, f(e,y) + (a+ (b—a) Leso) (f(—€,y) — fe.y))) dy

ec{—1,+1}

+ 0y / =Y (e Dy fle,y) + (a+ (b—a) le<o) (f(—€.y) — fle.y))) dy.

ec{—1,+1}

In addition, we have the decompositions

/ T e (9, f(ery) + (a4 (b—a) 1es0) (F(—e,y) — Flery)) dy

eef{—1,41} 70

:/OOO e~ T (9, F(1,y)+b (f(—1,y) — f(1,y))) dy

o0

+ / == (—, F(—1,9)+a (F(1,y) — F(~1,y))) dy.

0

Observe that

/OO e (f(~1y) = f(Ly) + (a (f(Ly) = f(=1,9))] dy

0

B /OOO (b - a’) e—(b—a)y <f<_17y) - f(l,y)) dy

A simple integration by parts shows that

/OOO e=O=Y(0, (f(1,y) — (~1,3))) dy

= [f(=1,0) = f(+1,0)] + /0 T (- a) e (5(1,y) - F(-1,1)) dy.
We conclude that

/OO e O (e 0, f(e,y) + (a+ (b—a) Leso) (f(—e,y) — fle,y)) dy

ce{-1,+41}70

= [f(=1,0) = f(1,0)].

In much the same way, we have

> / " (e 0y f(ey) + (a+ (b—a) le<o) (f(—e) = flew)) dy

ee{-1,+1}7~

0
- / O (9, F(1,y)+a (f(—1.y) — F(Ly))) dy
o0 0
n /_ O~ (=0, F(—1,1)+b (f(1,y) — F(=1,9))) dy.



Chapter 13 1001

Arguing as above we find that

0
[ O~ (9, (F(1,y) — F(—1,))) dy

— [F(L0) — F(-1,0)] + / T b a) e (1) — (L)) dy

and

0
/7 e (b (f(1,y) — f(=1,y)) + (a (f(—1,y) — F(1,y)))] dy

0
- / (b—a) € (f(Ly) — f(~1,)) dy.

This shows that

Z / e~ (¢ 9, f(e,y) + (a+ (b—a) Le<o) (f(—€y) — fle,y))) dy

ee{—-1,+1}"

This implies that wL(f) = 0. This ends the proof of the exercise.

Solution to exercise 216:
Using a simple integration by parts we have

> /—V<y>L (1) dy

ec{—1,+1}

= Z / VWe 8, f(e,y) d

ee{—-1,+1}

Y [ eV @V (e - flew) dy

ec{—1,+1}

- Z / “VW(e 9,V) fle,y) dy

ee{—1,+1}
Y [V @) - @,V )] few) dy.
ec{—1,+1}
Recalling that (—a)4+ = a_, we conclude that

> / VOL(f) (e, y) dy

ec{—1,+1}

= > / V(e 8,V) ~ (€0, V() + — (€0, V(y))-1} fle.y)) dy

ec{—1,+1} -0
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This shows that 7L = 0. This ends the proof of the exercise.

|
Solution to exercise 217:
An integration by part w.r.t. the z-coordinate gives
/ av 8pf(v,x) e V@ da p(dv)
= —/ [(a v eU@)awe—U(x))} f(v,z) e V@ dz p(dv)
= —/ [(a v eU(‘”)('?we_U(‘”))} f(v,z) e V@ da p(dv)
+
+/ |:<a v 6U<:I;>(9163_U<:I:)>:| f(U,ZL’) e—U(:L‘) dr u(dv)
for any smooth function f wit compact support.
We also have
/ e V@ dy pu(dv) (a v eU(””)a_ﬁ,;e*U(z)) (f(=v,2) — f(v,2))
= — / Ka v (%U(x)({),;e*U(x))} flu,x) e V@ dg w(dv)
+/ e V@ dy pu(dv) <a v eU(‘”)aze*U(””)) f(=v,x)
=- / K(z v eU(x)&,,;e*U(w)ﬂ f(v,z) e V@ dz p(dv)
+/ e V@ dz pu(dv) (—a v eU(I)é‘xe*U(“’)) f(v,x).
(a v sU(z)Bme*U(I))+
We conclude that 7 is L-invariant. Recalling that (—a)_ = a4, we check immediately that

this stochastic process coincides with the one discussed in exercise 216 when a = 1 and

w(dv) < 6_1 + d41. When a = 1 their generators coincide. The non uniqueness property of

the invariant measure is clear since p(dv) represents any symmetric probability measure.
This ends the proof of the exercise.

Solution to exercise 218:
An integration by part w.r.t. the z-coordinate gives

/ a(v) Opf(v,z) e V@ dx p(dv)

= —/ (a(v) (2U<I)8,,;67U<T’)> f(v,z) e V@ da p(dv)
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for any smooth function f wit compact support. On the other hand we have

/ e "@dz p(dv) A(v, ) / (f(v,2) — f(v,2)) u(dv)
= 7,/. e~V (@) gy p(dv) (CL(’U) @U(aﬁareflf(:c)) / (f(w,z)—f(v,2)) p(dw)

+/ e V@ dy {a(m) + sup (a(w) eU(’”)awe_U(x))]
weR

x [ [ @) [ G - 1(w.0) utaw)|.

=0

This implies that

/ 67U(I)dl’ ,Uf(d’U) /\(vat) / (f(’U,CC) - f(v,x)) ‘LL(d’U)

:/ e V@ dx p(dv) <(1(7) eU(w)&Ee*U(wU f(v,x)

7/ e V@ dy {/y(dv) a(v)} (eU(I) 8me*U("”)) / (w, x) p(dw).

—_——
=0

We conclude that 7 is L-invariant. The function

€T +— Q_ (gc) ‘= sup (a(w) eU(z)axe*U(z)>
weR

is difficult to compute in practical situations. If we only have an upper bound

sup (a(w) eU(w)axe_U(””)) < ay(x)
weR

we can choose

In this case we have
Av,z) = alz) + a_(z) — (a(v) eU(I)ame_U(I)) =ay(z) — (a(v) eU(w)aze_U(xD .

This ends the proof of the exercise.

Solution to exercise 219:
We clearly have

!

Alz) = (I =2U0(2)U(z)") =1 -2U(x)U(z)) =1 —2U(2)U(z)

and

Ax)? = (I - 2U(m)U(m)')2 =1—-4U(z)U(x) +4U(2) U(x)'U(x)U(x) = 1.
=[|U(z)[]?=1



1004 Chapter 13

This shows that A(z) is an orthogonal matrix. For any x,y € R", we also have

(U(x), A(z)y) = (U(x),(I -2U(x)U(z))y)
= (U),y) —2(U(x),U(z)U(2)'y)
Ux)'y =—(U(z),y).

= (U(x),y) =2 U(z)'U(x)
\_:_./

1

This implies that

from which we conclude that

(OV(z), A()y)+ = [0V (2)] (U(z), A(x)y)+
= oV (@)| (U(z),y)- = (OV(z),y)-

and
OV (2), A(x)y)+ — OV (2),y)+ = —(OV(2), y).
After dividing by [|0V (x)|| we also have
(U(2), A(x)y)+ = (U(x),y)+ = =(U(2),9)-

The infinitesimal generator of the process X; is given by

L(f)(a"2®) = Y af 0 f(x)+Ma) [f (2", A@e")2®) - f ()]

1<i<r

Observe that

/ r(de) M) f (2", A@)2?) o / Ve gyt [ / v(da®) OV (2Y),2) 4 f (", AlzY)a?) | .

Using the change of variable
y? = A(z")z? = 22 = A(zh)y?

and recalling that v is spherically symmetric we check that

/ p(de?) OV (2),2) 4 f (o', AeV)a?) = / v(dy?) OV (V) AP+ f (2 9).

This implies that

/ e~V da:l/ l/(dLE2) <8V(x1),x2>+ [f (zl,A(xl)xQ) - f(x)]
- / V@ gyt / V() [0V (@), APy — OV(')02)e] f (2 o?)

__ / eVE ! / v(dy?) OV (rh),o?) fat ).
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By a simple integration by parts, we also have

/e_v(”l) dxl/ v(dx?) Z 7 01 f(2)

1<i<r

:/ Ve dml/ v(de?) | 30 a2 0V | f()

1<i<r

. / r(dz) OV (z),22) f(z)

for any smooth function f with compact support. This clearly implies that 7L = 0

Notice that the invariant distribution is not unique as any distribution 7 with spherically
symmetric distribution v satisfies 7L = 0. We can choose the centered product Gaussian
distribution, student distributions, or Laplace type distributions.

This ends the proof of the exercise. [
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Solution to exercise 220:

We recall that the increments (W; —W;) and (W — W) = W; are independent centered
Gaussian random variables with variance (¢t — s) and s. Recalling W; and W are centered
Gaussian with variance s and ¢, we prove that

Cov(We, Wy) = E(WW,) = B( W, [We + (W, — W,)] ) = E(W2) = s.

This ends the proof of the exercise.

Solution to exercise 221:
For any s <t we have

Wy =W, =Y a; (W) —W7).
iel
The process Wy is clearly a martingale wr.t. F = o (Wi, i €I, s <t), with Gaussian
independent increments. Suppose that ), ; a? = 1. In this case, we have

E(W?) =Y alt=t
i€l

Inversely, we have

IEJ(WE) :Za? t:t:>ZaZ2:1.
iel i€l
This ends the proof of the exercise.

]
Solution to exercise 222:
For any s < t, we have
Cov(W), W) = E(W!W,) =E(W.!W,)
- E (W; [ewg +VI-e WQD =eE(W!'W!) =cs.
In much the same way, we have
Cov(W!, W) = E(W!W,) =es.
This implies that
Cov(WH, W,) =€ (tAs).
This ends the proof of the exercise.
]

1007
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Solution to exercise 223:
We have .
th — th71 =be + o \/E X |:\/E (Wtk — Wtkfl):| .

The random variables (Wtk - Wtk—l) /+/€ are independent centered and Gaussian with unit
variance. Thus the conditional densities of the sequence of state (X;,,...,X;, ) given Xy =
T are given by

1
Diyrootn (T1, . Tn | To) o< exp ~ 952 Z (v — 2—1) — be)
L 1<k<n
= exp L Z (2 — 2p—1)?
207 k k—1
i 1<k<n
b b%t,
X exp o Z (xx — zk-1)| exp [_W]'
1<k<n
In the last assertion we have used the fact that ne = t,,. We also notice that
Z (g — Tp—1) = Ty, — Xo.
1<k<n
On the other hand, we have
—2bt (2 — x0) + b22 = [(2n — 20) — btn]® — (zn — 0)%
This yields
(x Tn | Tp) o ex 1 Z(m—x )?
Pttt \ 1500y Ty 0 p 202¢ k k—1
1<k<n
y —20bt,, ( ) b2
exp |— T T exp |—
P 202, " 0 P 202t,,
= exp | —5—- Z (xf — Th—1)
1<k<n
xexp |~ g (I(an —20) = btal? — (20 — 0’
exp 502t Ty — To n Ty — To .

In much the same way, the conditional densities of the terminal state X; _ given Xy = x¢
is given by

1 2
profon L an) o exp |5 (o —0) — 0,
We conclude that the conditional densities of the sequence of state (Xi,,...,X:,_,) given
(X0, Xt,) = (z0,2,) are given by
D (x x | To, Tpn) o< €xp b Z (zp —x )2+71 (z,, — 10)?
t1yestn—1 1y dn—1 0s4n 20’26 = k k—1 20‘2tn n 0

The last assertion is a consequence of the above formula.
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This ends the proof of the exercise.

Solution to exercise 224:
The generator of the process is given by

L@ = (1 (a4 =) = £@) 42 (1 (o 5 ) - F@).

A simple Taylor expansion implies that

Fot o) - f@) = 4= F@ g 55 7@ +0 (533,
(o= ) -0 = o=@+ 5 @ +0(55)

Summing the two terms we find that

Using the decomposition

Vo< s <t Xt—xsw% ((Ni = N,) = (N} = N0))
we check that (X; — X;) is independent of X;. In addition, we have
B, — X.) = = (B(N, = V) ~E(N] = N})) = 0
and
E((-X)%) = o B (N No) - (8] - N2))?)
1

= X1[-3((z\ft—Ns)2)=(zf—s).

Finally, we have

E(e*Xt) = E(eva™ ) E(e v,
Recalling that

E(eBNt) — M Z (eﬁi\'t)" — M (-1

n>0
we find that
E(eoXt) = M (eVAX 1) At (e Vax —1)
= exp [(MeP — 1)+ Ae 1)) ¢].

Using the fact that
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we conclude that

%t
log B(e®Xt) = S (t)\_l/Q) .
This ends the proof of the exercise.
]
Solution to exercise 225:
Applying the integration by parts formula (14.20), we have
——
=0
This implies that
t t t
tW, = / d(sWy) = / Weds —|—/ s dWs.
0 0 0
This ends the proof of the exercise.
(]

Solution to exercise 226:
Applying the integration by parts formula (14.20), we have

d(t*Wy) = 2t Wy dt + 1% dW; + dt*dW; = 2t Wy dt + > dW,.
——

=0
This implies that
t
M, = Wt—2/ s Wy ds = dM; = t* dW;.
0

This clearly shows that M; and M,;/2 are martingale w.r.t. 7 = o(Wy, s <t). In addition,
we have

t
dM;dM; = t* dt —= (M), :/ st ds =17 /5.
0

This ends the proof of the exercise.

Solution to exercise 227:
Applying the integration by parts formula (14.20), we have

d(fR)We) = f'(t) Wy dt + f(t) AWy + df (t)dW, = f'(t) Wy dt + f(t) dW.
=0

This implies that
t t
Mt = f(t) Wt —/ f/(S) Wq ds = de = f(t) th — Mt = / f(S) dWs
0 0
This clearly shows that M; is a martingale w.r.t. 7, = o(Ws, s <t).
t
dMdM; = f(t)* dt = (M), :/ f(s)? ds.
0

This ends the proof of the exercise.
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Solution to exercise 228:
Using an elementary Taylor expansion, we have

V(y) = V(@) = 2:V(@)y—a)| < ¢ v -y

We also have

M (f)(z) = Mu(f)(x)

/I%WAM(G—mww)ﬂw
+ (/ Py(z,dz) (a— a)(:c,z)) flx)
/zamnw<a—@uw>uwy—ﬂwx

This implies that

erﬂmmmwwgg/mmmmmwwwm.

For any u,v € R, we have
Imin (1,e*) —min (1,e")| <1 —e "7 < ju — ).

We readily check this claim by considering all possible cases: When u,v > 0 the result is
obvious. When (u A v) < 0 < (uVv) we have

|min (1,e") — min (1,€e")| = e(unv)

1—
< 1-— ef(u\/v) e(u/\'u) <1-— ef\ufv\.

Finally, when (u V v) < 0 we have

Imin (1,e%) —min (1,e?)] = V) — ®Av)

o(uVv) (1 _ e(umf(uvv)) <1—eluvl,
The above estimate implies that
la(z,y) = a(,y)| < [V(y) = V(z) - 0,V (2)(y —z)| < ¢ o —y|”
from which we check that
| (M, — M) (f)]| < ¢ hose(f).
In addition, for Lipschitz functions f s.t.
[f(2) = fF)l <[z =yl

we have

IN

| M (f)(2) = M (f)(2)| /Ph(x,dy) [(a —a)(z,y)| |z —yl

‘ / Pu(w,dy) |z —y|* =c P E(WP).

IN
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This ends the proof of the exercise.

]

Solution to exercise 229:

We have

h=t My (f)(v, 2) = f(v, )]

=h7 [f(v, 2 + vh) = f(v,z)] e (Um0,

+[f(=v,z) — f(v,2z)] h7! (1 — ef(U(IH“’)*U(I)M).
Using the estimates provided in exercise 228 we check that
e~ U(z+hv)=U(z)), _ q + O(h)
and
(1= e WEHD V@) — (0 9,0(2)), + O(h).
On the other hand we have
R [f(v,z 4 vh) — f(v,2)] = v Op f(v,z) + O(h).

We conclude that

h=H MW (f)(v,2) = f(v,2)] = v 0 f (v, ) + (00:U(2)),. (f(=v,2) — f(v,2)) + O(h).

This ends the proof of the exercise.

Solution to exercise 230:
For any p > 1, we have

j [ Matady) ly =~ [ FnGody) g ol

= RIFPI2E (W, PH2) = O(hHE).

=| [ Pt (@l )y~ o
We also notice that for any function g s.t. g(0) = 0 we have
B (g (Xl o= XP) | X0, =2) = [ MiGody) gty o)

= / Pp(z,dy) a(z,y) 9(y — =)
E (a(x,x+ Vh Wh) g (\/E W1) ) ;

as well as

‘/ (M), — M) (z,dy) g(y — ) ’ = ‘/ Py(z,dy) (a(z,y) —a(z,y)) 9(y — x)
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This implies that

E ((Xt}tﬁh — Xf) | X, = m) / My (z,dy) (y — )

/ (y — x) Py(z,dy) a(z,y) + 0 (h“l/?) )

To take the final step, we further assume that 9,V (z) > 0. In this situation, we observe
that

w2 [ (=) Pulo.dy) alo)
= E (Wymin (1,77 9VE W2 )) B (W) i, <0) + B (W1 1w ¢V 22V 0W1)

—E (Wi lwyso |70V W 1]},

In much the same way, when 9,V (z) < 0. In this situation, we observe that

n 2 [ (=) PuGe.dy) aoy)
—F <W1 min (1’ VI 0.V () Wl)) — E(W; L, 50) +E (W1 Ly, <o e VP an(z)W1>

—E (W1 lwyco [eYH OV W 1))

There are many ways to estimate the above quantities.We further assume that 9,V (z) <
0. In this case, we can use the change of variable formula

E <W1 1w, >0 e_ﬂamv(”)‘%) — 3 V@) R (Uh(:v) 1Uh,(x)>0)
= E(Un(2) 1y, @)>0) +O(h)

with
Un(z) = —Vh 8,V (z) + Wy.
This implies that

Vh E <W1 1w, >0 e*\/ﬁaxV(z)Wl)

=—ho:V(z) P (Wl > \/ﬁamV(x)> +Vh E (Wl 1W1>\/an\/(m)) +O(R!H1/2),

1
=3 -P(0<W1 <VRE, V() =E(W1 1w, 20)~E(Wi Toc, <viio, vie))
from which we prove the formula

vVh E <W1 Tw,>o0 [e_ﬁamV(m)Wl B ID

=—h V(@) (=P (0<W < VALV (@))) = VA E (Wi Lycy, < yiig, vy ) + OTH2).

Notice that

1 @ 2 1 2
E(Wl 10SW1SG) = _\/7277'[' / 6w€_w /2 dw = \/72? |:1 —e ¢ /2:| = O(a2)
0
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and

IP’(OSnga) =

i/ €7w2/2d’w< a
Var Jo 7\/27r.

This yields the estimate
h
VRE (Wi Lwyso [e7VPOV@OM 1)) = =2 0,V (@) + O F1/2).
In much the same way, when 9,V (z) < 0 we have
E (W1 Iw, <o efﬁawv(w)wl) = E (Uh(x) 1Uh(ac)<0) +O(h),
as well as

VIE (W1 Ly <g VROV @W2)

= h o V(@) P(Wi < VAo V@)+Vh  E(Wily ymove) — FO(RI)

1
=1 —P(Vh, V(2)<W:1<0) =E(W1 1w, <0)~E(Wi 1o, v ()< <o)
Hence we prove the formula

Vh E (Wl Iw, <o {Gfﬁawv(aj)wl - 1})

=—h 9,V (x) (% —-P (\/ﬁ@lV(ax) <W; < 0)) ~VhE (W1 1\/50mv(ac)gwlgo> £ O(R1H1/2),

This also yields the estimate
VIE (Wi T, <o [e7VP0VEW 1) = —g 0,V (z) + O(h'1/2).
We conclude that
ht / (y — ) Pp(z,dy) a(z,y) = —% A,V (x) + O(h'/?).
Arguing as above we have
(Xt —XE)" | Xi, =a) = / (y — 2)° Pa(w, dy) a(x,y) + 0 (h?).

We further assume that 9,V (x) > 0. In this situation, we observe that

nt [ =2 Pulondy) atey

= E (W min (1,e7 0V W) B (WP Lyy<o) + B (W7 Ty g e V0 2V

~1-E (Wf i, =0 [1 — VR V(@) W]) =1+ O(h}?).
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In the last display we have used the fact that e™ > 1 —u, for any v > 0. In much the same
way, when 0,V (z) < 0 we have

h [ =2 Puondy) aloy)
=E (Wf min (Le‘“H 0:V (=) W)) —E (W2 1y, 0) + E (Wf Lo e~V a,,vmwl)

=1+E (Wf 1w, <o {e*\/ﬁ 0aV () W1 _ 1]) =1+ O(r}/?).
We conclude that
/ (y —«)® Pu(z,dy) a(z,y) = h+O(h'*1/?)
with @ = a or @ = @. Similar computations imply that
[ ly= 2P Pato.dy) ae.g) =000+,

with « = a or a = a.
This ends the proof of the exercise.

Solution to exercise 231:
As u — 1, we have the expansion

1 11 1
T+u  2-(1-w) 21-(1-uw/2
_ % (1+1;u>+0((1—u)2)=;4—1;“4-0((1_“)2)

Recalling that
V@) -Vl <ea syl = [1-e"07V0| <o o -y

we find that
1 — e~ (V(@)=V(y)
4

Viy) < V(@) = blay) = 5 + +0(z — yl?),

as well as
1 1= V-V(=)
2" 4

V() > V(y) = blz,y) = e~ VW7V +0(|lz =yl

We conclude that B ,
with

_ 1 1= V@)-V()
b(w,y) = 3 + 1 W (e)>v(y)

1 1—e-(VW-V)
R 1 yw>v):

L (V@-V(@)
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Arguing as in exercise 228 we find that

b(x,y) = b(a,y) + Oz — y|*).

The end the proof of the exercise follows the same lines of arguments as the one of
exercise 228, thus it is omitted.
This completes the proof of the exercise. [

Solution to exercise 232:

The proof follows the same arguments as the solution of exercise 230, thus a sketch only
is given below.

We further assume that 9,V (x) > 0. Using the same arguments as in exercise 230, we
observe that

o1/ / (y — ) Py(x, dy) b(z,y)

1 1 — e—\/ﬁ&cV(ﬂf)Wl

2" 4

)

1 1— —Vh Oy V (z) W1
E (Wl 1W120 efx/ﬁ 0,V (z)W; l + e .

=-E <W1 1w, >0

2 4

This implies that

h*1/2/ (y — ) Py(x,dy) z(m,y)

1 1— —Vh 0,V (z)W1
=E <W1 Lw, >0 [e"/ﬁ 0=V (@)W _ 1} [2 +-——° 1

1
= S E(W Lo [V 0V@OW 1)) 0 ().
Using the estimates derived in exercise 230 we conclude that
= h
| w0 o) Ta) = =5 0.v/(@) + 0014172,
as well as ~ h
[ w2 Putady) Bavy) = 5 + 00172,
This completes the proof of the exercise. ]
Solution to exercise 233:

The Brownian motion W; is a martingale (w.r.t. its natural filtration 7, = o(Ws, s < t))
with angle bracket (W) = t. The stopped martingale satisfies the property

Wintp € [—a,a] = |Wiarp| < ¢ = d®.
Applying (12.23) to the martingale W; and its angle bracket (W), = t we find that

E((W)z,) = E(Tp) < a*.
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The Brownian motion starting at some x € D is given by W;* = x+W;. In this situation,
we have

(WE? =22 + W2 + 22W,

E(Winrz )=

0 2
= E(Wigy) =E(tATE) =E <<W;”AT5> ) —2? < a?— a2
Applying Fatou’s lemma, this yields the estimate
E(Tp) < (a* - 2?).

This ends the proof of the exercise. [

Solution to exercise 234:

We have
o o
By = [Pz a= [ p(nzen)
0 0

Using the change of variable

s=tP o P =t=ds=-tr Ldt=—- 5P dt = dt = psP~1 ds

D=
D=

we find that -
E (T%) :/ P (T, > s) psP~! ds.
0

Notice that for any = € D we have
IWF —z| > diam(D) = W& D =T, <1.
Recalling that W{¥ = x + W; These inclusions imply that
P (T, <1)>P(|W§ —z| > diam(D)) = P (||W1]| > diam(D)) := e >0
= sup,cpP (T, >1)<1—-e<1.
We check that

supP (T, >n) < (1—¢)"
€D

by induction w.r.t. the parameter n > 1. The result has already been checked at rank
n = 1. Suppose it has been proved at rank n. In this situation, we have

>
1 2 x
= o [ ew |-y lemul] @z a1 W =) 4y

1 2
— e [ e |- el P20 ay

1 1
/ exp |—= |l — yH2 dy  (by induction )
(9-\r/2 D 9

2m)
P(z+ Wi € D)
P (||[Wy] < diam(D)) = (1 — e)" L.

(
1- ) X
"X

IN

I
—~ —~ —_—
—_
I
M
3
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This implies that

E(T7) =/ P(T, >s) ps"'ds < / P(T, > [s]) ps"~" ds
0 0
oo
< / (1- G)LSJ psP~ 1 ds
0
< -9t [ a9t
0

We conclude that

supE(TE) <p (1 —¢)7? / e P71 ds < oo
zeD 0

This ends the proof of the exercise. [

Solution to exercise 235:
We have

t t
X, = / a(w)dW, = X — X, = / a(u)dW,.
0 s

For piecewise constant functions a, the process X; is clearly a Gaussian process with inde-
pendent increments. This follows from the fact that linear combinations of joint Gaussian
variables are themselves Gaussian. The general case follows by taking limits. On the other
hand, we have

E (X, - X.") =E ([ / t a(u)dwu] ) - / ' (u)du = b(0)-b(s) = E ([Wag) —~ Wiga]%)

We conclude that the diffusion dX; = /¥ (t)dW; starting at Xy = 0 has the same law as
the time-changed Brownian motion W).
In addition, X; is a martingale w.r.t. F; = o(W,, s <t) with angle bracket

(X), = / a2(u)du = b(t).

Thus, the diffusion X; starting at Xy = 0 has the same law as the time-changed Brownian
motion Wixy,.
This ends the proof of the exercise.

Solution to exercise 236:
We have of T
x
gy = (@t3) and 55 =
By applying the Doeblin-Ito formula, this leads us to

(a+§).

2
3 3

2

On the other hand, we have

3 2
1 , 1 , 1
X, = (a—i—?)Wt) :th/‘3:<a+3Wt> and Xf/3=(a+3wt> .
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This shows that X, = a® and
1
dX, =5 X3 dt + xXP? aw,.

On the other hand X; = 0 is also a solution of the above equation. The problem arises due
to the fact that the functions z'/3 and 2?/% are not smooth at the origin.
This ends the proof of the exercise.

]
Solution to exercise 237:
By applying the Doeblin-Ito formula to the function f(¢,2z) = x/t we have
X X 1
d| — = —— dt+ - dX
< t > g My A
X 1 (X
This implies that

Xt

TZIleWt*Wl éXt:t($1+(Wt*W1)).
This ends the proof of the exercise.

Solution to exercise 238:
By applying the Doeblin-Ito formula to the function f(¢,x) = a(t) « we have

da(t)X;) = d'(t) Xy dt+a(t) dX;

This implies that
a(t)Xt = a(to) Tty + (Wt - Wto) = Xt = (a(to) Tty + (Wt — Wto)) /a(t)

This ends the proof of the exercise.

Solution to exercise 239:
Notice that W is a continuous martingale with angle bracket

(W =t.
We check this claim by using the fact that

AW} AW = 1;—; dt = dW{dW = Y a? dt
1<i<n

Levy’s characterization of the Brownian motion ends the proof of the exercise.
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Solution to exercise 240:

The exercise is a direct consequence of the invariance properties (14.21) of the Brownian
motion and the Laplacian under orthogonal transformations stated in theorem 14.4.3. We
check directly the exercise following the developments of section 14.4.3 applied to r = 2 and
O = Ry. Notice that

o= (5 e ) = () ) ==

The end of the proof of the exercise is now easily completed.

Solution to exercise 241:

As exercise 240, this exercise is also a direct consequence of the invariance proper-
ties (14.21) of the Brownian motion and the Laplacian under orthogonal transformations
stated in theorem 14.4.3. We check directly the exercise following the developments of
section 14.4.3 applied to » = 2 and O = Ry. Notice that

;= cos(2a) sin(2c) 51 =
0" =Ry = ( sin (2a) —cos(2a) | Ra® = Ra-

The end of the proof of the exercise is now easily completed.

]
Solution to exercise 242:
By applying the Doeblin-Ito formula to the function f(x) = log 1=, we find that
1—x x l—z (1—2)+x 1
Oy = Oy = =
/(@) x (1 —:v) x (1—2x2) z(1—x)
1
0? = — (1-2
and
af (Xy) = édX SN S (1-2X;) dX;dX
YTX(1-X,) T 2X2(1 - X,)? AR
1 1
= (- X )dt+dW; — 55— (1-2X;) X2(1— X,)? dt
(2 t) e 2X2(1— X,)? ( 0 X 2
1 1
The end of the proof of the exercise is now clearly completed.
]

Solution to exercise 243:

We have
of . . a *f _
e —asin(x) = ~3 g(z) and 9 —acos(z) = —f(x).
In much the same way, we have
dg _ b %9 oo
o beos(x) = - f(z) and P —bsin(z) = —g(x).
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We set
Xt = f(Wt) and Yrt = g(Wt)

Applying the Doeblin-Ito formula, we find that

a

a 1 1
dXy =df(Wy) = -3 g(Wy) dWy — 3 fWy) dt = b Y, dW; — 3 X dt

and
b 1 b 1
a a

Finally, we observe that

Y, = b sin(W;) =by/1 —cos2(W;) = by/1 — a=2(acos(W;))?
b 1 b
= a\/aQ — X2 = dX, = -5 Xpdt— = Vie—X)(a+ X,) dW,.

This ends the proof of the exercise.

|
Solution to exercise 244:
We have
of _ . _ . a *f 2 _ 2
3 = 9 sinh(ax) = « 3 g(x) and 9,2 = oo cosh(az) = o f(x).
In much the same way, we have
b 2
% = ba cosh(az) =« o f(z) and % = a? b sinh(azx) = o? g(z).
This implies that
of 1 0%f a a?
df(Wy) = g(Wt) AWy + 5 @(Wt) dt = o 7 g(We) dWy + - f(We) dt
Og 1 0% b a?
dg(We) = %(Wt) dwy + 5 @(Wt) dt = o P FWe) dWe + 5 g(Wy) dt.
Replacing f(W;) and g(W;) by X; and Y; this yields the stochastic differential equation
dX; = & X;dt+a Y, dW,
Y, = LY, dt+al X, dw,.
This ends the proof of the exercise.
|

Solution to exercise 245:
The process satisfies the continuity and the Gaussian properties discussed in defini-

tion 14.1.2. Note that for any s < t the increments

Wta - WSQ == (Wt a2 — I/I/S O¢2)

Q=

are centered Gaussian random variables, with variance 25 (t o® — s a?) = (t — s).
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In much the same way, for any s < ¢ we have

EW; W;) = tsE(W(1/t)W(1/s))

S

= tsE(W(1/t)[W(1/s) — W(1/t)] + W(1/t)?) = stE(W (1/t)?) = S?t =s.

This implies that W, — W,

. centered Gaussian random variables, with variance

E ([W; - W‘]Q) = PE(W(1/t)?) + 2E(W(1/s)?) —2s =t +s— 25 =1t — 5.

S

This ends the proof of the exercise.

Solution to exercise 246:

We have

PT<a)=PT<t|Wy<a)PW,<a)+PT <t|W;>a) P(W; >a)

=1

and

1
PW, <a|T<t)=3= P(T'<t|W,<a)PW, <a) P(W, <a|T<t)P(T < a)

= IP(T <a).

This ends the proof of the exercise.

Solution to exercise 247:
For any 7(x, y), and for any function F(x,y) = f(x) that depends on the first coordinate,
we clearly have have

Oz, F2,y) =0 = Li(F)(2,y) = Le(F(.,y))(x) = L (f)(2).

By symmetry arguments we also have £;(F)(z,y) = L:(g)(y) for any function F(x,y) = g(y)
that depends on the second coordinate.
Assume that

(2, y) = 27" [or(2) o1 (y) + oe(y)oi(@)] -
Using the Doeblin-Ito formula we check that the generator of the diffusion

{ d.)(t = bt(Xt) dt+0t(Xt) th
dYVs = by (V) dt + o(Vr) AWy

is given by

Lo(F)(@,y) = Lo(F (-, 9) (@) + L(F(z, ) @)+ Y ez, 9)" sy, Fl,y).

1<i,j<r

The fact that X; and ); have the same law as X, is immediate from the above representation.
This ends the proof of the exercise.
]

Solution to exercise 248:
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Observe that
[I-2U0X -Y)U X =) ]| =[I-2U X V) U (X — yt)’]'

and 2
[1-20 X% = Y)U X -2)] =1

This shows that [I —2 U (X, — V) U (X, — yt)’} is an orthogonal transformation so that
AV, =[I-2U (X = V) U (X = V)] dW;

is the increment of a (standard) r-dimensional Brownian motion. Recall that dW;(dW;) =
I dt We can also observe that

dv,(dv) = [I-2U X = Y)U (X = Y)] dWe(dWy)' [I-2U (X — V) U (X — V)]
[I-2UX -Y)U X =Y) ] [I-2U X —Y)U (X — V)] = Id.

This clearly implies that A; and ); have the same law as X;.
Arguing as above, we have

dX, dY] = ou(X) [T —2U (X = V) U (X — V)] o(Vy) dt.

=04 (X, V)

This implies that

Li(F)(@,y) = Li(F (-, y)) (@) + Li(F(x, ) (y) + Z (2, 9)" Ou,, F (2, y)

with 7(z,y) = (7 (2, y) + 74y, ) /2.
This ends the proof of the exercise.

Solution to exercise 249:

Consider a 1-dimensional Brownian motion W; (starting at the origin) and set Wy :=
Supg<s<; Wi. Let T, the first time it reaches the value z so that {7, <t} = {W; > z}.

For any € > 0 and any y > = + €, we have

PWr>y, Weem,o+e) = P(W,€z,a+¢,

T, <t)
= P(Wielz,x+¢€, Ty

t
).

IAIA

On the other hand, we have the key observation

Law [(Wy — Wy,) | T, < t] = Law [~ (W, — Wg,) | T, < t].

Y

this implies that

PWyez,z+e, T, <t) =

2y—z>y+e>y and (2y—x)—¢€>y)
(y>z+e).
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Hence
PWr >y, Wyelz,z+¢) =P(W, € 2y —z—¢,2y — x])

from which we readily prove that

P(W; € 2y —x —€,2y — x])

PWezy I Wielnotd) = =5 cmate)

Letting € | 0 we conclude that for any y > =

1 2
. exp |—o (2y — )
PW; >y | Wy=2) = [ 2t 1 ]

exp [_E x2]

= x| 5517 — 2y — ]| = exp 20y — 2)/1],

The end of the proof is now completed.

Solution to exercise 250:
Using exercise 223 we have

PX;>y|Xe=2)=PloW}>y|oW,=ux).
On the other hand, using exercise 249 we have
(W > yfo | Wi=afo) = exp[-2(y - 2)/(o)]
for any y > z. Otherwise
y<z=PX;>y| Xi=2)=1.

Finally for any 0 < y we have

Y 1
* _ _ _ _ 2 _ _ 2
P(X;>y| Xo=0) = [m exp [—2y(y — x)/(o°t)] s p{ 5537 (T =) ] dx
+oo 1 )

=P(X;>y | X0=0)
To take the final step, observe that

4y? + 2% — 22 (bt + 2y) + (bt)?
(z — [bt + 2y])° + 4> + (bt)* — [bt + 2y)°
(z — [bt + 2y])° — 4ybt.

dy(y — z) + (z — bt)®

This yields
exp [—ﬁ [4y(y —z)+ (x — bt)2H

= exp [fﬁ (x — [bt — Qy])Q} X exp [be/az},
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from which we conclude that
P(Xy >y | Xo=0)

=exp [2yb/0?] P(X; +2y <y | Xo=0)+P(X; >y | Xo =0)

= exp [2yb/0?] P(X; +y <0 | Xo=0)+P(X; >y | Xo=0).
Finally, given Xy = 0 we have

Xi+y<0 < y+bt+oVt W/VE<0
= =W /VE=> (y+bt) /(o).
——

law

o',
This implies that
P(X,+y <0 Xo=0) =P (W1 > (y+bt) /(o).
In much the same way, we have
P(X; 2y | Xo=0) = B(We/Vixly—bi/(oVD)
— P (W1 > [y — bi] /(o—\/%)) .

The end of the proof of the exercise is now easily completed.

Solution to exercise 251:
We set X := —X; and b’ = —b. In this notation given Xy, = 0 = X, we have

law

X; = *Xt =—-bt—o Wt = b,t+0 Wt.
On the other hand, recalling that
inf X;=— sup (—X4)

0<s<t 0<s<t
for any y < 0 = Xy we have

inf X;<y<= sup X;>y =-y (>X,=0).
0<s<t 0<s<t

This implies that

i < = = S />/ /: .
}P’(Og;i;tXt_y|X0 O) ]P’(bupXt_yXO O)

0<s<t

Using exercise 250 and symmetry arguments we prove that

P <Oi<2f<tXt <yl Xo= 0) = P (()ilithé >y | Xo= 0)
= oxp [20'0/0®] P (W1 = [y + V1) /(o))
+P (W1 > [y — ] /(oVD))
= oxp [2yb0%] P (W3 < [y +bi] /(v

+P (W1 < [y —bt] /(ovA) ).
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This ends the proof of the exercise. ]

Solution to exercise 252:
Notice that g : x +— %arctanx maps R into [—1, 1] and its derivative is given by

2 1

/ —

g (.CL') - T 1_|_ xQ'
By applying the Doeblin-Ito formula to the function

f(z) = 2 arctan (a(z + b))

s

= @) =2 maewye ad f'(@) = -7 araemmee 20 +b)
we find
2a 1 a 1
== T 2a(a(W, +1b)) dt.
P T @+ 0 T T U+ @ 0)2) a(a(Wy + b))

Recalling that

i TN _ sin (5U;)
Uri= - avctan (a(We +1)) & tan (FUr) = alWi +9) = Zodrs
we conclude that
_ 2a o (T B 2a* 4 (T sin (5U7)
dU, = T cos? (GUL) dWs— = cos® (504 cos (30) ©

= 277@ cos? (gUt> dW; — ? cos® (gUt) sin (gUt) dt.

The end of the proof is now easily completed.

Solution to exercise 253:
Notice that the increments

t t
W, - W, ::/ U, dw? +/ V1=U2 dw®

and independent of W, and -
EW,—-W,| Fs)=0

with the filtration F; generated by the stochastic processes Wt(i), with 1 <3 < 3. In
addition, we have that

E((Wt_WS)Q) = E

i t t 2
</ U, dWT(2)+/ V1-U2 dW,E?’)) 1

t 2
= E (/ U, dWT(Q))

+E

(/ mdw;3>)2]

= E /j der+/: (1—U3)dr] = (t—s).
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Finally, we have

t t t
E (Wt Wt(2)> —E ([ / U, dW,@] / dWs(2)> —E ( / U, ds>
0 0 0

E(Wt Wt“)):E(UOt deF’)} /OtdWS(?’)) :E(/Ot Md&).

This ends the proof of the exercise is now easily completed.

and

Solution to exercise 254:
Notice that

Xe=fWh . W) with flw',.. 0™ = Y (w2

For any A > 0, _
E (e_)‘X" | fs) = H E(e_’\(W?L)z | W;)

1<i<n

On the other hand, we have

E(e—A(Wf)Q) — E(G—A(W;'HWZ—WJ'])Z) _ / e—/\(WJ+w)2—2(f7§s) dx.
2m(t — s)

We also observe that

. 2
A(W?E+ CE)Q + PI=n)
= ANWi)? + 22 (A + ﬁ) + 2 W

; 142X (t—s 2A\(t—s)W?
=X (W22 + ﬁ (962 + 2z m)

i 2(t—s))AZ 142X (t—s 2A(t—s)Wi ) 2
= (W,)? [)‘ - (giZ/\ft)ls))} + 2(t£s) ) (93"' 1+2>\(tfs)) '

This implies that

2
T A Wi)Q L

1+ 2X\(t — s) At — )Wi \?
2(t—s):1+2>\(t—s)( s ( ) ‘

AWs + ) + 20t —») 1+ 20t —5)

We conclude that

B ) = (14200 - )7 e (-~ gy (V9?)

and therefore

E (e—)\Xt | ]:S) — (1 + 2)\(t — S))_TL/2 exp <_1+2/\)\)((;5)>
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This yields

Vs<t P(X;=0|F)= lim E(e ™ | F) =0.
A—00
By applying Doeblin-Ito formula we have

dX, =2 Y W/dW;+n dt.

1<i<n

This implies that

=dt

_ Wi N (W¢)?
dW, := § Ix,20 ——= AW} = dWdW; = § Ix,20 ~—
1<i<n VX 1<i<n Xt

and we now end up with

X, = 2 Y Wi dW/+ndt

1<i<n

W} . _
2VX, Y 1Xt¢0\/7)% AWi +n dt =2 \/X; dW, + n dt.
1<i<n t

This ends the proof of the exercise.

Solution to exercise 255:
The first assertion is a direct consequence of theorem 14.3.1.
By applying the Doeblin-Ito lemma to the function f(t,z) = e x we find that

d (eat Xt) % (eat x)‘x:Xt dt + dX;

(et I)‘w:Xt
10?2, .
280 7 )1
ae™ Xy dt+ e (a (b—X;) dt + o dWy)
e (ab dt + odWy).

dx
dX,dX,

Integrating from 0 to ¢ we find that

eat Xt

t t
Xo+b / ae®® ds —|—/ e odW,
0 0
t
= X0+b (eat71)+\/ e’ UdWs
0
Hence we conclude that
t
Xi=e Xo+b (1 — e_“t) +o / e~ t=9) qw,.
0

From this formula, we easily prove that

E(X; | Xo)=e * Xo+b (1—e ).



Chapter 14 1029

In addition, by using the fact that
t
X, —EX; | Xo)=0 / e 2= g,
0

we prove that
E ([X: — E(X, | Xo)f* | Xo)

= g2 fot e—2a(t—s) ds

2 t 2
_ o —2at 2a s __c _ ,—2at
=5 Jo 2ae ds = - (1 e~ 2at)

On the other hand, given X the random variable X; is Gaussian. This ends the proof of

the exercise.
]

Solution to exercise 256: Using exercise 235, we check that Y; := o fg e~ ot=3) quy,
has the same law as the time-changed Brownian motion Wy, with

o? k
Y)=— (¥ =1)=0" / e ds.
2a 0

Recalling that E(W?) = 1 and using the fact that d(t) < g—;, the moments estimates (14.22)
are direct consequences of (5.10) Using (14.22) we have

(2)7 (2™ e m (o) w0 1o

E (Xt2n) 1/(2n)

IN

2a nl2n

_ (”2>1/2 <(2n)!)1/(2n)+E((X0)2")1/(2”)+b.

2a nlan

This ends the proof of the exercise.

Solution to exercise 257:
We have

dX, = AX, dt + B dW, = dX,dX| = B dW,dW,B' = BB’ dt

where (.)" stands for the transpose of some vector or some matrix. We have
t
X; = e X, +/ =4 B qw,.
0
Notice that

t t ! t
E ([/ et=94 dWS] [/ =94 dWS] > = :/ =94 BB’ =94 s
0 0 0

¢
/ e’ BB’ e ds.
0
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This shows that X; is a gaussian random variable with mean
E(X,) = e E(Xo).

Using the decomposition
t
X, —E(X,) = e (Xo — E(Xp)) +/ =94 B qw,
0
we prove that

t
P, =E ([X; — E(X,)] [X; — E(X})]) = et Py e +/ ¢4 BB e ds.
0
This shows that
I‘Dt _ AeAt P, eA’t+eAt )= eAltA'—i—etA BB etA/

’

¢

AP, + P A —/ 0 (eSA BB’ eSA/> ds + e BB ¢t
0

= AP, +PA + BB

The last assertion is immediate. Observe that
t
APy + P A + BB = lim | &, (eSA BB’ esA/) ds + BB’
0

t—o0

= lim (etA BB’ etA’) =0.

t—o0

This ends the proof of the exercise.

Solution to exercise 258:
Using exercise 255 the first assertion is immediate. The infinitesimal generator of the
process is given by

L(f)(x) = —z f'(x) + f"(2).
The formula 7 (f1 P:(f2)) = 7 (P:(f1) f2) is a direct consequence of the fact that

tha_—w\/aXo-f-vl—Gt Wy.

Indeed, using the above formula we check that the transition P, (z,dy) = P(X, € dy | Xo =
x) is reversible with respect to the Gaussian distribution 7, in the sense that

7(dx) Pi(z,dy) = m(dy) P(y,dx).

We end the proof by a simple integration of the function fi(x)fa(y).
On the other hand, we have

d t;O

P (H)(z) = P(L(f))(z)

This implies that

G ) =7 (5 ras) = (P00 7).
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Choosing t = 0 we conclude that

7 (f1 L(f2)) = 7 (L(f1) f2)

with
L(f)(x) = —af'(x) + [ (2).

In addition using the Gaussian integration by parts formula stated in exercise (54) we find
that

m(fi L(f2)) = —EWi(fifs) (W) +E((f1f2)(W))
—E (A3 (W) + E((fuf) W) = —E ((FL13) (W)

In terms of Dirichlet forms we have proved that

E(fi, f2) =E(f2, fr) =7 (fif2)-

Notice that

(%Pt(fl)(x) g (f1 (e_t z4+/1—e2 W1>)

or

= E(fi (e VImem W) = B (S ()

This implies that
E(PAD. PAD) =7 (PUSYPUIY) = [ (o) (PL(F) @),
Recalling that m = 7P, we conclude that
EPN P < e m [(f)] = E(11).
To end the proof, we recall the formula

%Varﬂ(Pt(f)) = —2E (P(f), P:(f))

which we proved in exercise 187 in the context of finite state spaces. The same proof is
valid for general state spaces.

VarW(Pt(f)) —t—00 0= Var,r(f) = 2 /000 £ (Pt(f),Pt(f)) dt

IN

2€ (/. 1) / e 2dt = £ (/. f).

This ends the proof of the exercise.

Solution to exercise 259:

e For any function f with compact support on S we clearly have that

Varr(f) = nl(f = 7(f))*) = inf 7[(f - )*] < 7[(f = £(0))"].

€R
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e For any function f with compact support on S s.t. f(0) = 0, by a simple integration by
parts we check that

) = @ e da

—/OOO( Ox aafj(y) dy) 8%(6_””) da

-/ T 2f (@) f () e de =2 (1) < 20 ()Y 7 ((F)).

0

The last assertion is a consequence of the Cauchy-Schwartz inequality.

e We readily deduce the Poincaré inequality from the fact that
2
(r(f)” <4 n(f?) 7((f)?) & Vare(f) <4 [l -

This ends the proof of the exercise.

Solution to exercise 260:
The generator of X; is defined by

L(f)(w) = 5 sign(x) 0uf(2) + 3 2f(x).

Observe that

/e—*lfl L(f)(x) da

:/O A (—; 8wf(:z:)+% agf(x)) dz+/ e <; axf(x)+% agf(:c)> da.

— 00

A integration by parts yields

[ (Gorw ;i) w

— _% ([e_mf(a:)]i:zo—&—/ow e f(x) dx)

x

+% ([6)‘:”5mf(z)}i_;o + A [e*Azf(x)]ngo + A2 /000 e)“”f(a:))

=5 (10 [T xe @ ae) - 5 (200 42702 [T @)

0

This implies that

/O e (_; 0o f () +% 8if(x)> dr = —%@ﬂf(o)'
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By symmetry arguments, we also have

[ e (-5 0uste)+ 3 210)) o

— 00

=3 (@l [ 3 s a)

_ . 0
+% ([e“awf(ar)}z:ooo +A [efmf(a:)]zz(ioo + A2 / e”f(a:))

— 00

- _% (f(O) +/ODO A e M f(x) dm) +% (8wf(0) +AF(0) + A2 /OOO e_’\”f(x)da:).

[ e (=5 0.1) + 5 0250 do = J0.10)

o0

We conclude that 7L(f) = 0.
This ends the proof of the exercise.

Solution to exercise 261:
We have

dX; = d(U}+VP)
= 2U; dUt + 2V, dV; + 2 dt

(772 2 2 2
2(1= (U2 + V) dt+24/UE+V; (\/W \/7‘/2 )

= 2(1—Xt) dt+2\/ Xt th

with dW, = \/W AWy + \/ﬁ dW/. By Levy’s characterization, it is readily checked

that W, has the same distribution as a standard Brownian motion. We can also check this
property by recalling that the Gaussian distributions are rotation-invariant. This ends the
proof of the exercise.

]

Solution to exercise 262:

e The generator of X, is given by

L(f) =2(1 - 2)f'(x) + 2z f"().

For any functions fi, fo with compact support on S by a simple integration by parts we
check that

r(fL(f2) = /°° (@) Q- 2)fo(x) + 20 fl(x) e da

_ / fa@) [ (@) Q= 2)e) + (@ filx) e)"] do
= 7(L(f1)f2)-
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The last assertion is a consequence of

—(fi@) A =2)e ) + (2 fi(z) )"
= e~?(1—2) fi(x) +e " fi(z) = (1 —@)e ™ f{(x)
+(fi(z) e+ fl(@)e ™ —x fi(x) e7)
= e (1 =) fi(2) + e~ fi(w)—(1 — x)e " f{(x)
+fi(@)e™ = fi(x)e™
+fi(@)e™ +af(x)e~ "~z fi(x)e™
—fi(z) e "= f{(z) e+ fi(x) e

=3 L(f)(@) e™.

e Arguing as above, we have

T(hL(f) = 2 /OOO (@) (- ) fi(@)e™) do -2 /Ooofg(x) (efi(@)e ) do

2A z f3(@) fi(2) e da.

Here we used the fact that
(efi@)e™) = ((1=2)fi(2)e™) +a fi(x) e .

This ends the proof of the exercise.

Solution to exercise 263:
Using the Doeblin-Ito formula to the function f(z) = 1/z (= f'(z) = —1/2% and
f"(x) = 2/x3) we prove that

AXT) = F(X) X+ f(X)AX.AX,

be Xy dt + oy Xy dW) + —= 02 X7 dt

1y 1
X7 XP
= (o7 —b) X;'dt — oy X7 dW,.

This clearly yields

3N

2
f;([ag—bs]—%)ds—fg oy dW, -3 (bs—%s>ds—f0f oy dW,
e =e .

Xt =
By the integration by parts formula (14.20) we have
dz, = dY:X; ")
= Y, d(X; ")+ X; " dY; +dY,d(X; )
= (o} =b) Zydt — oy Zy AW, + (X' + by Zy) dt
+ (nX; ' 4o Zy) AWy — (X' +0r Zy) oy dt
(ay — o47t) Xt_1 dt + TtXt_l dW.
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Recalling that Zy = Yy/Xo = Yy we obtain

t
Z, =Y, +/ (a5 — ovme) X,V ds + 7, X dW,] .
0

Therefore
t
Y, = Xy {YO —|—/ (X;1 (as — opmy) ds+ X' 7, dVVS)}
0
t t
= XY, —|—/ Xth_l (as — 0sTs) ds—l—/ Xth_l T7s AW
0 0
with
t o2 t
XtX;1 = exp (/ <br — 2T> dr Jr/ UTdWT>.
This ends the proof of the exercise. [

Solution to exercise 264:
We have s s
— — — — — 2
]E((WS : Wt) Wt) E(W. W) - > E(W).

Recalling that Wy = 0, and the increments are centered and independent we prove

E(WWy) = E(W,[(Wy — We) + W,]) = E(W, — Wo) (W, — W) +E(W2) = s.

=0

This implies that
S S S
E((Ws—g Wt) Wt> = 5= Z1=0=E(W, - T W) x E(W)).

This shows that the Gaussian random variables ((WS — f Wt) , Wt) are uncorrelated, thus
independent.
Since (W, — £ W,) and W, are independent, we have

s s s
0=EW, - n W) =E(W, — n Wi | W) = E(W,|We) — n We.

We conclude that s
]E(WS|Wt) == E Wt.
In much the same way, the variance is given by
Var(W, | Wy) = E((W,—EW, | W) |)
S

= E ((VVS —3 Wi)? | Wt> =E ((WS - ; Wt)2> (by independence)

S

- E(W2)+ (5)2 E(W2) — 2 ; E(W,W,)

- ) ()= ()

We conclude that Wy — 3 W, is a Gaussian random variable with

Law (W, | W,) :NG Wi, s (1 - ;))
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This implies that
Law (Ws _ ; W, | Wt) — Law (Ws - ; W, ) :N(O,s(l— %))
and
Law (W, | W, = 0) :N(O,s(l— ;)) :Law(Ws—§ W, )

The last assertion follows from the fact that s <t = W, — § Wy = W, — sW;. This ends
the proof of the exercise.
[

Solution to exercise 265:
For any fixed time horizon ¢, and 0 < s <t by applying the Doeblin-Ito formula to the

X;—b
function f(s, X;) = ; we have
-5

Xs—b Xs—b dXs
d - 270y
(t—s> (t —s)2 S+t—s
Xs—b 1 b— X, dWy
R Ch A AL S ds+dW, | = 25
(t —s)2 S+t—s(t—s ot S> t—s

This implies that

We conclude that

t—s St—s
X, = b X,—b dw,
+t71"( )+/T t—u
t— t— S (t—
:b(l— 5)+( S)X+/( ) aw,
t—r t— s t—u
_ ifrb tfde

This ends the proof of the first assertion. We deduce that X; = b, as well as

s—r t—s

E(X, | X,)= 37— b+ —

X

and

Var (X, | X;) = E(U;I:Z dWH]2>
) e [ e
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We conclude that the conditional distribution of X, given X, is given by the Gaussian
distribution

LaW(XS|XT):N.<(t—s)XT—i—(s—r)b7 (s — 1) t—s)l

t—r t—r

This ends the proof of the exercise.

Solution to exercise 266:
Applying the Doeblin-Ito formula to the functions b(X;) and o(X;) we have

db(X)) = L)Xt + V(X))o (X,)dW,
dO'(Xt) = L(J)(Xt)dt+O'I(Xt)O'(Xt)th

with the infinitesimal generator L given for any smooth function f by
!/ 1 2 pl
L(f)=0bf +§0 7.

This shows that for any s < ¢t we have

b(Xt)+/5 L(b)(Xr)dr—k/S V(X))o (X, )dW,

o(Xy) +/ts L(O’)(Xr)d’f'+/ts o (X,)o(X,.)dW,

S
=
s
&
I

2
s
I

from which we prove that

Xoon— X, = /t s+ / " xaw,
_ /t o {b(Xt) /t 2)dr + / V(X dW] ds
+ /t " [a(xt) /t T L) (X,)dr + /t o (X))o (X,«)dWr} AW,

This yields the second order approximation

Xt+h - Xt = b(Xt) h + O'( ) (Wt+h - Wt

t+h s
+/ {/ dr—l—/ b (X dW] ds
t t
t+h
-‘r/ |:/ dr+/ O’ dWT:| dWs.
t t t

/ " <[ / S f(X»a(Xr)dWrr)
[ E( [ rxrar) <o n

Using the fact that

E( i o [ | f(X»a(X,«)dwr} dSD

IA
ST

SRS
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for any smooth function f with bounded derivatives, we check that

t+h s
Xign — X =0(Xe) h+0(Xy) Wi, — Wh) +/ [/ O'(Xr)dWr:| dWs + Ry e4n
t t
with @ := ¢0’c and some second order remainder random function R; ;4 such that

2\ 1/2 / 3/2
E(IReernl?) " < (ILO] + L) + [¥oll) B2
To take the final step, we apply the Doeblin-Ito formula to the functions &

This yields for any t < r

a(X,) :a(Xt)+/trL(a)(Xu)dqu/tra’(Xu)a(Xu)qu

:/ts (X, )dW, = 7(Xy) (Ws—Wt)—i—/tS U:L@)(Xu)dwr[o’(Xu)a(Xu)qu dw,
]E( /:M [/t (/tra’(Xu)o(Xu)qu> dWT] dWsr
:/tHhE([/: (/tra’(Xu)a(Xu)qu) dW,T) ds

:/tt+h /t ]E((/tra’(Xu)a(Xu)qu)2> dr] ds
:/fh u (/tT]E((U’(Xu)U(Xu)f) du} dr] ds < |7 %‘?

In much the same way, we find that

E ( /tt+h {/ts </; L(O’)(Xu)du> dWr] dWs] 2)
:/tm /t E((/:L(J)(Xu)du>2> dr] ds < ||L(3)|? %

We conclude that

t+h o
Xitn — Xe =b(Xy) h+ 0(Xy) Wi, — W) +(Xy) / (Ws —Wy) dWs + Ry pin
t

with some second order remainder random function E,;Hh such that

1/

2 -
E (IRt,t+h|2) < (ILO) + L) + [V oll + 7ol + | L@)]) h*>2.
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Finally, for any fixed ¢t and ¢t < s < ¢+ h we have

AW, — Wy)2 = 2(W, — Wy)dW, + dW,dW, = 2(W, — Wy)dW, + ds

t+h
= / (Ws = Wy) dWy = o [(Wign — W;)? — h].

DN | =

This ends the proof of the exercise.
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Solution to exercise 267:

Recalling that the jumps times of a Poisson process are uniform on a given interval, we
sample first a Poisson random variable N; with parameter (). Given N; = n we sample
n uniform random variables T7,..., T, in the interval [0,¢], and n independent random
variables Y7, ...,Y, with common distribution x. The process V; is now easily simulated.
To sample the Brownian motion we simply sample a sequence of independent and centered
Gaussian random variables (W, ,, — W;, ) with variance (tx41 —tx). The process X; is now
easily simulated on the time mesh.

Since (N¢, Wy, Y') are independent, we have

¢t(u) — E(eiuXt) — eiuat E(eiubvt) E(eiucwt)

2
eiuat— %

E(E(e™Ye | Ny)).
On the other hand, we also have that

E(E(Y | Ny)) = BB = M M B,
This implies that

(we)*
2

¢i(u) = exp (t{iua + A (py (u) — 1)}).

This ends the proof of the exercise.

Solution to exercise 268:
We have

Zi = Zo eXt — Zo et HOViteW, Zo et +eW; H Y
1<n< N,
We let T,, be the random jump times of the Poisson process. In this notation, we have

Zr, — Zr,— = Zz,— (" — 1) = Zr,_ dUr,

with

U, = Z (ebY" — 1) .

1<n< N,

Between the jump times ¢ € [T}, Ty, +1[, applying the Doeblin-Ito formula to the function
f(t,x) = e+ we find that

. 02
Zt = ZO eaH_CW‘ H ebYk = dZt = ZO H ebYk ((a + 2) dt+ ¢ th) f(t, Wt)

1<k<n 1<k<n

1041
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This implies that
02
YVt € [TnaTn—O—l[ dZt :Zt <<CL+2> dt+ Cth) .

We conclude that )

dZ, = 7, <a+62> dt + ¢ Z, dW, + Z, dU,.

This ends the proof of the exercise.

]
Solution to exercise 269:
The infinitesimal generator of the Levy process X; is given by
2
LE(f)x)=a [+ 5 [M@) A / (f(z+by) — f(2)) p(dy).
The infinitesimal generator of the exponential Levy process Z; is given by
Z ¢ ! (Cx)2 " by
Ly (@) = {a+ 5 ) = fi2) + == ff@)+ A [ (fla(e” —1)) = f(2)) u(dy).
This ends the proof of the exercise.
]

Solution to exercise 270:
We set
dXtC = CLt(Xt)dt + bt(Xt)th

In this notation, the Doeblin-Ito formula (15.11) takes the form

of of . 10%f ¢ e
df (t, Xi) = a(ta Xy)dt + %(t7Xt)dXt + 5 @(t, Xp)dX;dX; + Af(t, Xy)
with the jump increment
At Xe) = X+ (Kevrar — X)) — f(L, X0)

= f(t, X: + AXy) — f(t, Xy)
[f(t, Xt + ce(Xy)) — f(t, X1)] dDNy.

We notice that
E(Af(t, Xe) | Fe) = M(Xe) [f(t, Xi + c(Xe)) — f(Xe)] dt.
This implies that

+ [f(t Xe + e (Xe)) — f(8 Xe)] ANy

with
1 o Of

LED00) = aula) SL(02)+ 5 0o 55000,
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In terms of the martingales

() = G X,
AMP(f) = [f(t, X+ c( X)) — f(t, Xo)] [N — M (Xy)dt]

the above formula takes the following form:

df(t, X;) = <§t + Lt) J(t, Xy) dt + dM(f)

with the martingale dM;(f) = dMF(f) + dMZ(f), and the infinitesimal generator
Li(f) = LE(f) + LE(f)  with  LE(f)(t,2) = M(z) (f(t, 2+ c(2)) — f(t,@)).

This ends the proof of the exercise.

Solution to exercise 271:
For each 1 <7 < r we have

dX] = bj(X,) dt+ Y ol (X)) dWi + Y ¢ j(x) N}
1<j<d 1<j<d

with a collection of Poisson processes N{ with intensity ,\f) (X:). At rate ,\f) (X:) we have
dN] =1 and the jump of the process is defined by

T 1+ Ctl,i(fr)
xr = ~ L= :x—l—cm(as)

7, 2y + ¢ ()

4 T ,
with the column vector ¢, ;(z) = (cg i(az)>1< e If we set Mt(l)(x, dy) = Gytc, ,(x)(dy) then
<j<r

the generator is given by
Ly =L+ LY
with the generator L§ of the pure diffusion process

dXt = at(Xt) dt + bt(Xt) th

and the jump generator L¢ defined in (15.17). This ends the proof of the exercise.

Solution to exercise 272:
For any sufficiently regular functions g(¢,x) we have

dg(s,Xs) = [0s + Ls] g(s, Xs)ds + dMs(g)

for some martingale M(f) with angle bracket

ot = [ T (Pas(9): Pan(9))(X,) du.
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We fix a given time horizon ¢ > 0. By applying this formula to the function g(s,z) =
P, +(f)(z) for s € [0,¢] and using the backward evolution equations (15.16) we have

859(3733) + Lsgs(x) =0= Ps7t(f>(Xs) = Ms(g)'
This shows that
F(Xe) = Poi(f)(Xo) = Mi(g) — Mo(g)
= E[(/(X0) = Pou()(X0))*| =E(M(9))0) = fy 1s (T (Pos(9); Pot(9))) ds.
On the other hand, we have
E[(/(X0) — E(/(X0)))?] = E[(F(X0) = Poa(/)(X0))’] +E [(Pos()(Xo) — B(F(X)))’]

=n:[(F—m(£))?] =n0[(Po,e(£) =10 [Po,:(£)])?]

and this ends the proof of the exercise.

Solution to exercise 273:

The first assertion is immediate since N™' X, = N=t Y, . d¢s is the empirical
measure associated with N independent copies of X;.

For functions of the form f(&) = F(X;(¢)), the Doeblin-Ito formula (15.22) takes the

form

df (&) = Lo(f) (&) dt + dM(f)

with a martingale with angle bracket defined by the formulae

(M), M(f))e = / To(f(5 ), F(5, ))(E) ds.

0

If we choose the empirical type functions

fi(&) = X(p) and  fo(&) = (Xi(9))? = f1(&)?
then we have

filer, o iy o) =flz) + .o+ flo) + ...+ flewn) and L (1) =0
= L fi(@1, @i, xy) = L) (20)

= Lo(f)@) = > L f(wr,. . m o an) = Y L) (@) = Nm(z)(f).

1<i<N 1<i<N

In much the same way, we check that

(@1, i1, Y, Tigs - 2on) — F1(2)]° = [0(ys) — ()]

= L(fi— A@)2@) = Y Lile — o@)] (2:)

1<i<N

=Tz, (f1, /1)(2) = Li[(f1 = f1(@)*)(x) = Nm(2) (Ti,(,9)) -
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This shows that
dXi(p) = Xi(Le(p)) dt + dM(f1)

with a martingale M,(f1) with angle bracket

t
M) M= [ XLl ds.
This yields the evolution equations

pe(f) :=E (X () = OGE (Xi(@)) = (@) = pe(Le(p)) = E (X (Le(p))) dt.

We conclude that
to() =N no(e) = w(p) = N ni(p).

We fix the time horizon ¢. Applying the Doeblin-Ito formula to the function f(s,z) =
Yi<icn Pot(9)(z:) wrt. s € [0,] we have

dX(Poi(9)) = Xo(0sPoi(9) + La(Psi())) ds + dMP(p) = dM[(p)

=0

with a martingale Ml (¢) with angle bracket

vselod (M) = [0 X (O (Pralo) Pratil) dr
We conclude that
X,(Pry(9)) = Xa(Pas(9) = Xi(p) — Xa(Pas()) = M (ip) — MU (i)
= E(X(p) | Xs) = Xs(Pse (),
as well as

B (100) - 2EraoF) = E( [ &L (Pralo). Pratie) o)

= N Nr (Lr, (Pri(e), Pri(p)) dr.

On the other hand, applying the Doeblin-Ito formula to the function f(s,x) = P, (¢)(x)
we find that

dPs 1(p)(Xs) = (05 Ps () + Ls(Ps,t(0))(Xs) ) ds+dMs(P. ()

=0

with a martingale M (P, +(y)) with angle bracket

Vse[0,t]  (M(P.i(0), M(P. +(9))), = /OS (T, (Pri(#), Pri(p)) (X7) dr.

This implies that

B (1)~ (P (@)) = N [ E(TL (Pralo) Prae) (X)) dr
N E ([Pra(9) (Xe) = Poal9)(Xo))?)

N B ([p(X0) = Poslp)(Xo)]*)
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On the other hand, we have
E ([X%(Poa(@) = Nm(@)l) = E([%(Poi(e) = m()])
= N o ([Poale) = m(o)]*)
from which we conclude that
E([%(0) - N m(@)) = E
= E

(1% () = Xo(Pos(@))] + [Xo(Pou(9)) = N m(@)]I?)
(I%(0) = Xo(Poa(@))) +E ([Xo(Poal9)) = N ()]
= N (E([p(X0) = Poa(@)(Xo)*) + 1m0 ([Pouls) = m(2))))
= N (le—m)).

Using the integration by parts formula (15.24) (or equivalently, the definition of the
carré du champ operator I'y, associated with some generator L;) we have

Li(f2) = Lo(fF) = 2f1 Le(f1) + Tz, (f1, fr)-
This shows that

d(X,(9))" = [2 Xi(¢) Xi(Le(9) + X (Tr (0,9))] dt + dMy(f>)
with a martingale M;(f2). We fix the time horizon ¢. An application of the Doeblin-Itd
2
formula to the function f(s,z) = (Zlgz‘SN Ps,t(QO)(ﬂCi)) w.r.t. s € [0,t] leads us to

d (XsPs,t(SD))Z = [2 Xs(Pst(9)) Xs(0sPs () +2 Xs(Ps 1 () Xs(Ls(Pst(0)))
+X, (Tr, (. 9))] ds + dMU(f)
= X, (T, (Poi(p), Pss(9)) ds+dMI(f)

with some martingale M\ (f), s € [0,]. We conclude that
E (%)) —E((%Pou(@)’) = E((XiPu(@)?) —E ((%Pu(e)?)
= [ BT P ds
=N/nsrL Po(9). Pas()) ds
N E ([p(X:) = Pouly ><Xo>1).

On the other hand, we have

E ((%Pou(0))’)

N o ([Poa(@)]?) + NN = 1) ( ())°
N o ([Po.i(0) = m(9)*]) + N* (ms ())?

and

m (le—m@) = E(lp(X) - m(e)?)
= E ([lp(X,) = Poo(9)(Xo)] + [Po(9)(Xo) = m()])?)

(
= E(lp(X0) = Poa@)(Xo)*) + 10 ([Pocle) = m(#)*)
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from which we prove that

E ((4(#)*) = N (0 (9)) + N me ([p = m(@)]*)

This ends the proof of the exercise.

Solution to exercise 274:
We follow the arguments provided in exercise 270. We have X; := (X}, X?) € S =
]RT:TIJFTQ = (Sl X SQ) = (er X Rr2).

dX! = al(X}) dt +bH(X}) dW} + cH(X}) dN}
dX? = a?(Xy) dt +b?(Xy) dW?2 + c2(Xy) dN?.

The jumps
(xt, 2?) = (2 + cf ('), 2?) and (2, 2%) — (2}, 2? + (2t 2?))

occur at rate A} (z!), respectively at rate A (2!, 2%). Between these jumps the system evolves
according to the diffusion process

dX} = al(X}) dt+bL(X}) dW}

We conclude that the generator of X; is defined by
Ly =L+ LY
with

LiH@) = D> o @) o fl@)+ Y a() o f(x)

1<ii<rm 1<in<rs
1 T
503 (D) @) oy @)
1<i1,j1<m
1 T
50> (Be)) @ o .2 f@)
1<iz,j2<r

and the jump generator

L)) = MY (f (&' +ci(2h),2%) - f (2", 27))
+AZ (z) (f (wl,xQ —l—c?(x)) —f (xl,xQ)) .

The generator L} = L} 4+ Ly of the process X} € R™ reduces to the sum of the
generator of the diffusion

dX} = a; (X}) dt + by (X}) dW}
and the jump generator
Ly (f)(@1) = M (") (f (2" +ci(@h) = f (21)).

This ends the proof of the exercise.
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Solution to exercise 275:

We further assume that N} = (N}/);<;<,,, respectively N2 = (N?7)1<;<,,, is a column
vector of independent Poisson entries with intensities AP (X)), respectively AP (X,).

At rate A\J''(X}) we have dN;*" = 1 and the jump of the process X} is defined by

1 1, Ll

xg ri+ ¢ (2h)

vi=| | s : =o'+ (e,

1 1 Lrig

xrl Ly, T Ct,i (x )

» T
with the column vector ¢ ,;(z!) = (ct 7 (331)) . In much the same way, at a rate
’ ’ 1<j<r

A2'(X,) we have dN* = 1 and the jump of the process X2 is defined by

2 2,1
3 T+ (2)
=l | = : =+ i),

2 2,

Ly x72“2 + Ct,ir2 (l’)

. 2.7 T .
with the column vector ¢Z,(z) = (ct J (x)) . We conclude that the generator of X; is

’ ’ 1<j<rs

defined by
Li=L{+ LY with L¢ =L+ L3

The diffusion generator Lf is the same as the one presented in exercise 274. The jump
generators L; 4 and L? 4 are defined by

L' () = Y N (f (e ey, @),2%) - £ (o),2%)

1<ii<r

L)) = D AP (f (ha® + () - f («h,2%).

1<ia<ry

This ends the proof of the exercise.

Solution to exercise 276:
At some rate, say A(X;) the jump of the process X; € {0,1} is defined by

X ~ 11:0 1+ 11:1 O = lr:() 1
Between the jumps the process evolves as

dXt = 0
dY;g = bt(}/t) dt + Xt O't(Y;g) th

We conclude that the generator of Z; = (X¢,Y;) is defined by
Ly =L§+ LY

with

Lf(f)(‘r’y) = Z bfe(»””al/) ayzf(xay> + % Z xQ (at (Ut)T) (.Z',y) ayhyjf(xay)

1<i<r 1<i,j<r
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and

L)) = Mx) (F(loony) — F(z.))
= A"“/ (F@ ) = F@9)) (Lomo 81(de’) + Loy Solda’))

In other words

LA(£)(0) = A(0) (£(1) = f(0)) and LU(f)(1) = X(1) (£(0) = f(1)).

This ends the proof of the exercise.

Solution to exercise 277: Notice that

d — —
> /]R pi(z,y) LO(f)(z,y) dy = /R A(0) / (f(1,y) — f(0,9)) pe(0,y) dy

z€{0,1}

= [ 2 [ (0w = 1) pi1) do

Choosing f(x,y) = 1y—0 g(y) we find that

S [ e @) dr= [ a6 G0 pil0L9) = XOW(0.9) .

ze{0,1}

In this situation, for any smooth function g with compact support we have

> /R pi(x,y) Li(f)(w,y) dy = > / pe(0,) by (2, ) 8y,9(y) dy

zefo,1} ' R" 1<i<r

This yields

OE(f(X0Y)) = OE(1x,—0 g(¥0)) = / oy) ami(0.y) dy

/g(y) [(A(l) pe(L,y) = MO)pe(0,9)) = > 9y, (p(0,y) bi(0,9)) | dy.

1<i<lr

This implies that

9pe(0,y) = [A(1) pe(1,9) — A(0) pe(0,y)] Z By, (p+(0,9) b;(0,)) -

1<ilr

In much the same way, by choosing f(x,y) = 1,=1 g(y) we find that

> [ e B d = [ o) (O pl0.9) = XD pi(1p)] d.

z€{0,1}
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In this situation, for any smooth function g with compact support, we have

> / pi(x,y) Li(f)(@,y) dy = — /R 9(y) 9y, (e(0,9) bi(1,y)) dy

x€{0,1}

This yields

OE((XY) = OE(Lxms (1) = [ 9w) dml1.v) dy

= [ ) [MO p0.0) XV pL)] = Y B (a1, B(10)

1<:i<lr

Jr* > On, [(Ut Ut)T) (Ly) pt(lvy)} dy.

1<z J<r
This implies that

atpt(la y)

= [A0) pe(0,9) = A1) pe(1,9)] = X1 <icr By, (0e(1,9) BE(1,))

7%219’49« Oy, ;s [(Ut (Ut)T> (1,y) pt(]-vy)] .

This ends the proof of the exercise.

Solution to exercise 278:
At the jump times T,, of the Poisson process N; we have

dZr, = Z (Yp -1)- Z (Yp -1)
1<p<Nr,, 1<p<Nr,, —
= > %-1)- > (K-)=Y,-1
1<p<n 1<p<n-—1

so that
XTn — XTn, = XTH, dZTn = XTn, (Yn — 1) = XTn = Yn XTH,.

Between the jumps T, <t < T, 11, the process satisfies the stochastic differential equation
dXt = aXt dt + bXt th
Applying the Doeblin-Ito formula to the function f(X;) = log X; we have

1 1
legXt = = dXt

< 3 X2 dX,dX,
t

b2
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This means that
2

b
Yt € [Ty, Tt log X; = log X1, + {a - 2] t—T,)+b (W, —Wr,)

so that

%0 = o (o 2] -z v - wn)

2

= (o (o B] e v - wn))

This shows that
2

b
vt € [0, Ty X, =X, exp([a—Q] t—i—bWt)

and
2

b
XT1 :Yi XTl—:XOYi exp({a—Q] T1+bWT1>.

For t € [T1,T5] we also have

% = 3 (o] o m o v )

2
= Xo V1 exp({al;} t+bWt)

and
2

b
XT2 = Y2 XTQ, = X(] lefg exp <[a — 2:| T2 + b WT2>.

For t € [T,, T3] we also have

% = oo ([ 2] ez o v i)

2
XO}GYQ exp([a—l;] t+bWt>

and
2

b
XT3 = )/3 XT3_ = XO Y1}/2Y3 exp <|:CL — 2:| T3 —|—b WT3>

Iterating this procedure, we find that

b2
X, = X, H Y, exp<[a—2] t+bWt>.

1<n<N;

This ends the proof of the exercise.

Solution to exercise 279:

1051

Using the fact that dN; x dN; = dNy and dt x dN; = 0 = dN;dWy, we readily check that

dxMdx® = o (X)bP (Xe) dN; + eV (X)eP (Xy) dt.
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Observe that the increments of the process (X (VX (2)), = Xt(l)Xt(Q) are given by

1 2 1 2

dXDX@), = (XOXO) g — (XDx®), = xD xP - xVx
xVax® + xPax +  axMax?
———

=0V (X)) (X)) dNy+elV (Xp)el® (Xe) dt

This ends the proof of the exercise is now easy completed.

Solution to exercise 280:
The continuous and the pure jump parts of (X;,Y;) are given by

dX¢ = —X,dt++2Y, dW, g 1 AXe = aX, Vi) X, dN,
dYE = —Y,dt—2 X, dW, AY; = a(X, Y)Y, dNy.

By applying the Doeblin-Ito formula (15.11) to the function f(X,,Y;) = X? + Y;? we
have

df (X, V) = 2X, dX{+dXE dX{ +2Y; dYF + dYy© dYY
+ (X (L4 a(X0, 1)) = X2+ Y2 (1+ a(Xe, Y2)° - ¥2) dN;.

We observe that
2XdX{ + dX§dX§ + 2Y,dYE + dY£dYy
=2X; (= X; dt + V2 Y, dW,) +2 Y2 dt +2Y; (=Y, dt — V2 Xy dWy) +2 X7? dt = 0.
This yields
Uxv) = (X2 [0+ a7 - 1] + 72 [+ a(X, ) ~ 1] ) an

= (X +¥) [+ a(X )P~ 1] any

Choosing
b(Xtay;ﬁ)
a(Xt,}/t):*lﬁ’E 1+W
we find that DXL, Y)
2 ts Yt
(14a(X, Y1) — 1= X2 4y

from which we conclude that
df(Xtv}/%) = b(Xta}/l-f) dNt

Between the jump times T;,_1 and T;, of the Poisson process V;, the process Z; = (X, Y}),
with ¢ € [T,,—1, T, is given by the 2-dimensional diffusion

dXt - —Xt dt + \/i Y't th
dY; = =Y, dt —V2 X; dW,

starting at Zp, ,. At the jump time 7,, the process jumps from Zp, _ to

Zr, = Z7,~ +b(Z1,-).
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For any t € [Ty, T1[ we have
d| Ze||* = b(Z;) ANy = 0 = || Z])* = || Zo|>.
At the jump time 77 the process jumps from Zp, _ to
Zr, = Zp— +b(Zp,—) .
For any ¢ € [T, T»[ we have
| Zi||* = b(Z;) dNy = 0 = || Z,||* = | Zr, |1*.
At the jump time 75 the process jumps from Zp,_ to
Zr, = Zpy— +b(Zp,_).

This ends the proof of the exercise.

[
Solution to exercise 281: We have
us(z) = E[fi(Xe) | Xs=a] =E[fi(z+ 0 (W - W)))]
1 1 2
= E[fi(z+oVt—sW)] = e s / fi (x +w) exp [_202?;—5)] dw.

Using an elementary change of variable (y = x +w (= dy = dw)) we find that

us(z) = - 1% \/tl_—s / fi(y) exp [—M] dy.

It is now readily checked that

1 w?

danle) = —= &(%) /ft(aﬂ—w) exp {_202@—5)} dw

On the other hand, we have

o (7=) =39 7

and

This implies that

Osus(x) = us(x)

1 1 (y —=)?

1 9 (y—2)?
T2o(t—9))? ovar Vi-s / fely) (y—2) eXp{ 202(t — 5)

| an
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To take the final step, observe that

St = s [ Soten 5

2o (oo [ 225]) = (oo o[22
_ 1 exp[w]

2(t — s) 202t — s)
tay @ o (o {‘2?2(;?)2)})
- ‘2<t1—s> p[_ngQ(—tfi)]
i 0 e |- 255’2&”);}
This implies that
Thule) = —gru(e)
e oy v | A0 o [‘2(5@))} !

The end of the proof of the exercise is now easily completed.

Solution to exercise 282:
The first assertion is proved in section 15.5. If we choose g(t,z) = e~ for some A € R
then we have

9(0,z) =1 [0: + Li) g(t,.) = =X e M and T, (f(¢t,.),g(t.))=0.

In this situation, the first assertion implies that

AL=f@X0€”—ﬂ&X@+A e [N f(s,.) = 05 + Ls] £(s, )] (Xs) ds.

In this situation, we have
t
m:/eﬂwav
0

with the martingale dM(f) = df (s, Xs) — [0s + Ls] f(s, Xs) ds. This ends the proof of the
exercise is now easy completed.
[

Solution to exercise 283:
Arguing as in (15.32) we have

Zs,t(,f) — /t eif;vu(Xu)du er(f)

S
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with the martingale

M(f) = £(t, X2) — F(0, Xo) — / (0 + L) f(s, X.)ds.

We conclude that
O PY(f(t, ) = PL((0 + L) f(t, ).

This ends the proof of the exercise.

]
Solution to exercise 284:
Using (15.25) we have
Py = PO+ / P LPPY, dsy
S +/ {P(” +/ P, LY P, ds. } LPPY, ds,
_ PO / PO LOPY, 45, + / / P L PW, TP, ds, ds,.
Tterating and letting ¢t = so we find the formula
Proy =Y / / PY LAPO L LAPD ds, ... ds.
n>0 r
This ends the proof of the exercise.
]
Solution to exercise 285:
Using (15.27) we have
t pR—
Ps,t = Qs,t +/ Qs,leslPs-l,t dsy
= Qst+/ Qs S1 81 |:Q<1t+/ Qsl 52 21 (152:|d81
= Qs,t +/ Q3751F51Q51,t dsl +/ / QS,S1F51Q51,82K SQ,t d52 dsl
S S S1
Tterating and letting s = s¢ we find the formula
t
.so, Z/ / Q50781K81Q31,S2 -~-Kansn,t dsn dsl-
n>0 Sn—1
This ends the proof of the exercise.
]

Solution to exercise 286:
Given a spatially homogeneous jump rate function A;(z) = A we have

QualN@) = exp[-Alt =) E (F(X{") | XV =) = exp[-At = )] P (f)(@).
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In this situation we have

t t
Pyt = Y A" / / Qa1 Koy Quyoy - Ko, Qo i dsy .. ds
0] Sn—1

n>0 S
t t
= Z)\”// exp [—A{(t —sn) + ...+ (51 — 50)}]
n>0 S0 Sn—1
x PO, K PO K P ds, L dsy
t t
= ) ame M) / / PO K POY K, PY, ds, L dsy
n>0 S0 Sn—1

This ends the proof of the exercise.

Solution to exercise 287:
Observe that

exp </t Wu(Xu)du) =1+ /: W, (X,) exp (/u WU(XU)dv) du.

This yields the integral decomposition

E (f(Xt) exp (/t Wu(Xu)du> | X, = x>
E (f(Xt) {1 + /: W, (X,) exp </u Wv(Xv)dv> du] | X, = x>

= R@,t(f) + / Qs,u (Wupu,t(f)) du.

Qs,+(f)(z)

This implies that
t
Qs,t = Ps,t +/ Qs,slwslpsl,t d81
s

thus finishing the proof of the first assertion. Observe that

t
Qs,t = Ps,t +/ Qs.sl W31Ps1,t dsy

t S1
Ps,t +/ |:Ps,sl +/ C)S,SQWSQPSQ.Sl (152:| Wslpsl,t d81

t - t S1 - o
Ps,t +/ Ps,sl Wslpsl,t dsl +/ / QS,SQWSQPSQ,sl Wslpsl,t d32 dsl'

Iterating the argument (as in exercise 284) and letting s = r and ¢ = so we find that

S0 Sn—1 - -
QT’SO = Z / e / PT757LW<97LP57L757L—1 o W51P51750 dSn e dsl'
T K

n>0

This ends the proof of the exercise.
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Solution to exercise 288:
By exercise 283, the process

Z(f) = oo V(Xa)ds f(Xt)—f(Xo)—/ot ol V(X,)dr LVf(XS) ds

is a martingale w.r.t. F; = 0(Xs, s <t), with
LY f(i,y) = L(f)(i,y) + V@, 9) f(i,y) = L(f)(G,y) + (@) fi,y).

We have

/OV(XS)ds:<v,It> =3 v Ti) with Ti() ;:/0 1 ds.

1€57

This implies that

Z(f) = W F(X,) - F(Xo) / T (u(1,) f(Xa) + LX) ds

We conclude that

Zi(f) = e f(X) = f(Xo) = Y / elvrds)
ies; 70
x [w() fi+ 1Y)+ L7 f (V)] = ds
with

L) Gy) = L) y) + (i) —w(@) (i y)
= Li(f(@ ))(y) + (i) —w(@) fl,y) = L7 (f()) -

This ends the proof of the exercise.

Solution to exercise 289:
By construction we have

, t
Zi(f) = eI f(1,Y) — f(Io, Yo) Jr/ el B(Yy) 11,21 ds.
0

This ends the proof of the exercise.

Solution to exercise 290:



1058 Chapter 15
We have

_Lt(wcyy)(l‘) = Wy Z (O'tO';T)Z.’j (.13) Yi Yj — Z ylbi(l‘)

1<i,j<d 1<i<d
llyllLo

Y

ce o Iyl = liyllx [1Bll]

with .
Py Pl = s

Choosing y s.t. ||lyll1 = p~' [1 + ||b]| p] we have

p llylIE =Nyl 18l = llyllx [ 1yl = lIblln] =yl

and
ce e (o [lyl2 =yl bllp] = ¢ e 1 |y

This implies that
ez e IR 1 1] p] 7 = e eIy > 1.

This ends the proof of the exercise.

Solution to exercise 291:
We have the almost sure convergence of the stopped martingale

Ni = Minr = —isoo Noo = Mr.

In addition, using Doob’s stopping theorem (theorem 15.6.1), N; is a martingale null at the
origin, so that we have E(V;) = 0, for any ¢ > 0. In addition, we have

E((Ve = N)?) = E(M,M)ir — (M, M)onr) < cE(I(EAT) = (s AT)]).
Using the dominated convergence theorem, we also have

E(T) < oo = lim E(JtAT)— (sAT))=0 = lim ]E((NFNS)Q) = 0.

s,t—00 s,t—00

We conclude that Ny = Mar is a Cauchy sequence in Ly(P). By completeness Miar
converges in Lo (P) to Mr so that E(Mr) = 0.
When M, is defined by

t
Mt:/ X dW;
0

for any s < t, we have

tAT
(M, M)inr — (M, M)ypp = / X2ds<c (tAT)—(sAT)).
sAT
From the first part of the exercise, fOtAT X, dWy converges to fOT Xs dWy in Ly(P) as
t1 00, and we have E ([} X, W, ) = 0.
This ends the proof of the exercise.
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Solution to exercise 292:
The Cauchy problem is a particular case of the one discussed in (15.36). Using the
backward equation (15.16) we have

t
851)3 = 8SPS,t(ft) - Ps,s(.q.s) + / asPs,u(gu) du

t t
= —gs — LsPs,t(ft) - / Lspe,u(gu) du = —0s — Ls (Ps,t(ft) +/ Rs,u(gu) du)
= —gs — Ls(vs).

We also have

t
Ut(x):Put(ft)—’—/t Ps,u(gu) du:ft

This ends the proof of the exercise.

n
Solution to exercise 293:
We have
t
we(z) = E (f(Xt) +/ 9s(Xi—s) ds | Xo = x)
0
t
= P(N@)+ [ Pidon)(e) du
0
with the Markov semigroup
Pi(f)(z) =E(f(Xy) | Xo=12).
This implies that
t t
Owe = 0Py fo) +3t/ P;_s(gs) du+/ 0t Pi_s(gs) du
0 0
t t
= LR 4ot [ LR du=L|Ruth) [ Prostan) d] 4
0 0
= Lw;+gs
with the initial condition wy = f.
This ends the proof of the exercise.
[

Solution to exercise 294:
By a simple conditioning argument, we have

E (IE <f(Xt) exp <_ /: Vu(Xu)du> |XS> exp (— /0 Vu(Xu)du))

B (QuE) o (= [ Valxo)an) ) =.(Queth)

Y(f)
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This implies that
%(f) = VS(QS,t(f)) = (VSQS,t)(f)

from which we conclude that v, = v5Qs:. On the other hand we have

(15.31) = Ov(f) = Omo(Qou(f))
= 10(0:Qo(f)) = Uo(QO,t(Ly(f)))
V(LY (f)) = w(Le(f)) = 7 (fVa).

We also notice that

Oilogyi(1) = —— Om(1)

This implies that

t
) =& (1060 exp (= [ () = nali) ) )
0
This shows that 7, is defined as v; by replacing V; by (V; — n:(V;)). We conclude that

ane(f) = m(Le(f)) —ne (fF(Ve = me(V2))
= Ome(f) = ne(Le(f)) +ne(F)ne(Ve) — e (fV2) -

This ends the proof of the exercise.

Solution to exercise 295:
We let T° be the first jump time of X; arriving at rate \;(X;) after time s. By con-
struction, for any function f on ([0, c0[x.S) we have

K(f)s,a) = E(Kr(FT )LL) lricoo | Xo =)

[ E (Rl DED) M) e A 0 x0 = ) an
For time homogeneous models, we have

K(f)(s.2) = E(K(FT)XE) lroco | Xo =)

| (KU DEE) A e BN 8 ) o) ar
0

This shows that K(f)(s,z) doesn’t depend on the parameter s. The Markov transition M
is given for any function f on S by the formula

M) = [T E(RDED) AXD) e XD a0 0 = 5) e

0
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For a constant rate function A(z) = A > 0 we have

M(f)a) = / T e E (KN | X0 = 2) =B (K(EP) | X = 2)

0

where T stands for an exponential random variable (independent of Xt(l)) with parameter
A. This ends the proof of the exercise.
|

Solution to exercise 296:
Under the minorization conditions, for any non negative function f on S we have con-
struction, we have

M) = /OOOE (KDY AKD) e A | X (0 = 5 ay

Y]

(A/AY) /OOO N e u(f) dt =€ v(f) with €= (\,/\Y).

The last assertion is a direct consequence of (8.15) and the contraction theorem 8.2.13.
This ends the proof of the exercise.
]

Solution to exercise 297:
We have

M(f) =/OmQt (A K(f)) dt.

This implies that
M(f) = QK(f)).

Observe that
(15.31) = 9:Qu(f) = Q«(LV(f)=Af) = /0 " QUL AN @) dt = [ @ = —F @)
This implies that
LA(f) = MK (f) - f)
= QL)) = J;° Qe (L)) + LA(f)) dt = —f + [7° QuAK(f)) dt

from which we find that

M(f) = QUK(f)) = QL(f)) = QUK (f)) — f = M(f) - [.

This clearly implies that

pL(f) o< mQ(L(f)) = == (f) + m(M(f)) = 0.

This ends the proof of the exercise.

Solution to exercise 298:
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Given ¢t € [T,,_1,T,] we have the Doeblin-Ito formula

t t

Lo(f)(X.) ds + / dM,(f)

Th-1

F(X0) — f(Xp,_,) = /

Th-1

for some (conditional) martingale (M (f))se[r,_,,7,| With (conditional) angle bracket
d{M(f))s =T, (f, [)(Xs) ds.
At every time T,, we also have

f(Xr,) = f(X1,-) =E(f(X1,) — f(X1,-) | X1,,-) + M7 (f) — MP.,_(f)

LR, (N (X1, -)

with the martingale increment
Mp (f)=Mp _(f) = f(Xr,)—f(Xr,) —E(f(X1,) - f(X7,-) | X1,-)
= [f(Xn,) -E(f(Xr,) | X1,-) = f(X1,) — K1, (/) (X7, -)

and the operator LY defined by

LP(f)(x) = 1p(x) / (f(y) — f(2) Ku(a, dy).

We set
Vte [T, Tl MP(f)= Mg, _(f).

n

In this notation we have

Ty
M (f) = ME _(f) = / aMP(f).

Th-1

This yields the decomposition
f(X1) = f(Xo)

TNt T At
=3 (/ (Ls(f)(Xs) d5+dMs(f)]+LtDAT,,L—(f)(Xt/\Tn—)+/ dMsD(f))

n>1 Th_1At Ty _1Nt

= [ B0 ds+ I P ()] + T

with the martingale

t
M(f) = / (dM.(f) +dMP(f))  and the random empirical measure p” =" 67, .
0

n>1

The last assertion is immediate. This ends the proof of the exercise.

Solution to exercise 299:

L(f)(x) = 2® f"(z) + 2 f'(z) and V(2)=—(2* —n?) = (n—z)(n+2).
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We look for a solution of the form

x)=2z" Z a; ©'

i>0

We use the convention a_s = a_; = 0 so that

2p(z) = 2™ Z a; £ =" Z ai_o '

i>0 i>2
We have
v'(z) = na"! E a; '+ z" E ia; x?
i>0 i>0
v'(z) = n(n—1)2"? g a; ' +2n " E ia; ot 42" E (i—1) a; z°72.
i>0 i>0 >0

This yields

!/ ) . L
zv'(x) = na” E a; ' + " g ia;x’

>0 >0

2?2 v"(x) = n(n—1) Zazm +2n " Zzala: + " Z (i—1)

>0 >0 i>0
from which we prove that
220" (z) +x v (z) + (22 —n?) v(z) =0

— " Z[n ai+iai+nn—1)a;+2nia; +i(G—1)a;+ai_o—n? ai] 2t = 0.
i>0

We conclude that
Z(l + 271) a; + a;—9 = 0.

On the other hand, we have
a_1=0 = a1=0 = a3=0 = a2k+1:0.

For the even indices we find the recursion

(=D (=1

o . - R St 9 A Gt & AR
2i(2i +2n) ag; + az;—2 =0 = ay; = 2 (i+n) Qg(i—1) = ... = 220 il (n 4 0)! n! ag.
By choosing ag = 27" n! we conclude that
(=1 (w)" (1)’ (x)m
i = o = \5 Y - = Bn .
4207 3k g (n+1)! v(@) 2 ; illn414)! \2 (=)
This ends the proof of the exercise.

Solution to exercise 300:
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The Dirichlet-Poisson problem has the form (15.38) with (L,V,h) = (302,0,0). The
operator L = 202 is the generator of X; = X, + W;. Using (15.42) we have

Tp
v(x)z]E(/O 9(Xs) ds|X0:ac>.

The second assertion is immediate after choosing the unit function g = 1.
This ends the proof of the exercise.

| ]
Solution to exercise 301:
We have
d(uw(Xy) —tL(u)(X:)) = L(u)(Xy)dt + dM(u) — L(u)(Xy)dt — t Lz(u)(Xt)dt — tdM(L(u))

—t L?(u)(X,)dt — tdM;(L(u)) + dM;(u)
from which we prove that
Ni(u) = u(Xy) — tL(u)(X:) — u(Xo) Jr/o s L2 (u)(X,)ds = /0 (sdMs(L(u)) + dMq(u))
and
E(N:(u) | Xo) =E <u(Xt) — tL(u)(Xy) +/ s L*(u)(X,)ds | Xo) —u(Xp) = 0.
0

On the other hand, using the fact that

{ L?u(z)
(u(x), Lu(x))

0 if zeD
(f(x),g(x)) if xedD

we prove that

u(z)

E <u(XTD) — TpL(u)(X1,) +/O s L2 (u)(X,)ds | Xo = x>
= E(f(X1,) —Tp 9(X1,) | Xo=12).

This ends the proof of the exercise.

Solution to exercise 302:
We fix the time horizon ¢ and we let ug, s € [0,¢] be the solution of

Osus(z) + %fﬁus(x) = 0 forany (s,z)€ ([0,t]x]—a,a)
0 forany (s,x)e€ ([0,t] x{—a,+a})
1 forany x€]—a,al

us ()
ug ()

By (15.50) the solution is given by

D =] —a,a[= us(z) =E (1Tg>>t | X, = :c) —E (1Tgo>>(t_s) | Xo = 1’) — vy (2)
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with the function
v(z) :=E (ng°)>t | Xo = :U) .
By construction, we have
2

= Vr>0 0y, = 7 aivr

2
0~ 2
= _7 ava(aj)H:t—s 2

Vs <t Osus(x) = —0rv(x)

[r=t—s
as well as the boundary conditions
Ve el —a,a] wvolx) =u(xr)=1 and V(¢z) € ([0,00[x{—a,+a}) wvo(z)=u(z)=0.
This ends the proof of the first assertion. Finally we have

Z by, cos ((2n+ 1) g %) 0y exp (—(T; ((2n+ 1) g (11)2 t>

n>0

= —%2 Z by, 02 (cos ((2n+ 1) g g)) exp (ZZQ (2n +1)? t>.

n>0

For x € {—a, a} we have

™

Yn >0 cos ((2n+ 1) 2) =0 = cos (—(2n+ 1) g)
and for ¢ = 0 and z €] — a,a[ we have the boundary condition

vo(z) = Z by, cos ((2n—|— 1) g g) =1,

n>0

with the Fourier series coefficients

1 [ T T 4
—_— 1 m+1) LN de= ——  (—1)™
bn a/ cos((n—l— )2 a) de (2n+1)7r( )

—a

Further details on these Fourier expansions can be found in section 5.8 in the textbook by
Russel L. Herman [148].
This ends the proof of the exercise.

|
Solution to exercise 303:
We have
vn(2) = sin ((n7/a)z) = v),(z) = (n7/a) cos ((nm/a)x) = v/ (x) = —(nn/a)? sin ((n7/a)x).

This shows that
L=0%= Lv,) = Ay v, with A\, = —(n7/a)?.
On the other hand, we clearly have
v, (0) = sin (0) = 0 = sin (n7) = vy (a).

This ends the proof of the first assertion. The proof of the last assertion follows the same
arguments. This ends the proof of the exercise. ]
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Solution to exercise 304:

D = ([0,a4] x [0, a2])

= 0D = ({a1} x [0, a2]) U ([0, az] x {az}) U ({0} x [0, as]) U ([0, az] x {0}).

oD 02D 93D 04D

We also have

1 0 -1 0
NL:181D<O>+182D< 1 >+163D< 0 >+1E)4D< 1 >

Arguing as in exercise 303
Un (T) 1= Uy my (21, 2) = sin ((n1m/a1)x1) sin ((nem/az)xs)

= Vie {1,2} aﬁiun = Ap, Un With A, = —(ns7/a;)?

= Y Bun=Av, with A= > A

1<i<2 1<i<2

and clearly v, (z) = 0 for any = € 9D. This ends the proof of the first assertion. The
proof of the last assertion follows the same arguments. To check that Neuman condition,
we observe that

vp(x) = cos (nymxy/ay) cos(nemas/as)

L Vo (@) = ( Du, v ) _ ( (nim/a1) sin (nywa far) cos (namaa/as) ) |

Oz, Un, (nem/ag) cos(nimxy/ar) sin(nomra/as)

This yields

—Vu,(z) = 1lg,p(x) (nem/ag) (—1)™ < 0 )

sin (nemaa/az)

Hoyp(@) (ni7m/ar) (~1)" ( s () )

+1o,0(x) (nom/az) ( . >

sin (nomaa/as)

i) o) PO )

This clearly implies that (Vv(z), N+ (z)) = 0 for any = € dD.
This ends the proof of the exercise. ]

Solution to exercise 305:
We fix the time horizon ¢ and we let ug, s € [0,¢] be the solution of

o2
Osus(z) + ?@%us(x) = 0 forany (s,z) € ([0,t]x]0,al)
us () 0 forany (s,z) € ([0,t] x{0,a})

u(x) = f forany =z €0,al.

€
S
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By (15.50) the solution is given by

D =]0,a[= us(z) = E (1T§>>t F(X) | X, = x) —E (1Tg’>><t_s> F(Xoes) | Xo = x) = vy_s(2)

with the function

vi(z) = E (1Tg’>>t F(X)) | Xo = x) .
By construction, we have

2

= Yr>0 0, = 7 d%v,

g
5 |r:tfs 2

2
=- 83%(:5)

Vs <t Osus(x) = farvr(x)“:tfs 5

as well as the boundary conditions
Vz €]0,a] wvolx) =u(x)=f and V(¢ z) € ([0,00[x{0,+a}) wvo(z)=u(z)=0.
This ends the proof of the first assertion. Finally we have

2 ) 2
Ap = — (%T) = 0y (e” A"t/2> sin (nmx/a) = (e’\"t) % 92 sin (nwx/a)

as well as

Yn >0 sin(nt)=0.

This shows that

ve(x) = Z b (f) eF Mt gin (nma/a)

n>1

satisfies the desired boundary conditions as soon as for ¢t = 0 and = €]0, a|

vo(z) =Y bu(f) sin(nmz/a) = f(x).

n>1
The coefficients b,,(f) are determined by the Fourier Sine series on [0, a]

bn(f) = 2 af(z) sin (nwz/a) d.

a Jo

Further details on these Fourier expansions can be found in section 5.8, p.301, and section
5.10 in the textbook by Russel L. Herman [148].
When f(x) = sin(z) and a = 7 we have directly
vo(x) =sin (z) = by(f) sin(l 7z/7) = b1 (f) = 1.

This yields the solution

A=-1 = w(x)=e 7 sin(z).
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When f(x) = z(1 — ) and a = 1, using twice an integration by parts we find that

1
bo(f) = 2/0:5(1—:5) sin (nmx) dx

cos (nmzx) ] 0 N 2
1

= [2z(l—=x) 1(1 —2z) cos (nmx) dx
0

nm nm
2 1
= — (1 —2z) cos(nrx) dx
nm 0
2 (1 - 22)sin( >1°+(2)2/1‘ (nma) d
= n27('2 ZT)Sim({nmTx 1 o ) S (nmTax X

This implies that

3
ban(f) =0 and bani1(f) = — (M) .

We conclude that

2

v(x) = — # ’ e~ 1’7t Gip (20 T
0 =-% (Gree) (2 + 1)),

0 2n+1

This ends the proof of the exercise. [

Solution to exercise 306:
We follow the same arguments as the ones we used in solving exercise 305.

1
Quf) () = E(F(X0) Lrpy | Xo = o) = / a(z.y) F(y) dy.

We have the forward and backward formulae
1 1
0Qu()a) = 50N = @ (501 )
Using an integration by parts, for any function f s.t. f(0) =0 = f(1) = 0 we have

Qt <;a§f> (ac)z/o1 q(z,) %ajf(y) dy:/o

This implies that

1
305ai(z,y) f(y) dy.

1
atqt(xvy) = §8§Qt(xa y)

We try to find a solution of the form

qu(@y) =Y an(t) un(e) un(y)

n>1
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with the basis functions u, (y) = sin (nmy) (recall that u, /+/2 form an orthonormal basis).
Observe that

ZnZl atan(t) un(x) un<y) = atQt(xuy)

= 27107 Bqulx,y) = 27107 DY (nm)® an(t) un(2) un(y)-
n>1

This implies that
Oran(t) = —2710% (n7)? an(t)

from which we conclude that
o (t) = oy (0) exp [-27'0% (nm)? t].

This shows that

We conclude that

@z, y) = Z exp [-27'0? (n7)? t] sin(n7z) sin(nmy).

This ends the proof of the exercise.
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Solution to exercise 307:
By (16.8), we have the evolution equations

Ove(f) = (LY(f)) and  Oymu(f) = ne (Ly, (f))

with the Schrédinger operator
LV=L-V

and the collection of jump type generators

Ly()(0) = L(£)0) +V(0) (f(1) = £(0)) n(1)
Ly(N)(1) = L(HA)+VQA) (f(0) = F(1)) n(0).

The nonlinear jump process X; in S = {0, 1} with generator L,, changes its state 0 with
a rate V(0)n(1). In other words, it jumps from 0 to 1 at rate V(0)n,(1)), and from 1 to 0
at rate V(1)n:(0). Between these jumps it evolves as a Markov process on S with generator
L.

The mean field particle model is defined by a Markov process & = (&})1<i<n € {0,1}.
Each particle & jumps from 0 to 1 at rate V(0)n¥ (1), and from 1 to 0 at rate V(1)n} (0),
with 7 = & 37, ;< 0. Notice that

t

1 1
VOR' W) =v0) + 3 1g ad VR0 =V 5 Y g
1<i<N 1<i<N

Between these interacting jumps, each particle evolves independently as as a Markov process
on S with generator L.

The N-mean field particle model can be interpreted as an epidemic propagation process.
The state 1 represents the infected individuals, while 0 represents the susceptible ones. The
transitions 0 ~ 1 ~» 0 represent transitions of a Susceptibe-Infected-Susceptible epidemic
model. These models are called SIS models in biology and statistical inference. In these
settings, the parameters of the Feynman-Kac model can be interpreted as follows:

A(0) = rate of infection from an external source

A(1) = rate of recovering of infected individuals
V(0)n¥(1) = infection rate of susceptible individuals by the infected ones
V(1)nN(0) = recovering rate of infected individuals interacting with susceptible ones

(often null).

This ends the proof of the exercise.

1071
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Solution to exercise 308: Notice that
L(10)(0) = =A(0) = L(11)(0) and L(1o)(1) = A(1) = —L(11)(1).

This yields

Ly(10)(0) = =A(0) = V(0)n(1) = —L,(11)(0)
Ly(10)(1) = A1)+ V(1)n(0) = —Ly(11)(1)
from which we conclude that
nLy(lo) = n(0) Ly(10)(0) + n(1) Ly(1o)(1)
= —(0) [A0) +V(0) (1 =n(0))] + (1 =n(0)) [A(1)+ V(1)n(0)]
= (V(0) = V(1)) n(0)*> = n(0) ((V(0) = V(1)) + (A0) + A(1))) + A(1)

This yields the evolution equation

Omi(0) = Ami(lo) = mLy,(1o) = a n(0)> = b 0, (0) + ¢

with
a:=[V(0)-V(Q)], b:=a+c+A0), and c:=A(1).

When V(0) = V(1) (i.e. a =0) the equation takes the form
Ot (0) = =b m:(0) + ¢ with  b:=c+ \0).

In this situation, the solution is given by

P(X; =0) = n(0)=e" { / bebs ds}
= e " ny0) + g (1- e .

Another simple case occurs when ¢ = 0, and b > a > 0. In this case, the evolution
equation takes the form

0yme(0) = deme(1o) = Ly, (10) = a ne(0)* — b e (0).

The solution is given by the formula

b 10(0) bt 10(0)
() = - =¢ bty
(O = T Ew) = E0(0) (1 — )
To check this claim we observe that

om(0) — z[m +e;’°2)_% ok (<o) (2-m) +m)] +0m)

= —bn(0) + an.(0)2

More generally, we need to solve the Riccati equation
¥ =ax’—bzx+c with aAc>0 and b>a+c>0.

The solution of this equation has the form

1 y'(t)

with  ¢” + by’ + acy = 0.
y(t)

z(t) = —
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We check this claim by using the fact that
1 o 1 4" 1 N 2 1 4"
e=—-Y o y=—2Y 4= <y> == ¥ g2
a'y a'y a \Yy Y
b
- = +c=y" +by +acy =0.
a

The characteristic polynomial p(z) of the second order differential equation

Yy 4+ by +acy =0

R I (e

Under our assumptions, using the fact that a? + c? > 2ac we have

is given by

b 2
bz(a+c):>b22a2+02+2a024ac:> (2> —ac > 0.

Observe that
V¥ =dac=b=2VaVe>a+c= (\f—\/E)2+2\/5\/E:>a:c.
In other words, when b > (a + ¢) we have
b =dac <= a=c=0b/2.
We examine the two cases
b% = dac and b% > dac.
e The case b? = 4ac is associated with the parameters a = ¢ = b/2. In this case, we have
t’=a2”’—brt+c=a (2" -22z+1)=a(l —2)”

If we set T = (1 — ), then we have

oy 2(0)
T = —aT @m(t)—m.

Notice that

a=e=b/2 = [V(0)~ V)] = A1) = 5 {[V(0) - V()] + A(1) + A(0)}
= [VO) - V)] =A1) and A(0)=0.

We conclude that

as soon as 1(1) > 0.
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e In the case b? > 4ac, the solution of y” 4 by’ 4+ acy = 0 is given by
y(t) = c1 et 4 ¢y ™!
with the two different roots

(b+ \/b2—4ac) ng:—% (b— b2—4ac) <0

of the characteristic polynomial

1
21:—5

pz)= | 245 - <g)2ac z+g+ (;)2(10 = (2 — 2)(2 — 21),

and a couple of constants ¢, co determined by the initial conditions
y(0) =c14+c; and y'(0) =c1z1 + ca22.

A simple calculation shows that

21y(0) = az + 2z
Z%Eog I ;»{ iz —21) = 2y(0)—y(0)
2y(0) = 1z + oz ca(za—21) = y(0)— z21y(0).

To check that y(t) = ¢ et + co 2! satisfies y” + by’ + acy = 0 for any choice of ¢y, ¢z
we notice that

acy(t) = c1 ac e®t + ¢y ac e®?
by = ¢ bz e+ ¢y by €2t
, :
Yy = ¢ 27 et 4y 22 et

Recalling that
p(z1) = 27 + bz +ac=0= 23 + bzo + ac = p(z2)

we end the proof of the desired result.

On the other hand, using the fact that y'(0) = —az(0)y(0), we find that

ci(za—21) = 2y(0) —y'(0) = y(0) (az(0) + 22)
c2(z2—21) = ¥(0) —z1y(0) = —y(0) (az(0) + 21).
This shows that
c1 z1 €At + ¢y 29 €721

—a I(t) = c1 ezlt +C2 eZ2t

~ (axz(0) + 22) z1 €A — (ax(0) + 21) zp e*
(ax(0) + 22) ex1t — (ax(0) + 21) et
(az(0) + 21) 20 — (az(0) + 22) (2120 + 22) e~ (2721t
(az(0) 4+ z1) — (az(0) + 22) e—(z2—21)t
(ax(0) 4 22) (22 — 21) e (z2—21)t
(ax(0) + z1) — (az(0) + 2g) e~ (z2—21)t"

Observe that the function

0(t) = (ax(0) + 21) — (ax(0) + 22) e~ (z2—21)t
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is monotone, starts at (0) = —(z2 — 21) < 0 and converges to (ax(0) + 21) as ¢t T co. Let
us show that (ax(0) 4+ z1) < 0 so that 0(¢) cannot change its sign and never crosses the
null axis. We have

)+ <a— g (v aad) = (- 2) — /(2) e

2

Notice that

b b b\’
a—§§0:> a5 )= 3 —ac<0 = ax(0)+2 <0

since b? > 4ac.

On the other hand, if a — % > 0 then we have

a—é < QQ—ac & a®+ b —ab < é2—ac
2 2 2 2
s ad’—ab< —aceb> (a+c) = ax(0)+ 2 <O.

Last but not least, we need to examine the case b = (a + ¢). Then we have

b = (a® +c® +2ac) > dac <= (a—c)*>0 < a#c
and

b b)” 1
a=g )= 7) —a=3 ((a—c)—\/a2+02).

It is readily checked that

1
a<c=g ((a—c)—\/a2+02) <0 = ax(0)+2 <0
and when a > ¢ we have

(a—c)<Va2+ 2 — a?+c—2ac<a’+c
< ac>0 = az(0)+ 2z <0.

We conclude that x(t) is well defined for any ¢ and an initial condition, and it is given by
the formula

_ 22 (22— 21) e” (22t
o) =—"+ (a:(O) + ;) (az(0) + 22) e~ (27200t — (az(0) + 21)

>0

Finally we observe that

b b\ 2
a>0 > —2-2_ () >0

Let us check that
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When % < 1 the result is trivial. When % > 1 we have

b b\* ¢ b\’ b b\* ¢

< —1<y/(=) == — 1——-<(=) ==

0< 2a - (2(1) a < <2a) * a <2a> a
& 1+E§9(:>b2a+c.

a a

This ends the proof of the exercise. ]

Solution to exercise 309:
We have

Ly, (10)(0) = =A(n:,0) = —a(ug) and Ly, (10)(1) = A(ne, 1) = b(us).
This implies that
Ot (0) = m(0) Ly, (10)(0) +me(1) Ly, (10)(1) = —uz alur) + ve b(us)
and
ome(1) = —09m:(0)
= —nt(0) Ly, (10)(0) = me(1) Ly, (10)(1) = uz a(ue) — ve b(ue).

The nonlinear jump process X; in S = {0, 1} with generator L,, changes its state x with
a rate A(7n;, z). In other words it jumps from 0 to 1 at rate A(n;,0) and from 1 to 0 at rate
AN, 1). )

The mean field particle model is defined by a Markov process & = (& )1<i<n € {0,1}.
Each particle & jumps from 0 to 1 at rate A(n{¥,0) and from 1 to 0 at rate A\(p}¥, 1), with

77iN = % Z1gi§N 55;‘-
When A(n:,0) = n:(1) and A(nt, 1) = n:(0). The limiting system takes the form

91 (0) = —n¢(0) 1:(0) +n¢(1) ne(1) = 1 — 21m(0).

In this situation, we have

n:(0) e 2t {770(0) + /Ot e2sds} = e 2(0) + % (1—e?

1 _ 1
= 54’6 2t (7]0(0)2>
When A(n¢,0) = n¢(1) and A(n, 1) = 1,(0). The limiting system takes the form

e (0) = —ne(1) 1:(0) 4+ 1:(0) 0 (1) = 0 = yme(1).

Hence in this case we have n.(z) = no(z), for any = € S.
This ends the proof of the exercise. ]

Solution to exercise 310:
By integration by parts, we have

om(f) = / f(x) Oupi(a) da
/ f(x) @py(x) da / £(2) 8 (00 (o %)) () da
- / 2 (x) pola) do + / 9, f () bla.mi) po(e) d = / Ly, (F)(@) pi(z) da.
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The corresponding nonlinear Markov process is defined by

dX, = b(X;, n,)dt + V2 dW,.
The mean field model & = (fé)lgiSN associated with this nonlinear diffusion process is

given by
dei = b(&LnN)dt + /2 dW} . N 1 A
{ i— 1, N Poowith =g ) &

1<i<N

with N independent copies W} of W;. When a(u) = au + 3 we have

b(x, ;) —ozx—/ /ymdy a(r —E(Xy)).
In this situation, the nonlinear model takes the form
dXy = o (X; — B(Xy)) dt + V2 dW,
and the N-mean field particle model is defined by
& = a gg—% Sood) a+veawi=— 3 (g-¢) dt+vzaw;.
1<i<N 1<i<N
Notice that
dX, = o (X, —E(Xy)) dt + 2 dW; = dE(X;) = 0 = E(X;) = E(Xo).

This ends the proof of the exercise.

Solution to exercise 311:
Reversing the integration order, we have

ome(f) = —m(fH(.,pt)) /f [/“3 gz —y) p ()dy} dx
= —n(fH(.,pt)) /prt [/f raq(y x)dy} pe(x) da

= G+ [ M) [ [ 56 et aty =) dy] ne(de)
)

The nonlinear jump process X; with generator L, ,, evolves as a time inhomogeneous pure
jump model. At jumps times T, arriving at rate A(z, n;) it jumps X7 _ ~ X = X7, _+U,
where U, stands for a sequence of independent random variables with distribution g(u)du.
When h =1 the jump intensity resumes to

“+o0

Using (16.5), the generator of the mean field model & = (£})1<i<n associated with this
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nonlinear jump process is given for any sufficiently regular function F' by the formula

L (F)(a',...,2")

t.m(z)
- (o [T e m@@) me

></[F(xl,...,xiil,y,x”l,...,xN)—F(xl,...,xi,...,xN)] M (2", dy),

with m(z) = & Z;Y:I §,:. For each 1 <i < N, at rate

/;OO wo-f e m(&)(d2) ) (&)

i —
t oo

1 i i1
=5 2 lge@nld-5 D &

1<G<N 1<k<N

each particle ¢} performs a jump to the right with an amplitude U. When h = 1, the jump
rate of each particle & coincides with the proportion of particles & in the r.h.s. of £&; more
formally, we have

/ m A +: i) (d2)) m(e(dy) "= JbZN gt el (€)

This ends the proof of the exercise. [

Solution to exercise 312:

We have

/ (F(1— )z + ey) — F(2)) 5z ) n(dy)
= Azm) / (F(1 = Oz + ey) — £(2)) Koy, (z,dy),

Ly (f)()

with the intensity function

M) i= [ nla.w) mldy)
and with the Markov jump transitions

K(x,y) m(dy)
[ r(x,2) me(dz)

This shows that the process X; is a pure jump process, with a jump rate A (X, n:).
When a jump occurs at some time ¢ the process jumps from X;_ to X; = ((1—¢€)X;— +€Y),
where Y is chosen according to the Markov transition K, (X;—,dy).

The N-mean field particle model is defined in terms of a system of N particles & =

(&)19’@\/ € SN. We set 1\ = > i<i<n Ogi At rate

Km (l‘, dy) =

Met) = [ w@p i =5 X )

1<i<N
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the particle £/ jumps to a new opinion & = ((1—¢€)&_ +¢€Y;') where Y} is chosen according
to the Markov transition

M(E o dy) = ) (e &) Sei_(dy).

1<j<N Z1<1<Nl‘9(ft &)

Solution to exercise 313:
For symmetric densities k(x, y) = k(y, x), choosing the multidimensional function f;(z) =
x we have

o) = / (v — ) wla,y) n(da)ns(dy) = 0.

/xnt(dx)z/ x no(dz) = 0.

In addition, choosing fo(x) = ||z]|?> = (x,z) we have

This shows that

dmlf) = & / ly — 2ll? x(xsy) mo(de)n(dy) — 2 / (x— g, ) £, y) me(de)n(dy).

By symmetry arguments, observe that

/ (& — y.) w(z,y) me(dy)mn(dy) / (v — 2,9} w(z,y) ne(dz)n(dy)
= —/ (x —y,y) k(z,y) n(dz)n(dy).

This yields

dmn(fs) = —e(1—o) / ly — 2l w(z,5) ne(da)ne(dy) < 0 = ne(fa) < mo(f):

This ensures the existence of the limiting second moment limoo 7¢(f2) < 00 as soon as

no(f2) < oo.
When x = 1 we have

Oume(f2) = =2e(1 =€) u(f2) = mu(f2) = e > o(fa).

In addition, for any Lipschitz function ||f(z) — f(y)| < |l — y|| using Cauchy-Schwartz
inequality we prove that

S AP = @), mlh)
/ (F(1 = Oz + ey) — F@))m()) me(d)m(dy)
ImO [ Ty ol mda)n(ay) < VE € )" (o(2)*.

IN

In the last assertion we have used the fact that

(/ ly — || m(dw)nt(dy))2 < / ly — =|* ne(dz)ne(dy) < 2 14(f2)-
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This implies that

oDl (= 0/TnlNIP) = 5 Trmr Al < V2 ™1 (1))

from which we conclude that

e (O < Do (NIl + (2m0(f2))"? € / e 1790 ds

0

o (F)l+ @no( )2 (1) (1—ee-01).

This ends the proof of the exercise. ]

Solution to exercise 314: A simple integration by parts shows that
omlf) = [ 1) dmulo) do
[ 1@ 0By p) do+ g [ 5(a) 02 (D, ) s
— [ Bu@) 210 o) dot 5 [ D2 (@) 020 pio) do = (Lo, ()

The nonlinear process X; with distribution 7, is given by the stochastic differential equation
dXt = BT,t (Xt) dt + Dnt (Xt) th

Here W, denotes the 1-dimensional Brownian motion. The N-mean field particle approxi-
mation of the nonlinear diffusion is defined by

déi = Byy(&) dt+ D,y (&) dW}
i = 1,...,N with ni\’Z%EmsW&i’

where W} = (W%7);<;<, stands for N independent copies of the r-dimensional Brownian
motion W;. Notice that

Bx(z) = a(/ ntN(dy)>=a % > lwew(E)

1<j<N

and

This shows that

{ dfi = 0‘(% Z1§j§N 1]—00,52](55)) dt+ﬂ(% Z1§jgN 1]—00,52](55)) AW}
i = 1,...,N.

This ends the proof of the exercise. [

Solution to exercise 315:
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We have

dXi = [agcyl X,) / B, Va( X, — ) nt(dx)} dt+ > oi(Xy) dW}
1<5<r
1 = 1,...,r

with n¢(dx) = P(X; € dx). The generator of X; is given by
L@ = Y [0t + [ 2uvate ) mian)| 0n.f(2)

1<i<r

+% Y (007)iy(@) Oups f ().

1<ij<r

The N-mean field particle approximation of the nonlinear diffusion is defined by
dé;

i = 1,...,N

aVl(ft) dt+ N Z OVa( ft ft) dt + o (&) th

1<j<N

where W} = (W%);<;<, stands for N independent copies of the r-dimensional Brownian
motion W;. As discussed in the beginning of section 16.1, the nonlinear diffusion can be
interpreted as a time inhomogeneous diffusion. Therefore, by (15.21) the density p;(x)
satisfies the nonlinear Fokker-Planck equation

d
1
atpt Z a J)t pt 5 Z 6@]‘ ((Jt(a—t)T),L’J pt)7
ij=1
with the drift functions
by p, () = 00, Vi (2 /5 Vo(Xy — x) pe(x) de.

This ends the proof of the exercise.

Solution to exercise 316:
Notice that

: 1 1 1
z+ pyyn(@) = T+ o1t \O/ Tir1+ g5 IN T
i—th
so that
i i T i i i 1 1 1
Pl/N(ﬂf) =po(z) +€ with € =(ef)igj<y and €= N Lizi = N N Li=

We recall the first order Taylor expansions

OEFCIEEDY /8mjfx+t (v =) (35 —a,) dt
1<j<N
= Z aﬁn]f _Ij)
1<j<N

- [/ (L= 1) By 4 1y — 2)) dt] (y — ;) (g — 0.

1<j,k<N
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This implies that

fla+ piyn () = fla + py(2))

= % ot gr 5 | [ 0000w ) af 6 q

1<j<N 1<5,k<N
—L Y o) - = Ot - Y /13 Pz + tph(2)) dt| z; €
- N . T N €T : 0 Ti,Tj ,00 (2 €j
1<j<N 1<j<N

1
+ Z UO (1= t) O, 2, f(x + ph(x) + te') dt] ¢ €,

1<j,k<N

from which we find that

> A@) (f@+ plyn(@) — fa + pi()

1<i<N

1 1
- (N 3 A(m) O f@) =5 D Mai) 0aif(@)

1<j<N 1<i<N 1<i<N

1
+ Z Az;) [/ (1= 1t) O, 0 f(x+ ply(z) + te") dt} e;- €l
0
We conclude that

LOH(@1,-nan) = G, o) = D @) O, f(x)

= > A {/01 gm_xjf(x + tph(x)) dt} i €

1<4,j<N

1
+ Z A(z;) [/o (1 —1t) O, 0 f (@ + po(z) + te') dt| €} ¢,

1<i,j,k<N
For empirical functions f(z) = m(z)(¢) = & Y1 <;«n ¢(zi) we have

1, 1,
az7f(x) = N ¥ (1']) and 8x],mkf(x) = 1j:k N ¥ (xj)

A simple calculation shows that

N[‘C - g] (f)(xl""va) = )‘(xl) (pl(xi)
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Observe that

Fl@+po(@)) = f@) = m(z + py(2)) () = m(2)(f) = 57 (#(0) = p(a")).
This implies that

G(Nx) = = D Aai) (p(0) = pah))

~
3
S
~—
—~
S
~
Il
=
S
~—

o) =g+ [a (= [ wn@)+ [ 2w o) ¢

At a rate A(X}), the process jumps from X; to 0. The resulting jump increment is given
by AX; = X; — X;— = 0— X;_. Between the jumps, the process evolves according to the
deterministic evolution equation

dX; =la (X; —E(X:)) + E(MXy))] dt.
We conclude that
dXy = [a (X; — E(Xy)) + E(MXy))] dt — Xi— dN

where N; stands for a Poisson process with intensity A(X;).
This ends the proof of the exercise.

Solution to exercise 317:
We have

nPm) = (V) = [ mide) Vi) [ [ )= ) mia)|.

This implies that
O (f) = me(Li,y, ()
with
Lin, (f) = Le(f)(@) + Vi(x) / (f(y) = f(2)) me(dy).

The nonlinear jump-diffusion process X; with generator L, ,, evolves as a jump-diffusion
model with generator L; between jumps times T,, arriving at rate V;(X;). At these jump
times, it jumps X7 _ ~» X7, to a new state X7, = x distributed with the probability
measure nr, (dx).

Using (16.5), the generator of the mean field & = (£])1<i<n associated with this model
is given for any sufficiently regular function F' by the formula

LY o). a™)
= Z Lgi)(F)(xl,...,xi,...,xN)—|— Z Vi(z")
1<i<N 1<i<N

x/[F(xl,...,xifl,y,x”l,...,xN)—F(xl,...,a:i,...,xN)] m(x)(dy),
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with m(z) := % Zjvzl 0,i. By construction, between jumps the particles evolve indepen-
dently as a jump-diffusion process with generator L;. At rate V;, the particles jump to a
new, randomly selected location in the current population.

This ends the proof of the exercise.

Solution to exercise 318:
Replacing V; by (—V4), the evolution of the normalized Feyman-Kac measures 7, is given
by
One(f) = ne(Le(f)) +me (fVe) — me(f)me(Va).

In this situation, we use the formula

e (Vi) —ne(f)me(V2) = /m(dx) [/ (f(y) = f(x)) Vily) n:(dy)

This implies that
One(f) = ne(Ley, (f))
with

Lo () = Lo(f)(@) + / (F) — F(@)) Vily) mi(dy)-

The nonlinear jump-diffusion process X; with generator L, ,, evolves as a jump-diffusion
model with generator L; between jumps times T, arriving at rate V;(X;). At these jump
times, it jumps X7, ~» Xp, to a new state X7, = z distributed with the probability
measure N, (dx).

Using (16.5), the generator of the mean field model & = (£)1<;<n associated with this
model is given for any sufficiently regular function F' by the formula

L (F)(z, ..., 2™)

t,m(z)
=Y LOF) a2 Y mia) ()
1<i<N 1<i<N
; Vi(y) m(x)(dy)
X Fxlu '71,7, y Y 17 7xN —F‘"El, ,1'7', ) N !
with m(x) := % Zjvzl 84i. By construction, between jumps the particles & = (&)1<i<n

evolve independently as a jump-diffusion process with generator L;. At rate m(&;)(V;), the
particles jump to a new location in the current population with distribution

Uy, (m ="—— 0. (dy).
1;N Z:1<J<N 1(&7) ¢
This ends the proof of the exercise.
]
Solution to exercise 319:
Take empirical test functions of the form
1 & )b f 1 o1 .
F(x) _ N Z or each xed (:Cl) n N Z f(xj)

1<jiKN
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Recalling that L(1) = 0 for any infinitesimal generator, we find that

LY o)t ) Ltmm Z fah) 19 (1)
1<J7/<N T

= Lot (D).

This implies that
Lo(F)(zt,. .. 2N) = % Lt,m(z)(f)(xi) =m(z) (Lt,M(m)(f)) :

In much the same way, we have

L, (FF) (@) = Lo[(F-F@)?] (@)
1<Z<:NLEfZ"’(x) (F - F(xl,...,.rN))2 (zt,... z).

Notice that

1 N 1 N . .
fNfoJ )= F(y) — F(x) = NZ(f(yJ)—f(xJ))

j=1 j=1

and for any fixed z we have

This implies that

Te, (FF) (@) = > LY (Gt a")
1<i<N
_ % > Lt,m(z)((f_f(xi))Q)(ggi>:%m(.r) (Tpy i (. 1))
1<i<N

This ends the proof of the exercise.
Solution to exercise 320:
Using (16.10) the Bolztmann-Gibbs measures

1 .
t — 7, (dx) = Z, e PV \(dx)
t
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on R?, coincide with the Feynman-Kac model

pis, (1) = m(f) = w(f)/w(1) with wuw—EQuwem(A%ua&mﬂ).

In addition, we have the exponential formula

t
exp (—/0 B ns(V)dS) = Zp,/ 25,

On the other hand, using the Feynman-Kac jump interpretations developed in section 16.1.3,

we have
d

%Ut(f) = (Lt,n, (f))

with the generator

hmuxw=LﬂﬂwwH%vw>/(ﬂw—fm»mww

In the above display, L = —f5; VV - V 4+ A stands for the infinitesimal generator of the

Langevin diffusion
dX; = —B; VV(X3) + V2 dB;.

Using (16.12), the infinitesimal generator of the N-mean field particle model & := (£})1<i<n,
is given

LY o). a™)
=3 LOE)E,. ) Y BV
1<i<N 1<i<N

x/[F(xl,...,xi_l,y,xi+l,...,xN)—F(xl,...,mi,...,xN)] m(z)(dy).

Between the jumps, the particles ¢} follow independently the same evolution as the
diffusion X; with generator L§. At jump times 7, occurring with the stochastic rate
1 Vi(&r), the i-th particle f%}@— ~ f}ﬁ jumps to a new location, say ngi; = y, randomly
chosen with the distribution m (&7:_) (dy) = + i<i<n §JT:L_(dy).
This ends the proof of the exercise.
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Solution to exercise 321:
We apply (17.6) to the functions

b(z) = —(a+Bx) and o*(z) =172

In this situation, we have

© b(y) _ B[, 2 B
2/0 2y Y = T <2ﬂy+y> W=

We conclude that the Gaussian distribution

dz

() = \/ﬁiw exp [Ti (:v + 2)2

is the invariant measure of the diffusion (17.25).
This ends the proof of the exercise.
|

Solution to exercise 322: Notice that X; = 0 is a solution of the Landau-Stuart
diffusion process (17.26). Therefore, starting with Xo = x¢ > 0, the solution will remain
positive, so that X; € S = [0, oo[ for any Xy € S. We apply (17.6) to the functions

2

bz)=az(1-2%) and o(z)=V272 = o*(z)/2=r"a>

Observe that

|2

[ = 5[]
a (log(m)—;(x2—1)>.

ﬁ
This implies that

e e 2
m(dr) < 1g(z) 722 €722 © du.

This ends the proof of the exercise.
]

Solution to exercise 323: We apply (17.6) to the functions
b(z)=—(a+Bx) and o*(z)=12+px

for some parameters («, 8,7, p), with a < 0, and 3, p > 0. In this situation, we have
2

2 rpr>0 &= xS :=[m,+o0] with m == ——.
p

1087
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The corresponding diffusion is clearly given by the square root process (17.27) In addition,
for any y > m we have

bly)  Byta/B_ B
a*(y) poy—m p

[Hm*“/ﬁ].

y—m

This implies that

° )
2 /ere 02(9) dy

23 2p
==, l@=m)+(m+a/f) log(@—m)]+ == (e+(m+a/f) log(e))
for any € > 0. Using the fact that U%(m) o (r —m)~!, we conclude that the invariant

measure is given by the shifted Gamma distribution

m(dx) o 1, o () e~ vi(@—m) (x — m)”’*1 dx

=B (e ) 228 (lel 72) =20
vy = 5 (ﬁ+m>_p <ﬁ+p and 1/1.—p(>0).

The refined analysis of general square root diffusion processes of the form (17.27) is rather
technical, thus it will not be discussed in this book. For |a| > fm + £ it can be shown that
the state m is unattainable. Otherwise it acts as a reflecting boundary [160].

The particular case (o, 3,7, p) = (—2,2,0,4) has been worked out in exercise 262

with

|
Solution to exercise 324:
Notice that the centered process Y; = (X; — m) satisfies the diffusion equation
dYy = (v — BY:) dt + +/pY: dW, with ~:=|a| — Bm. (30.34)

Let us suppose that v = np/4, for some integer n > 1. We consider a sequence U; =

(Ut(l), ey t(n)> of n independent Ornstein-Uhlenbeck processes of the following form

Vi<i<n dU® = —g Ul dt + ? aw?
with n independent Brownian motion Wt(i). If we set Z, := ||U||* = Zl<i<n(Ut(i))2, then
we have o

d (Ut(i))2 — (g _ 3 (Ut(i))z ) dt+/p Ut(z‘) th(z')

from which we conclude that

(@)

- _ U ;

47, = (% - ﬂZt) dt+\/p Z, dW, with dW,:= 3 \/t? aw .
1<i<n t

Arguing as in exercise 254, we check that W, is a Brownian motion. This shows that

Y%7 and X'+ 2
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This ends the proof of the exercise.

Solution to exercise 325: We apply (17.6) to the functions

b(z) =—(a+Bz)=-0 <x+ g) and o?(z) =712 (x—7) (y2—x)

for x € S := [y1, 2] and some parameters (a, 8, 7,71,72), with 73 < v2 and a4+ 871 <0 <
a + B72. The corresponding diffusion is clearly given by the Jacobi process (17.28).
In this situation, we have

2y) _ 28 y+a/b
a?(y) 2 (y—m) (2—y)
28 [m+a/f 1 +72+04/5 1

2 T2—7 Y— N Y2—71 V2 Y

This implies that

T 2b(y) Y- Yo —Y
dy = ap log————=+py log———
/ ()" 0 8 T T G
with
040~:—3 atbn g ﬁo-zziﬂ%—HX
T2 o —m 2 -’

from which we conclude that 7 is given by the Beta distribution

w(de) o« 15(x) o~2(z) exp [/x 20(y) dy] dz o (H>a°_1 (72”)60_1 dz

niv 0(y) T2 N T2—N

2

for any = € S. For instance, for

(y1,72) = (0,1)  B>0 —%:me]O,l[ and 72 =28y with v >0
we have a+ 8y =a<0and a+ 8y =a+8=5(1—-m)>0
1—
cm::ﬂ and ﬁozzl.
v v

When (a, 8) = (0,1), 72 = 2 and (71,72) = (—1,1), we have
S:=[-1,1] and a+pyn=-1<0<a+py =1

In this situation, the diffusion process X; on S = [—1,1] is defined by

dX; = — X, dt +/2(1 — X2) dW,

and its generator is defined by

Lf)(@) = -z f'(&)+ (1—2?) f"(z) =VI—22 0, (\/1 — 22 8If> . (30.35)

In addition, we have 7(dz) o 1g(x) (1 — 22)~*/2. The r.h.s. formula in the above display
can be checked directly or can be proved using the general Sturm-Liouville formula (17.7).
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When (a, 8) = (0,2), 72 = 2 and (v1,72) = (—1,1), we have
S:=[-1,1] and a+py=-2<0<a+py =2

In this situation, the diffusion process X; on S = [—1,1] is defined by

dX; = —2X, dt +1/2(1 — X2) dW,

and its generator is defined by
L(f)(x) = =22 f'(@) + (1—a?) f'(x) = 0, ((1—2?) Ouf). (30.36)

In addition, we have m(dz) = 3 1_1,1)(x). Here again, the r.h.s. formula in the above
display can be checked directly or can be proved using the general Sturm-Liouville formula
(17.7).

This ends the proof of the exercise.

Solution to exercise 326: We apply (17.6) to the functions

b(m)—(a+ﬁx)—ﬁ<x+g> and o(z) =Tz

for some parameters (o, 8, 7) with 7 > 0 and o < 0. The corresponding diffusion process is
clearly given by the equation (17.29). In this situation, we have

/1 a?(y) W 72 a/l y? dy+ﬁ/1 ydy
= _Tg (a (1—i)+ﬁlogm).

This implies that the invariant measure is the inverse Gamma distribution

no

3

(dz) o 15(z) o~2(z) exp Uj j’;igdy] dr o 1s(z) (i)zgﬂ exp <2O‘ 1) dz.

This ends the proof of the exercise.

Solution to exercise 327:
We apply (17.6) to the functions

b<x><a+m>ﬂ(z+g> and o*x) =72 (x+m) (z+7)

for some parameters («, 3,7,71,72), s.t. /B <1 < 72 and 23+72 > 0. The corresponding

diffusion is clearly given by the diffusion process (17.30) on S :=] —~1, co[. In this situation,
we have

2b(y) _ 28 y+a/p

a(y) ™ (y+m) (r+y)

26 [12—5 1 +%—71 1
2 -7 y+tr Y-mn ntyl
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This implies that

_ T 20(y)
2
m(dz) o lg(z) o7 %(x) exp {/1 () dy] dx
1 ~2 (1A L2 B
x 1,5‘(.23) (‘r+’>/2) ! ( ” ’Yl) (33"'71) 2 72— dx.

T+

This formulae can be rewritten in the following form

di/2 da/2
m(dr) o lg(x) 1 ( r+m ) <1) dz,

T+ z+y1+0 z+y1+0
with N
b= dij2= 2 T8 S0 and dy2=1+20 50,
T 2N T
If X denotes a random variable with distribution 7, then ¥ = Z—f (%) is distributed

according to the Fisher distribution

1 dly >d1/2 ( d2 >d2/2
P(Y € dy)  ligooy(y) = [ —2Y _ 02 dy.
( ) o< Ljo.00((¥) Yy <d1y+d2 diy +ds 4

For instance when

(71,72) = (0,1)  B>0 —%:m>0 and 72 =28y with v >0
we have S :=]0, co[, as well as o/ = —m < 7; = 0 and 28 + 72 > 0. In this case, we also

have 1
dy/2 = %>o and dy/2= 14> >0.

This ends the proof of the exercise.

Solution to exercise 328: We apply (17.6) to the functions
b(z) = —(a+Bz) and o*(z) =7 ((a+ B 2)° ++7)

for some parameters (a, 8,7,7)), with 8 > 0. The corresponding diffusion is clearly given
by the equation (17.31). In this situation, we have

26y) 1 28(a+By 1 oo (o 2, 21\
2w ~ P (arBapr) g (eler st

This implies that

n(dr) o 1g(x) o %(x) exp {/OT 32((3))

(Er1)
a\ 217" 2z
x + E
1+ =
v

This shows that 7 is a Student’s t-distribution 7' (n, v, —%) with a scaling parameter v, a

dy] dr o [(a+p x)g-s—yz]*(r%/ﬁl) dx

X

2 _ K+l
1 $+% 2 ith 1 2
—+ ~ w1 R = +%

tail index k, and a location parameter —%. This ends the proof of the exercise.
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[
Solution to exercise 329:
We have

H, (z) := H,(h(z)) = H, (z) = H, (h(z)) ¥ (z) = H, (h(z)) = H, (z) /I ().

Therefore
2 (1')*(x) h(z) H;,(h(z)) = 2h(x)h' (z) H,, () = (h*)'(z) H, (z).

On the other hand, we also have

H, (@) = H;(h(@)) (W (2))* +H,(h(x)) 1" (z)
= Hj(h(x)) (W (2))® +H, () B"()/W (@)
= Hj(h(x)) (W (2))® +H, (z) (logh')' ().

This implies that

=

H;j(h(z)) = (W ()2 |H, (z) —H, (&) (logh')’ (x)|.
By (17.20) we have
H, (h(x)) — 2h(2)H,, (h(z)) = —2n Hy (h(z)).
In terms of H,, this can be rewritten as
()2 [, - (h +10g 1) H,| = —2n H,.

We conclude that

Lh(ﬁn) =—-2n En

with the generator

Lu(f) == (W) Lp(f) and Ly := " — (h® +logh')" f.

By (17.5), the reversible probability measure 7}, of Ly, is given by

/ 1 .
mh(dx) o e~ (WiHlog h) g — W) e @) gy,

Using (17.3), the reversible probability measure 7, of Ly, is given by
Tn(dz) oc (B (2))? mp(dz) o« B (z) e " @ da.

The claim that 27/2v/n!H, forms an orthonormal basis of Lo(7),) is a consequence of the
fact that

/ﬁn(x) Hy () Tn(dz) o /Hn(h(x)) H,, (h(z)) B (z) e @ d

= / H,(y) Hon(y) e dy = Lney 2"n.
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Applying this result to

1093

h(z)_\/z (erZ) = h’(:c)—\/g and Lh:—jg(;02 " = (az +) f’>

we have

2
LN =2(50 1" v )= (S 12 (s+7) 7).

We conclude that the reversible probability measure of any of the generators Ly, L;, or

1
L(f) == (ax+b) ['+5 o* f"
is given by the Gaussian distribution
mh(dz) = Tp(de) = n(dx) == | — e = dx.

In addition, we have

L(H,) = —2n - H, = —na H,.

e

This implies that R R
L(H,,) = —na H,

with the orthonormal sequence of polynomials in Lo (7) defined by
o n/2 a b

H, (z) :=2"*V/n! H, — (z+-))-
ag a

This ends the proof of the exercise.

Solution to exercise 330:
Observe that

m
t=t, =——=1—t=1— = = =
T m41 m+1 m+1 ~1—t¢

This yields

e = (1= ) D Sy, (2) = (1= ) D Y L) 2.
n>0 ’

The Sturm-Liouville formula

L(f) =27 e 0, (2T 7" 0,(f))

is a direct consequence of (17.7) applied to o?(x) = 2z and b(z) = ((a + 1) — z).

Also notice that Ip(z) = 1. We have

xt 1 xt z
- =z (1-— - =— .
1—t x( lt) éat( 1t> (1—1)?
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Therefore
— 2t —(a —(a z
Si(z) = e 11 {(a +1) (1 —t)~@+) (1 —¢)~(aFD i t)2]
xt 1 xr
— e 12t (1 — )" (at2) 1_L - 1 )
e -t (1—1¢) o+ 1 T o+ T Se(x)
This implies that
(1 —1)% 9S(x) + (x — (a+1)(1 — 1)) Si(z) = 0. (30.37)
On the other hand, we have
t _ _xt t
Si(z) = 0,8 (z) = 14 (1—t)~let) emr=r = 13 St(x).
Therefore
(1—1t) Si(z) +t St(z) = 0. (30.38)
Using (30.38) we have
n+1
> T(x) (1- t + oL '
n>0 n>0
In other words, we have that
tn+1 , " , tn+l

n>0 n>0 ’ n>0

from which we conclude that
1= +1) (I, -L) <= (n+1) I, —Tg1) = (n+ 1), (30.39)
On the other hand, using (30.37) we have

(1 =2t +12) 3,S¢(z) + (z — (a+ 1)) Se(z) + (a+ 1)t Si(z) =0

I

n

=(1-2t+1t%) 2n>0 Iny1(z) i

tw+1

+a—(a+1) X L@ S+ (a+1) ¥,50 (n+ D(2) gy

= (1 — 2t + t2) ano Hn+1 (.’L‘) %

n

= (a+1) Y,so Inl2) G+ (a+1) sy nlaa(@) &

n

=1 =2t+¢%) 3,50 Inpa(z) 5

n

(@ —(a+1)I ( )+ Yoz (@—(a+ 1)) Li(@) +n(a+ D () -
:1
Using the fact that
(1=2t+¢%) Y Tnja(w ti: = > L) %—Z onl, (z) —

n>0 m: n>0 Ton>1
n

—1—2 (n—1I (x)%

n>2
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we check that

I +1(x) — 2nl,(z) + n(n — DI,—1(z) + (2 — (e + 1)) L, (z) + n(a+ 1)L, —

=@+ @—(a+1)=2n)I,(x)+ n (n+a)L,_1(z) =0

=z—(n+1)—(a+n)

for any n > 2. From the above decompositions, we also have

Li(z) =((a+1) —2)
and
I(z) —2Li(z) + ((z — (a + 1)) Ii(z) + (a + DIo(2)) = 0
= Iy(z) = (x—(a+1))z—2(x—(a+1))—(a+1)
= (z—(a+2)" —(a+2).
This yields

aln(z) + (n+ @) (nLio1(z) = In(2) = (n+1) In(2) — Inyi(2).

Taking the derivative w.r.t. z, using (30.39) we deduce that
L,(z) + 2l (z) + (n + a) nl,—1 = (n+ 1)L, (x)
<~ (n+a) nl,—1; =nl,(z) — 2, ()
— zl (z)+ (n+a) (nl,—1 —1I,(x))+ al,(z) =0.
Taking once more the derivative w.r.t. = we have
I (z) + 2l (z) + (n + «) nl,—1 + ol (z) = 0.
Finally, using (30.40) we conclude that
I, () + 2T (2) + nly(2) — o1, (x) + oL, (z)

=zll'(x) + (a+1) —2) T (z) + nl,(z) = 0.

We consider the Gamma distribution

m(dx) = Ljo,o0f(z) 2% ™" du.

1
I'a+1)
We have

s™ tn

T(SeS) = > w(lady)

m! n!
m,n>0

INa+1)
(A=A =)D > ey
/o

Nla+1

)
_ ((1 — t)(l — 5)) (et1) OO 7m — t 1 B
= (a n 1) /0 T=t(d—s) )( ) % dx.

1—t)(1— (af1)  proo
_ (=D =9)" / T o= g o gy
0

% dx

1095

1(2))

(30.40)
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The last assertion follows from the fact that

t s 1 s (I—s)+s(l—t) 1—st
11—t 1-s 1—-t 1-s  (1-t)1-s5)  (A-t)(1-s)

Changing the integration variable

1w 1-0-s) a-n-s)
A TR e L 2 e g

we check that

O — N (1 — (1 — s)\ e oo
T (SsSy) = (@=9 )~ <(1 H )) /0 eV y*dy

INa+1) 1—st
B 1 B MNa+n+1) n
T sty ; TatOrmeD o0

The last assertion follows from the fact that for any u # 1 we have

a+1

1\ Pla+n+1)
= " " 41
<1—u> gu Fa+1 n—i—l)u (3041)

We check this claim by using the fact that

8“(11u>a+1 = (a+1) (11u)axa“<11u>:(a+1) <11u>“+2

%(1iu)M4 - m+¢>@(liuyw2=«»+nm+a>(liu)Hi

and by a simple induction

. 1 a+1
% (=)

This yields

(@+1)(a+2)...(a+n) <1_u>a+n+1

F(a+n+1)( 1 )a+n+1u£0F(a+n+1)
I'(a+1) I'(a+1)

1—u

S e S0 OFRED (o

oo I‘a—|—1 (n+1)

from which we conclude that

MNa+n+1)I'(n+1)
Ia+1) '

™ (]In]lm) == ]-m:n

This shows that

I'a+1) I
Ia+n+DI(n+1) "

is an orthonormal subset of Lo(7). A simple induction shows that

I,(z) — (—1)" 2™ = a polynomial of order (n — 1).
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Therefore to check that the normalized Laguerre polynomials are a dense subset of Lo (7)
we use the same arguments as the ones we used on page 491 to prove that the Hermite
polynomials form a Schauder basis.

Using (30.41) we have

=L (a+n+m)(a+n+(m—1))...(a+n+1)

(—xt)™ MNa+m+n+1)
Six) = Y tm
noZe M FNa+n+1DI'(m+1)
(—axt)F tm
> I (@+k+1) Pl
km>0 | 1<i<m
On the other hand, using the Leibniz formula
n!
or = — Oy " f O 30.42
"(f9) O;;n oyt %O (30.42)
we have '
n —x n+al __ n: n—m; @, —x m n+a
0<m<n
Recalling that
0rMe) = (<) and 9 (@) = | [[ (atn—p)| avF0m

0<p<m

H1§l§m(a+(”_m)+l)

we check that

| _ o\ (n—m)

x —aqn —x _nta\ __ n: ( J,‘)

e” xm0) (e a"tY) = g — || (a+ (n—m)+1) NoEy
0<m<n 1<l<m

and therefore

Ze’” x~ %0y (e_x x”+o‘) % = Z Z H (a+k+1) tm (—a?t)k.

! ml k!
n>0 m>0k(:=m—n)>0 1<Ii<m

This implies that
I,(z) =€ a7 %0} (e " a™*?).

This ends the proof of the exercise.

Solution to exercise 331:
Using the fact that

ﬁ = Z (teit‘))n — Z (cos (n#) + isin (nd)) t"

n>0 n>0
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and

1 1 (1 —tcos(0)) + itsin (6
2

1—te®  (1—tcos(f)) —itsin(f) (1 —tcos(h))?+ t2sin’(
by taking the real part, we check that

)
6)’

n_ (1 —tcos(9)) (I —tcos(h))
T;) cos (nf) t" = (1 —tcos (0))% + £2(1 — cos? () =1 2% cos OERz
This shows that
Z cos (nf) t" = Z Ti(cos @) t" = T, (cosf) = cos (nh).

n>0 n>0
Using the change of variable

1
x=cos(f) = dr= —sin(d) dd = —— dax = —db
) O ==
it is readily checked that 7 is the probability distribution of cos © where © is an uniform
random variable on [0, 7].
This implies that

/ w(dz) Ty, (x) Ty (z) = % /07T T, (cos8) T,,(cosb) db = % /07T cos (n#) cos (mé) do.

Recalling that
cos (01 4 02) = cos (01) cos (02) — sin (01) sin (f2)
we readily check that

cos ((n +m)@) — cos (n — m)h)
5 .

cos (nf) cos (mb) =

On the other hand, we have

1 g 1
g A COS ((n + m)@) d@ = m

[sin ((n +m)#)]5 =0
and for any m # m

1 i 1 . ™
o J, ((n—m)f) db = I —m) [sin ((n —m)6)]y = 0.

For n = m we also have

This implies that

/ m(dx) Tp(z) Tr(z) = len %

We conclude that v/2T,, forms an orthonormal subset of Ly (7).
For instance, we have

To(z) =1 Ti(z) =2 and Ty(z)=22>—1.
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The r.h.s. formula follows from
cos (20) = 2 cos® () — 1.
In the same vein, it is also readily checked that
ey o(n=1)if — onif (10 1 ¢=10) = 2 cos (6) cos (nf) = cos ((n + 1)8) + cos ((n — 1)8).

This implies that

2Ty (z) = % (Trpi1(x) + Tpo1(x)) (and aTo(z) = T1(z)).
P = aTi(@) = 1 (Ta(e) + To(a))
2 = z(xTy)(z) = % (2To(z) + 2To(x))

= % (; (T3(z) + Ty(z)) + Ty (95))

= a(x(zT))(z)) = % <; (2T3(x) + 2T (2)) + x'ﬂ‘l(m’)>

= 3 (5 (5T + Ta) + § (Talo) + Ta(e)) ) + 5 (Talo) + Ta(o)) )

A simple induction shows that

" = Z ak,n Tr(z).

0<k<n

Therefore to check that the normalized Tchebyshev polynomials are a dense subset of Ly (7)
we use the same arguments as the ones we used on page 491 to prove that the Hermite
polynomials form a Schauder basis.

Finally we have

g (Tn(cos (0))) = = (82Tn) (cos () (sin (9))

and
83 (T, (cos (0))) = (ang) (cos (0)) (sin (0))% — (9, T,) (cos (8)) (cos ().

Recalling that
T,.(cos (8)) = cos (nf) = 03 (T, (cos (0))) = —ndp (sin (nh)) = —n? cos (nh) = —n? T,,(cos (6))

we conclude that
(1 —2?) O*T,(x) — 2 9, T, (x) = —n*T,(x).

Finally, using (30.35), we also have the Sturm-Liouville formula

—/1—220, (\/ 1— 22 @;Tn(m)) =n’T, ().

This ends the proof of the exercise.
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Solution to exercise 332:
Notice that

oy, = % R, o antRg,. (30.43)
On the other hand, we have .
J(x) = —2nz (1 -2 = (1—2%) J,(z) + 2nzJ,(x) = 0.
Thus, using the Leibniz formula (30.42) we check that

R ((1—2?) Jp(x))
n+1 ntl)—
— Zogk§2 ( N ) 35(1 _ x2) 53(3( +1) kHlJn(x)

=(1—22) 0" I, (2) — 22(n +1) 0"V T, (2) — n(n + 1) 9T, ().

In much the same way, we have

ot 2nad,(x)) = 2n Z (n;{f—l ) Okx 9\t V=R) g ()
0<k<1

= 2nx OV, (x) 4+ 2n(n + 1) 87T, (x).
This implies that
o (1 —2?) J,(z) + 2naJ,(z))
= (1-22) 0" J,(2) = 22(n +1) 0" (2) — n(n + 1) 9 J,(2)
(n+1) n
+2nz Oy Jn(x) 4+ 2n(n+ 1) O, (x)
=(1-22) 0" P, (z) — 22 0" T (2) + n(n +1) 9T (z) =0
and therefore
(30.43) = (1 —2*) J/(z) — 22 J,(x) = —n(n + 1) J,(z).

Using the Leibniz formula (30.42), for any k < n we have

oha(e) = o1 = 5 (] ) a1 ok

0<I<Kk
— Z k! n!? (:L' _ 1)n7l (.’E + 1)7’0*(]67[).
0<i<k Uk =D (n=Dln—(k=D)!

The last assertion follows from the fact that for any & < n we have

n! n!

oz —1)" = =) (x—1)""% and Of(z+1)" = =R (x4 1)"F,

This clearly implies that

Vk<n  OFJ,(—1)=0"],(+1) =0.
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Thus, for any n > m using a simple integration by parts we find that

Sy on (@) 00 () de

= [077 1 T () 8;”Jm(m)]1_1 — f_ll o=, (x) 0L, (2) dx

= f o=, (x) Om L, (z) dz

= (=12 [1 0r 2T, (x) 92T (2) de = n L a(e) 9Pt (2) da
Recalling that J,,,(z) is a polynomial of degree 2m we have

Vn>m(=m+n>2m) 9", =0 and 0?"J, = (—1)™ (2m)..
This shows the orthogonality property
vm#n  7(Jmds) =0

For m = n we have
1 ! (2n)! !
2 2 .

With the change of variables

1
y:x; = der=2dy (zx+1)=2y and (z—1)=2(y—1)

we can easily see that
f_ (1—2)" (1+2)" do = 22"+ fol y" (1 —y)™ dy

— 92n+1 (gﬁfm (< Beta distribution with parameters (n + 1,n +1)).

Hence we conclude that
1

2n+1°

m(J5) =

Since any monomial ™ can be described in terms of Legendre polynomials, the completeness
of the Legendre polynomials can be proved using Weierstrass approximation theorem that
states that the set of polynomials on [—1,1] is dense in Ly(7).

By construction we have

) ==aty = 35 (1) (apm e,

Recalling that
8’;%7” = 1m2k (m)k {E(m_k)

with the Pochhammer symbol representing the falling factorial

mg:=mm-—=1)...(m—(k—1)) =m!/(m—k)!,
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we check that

@ = X () GO damsn (2 ), 20

0<m<|n/2]

This implies that

N L@t = Y| Y dmaem@)]|

n>0 n>0 [0<m<|n/2|
with the polynomials

YOo<m<gq Jmq(x) = = S;]!)!q! " (;;gm (2z)17™.

Changing the summation order with the summation indices p =n—m > 0and m > n—m =

p we have
YD dmaem(@) I =N N G () 2T

0<n 0<m<|n/2] m>0 0<p<m
This yields

Z Jn(z) t"

Z Z (Zm)! (;zlnzp (2x)m—;v tP ™

— ) m! p!
n>0 m>0 0<p<m (m p)' mep:
(=)™ (2m)! m! e
= > 22m 2 > (m — p)lp! (=2a)™ 70 2
m>0 : 0<p<m o
(=™ (2m)! . )
= Z ug(x)™  with  w(x) = t° — 2xt.
2m 12
=50 2 m!

We recall the binomial formula

L+u)*=) (;2) u™  with (2‘1):(?2;"

m>0

which is valid for any a € R. In the above display («),, stands for the extended Pochhammer
symbol

(@)m i =a(a—1)...(a = (m—1)).
Notice that

a=—1/2 = (a)m = ()" ;1(;+1)(;+2)‘..(;+(m—1))
= ()7 g (X35 (14 2(m— 1))
1 (2m)! 1 (2m)!

|
—

|
_
S~—"
3

= (-1

2m 2 x4 x ... x2m 22m )

Using this formula, we have

N

(1 +w(z))”

=y O By = 3 B .

m!
m>0 n>0

This ends the proof of the exercise.
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Solution to exercise 333:
We consider the 1-dimensional diffusion given by

(X, =bdt+ dW, and Xo=W,=0)< X; =bt+ W,

for some given parameter b and a Wiener process.
We fix a time horizon ¢ and we set X = (X)e[0,g and W = (W)se(o,4- Using the
Cameron-Martin density formula (18.9) we have

2
P(X € dw) =exp [b Wy — % t} P(W € dw).

Equivalently, the Girsanov theorem yields the integration formulae

E {F ((WS)SE[O,t]> Zt(b)} =E {F ((Xs)se[o,t]ﬂ =E [F ((Ws + bs)s€[07t]>:|

for any function F on the path space C([0,t],R), with the change of probability measure

b2
Zt(b) = exp [b Wi — 5 t] = dZt(b) = Zt(b) b dW;.

This clearly implies that Zt(b) is a martingale w.r.t. F; = o(Ws, s <t). We can also check
the martingale property using the fact that

2
Vs <t Zt(b) =Z® x exp [b (Wt—Ws)—% (t—s)}

Recalling that (W; — Wy) is independent of W, and (W; — W) is a centered Gaussian
random variable with variance (¢t — s) we have

E (z§b> | ]-‘S) 70 x E <eXp [b (W, — W) — i (t— s)} | ]-‘s)

2
ZW < E <exp [b (W, — W) — % (t — S)D .

=1

This ends the proof of the exercise.

Solution to exercise 334:
Using exercise exercise 223 we have

E {F ((XS)SG[O»t]) | X = I} =E [F ((UWs)se[o,t]) | oW, = x] .

1103
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This implies that

E [F ((XS)SE[O,t])}

:/ E [F ((XS)‘se[o,t]) | X = x} rlra% e 3o (T gy

2

]. 1 1 2
E [F( oWs), ) oWy = x] e BT .z (2wb=b7t) g
/ ( ) €[0,t] ‘ t Gy

bWy

) & [F ((O’Ws)se[o,t]) eT} '

This ends the proof of the exercise.

e

:e_%(

.
Solution to exercise 335: Observe that
E[F ((X)e0n)] = 2 E[F ((0 W) 0) ()7,
Replacing F ((X,),c0,) by
F((X)se0) X exp (- (:2) (X; —bt) — % (3>2>

and recalling that oW, = (X; — bt) we find that

E[F ((Xo)sepn) o - () We— 5 (2)°]]

= 1) B[F ((0 Wo)yepq) o0 (= (&) @Wi—bt) = £ (£)" + (&) oWi)]

—E[F (0 Wo)yep0)] -
This ends the proof of the exercise.

.

Solution to exercise 336:

Following the remark at the end of section 18.2.3, the exercise is a direct consequence
of theorem 18.2.2.

This ends the proof of the exercise.

Solution to exercise 337:
We set
X' :=E(ZX|G)/E(Z|G).
In this notation, for any A C G we have
E (1a X') = E(la Z X')

EE(1aZ|G) X')=E(1A1E(Z]|G) X')
= E(1a E(Z]9) E(ZX|G)/E(Z]9))

E(la E(ZX|G)) =E(E(ZX14|G)) =E(ZX14)=F (X14).
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This implies that
E' (X|G) = E(ZX|G)/E(Z|G).

This ends the proof of the exercise.

Solution to exercise 338: The process Y; is a particular case of the diffusion process
(18.8). In our situation we have

by)=x=dY,=zdt+dV;, < Y, =at+V,.

Using the time inhomogeneous version of (18.11) (discussed in the end of section 18.2.3) we
have

t 1 t
B (F () o (= [ hoavie g [n2as)) =B (W),
0 0
We observe that
dYs = hsds + dVj

= oxp (= [y he Vs — 3 [y h2 ds) =exp (= [y he dY, + 3 [y h2 ds).

Using (18.10) we also have

B(F (Vo) =B (F (V) e ( [ o avi- / ‘2 ).

This ends the proof of the exercise.

Solution to exercise 339:
Observe that

LE) = 3 (L)~ Lik) Qulk.d) = Qulk,i) — Li(k) M(k)
1<j<n
with

M(k) = > Qu(k, ).

1<j<n
This yields
m(Le(1) = D me(k) (Qulk, 1) = Li(k) Me(k))

1<k<n

(:Q¢) (3) = ne(D)Ae(8) = (e [Qr — diag(Me)]) (4)

with the diagonal matrix

(1) 0 - 0 0
diag(X¢) = : :
0 0 -+ 0 X\(n)
On the other hand, we also have

ne(Li(he — ne(he)) = me(3) (he(i) — ne(he)) = (mediag(hy — me(he))) ()
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with the diagonal matrix

he(1) —=me(he) O - 0 0
diag(hs — ne(he)) = : :
Using (18.25) we find that

dne(i) = (ne [Q¢ — diag(\e)]) (¢) dt + (mediag(he — me(he))) (i) 072 (dYy — ne(he)dt),
with the vector and matrix notation

hi(1)
ne(he) = [ne(1), -+ me(n)] : = D m(i) huli)

ht (’I’L) 1<i<n
and

Qi(1,1) - Qu(1,n)

mQr = ["715(1)’ T 7nt(n)] = [(ntQt)<1)v T (ntQt)(n)] :

Qi(n,1) -+ Qi(n,n)
This implies that
dne = 1 [Qr — diag(\e)] dt + mediag(he — me(he)) o7 % (dYy — me(he) dt).

This ends the proof of the exercise.

Solution to exercise 340:
We apply the filtering equation derived in exercise 339 to the situation

0 1 .
Qt =A [ 10 :| = dlag()\t) = A X IQ><2

and

hi(z) =« = n(he) = (1) = diag(he — me(he)) = { " gt(l) 1- ?Yt(l)

In this case, we have

w1Q: = ding0)] = A < O] | 51 | =k i) = 0 00) - 1)

and

0—m(1) 0

nediag(hy—n:(he)) = [17:(0),7:(1)] [ 0 1—n(1) ] = [=7e(0)ne (1), m (1) (1 = m(1))] -

This implies that

dne(1) = X (1 —2n:(1)) dt 4 n:(1)(1 —ne(1)) (dY; —ne(1) dt)
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and
dne(0) = A (1 —2n:(0)) dt —n:(0)(1 —n:(0)) (dYs — (1 —m(0)) dt).

This ends the proof of the exercise.

Solution to exercise 341:
Using (18.27) we have

{ iX, = (A X’tm) dt + P, (C/o3) (d}/}—(C’)/(\'tJrc) dt)
0P, = —P?(CJo3)?+2AP; + 03,

with the initial conditions (X, P,) given by the mean and covariance matrix (E(Xy), Py)
of the initial condition Xj.

e When C' = 0 the signal and the observations are independent. In this situation, the
Kalman filter resumes to

(X0 P = (E(X), Var(x)) = %0 = (4 %+ j) dat
6tPt = QAPt + o7.
The solution is given by
N N t
X, = et {Xo +a / e As ds}
0
= MR+ 3 (1me )] =t Zy+ S (e - 1)
and
t
Pt = €2At |:P0 + O'% / 6_2AS d8:|
0

2At U% —2At 2At U% 2At
e Po—l-ﬂ(l—e ) =e Po—i—ﬂ(e —1).

We clearly have
~ 0,00 if A<0
lim (Xt,Pt) —{ (E(Xo),R) if A=0
OC (400, +00) if A>0.

e When o; = 0, the signal is purely deterministic. In this situation we have

o e Xot+ g (eM—1) if A£0
e Xo + at if A=0.

In this situation, the randomness in the signal only comes from the initial condition Xj.
In addition, if (CPy) A (Aoz) # 0 we have

_ 2AO’§P0
T C?P, (1— 672At) 4 2A03672At'

Py

Notice that
|A|AoS APy =0= P, =0.
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To check that P, satisfies the Riccati equation we use the fact that

2AU%P0 (214 [(2140’% — CQPQ) e—2At + 02P0] — QACZPO)
[C2P, (1 — e=2At) 4 2A03e—24t)°

= 24P, — (C/oy)* P2,

6tPt =

Notice that
A>0= C?Py (1 —e ) + 240524 >0

and
(A>0 and Py#0)= tlim P, =2A(03/C)2.

In the reverse angle we have

A<0 = CRy (A —1) 420320 > 0

2|A|0%P0

>0
C2Py (€241t — 1) + 2| A|o3e2lAlt

— P =

as soon as Py # 0. In this situation, we have

(A<0 and Py#0)= lim P, =0.
t—o0

e Assume that C' # 0 and o9 > 0 and set Q; = (0/02)2 P,. We have

0Qr = 2A(C/02)* P —(Cfos)" P} + (C/o2)? 07 = —QF + 24Q, + B
with B := |C(01/02)| > 0. In this notation the Kalman-Bucy filter takes the following
form
%, = (A% +a) dt+QC (av, - (€ +c) dt)
Qr = —QF+2AQ;+ B2

When A =0 = 0; we have A = 0 = B and the Riccati equation resumes to

Qo _ Py
=P=—"-
1+Q0t 1+(C/0’2) Pot

—t—o00 0.

XQr=-Q*= Q=

When |A| V o? > 0 (= |A|V |B| > 0), the characteristic polynomial of the equation is
given by

q(z) = 2> —-242-B?
= (2-A?—(A2+BY) =(2—2) (2~ 2),

with the two different roots
21 =A— \/A2+B2 <O<2’2:A+ \/A2+BQ.

In this situation, the solution of the Riccati equation is given by

R
Qi = log Ry = ;% ! with O?R, =2A 8,R, + B*R,.

t
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To check this claim, we recall that

R ‘
OQu = —QF +24Qu+ B = —Qf +2A— " + B
t
O Ry R\ OR, o O2R,
= 9 - _ _ e
t<Rt> (Rt * R, @ R,
This implies that
2
2Aath + B? = % <~ 2A0th + BQRt = ath
R R,
The solution of the second order differential equation is given by
Ry = ci1+ceo
Ri=c et 4 ¢y et = { .
‘ ! ? Ro = c1z1+c222 = RoQo
ci(z2 —21) = Ro(z2 — Qo)
c2(z2 —2z1) = Ro(Qo— 21).

This yields the formulae

c1zy e~ (F2m2t 4o

Qt = 1 67(22721)15 —+ )
_ [01(22 —21) e_(ZTZl)t] X (20 — 21)
? [Cl e—(z2—=1)t + CQ] X (ZQ — Zl)
)y (5= Qo)
= zZ2 — (k9 — %2 .
2 2 1 (22 _ QO) e—(Z2_Zl)t + (QO — Zl)
Notice that
(22 — Q()) 6_(z2_z1)t + (QO - 21) = 226_(22_21)t —ZzZ1 +Q0 (1 — 6_(22_Zl)t) > 0.
—~

>0

We conclude that

2
t@M%:Qm=@=A+%@+W:A+¢M+(m)(p
and
Jim Pri= P = (92/C)" Q.

The final assertion is a consequence of the fact that

Qi — 22 = Q4 — Qoo = Ot log ((22 — Qo) e~ 272t 1 (Qg — Zl))

This yields

¢ t
exp </0 (Qoo — Qs) dS) = exp (—/O 0 log ((22 — Qo) e~ (2—z1)s (Qo — Zl)) ds)
- (Z?_QO e (z2=2)t | QO—21> - .

22 — 21 Z2 — 21
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Recalling that
A_Qoo = —\/A2 + B?2 = —(22 —21)/2

we conclude that

eXP(/Ot(A—Qs)dS) _ exp(/otm—c?oo)ds) xexp(/ot@oo—cas)ds)

6_(22—21)t/2 (Z2 _ Zl) (? —
(22 QO) e (z2—21)t + ( 0 21)
< o (z2—z)t/2 (14 |z2/z1]) -

The last assertion follows from the fact that

(22 — Qo) e (=72t L (Qp — 21) = 29 e~ 272Vt _ 21 4 Qg (1 - e_(zz_zl)t> > —z > 0.

This ends the proof of the exercise.

Solution to exercise 342:
Using exercise 337, we have

E'(M, | F.) = M, < E(ZM|F,)/E(Z|F,) = M,
& E(ZM|F.) = M, E(Z|F.) = M, Z,.

The r.h.s. formula in the above display follows from the fact that Z; is a martingale. The
last assertion follows from the fact that

ZYR(M Zy|F,) = My = B/ (M, | F).

This ends the proof of the exercise.

Solution to exercise 343:
Using exercise 342, we need to check that (M/Z;).c,4 is a martingale on (€, F¢, P;).
We have

M Z, = ZsMs — [Z, M), +[Z,M), - Z, / z}d[z, M),
N—— 0
martingale on (€, 7, P;)
and
U, = Zs/ Zey dZ, M), = AU, = Z,Z;*d[Z,M],+ (/ z ' d[z, M]T> AZ,
0 0

d[Z,M], + (/0 zldlz, M]T> AZ,.

martingale increment

This ends the proof of the exercise.



Chapter 18 1111

Solution to exercise 344:
We apply exercise 343 to the model

t
My =Wy = M. := st/ z; N d(zZ,W), .
0

Recalling that
dZs = Zs b(Ws) dWs = d(Z, W), = dZdWs = Zs b(W,)ds
we check that

M =W, —/ Z7Y Z, b(W,) dW,dW, = W, —/ b(W,.) dr.
0 0

This ends the proof of the exercise.

]
Solution to exercise 345:
We apply exercise 343 to the model
Mg = Ny —s= M, :=(Ng —s) —/ Zd[z,M],.
0
At jump times of the exponential martingale Z defined in (18.4) we have
Zyy = Zp A\.(N,.).
Arguing as in section 18.1.3 we have
dZ,. = Z, [(M.(N;)—1) dN, — (A.(N,) — 1) dr]
_ _ 1
= (Z. A.(N,)) Y dz,.dM, = (Zr X.(N;)) 'z, (N.(N,) —1) dN, = W dN, — dNj.
This implies that
s 1
M, = / LN, s
0 AL(N)
is a martingale on (€, F;, ;). The last assertion follows from the formula
[ ast = w. - [ 3@
0 0
This ends the proof of the exercise.
]

Solution to exercise 346:

We have

MY = M, := exp (—)\ /Ot(ef@ - 1)d5> 11 (1 + (ef(s) - 1) ANS) .
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In terms of the martingale

M, = (ef(t) - 1) (AN, — \t) = (ef(t) - 1) AN, —\ (ef(t) - 1) dt
=AM,

we also have the decomposition

My =M T ((1+ AL 2.

0<s<t
This implies that

dM; = Mg — M,
e G (RN AR

= M, (0 (14 ATE) - 1)
= M ((1=2 (/0 = 1) dt) (1+ADL) - 1).
Using the fact that dN; x dt = 0 we conclude that
Ay = My (A (¢! = 1) dt + AN,) = M, dM,.

Notice that 1) (2)

This ends the proof of the exercise.

Solution to exercise 347:
Two different proofs can be used. The first one is based on the fact that X ; =

fst f(r)dW,, s <t is independent of F,. In addition, X, , is a centered Gaussian random
variable with variance

t 2 t
1
B(XZ, | F) = E(X2,) = ([ | s ) =2 [ swpdr =t
In this case, we have

E (X | ) = eniel? = B(M, | Fo) = M,

The second proof is based on Doeblin-Ito lemma applied to the function

B 1 ¢ , _ o
g(t, X¢) = exp (Xt 2/0 f(s) ds) with Xt—/0 f(s)dWs.

We have
dg Og 10%g
dg(t,Xt) = E(t, Xt)dt + %(t, Xt) dXt + 5@(@){}) dXtht
1 1
= ote )[4 S0P e+ 10 aws L g0
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On the other hand, for any 0 < s <t we have
B[ ot s awe) (<2 ([ o) 0y BCaw 1 5 1 7)) <0
This shows that
My = M, + /t g(r, X)) f(r) dW, is a Fi-martingale starting at My = 1.

This ends the proof of the exercise.

|
Solution to exercise 348: Using (18.15) and (18.16), we have
E(F((Xs)s<t) | Xo = 20)
= o) B (FUXE)s<)er (XF) exp (Jy VE(XE)ds) | X§ = o)
with V,¥ = ¢~ 1L;(¢), and the process X/ has infinitesimal generator
LA () = L) + ¢ T (e, ).
After integrating w.r.t. n9(dzg), the proof of the exercise is easily completed.
|

Solution to exercise 349:
The first part of the exercise is a direct consequence of exercise 348 applied to the
function

F((X,)ost) = F(X0) exp (— / t V(Xs)ds).

Notice that
Ve=V -7 L(p) = o H(p)
with the Hamiltonian operator H defined for any sufficiently regular function g by H(g) :=

—L(g)+Vyg.
This ends the proof of the exercise.

Solution to exercise 350:
For any couple of sufficiently regular functions f; and fs we notice that

Il (sf f L[‘”](fz)) = p(@® i L(f2) + 1 (¢* [i [¢7 ' TL(, f2)])
= u(e® fi L(f2)) + 1 (©* f1 [0 " Ligfe) — L(f2) — ¢ ' faL(¥)])
= plp fi Lipp) —n(p fi SLE) = (& f2 L¥(1)).

=u(e f2 L(pf1))

This shows that L[¥! is reversible w.r.t. 2 ().
This ends the proof of the exercise.
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Solution to exercise 352:
In the Euclidian space R? = V = Vect(er,e2) we have m = Id so that V = 9 and
V2 = §2. This implies that

_f Oy, F op | Opy o F Opy 2, F
VF<8@F> and VF< r .

We also have that
AF =tr (V?F) = 04y 0, F + 04y 0, F 1= 02 F + 02 F.

This ends the proof of the exercise.

Solution to exercise 352:

We have
IVEI? = (00, F)* + (85, F)°

and

1 2y _ 1 2 2 1 2 2

SA(IVER) = 502 (0nF) + 00 F)) + 5 02, (00 F) + (0,F)°) -
Observe that

5 0 (O FP + 0uF)) = (00, F) (2,F) + (00.F) (0s, 0.

and

32, (00 F) + (0. F)°)
= aﬂm [(8I1F) (8£1F) + (8902F) (8I1,:E2F)]

= (02,F)° + (Our.0sF)? + (00, F) (32 F) + (01, F) (01,02, F) .

By symmetry arguments, we also have that
322, (00 F) + (0. F)?)
= am [(asz) (a;%zF) + (811F) (8m1,x2F)]

— (02, F)* 4 (00y .2, F)? + (00, F) (03, F) + (00, F) (04,02, F) .
This implies that

La(Ive)

— (02, F)* +2(0sy 2, F) + (82, F)

+ (02, F) (92, F) + (0, F) (82,02, F) + (0, F) (82, F) + (0, F) (0,02, F) .

1115
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On the other hand, we have

02 F 0 F 02 F 0 F
2 2 _ x T1,T2 x x1,T2
VIEVIE = (3332;1F P F )(@cz;lF P F )

— (aglF)Q + (aw17w2F)2 (a:%lF + aggF)(aIly‘TZF)
(O F+ 0, F)(00y,0.F)  (02,F)? + (00,0, F)* )

This implies that
tr (V2F V2F) = (02 F)? + 2(0y, 2, F)* + (02,F)*.
Finally, we observe that
0z, F 02 F+0, 0% F
= <( Eaz F% ) ( O3 F + 0,,0% F >> =3 (VEV(AR)).

The last assertion follows from the fact that

V(AF) = + ( O, (AF) ) _ ( 93 F + 0,02 F )

1
2 2\ 0., (AF) 3 F +0,,0° F

The end the proof of the exercise is now easily completed.

Solution to exercise 353:
We consider a first and second order generator Ly and Lo defined by

L="L+ L,

with
L) =)= Y Vo) and L) =1 (=3 > a0

1<i<r 1<i,j<r

for some drift function b = (b");<;<, and some symmetric matrix functional a = (a™7)1<; j<,
on R". To simplify notation we use Einstein notation and we write b* J; and a*7 0; ; instead

of Zlgigr b 0; and Zlgi,jgr a8, ;.
We clearly have

9i(fg) = fOig+90if = Li(fg) = [ L1(g) +g L1(f).
In much the same way, we have
9,5(f9) = 0; (f0ig + g0if) = f0i,;9 + 90i; f + (9;f0ig + 0:f0;9) ,
from which we prove that
a"? 9;5(fg) — f " 8i(g) — g ™ 0;;(f) =2 a"? Oif Djg.
This clearly implies that

Li(fg) = f Li(9) + 9 L1(f) + T, (f,g9) with Tz, (f,g):=0
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and

La(fg) = f La(g) + 9 Lo(f) + Tr,(f,9) with Tp,(f,9) := a" 8if 9;9.

Finally, we clearly have

Lr(f,9) = L(fg)— fL(g) — gL(f)
= (Li(fg) — fL1(9) — gL1(f)) + (L2(fg) — fL2(g) — gL2(f))
= FL2(fvg)'

This ends the proof of the exercise.

Solution to exercise 354:
Since the matrix a is symmetric, the operator

(f7g) — FL(fag) = aid 6lf 8]9

is clearly a symmetric bilinear form. On the other hand (f,g) — T'r(f,g) is a first order
differential operator w.r.t. each coordinate. This yields

L'L(f.gh) = gl'L(f,h) + hUL(f,9)
for any smooth functions (f, g, h). _ 4
We consider collections of smooth functions f = (fl)lgign and g = (9])1gjgm on
R", and some smooth functions F(z1,...,z,) and G(z1,...,zy) on R™ and R™, for some
m,n > 1.
For smooth functions of the form

F(f)y=F(f'....f") and G(9)=G(g",...,9™)

we have

&

=

=
I

(OF)(f) 0:(1*) ( > (@) &(f’“))

9%(G(g)) = (0G)(9) 8i(g") ( (@1G)(g) 81'(91))-

This yields

I'L(F(f),G(g) = a™ 0;(F(f)) 9;(G(g))
(OnF)(f)(01G)(9) TL(f*, ).

In much the same way, we have

8ii(F(f) = 8; ((0F)(f) 0:(f*))
= (OhaF)(f) 0i(F5)05(F") + (O F)(f) Di5(f*).
This implies that

1

LE(f) = VoF(f)+5 a7 9i5(F(f))

1

= @F)S) (B AN + 5 0 0,00 | + @ua)(S) 5 0 0N ()

= @OF)) LU + 5 @uaF)) Tl ),



1118 Chapter 19

This ends the proof of the exercise.

]
Solution to exercise 355:
We have
a™ O, f aF' 9y(9;9) = ™t (a7 Oif 9;(0ka(9))) = ™! TL(f, Ok 9)-
This yields
y iy 1
a 0;f L(9;9) = a7 0;f b"Or0,g + 3 a™ T (f,0k.19)
o 1
= b (a™ 0if 0;(0rg)) + 3 a" T L(f,0k.19)
1
= bk FL(f, 8kg) —+ 5 ak’l FL(f, 6;67;9). (3044)

This ends the proof of the first assertion.
To check the second one, we observe that

Lo(f L) = Telfbdg) + L Tu(f.a'd,0)
= bTL(f, dig) + % a" Tr(f,9;,9)
LU ) g+ 5 Tulf ™) D0,
The last assertion follows from the formula

FL(fa gh) =49 FL(f? h‘) +h FL(fa g)

which we proved in exercise 354. Using (30.44) we check that

Co(f, L(9)) = a0 Oif L(D9) + To(f,0) Oig + 5 Tr(f,a) By

By symmetry arguments, we also have

Pug, L(f)) = a9 9ig L3, ) + Tr(0.b) f + 5 Trlo,a™) 9.
Summing the two expressions yields
=L(0;f0;9)—T1(0: f,0;9)
Tr(f,L(9) +Trlg, L(f)) = a7 (9;f L(;9) + Big L(9;[))
TL(FH) g+ 5 Tulf. ™) D0

) 1 o
+FL(gabl) alf + 5 FL(g7a’LJ) ai,jf'
On the other hand, we have

L(TL(f,9)) = L(a"70;f0;9)
a™’ L(0:if0;9) + L (a™7) 9;f9;9+ T (a",0:f0;9)
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and
Ty (a™7,0if0;9) =Ty (a"7,0;9) 0:f +TL (a™7,0if) ;9.

We conclude that

Ta0(f.9)
=L(IL(f.9) —To(f, L(g)) = Trg, L(f))
= [L (a™7) 0if 09— TL(f,b)) 0ig — Tr(g,b%) 0if] + a7 T1(Dif,059)
+ [Tz (a"7,0;9) 0if + T (a9,0if) djg] — 5 [Trla™, f) 8 jg+Tr(a™7,g) ;5 f] .

This ends the proof of the exercise.

Solution to exercise 356: Using the formulae
FL(f, bl) = ak’l 8kf 8le 'y (a"’j,&vf) = ak’lalai’j 8k31f

and N N
Tr(a™, f) = a™! 9f Oa

we find that
F27L(f, g) = (L (ai’j) — {ai’l 8lbj + aj’l albl }) &f 8jg

1 . -
+ <ak’l Qa™’ =5 a’t ot > 0:f Dj kg + Big 0jxfl + a7 a®' Dinf Djug.

This ends the proof of the exercise.

Solution to exercise 357:
By the definitions of the operators I'; ;, and I';, we have

Lo r(figh) = L(TL(f,gh)) — T (L(f),gh) — 1 (f,L(gh))
L(gh) = gL(h)+hL(g) +TL(g,h).

Recalling that 'y, is a bilinear form, we have

= Do (f,9L(h) + T (f,hL(g)) + L (f,TL(g, D)),

as well as

Lp(L(f),gh) = g T (L(f).h)+h T (L(f),9)
I (f,9L(h)) 9 T (f,L(h)) + L(h) Tz, (f, 9)

On the other hand, we have

Lr(f,gh) = gTL(f,h) +hTL(f,9)
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This yields

L(Tp(f,gh)) = L(gT(f,h)+hTL(f 9))

L(gTp(f,h)+L(hTL(f 9))

= g L(T(f.h)+L(g) To(f.h)+Tr (g, TL(f h))
+h L(TL(f,9)) + L(R) Tr(f,9) +TL(h,TL(f9)).

Combining these formulae, we check directly that

F2,L(fagh) = FL (gv (fah))+FL (haFL(fvg))_FL (faFL(gvh))
+9 L(TL(f,h) —g T'p (f, L(h)) — g T'r (L(f), h)
+h L(T'L(f,9)) —h T (f,L(g)) = h T (L(f), 9)-

This implies that
Lo (f,gh) —hL2 n(f,9) — 9T2,.(f, h)

=TI (ger(f7 h)) +IL (her(fhg)) Iz (f7 FL(g7h)) .

This ends the proof of the exercise.

]
Solution to exercise 358:
We use the differential formulae
9if 0i(gh) = g 0if 0;(h)+h 0if 05(g)
9if Ojk(gh) = 0if 95(g Okh+h Org)
= 0if (9;9 Oxh+ 0jh Oxg+ g 0;1h +h 0;19)
= ¢ [0;f 0jkh]+h [0if Oj k9]l + 0if (0j9 Oxh+ Ojh Okg),
as well as
9i(gh) 0;k(f) = g 0i(h) 0;k(f) + h 0i(g) 0;k(f)
Oirnf 0j1(gh) = Oirf (99 Oh+ 9jh g+ g 9j,h + h 9;,19)
= g Oixf 0juh) +h (Oinf 9j09) + Oinf (0jg Oih + O;h Oig).
The terms in red correspond to the linear terms in the formula
Lo (figh)=h T2 n(f,g9) — g Do (f, R)
1 ,
= <ak’l ™l = 5 abt gpak > Oif (8;9 Oxh + Ojh Org)
+ a¥d gkt Oiif (059 Okh + 0;h Okg).
This ends the proof of the exercise.
]

Solution to exercise 359:
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We clearly have V = Vect (U, Us) C R3 with the orthogonal vectors

1 ! 1 (!
Uy =— -1 and Us; = — 1
T2 R
0 2
Wl
The orthogonal projection on V is given for any vector W = | W?2 | by
W3
mW) = Y (U,W) U
1<i<2
wiowe [ 1 wiaew?_ow? [ 1
= —| -1 1
2 0 6 9
wr-w? | wlqw?-ow?
7 T 6
— w2-_w! + wliw?2_ow?
2wtwlfw62
3
3w 3w24wl4w?_2ws oWl — W2 _ w3
= 1 3W2—3W1+V2(/1+W2—2W3 = 1 oW?2 —wl_ws3
3 GW3 — W — W2 S\ oW —wt — w2
We conclude that
2 -1 -1
1
w=g| -1 2 -1
-1 -1 2

This ends the proof of the exercise.

Solution to exercise 360:
For any curve ¢t € [0,1] — C(t) := (C'(t),C?(t),C3(t)) € S, with C(0) = = and

ddC: (0) = Vi(x), with i = 1,2, 3 we have

d dC"

p(C(t)=0=0= %@(C(t))tzo = 1;3 (Oz,;0) (C(t))tZOW(O)'
This shows that
(02, 0) () V(x)
((89) (), V(z)) = (| (Bun)(z) |,| VZ() |)=0.
(Dasp) () V3 (x)

We conclude that (0¢) () is orthogonal to the tangent vectors V(z) at © € S. Thus, the
equation of the tangent plane at x is given by the equation

(0, ¢) () y1 — o1
< (awzv) (LU) ’ Yz — T2 > =0.
(0, 0) () Y3 — T3
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e For the hyperboloid ¢(z) = 23 — 23 — 2% — 4 = 0, we have

(0r, ) () a1
(On,0) (x) | =2| —22 |.
(05 0) () —3

e For the circular cone ¢(z) = 2?2 + 13 — 23 = 0, we have

(Or,0) () a
(On,p) () | =2 =z |-
(Or5 ) () —3

This ends the proof of the exercise.

Solution to exercise 361:
For any parametric curve t € [0,1] — ¥(6(t)) := ¥(61(t), 02(t)), we have

S(0:0),63(6)) = (00,) (6) TH0) + (00,8) 6) T2

This shows that the vector fields

( —rsin(6y) cos(f2)

(0p,0) () = | —rsin(6y) sin(f2) ) and  (0p,0) (0) = (R4 rcos(61)) cos(62)

rcos(61) 0

( —(R + rcos(61)) sin(h2) )

are tangent to the surface at the point ¢(0). The normal vector n(f) of the tangent plane
at that point is given by the cross (vector) product

= (00,9) (0) A (Go,9) ()
—rcos(01)(R + rcos(f)) cos(6z)
= —rcos(61)(R + rcos(f;)) sin(bz) .
—rsin(fy) cos(62) (R + rcos(61)) cos(f2) — rsin(67) sin(f2) (R + r cos(61)) sin(s)

The surface unit normal is given by the formula

_ ) ()
@~ n(8).n (o)

a(x,y)

The equation of the tangent plane at x = () is given by the equation

n'(0) Y1 — 21
( n20) |,| y2— 22 )y =0.
n3(0) Y3 — I3

This ends the proof of the exercise.
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Solution to exercise 362:
The tangent vector space at

P'(6) 61
$—¢(9)—<¢2(9))—( 02 )ES:>9I—¢>($)—¢1($)
P (0) h(0)

is spanned by the vectors

(96,9") 0 1 1
3 (891 h)¢($) ( .

(9607) 50 0 0
VQ(x) = (89211})915(1) = (89277[}2)(1,(93) = 1 = 1 .
(892¢3)¢(I) (802h)¢(m) (ax,‘,h)w

The orthogonal tangent vector space T+ (S) is spanned by the vector

(02,),, (0z,h),
Vir(@) = (0¢), = | (Onp), | = (Ouh), |- (30.45)

and

The metric g(z) on T,.(S) is given by the matrix

_ g1a(x) gi2(x) \ _ [ Vi(x),Vi(z)) (Vi(z),Va(x))
gl@) = (gg,lm 92,2<x>) (<v2<x>, () <v2<x>,v2<a:>>>

T\ Bnh), (0n,h), 1+ (0n,h)2 )

The metric g, (x) on T,(S) is given by the function
g(x) = (Vi (2), Vi* (2)) = 1+ (Oa,h); + (0h);

This ends the proof of the exercise.

Solution to exercise 363:
The inverse of the matrix g(x) is given by

_( 9h =) g (x)
g(x) = (92,1(1.) 92,2(x) )
1+ (00, h)2 4 (0ayh)? \ = (0n,h), (0n,h), 14 (0n,0); )7

(z

Wl(z)
The orthogonal projection 7(z) of the vector field W(x) = ( W2(zx) | is defined by
W2()
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and

Notice that

and

In much the same way, we have
(g% (@) (Vi(2), W(2)) + ¢**(z) (Va(z), W(2))] Va(2)

- - 3 {0, 0o, [V @)+ (0u ), W)

1+ (84, h)2 + (0uyh)?

0
[T+ 0,2 [W2(@) + (00ah), W)} ( 1 )
(al'2h)fl’

1 : . 2
T 14 (00, h)2 + (Oayh)” {*(@lh)z (8zyh), W (z) + [1+(amlh)w] W2(z)

0
+(Dah), W3<x>}( ! )

(O, 1),

() (W (z))!
This implies that m(z)(W(z)) = | w(z)(W(x))? | with
w

T\ xr xr 1 =
@)(W(2)) 1+ (8, h)2 + (3u,h)?

<{[1+ @] WH@) = Orih), (Duh), W2(2) + (D0,h), W) }
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and
9 1
T = S T
x = (80, h), (02, ), W) + [1 4 (00, 22| W)+ (00h), o)},
as well as
() (W (2))* = .

1+ (02, h)5 + (9a,h)?

x [{= @ah), @I WH@) + [14 (0,102 (@), W2(@) + (02ah); WP (@)}

+{ (14 0012 (@), WP ) = (02,12 (), W2() + (00, )2 W) }]

x ({0 k), WH@) + rah), W)+ ((00uh)} + (02a)]) WE@)}]-

We conclude that

=~ (Onh), Osh), |1+ (@) (92:),

(O, h),, (O, h),, (0 h); + (a,

1+ @kl = @Ouh), ), (Ouh),
X .
h;
(30.46)

Finally, the orthogonal projection 7 (x) of a vector field W (z) is given by

T (@)(W(2) = g1'(2) (Vi (2), W(2)) Vi (2)
1

1+ (02, h)5 + (9a,h)?

(al’lh’)x
(02, 1), W (2) + (92, 1), WP (@) = WP(2)) ( (%f)m ) :

This implies that
1

1+ (8,,h)2 + (0uyh)?

X .

’R'J_(.’E) =

(axlh)I (83”2h)a: (6582 h)i - (8932/1)35
- (a”ﬂl h)L - (8T2h)L 1
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Notice that

1
7L(r) = ——— (09), (09)F and w(z) = Id— 7. ()
100), I
with the vector (J¢), given in (30.45). This ends the proof of the exercise.
L]
Solution to exercise 364:
Combining (19.24) with (30.46) we have
(VF)(x)
=n(z) (OF) (z)
_ 1
14 (90, 0)2 + (D,h)?
(1 @k = 0nh), @uh), (@), (0, F) ()
| = @b, Onh), [+ 0k (Do), (02, F)(a)
(@0, @eh) @4 @ ) N O
Using (19.36) and (30.45), the mean curvature vector H(x) is given by
— L —1
H(z)= Y o, (v1 ) (z) Vi (2) (30.47)

1<i<3

with

—1,3

Vf’l(x) o),
Vi(e) = Vit | = 1 ( (0syh), ) ,
Vi (z) \/1+(8x1h)i+(a$2h)i =

Finally, using (19.71) we have
(AF)(z) = tr (7(2)(8*F)(x)) — (H(z), (OF)(x))

with the projection matrix 7(z) defined in (30.46).
This ends the proof of the exercise.
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Solution to exercise 365:
The graph of the function h is defined as the null level set of the function

(21, 23) = h(zy) — 22 = dp(x) = ( Oarf ) 1 ( aih )

This implies that
TH(S) = Vect (V*) and T(S) = Vect (V)

with the unit vector fields

1, Op(x) 1 Oz, I " 2) = 1 1
VO = o] = i ( -1 ) and V(@) = Z=—= (M)

In this situation, the mean curvature vector H is given by the formula

=0

—_—~
—1,1 1,2 —1

Hz) = |00 (V7' @)+ 0. (V@) | V@)

= Oy Oz, h 1 < Oz, h )

B VI+ (0,02 ) 1+ -1

Observe that
afblh _ 1 32 h* (8961]7’)2 6%1}7’
TN+ 0,02 ) 1+ (05,h)2 T 14 (02,h)? 1+ (D, h)?

1 1
= 02 h
(811h)2 1 + (8931 h)2 o

This implies that

0% h 1 Oz, h
H(z) = =2 nft ),
0= e (1)
On the other hand, the projection matrix on 7,.(S) is defined by
m(x) = Id—V*(@)Vi)T
— 10 1 (6$1h)2 _aﬂﬂlh
N 0 1) 1+ (0,h)? —0z,h 1
N 1 Oz, h
1+ (00,0 \ On b (0a,h)?
The diffusion equation of the Brownian motion on the manifold S is now defined by the

formula (20.7) with the mean curvature vector and the projection matrix defined above.
This ends the proof of the exercise.

1127
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Solution to exercise 366:
The ellipsoid can be interpreted as the hyper surface S = 1~1(0) defined by the function

2 2 2
o(z) :=||z]]l¢ =1 with the norm Hx”Z = (?) + (IZ> + (173’) ]
1

ai ai
We have / )
1 1 T/
() = = = dp(x) = ——— | w2/a3
a; [|z|la |z |la x3/a2
3

In this situation, the orthogonal space T;-(.S) is the one dimensional space spanned by the
unit normal vector

—1 Iip(x) 1 z1/a]
Vi(z):= Ta/a3

lop@)] ~ NPTl B

In addition the mean curvature vector H is defined by the formula

H(z)= | 3 o, (VJ_’i(x)) V(@)

1<i<3

After some elementary computations we find that

L ar? (w1/a2)? )
.. (V z)) = i 1 — — /%)
' ( ( )> \/ZISiSS (mi/a?)z ( 2i<i<s (wi/a?)z

() 1<i<3 4 ( e (00 ) Vorim @) ()

2

x1/as

_ 2 (wi/a2)? ) 1 2
= o 1-— i To/a
lsis3 ™ < Elgig@ (ac,-/a;f’)Q Z1gig3 (’Ci/a?)2 33‘3;@;

The projection matrix on T,(S) is also defined by the matrix
w(z) = 1d -V (2)V (2)".

The Brownian motion on the ellipsoid is now defined by the formula (20.7) with the mean
curvature vector and the projection matrix defined above. This ends the proof of the
exercise.

[

Solution to exercise 367:

The Brownian motion on the manifold S = ¢~1(0) is given by (20.10) with the mean
curvature vector H(z) defined in (30.47) and the projection matrix defined in (30.46). This
ends the proof of the exercise.

[
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Solution to exercise 368:
By (20.10), the Stratonovitch formulation of
dXt = b(Xt) dt + O'(Xt) th

is given by
aXt = b(Xt) - %U(Xt)U/(Xt) 8t + O'(Xt) 3Bt

This ends the proof of the exercise.

Solution to exercise 369:
By (20.10), the Stratonovitch formulation of

dX; =a X¢ dt + b X; dWy

is given by

2
6Xt == <ab2> Xt 8t+ bXt 8Wt

Since the Stratonovitch calculus follows the standard rules of differential calculus, we have

1 2
810gXt:X8Xt:<a—b2> 3t+ baWt
t

from which we conclude that

1 b?
log(Xt/Xo):/ fﬁng <a2)t+bWt
0 s

This ends the proof of the exercise.

Solution to exercise 370:

We have

b2
dXt = aXt +bXt th <~ 8Xt = (a - 2) Xt 8t+ b Xt (9Wt

Replacing a by a + % we find that
b2
dX; = <(L+2> X +bX; dW, & 00Xy =a X Ot+ b Xy OW;.
Arguing as in exercise 369 we have
t
log(Xt/Xo):/ 78XS: at—&-bWt
0

This ends the proof of the exercise.
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Solution to exercise 371:

Using (20.11), the projection of Y; into S is given by the diffusion
1
dXt = W(Xt)O'(Xt) dBt - 5 HU(Xt) dt

with the curvature vector defined in (20.12), and the projection matrix defined in (30.46).
Using (20.13), we have

dF(X;) = L(F)(X¢) dt + dM(F)
with the infinitesimal generator

1
L(F) = 5 tr (¢"V o' VF)
and the martingale

dMy(F) = (VF(Xy),0(X:)dBy) -

In the above displayed formula (VF)(z) = 7(z)(0F)(z), with the gradient (0F)(x) of F
evaluated at z, and the projection matrix defined in (30.46).

This ends the proof of the exercise.

Solution to exercise 372:

We follow the developments outlined in the end of section 20.1. In this situation, the
unit sphere S? C RPT! is defined by the equation ||z|| = 1 we have

T
T
p(z) = 2] =1 = p(z) = z/|z| and 7(z) = Id - dp(x)p(z)" = Id — .
In addition, using (20.4) the mean curvature vector is defined for any x # 0 by H(x) = p —7-.
This yields the diffusion equation:

1 P Xt XtX;T
X, = —= H(X X,) dB; = % Id — B,. 4
dX; = —5 H(Xy) dt + 7(Xy) dB, = —5 XTX, dt+(d XTX, dB, (30.48)

This ends the proof of the exercise.

Solution to exercise 373:
We have from (30.48)

1 X, X, X7
dX; = —— H(Xy) dt X¢) dBy = — dt Id — dBj.
= =y O () 48 =~ a (14 ) s
Using (20.7), this equation can be rewritten as follows
{dxf = e [% Or, () (X) dt + 78 (X) ng']
E o= 1,2,3.

Using the rule (20.10) we conclude that

8Xt = 7T(Xt) 6Bt
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This ends the proof of the exercise.

Solution to exercise 374:
Following the arguments provided in section 20.2.3, a discrete time numerical simulation
is given by

X =projg | X{ —Le—i— Id_% Je B
tn S tn—1 Xz;f th71 XtTXt n |,

where B,, stands for a sequence of i.i.d. centered and normalized Gaussian r.v. on R3. Recall
. . - . - _ 1
that the projection on the sphere is given by projgz (z1, 22, z3) = W(xh T, T3).

This ends the proof of the exercise.
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Solution to exercise 375:
Recalling that

L, (f1,/2) =2 (Vef1,Vgfa)g
and using the differential rule
Vg(fafs) = f2Vgfs + f3 Vgfo
we find that
Lo, (fifafs) = 2(Vgf1,Vg(fafs))g

2 f2 <vgf1’vgf3>g +2 f3 <v9f17vgf2>g
f2Ta, (f1, f3) + fsla, (f1, f2) -

This ends the proof of the exercise.

Solution to exercise 376:

Using the derivation formula discussed in exercise 375, the proof is the same as the
algebraic proof given in exercise 357.

This ends the proof of the exercise.

Solution to exercise 377:

T2

b
¥(0) = (91,9270 [(%)2 + (%)T) : (30.49)

o=y =VeeS ¢)=(¢'(2),¢*(2)) = (z1,22).

The tangent plane at = ¢(#) is spanned by the vectors

2 2
e The elliptic paraboloid (ﬂ) + ( ) — 23 can be parametrized for any 6 = (61, 62) by
a c

Notice that

1 0
(6911/))4;(35) = 0 and (892¢)¢(x) = 1

2c
az 11 pz T2

2 2
e The hyperbolic paraboloid (E) — (%) =3 can be parametrized by
a (&

o= (2 - (9)])

—

30.50)

1133
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Arguing as above, the tangent plane at x = () is spanned by the vectors

1 .0
((991’(/}) o(z) = ( 29 ) and (8921/1)¢(x) = ( 2c1 ) .
—z T1 w2z T2

e The sphere 27 + 23 + 23 = r? can be parametrized by the spherical coordinates
(61, 02) = (r sin(fy) cos(f2),r sin(61)sin(fz),r cos(61)), (30.51)

with the restrictions Sy, = {(01,62) : 61 € [0,7], 02 € [0,27]}. Arguing as above, we
notice that o= 1(z) := ¢(z) = (¢1(), p2(x)) with

(r sin(67) cos(fz),r sin(fy)sin(f2),r cos(01)) = (x1,x2, x3)

/2 2
= ¢'(x) = arctan (W) =6, and ¢*(x) = arctan (;C ) = 0.
1

T3

Arguing as above, the tangent plane at x = () is spanned by the vectors

r cos(6!(x)) cos(2(x))
(0, 0) gy = | 1 cos(61(2)) sin(¢(x))

—r sin(¢*(z))

and
2

—r sin(¢!(z)) sin(¢*(z))
(00:%) g0y = T sin(gbl(ac)) cos(¢?(z))
e The cylinder z% + 23 = r? and z3 € R can be parametrized by the coordinates

P(01,02) = (r sin(61),r cos(1),02), (30.52)

with the restrictions Sy = {(61,62) : 61 € [0,27], 6> € R}. Arguing as above, we notice
that o= 1(z) := ¢(z) = (¢1(), Pp2(x)) with

(7’ sin(@l),rcos(ﬁl)ﬂg) = (Il,I27l’3)
= ¢'(z) = arctan <i > =6, and ¢*(z) =3 =0s.
2

Arguing as above, the tangent plane at x = () is spanned by the vectors

rcos(ot(z)) 0
(00, %) gy = —Tsin(()gbl(x)) and  (9p,0) 4y = (1) ,

This ends the proof of the exercise.

Solution to exercise 378:
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2 2
e The elliptic paraboloid (ﬂ) + (%) - can be described as the null level set
a c

S = ¢~ 1(0) of the function ¢ defined for any z = (x1,z2,23) € R3 by

e (2)'+ ()" 2

We have
2072 11
dp(x) = | 2672 and |lo(z)| = 4a™2 (z1/a)® + 42 (29/b)* 4+ ¢ 2.
_07

The unit normal at z is given by

_M T™T) = —nxnxT

2 2
e The hyperbolic paraboloid (%) - (%1) = % can be described as the null level set

S = »71(0) of the function ¢ defined for any = = (21,22, 73) € R3 by

o= (2)'- (3 -2

In this situation, we have

—2b—2 xr1
dp(x) = 2072 iL'Q and ||o(z)|| = 402 (21/0)* + 4a™ 2 (z2/a)* 4+ ¢ 2.
_c_

e The sphere 27 + 23 + 23 = 72 can be described as the null level set S = ¢~1(0) of the
function ¢ defined for any = = (21, 72, 73) € R? by

o(x) == x% + x% + a:g — 72,

In this situation, we have

T
Op(x) =2 | x2 and |o(z)|| =4 = n(z) =2 = n(x) = Id — zz”.
T3

e The sphere 27 + 23 = r? and z3 € R can be described as the null level set S = ¢~1(0) of
the function ¢ defined for any = = (1,2, 23) € R3 by

o(x) = 22 + 22 — 12,

In this situation, we have

T
Op(x) =2 | z2 | and [e(@)] =4 (2} +23)
0
T
= n(r) = —— T2 and 7(x) = Id — n(z)n(z)T.

\zi+a3 0
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This ends the proof of the exercise.

Solution to exercise 379:

e The Riemannian scalar product ¢ on the tangent spaces T'(Sy) associated with the
parametrization 1 of the elliptic paraboloid defined in (30.49) is given by the matrices

g1(0) = <aelw<9>,aelw<9>>:1+<2‘3) 2,

7
2\
nal®) = 1+(3) &
and

91,2(0) = <3011/’(9)73027/’(9)>
1 0 926\ 2
)L e
%01_ %92 ab

e For the hyperbolic paraboloid parametrization (30.50), we find that
2¢\°
g11(0) = 1+ (b2> 07,

2¢\ > 2c\
g2p2(0) = 1+ <a2) 03 and g12(0) = (ab> 010.
e For the spherical parametrization (30.51), we find that
911(0) = (99,4(), D0, 9(0)) = r?
g22(0) = r?sin®(0;)
and ¢12(0) = 0.
e For the cylindrical parametrization (30.52), we find that

g11(0) = r2,
9272(9) = 1 and g172(9)20.

This ends the proof of the exercise.

Solution to exercise 380:

We recall (cf. for instance (21.9)) that the orthogonal projections on T'(.S) are defined
by the inverses g=! = (¢7)1<; j<o of the matrices g = (g;j)1<i j<2 associated with the
Riemannian scalar product derived in exercise 379. The matrices g~! can be computed
using the formula

11 1,2 1 _
_ 2,2 1,2

g_<91,1 91,2) gl—<9271 9272>_ (_9 9 >
92,1 92,2 9 9 91,192,2 — 91,2921 92,1 91,1
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e For the elliptic paraboloid (30.49) we have
2 2
. ( 1+ (E) 0 (%) 06 )
(35)" 610 1+ (35) 07

so that

2c 2 2c 2 2c 4
91,1922 — 91,2921 = <1+<a2> 9%) (1‘1‘(1)2) 9%) _<ab> 9%93

Il
—_
+
7N
@‘m
1 eY
'

[\v]
S
[l V)
+
7N
SRS
[Nl e
~__

[\v]

This implies that

o 1 < 1+ (%)% 02 -

g = b22 (% ’ 29102 .
L+ (%) 03+ (3)° 08 \ —(5) 6162 1+ () 6F

e The matrices g—! for the hyperbolic paraboloid parametrization (30.50) are defined as the
ones of the elliptic paraboloid (30.49) replacing (a,b) by (b, a).

e For the sphere (30.51) we have

:7"2 < 1 O ) — -1 = 41 ( Sinz(el) 0 )
9 0 sin?(6,) T T2 sn2(0)) 0 1

up to the angles 6, € {0,7}.

e For the cylinder parametrization (30.52) we have

77"20 :>,17 7"720
9=\ 0 1 g =\ o 1)

This ends the proof of the exercise.

Solution to exercise 381: Using the formula (21.21) the Riemannian gradient V, f =
g~ 10f is easily computed using the inverse matrix formula derived in exercise 380. For
instance on the sphere (30.51) we have

1(1 0 ><891f>1( O, f )
r2 0 Sin72(91) 0o, f ) 12 Sin72(91) On, f )~

Solution to exercise 382:
Following the detailed calculation on the 2-sphere S? = {(z1, 79, 73) € R® : 22 + 23 +
23 = 1} presented in section 24.1.2, the Christoffel symbols C’{fj are given by

C'11,1 = 0= 011,2 = 021,1 = 012,1 = 022,2
cos(61)
sin(&l)'

Cy,(0) = —sin(f1)cos(fy) and CF,(0) =C3,(0) =
By (21.50), we have

V2(f) =g 'Hess,(f) with (Hessg(f))mm = 0a,.0,,f— >, CI . Oa,f.

1<j<p
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In this situation, we have

(Hessg(f))11 = 9o,.0,(f)
(Hessg(f))2,2 = 0a,,0,f +sin(61) cos(61) g, f

5(6
(Hessy(f))12 = 0Ooy0.f — Zi?égll)) Do, f-

This implies that

_ ( 1 0 ) ( a5 (f) 0o, 0, — cot (61) Op, f )

Va(f) 2 .
g 0 sin™(61) Op, 0, f —cot (01) Do, f 0oy ,0,f + sin(61) cos(61) Op, f

_ ( 9, (f) 99,.0,.f — cot (61) D f )
- sin~2(61) (9g, 9, f — cot (1) Da, f) sin~2(6y) 05, f +cot(61) Do, f )

Hence we can substitute to obtain

Ag(f) = tr(Vi())
= cot(6h) O, f + 0, f + 511121(91) 5, f
= L (sin(0) B )+ —— B2 f.

sin (01) sin? (0;) b2

This ends the proof of the exercise.

Solution to exercise 383:
Each (0, z)-section of the cone S defined by a z = /22 + y? is a circle of radius a z, for
some a > 0. The natural polar parametrization is given by the function

a 61 cos (03)
P 9:(91,92) S [0,oo[><[0,27r]n—>¢(91,92): a@lsin(ﬂg) e s.
61
The tangent plane T4 (S) is spanned by the vectors
acos (62) —sin (02)
09, = | asin(62) L Og,p=aby cos (62) .
1 0

The Riemannian metric is given by the diagonal (2 x 2)-matrix

(1+a® 0 L (1+a)t 0
g = < 0 0,20% ) = V91 >0 g = ( 0 a7201,2 .

The Riemannian gradient on the cone is given by the formula
Vof = (1+a*) 7" 0o, f + %07 s, f.
To compute the second derivative, we observe that

0 cos (62) —sin (62)
Guv=10 5.0 =—aby | sin(6s) and g, 0,0 = a cos () | .
0 0 0
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We clearly have
95,9 L 0p,p and g, 9,0 L Op,1p
as well as
(05,0, 0p,0) = —a®0y and (D, 6,1, Dp,b) = a’0;.
This shows that the Christoffel symbols are all null except for

1
Cio= 9% (09,3, 00, 0,0) = o
and 29
a
Coa =" (0,0, 05,0) = —1— 5

By (21.50), the Hessian can be computed in terms of the Christoffel symbols with the
formula

Vi(f) =g 'Hessy(f) with (Hessy(f))mm = 0,0, f— > C

1<j<p

mm’

In this situation, we have

(Hessg(f)11 = 5.1,

1
(Hessg(f))Q,Z = aGQf +— a@lf and (Hessg(f))l,Q = aalﬁzf — 892f
+ 01
and
i (1402733, f (1+a2) 7[00, 0.f = 3 0.t
? 0207 (O 0uf = 3 Dot | 2072 [0 F 4 5% 0S|

This implies that
Ag(f) =tr (V5(f) = (1 +a®) 185 f +a 207205, f + (01(1 + a?)) ™" s, f.

This ends the proof of the exercise.

Solution to exercise 384:
The spherical parametrization of the ellipsoid S is defined by

ay sin(6q) cos(6s)
’L/J(tgh 92) = ag Sin(al) Sin(ag)
agz cos(61)

with the restrictions Sy = {(61,02) : 61 € [0,7], 62 € [0,27]}. The tangent plane Ty g)(S)
is spanned by the vectors

ay cos(67) cos(6z) —ay sin(f;) sin(6z)
0o, = | aa cos(61)sin(bz) L Opp = ay sin(61) cos(b2) .
—as sin(6q) 0
We have

(09,1, 09,0) = a2 cos?(0y)cos?(02) + a3 cos?(0;) (1 — cos? (92)) + a2 (1 — cos? (91))
= [(a% — az) 0s?(03) + (a2 - a3)] cos?(01) + a2
(09,0, Op, ) = ai sin®(61)sin?(62) + a3 sin®(61) (1 — sin®(62))

= [(af —a3) sin®(62) +a3] sin®(6y).
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This implies that

~( [(a? —a3) cos®(62) + (a3 — a3)] cos®(61) + a3 0
9= 0 [(a —a3) sin®(6) +ad] sin®(6;)
from which we prove that
gl = ( ([(a? — a3) cos®(02) + (a3 — a3)] cos?(61) + (1%)71 0 » >
0 ([(a? — a3) sin®(62) +a3])” sin™2(6y)

up to the angles §; € {0,7}. The Riemannian gradient on the ellipsoid is given by the
formula

Vof = ([(af—a3) cos?(62) + (a3 — a3)] cos®(61) + a§)71 Do, f
+([(a3 — a2) sin®(62) +a2]) ™" sin~2(6y) O, f-

ay sin(6q) cos(6s)
O, .0, = — | ag sin(f1)sin(fz) | .

ag cos(6y)

Observe that

This yields
(0,0, Op, ) — [(a} 0s(62) + (a3 — a3) sin(62)] cos(6:)sin(61)
= —[(af os?(02) + (a3 — a3)] cos(6:)sin(6:)
% [<a% — @) cost () + (a3 — )] sin(261)
and
(D,.0,0,00,0) = (a3 —a3) sin*(6;) sin(fy)cos(6s) :% (a3 —a3) sin?(h;) sin(26,).
This implies that

Cll,l = 9171 <501¢7 501,01@ + 91,2 <892¢7891,91¢>
[(a% —a2) cos?(02) + (a3 — a%)] sin(26;)

1
— 1,1 S
= g <891¢7 8017911/)> ) [(a% — a%) C052(02) ¥ (a% — CL%)] cos2(01) ¥ 0{2),

and

Cia Y (Do, Opy 0,) +

2 (99,1, O, 0,0) =

g <8921/%391 911/)>
1 (a? — a3) sin(207)
2 [(a% —a2) sin?(6y) + ag] '

In much the same way, we have
ay sin(67) cos(62)
09,0, = — | az sin(fy)sin(fz) | .
0
This yields

(Dy.0,0,00,0) = —((af —a3)cos®(f2) + a3) sin(f1) cos(6:)
= —% ((af — a3) cos®(02) + a3) sin(26,)
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and

a? —a?) sin?(9;) sin 205).
1 2

N |

<892,921/)7 892¢> = (a‘% - a% ) Sin2(91) COS(92) Sin(92) =
This yields

Cf21,2 = 9171 <892,92¢’691w>+9172 <892,92¢7802¢>
a3 — a3) cos®(02) + a3) sin(20
= ng <802,921/)78011/)> =-5 D) ((21 22 (2)2 22 3 1) 3
2 [(af —a3) cos*(62) + (a3 — a3)] cos?(01) + a3

and

*(00,,0,, Do, )
(af —a3 ) sin(26s)

[(a} — a3) sin?(0y) + a3] '

C’22,2 92,1 (3027921%301@

92’2 <802,02’l/)7 3027/’> -

el
1
2
Finally, we have

—ajy cos(f;)sin(fs)
0o, 0, = ay cos(61) cos(6z) .
0

This yields

(00,,0.0,00,9) = —(af —a3) cos®(61) cos(62)sin(f2)
= f% (af —a3) cos®(61) sin(26s)
(09,,0,0,00,0) = ((af — a3) sin®(6a) +a3) sin(6r)cos(6r)
= %((a‘{—ag) sin®(62) + a3) sin(26;).

This implies that

Clo = g"" (06,.0,0:00,0) + g"* (Do,,0,0: 0o,1))
2 2 2 .
— 3 (91) Sln(292)
— o1 9 _ 1 (af —a3) cos?(
97" (00020200 ) = =5 (ar am) o2 (0) + (a3 — 2] ot (01) ¥ 2

and

Cio = 97" (06,,0,0:00,0) + g% (Do,,0,0: Oo,1))
1 ((a? — a3) sin®(02) +a3) sin(26)
2 [(a? —a?) sin®(6o) + a3]sin®(6;)

= g*? (0.0, 0p,b) =

By (21.50), the Hessian can be computed in terms of the Christoffel symbols with the
formula

sz =g 'Hess,(f) with (Hessy(f))mm = Oa,.0,, f Z g

1<j<p

This ends the proof of the exercise.

Solution to exercise 385:
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The tangent plane at Ty (S) is spanned by the vectors
Op,u(61) cos (02) —sin (0)
0o, = | Op,u(01) sin (62) L gt =u(b) cos (02) .
1 0
This implies that
L+ (Do u(01)? 0 L4 G u@)?) 0
gz( 0o 9 2) and g~ = (+(91u(1))) ,
0 U( 1) 0 u(el)—2

up to the parameters 67 s.t. u(6;) = 0. The Riemannian gradient operator on the revolution
surface is given by the formula

vV, = (1+(891u(91))2) " Doy 4 u(01)"2 Oy,

The second derivatives are clearly given by the formulae

cos (62)
8311/1 = 8§1u sin (92) 1 8@2¢

0
—sin (92)
(991’92’(/) = 891u COS (92) = ((991 logu) aesz_ 691¢
0
cos (62)
OB = —u | sin(f) | L O
0
The Christoffel symbols are given by
02 u Op,u
Cly = g"t {820, Bg,0b) = 21 = 0y, log /1 + (Bg,u)”
1,1 < 91 > 1 + (861’“)2 ( )
8@ u 1 89 (u2)
Cho = g (OB, dyu) = ——— gy = -2
2,2 < 92 > 1+(691U)2 2 1+(801U)2

u Og, U
012,2 = 022,1 = 9272 < 501,02¢, 592@ = ’U,Z = a91 (1Og u)

and 01172 = 01271 = 022)2 =0.
By (21.50), the Hessian can be computed in terms of the Christoffel symbols with the
formula

Va(f) =g 'Hessy(f) with (Hessy(f)mm' = 0,0, f = D Chor 0o, f-
1<5<p

In this situation, we have

(Hessy ()11 = 03, f — o, log\/1+ (9p,u)" Do, f
1 9, (u?
(esy(Naz = 4S5 0 o f

(Hessg(f))12 = 03, 0,/ — 0o, (logu) Dp, f = (Hessy(f))2,1
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and therefore

(1 @) (3.7 - om0y 1 @ onr) (14 @00) " (08,07 = v 10w 007

w2 (931192  — 5, (log u) s, f) u? <8§2 frl -t g f)

1+(691 u)2

vif =

This also implies that

1 1
= 03 +—5 0f +——— g, l0 (u 1+ 5‘1u2) Oy, -
= T @nay 0w 0T T gy OB\ WV G0 ) O
This ends the proof of the exercise.
[
Solution to exercise 386:
When u(f1) = ¢+ cos (61)(> 0) with ¢ > —1 we have u/(61) = —sin (61) and u”(61) =
—cos (07).
When u(z) = ¢+ cosz with ¢ > —1 we have
—sin(61) cos (02) —sin (03)
09, = | —sin(6y) sin (62) L 99,9 = (c+ cos(61)) cos (62)
1 0
This implies that
1+ sin?(6;) 0 -1 (1—1—81112(91))_1 0
= d =
g ( 0 (¢ + cos(61))? ancd g 0 (c+ cos(6y))~2

for any (61,65). The corresponding Riemannian gradient operator is given by the formula

vy, = (1 —|—sin2(c91))_1 D, + (c+cos(61)) ™2 Op,.

We also have that

1 sin(61)cos(f1) 1  sin(26y)
01,1 = ) =35 )
1+ sin® (61) 2 1+ sin” (64)

(c+cos(61)) sin(6;)
021’2 = 1 n Sin2 (01) and 012’2 = 022’1 = —

sin (01)
(c+cos(6y))"

Therefore

. -1 sin (20 . =1/, sin (601
gopo (st 60)7 (981~ 4 S5 o) (Lsin® (00) (3R, 0,f + oty O
g (¢ + cos (61))72 (031,92,)” + % E)ng) (c+ cos (1)) 72 (ang - % aelf)

This implies that

1 1
A _ 2 82
g 1+ sin® () 0¥ (c+cos (01))2 %

o) (o) 1y,

“1+sin?(61) \1+sin®(6;) ¢+ cos(6r)

This ends the proof of the exercise.
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Solution to exercise 387:

When wu(z) = cosh(z) we have u/(f;) = sinh(0;) = et _26791 and v’ = u. In this
situation, following the calculations provided in the proof of exercise 385 the tangent plane
at Ty (p)(S) is spanned by the vectors

sinh (01) cos (62) —sin (0)
g, = | sinh(01) sin(62) 1 9p,p = cosh () cos (62)
1 0

Recalling that cosh? (f;) = sinh? () + 1 this implies that

g = cosh? (6,) ( (1) (1) ) and g~! = cosh™2 (6;) (

O =
_ O
N~

Vy = cosh™2 (01) ( g, + Op,).
The Christoffel symbols reduce to
C’11,1 = C’12,2 = C’22,1 = *021,2 = tanh (6)
011,2 = C’21,1 = 012,1 = 02272 =0.

This yields

(93, f — tanh (61) dp, f) (831,92 F + tanh (61) 9s, f)

V2 = h_2 0
of = cost 0 (98,0, + tanh (00) Duuf) (3B, + tanh (61) 90, )

Therefore
A, = cosh™?(6;) (05 +03,) .

This ends the proof of the exercise.

Solution to exercise 388:
By definition of the Christoffel symbols we have

0g,.0,0 = Z C'f’j 0o, % + QO pt

k=1,2
with the orthogonal component
Q" = (9, 9,10, ")
We clearly have

d(t) = ai(t) (90,9)aw +a(t) (9o,9) )
() = af(t) B0 ¥)au +a50) Bot)aey+ D i) af(t) (Fo,0,9)

1<ij<2
= () +¢1(1)
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with the tangential acceleration
) =D | aft)+ Y CFi(alt) aj(t) o(t) | (Do, 0)aw) € Tewy(S)
k=1,2 1<i,j<2
and the normal component
cl(t) = ( > QY (a(h) ai(t) a}(t)) nt(alt) € Topy(S).
1<i,j<2

This ends the proof of the exercise.

Solution to exercise 389:
Recalling that w'(t) = ||¢/(¢)|| we find that

w(t(s)) =s =W (1) (s)=1=7(s) = m
This implies that
- d(7(s)) 2 7
#(5) = T € T () = T () = Vet (7). 7(s) A Ny )

Also observe that
[E(s)ll =1 = (¢"(s),(s)) =0.

If we let let 74 (5) and WEL(S) the orthogonal projections on T4 (S) and TEL(S)(S), then we
have

Sans) 1= Tage) (€(5)) = (¢(5),7(5) A Nty ) () A N )

On the other hand, we also have that
s)=C(r(s) 7(s) = (s) = (rls)) (F(5)? +(r(s)) T(5)

"(7(s)) ’ "
)P +c(7(s)) 7(s).

To compute 7(s) we first observe that
W) (s) =1 = (1(s)) 7"(s) = —w'(7(s)) (7'(s))?

 W(r(s))
EEOIE

adn we also have

W () = IOl = VIED, @) = w'(t) = W
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from which we find that

and
/ 1 UJN(T(S))
STDTE = )P
_ 1 C// (s CI(T(S)) _ c/ (s 7_// s
~ T (OO ) =
We conclude that
L ) \ ()
(r(s)) 7(e) FEGOIE < (r(s)) ||c/<¢<s>>||> 1]
1 1/ —/ —/
TG ) 7
Finally we have the formula
gy c(7(s)) _ 1 (). T (s)) @ (s
I O L L O R
€T(s)(5)
This clearly implies that
dU(s) = mhy @)
= ! L (" (r(s
= TGEE e )
= ! A (7(s L(e(s L+ (e(s
- ||c’(7'(s))H2 < L( ( )),N ( ( ))> N ( ( ))
 Dicije W) alles) af(els)
T Tiae 9O QGG EE) )
and
—/ -/ =1 -/ 1 /! =/
?(s) L (5)ANK, = (), (5) AN, ) = T (¢(7(s)).2 () A Nt,))
= A (r(s), 7 (s LY
- ||C/(T(S))||2 < tan( ( ))7 ( )/\Nc(s)>
By construction we also have
G2 = eI+ L))
B Gl I Al I NP ER N E
G FITeGGE| Mmoo i) =els)

with the tangential and the normal curvature

C

tan (7(5))
e ((s)]?

Fran(E(5)) = H

1<i,j<2
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. Zlgi,ng QI (a(1(s))) o

B Zlgi,jgz i,j(a(7(s))) ai(

(7))

FL(E(s)) = ’ EGONE

This ends the proof of the exercise.

Solution to exercise 390: The first assertion is proved in the solution of exercise 389

Notice that
R(vy,v2) :==k = P(v1,v2) := Z O (@) vi v; — k Z 9i.5(¢(x)) vi v;.

1<ij<2 1<i,j<2

Taking the derivatives w.r.t. v; and vy we find that
205 1 + (Y% + Q2N vy — k(201101 + (91,2 + g2,1)v2)

20320, + (2 + Q> v) — k(292,202 + (91,2 + g2,1)01)

By, P —0
0,,P = —0
Or equivalently (Recalling that g; 2 = go1 and Q12 = Q1)

QY kg1 QY2 —kgio v\ g
QLQ —k 91,2 92’2 —k 92,2 V2 o

Notice that
det Ql,l —k g1 Ql,? —k 912
Q2 —k 91,2 022 —k 92,2
2
= (! =k g11) (%2 —k ga2) — ("2 —k g12)
=k (911922 — 912) =k (Q%g22 + 911932 — 20129 5) 4 (QV1Q22 — (Q12)?)

— det(g) (k— k1) (k — ko) = det(q) [kQ — ok Uutke) 4 klkg} =0

with
ky + k ki + ko \?
kv = 12 2—\/< 12 2) — (kiko)?
ki + k i+ ko 2
ky — 1-; 2+\/< 1-; 2) —(k1k2)2,

and the sum and product given by

ki +k 1
k1 ko = det(Q)/det(g) and % = 5 (91’192’2 + 91’192’2 — 291’291’2) /det(g).
Notice that
k1 +ky = Z g =tr(g'Q).
1<i,5<2

The last assertion follows from the fact that

gi,1 gi1,2 -1 1 g22 —g1,2
_ ; . — _ : 2 )
g ( 92,1 92,2 > g det(g) ( =921 911 )
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This ends the proof of the exercise.

]
Solution to exercise 391:
By the definition of the unit normal field on the surface S = ¢ ~1(0) we have
(a‘P)w 0
nt(6) = Njg) = _O)
|@2)uo]
Clearly
[nt0)]]” = (n(0),n (0)) =1 = Vi=1,2 (9g,n"(6),n"(8)) =0
= Vi=1,2 0pn"(0) € Ty (S).
This implies that
do,n" = Z 9" (g0, ;") g,
k,1=1,2
On the other hand we also have that
—qik
—_—~
(Opp,nt)y =0 = Vi=1,2 (0 0,0,n" )+ (0p,h,00,n") =0.
This implies that
aginj_ - _ Z Z gl,k Ok 8917/}~
1=1,2 \k=1,2
Notice that
Slz_(g Q)lz— Qg zl— Zglekz: ZQi’kgk’l'
k=1,2 k=1,2
This yields
btk = tr(g7'Q) = ) Sii=tx(9)
1<i<2
This ends the proof of the exercise.
(]

Solution to exercise 392:

With a slight abuse of notation, we write ij instead of C’k- o 1 for the Christoffel
symbols in the parameter space Sy,. We also recall that 2 is a symmetrlc matrix and hence
¢} = C}7 holds.

Using the formulae derived in exercise 388 we have

Onp0.0,0 = D (Cl; Oo,00 + 06,CL; Dotb) + 06, 27 ™+ Q" Og,m*

1=1,2

= 00, CI5+ > CLiCly | Oa, 00

m=1,2 1=1,2

+ | O, Q7 + Z Cf,j QbR k4 Q1 9y nt.
I=1,2
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The last formula follows from the fact that

Dop.ob =Y Cy Op,, 0+ Q" nt

m=1,2

By exercise 391 we also have

dpnt == Spi o,

m=1,2
This yields the formula
Dg,,.6:,6,0
= Y | Cm+ OO — 0 S| G0+ |0,90 + 30 CL 0| nt
m=1,2 1=1,2 =12
By symmetry arguments we also have
09,.,0:,0,% = 00, 0,,0,0
=Y o+ Lo — @ S| g0+ 00,00+ Y Ol @b | ot
m=1,2 I=1,2 I=1,2
This implies that

l . B l
0o, Cl+ > CLCT = QF 8y 5= 05, O + Y CLLCTL — Q% Sy
1=1,2 1=1,2

for any m = 1,2; or equivalently

l l . g
Ry, o= 00,C — 05, CTh+ > [Ch,CT = CLCm] = Q8 Sy — Q9 8
1=1,2

In much the same way, identifying the normal components we find that

00,0 = 0,0 = 3 [C1; 9 = Gl 2]
1=1,2

Finally, recalling that S = ¢g~'Q we have

mo Z (Qi,k Ql,j _Qi,j Ql,k) gl,m

1,9k T
1=1,2

and therefore

. y . A
Ymet,2 Onm B e = (Q0F QT — Q87 Q)
= Zm:l 2 9n,m Rznnz = Qv Qrr — QhrQn?

= Zm:l,z 92,m RT2,1 = Zm=1,2 g1,m Rg?u =Qbt 022 —Ql? 02! = det(Q2).
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Since S = ¢g~1Q, we also have that

Dk =R S = QM S = Rig = Y R = Q0 tr(S) = (8)ik

i,m,k
1<m<2
= tr(g7'R) = (tr(5))* — tr(S?) = 2det(S) = 2 KGauss-
The last assertion follows from the fact that for any (2 x 2)-matrix A we have
(tr(A))? = tr(A2) + 2 det(A).
¢ ) then we
c

We check this claim by using a brute force calculation. If we set A := < Z

clearly have
A (@ b a b\ [ a®+bc ab+bd
“\e d c d )\ cat+dc cb+d?
= (tr(A))* — tr(A2) = a2 + d® 4 2ad — a® — be — cb — d? = 2(ad — be) = 2 det(A)

This ends the proof of the exercise.
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Solution to exercise 393:
We use the formula (22.2). We consider the polar coordinates on S = R? as discussed
in (21.8). In this situation we have

o= ( ey )+ 0= (Gl )-

The matrices g and g~ are clearly given by

(1 0 1 _ (1 0
g—(o 9%) and ¢ —(0 912).

By (21.40), the mappings (A¢!)y, and (A¢?)y reduce to

1
g>? 09,922 = — and (Aqbz)w =0.

1 —

1

2

The formula (22.2) reduces to the formulation of the Laplacian in polar coordinates
1 1

A, = 0 Do, + 05, + 7 9,

This ends the proof of the exercise.

Solution to exercise 394:
We use the same lines of arguments as in the proof of exercise 393. The spherical
coordinates on S = R? are given by

() 6 sin (02) cos(63)
Y(0) = P2(0) = 6psin(6y)sin(63)
P3(0) = 6 cos(62)

In this situation we have the orthogonal tangent vector fields

sin (03) cos(63) 61 cos (63) cos(f3)
9p,¢ = | sin(62)sin(6s) L dgyth= | 61cos(hy)sin(b3)
cos (62) —6 sin (62)
—0; sin (62) sin(f3)
L Op0p = 01 sin (0) cos(63) L Oy, 1.
0

1

In this situation g and g~ are clearly given by the diagonal matrices

1 0 0 1 0 0
g=1| 0 62 0 and g7 '=1 0 672 0
0 0 6%sin?(6y) 0 0 6;7%sin"2(6y)

1151
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By (21.40), the mappings (A¢")y i = 1,2, 3 reduce to
1 1 2
(Ad7)y 5 (9%200, 92,2 + 9°2 09, 93,3) = o
1 1 0
A%y = 5 9%2 g" Osgs0 = cos(02) na (A6 =0

9% sin (92)
The formula (22.2) reduces to the formulation of the Laplacian in spherical coordinates

2 1 cos(69) 1 5
Ay =— — L
0= g Ot 62 sin (62) Oo:+ 0%, + g3 892 62 sin? (6,) %,

This ends the proof of the exercise.

Solution to exercise 395:
Solving exercise 384, we get the Christoffel symbols C’f:j associated with the spherical
coordinates. We then set

ci, ci c?, C?
1, 1,1 1,2 2. 1,1 1,2
C ( 012 021,2 ) and C* := ( 01272 02272 >

Using (21.43) and (21.10) for i = 1,2 we have
(Aqﬁi)w =—tr(¢7'C") and (V(bi)w =g"" (99,0).

By (22.6) the Brownian motion on the ellipsoid equipped with the spherical coordinates is
defined by the equations

10} = 5 (A6), (00) dt + (Vo) (©,) B,

where B, stands for a standard r-dimensional Brownian motion on R3.
This ends the proof of the exercise.

Solution to exercise 396: Following the solution of exercise 383, the Christoffel sym-
bols associated with the spherical coordinates are given by the matrices

o= (G %)= (0 L)
Cls Ciy 0 —ﬂilz

c2_(Cli Ciz\_ (0 o
\Che G ) g 0 )

In addition we have proved in exercise 383 that

and

and

a cos (03) —sin (0)
09,7 = | asin (62) 1L Op,p=ab cos ( 92
0 *29— )
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A simple calculation shows that

g_lC1 = ( 0 ——1 ) and g_102 = 1 ‘91(18"12) .
7.1 +a?) a2

Using (21.43) we find that

. 1
A 1 _ 7.k 014 — ¢ 7101 _
(A0 )w 1<§<2 g k. r(g ) 01(1 + a?)
as well as
(A¢?), = = Y G =-u(9'C?) =0
1<4,k<2

On the other hand using (21.10) we have

(Vo'), =g"" Op bt 22?5 5325
= ’ 0, = S 2
P 1_|_a2 1
and .
, v 1 —sin (0)
(V¢ )w =977 Op,p = a0, cos (6)
0

By (22.6) the Brownian motion on the cone is defined by the equations

de! = %(Agbl)w(@t) dt + (Vo'), (61) dB;

= 2@%(11+ ) dt + 1+1a2 [acos (©F) dB; + asin(©}) dB} + dBj}]
10?2 = %(A&)w(et) dt+ (V6?) ) (6y) dB;

= %9% [—sin (©7) dB; + cos(©F) dB}]

where B, stands for a standard Brownian motion on R3.
Next we check that the generator L, of the above diffusion coincides with half of the
Laplacian operator presented in exercise 383. To this end we simply notice that

dt dt
17502 _ 101 _ 2702 _
dO,;dO; =0, dO,de; = T+ a2 and dO;dO; = TR
Using Doeblin-Ito fomula, this implies that
1 1
L — 2 2 )
7 2(14a?) %, + 20263 %, + 201 (1 + a?) %,

Notice that L, is also the generator of the diffusion process

1 1
del = dt dB}
s BV el
1
de? = —— dB?

a®;
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with a couple (B}, B?) of independent Brownian motions on R. This ends the proof of the

exercise.
[ ]

Solution to exercise 397:
In view of the Laplacian generator derived in exercise 385 a Brownian motion on S is

defined by the diffusion

1 2 1
o} = (log (“2>> (©1) dt + dB}
1+ (0 ) 1+ (99,0)* (O})

1
2 — 82
O = e

with a couple (B}, B?) of independent Brownian motions on R.
This ends the proof of the exercise.

]
Solution to exercise 398:
When u(61) = ¢+ cos (61)(> 0) with ¢ > —1 we have
1 : 2 1 : 1
gol — _1 sm( (;)t) : sm(@t)1 gt iB!
2\ 2(1+4sin*(0©})) c+cos(6;) 1 + sin® (O)
1
dO; = ———— dB}.
t c+cos(©F) °
This ends the proof of the exercise.
(]

Solution to exercise 399:
The tangent space T )(S) is spanned by the vector fields

cos (03) —6, sin (0)
g, = | sin(62) L 0p0p = 01 cos (02)
0 1

The normal vector field is defined by

cos (62) —6, sin (62) sin (03)
0o, Y N Op, 0 = sin (62) | A 01 cos (02) = | —cos(s)
0 1 0,

Thus, the unit normal vector field n' is given by

sin (63)
+ 00, N 0o, ¥ ! —cos (62)

T o ndndl T ire

The Riemannian metric is given by the matrix

(1 0 N (1 0
7= 0 1+6 7o a+) )
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0
We also have Gglw = ( 0 ) , and

0
— sin (62) cos (02)
Do, L D, 0,0 = | cos(fa) Logw=—0, | sin(fa) | =—01 0.
0 0
This implies that C1, = C}, = C], = C3, =0 and
Coy = g"' (09,1, 05,0) = —b1
0
2 _ 2,2 _ 1
C’1,2 = g <892’(/}7 591,02¢> 1+ 0% .

In other words the Christoffel symbols are defined by the matrices

1 _ O O 2_L 01
C‘(o 01) ad =gl o0 )

a1 0 0o 0\ (0 0
I C(0(1+9?>‘1)<0—91><0—1i¥;g

,1027 01 1 O 0 . 91 0 ].
=17 Lo a+e)t )1 Tt \ e 0 )

Using (21.43) we find that

This yields

and

O =

a0), = - X phel, ——alro) - 1o
1<5,k<2

(A¢2)w = _ Z ghk C}%,j =—tr(g_102)20.
1<5,k<2

On the other hand using (21.10) we have

cos (62)

(Vol), =g 85,0 = ( sin (6) )
0

and _
(Ve?) 22 O, 1 2910221293)
e g ’ 92 = .
v 1+ 62 P

Therefore, by (22.6) the Brownian motion on the helicoid is defined by the diffusion

jo! - %(Ml) L () di + (V6')] (©,) dB,
1
_ % 1:?(3%)2 dt + (cos (O2) dB} +sin (02) dB?)
1
10} = 5 (M%), (@) dt+ (V)] () B,
1

= 11 @) (—0} sin(0?) dB} + 6} cos(07) dB? +dB}),
t

1155
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where B, = (B}, B?, B}) stands for a standard 3-dimensional Brownian motion on R3.
Notice that

dt
d0Lde}! = dt d@fd@f:w and dO;dO; = 0.

Using Doeblin-Ito formula we check that the generator of the diffusion on the helicoid is
given by the operator
1 1 1 s 1 6

Ly== 05 + =

—— 0 - ——— 0Op,.
2 s 1re T Tre M

Finally we observe that L, is also the generator of the diffusion process

1 e}
de! = = —t ___ dt+dB}
¢ 2 1+ (0})2 taby
1
dO} = ——— dB}
1+(0})?

with a couple (B}, B?) of independent Brownian motions on R. This ends the proof of the
exercise.
|

Solution to exercise 400:
We observe that

o(x1, T2, T2) = 9 cos (x3) — 21 sin (x3)
= (po)(0) =0 sin(fz) cos () — 01 cos(fz) sin(62) = 0.

This shows that ) is a parametrization of the helicoid defined by the null level set S = »~1(0)
of the smooth function ¢. The unit normal vector field on S is given by

o 1 sin (x3)
Nt = ||6¢|| =— —cos (x3)
g \/1 + (g sin (x3) + 21 cos (x3))° (29 sin (z3) + 21 cos (z3))
1
n(zr) = Id— oo DpdpT
1
= Id+ - 5
1+ (z9sin (z3) + o cos (z3))
( sin? (x3) — cos (z3) sin (z3) sin (z3) (22 sin (z3) + 21 cos (x3)) )
X — cos (v3) sin (23) cos? (x3) —cos (z3) (w2 sin (z3) 4+ 7 cos (23)) | -
(22 sin (23) + @1 cos (x3)) sin (z3) —(x2sin (z3) + 21 cos (z3)) cos (x3) (w2 sin (z3) + 21 cos (v3))?

By (20.2) the mean curvature vector H is given by

ax-@> dp
H= O, d —I
2 <II5<p 0¢]l

1<i<3

We set A(x) := xgsin (z3) + x1 cos (z3) and we observe that

a(l)—_l 49,4
“\Vizxr) T v m A

1 1
— —— 0,,log (1 + A?
2 vipa st A
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as well as
Opy A = cos (z3) 0z, A =sin(z3) and Iy, A = xacos(r3) — x1sin (x3).
W52 10%|l

=0

= sin (x3) O ( ! )—cos(x)@ <1>+A8 < ! )+ Osa Al
B PVt A2 3\ 1t A2 B\VIitaAz) Vit A2

B (1 g ) Op, A x9 cos (x3) — 21 sin (x3)
A2 U1+ A2 (14 [z2sin (z3) + 1 cos (373)]2)3/2.

This implies that

2o cos (x3) — xy sin (z sin (z3)
H(z) = — 2 (3) (x3) ( Ceos (;3) ) |
(zosin (

(14 [z sin (23) + 21 cos (23)]2)? x3) + @1 cos (3))

By (20.7) the Brownian motion on the helicoid in the ambient space R? is defined by the
diffusion equation

1

This ends the proof of the exercise.

Solution to exercise 401:
Solving exercise 387 we have seen that

sinh (01) cos (62) —sin (62)
9, = | sinh(0y) sin (62) 1 9g,1p = cosh (67) cos (0)
1 0
as well as
_ _ 10
gl_cosh2(91)<0 1>.
In addition, the Christoffel symbols are defined by the matrices

1 0 0 1
Cltanh(01)<0 _1) and C2tanh(91)<1 o)'

This yields

g 'C' = tanh(0;)cosh 2 (6;) (
g~'C?* = tanh(#;)cosh™2(6;) (

_ o O

=
~

. ~__

Using (21.43) we find that

(A(bl)w = (A¢2)¢ =0.



1158 Chapter 22
On the other hand using (21.10) we have

sinh (01) cos (62)

1
\v4 1 _ 1,1 o — inh (0 . 0
(Voh)y =g Ot = gy | simh (@) sin(6e)
and .
. . 1 - coslz (9)1) sm((@;)
Vo =g9° Op, 0 = ——5—— cosh (61) cos (0
( v ’ cosh? (6,) 10 ?

Therefore, by (22.6) the Brownian motion on the catenoid is defined by the diffusion

e} = (V') (©) dB,
1 1 M . -
= m (sinh (©}) cos(©7) dB} + sinh (0}) sin (07) dBf + dB})
0} = (V6?),(0r) dB;
1

= oz (o) (7o (8) sin () dB; +cosh (8y) cos () dBi),
t

where B; = (B}, B, B}) stands for a standard 3-dimensional Brownian motion on R3,
Notice that

dt
1 4 sinh? (©})

dt

dO;de; = —_—
e cosh? (©})

d02de? = and dO}dO? = 0.

Using Doeblin-Ito fomula we check that the generator of the diffusion on the helicoid is
given by the operator

1 , 1 1 )

1
Ly=- ——— - ——0;..
72 cosh? (6,) 72 cosh? (61) b2

Finally we observe that L is also the generator of the diffusion process

1 1 1 2 1 2
©: cosh (©}) dB; and  dO; cosh (©}) 4B;

with a couple (B}, B?) of independent Brownian motions on R.
This ends the proof of the exercise.

Solution to exercise 402:
The detailed construction of the Brownian motion on the unit circle equipped with the
polar coordinates is provided in section 22.3.1.
]

Solution to exercise 403:
The detailed construction of the Brownian motion on the unit 2-sphere equipped with
the spherical coordinates is provided in section 22.3.2.
]
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Solution to exercise 404:
A construction of the Brownian motion on the unit p-sphere in the ambient space (in
terms of orthogonal projections on the tangent space) is presented in (20.8).
]

Solution to exercise 405:
A construction of the Brownian motion on the cylinder in the ambient space (in terms
of orthogonal projections on the tangent space) is presented in (20.9).
]

Solution to exercise 406:
The detailed construction of the Brownian motion on the 2-Torus equipped with the
polar coordinates is provided in section 22.4
]

Solution to exercise 407:
The detailed construction of the Brownian motion on the p-simplex. is provided in
section 22.5.
]
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Solution to exercise 408:

We have

SONVECONP = 0, (VE(C.(t), VF(Cal)

<at [VF<CZE (t))] 7VF(C:IJ (t))>

with
9 [VF(C (1))

0 [VF(Cu(1))] =

0y [VF(Ca(1))]

T

We recall that

[VF], O, F OwOr, F
: =ndF = : and Oy VF = : ,

VI = : : :
[VF], Ox, F Ow Oy, F

with the orthogonal projection matrix 7 on 7'(.S). For each 1 < i < r we have

0 0n F(Cot)] = D (90,0 F)(Cu(t)) W (Cu(t) = (Ow0,) (Cu(t)).

1<j<r

Therefore
9 [VF(Cy(1))] = (0w VF) (Cy(2)).

This implies that
1
FOIVECM)F = (OwVF) (Ca(t)), VE(C. (1)) = (Vw VF) (Ca(t)), VF(Ca(1))
with Vi = 70w . By (19.55), (19.57) and (19.51) we have
1
(VwVF,VF) = 3 ow (VF,VF) = (VyprVE,W) = V*F(VF,W) := (VF, (VzF)W>.
This ends the proof of the first assertion. If we choose
W =-VF with V*F>\Id
then we find that
(VF,(V2F)W) = —(VF,(V*F)VF) < -\ |VF|?.
This clearly implies that
1
FOUVE(C0)IF < =\ [VE(Co(0))]*.

1161
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By Gronwall’s lemma we conclude that

IVE(Co()]| < e |[VF(2)].
Using (23.5) we have

Ca (1) = —VF(Cu(t)

— 0<F(x)-F(Co(t) = / IVE (Cas))|? ds

IN

t
s 1
IVF@IE [ e ds < 55 IVF@IP

This ends the proof of the exercise. [

Solution to exercise 409:
We consider a couple of r-dimensional vectors U = (UZ)1<i<r and V = (Vi)1<i
Using the decomposition of U and V in the unit basis vectors e; of R” B

U= > U and V=Y Vi

1<i<lr 1<5<r

L ER.

and recalling the rules e; A e; =0 and (e; A e;) = —(e; A e;) we check that

UANV = Y UV’ (eihe;)
1<i,j<r
= Z UiVj (ei/\ej)—i- Z UiVj (ei/\ej)
1<i<j<r 1<i>j<r
= ) (UVI-UIVY) (eine).
1<i<j<r

On the other hand (e; A e;) are mutually orthogonal so that
UAV,UAV) = > (U - UV = |UAVP.
1<i<j<r

We are now in position to check the Lagrange identity. Using elementary manipulations,
we have

2
U1 < [VII* = (U, V)P = > () S - > vt
1<i<r 1<i<r 1<i<r

= Y W)= Y Urvive

1<i,j<r 1<i,5<r
_ Z (Uivi)2+ Z [(Ui)2(vj)2+(Uj)2(Vi)2]

1<i<r 1<i<j<r

-y WivHr-2 Y UU ViV
1<i<r 1<i<j<r

— Z [(UV)? —2(U'VI)(UIVH) + (UIVY)?].



Chapter 23 1163
This implies that
IOIP x IVIP =@V = > [V -0V = U avP.
1<i<j<r
This ends the proof of the exercise. [

Solution to exercise 410:

Recall that the volume of a parallepiped P (Wi, W, W3) in R? formed by three indepen-
dent vectors (Wi, Wa, W3) is the surface of the base-parallelogram P (W7, W) in R? formed
by the vectors (W7, W2) multiplied by the height H.

On the other hand, we have

h H

Surface (P(Wy, Ws)) = h x ||[Wy|| with sin(b) = TWal and cos(a) = Al

This implies that
Volume (P(W1, Wo, W3)) = H h x ||W1|| = cos (a)sin (b) ||W1|| ||Wa|| [[W3]| .
It is also well known that
W1 AWs|| = sin (b) [[Whl] [[W2l|.
We conclude that

Volume (P(Wl,WQ,W3)) = COS (Cl) ||W1 /\W2|| ||W3H
= |<W1/\W27W3>‘ = |det (Wl,WQ,W3>>|.

The last assertion follows from (23.14). This ends the proof of the exercise. ]
Solution to exercise 411:

The geodesics of the unit sphere have been computed in some details in the end of
section 24.1.2. Next, we provide a more detailed discussion. Section 24.1.2 contains the
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derivation of the Christofell symbols associated with spherical coordinates 1 : 6 = (6,602) €
(10, ©[x]0, 2x]) — S
sin(61) cos(6s)
P(0) = | sin(6r)sin(f2) | = (0¢)y(0).
cos(61)

These parameters are given by
C’11,1 =0= 012,1 =0= Cg,z ) 011,2 =0= 021,1

and
cos(61) 1

—= C.
Sil’l(el) ’ 2,2
This ends the proof of the exercise. By (23.2), the geodesics curves c(t) = (c(t), c*(t)) € Sy
starting at ¢y = (01, 02) with some initial velocity ¢o= (él, 92) are defined by

01272(9) = 02271(9) = (0) = —sin(61) cos(61).

.al .2\ 2 1 .

— (el 1 .
c, = sin(e;)cos(c;) (ct> with o = 0 & = 0
..2 .1 .2 .2 .
c, = -2 cos(ey) ¢ G cg = bt g = 02.

sin(c})

These equations are rather complex to solve numerically. Nevertheless, we notice that
rotations are isometries on the sphere so we can rotate the sphere so that the initial starting
point is co = (61,62) = (5,0). Now, we rotate the sphere w.r.t. the (0,z1) axis so that

élz 0. The differential equations of the geodesic curve remain the same and the solution is
now given by

3 12 Ll
c(t):(éjt) (:ct:ct:ctzcos(c%):O).

Finally, we observe that

sin (g) cos (02 t) cos ég t
Ct) =v(ct) = sin (g) sin (92 t) = sin (@, ¢
cos(%)

This shows that this geodesic reduces to the equator of the sphere, that is the intersection
of S? with the plane {z = (z1,72,23) : 3 = 0}. Since all rotations transform the equator
into great circles we conclude that the great circles are the geodesics of the sphere.

This ends the proof of the exercise. ]

Solution to exercise 412: Notice that

O(1) = b(elt) = b(er (1) ex(0) = O() = Bor) g €1 1)+ (B0,0) 0 3 (1)

for the curve ¢ : t € [a,b] — ¢(t) € Sy. This implies that

lcw)®

(@00 & O+ @)y S O] [@00)ey 6 O+ @0ty & B)])
(00,9)) @0, 0)ery) €17 () +2 {(O0,0)y 00ty ) €1 (8) 2 (1)
+((00,8) 1) O00)oy) 2" (1)

= gri(e(®) &7 (1) +2 grale(®) &7 (1) + gaa(e(t) &7 ().
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This shows that

b b
s:/ lC@)| dt:/ |}E:(t)||g(c(t)) dt.

We consider the cylinder S defined by 27 + 23 = r and 23 € R, equipped with the
parametrization
PH(O) = rcos(fy)
0= (91,92) — ’(/)(9) = 1/)2(0) = rsin(@l)
v30) = 6.

In this situation, we have

78111(91) 0
891¢ =r COS(el) 1 692’¢ = 0 = g1,1 = 7“2 g12 = 0= 92,1 and g22 = 1.
0 1

This implies that

£(C,[a b)) = /b V2 & (04 &7 (0) dr.
Finally, we have '
i) =v(at f) = ¢ () =a and & (t) =0,
This implies that
L(Ch, [0, ) = ra /b Ldt = ar (b—a).

In the same way, we prove that
b
L(Co,la,b]) =ra / 1dt=ar (b—a)=L(C,]a,b]).

Also
b

L£(Cy, [a,B]) = ra / 2% dt = ar (B — a2) = (a+b) L(Ch, [a, b)),

a

This ends the proof of the exercise. [

Solution to exercise 413:
We consider the disk parametrization (23.17). We also recall (cf. (21.14)) that

W = (W, V¢) (80,0), + (W, V?) (96,9),
with the inverse mapping ¢ = ¢ ~! and is covariant derivatives

v¢l = ggl (691¢)¢ + 922 (692¢)¢ .

In the above display we have used the notation g;’j = ¢"J o ¢ with the entries g"J of g~ !,

and (0p,10) s = (0p,%) o ¢. In this situation we have

<{¢}7 891'1/1> = _R2(1 - 91) and <wv 5021@ =0

. _( R 0
9= o R201-6)2 )"

and
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This implies that

Wow%w:»<Wow,<v¢1)ow>=—%(1—el> and (W o, (V¢?*)o¢h) = 0.

Therefore

1

Wow=V! 00+ V?0p¢p with V'i=—2

(1—6,) and VZ?=0.
We conclude that

/ div(W) dps = / div, (V) dpg
s 10,1[x]0,27[

/]0,1[x]0,27r[ [391 (\/CE(Q) Vl) + O, (\/(TEt(g) VQ)} 6,6,

27 1
R? / U Do, (—;(1 - 01)2> dal] dfy = 7 R2.
0 0

This result coincides with the one obtained in (23.18). In the present exercise, we have
computed the integral without using the divergence theorem.
This ends the proof of the exercise. ]

Solution to exercise 414:
We parametrize the sphere S with the spherical coordinates

r sin(6y) cos(6z)
’(/J(el, 6‘2) = r sin(@l) Sin(og)

r cos(61)
We have
r cos(61) cos(fs) —r sin(67) sin(fs)
0o, = | 7 cos(01)sin(f2) | L 0p,p = r sin(6y) cos(6z) .
—r sin(6y) 0

In this situation, the surface Riemannian metric is given by

_ 2 (1 0 o
g=r ( 0 Sin2(91) = det(g)((01,02)) =r* sin*(61)
as soon as 61 ¢ {0,7}. The corresponding Riemannian surface measure is defined by

pg(d(61,02)) = \/det(g)(01,02) db1dbs = 1* sin (61) db1d0s

where df;df, stands for an infinitesimal neighborhood of some point (61,62) € ([0, 7] x
[0,27[) := Sy Observe that the outward-pointing normal at some point z = (6) is given
by

1
nt = Nt () = - Y (01, 02).
On the other hand, we have
1™

Wey=s | @ | = Wop=gv = (Wou,Ntop) =2 (wy) =1

xs3
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This implies that

/(W,Jvﬂdus = / (Wotp, Nt o) dpg

s Sy

3 27 T 43
%/O (/O sin (6) d&l) dfy = Tg”.

[cos(61)]9=2

Using the fact that div(W) =1 we check that

. 1 47‘371'
pe (B) = [ div(W) dus = (W,N=) dpos =
B OB 3
For any x € S, we also have
1 r
NJ- — z — E NJ‘ = — = —
(@)= =7 = WNY =g @a =]

from which we find that

4737

/8 N dyon = 5 0w 08) = 2T = o (0B) = 4

This ends the proof of the exercise. ]

Solution to exercise 415: We parametrize the 3-Ball B with the coordinates
r(1 —6p) sin(f;) cos(62)
Yo (00,01,02) = | (1 —0) sin(6;)sin(6s)
r(1 —6p) cos(f;)
with (6o, 01,62) € ([0,1] x [0, 7] x [0, 27[) := By,. We have
Yo ({0} x ([0, 7] x [0,2x])) = = IB.

In addition, the parametrization of the boundary 0B is given by the spherical coordinates
discussed in exercise 414 and defined by the trace mapping

(913 02) € (aB)ﬂ)o = [O,ﬂ'] X [07 27T[: Sw — 1/)(913 02) = 1/)0(07 01; 02)
On the other hand, we have
cos(61) cos(6s) —sin(6) sin(62)
o, 00 =7(1 —6p) | cos(61)sin(f2) | L Bp,1ho = 7(1 — b)) sin(6;) cos(6z)
—sin(6y) 0

as well as
891d)0 L aeowo =T nJ_ L 8621%

with the unit outward pointing normal on the sphere

sin(61) cos(6s)
nL(91792) = sin(01) Sin(ﬁg)
cos(61)
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After some elementary manipulations, we have
sin(6;) cos(62)
Do, Yo A Ogyibo = r2(1 — 0p)? sin(6y) [ sin(61)sin(6z) | =72(1 — 6p)? sin(hy) n'(61,602).
cos(61)
This implies that
(Do, 00 A Do 1bo) s —ag o) = 1°(1 — 6)? sin(6h)

and

1(0, 00 A Dg,1bo) || = 12 (1 — 69)* sin(6y).

In this situation, the Riemannian metric on the 3-Ball is given by the (3 x 3)-diagonal

matrix
( (
g = (
(

T 0 0
= 0 72(1—6p)? 0 .
0 0 72(1 — )2 sin?(0;)

In much the same way, the Riemannian metric on the 2-sphere S = OB is given by the
(2 x 2)-diagonal matrix

_ < <891’¢7801w> <8911/J1892¢> > _ ( r? 0 >
90 <892’¢}7 691 ¢> <892 1/% 802 1/1> 0 7‘2 SiIl2 (91) ’

9o V0, 09, 00)  (Ogy0, Do, o) (Daytb0, Og,Y0)
09, Vo, 09, 00) (09, %0, g, Vo) (06,0, Og,%0)
09,0, 09, %0)  (Oo,%0, 09, V0) (06,0, 0o, 0)
2

The corresponding volume and surface measures on B and OB = S are given by
,ug(d(ﬁo, 91, 92)) =T (1 — 90)2 doo Hgs (d(01,92)) with ,uga(d(ﬂl, 02)) = ’/’2 sin(@l)dﬂldﬂg.
From previous calculations, we have

pg(d(00,01,62)) = {((Os,%0 A Do, tb0) , —0a,%0) dbBodb1db
= (=0g,%0,n") dbo x ||(De, 0 N Dg,%0) | db:1db>.

This ends the proof of the exercise. ]
Solution to exercise 416:

We use the same notation as in the solution of exercise 415. Expressed in the local
coordinate 1y any vector field W on B takes the form

W oo =V 9gytho + V' 9g, b0 + V2 9p,1b0

for some vector field V = (VZ)
Recalling that

(891 ’lﬂo) (0) 1 (8901/}0) (9>

o<i<o Which can be computed using the formula (21.14).
- nL (91, 92)

—r (N* o) (0,01,0,)

= 7 (N*00) (61,02) L (90:%0) (9) L (99,100 (6)
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for any 0 = (6, 61, 62) we have
(W o) (61,602), (N* o) (61,02)) = —r V°(0,01,62) (30.53)

so that

/ <W’ NL> dpos = / -r VO(0791ﬂ92) :u’ga(d(91792))
OB Sy

27 ™
_ / { / V9(0,04,05) sin (01) d6y | dbs.
0 0

Also,
r sin(6q)

’(/J0(90,91,0):(1—90) ( O ) :w0(60,91,27r)
cos(61)

= (W o) (6o,01,0) = (W o) (6o, 61,2m)
which implies that
<(W o ¢0) (905 Hla 0)7 (890w0) (90a 917 O)>
=12 V%0, 0,,0)

= 7"2 V0(907 917 27T) = <(W o wo) (60a 917 271—)’ (8901/}0) (907 917 271—)> .
In much the same way we find that
7"2 (1 — 90)2 V1(00,01,0) = ?"2 (1 — 00)2 V1(90,01,2’/T)

and
72 (1 —00)? sin? (01) VZ(6p,01,0) =12 (1 —0p)* sin? (61) V*(0o, 61, 27).

We conclude that _ ,
Vi = 071,2 V1(90,91,0) = Vl(90,91,271') (3054)

for any 6, € [0,1] and 6; €]0, 7].
We are now in position to compute the divergence integral

fIB le(W) dHB = waO leg(V) d/Jg

= S 1S (B (VON/det(9)) + 0u, (V! /det(9)) + 0n, (V2 /det(g) )| dbo) b | 6.

Recalling that y/det(g) = r® (1 —6p)? sin (6;), the first integral is given by

/OQW [/OW [/01 s, (Vom) dao} d@l] 6,

=3 /027r [/Oﬂ [/1 9o, (V°(00,01,02) (1 —6)?) dao] sin(@ﬂd&l} dbs

0

/027r |:/7T(_’I"VO(O’91,02)) r2sin (91)d91] b

0

-/ (W o), (N 01)) dyg,.
10,7[x]0,27[
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The last assertion follows from (30.53).
The second integral is equal to zero due to

/027r [/01 [/W o, (vl\/M) d@l} d@o] 6,

0

2 1
_ / / [sin (61) V(6. 01, 0)] 7 dBo | dbis = 0.
0 0

=0

and by (30.54) the third one is also equal to zero. We conclude that
/ div(W) dug :/ (Woy), (Ntov)) dug, :/ (W,N*) dpap.
B Sy oB
This ends the proof of the exercise.

Solution to exercise 417:
The Langevin diffusion reduces to the linear Ornstein-Uhlenbeck process given by

t
X, = emxyp T e im gy
m Jo

It is readily checked that X} is a Gaussian random variable with mean and variance given

by:
E(X;) = e /™ E(Xy),
2 t
X _ —2tb/m X, o / —(2b/m)s g
Var(X}) e Var(Xo) + (m) ; e s
2
—2tb/m g _ —(2b/m)t
e Var(Xp) + 5l (1 e ) .
We have

dX; = —B 0,V (X,) dt +7 dW, with  V(z)=2?/2 f=0b/m and &=o/m.

Notice that
28 2 B .

m? 2% bm
2 2

b
= 5 =2 o>
oc 2 m o4 2 o
Using (23.23) the invariant measure is given by the Gaussian
b
7(dz) o exp (ZL x2> dz.
o

From previous calculations, we have
fOt ef(tfs)b/m dW,

o t 1/2
Xt — e*tb/m XO + — </ 67(2[)/771)8 ds) 1/2
m 0 (f(f e—(2b/m)s ds)

~_ (1- e—(zb/m)t>1/2 yo

— e—tb/mX +
0 V2mb
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with the centered Gaussian random variable Vs(t) with unit variance given by

V(t) B f()t e—(t—s)b/m dWs

g
= Law ( V(t)> =m.
s 1/2 s
<f0t o—(2b/m)s ds) / V2mb

Using the estimates provided in example 8.3.10, we find that

o2
W (Law(X,), ) < e~/ <E(Xo) * omb e(b/m)t) '

This ends the proof of the exercise. ]

Solution to exercise 418:
By (20.3) and (20.4) the orthogonal projection and the mean curvature vector on S? are

given by
T

T x
m(z) =1d - T and H(x) =2

2T
On the other hand we have
Ve)=2TAe= > 2 > aijz; = (0V)(z) = (A+ AT)z.

1<i<3  1<j<3

Thus, using (23.28) we prove that

XtXtT T X
dX; = Id— —(A+ A" (Xp)dt + dBy) — —— dt

(Id = X X{) (—(A+AT)(Xy)dt +dBy) — Xy dt - (<= || Xel| = 1)

has the desired reversible measure .
This ends the proof of the exercise. [

Solution to exercise 419:
Using the spherical coordinates 1 defined in (30.51), the Riemannian scalar product is
given by the matrix

0) 91,20) 1 0
o) = ( 9 > = : .
9(0) ( g1,20)  go2,20) 0 sm2(01)

= /det(g(#)) = sin(61) = py(dh) = sin(6,)do,db
with 6 = (01,02) € Sy, = ([0, 7] x [0,27]). On the other hand, we have

V(2) = 2" Az = U(9) == V(1(6)) = $:(0)7 Au(6).

Using the fact that

1,1 1,2
1 [ gbtiO) ¢hce) N (1 0 —_ [ 1 0
g (0) = ( g"20) ¢*>20) )~ \ 0 sin"?(6,) = Voi0) = 0 sin~'(6,) )°
By (23.29), the Brownian motion B; on the Riemannian manifold Sy is defined for any

1<i<pby .
dB, = dB! + 5 cot(©' (1)) dt.
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This ends the proof of the exercise. ]

Solution to exercise 420:
The generator L of the diffusion Xf = (X;, V;) is given for any smooth function f(x,v)
by

LE(f)(z,v) = e 6UUV('U) Oz f(w,v) — [avUV(U) + e@xUX(l‘)] Oy f(w,v) + dff(a:,v)
= e[@vUV(v) Ouf(z,v) — 0, UX (x) Dy f(, v)] —0,UY (v) Oy f(z,v) + 02 f(z,v).
For any smooth functions f(z,v) and g(z,v) with compact support we have
"L [ WO oo )
X [eavUV(v) O f(z,v) — [&,UV(U) + eaxUX(:E)} Oy f(z,v) + 85]”(33,1))] dzdv.

By integration by parts, we have

/ e~ UX@HUY®) gz 0) 0,UY (v) Bs f (2, v) dedo

= —/ef(UX(IHUV(”)) 2,UY (v) V@) g, (g(:c,v) eiUX(:”)) fz,v) dedv

=—g(x,v)0, UX (2)+0xg(z,v)

and

/ e~ W@V ) gz v) 8,UY (0) By f(z,v) dzdv

/e (U (@)+UY () { OPY ( g(z,v) e V" @) a,,UV(qJ))]f(x,v) dzdv,
as well as

/ e~ WX@HUY @) g 0) 9,UX (2) B, f (w,0) dwdv

:/ef(UX(IHUV(v)) 0, U™ () Uy, (g(x,v)eiUV(”)> f(z,v) dedv.

==g(@,0)0,UY (v)+0yg(2,v)

Finally we have

/ e~ U@ gz 0) 92 f(x,v) dudv

:/e—(UX(x)-i-UV(y)) €UV</,;) 03 < g($71)) G—U\/(v)> f(.’IT,U) drdv.

=—0, (g(m.'v)e*UV('f')O,U(UV)(v))JrDU (8—[1V'(1’)avg(m_ry))

Summing these terms we find that

") [ @I fa0)
x [e(0:UX (2)0pg(z,v) — 0,UY (v)0yg(z,v)) =0, U" (v)dyg(z,v) + 02g(z,v)] dzdv
= 7 (fL(9)),
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with
Le’*(g)(:];, U) = —€ [avUV(U) azg(x7 U) - awUX (CC) avg(x7 U)] _avUV(U) 611.9(56) ’U)-i-agg(l‘, U)'

This shows that L* = L~°.
This ends the proof of the exercise.
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Solution to exercise 421:
in law

Using the fact that (—1)¢ "=" U, we check that
AY, = Y, - Y, 1=v (D) =0 (U;...U,).

We set X,, = U ... U, The sequence (X,,Y,,) is a Markov chain with transitions defined
by the equation

{ X7l+1 = XnUn—i-l
AYn+1 = UXn+1.
K(f)(zy) = E(f(Xnt1,Yor1) | (Xn,Ya) = (2,9))

= f(z,y+vz) e+ f(—z,y —vx) (1 — e_a) .
We clearly have

y + Uot) + g(y — ’Uot)

a=1log2 and v=uvot = wi(y) =E(g(Ynt1)| (Xn,Yn)=(1,y)) = g D)

and 5 )
5 0,9(y + vot) + 9, 9(y — vot)
2

Owily) = v = v 0iwq(y)

with the initial condition
wo =g and Oyw),—o=0.

When v = bh and a = Ah we have
=t Kn(f)(x,y) — f(z,y)]
= h_l[f(l‘,y + bh) - f('ra y)] e—ah + [f(_x7y - bh’) - f(xvy)] h’_l (1 - e—ah)

—no b Oy f(x,y) + A [f(—x,y) — f(z,y)] :== L(f)(z,y).

The generator L is a jump process with a first order term corresponding to a deterministic
transport given the first variable. The Markov process with generator L is defined by

X = (=1
dy, = X bdt

where N; denotes a Poisson process with intensity A. Notice that &; changes its sign at a
rate A. In addition, given the "sign process" A}, the second component ) is a deterministic
process with drift function (X; x b).

The process (X3, V) coincides with the random 2-velocity process discussed in exer-
cise 209 when b(x) = b, a(z) =0 and A(+1) = A(—-1) := A

This ends the proof of the exercise.

1175
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Solution to exercise 422:
Following the solution of exercise 209 we have

atpt(la y) =A ( pt(flay) 7pt(17y)) - baypt(lay)

and
api(=1,y) = A (pe(1,y) — pe(=1,9)) + bIype(—1,y).

This implies that
Ot (y) = —b yq; (y) and  Augy (y) = —2X q; (y) — b yq;” ().
Taking the partial derivative of the lL.h.s. w.r.t. ¢ and the r.h.s. w.r.t. y we find that
Fal (y) = =b iy, (y) and dyuq; (y) = =21 Jyg, (y) —b gt (y)
——
:*% atQ:r(y)

from which we conclude that
Ra () +2X dugt (y) = 0% 04/ (y).

We also have
E(Q}) = / y® (pe(Ly) + pe(—1,9)) dy:/ v? a4t (y) dy
and

/ y? 07q/ (y) dy + 2A / v Ot (y) = v [ y202q (y) dy
= 0 [ 95(°) a (y) dy =20°.
This yields
O2E(Y2) + 2) O E(Y2) = 2b2.
The solution associated with the initial conditions E(Y?) = mg and m{, = O;E(Y;?)¢=¢ > —1
is given by
b2 1

1
EY2 _ 2 1 / (1= —2)t .
Y= 13m0 (m“( o)t — 5y (1—e ))

To check this result we notice that

1 _
20 OE(Y?) = 2b° T (14 mp) — ™M)
1 _
OPR(Y?) = 2b° s AL
This ends the proof of the exercise. ]

Solution to exercise 423:

Following the developments of section 14.4.3 the random state Xr,,  is uniformly
distributed on the sphere S(z, p). See also the exercise 240 on the rotational invariance of
the 2-dimensional Brownian motion. We also refer the reader to the discussion on 444.
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The Dirichlet-Poisson problem has the form (15.38) with (V,g) = (0,0). Using (15.42)
we have

v(z) = E (h(z +Wr,))
This ends the proof of the exercise. [

Solution to exercise 424: When ¢ = 1 we recall that B,,+W,, = N+n with N = b+w.
Thus the Markov chain model is defined by

Bn+1 - Bn + 1Un+1€[0,3n/(No+n)]

with a sequence of i.i.d. uniform random variables U,, on [0, 1].
This ends the proof of the exercise.

Solution to exercise 425:
By construction, we have

E(/(Xu) | X)) = 5 /Kt |5 3 ) ] 5K 1)
i X,,iLZI
- ;_;_Ou(n FXa+ 1)

When p is the uniform probability, for any function f on {1,...,d} we find that

— 1 — X, o~ d—X, . —
This shows that X,, is a Markov chain with transitions
— 1 k d—k

( Z ) Mk, 1)

=0b-1!; (kxbikﬂlk(l)4‘(b—zﬁa—1y Ll -1+ o—aom 1k(l4'1))'
This yields

> ( : ) M(’“’”:(b—l)!;(btz)ljz()ﬁl)) = (b—b!l)!l! = ( ) )

0<k<b

The lazy chain being aperiodic, the invariant measure is unique. Using Kac’s formula, we
have ) Kb k)]
E(Ty | Xo=k) = = 7 9k
(T | Xo = k) = 275 B!
When k& = 0, we the expected return time is given by E(T, | Xo = 0) = 2190 ~ 2.27 10%°.
This ends the proof of the exercise.
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Solution to exercise 426: When d = 2, the number of steps up/down should be the
same. This also holds for the number of steps left /right. We find that the number of paths
with k steps up, and k steps down, (n — k) up and (n — k) down is given by

(k E (n—k) (n—k) >_k!2(n—k)!2'

2
Recalling that > 5 ;< ( Z ) = ( 2: )7 this implies that
P (X2, = (0,0) | Xo = (0,0))

2n)! 2n
:Zogkgn k!2gn@k)!2 (%)

2
_ (2n)! 27" n!? _ (2n)! 27" n
- n!? ZOSkSﬂ k?2(n—k)12 — n!? ZOSkSn k

n!2 ™"

_ (27271 (2n)!>2 ~ L1

For d = 3, we observe that the chain needs to do the same number k of steps left /right,
the same number [ of steps up/down, and the same number (n — k — [) of steps for-
ward /backward. The number of such paths is given by

(k kLl 1 (n—k—1) (n—k—1) )_k!21!2(n—k—1)!2'

This implies that
I[])()(2n = (0,0,0) | Xo = (0,0,0))

_ oy 2n) 1\
- K212(n—k — )2 \ 6

0<k+I<n
B (2n)! 9—2n n!? 1\%"
e D E212(n —k—1)12 \ 3
0<k+Ii<n
_ (271)' —2n
T opl2 2

X > o<kti<n P (Placing n balls in three boxes with k.1, (n — k — 1) balls)> .

Since the probability of placing these n balls in three boxes with k, I, (n — k — [) balls is

maximal when k ~ [ ~n —k — [ ~ % (use Stirling’s formula to convince yourself), we have

P (X5, = (0,0,0) | Xo = (0,0,0))

w7 (wa)

X > o<kri<n P (placing n balls in three boxes with k.1, (n — k — [) balls) .

<

=1
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Now, by Stirling’s formula, we have

n! N V2mn n" e " 1

3n[n/3]13 7 3n2x(n/3) \/27n/3 (n/3)" e 2m(n/(3V/3))

This result combined with (25.1) implies that

P (Xa, = (0,0,0) | Xo = (0,0,0)) < ¢/n’/?

with some positive constant c.
This ends the proof of the exercise.

Solution to exercise 427:
Using the same line of reasoning as the one we used in section 25.6.2, we find that

]E(f(XlaaXn) | (BOaWO) = (b,’U)))

= Z Z flxy, ... xy)

0<k<nzi+..+z,=k

C (24 Tagiza ) T (#+ (0~ Tugizam) (F(Z) ‘é’))l
(%)

X

/O1 > > f@ )

0<k<nzi+...4xz,=k

cu1<i<n Ti (1 B u)(n—21§1§n x;) p(ﬁ.ﬂ)(u) du.

This ends the proof of the first assertion. On the other hand, we readily check that B, =
B, 1+c¢cX,and B, + W, = B,,_1 + W,_1 + ¢, from which we prove that

B, 1 B,
Bt | Fuo) = Bui4e——Dnl
(Bn+Wn ‘ 1> Bn—l +Wn—1 +c ( ! Bn—l +Wn—l>
_ Bn—l
B anl + anl

E ("7 | (Bo, W) = (b,w) )

[

0<k<n

1
ith
— ebtwtne /
0

ith

L ite
= ebfwtne / ebFtwtne q + (1 _ u) p(
0

Ititu gms

( Z > ettt o (1 —U)(nik) Py 7)(u) e

Z < Z ) eitﬁ uk (1 —u)(n_k) p(%’%)(u) du

0<k<n

ol

%)(u) du.

s
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This implies that

1
; By itu
lim K (eztB"'+W" | (Bo, Wo) = (b,w) ) :/0 et p(b/c,w/c)(u) du

n—oo
from which we conclude that Bni"m converges in law, as n — 00, t0 Up/cw/c)- This ends
the proof of the exercise.
[
Solution to exercise 428:
In exercise 427, we proved that P, := 22— converges in law, as n 1, to a random

No+n
variable P, with Beta(b, w) distribution. We consider the re-scaled continuous process

X, — p BNt
! Ve = N |Nt|"
When i | 0 and NV 1 oo have

14 (h/t) <LN(t+h)J N{t+h)+1
1+ /(N ~ [Nt +1 ~ Nt

=1+ (h/t)+1/(Nt) - 1.

This shows that |[N(t+ h)] = |[Nt] +1 and
ApB\nt) = B|N(t+n)) — Bint) = B|ntj+1 — By
By construction, we have
]P)(AhB\_th =1| Xt) =X;=1 fIP’(AhBLNtJ =0 | Xt) = E(AhBl_NtJ | Xt) = X;.
Also
Var (ABiwvey | Xi) = E((AnBivy - X0)* | X0)
= E((AnBivi)” | Xi) + X? = 2XE (A By | X0)
= 1xX;—X?=X:(1-Xy).
On the other hand, we have

BN (t+n))
AnX: = Xpp— X, = — N ¥
h<\t t+h t N+ I_N(t+h)J t

B ntj+1 X, = B nt) + AnB|ny) _

t

N+ [Nt]+1 N+ |Nt|+1
(N + [Nt]) Xe + ApBinyy . ApBiny — Xy
N+ [Nt]+1 TN+ [Nt 1

From previous calculations, we prove that

E (AnBiny | X)) — Xy

E(AnXy | Xe) = N+ [Nt] +1 =0
E (X | X)) = (N+LJ\1ftJ T E (@B - X071 X0)
X (1—-Xy)

(N + |[Nt| +1)2
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Finally observe that

1
(N + |Nt]+1)

(1—1|—t a {1; 1+ LNtJ}N—kl/N)D

1 (1 (NN =) + 1/N>
1+ [Nt]/N+1/N )~

1+t
€[1-2/N 1]

2= z2l=

The last assertion is due to

(INU/N -+ YN _,

0SINt/N—-t<1N=0< o m N TN =

For h = 1/N, this implies that

1 X(1- X))

E ((AhXt)2 | Xt) N 10?

h (1—e(N)) with e(N) e [0,2/N].

The Wright-Fisher diffusion approximation on some time mesh ¢,_1 < t, s.t. (¢, —
tn—1) = h =1/N is given by the increments

1 Y, (1-Y,)
Yy on—Y, = n ) RV,
tuth = Yo, = 7 ~ Vh

with some centered Gaussian random variable V,, with unit mean. We then check immedi-
ately that
E(Y:,+n — Y, | Y2,) =0

and 1 Y.(1-Yi)
E((Yi, n—Y:,)? | Vi) = nd” "Il p,
(( tnth tn) ‘ tn) (1 + tn)Q N
This shows that the processes X; and Y; follow the same evolution as h = 1/N and N 1 oo.
This ends the proof of the exercise.

Solution to exercise 429: We have
) . , \"
VieS P(A,()= [ P(X,#i)= (1 — d) =P (A,(1)).
1<p<n

Using the fact that

(T'>n) = {FeS :Vi<p<nX,eS-—{i}}
UiES{V1 <p<n Xp es— {7'}} = UiESA7L(i)

we prove that
1 n
P(T>n) <Y P(An(i) =d (1 - ) <de ™4
€S d

Hence we conclude that

1
P (T > dlog(d) +md ) < d exp <_C“>g(d)+”“l> -

y _
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This ends the proof of the exercise.

Solution to exercise 430: We have that
Y 0T =R/ (27Z) — () =™Vt € C={x = (21,22) €R? : 2? + 22 =1}

For any function F on C we set f = F o). We also denote by W; = {W;+2kr : k € Z} the
class of equivalence of the state W in the 1-dimensional Torus R/ (27Z). In this notation
we have

Furthermore we have

E(F = w _ 1 +oo F w efﬁ (w—wo)? dw
(PO [Wo=wn) = —= [ Fw)

1 2(k4+1)m

= F(y(w)) e~2 (0=w0)® gy
nze:z V2t Jokx

1 2 L 2
= F(p(v)) e 28 wmwot2km)™ gy,
> o=, Fwe

27 27

= F(¢(v)) pi(v —wp) dv = (v) pt(v —wg) dv
0 0

= E(f(Wy) | Wo =wo) =E(f(wo + W¢) | Wo =0)

with

1 — L (v+2nm)? _ 1 —inWy inv
pe(v) = T?the 37 (v+2 )f%ZE(e We) e,

ne”Z nez
The r.h.s. equality comes from the Poisson summation formula applied to the 2m-periodic

function .
he) = 3 plv -+ 20m) = 3 Bln) €

nez nez
with the Fourier coefficient

1 [t ,
A =5 [ pto) e dn

We check this claim taking the Fourier transform of h

~ 1 2w , 1 [t ; .
A(n) = o 3 /0 p(v+2nm) e” M dy = — / p(v) e dv = p(n).

27 J_
neZ
On the other hand, we have

—inW;\ _ _—n?t/2 _ i —n?t/2 _inv
E (e H=e ¢pt(v)f2ﬁgze emnr.
n

We conclude that

1 1 .
)=tk T e g
neZ—{0}
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This implies that
1P:(f) = n(H)II <

3| -

2
§ —n“t/2
€ / —t—o00 0;
n>1

which ends the proof of the exercise.
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Solution to exercise 431:
We let T, (4—1) be the random time needed to move from state ¢ to ¢ — 1. By construc-

1- (j?;l), and we

tion, T, _,(4—1) is a geometric random variable with success probability (
have the decomposition

T" = Try—(Ro—1) + T(Ro—-1)—(Ro—2) + - - + Tos1.
Given Ry = ¢, we have

T" = (Ro — 1) = (Try—(ro—1) — 1) + (T(ro—1)—(Ro—2) = 1) + -+ + (Tas1 — 1) .

i~ — Tq 14}(1*1
]E<etT o= RO> H E(et +d‘>.

1<g<Ro

For any geometric random variable N with success probability « €]0,1[, and for any
0 <t< —dlog(l— ) we have

t(N—1)/dy _ _\n—1_t(n—1)/d _ a
E(e ) =« T;(l a)" e = To o)

Applying this formula to

d g—1 -1
l—a=p,:= % Se_Q(% > and 0<t< Q(QT)(S —dlog (1 — a))
we find that 13
T —1
¢ —a—(a—1) N — Pq
]E<e ’ )‘1—5qet/d'
We consider for any x > 0 the function
1—x
. —t/d
f.xE[O,e ]Hl—zet/d'
An elementary calculation shows that
Flz) = —(1—z e/ — (1 —z)(—et/d) _ et/d _q ~ 0.
(1 —x et/d)? (1 —x et/d)?
Therefore we conclude that f is increasing and
_a(g—1)
2d

- g7 = L= 5 < 1_6( ) .
1— 84 et/d 1— e 577 et/d

By <Le
We consider for any x > 0 the function
g yel0,z] — g(y) :x(l—eyfm) +(y—x) (1—67:6).

1185
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Notice that ¢g(0) = g(x) = 0 and

e® — 60 P
Jy)=—ze" " +(1-e")>0s — @) > v

T —

with the state 6(x) € [0,z] given by the mean value theorem. This shows that g(y)
increasing for y € [0,0(x)] and decreasing for y € [f(x),x]. Since g(0) = g(z) = 0,
conclude that

is
we
Vyel0,z]  g(y) >0

|

1—e* 1—e* T 1

Vye[oax[ 1_61}—30:1—e_$/€_y_x_y:1_(y/x).

Applying this inequality to x = q(gi;l) >y =t/d, we find that
_gq(@—1)
aa-1) 1o tE 1

2 1- 67“%;1) et/d — 1— q(q—tl)/2.

E (et Tq%(qdl)‘l) < 1 :
1= a(¢=1)/2

forany0§t<l(§ q(q72—1))'
This implies that on the event Ry > 1

Vo<t <

Hence

g 1
vt e [0,1] E(etT G |RO)— I —

= i
1<g<Ro 1 q(q+1)/2

On the other hand, for any exponential random variable E, with parameter A, = g(q +
1)/2(> 1) we have

V0§t<1(§ )\q) ]E(et Eq) :ﬁ
- q

This implies that for any 0 <¢ < 1
E (e e Ry )
<E (et Yico<ro 7D Ea | Ro)

< h(t) =K (et21§q<oo ﬁ &g ) = qul 17%

T
a(q+1)/2

where &, stands for a sequence of independent exponential random variables with unit
parameter.

(Tt >0 | Ry)

T/ —(Rg—1) ¢ T/ —(Rg—1)
d d

— —t
—]E(IT/_(?O_UZn € e

| RO) <e ' n(t).
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This implies that

m—(Rg—1)
P(T' >m | Ro) < e ") ht) < emmt/d et () < 26 g=mt/d

1-—t¢
with the finite constant 1
a= I
q>2 q(q+1)/2
The proof of the last estimate follows from the fact that
Wo<t<1  eth(t) = - I1 ! < °
e a.
- ¢ 1—t 1— ——t—r = 1—t
>2 q(q+1)/2
We conclude that
efmt/d

P(T > < inf .
(T">m | Ry) < ae telf(lJ,l[ -

By zeroing out the derivative on the r.h.s., we see directly that the infimum is attained
when ¢ =1 — d/m since

0 efmt/d efmt/d (1 m

ot 1—t :(1—t)2 d(l—t)):0<:>t:1—d/m.

This shows that for any m > 2d
]P)( T | R ) - e—m(l—d/m)/d
su >m = @we ——————— =
1§qI§)d - 0T =0T (I =d/m)

This ends the proof of (26.19).
Since g(q + 1)/2 > 3 > 2 for any ¢ > 2, using the given estimate of the logarithm we

prove that
loga = -— Zlog <1 — 1)
' q(q+1)/2

q>2

a % e~ (m/d=1)

q>2 q>2

1 1 1
= 2 Zq(q+1)+2 ZQ(Q+1) q(q+1)/2

>2

1 1 1
s Zq(q+1) =7 Z[q_ (q+1)} =3/2

q>2 q>2

This implies that

5
sup P(T' >m | Ry=a) < 2 ox [(m)]
1§q2d ( = | Ro =q) < d p d 2

This ends the proof of the exercise.

Solution to exercise 432:
Recalling that

Y ~ Geo(p) = E(Y) = % and Var(Y) = E(Y — E(Y))?) =
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for any success parameter p €]0, 1], we readily check that

E(T)= > E(T)=d %zd log d.

1<i<d 1<i<d

We can use the upper bounds (30.55) to estimate more precisely these expectations. On
the other hand, we also have that

Var(T) = Y E((Ti — E(T;))?)
1<i<d
_ 1—(i/d)
B I;d (i/d)?
) 1 1 2 1 1 2
1<i<d 1<i<d 1<i<d

We note that Var(T) stabilizes asymptotically to %2d2 and does not exceed 2d? for any d.
This ends the proof of the exercise.
]

Solution to exercise 433:

The following analysis follows the book of D. A. Levin and Y. Peres [180]. We let T be
the stopping time associated with the first time all cards are marked in the transposition
shuffle introduced on page 715. We denote by L,, and R,, the card chosen by the left hand
and the one chosen by the right hand. We denote by M,, € {1,...,d} the set of cards
marked up to time n (included); and we let P, € {1,...,d} be the set of positions occupied
by the cards M,, after the n-th transposition.

Given the triplet (n, M,,, P,,), all the permutations of the cards in M,, on the positions
P, are equally likely. We prove this assertion by induction w.r.t. the time parameter n.
For n = 1, the result is immediate since at the original cards are all unmarked (we mark
a single R; for any pair of chosen cards (L1, R1)). We assume that the assertion is true at
some rank n. We choose the cards L, 41 and R,1:

e When no card is marked we have M,,;1 = M,,:

— (Lp+1, Rnt1) are already marked, thus P,,11 = P,. In this case, the shuffle produces
a uniform random transposition in M,,, all permutations of M,, remain equally likely
(by the induction hypothesis).

— L, is unmarked but R,,y; was already marked. In this case, after the shuffle, P,
is deduced from P, by deleting the position of R, 1 and adding the one of L, 1.
For a given set of positions P,, the choices of R, 1 € P, are equally likely. The
permutations of M,, on P, being equally likely (by the induction hypothesis), the
permutations of the new set M, on P,,;1 remain equally likely.

e If R, 1 is marked, then L,; is equally likely to be any element of M1 = M, U{R,41}.
We also have P,,11 = P, U {the position of L, at time n}. Any permutation of M,
on P, U{the position of L, at time n} uniquely determines a permutation of M,, 1 on
Pr+1- Thus, all such permutations are equally likely.

In all cases, the set of permutations of M, on P, makes equal contributions to all
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possible permutations of M,, 11 on P,41. Summing over all the configurations discussed
above, we prove that all permutations of M,,;1 on P, are equally likely.

This ends the proof of the exercise.

Solution to exercise 434:

1. When the selected card ¢; = ¢} has the same position in both decks, the trans-
position does not affect the number of cards N,y1 = N, that occupy the same

position (only their position level is changed).

C1 (&1
card ¢; ,
C; <—> Ci = C;
transposition
positionj

/
ANy
c; ¢

Cd Cqr

transposition

2. The selected card ¢; is not in the same position, say ¢j = ¢;. In this case the
transposition diagram below shows that after the transposition the cards at the
Jj-th position ¢} = ¢; become equal. We notice that in this case, we have ¢; # ¢
by construction, but also ¢x # ¢}, since we have ¢; # ¢x and ¢} # ¢}, (otherwise if
¢ = ¢}, we would have ¢; # ¢, # ¢}, = ¢; # ¢}, and we arrive at contradiction to

our assumption).

Transposition
c1 c} ~ c1 A
c , position k ,
C,. = C; .
k k i Ck c]
i , position i
Ci C; Cj ¢
position ] , position j ,
Cj C; C;i Cp. (&)
Cd cqr Cd Ca/

In this situation, three cases may occur
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(a) ¢j = ¢ : In this situation, we lose this alignment but we have also created a
new one since the cards at the j-th position ¢, = ¢; becomes equal. In this
case, Npy+1 = N,.

(b) ¢; # c: In this case, as argued above at least one alignment has been made
at the j-th position.

i If e # c;» and ¢; # ¢} then N,, 11 = N,, + 1.
ii. If ¢, # ¢ but ¢; = ¢ then N, 41 = N,, + 2.
iii. If ¢ = ¢; but ¢; # ¢} then N1 = N, + 2.

iv. If ¢, = ¢} but ¢; = ¢ then Ny, 41 = N, + 3.

This ends the proof of (26.11). The proof of (26.12) follows from the fact that

]E(Nn+1|Nn)2Nn+<1N">(1;) N, +1.

~<

LS

d

E(N, | No) > (1;) E(No1 | No)+1

el e ()
e e (-2)

_ d- (1-2)71 (d— No).

This ends the proof of the exercise.

[
Solution to exercise 435:
We have
1
E(T) = 1+d> Y —————
524t x (d—(i—1))
d? 1 1
- 1 4 — ) ~2dlog(d).
+d+11<zi<d <i+d(i1)) og (4)
We can use the upper bound
1+1 1
> Sdt] = log(d+1)
1<i<d”?
< Yiclhisw / Lat) =0 +10g0)
- —~ i —~ Jicat
1<i<d 2<i<d
(30.55)
to check that
d? 1 1
+ 1<i<d "
2 1
< 1 21 1— - < 2d 1 1 <2d(1+ 1 .
< +d+1( ogd—i-( d>)_ dlogd +d+1 < 2d(1 +logd)
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The last assertion is a direct consequence of theorem 8.3.18. This ends the proof of the
exercise. [ |

Solution to exercise 436:
A each time step, say n, of have d*> = d(d — 1) +d possible choices of the pair (L,, R,,) =
(i,5) € {1,...,d}d
e After the first card, say mi, has been marked, we have 1 x (d — 1) + 1 = 1 x d possible
pairs (mq,7) with j € {1,...,d} — {m1} and (my, my), for which the right hand card will
be marked; This random time is a Geometric r.v. with success probability

1xd
P

e After the second card, say ms, has been marked, we have two marked cards m; and ms. In
this situation, we have 2 x (d—2)+2 = 2x (d—1) possible pairs (m, j) with m € {my,mo}

and j € {1,...,d} — {m1,ma}, and (m;, m;)1<;<2 for which a new right hand card will
be marked. Therefore, the random time 73 is a Geometric r.v. with success probability
2x(d—1
p2 = 7(512 )

e After the third card, say mg, has been marked, we have three marked cards mq, mo and
ms. In this situation, we have 3 x (d — 3) +3 = 3 x (d — 2) possible pairs (m,j) with
m € {my,mq,ms} and j € {1,...,d} —{mq1,ma, ms}, and (m;, m;)1<;<3 for which a new
right hand card will be marked. Therefore, the random time 75 is a Geometric r.v. with
success probability

3x (d—2)

a2

e More generally, after the i-th card, say m;, has been marked, we have ¢ marked cards
(Mmk)1:eqh<i- In this situation, we have ¢ x (d —4) +4 = i x (d — (i — 1)) possible pairs
(m,j) with m € {mq,...,m;} and j € {1,...,d} — {mq,...,m;}, and (mg, mx)1<p<i
for which a new right hand card will be marked. Therefore, the random time 7; is a
Geometric r.v. with success probability

b (d;z(i—l))

b2 =

This ends the proof of (26.14).
The proof of the exercise is completed.

Solution to exercise 437:

We have
logr‘,d2 2 2
ET) = Y P@>n)=> (1-c¥)+ 3 (1-c)
n>1 n=1 n>log, d?

2 - &

< I —

< logyd”+ Z on

n=1+log, d?

= logyd?+ Y d?/2mtesd —log,d? + Y 27" =1+ log, d°.

n>1 n>1
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In the r.h.s. of the first line we have used the fact that 1 — e™* < x, for any = > 0.
This ends the proof of the exercise.

[
Solution to exercise 438:
We observe that
1x-vls = (3) X2t el
E>1
1 n
— () > 27h ok
k>1
= (1>n+1 > k27 = <1>n1 (30.56)
2 2 )
k>1
with the constant (random) function
1 Law 1
Yo(z) = Z o Inp = op 1ptl = Zn.
0<p<n 0<p<n
The r.h.s. bound in (30.56) is due to the fact that
> k2 = EZxk =(1/(1-1/2)%) =4.
E>1 A k>0
= = z=1/2
Using the inequalities
[Ynt1 = Fllz = 27" < || Xnp1 = Fllz < Yo — Flz+27"
whenever the limits exists we also check that
lim P(|Xo — Flly <) = lim B([¥os — Fllz <o)
= lim P([|Znq1 — Fllz<¥¢). (30.57)
n—oo

To take the final step, we have the almost sure convergence

1 1
Zn+1 - Z ﬁ p+1 —n—oo Z 27;0 Ip-i—l - Zoo

0<p<n p>0
and
1 1 1
Zoo = Lint1 = Z 27[p+1:WITL+2+WIn+3+~'~
p>n+1
1 1
=2 R 2
1 !
1200 = Flliz = 5oz 120l 2 = 1200 = Fllz = 12041 = Zcl 5
< NZny - Fllx
< ||Zn+1 - Zoo”]: + ”Zoc - FH]—'
1
= [[Zo—Flz+ CYESY 123 00| 2 -
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Thus, we have the almost sure convergence
Jim 1 Zas1 = Fllz = 1200 = Fll 5.
By (30.57) we conclude that
lim B(| X1~ Fllr <) =B(|Ze — Fllr < ).

This ends the proof of the exercise.

Solution to exercise 439:
These functions are clearly contractions of the unit interval

fo(e) ~ folw)] = 11 (@) ~ fu(w)| = 5 | — 9 < [z — .
In both cases S is reduced to a half:
S=(SouUSy) with Sp= fo(S)= [O, ;] and S; = f1(S) = B,l} .
Arguing as in section 26.2, we have

T 1 €n—p Law T € €
Xn = 5 5 P £ —ntoo Xoo = -
(m) 2 ! 2 0<;<n 2 2 i 1<pZ<n 2 ! n>1 2n

and

1 € €n  law Entl
§X00+5 _ZQn—H - ZQn—H = Xoo-

n>0 n>0

Our next objective is to prove that X, is a conversion to base 2 of a random number

1 1 1
U=€1§+62?+...+6n27+... (30.58)

that is uniformly chosen in [0,1]. We check the first claim using the binary decomposition

U := [2U | + {2U} ~ 2U; = |20 ] + {20} .
— —~— ——

=e€1 =U; =e€2 =U,
Now, we observe that
]P’(el:O,Ulgul) = P(0§2U<172U§’U,1)

= ]P(Elz()) P(U1§U1|61:0).

This shows that €; is a Bernoulli random variable with parameter 1/2, and given €; the

random variable U; can be seen as an independent uniform on [0, 1]. Iterating this reasoning,
law

we check that U = X .
Recalling that U, = a + (b — a)U is uniform on [a,b] C [0,1] and

law

U =c¢ UO,a + (1 - 6) Ua71 (3059)
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with a Bernoulli random variable P(e = 1) =1 —P(e = 0) = a (cf.exercice 439), we can also
notice that

law
U = aUpp+(1—e) Uy

- . % - ) B+<1;> U] — (0.

Uij2,1
To prove (30.59) we use the conditioning formulae

PeUpa+(l—€) Upn<ule=1)

P Uy, =aU < u)

U
= o 1[0,(1] (u) + 1[&,1] (u)
PleUpa+(1—€ Ui <ule=0) = PUg1=a+(1—-a)U<u)

_ H oty (1),

We get
P(e Upa+ (1 —€) Ug1 < u)

= U 1[0,&] (U) +a 1[a71] (U) —+ (’U, — a) 1[(1,1] (U)

=u—a lgy(u) +alg(u) = u.
Finally, using the fact that lip(f;) = 1/2 we prove that
W(Law (X, (z)), Law(Xn(y))) < 27" [x —y].

Due to proposition 8.3.13 we also readily have that
W(Law(X,(2)), 7) = W(3,M™, xM") < 277 / (dy) |z — |

with the Markov transition M of the chain and its invariant uniform distribution 7 on [0, 1].
This implies that

sup W(Law (X, (z)),7) <27".
z€[0,1]

This ends the proof of the exercise.

Solution to exercise 440:

We have
n 2F-1
Full-length(J,) = Fulllength (Ui_y (U, ki) ) = 30 > Full-length(J.)
k=1 =1

2 n
= 1-— <3> 1 Full-length(J.) =1 lorsque n 1 oo

= Full-length(I,,) | Full-length(I,) = 0.
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This ends the proof of (26.17).
We use the fact that
2

1
Xn = 7Xn7 5 tn
g anitge

1 2 /1
= 32Xn2+3<36nl+€n)

1 2 1 1
= ? Xn—3 + g ? €n—2 + g €n—1t€n .

Tterating this procedure we prove (26.18).

We prove the last assertion by induction w.r.t. the time parameter. The result is
immediate for n = 0. We further assume that the result has been verified at rank (n —1).
For any function ¢ on [0, 1] we have

]E(C)O(Xn)) = E((p(fen(Xn—l))) = E(E(@(fen(Xn—l)) | Xn—l))
= 5 X (X)) + o (X))

Under our induction hypothesis, we have

E (¢ (Jo(Xy1) + 91 (Xao)))
= ()" [fs., elho@) dz+ [5 | o(fi(2)) do]

=3 ()" S, @) dr=3 (3)"" [y ) dr.

We conclude that

This ends the proof of the exercise.
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Solution to exercise 441:

We have
Ay} = b} (Y;) dt:==Y?2 dt
a2 = —(aY?+m™ ' 0,U(Y}")) dt + o dW;.
b3 (V)
The Fokker-Planck equation is given by
1
Opily) = =0y (bt pr) (v) = By, (0} 1) () + 5 0y, pe(y)

= =2 9y, (p) () + M~ Ui(w1) By, (1) (y) + @ By, (y2 1) () + % 20, pe(y)-

Rewritten in terms of the variables (z,v) = (y1,y2) the equation takes the form

1
Opr = —v Oypy + m ™ 0,Uy Oypy + @ 9y (v ) + 3 0231211%

Letting 27102 /a = kT/m we obtain the desired equation.
This ends the proof of the exercise.

Solution to exercise 442:
Following the arguments developed in exercise 441, the desired equation resumes to the
traditional Fokker-Planck equation associated with the diffusion

dXt = bt(Xt) dt + 7 th

with
bi(x) := (ma)™ 0,U; and 7:=o0/c.

In this situation, we have
maq
ma Opy = 0 (0Us pr) + — o*0pr
= 02 (0:Us pt) (y) + 5 T Oopr.

This ends the proof of the exercise.

Solution to exercise 443:
Notice that

Zizo e (f, i) pil) _ (f,%0) po() +Zi21 e "E=Bo) (f 0;) pi(x)
Yiso €7 (L wi) wi(z) (1, p0) polz) + 35y e HE=ED) (1,05) wi(x)

1197
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This implies that

(B~ E0) {Qt(f)(f) ~ {fipo)
Q:(1)(z)  (L,¢0)

=3 emuEoED (1,0i) @i(x) [(f, ei)  {f,¢0)
= (Lpo) po(x) + 2255 e " EimE) (1p;) pj(x) [(Les) (1, ¢0)

We conclude that

Q:(f)(z) _ (£, o) _ o—t(B1—Eo)
e e = O ).

This ends the proof of the exercise.

]
Solution to exercise 444:
We have
LY(¢) = —Eip = 8:Qi(p:) = Qe(LY (9)) = —Ei Qi) = Qu(ps) = ¢~ ¢
and
F=Y (f00) @il@) = Qu(f) =D e P (f,01) i
i>0 i>0
Observe that
n(f?) =Y (o0
i>0
This implies that
" Qu(f) = | (fsp0) o+ Z e” BBt (£ 0) o
i>1
from which we conclude that
e 1 (Qu(f)?) = (frp0)® + ) e FmBl (F o) < pu(f?).
i>1

For finite spaces S with cardinality r we have the crude estimate

QNI S sup (400l Nl |1+ 35 e BB < if) sup {llenl]

1<izr 1<i<r
For f =1 we also have
e VIt < Qu(1)(x) = E (6_ Jo Vs | x, = x) <ce ol
This ends the proof of the exercise.
]

Solution to exercise 445:
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We notice that
LY (po) = L(po) — Vipo = Eopo = V = ¢y ' L(po) — Eo.

Using the exponential change of probability measures discussed in section 18.3, this implies
that

W) = E(f(X0) e 0VEIE) = Pt | ((f(x;) e Jales o))

_ Bt wo(Xo) ©o(X+) o Jileo tLleo)] (X2)ds
B (S 10 o )

= e no(po) E (05 (X7°) F(XP)),

with a Markov process X/° with initial distribution 77([;@“] = W, (no) and an infinitesimal
generator

L%l (f) = L(f) 4 vg 'T(wo0, f).

For d =1 and L = 19?2 we have

2 T (o, f) = 0u(p00u f + fOp0) — 0002(f) — fO2(0) = 20000 f
and

1 _ 1
LIl(f) = 502 + 95 ' OnipoOn f = Ou(log o) Ou(f) + 502

This ends the proof of the exercise.

Solution to exercise 446:
The first assertion is proved in section 16.1.3. To check the second claim, we observe
that
n(f1L(f2)) = p(L(f1)f2) = p(fiH(f2)) = p(H(f1)f2) (30.60)

for any couple of smooth functions f1, fo. This shows that 7 is reversible w.r.t. u.
On the other hand, we have

=p(L(1)po)=0
H(po) = Eopo = p(H(po)) == u(L(vo)) +u(Veo) = Eo pu(po) = Ve, (p)(V) = Eo.

This yields

oy ()H()) — Do (1) (V)T (0)(f) = u(;o) (2o (£)) = W () (V)20 )]
- M(LO) (M (20) f) = Yo () (V)20
= W ()(f) [Eo— W ()(V)] = 0

We conclude that

7700(L77<>o (f) = Neo(L(f)) = Nec(fV) + Moo (f)Noe (V)
= = [Mec(H(f)) = 11oc (f)Mec (V)] = 0.

This ends the proof of the exercise.
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Solution to exercise 447:
When V(0) = V(1) we have
P(X, = 0) = e 10(0) + g (1—e™) —1n u(0) := g =1-p(1)
with b= A(0) + A(1) and ¢ = A(1). It is readily checked that
0) = 3y = HOAO) = 5 = (A
This yields
n(fL(g)) = p(0)f(0)A0) (9(1) — g(0)) + p(1) F(1)A(D) (9(0) — g(1)),
_ A(1)A(0)

30 1 WO~ gOIF) = FO)]) = wgL(f))-

In the further development we assume that V(0) > V(1).
We observe that

LY()(0) = X0) (¢(1) = ¢(0)) = V(0)
LY()(1) = A1) (2(0) = (1)) = V(1)

This yields
V() = —F ¢ ( E — (\(0) +V(0)) A(0) ) ( ZE(B ) _ (

The eigenvalues Fy, E; are the roots of the determinant

E — (A\0) + V(0)) A(0)
det( A1) E—(\1)+ V(1) )

= (E— Ey)(E - Ey)

= [E = (A0) + V(O)][E = (A1) + V(1))] = A0)A(1)

_ [E _ (A(0)+V(0>+A(1)+V<1>)}2
- 2

| (M ) (30) 4 V(o) (1) + V) + AN
(30.61)
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On the other hand, we have

<>\(O) +V(0) + A1)+ V(1) ) 2
2

+ A(1)

(V(O + V(1))2

<V(O

()
2

=(g)44«nadm+Am»+vw»u>—Mua«m—vu».

=ac

)= V(1) + A(0)
2

) - V({) : AO) + (1) ) "L V) (V(0) = V(1) 4+ A0) 4 AW + V()2

V() (V(0) +

A(0)) + V(1)A((1)

We conclude that

E—(A0)+V(0) A(0) ?
et ( A1) E— (A1) + V(1)) > - [E - (MOHV(O)?MDW(D)} N [(3)2 - “C} '
Notice that
A(0) + V(0) ;— A1) + V(1) v+ V(0)-V(1) ;— A(0) + A(1) v+ g
This yields the roots
Ey, = V(l)Jrgf <S) —ac=V(1) — 2o,
2
E1 = V(].) + g + <12)) — ac = V(l) — 21 2 Eo.

By (30.61) we also have the formula

EoEr = (A0)+V(0) (A(1) + V(1)) = A0)A(1),
Eo+E = (M0)+V(0)+ (A(1) + V(1)). (30.62)

e When ¢ =X\(1) =0, and (b=a+ A(0) >)a =V (0) — V(1) > 0, we have (1) = 1 and the
eigenvalues are given by

In addition, we have

10(0)
1= §m0(0) (1= e7)

as well as 7:(1) —¢— 00 Noo(1) := 1. This implies that

n(0) = e

—7t—o0 7700(0) =0

n:(0) = —2 O (log (1 — %770(0) (1 — e_bt)))



1202 Chapter 27

and therefore
/Ons(V)ds = V(1) /0(1—775(0))ds+V(0) /0 1s(0)ds

= V()t+a /0 ns(0)ds

- V()t+ {mg (1 - %no(()) (1- e*bS))} :
= V)t +log [1 - %no(()) (1- e*bt)]
We conclude that
Hogr(1) = 7 [ (Vs
= oo (V) + %log [1 -7 (0‘)/@1/_(1;(3A(0) 70(0) (1 _ e{[wmvu)m(o»t)}

By definition of ¢, we have

LY (90)(0) = L{0)(0) ~ V(0)¢0(0) = ~Eo ¢0(0) = V(1) 0(0)

& Ligo)(0) = (V(0) — V(1)) 2o(0)

& A0) (po(1) — 9o(0) = (V(0) = V(1)) 0(0)

& A0) @ol1) = ((V(0) = V(1)) + A(0)) ¢0(0).
We also notice that

A(L) = 0= 1(0) = mo(0) = 0= 1 — (1) = 1 — mo(1) = 1 = 7o = .

We have then

Lz (£)(0) =

Il
°Q x

L, (H)(1) =

This implies that
ToLx, (f) = 70(0) Ly (£)(0) +70(1) La, (f)(1) = 0.

e When b? = 4ac > 0, we recall that a = ¢ =b/2 >0 < a=V(0) — V(1) = A\(1) > 0 and
A(0) =0, so that
uw(0)=1 and Ey=E,=V(0):=EFE.

In addition, we have

ne(1) = 1 - my(0) = % = L0, og (1t am(1) 1)) —esme me(1) =0,
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as well as 7:(0) —¢— 00 7oo(0) := 1. This shows that

/O n(V)ds = V(1) / ne(1)ds + V(0) / (1= ny(1))ds
=V@www—wmlmmm

V(0)t — [log (1+a no(1) 8)]:=, = V(0)t — log (1+ a no(1) 1).

We conclude that
—V(0)

1

T [ s =)~ o (1 -+ am1) 1),

For any function ¢ we have

and

In this situation we have 74 (0) := (0) = 1 and u(pg) = 0.

e When b? > 4ac and a = V(0) — V(1) > 0 (i.e. V(0) > V(1), A(0),A(1) > 0) we have
checked that

2 2 (22 = z1) e (oot
m(0) + — = (’70(0) T Ez) (ano(0) + ZQ; e*(;*“)t — (ano(0) + 21)

—7t—oo 0.

This shows that

with

In this situation, we recall that
b>a+c=—z>a=—(ano(0)+2) > —(a+2)>0

and
(ano(0) + 22) e~ (z2—2)t _ (ano(0) + z1) > 0.

After some elementary computations, we find that

z

7:(0) = —% O (log [(770(0) + 3) et — (770(0) + ﬂ) ezzt]) .

a a
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This yields
t t
[ nvis = viera [ o) as
0 0

= V)t [log ((m(0) + =) e = (m(0)+ =) e)[;

(22 — 21) ]
(ano(0) + z2) e=(z2=20)t — (ang(0) + 21) |

= (V(1) — 2z2) t + log {

Observe that

Moo (V) = 1100 (0) V(0) + 7100 (1) V(1) = == (V(0) = V(1)) + V(1) = V(1) — 2»
This implies that
¢ [ nvyas
(22 — 21)

1
= oo (V) + 5 log [(ano(o) +22) =220 — (ao(0) + 21) |

Using the fact that
Ei—FEy=29—21>0 and CL:V(O)*V(I)>O
we have

(an0(0) + 22) e~ =7t — (ang(0) + 21)
=a{(n(0) + z2/a) e~ Er=E0)t — (ny(0) + z2/a — (Ey — Ep)/a)}

= —a{(m(0) = nec(0)) (1 —e Fr=F)) + (By — Ey)/(V(1) = V(0))} -

This yields the formula

1 t
7/ ns(V)ds
tJo

(E1— Eo)/(V(1) = V(0)) '
(70(0) = 10 (0)) (1 — e~ (Fr=Eo)t) 4 (Ey — Eo)/(V(1) — V(0))

1
= 77<><>(V) =+ Elog [

By the definition of g we have
LY (00)(0) = L(0)(0) = V(0)ip0(0) = —(V(1) = 22) 0(0)
< AM0)(o(1) = #0(0)) = (a + 22) ¢0(0)
& A0)po(1) = (a+ 22+ A0) o(0) = (b+ 22 — A(1)) 0(0).
In much the same way, we have
LY (0)(1) = L(o)(1) = V()go(1) = —(V(1) = 22) po(1)

< AM1)(90(0) = po(1)) = 22 o(1) & A(1)po(0) = (22 + A(1)) wo(1).
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This shows that
©o(1) a4+ 22+ A0) A1)

eo(0) — A0) A1)

Notice that
a+ zz + A(0) B A1)

A(0) 2+ A1)
with b:=a + A0) + A(1) and ¢ := A(1).
Consider the probability measure my = ¥, (1) on S defined by

22+ bz +ac=0

70(0) = /f(;o)) u(0) = 1 — (1)

with the L-reversible measure p defined above. We have

LY (o) = L(o) = Vigo = —nss (V) 0o <= 1(Vipo) = 1100 (V) p1(sp0)
= mo(V) =1 (V).

We recall that
Ly (f)(2) = L(f)(@) = V(2) (mo(f) — f(z))
= 70 (Lmo (f)) = 70 (L(f)) + 7o (fV) — mo(V)mo(f).

Using the L-reversibility property of u we have

_ poL(f)) _ p(fL(p0)) _ p(feoV)
mo(Lif) = plpo)  plpo)  pleo) ooV

= w(fV) — mo(V)mo(f).

We conclude that
70 (Lo (f)) =0 = 70 = 7oo-

We can also check directly that my = 7. using the formula

#0(0)11(0) A1)

70(0) = Zo0010) + po(DalD) — ML)+ M0) po(1)/70(0)
and
pol) _atztMO) oo !
= 70(0) = — =0
£0(0) A0) R0
so that

a+ zz + A(0)
A(0)A(1)
= z§+sz+ac:0.

m(0) = 10(0) = —22/a & Z£+1+ =0
2

In much the same way we check that
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Our next objective is to check that u(pop1) = 0. Observe that

m(eopr) = p(0)o(0)1(0) + n(1)po(1)pr(1)
A(1) A1)
o MDo(0)e1(0) +A(0) 2o (0)21(0) v YAy
B A0)A(1)
= A1)po(0)p1(0) <1+( A1)+ z1)(A (1)+22)>.

On the other hand, recalling that z; = V(1) — E; and z, = V(1) — Ey we have
AO)A(L) + (A1) + 21)(A(1) + 22)
= A0)A(1) + (A1) + V(1) — E1)(AQ) + V(1) — Ep)
= EoEy — (\1) + V(1)) (Eo 4+ E1) + (A1) + V(1))* + A0)A(1) = 0.

The last assertion is checked using (30.62).

This ends the proof of the exercise.

]
Solution to exercise 448:
We have
i |k
Ora(t) = _5”5 a(t) = hdwp(t, x) \/ U(t, x)
In much the same way, we have
km 1 [km
2 2
() = —c 7 0z (lE exp (2 7l z ))
km m o
= —c\/ 55 Yo(z )JFC*I Yo(x).
I}
This implies that
ﬁ2 2 h [k  km o ) km o
This ends the proof of the exercise.
]

Solution to exercise 449:

The Feynman-Kac formula is a direct consequence of the exponential change of proba-
bility measures discussed in section 18.3.

Using the fact that L is reversible with respect to some non negative measure p, for any
couple of smooth functions f; and fo we have

u(tp% f1 L[“’T](fz)) = p(efr fi L fz) 1 (o5 fi o7 Toler, f2)])

=u(eT f2 L(pTf1))

1 (@5 fi L(f2)) + n (5 A (o7 Llerf2) = L(f2) = o7 faL(pT
pler hi <son2>) —nler fi L2Le7)) = (5 2 L¥7(1)).

)])
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This ends the proof of the exercise.

Solution to exercise 450:
Expressing any normalized function ¢ € Lo (p) by using the basis of orthonormal eigen-
functions ;, ¢ > 0, we find that

0E1< > {pispi)
OEz < i>2 Z EO ZiZO <90u901>2 = EO <§0,§0>
(30.63)

p=> (o) pi= (0, H(p) = 3,
i>0 = Z

The last assertion follows from

(@) = Y (0r i) (s 05) {pinips) =D {r00)>.

7,70 1. >0
i=j

This yields the variational principle

(@, H(p))
oo > E,. (30.64)

Replacing ¢ by g in (30.63) we have

> E; 8007901 ? = Eo = Eo (o, po)-

>0

li—o

This implies that

P 211 C21) R (2 1C2)
{©0, o) eeLa(n)  {p, ) :

The last assertion is a direct consequence of:

1T Vr) _ ler, Hier))
uer) {0, 9)

Vi = o7 Hier) = Yoz (0)(Vr) = > Ey.

This ends the proof of the exercise.

Solution to exercise 451:
For any given state ¢ € A we set

fq + z€{0, 1}A — fq(z) = z(q).
We have

L(fy) (@)=Y x(p) ra («"°(q) —2(q)) + > (L—2z(p) ro »_x(s) (2" (q) — 2(q)) -

pEA pEA s~p

Recalling that

274 (q) :{ x(Qg j‘ Zii
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we find that
L(fy) (@) = z(g)ra (29°(q) —2(q)) + (1—=(q)) m »_a(s) (27" (q) — (q))
= —rax(@)®+ro Y a(s) (1-2(g)’
= —raa(Q)+r y_x(s) (1—=(q) = —ra folx)+ro Y folx) (1= folx)).

This yields
Bume(fa) = me(L(f)) = =ra m(fo) + 75 Y / m(dz) fp(z) (1— fo(z))

from which we conclude that

(@) = m(fq) = Orpa(a) = —ra pul@) + 7o Y ()1 — (@) — Y Covi(p,q),

p~q p~q
with

Covi(p,q) = Z/ ni(de) (fp(x) =ne(fp)) (fo(2) = ne(fq))-
For regular homogeneous lattices we have

Vp.g € A ni(fy) =ne(fp) =2z and [{s€A : s~p}[=|{s€A : s~q}|:=n
In this situation, we find that
Zt=—7Tq 2zt + 1o 1 2e(1 — 2¢) —nVary(p) with Var(p) := Cov(p, p).

This ends the proof of the exercise.

Solution to exercise 452:

2 o= —rqgztrena(l—z)=—-rmynzi+(rpn—rg) 2

= azi+bz=z(az+b) with a=—-r,n and b= (1, n—ry).
There are two stationary solutions
zz2=0 and z = -b/a

corresponding to the roots of the characteristic polynomial p(z) = 2z (a z + b). If we set
A :=1ry/7q4, then we observe that
1 1
z = T >0 A< —.
b = -1 n
nA

In this situation, using the same arguments as in the proof of exercise 308, the solution is
given by

bt 20 _ 20
1—% 21 —ebt) e P42 2(1—eb)

Zt = €

b n b e bt
a 0TG) et 2 2 (1—e7bt)
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This ends the proof of the exercise.

Solution to exercise 453:
We let Pi(z,y) = P(X;: =y | Xo = z) be the probability transitions of X;. By construc-
tion, we have
f=1 = R(f)(@) =E(f(X¢) | Xo =2) = P(z,y).

We also have the forward equation

f:]-y = atPt(m7y):atPt(f)(x):L Z Apv Pt l'pvy) Pt(xay))

We choose
e—Bv(p,x)z(p)
eBv(p,x)  —Bu(p,z)

with  v(p,x) = h(p,z) + Z ip—q) z(q).

geA—{p}

Ap,z) =

Since j is symmetric and j(0) = 0, for any fixed p € A we have

722 r—s) x(r)x(s)

relA seA
%x(p) PFIEDE: Z Y il —s) a(r)a(s)
sEA ’I"GA {p} s€A
=z(p) >, jlp—q Z > dlr—s) a(r)a(s).
gqeA—{p} TEA {p} seA—{p}

Also notice that A(p, z) stands for the rate at which « jumps to y = 2”. In addition, starting
from y = aP, the rate at which y comes back to z is given by A(p,zP). Thus, to check the
reversibility property it suffices to check that

VpeAVzeS m(x) XMp,x) = 7(zP) X(p, 2P). (30.65)

To be more precise, suppose that the above property is satisfied. In this case for any
functions f and g on S we have

S w@Apo) f@) g@®) = Y w@)Ap.a?) fla) glaP).
(p,x)€(AXS) (p,x)€(AXS)

Since
y=2" & y"=u,

by using the change of variable y = xP we readily check that

S a@)Ap.a?) fx) g2”) = Y wmWApy) F°) 9(v)

(px)€(AXS) (Py)e(AXS)

= Y w@Ap.2) f@?) glo).

(p,z)E(AXS)
This yields the formula

Y. m@Apa) fl@) g@t) = D w@)Ap,) f(2F) g(x).

(p,x)E(AXS) (p,x)E(AXS)
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This implies that
m(fL(g))

Y. @A) fx) (9(") - g(x)

(p.2)E(AXS)
= Y. @A) g(z) (f(@) - f(2)) = 7(L(f)g)-
(p.@) E(AXS)

We conclude that 7 is L-reversible.
To check (30.65) we use the balance equation

(eﬂv(p,x) + 6—5“(1’@)) 7(z) Mp,x)

qeA—{p}
+§ Z Jjlr—s) z(r)z(s) + 3 Z h(q) x(q)}
(r,s)€A? q€A

= exp (g Z Jjlr—s) x(r)z(s)+ 5 Z h(q) L(q))
(r,s)e(A—{p})? qeA—{p}
= (eﬁv(p,x’“) +e—6v(p,xp)) 7(xP) A(p, 2P).
The last assertion comes from the fact that
v(p,2P) = h(p) + X yen—(py J (P — @) 2P(a) = h(p) + 2 jer—(py 3 (0 — @) z(q) = v(p, @)

L Apa? e—Bu(p,a?)z? (p) eBv(p)z(p)
Pat) = ot T e Bomar) — eBud) 1 o—Bv(p)’
and
H@) = —5 Y ilr—s) a(ar(s) = 3 hr) 2¥(0)
(r,s)EA? reA

= _% Z Jjlr—s) z(r)x(s) — Z h(r) x(r)

(r,s)e(A—{p})? reA—{p}

reA—{p}
=v(p)
This shows that
B(—H(aP)—v(p,aP)z" (p))
= g Z Jjlr—s) xz(r)z(s) + 4 Z h(r) x(r) — Bx(p)v(p).
(r,s)e(AxA—{p}) reA—{p}

This ends the proof of the exercise. ]
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Solution to exercise 454:
The idea is to look for solutions of the form

Y;

2
f= ———— with dY; = aYydt + bY,dW, = Y; = Ypelo—7)HWe,
L+ [y Ysds

We also set Yy = X. Applying The Doeblin-Ito formula, we have

dY; 1
1+ fo Y.ds 1+ fo Y.ds
2
Y,dt + bY,dW, Y,
el +t ' t - tt dt = Xt(a - Xt) dt + bXtth
1+f0YSds 1—|—fOYSds

Choosing a = A and b = ¢ we obtain the solution

e
14+ Xo fot eQA=F)stoWegs 14 fot Yids

A=Vt oW, Y,
X, = X, ’ ¢

02

with V; = Xoe(A~%2)t+oWs This ends the proof of the exercise.

Solution to exercise 455:

We have
Y,

02
=———"—— with dY; =aYidt + oY, dW, = Y, = Xpelo™ T)HoWe,
1+3% fo Ysds

Xy

We also set Yy = X. Applying The Doeblin-Ito formula, we have

dY; 1
dX; = 71+Y}d —_—
1—|—%f0st5 1—|—%fOst8

2
Yydt + oYdW, Y, X
Litt_g 72 dt =a X; (1—t> dt + o X dWy.
1+4¢ [ Yuds b \1+¢ [[Yids b

This ends the proof of the exercise.

Solution to exercise 456:

Recall that .
_ X
N, = N! (/ AL X (s) (1 - (8)) ds)
0 N

1211
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is a Poisson process with stochastic intensity

AL :/Ot A X (s) (1—X]E[S)) ds.

In the same way, the process

N, = N? </0t>\2 2(s) (1+a2 xj(vs)> ds)

is a Poisson process with stochastic intensity

Af—/otxz z(s) (1+a2 f”](v“:)> ds.

Therefore the process X; evolves according to two transitions. The birth type transitions
X ~ X; + 1 arise at rate A\}. The death type transitions X; ~ X; — 1 arise at rate \?.
When the process hits 0 it remains at 0. We conclude that the generator of the process X;
coincides with the birth and death generator (28.6).

This ends the proof of the exercise.

]
Solution to exercise 457:
We have
dX? = 2X,dX,+o*X2dt
2 X2
= 20x2 ((1+Z) ==L at +20 X2 dw,
2a b
— 2 X152 — 2
= aXt 1_7 dt+UXt th
with
o2 - o?
a=2a(14+—)=2a+0> b=0b (14 — and 7 = 20.
2a 2a
Using exercise (455) we have
Y, —2
X2 = ——"1—— with Y;=XZexp [(a— 7 t+aWt}
1+2 [)Yds 2
Notice that B L,
%:2 % and @-— % =24+ 0% —20? = 2a — 0.
This ends the proof of the exercise.
]

Solution to exercise 454:
A commonly used stochastic version is given by the 2-d diffusion

dXy = Xi(ar —bia Xy +b12Yy) dt+ (011X + 012Y;) AW}
dY; = Yi(az —bo2Y; +b21Xy) dt + (021Xt + 022Y;) dW?

with a 2-dimensional Brownian motion, and some positive parameters o; ;. These diffusions
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can be approximated using Euler type schemes on some time mesh. This ends the proof of
the exercise.
]

Solution to exercise 459:
We readily check that

T4y =0= 2 +y =20 +yo=N.
The equilibrium states of the system (28.18) are defined by

Ac

Ay + Ay Ay + A
N$y:()\b+/\r)y:>(zvy):(Na0) or (x’y)(N b;\r N <1 b; )>

The first equilibrium state occurs when A\, + A, < A., while the second one occurs when
Ab+ A > A
Recalling that x; = N — y;, the equation (28.18) reduces to a single evolution model

A
=2 y(N —y)— (M + A\
=N YW=y =N+ A)y
The stochastic version is often defined by
\ \ 1/2
ay, = (NC Yi(N = ¥i) — (b + Ar) Yt) dt + (Nc Yi(N = ¥i) — (g + Ar) Yt) aw,.

This ends the proof of the exercise.

Solution to exercise 460:
The first assertion is immediate. We use the same arguments as in the proof of exer-
cise 456. Recall that

v A(X(3),Y2) =

are Poisson processes with stochastic intensities A;(X(s)). At rate A\ (X (¢),Y(¢))) :=

a X (t) dt the process jumps from ( i,(((g ) to ( )(:)_ 1 ) In much the same way,
X(1) X(t) -1

at rate A\o(X(¢),Y (¢))) := b X(t) dt the process jumps from Yt to Y1) .

)
At rate A\3(X(t),Y(¢))) := ¢ Y(t) dt the process jumps from < ‘;(g)) > to < Y‘()f)(t_) );

1
. X(t)
and finally at rate A\ (X (¢),Y(¢))) :=d X(t)Y (t) dt the process jumps from Y (8 to
X(t) X@®) ). .
( Y1) +1 ) We conclude that the generator of the process ( Y () is given by

L(H)(z,y) = Mlzy) (flz+1y) = f(2,9) + Ae(z,y) (flz —1,y) — f(z,y))
-|—)\3(x,y) (f(x,y - 1) - f(x,y)) + )\4(‘Tay) (f(xay + 1) - f(l‘7y))

This ends the proof of the exercise.



1214 Chapter 28

Solution to exercise 461:
For any function f on the state space S = N, we set p;(f) = > cn f(2)pe(z). In this
notation, we have

d

%pt(f)

= Z (a1 (x—1)+b) p(x—1)4+az (x+1) pe(x +1) — b+ (a1 + a2) z] p(z)] f(x)

—£(0) [b£(0)p(0) — a2 pe(1)]
= (a1 z+b) pi(x) fx+ 1)+ az xpi(z) flz—1)

x>0 r>2

=Y [ +b) +az @] pix) f(x) = f(0) [bf(0)pe(0) — az pe(1)] -

x>1
This yields
Do) = (o w+0) pla) a4 1)+ Y ar 2 pila) Jw—1)
x>0 x>0

> laz+b)+az x ] pila) f(z)

x>0

=Y {laa+d) [fle+1)—f@)]+azz [fle—1) = f(@)]} pu(@) =p(L(f)),

z>0

with the generator

L(f)(@) = (a1 2 +b) [f(z+1) = f(@)] +az z [f(z —1) = f(z)].

We conclude that X is a birth and death process with linear birth rate A\pjn (2) = (a1 4b)
and linear death rate Ageatnh(2) = a2 x.
The equilibrium distribution 7 satisfies

Vo >1 (e (x—=1)+b)m(x—1)4az (x+1) w(x+1) = [b+ (a1 + a2) z] w(x) =0

and

—bm(0) + agm(1) =0 = «(1) = % 7(0).

Choosing x =1 in the first equation we find that that

0=>0m(0)+2as 7(2) — [b+ (a1 + az)] (1)

=b7(0) + 2as w(2) — [0+ (a1 + as)] a—b2 7(0)

b [b+ai] 7(0) = 7(2)=-—

= 20/2 7T<2) — ;
2
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Substituting £ = 2 in the same equation, we have
0= (a1 +b) 7(1) + 3az 7(3) — b+ 2(a1 + a2)] 7(2)

— 3ay 7(3) — ;’% %[b+2(a1 +an) ] —a } b+ ai] 7(0)

D B 2m] bt ar] w(0) = 7(3) =z b+ 2ai] b+ ar] w(0).

-3 3) — -
az 7(3) 2a35 3!a§

We further assume that

1T {bwc} 7(0) (30.66)

ay
0<k<zx

") = 1a§ [T b+kal w(@z% (Z;)m

0<k<zx

and will prove (30.66) by mathematical induction. Assume that the formula is true for for
any x € {0,...,n}. Choosing = n in the Kolmogorov equation we have

O=(ar (n=1)+bd)7(n—1)4az (n+1) 7(n+1) —[b+ (a1 + az) n] 7(n)
=ay (n+1)7(n+1)—[[b+ (a1 +a2) n] 7#(n) — (a1 (n—1) +b) 7(n—1)].
On the other hand, we have

[[6+ (a1 +a2) n] 7(n) — (a1 (n —1) +b) 7(n —1)]

= {[b—knal + agn] % T o ag} 7(0) o H b+ k a1]

= 7(0) n!{z” II b+Eal.
20

<k<n

After substituting back in the Kolmogorov equation we get

1
m(n+1) = 7(0) EESr oglln b+ k ai]

and this finalises the proof by induction.
Notice that (30.66) can be rewritten in terms of generalized binomial coefficients

Ve >0 w(x)=(0) (‘”) (iﬂxfl))

az

with 7(0) = (1 — al/ag)b/al. The last assertion follows from the fact the generalized hyper-
geometric series formula applied to ¢ = b/a; and 8 = a1 /as gives

_ 1 _ =af = af c+(x—1) T
(ceR a=1-p€[0,1))= 1= (1—p)° 21>0( x )6

This ends the proof of the exercise.
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Solution to exercise 462:

Let us look into the chance that a(z) hits the origin provided that it starts from a
certain state Xg = x € N = §; that is, into the probability of extinction of the population
starting with z individuals.

If we denote by T the first time the chain hits the origin, then we have

afz) = PT <oo| Xg=n1)
= Y P(T<oo | Xi=yXo=2) P(X; =y | Xo=21)
yeSs
= p(z) a(z+1) +q(@)a(z—1) +a(z)(l-pz)—q()).
i}
e+ -a@) = fa@) - a@-1)
p(z)
D B & )N G
= = {yl:[lp(y } (a(1) = a(0))
This implies that
ay+1) = a(0)+ ) (a(z+1)—a(z))
=0
= 1-(-a() Z{r_[jfz;}

y=1 p(y)
y € N. Hence the chain is recurrent.
In the opposite case, any choice of a(1) < 0 such that

1—(1-a(l)) Z{Hq()}=1—(1—a(1))wzo

= mrly

The case W := 3" {HT a(y) } = oo forces a(1) = 1, and therefore a(y) = 1 for any

~—

satisfies the equation. The case where the L.h.s. is null provides the minimal solution

1+ (al)~)W=0 = aofl)= f%
I aw)
= aly+1)=1 szzo yl:[lpy)}
_ T 4w aly)
_g{y—lp(y }/a;){y—lpy)}

It remains to check that the extinction probability «(z) coincides with the minimal
solution. For any solution S(z) (28.19) such that 3(0) = 1 we have for any = > 0

Blx) = Y M(z,y)B(y) + M(z,0)8(0)
y>0

= M(z,0)+ Z M(m,y1)1¢o(y1)5(y1)~
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By induction w.r.t. the number of summations we prove that

Blx) = M(@,0)+ Y M(x,y1)1z0(y1)M(y1,0)

y120

+ 30 M@ yn)10(yn) M(y1, y2) 1o (y2) B(y2)

y120y22>0

Z P(T=p| Xo=2)

1<p<n

+ >0 3T M) tzo(w) p Blum).
Y1,--,Yn>0 | 1<p<n

This shows that

Blx) = P(T<n|Xo=2)+E(rsn B(Xn) | Xo= 1)
> P(T<n|Xo=2) Tt a().

This ends the proof of the exercise.

Solution to exercise 463:

The proof of the exercise is a simple combination of the proofs of the exercises 317
and 318, thus it is omitted and left to the reader. See also (15.31) and the developments of
section 16.1.3 and section 16.2.

This ends the proof of the exercise.

Solution to exercise 464:

We have
91 (1) = 7e(We) + p(1) = 72 (1) me(We) + (1) with Wy =Up — V3.

This implies that

W(1) = efsmWs %<1>+[/ el ds] (1),
0
Observe that
_ 1 ) 1,
ome(f) = %) Ove(f) %) (D) v (1)

(f) 1
o (1) % (1) [ve(1) ne (W) + pu(1)]
u(l)}'

() — m(f) [mwt) + 22

= @)+ Wf) 4 ()

(1)
) (1)
= wlLD)+mWeh) + a5

=2

This yields

One(f) = m(Le(f)) + Wi f) — me(£)me(We) +
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We conclude that

3t77t(f) =T (Ztﬁt(l)ﬂh (f)) with Etﬁ)’t(l)ﬂh = Lt,m (f) + L?,'yt(l),m'

The mean field approximation 7’ = % >,y d¢i associated with these model is defined

in terms of a Markov chain & = (&)1<i<n with fized population size with a generator
Ltﬁé\'(l)miv that depends on the total mass approximating equation

Oy (1) = 4 (1) nY (W) + p(1).

This ends the proof of the exercise.

Solution to exercise 465:
By definition of the branching process, the occupation measures X} := ZKKM (551'4
) > t
are conditionally independent given the initial configuration & = (&) This implies

that

1<i<Np"

VI<i<Ny E(X(9) | & =xp) = Qoule)(xh)

as well as
7 Vv 1 7
Xi(p) = Z X (p) = X =+ Z X = — X =E(X(e) =7lp)
1<i<No 0 1<i<ng 0
We also have the variance formula
2
1 ) 1 2
El | X (p) — =-—E([x}(p) - _
W L M- =5 (@) —w(e)])
St No

We further assume that Ny = 1. Using the analysis developed in section 28.4.3.2 we
have )
dX, () = X (L () dt+ M, (p)

with a martingale Mt(l)(cp) w.r.t. Fy = o(&s, s <t) with angle bracket
0, <M(1)(¢), M“)(@)>t =X, [Tr,(0,0) + (U + Vi) %] .
Choosing ¢ = 1, this shows that
N, = X,(1) = dN, = X, (W,) dt +dM M (1)
with a martingale Mt(l)(l) wr.t. Fy = o(&s, s <t) with angle bracket
) <M<1)(1), M(l)(1)>t = X (U + V)]

This implies that

E(N;) =w(1) =1 —i—/o vs(Ws) ds < OE(Ny) = v (Wy).

When W; = 0 we clearly have E(N;) = Ny = 1. When W, > € we have

BtE(Nt) = 'Yt(Wt) >€ ]E(Nt) = 8,5 10gE(Nt) > €= lOg]E(Nt) > et = E(Nt) > et
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In much the same way, we check that
W, < —e=E(N;) <e .

Applying the Doeblin-Ito formula to the function

fls,2) = Y Qoule)(ws)

1<i<N

w.r.t. time parameter s € [0,¢] we obtain the formula

=0
dX(Qsily)) = A, (as(czs,t«o))+LZV(Qs,t(so>)> dt + dMP (p) = dM (o)

with a martingale M§2)(<p), s € [0,t], with angle bracket
0. (M® (), MP(p)) = X, [T1,(Qui(#), Qua(9)) + (Us + Vo) (Qual@))?].
We conclude that

E ([Xt(<p) - Xo(Qo,t(W))]Q)

— & ([6(Qute)) - 2@ = ([P 0) - )] )

=E ((M®(p), M) ()
On the other hand, we have
0 (7 (Qer@))) = 7 (0:1Qua(0)) + (05 >([ O
= =27 (Qsulp) LY Qs +7LW( 2)
= % (T2 (@u(9) Qua)) + (U, = V) (@, ())2)
= 0. ((MP(0), MO (g)) ) =27 (Vi (Quale))?)

) = /Ot Vs [FLS (Qs,t(@)>Qs,t(@)) + (Us + V) (Qs,t(ip))ﬂ ds.

t

This implies that

E ([Xt(w) - XO(QO,t(‘P))F)

—E ((M® (), M (p))
and

E (1%(%) = m0(Qo.())]”)

)= () =m0 (190a(0I) +2 [ 2 (Ve (@uel)?) s,

t

=E ([Xt(@ — Xo(Qo,t(9))] ) ([Xo(Qo ¢ — 10(Qo,e (¢ 2)

=7 (¢%) —no ([QO,t(‘P)]Q) + 10 [(Qo,t( —10(Qo.t (¢ + 2/0 Vs



1220 Chapter 28

We conclude that

E ([4(¢) ~w(e)))
= E ([%(9) = 10(Qo.())’)

= E ([4:() — X(Qo.(2)))*) +E ([20(Q0.1()) = m0(Qo.e(#))]*)

e (97) — 7 () +2 /0 t s (Vs (Qs,t(go))z) ds.

This ends the proof of the exercise.

Solution to exercise 466 :
We follow the developments of section 28.4.3.1 and section 28.4.3.2. For functions of the
form

F(z1,...,2p Z flz) = ()(f) with m(x Z Oz,
1<i<p p 1<i<p
for any z = (x1,...,zp) € SP, for some p > 1, we have

L7M(F)(x) = pm(z)(L(f))-

In much the same way, we have
K(F)(z)— F(z) = / K(z,dy) (F(y) — F(x))
= - Z Z ag [ (z)) — F(2)]

1<z<p k>1

with
This implies that

M(@) [G(F) (@) — F(@)] = p A m(@)(f) [Z an k- 1} —pAm(a)(f) @—1).
k>1
We conclude that

L(F)(x) = pm(z)(Le(f)) +p A m(z)(f) (@ —1).

In much the same way, we have

AT g (k= 1)2f(x)

1<i<pk>1

A p m(x)(f?) Z ap (k—1)%

E>1

pA / Ko(, dy) (F(y) — F(x))?
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The first moment of the branching process is given by
nf)=E| D fE)]| =E@()) with X= > &
1<i<N, 1<i<N,
Applying the Doeblin-Tto formula (28.9) we find that
dX:(f) = X (L(f)) + A Xo(f) (@—1) dt + dM(f)
with a collection of martingales M;(f) with angle-bracket given by the formulae
O (M(f), M(f)), = [X (LL(f. ) +0® X(f?)].
Choosing f =1 we find that
dN; =X Ny (@—1) dt +dM;
with a martingale M; with angle-bracket given by the formulae
O (M, M), = 0* N.

This also implies that
Ove(f) = v(L(f)) + A X (f) (@—1)

and now we can easily check that
1(f) == No E[f(X¢)] exp{A(@—1)t}.
By choosing f = 1 we conclude that
E(N;/Ny) = eMa11,
If we consider the model (28.14) we have a = 1p—2, A = 1. In this situation, we have

@—1:22 ark—1=1 and o?:=)\ Z ap (k—1)?=1.

E>1 k>1

In this case,

t
Ny — Ny = / N, ds + M = E(N;/Ny) = €
0
with a martingale M, with angle-bracket given by the formulae
Oy (M, M), = N¢.

This ends the proof of the exercise.

Solution to exercise 467 :
We consider regular polynomial /product test functions f on S = Up>¢S? of the form

Vp>0 Vo= (x1,...,3p) €S flx)= H f(z).

0<i<p
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Using the developments of section 28.4.3.4, the function
€8 vy(x) = Pouf)(2) =E(f&)) =E | ] f(z+8)
1<i<N,

satisfies the Kolmogorov-Petrovskii-Piskunov equations (28.14) with the initial condition
vo = Po,o(f) = f. This ends the proof of the exercise.
]

Solution to exercise 468 : Using exercise 467, the solution of the Kolmogorov-Petrovskii-
Piskunov equation (28.14) , with the initial condition v = 1jg o[ is given by

1<i<N, <i<N;

By symmetry arguments, we have

P(sup ffﬁx)ﬂ”( sup §f§x)
1<i<N, 1<i<N,
This shows that

ve(x) € [0,1] whﬁrgo ui(z) and IEIEIOO ur(z) = 0.

In addition, for any y > x also have

ul) —ue) = P sw g<y)-p( s g<o)

1<i<N, 1<i<N,

= P<x< sup §f<y) > 0.
1<i< N,

We conclude that the function v, is strictly increasing from 0 to 1. Therefore, for any
€ €]0, 1] there exists some x.(t) such that

vi(ze(t) =€ = z(t) = v (e).

This ends the proof of the exercise.

Solution to exercise 469:
Choosing a constant function = € R +— f(x) = r, for some r €]0, 1] we find that

vi(x) = Pos(f) (@) = E (r™t) =: g4(r)
satisfies the equation
0ege(r) = ge(r)* = ge(r) = ge(r) (ge(r) — 1)
with the initial condition

No=1=—=EFE (’/’NO) =:go(r)=r.
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The solution is given by

1 1 t 1
7:(3'57—/ etfsds:etf—(etfl).
ge(r) go(r) 0 r

We check this claim using the fact that

o ot Lt
0uge(r) = gu(r)” — gu(r) = 8tgt(r) o)

This implies that
re~t re~t

9 = T A=) Ao rre

When r > 1 the solution blows up at

re"=r—leoe=1-1/ret,=—log(l—1/r).

This ends the proof of the exercise.
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Solution to exercise 470:
The generator L, s of the controlled diffusion

dXs = (Xs—u)asds + u [bs ds+ op dW,] = [(Xs —u) as +ubg] ds + uos dW,
is given by
Lus(f)(@) = [(z —u) as +ubdg] f(x)+ % (woy)? ["(2).
Using (29.19) we have

—0,Vi(z) = sup [Lus (Vi) (2)]

u€[0,00]

sup |[(x —u) as +ubs] VI(z)+ % (u 05)2 V! (x)
u€[0,00]

for any = > 0 and s € [0,¢]. We further assume that the value function has the form

V;(.’IJ) = Bs z® 1120

for some functions s € [0,t] — B,. This assertion is clearly met at the final time horizon
s =t since we have
W(Z‘) = z¢ 1120.

The HJB equation is given for any x > 0 by

_85‘/;(1') = - sﬂs x® 1x20
= sup |[(x—u)as +ub B, f'(z) +% (uos)® Bs f”(ﬂi)]
u€e[0,00] L
= sup |[(z—u)as +uby Bsax* !4 1 (u 05)2 Bs ala—1) xa_ﬂ
u€[0,00] L 2
= sup |[[(1—u/z)as + (u/x) bs] Bs a —l—% o2 (u/z)?Bs ala —1) xa}
u€e[0,00] L

1
= az®* sup [[(1 —u) as +ubs] Bs+ = 02 u?Bs (a— 1)}
w€[0,00] 2

We observe that
[(1—u)as +ubs) Bs+ % o2 u?Bs (a—1)

= a0, B+ 028, (a—1) {~u e 1 w2}

=as Bs + % 2B, (1 —a) { [a[gs(l_f;])r _ [u — U[Zs(l_ag])r} )

s

1225
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from which we conclude that

OslogfBs = —a |as + =

1 [bs — as]?
2 02(1—a)

with the terminal condition 8y = 1. This yields

t
Vs € [0, ] Bs = exp <a /

The optimal control is given by

() — Lbs = ]
R iy
This ends the proof of the exercise.
[ ]
Solution to exercise 471:
To check this claim, we observe that
[u+ R_ls’x}/ Rlu+R'Sz] = J/Ru+ [R_ISQCT Ru+ 'Sz + [R_le], Sz

= WRu+2'Su+u'Sz+2'S"R™'Sx
W Ru+2uSx+2'S"R™1Sz.

In the last assertion we have used the fact that R~! is a symmetric matrix and z/S'u =
(u/Sz)" = u'Sx. When R is definite negative we clearly have

sup [/ Ru + 2 u'Sz] = —2' 'R~ Sx
uelU

and the supremum is attained for
u=uv(z) =R 'Sz
We check that
VO<Ek<n Vie(x) := 2’ Py + ay,

by using a backward induction w.r.t. the parameter k. The result is immediate for k = n
since we have

ap =0= V,(x) :=2"P,x = fp.
We further assume that the result has been checked at rank (k+1). The Bellman equation
(29.12) has the form

Vi(z) = 81618 [2'Qrx + v Rpu + ajqr + By (Xjyy Pop1 Xeg1 | Xi = )]
u

= x/Qij + Qi1 + Sug [u’Rku + Eu (X,/€+1Pk+1Xk+1 | Xk = .’L')]
ue

On the other hand, given X} = x and the control Uy = u we have

Xip1 PeriXesr = (A + Brgau + Crosa Wis1)' Post (Aeg1@ + Brgau + Crga W)
= (Ags17 + Bryrw) Peyy (Agi12 + Brygu)
+2 (Ap112 + Biga1t) Pog1 Cropt Wit + Wiy Croy Prga Crt Wit -
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The last assertion follows from the fact that Pyiq is symmetric. Taking the expectations
w.r.t. the distribution of Wi, we have

By (X 41 Per1 Xet1 | Xp =) —tr (Clyy Pey1Crrr)

= (Ag417 + Big1u) Peyi (Aps12 + Bryiu)

=q (A2+1Pk+1f4k+1) v+ 2u' B P Az + o (lecHPk—s—lBk-s-l) u.
This implies that

Vii(@) =2’ [Qr + (A} 1 Por1Arsr)] @ + g + tr (Ch oy Preg1Crgr)
+sup,cy [u' [Rk + (B]/<;+1Pk+1Bk+1):| u 4+ 2u’ (B,’HlPkHAkH) x]
The supremum is attained for
u=uv () = — [Ry + (B/;+1P/c+13k+1)]_1 (Bg1 Pey1Api1) x

and we have

Vi(@) = ' [Qr + (A} 1 Per1Aps1) ] @ + apgr + tr (Cp g Preg1Crgr)

— (Bjyy 1 Pos1Ak1) [Ri + (Bhy Poy1 Brsr)] ™ (Blsr Prp1Apsn) .
This shows that
Py = Qx + A1 Por Arpr — Aj1 Posa By [Ri + (B Pey1Biya) | - (Blet1 Prer1Art1)

and
Qp = Q41 +tr (Cllc+1pk+1ck+1) .

This ends the proof of the induction, and the proof of the exercise is now completed.
Solution to exercise 472:
The exercise is a direct consequence of the martingale optimality principle (29.13).

Solution to exercise 473:
Let W; = (W/)1<i<p be an p-dimensional Brownian motion. Consider the linear con-
trolled R%-valued diffusion

dXt = (AtXt + Btut) dt + Ctth

with u; € U := R", and matrices (A;, By, C;) with appropriate dimensions. We consider the
stochastic control problem (29.15) with

fi(x) =2'Px and gs(z,u) = 2'Q.x + u'Rsu

for some definite negative and symmetric square matrices (P, Qs, Rs) with appropriate
dimensions.
The collection of generators associated with the controlled diffusion are given by

Laal£)(2) = OF)(@) (s + B + 5t (I C)



1228 Chapter 29

for any (z,u) € (R? x R"), with the column gradient vector 0f = (0, f),<;<, and the
Hessian matrix 0% f = (8%% f)
Let us check that

1<i,j<q’

Vo< s<t Vis(x) := o' Pz + a,

with the boundary terminal condition oy = 0, some symmetric matrices Ps; and some
parameters a,. Notice that
0sVs(z) = 2'0s Py + Osavs,

as well as .
OVs=2P,x and 3 >V, = P,.
The Bellman equation (29.19) takes the form
—0,Vs(z) = —2'0,Psz — Osas
= Q.+ :lelg ' Rgu + (OVs)(x) (Asx + Bsu) + %tr (C’;@QVSCS)
= 2'Qsx + tr (CLP;Cs) + 22’ Ps Agx + sup [u'Rsu + 22’ Py Bgul.

uelU

Observe that
' Py Asx = (o' Py Asz)/ =2’ AP,z

and
2'P, Byu = (z'P, Byu) = u'B.P;uz.

This implies that

*as‘/s (I’) = 7‘,5/68]381, - asas

= 2'Qsz +tr (CLP;Cs) + o' (ALPs + PAg) x + sup [u' Rsu + 2u’ (BLPs) z].
uelU

Using the first part of exercise 471, we prove that the supremum is attained for
u=ws(r)=—-R;' (B.P,)x
and

sup [/ Ryu + 2u' (B,P,)z] = —2' (B.P,) R;* (B.P,)x = —a' P,B,R; ' B' P,x.
uelU

This yields the formula
—2'0,Pyx — 055 = tr(CLPCy) + 2’ (Qs + ALPs + PyAy — PuB,R;'BLP,) a+
and we conclude that

-0,P, = Q,+A.P,+ P,A, — P,B,R;'B.P,
—0sas = tr(CLP,CY).

This ends the proof of the exercise.

Solution to exercise 474:
Next, we examine the 1-dimensional situation with A, = B, = Cs = Q, = R; = 1, and
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a null terminal condition P, = 0. In this situation, the parameters P; and o, satisfy the
backward equations

—0,P, = 1+42P,— P?
—0say = P
with the boundary terminal conditions oy = P; = 0. The optimal policy is given by the

feedback control
vs(x) = — Py

Finally, we assume that A; = Qs =0, B, =Cs =1, P, = P(<0), R, = R(< 0) (and
the boundary condition o = 0). In this situation, we have

P, = R'P? & 09,P;,'=R & Pl'=P'4+R -5

—dsas = P, & a,= P.dr.

We conclude that

RP

Pi=——— d as=—-R 1
BT P> and « R og(

The optimal policy is given by the feedback control

P
()= -R'Pa=—— "
vs(x) S REPi—5) x
—_——
>0
Notice that s € [0,t] — RJF%FS) €]0, 00[ is an increasing function. For any starting state

X, the optimal controlled diffusion is given for any s € [0, ¢] by

P
dXs; =vs(Xs) d AWy =———— X, d dWs.
vs(Xs) ds + RiPl—s =T
Finally, using the martingale optimality principle (29.22),
Ve(v) = as+ X.P X+ / (X/Q, X, + v, (X)) Ry, (X,)] dr
0

R RP X2 s PX, 2
= — 1 5 - d
R Og(R+P(t—s))+R+P(t—s)+R/O {R+P(t—r)] r

is a martingale w.r.t. to Fs = o (X, r < s) ending at V;(v) = X;P;X;. Thus, the end
of the exercise is a direct consequence of the martingale optimality principle (29.22). This
ends the proof of the exercise.

]

Solution to exercise 475:
The exercise is a direct consequence of the martingale optimality principle (29.22).

Solution to exercise 476:
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The generator of the controlled diffusion is given by
1
Leu(f)(@) = (Aez + Bru+ Cr) 9uf(2) + 5 (as+ byt cr)® 92f ().
Let us check that

VOo<s<t Vi(x) := P.a? + Box + o

with the boundary terminal condition oy = B; = 0, some negative parameter Ps; and some
(as, Bs) € R2.
Notice that
88‘/5(‘2:) = asPs -TQ + 6sﬁs T+ asafs

as well as )
an:2gx+ﬁsam_§a%g=g.
The Bellman equation (29.19) takes the form

78‘9‘/3(55) = —0,Ps z? — 88/88 xr — 050

= Q.z?+ sup [S’S z u+ Rou? + (Asz + Byu + C,)0Vy(z)
uelU

1
+ 3 (asz + bsu + 05)2 (r“)iVs(x)}

= Q.+ sup [SS x u+ Reu® + (Asx + Bsu+ Cy) (2Psx + Bs)
uelU

+ (a5 + byu + ¢5)° R9:|
= Q.2+ (Asx + C,) (2Psx + Bs) + (asz + 05)2 P,

+ sup [uZ(RS + bgPs) + 2u [Ssx/2 + (Psx + Bs/2) Bs + (asx + ¢5) bSP,,.”.
uelU

Observe that
Ssx/2 + (Psx + Bs/2) Bs + (asx + ¢5) bs Py

=2x [Ss/2 4 (asbs + Bs)Ps] + [Bsfs/2 + bscs Ps)
and

u?(Rs 4+ b2P,) 4+ 2u (2[Ss/2 + P.Bs + asb,Ps] + [Bsfs/2 + bscs P))

x[SS/2—F(a5bS+—£%)}§]ﬁ—{Bsﬁs/Qﬁ—bggfﬂ])z

_ 2
= (Rs + biPs) <u+ R, 1 b2P,

—_———
<0

(2[Ss/2 + (ashs + Bs)Ps] + [BsBs/2 + bscs Ps))?
Ry + b2P; ’

We readily check that the supremum is attained for

(asbs + Bs)Ps + Ss/2 _ bscs Py + Bsﬂs/2
R, + b2P, R, + b2P,

u=uvs(r)=—x
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and

—0sVs(x) = —0sPs z2 — 0,85 x — Os0rg
= Q2%+ (Asx + Cy) (2P, + Bs) + (asz + cs)2 P,

. (2 [Ss/2 4 (asbs + Bs) Ps] + [bscs Py + Bsﬁs/QDQ
R, + V2P, '

This implies that
—0.Py = Qu + (a2 +24,) Py — (Ry + 02P,) ™" ((asbs + Bs)Ps + So/2)?

and
_asﬂs = Asﬂs + 2 (ascs + Os) Py
—2 (Ry + 12P.) " ((ashs + By) Py + S4/2) [bscs Py + By B/2],

as well as

—yy = Cufs + 2Py — (Ry + 02P,) " [bscs Py + By, /2]

This ends the proof of the exercise.

Solution to exercise 477:
By construction, we have

Fk,n(Xa v) = Z Zk,l(Xv v) gi(Xi,v) + Zk,n(Xa v) fn(Xn)
k<l<n
= g5 (X, vi) + 2i(vk, Xi)

| Y0 Zera(X,v) g(Xi, o) + Zrsrn(X,v) fal(X)
kt1<i<n
= gu( Xk, vr) + 2k (v, Xi) Fig1,n(X,0).

The value function (29.11) associated with the payoff function F), (X, v) takes the form

Vie(zg) = sup E, (Fipn(X,v) | Xk = zk) .

VEVE n—1

For k = n, we have

Va(zn) = fn(Xn).
For k = (n — 1), we have
Fn—l,n(X; ’U) = gn—l(vn—th—l) + Zn—l(vn—laXn—l) fn(Xn)
Vie1(z) = S[ljlp [gn—1(u,z) + 2n—1(u,2) Eu(fn(Xn) | Xn—1=2)].
uelUpn—1

For k = (n — 2), we have

Fn—2,n (X7 U) = gn—2(vn—27 Xn—Z) + Zn—Q(UTL—Qa Xn—2) Fn—l,n(Xa U)~
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Arguing as in the proof of the Bellman equation (29.12) we check that

Vaoa(z) = sup [anz(uax) + zn—2(u, x) E(u,u)(an,n(X, v) | Xp_o = iC)]

(4,0)EVn—2,n-1

= sup [gn—Q(uv J?) =+ Zn—?(ua .73) sup E(u,'u)(Fn—l,n(Xv U) | Xp2= Z‘)]
uelU, 2o vEV, _1

= sup [gn_Q(U7$) + Zn—2(u7 Z‘) sup Ev(vn—l(Xn—l) | Xpn_2= .’E)] .
ueUy,_o VEV, 1

Iterating this reasoning we conclude that

Vi(z)) = Sélllj) 91(z1, ) + 21 (u, 21) Eu(Vigr (X)) | X = 27)]
u 1
= s [g1(z1,w) + 21 (u, 21) Myi1 (Vi) ()],
uel;

with 0 < < n and the terminal (a.k.a. boundary) condition V,, = f,.
This ends the proof of the exercise.

Solution to exercise 478:
The discrete time approximation of the value functions are given by

Ft]ZL(thu’) = Z Z&(X,V) gtk(Xt};autk) h+Zt}iL(X7V) ftn(X[:L)?
0<k<n

with

ZZ(X,V) = H sz(utk,Xthk) and sz(utk,Xt};):exp(Htk(utk_,th) h).
0<k<l

We have the first order approximations

A (u,x) = 1+ Hy(u,z) h+O(h?)
Pl (9) = @+ Lyu(e)h +0(h?).
This yields
Vi) = sup {gn (z,u) h+ 2f(uy,x) Py, (Vtﬁrl) (x)}

uelU

= sup [gu () At (4 Huy(w2) 1) Vil + LV, ) B) ) 40 (42)].

This implies that

S Vi@ = V@] = sup g e + Ho(n,2) Vi + LoVl ) (@) +O ()]

Taking formally the limit as h | 0 with ¢; | s we find that the value function

lm V(@) = Vi)

t
= sup E, </ Zs o (X,u) gr( Xy, 00 (Xy)) dr + Zs (X, u) fir(Xy) | Xs = x)
v€EVs ¢ s
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satisfies the equation

~9,Vy(x) = sup [9s(z,u) + LT, (Vi) (2)]

with terminal condition V; = f; and the Schrédinger operator

L, (0)(2) = Lsu(9) (@) + Hy(u,2) ¢(2).

Asin the discrete time case, the optimal strategy is obtained by applying the optimal control
charts x — vs(x) computed in the one step backward recursion (29.19).
This ends the proof of the exercise.

Solution to exercise 479:
Using the Doeblin-Ito formula we have

S2
Vaa(X) = Vel (X + [ (VLX) 4 Lo V(XL s+ Moy (V) = My (V)
s1
for some fs(”)—martingale M(V) and for any 0 < s7 < so < t. This implies that

Ve =8 V) - [ o) + )] as | 7 .

S1

Using (29.20) we find that

Vii(@) > E, ( [ KXo s Vi (Xe) | X = x)

51

with the equality on optimal control policies. This implies that

E |Via(Xo) = [ [0Va(X0) + Lo o (Va)(X,)] ds | Xy = |
> E, (fsslz 9s(Xs,v5(Xs) ds + Vs, (Xs,) | X, = l‘)

= (52— 31)_1Ev (fssf [asVS(Xs) + gS(XmUS(XS)) + Lvs,S(VS)(XS)] ds | Xy = x) <0,
with the equality on optimal control policies. Taking the limit s; — s; we find that
—0sVs(w) > gs(w,u) + Lo s(Vs) ()

for any u € U, with the equality on optimal ones; that is, we have that

—0sVs(x) = sup (gs (2, u) + Lus(Vs) (@)
ue
This ends the proof of the exercise.

Solution to exercise 480:
The collection of generators associated with the controlled diffusion are given by

Lut(f)(@) = (0f) ()" (bi(x) + o1(x) u) + % tr (o0(2) 0 f ()0 ()
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for any (z,u) € (R" x R"), with the column gradient vector 0f = (0, f),<;<, and the

Hessian matrix 0% f = (0,0, ), <, i<, The Bellman equation (29.19) takes the form

~0.Vi(@) = sup hs(x)+% W R+ (V) (@) (ba(x) + 0u(x) )

+% tr (Js(z)/ang(:c)as(z))
= hs(x) + (0Vs)(z) bs(z) + % tr (o5(2) 0*Vi(2)o(z))

—4—1 sup [ v Rsu + 2 v'os(x)"(0Vs)(2)].
2 uelU

Using the first part of exercise 471 (replacing the vector Sx by the vector o, (z) (OV;)(x)),
we prove that the supremum is attained for

u=ws(x) == —R; o, (z) (0Vs)(x)
and

sup [w' Rou+2 u'oy(x) (Vi) (2)] = —(9V)() 05 (2) R os(2) (V) ().

This yields the Hamilton-Jacobi-Bellman equation
1 1
—0sVs = hs + (OVy) bs — i(an)’angla;(aw) + 3 tr (0,0°Vioy) .

We further assume that Ry = A Id, for some A < 0, where Id stands for the (r x r)-
identity matrix. We also set

as(i, §)(x) = (os(@)ol(@)i; = Y ok p(@)ol (x)
1<k<r

and we set
Vs(z) = —Alog gs()

with the terminal condition V; = —Alogq; = f;.
Observe that
0sVe = =i '0sqs  and OV = —Ag; ' g,

as well as
Vs = —Aq;'0%qs + X q7% 0q; (0gs) = —Aq; ' 0%qs + AN 1OV, (9V3)' .
This yields

tr (82‘/8as) = Z as(i7j) a:vi,wj‘/s
1<i,j<r
= _/\q;1 Z as(i7.j)8flfj,7qus +A QQQ Z as(i, 5) a;ciQsaqu.s~
1<ij<r 1<i,j<r

Recalling that
arlvs = 7)\q:18TlQS

we prove that

)\ q5_2 Z as(iaj) 8xiqsazqu = )\_1 Z as(i7j> 811‘/5817JVS — )\_1 (aVs)/as(an)

1<i,5<r 1<i,j<r
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Therefore we conclude that

tr (82Vsas) = —\q; 'tr (32(]3(15) + A7 (VL) as(OV4).
In this situation (recalling that tr(AB) = tr(BA)) we have

—0,Vy = Aq;'0sgs

= hy— At (9gs) bs — % Ag; ttr (82qsas) .
This implies that
—0sqs = =X\ 'hygs + (9g5)" bs + %tr (0%qsas) -
Arguing as in the end of section 29.3.3, this equation can be rewritten as follows:
—0sqs = L(qs) + hs as

with the potential function hy = —A~'h, and the infinitesimal generator £ of the diffusion
process
dYs = bs(Yy) ds + o5(Ys) dWs.

The solution of this equation is given by the Feynman-Kac formula

0s0) = Qus (7) = [exp (7,0 e ([ Bvyar) v, =]

with ?t = —)\71ft.
This ends the proof of the exercise.

Solution to exercise 481:
We consider the optimal stopping problem defined in section 29.4.2 by replacing the
maximization problem (29.33) my the minimization problem

Uy = Tig%]E(fT(XT) | Fk)-

—Up, == sup E(97(X7) | Fo) with gp(z) = —fu(2).
TETs,

The solution of the problem is given by the sequence of stopping times defined using the
backward induction

T =k lfk(Xk) S E(frypyy (X1ypy) | Fr) + Tet 1fk(Xk) > E(fryyy (X1yyy) | Fr)

with the terminal condition T;, = n. The optimal stopping times formula (29.31) takes the
form

T = inf{le {k‘,k—i—l,...,n} U :fl(Xl) }

Using (29.32) Suell envelope (—Uy) = (—Vi(Xk)) is solved using the functions Vi defined
by the backward induction

Vi(zr) = fr(xe) AE(Vig1(Xpg1) | Xi = 1), (30.67)

with the terminal condition V,, = f,.
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This ends the proof of the exercise.

Solution to exercise 482:

We have
Valz) = =2V (—00)=2Vmg
Vici(z) = zVE(X,) =X,—1Vm
Vi—a(z) = xVE(X,—1VE(X,))=2Vms
Vi—k(x) = xVmg
Wl(z) = xVm,.

The optimal stopping strategy (29.31) is given by given by
T, = 1nf{l S {k,k+17...,n} c Xi Vg :Xl}
inf{le{k,k+1,....,n} : X >m,_;}.

For i.i.d. copies X}, of an uniform random variable X on [0, 1] we have

myp = E(X) = 1/2
my = E(XV(1/2)=1/2P(X <1/2) +E(X 1x>1/2)
1
= 1/4+/ xde=1/4+(1/2-1/8)=1/8+1/2=5/8
1/2
Mpy1 = E(X V mk) = My P(X < mk) + E(X IXka)
1
1 1
= mi—i—/ xda:zmi+§(1—m2)=2(mi+1).
my
For i.i.d. copies X}, of an exponential random variable X with parameter A we have
1
Megy1 = ]E(X V mk) = my HD(X < mk) +]E(X 1Xka)
mp —+oo
= my / e Mdz —|—/ Az e Mdx
0 m

mi 1 mi
= my / e Mdr + ()\ —/ Az e‘”dw)
0 0

1 ™
= 3 + e Mk / A (my — ) MNme=2) gy
0

1 -m mk Az 1 1 —Am 1 —Am
= —+4e Mk Axe da::f—i-mk—f[l—e "]:mk—&—xe k,
0

A A A
The last assertion is checked using the integration by parts
me m mg
/ Az e dr = [33 e”}o g —/ e da
0 0
1 m 1
_ Am Ax] Mk Amy, Am
= mye k—x[e ]0 =my e "—X[e ’“—1].
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This ends the proof of the exercise.

Solution to exercise 483:

We have

fal) = (1=p) dy [>_ P =0-p)/(1-p)?=1/1-p).

k>0

Following the arguments presented in exercise 481 and in exercise 482, the Snell envelope
is given by

Vieea)(®) = facern) (@) AE(V, k(X)) = froe o) (@) Amigyr < foo ey ()
= ((k+1) ly=0 4+ 00 ly=1) A Mgt
= la—o [(k+1) Ampg] + Lom1 My,

with the non increasing sequence of parameters (my)i1<g<n given by the recursion
M1 = E(Vo k(X)) = (1 =p) Var(0) +p Vo (1)
= (1-p) [kAmi]+pmi < mpAk<my
and the initial condition
my = E(V, (X)) = E(fa(X)) = fu(1) p=p/(L=p) (= fa(0)=0).
The optimal stopping times at rank &k are given by
=Vi(X1)

—_——~
Tp:=inf<le{kk+1,....n} : fi(X)Amup_y=(n—1) 1x,20+00 1x,21

fu(X1)
Notice that
X)) Amu_ = (X)) <= X;=0 and (n—1) <my,_,.
This yields the stopping rules
Tp:=inf{le{kk+1,....,n} : X;=0 and m,_;>n—1}

This ends the proof of the exercise.

Solution to exercise 484:
By (29.31), the optimal stopping rule at time k = 0 is given by
T = mf{l € {O, . .,n} : W(Xl) < fl(Xl)}
= mf{le {0, n} ¢ (A VEVi (Xin) | X)) < fi(X0)
= inf{l S {0,...,’17,} : fl(Xl) Z]E(W+1(Xl+l> | Xl)},
where V; stands for the Snell envelope defined by the backward recursion (29.32). We recall
that Vi, (Xy) > fi(Xy), for any 0 < k < n. We have
S>1 = YO<k<l fu(Xp) <E(fer1(Xps1) | Xi) (£ E(Virr(Xpg1) | X))
= V0O<k<l [fi(Xp)<EWVit1(Xgs1) | X)) =T > 1.
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In the reverse angle, we have

{s=1}t = m {f1(X) <E(frrr(Xes1) | Xi)} 0 {fi(Xa) = E (firr (Xag1) | X0)}

0<k<l

C ﬂ {fie(Xe) <E(Vip 1t (Xeg1) | Xi)}
0<k<l

N ﬂ {fmfl(mel) > E(fm(Xm) ‘ mel)}'

l<m<n

This implies that
{T <1} c{S<Ii}.

Thus, on the event {S =1} we have

(m=n)

fnfl(anl) > ]E(fn(Xn) | anl) = anl(anl) = fnfl(anl)
m=(n—1))
fooXuz) 5 E(ft(Xun) | Xaoo)
= E(anl(anl) | Xn72) = Vn72(Xn72) = fn72(Xn72)
(m=(1+1))
fi(Xh) > E (fir1(Xi1) | X7)
=E(Vi41(Xi41) | X) = vilxy) = filXo).

This yields the inclusion

{S=0c{T>200 (] {ValXn) = fu(Xm)} ={T = 1.

I<m<n
Hence we have
{IT<ic{S<iic{r<i} = {S<}={T<l} = {S>1}={T>1}
from which we conclude that
{(S=0={S<n{S>U-1)}={T<}n{T>1-1)}={T=1}.

This ends the proof of the exercise.

Solution to exercise 485:

We have
fa(Xn) = XoXp=en Xoy (X5 4 +Wa)
= en fao1(Xn 1) +en Xy Wo > en fao1(Xn1).
We also readily check that
E(fo(X0) | Frc1) = E(en fac1(Xn-1) +en Xp_y Wi | Fui)

= E(€) fac1(Xn—1) +E(eW) X,
= p fnfl(anl) +p w Xgi—l?

from which we prove that

fn—l(Xn—l) - E(fn(Xn) | ‘Fn—l) = (1 _p) fn—l(Xn—l) —pw X71L—1'
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This yields
fu(Xn) = B (far1(Xns1) | Fn)
=(1-p) fuXn) —pw X3
=(1=p) (en fa1(Xn-1) + & Xyog Wa) —pw ey Xy
= en [fam1(Xn-1) —E (fu(Xn) | Fac)]+ (1= p) 0 X5y W

> €n [fn—l(Xn—l) _E(fn(Xn) | ‘Fn—l)} .

This shows that the optimal stopping problem is monotone. Using exercise 484 the optimal
stopping rule on any finite time horizon is defined by

inf{n >0 : fo(Xn) > E(frt1(Xns1) | Xn)}
= inf{nZO:XiXﬁZpX%X?l—i—pr}l}
= inf{nZO cXP=0 or X? pr/(l—p)}.

S

This shows that the best strategy (before to be caught) is to stop as soon as the accumulated
earnings are at least pw/(1 — p).
This ends the proof of the exercise.

Solution to exercise 486:
We have

E(fn+1(Xn+1) | ]:n)_fn(Xn) = E([(Xn\/WnJrl)_Xn] ‘ ]:n)_a’
= E ([Wn+1 - Xn] 1Wn+1ZXn | Xn) —a
E (W1 — Xnl, | Xn) —a

_ /Oo(w X)) pldw) —a.

Notice that

‘nﬂfx20¢/’w—xmmm>z / ((w = Xnsr) + (Xoir — X,)] pu(duo)
Xn Xnt1
>

[ = Xaw) utaw)

Xn+1

This implies that

E(fn+1(Xn+1) | ]:n) - fn(Xn) > E(fn(Xn) | ]:n—l) - fn—l(Xn—l)-

We conclude that the optimal stopping problem is monotone. Using exercise 484 the optimal
stopping rule on any finite time horizon is defined by

inf{n >0 : fu(Xn) 2 E(fnt1(Xnt1) | Xn)}
inf{n >0 : E(fnt1(Xnt1)|Xn) — fn(X,) <0}

- inf{nzo: /w(wfxn) ,u(dw)ga}.

n

S
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When W is an exponential random variable with parameter A > 0 we have

/:O(w —z) pldw) = —e /:o(w —z) Oy (e_’\(w_x)) dw

wW=00 —Az 0
= —e [(w —x) 64‘(“’7”] B 4 & Y / A e Mw=2) gy

=0

ef/\z

A

In this situation, we have

S = inf {n >0 : X, > ilog()\a)}.

When (Aa) > 1, the best strategy is to sell the asset immediately. When (Aa) < 1, the
optimal stopping time is given by

1
S:inf{n >0 : X, > X log()\a)|}.

When W is an uniform random variable on [wy, ws], for any z,w € [wy, ws] we have

/Oo(w—x) uldw) = %/Waw ((w —2)?) dw:1 (wy — )2

2
In this situation, we have
S = inf{nZO : (Xn—wg)2 §2a}
= inf{nZO : (Xn—wg—\/%) (Xn—wﬁ\/%) go}
= inf{nzo X, € [wg—\/%,wg—l—\/%}}.

This ends the proof of the exercise.

| ]
Solution to exercise 487:
For any m > Z1gkgn w;, we have
IP’(N,, :m—zlgkgnwk, Wi =wq,...,W, zwn)
AT m! (m —wn)!
— -4 T w 1— m—wi X wao 1— m—wi—ws
€ m! wil(m —wi)! P (L=p) wa!l(m — w1 — wa)! p(1=p)
(m_wl e —’LUn_l)! W, Mm—wy—...—Wn
X ... X p“ (1 —p)
wpl(m —wy — ... — wy)!
A1—(1—p)™) pr ot
_ — —(1=p)™~ wE £ _ Wr+...+Wn
= e H A o] H (1-p)

1<k<n

ai—pr (A _pyrymT T
(m—wy —...—wy)!
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This yields
]P)(Wl = wl,...,Wn :wn)

= e P (Nn == Y cpen W Wi = Wi, W = wn)

+

Wn

. . Wi
= ¢~ A1=(1-p)") AWk p H (1 _p)wk"!‘u. 7
1<k<n o 1<k<n

from which we check that

— A1) AL —pm)"
(m—wy —...—wy)!

P{N,=m-— g w | Wi =wy,..., W, =w,
1<k<n

We conclude that for any m > 0

— A1) (A1 - p)")m_

P(N,=m | Wy =wy,...,W,, = wy,) —

This implies that

fu(Xn) =E(na; + (N — X,) as | X») =nay +E (N, | Xp,) ag =na; + A(1 — p)"as.
On the other hand
]E(fn+l(Xn+l) ‘ ]:n) - fn(Xn)

=a1+A[1—p)"" = (1-p)"] az=a1— X p(1—p)" as.

This shows that
n— E(fn+1(Xn+1) ‘ ]:n) - fn(Xn)

is an increasing function, from which we conclude that

E(fn+1(Xn+1) | ]:n) - fn(Xn) 2 E(fn(Xn) | ]:n—l) - fn—l(Xn—l)-

This shows that the optimal stopping problem is monotone (recall that we are dealing with
a minimization problem).
Using exercise 484 the optimal stopping rule on any finite time horizon is defined by

S = inf {Tl > 0 : fn(Xn) < E(fn-‘rl(Xn-‘rl) I Xn)}
= inf {n >0 : E(fn+1(Xn+1)|Xn) — fu(Xy) > 0}
= inf{n>0: Ap(l—-p)" <aj/az}.

This ends the proof of the exercise.

Solution to exercise 488:
We check this claim by using backward induction. At the final time horizon n the result

is immediate:
Vi(2n) == E 92(33;) + Vvi(x”v
0<l<n
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with V) = f!. We further assume that the result has been checked at some rank (k + 1).
The backward formula (29.32) implies that

Vie(zk)
= | Socier GXD + HED|V [Socicr 91 + BV @) | X, = 2})]

=Y 0<i<r 9(X])+ (X V (g (ar) + E(Vi () | X5 = 2)]] -

::ka(z;)

We conclude that the result is satisfied at rank k. This ends the proof of the claim.
This ends the proof of the exercise.

Solution to exercise 489:
As in exercise 488, we check this claim by using backward induction. At the final time
horizon n the result is immediate since we have

Va(zn) == H g(X]) | x Vo(X3)
0<l<n

with V] = f!/. We further assume that the result has been checked at some rank (k + 1).
The backward formula (29.32) implies that

Vie(xg)
= {Tocicn s1XD} #D] Y [{Tosir gD} EOL @) | XE = 23]

~{Tocrcr GXD} = [FEDV [gh(0h) BV (@) | Xi = 21)] -

::Vk’ (:L’;C)

We conclude that the result is satisfied at rank k. This ends the proof of the claim.
This ends the proof of the exercise.

Solution to exercise 490:
By (29.1) the fortune of the gambler is given by

Mgy = My+Hy Xp1 = My+aMy, Xop = (1+a X)) My =My [ (1+aXy).

1<k<n+1
The growth rate is given by
1 1
Ln(a) = —log (My/Mo) = — > log(1+a Xj).
1<k<n
By the Law of Large Numbers, we have

Loo(a) = lim Ly(a) =E(log(1+a X;))

n—oo

= (1-¢9) log(1—a)+q log(1+a).
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We also have

1 1
L = -1
Oaloc(a) (4 )1—a+q1—|—a

al-0)+g-D(+a) _2g-1-a

1— a2 1— a2

This shows that the optimal proportion is defined by a* =2¢—1=E(X) = (1—¢) x (-1)+
g %X (1). In addition:

Loo(@®) = (1—¢q) log(1—(2¢—1))+q log(1+(2¢—1))

(1—g) log(2(1—q)) +q log(2q)
= log(2)+ (1 —gq) log(1—gq)+q log(q).

In the second part of the exercise, we have

Myy1 = My+(1—-—a) M, r+ aM, X,41

Q+aXp+(l—a)r) My=My, J] (G+aXpe+(1-a)r).
1<k<n+1

The growth rate is now given by the formula

L,(a) = %log(Mn/Mo) = % Z log(1+a X+ (1—a)r).

1<k<n

By the Law of Large Numbers, we have

Loo(@) = lim Ly(@) =E(log(1+a X1+ (1—a) 1)
= Elog((1+r)+a(X;—7))=E <log ((1 +r) {1 +a ()il;f)]))

(Xy—7)
= log(1 E |1 1 -
og(1+r)+ (og[ +a Ty
= log(1+7)4q log[l 4+« d,]+p log[l — al,
—_——
Lo (0)20
with §, = (1 —r)/(1 +r) €]0,1[. In this case, we have

Oy 1 qo(1—a)—p(l+ad,)

(9aLoo(Oé):q 1_~_a5rip 1—a (1—a)(1+0¢(5r)

Observe that
OaLoo(a) >0

if and only if
¢,(1—a)>pl+ad,)e (1>)g—p/o. > a.

Recalling that p/q € [0,1] and 6, € [0,1] need to consider the two cases: 1) ¢, < p/q or
2) p/q < 0y

In the first case, we have ¢ — p/d, < 0. This shows that Lo, : « € [0,1] = Loo(a)
is decreasing from L., (0) = log (1 + 7). In this situation, the optimal strategy is given by
a=a*=0.

In the first case, we have 1 > «, := ¢ — p/d, > 0. This shows that Lo, : «a €
[0,1] = Loo(c) is increasing for a € [0, ] C [0,1] from Lo (0) = log (1 +7) to Loo(aw);
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and decreasing for « € [¢ — p/d,,1] C [0,1] from Loo(c) t0 Loo(1). In this situation the
optimal strategy is given by a = a* = «..
This ends the proof of the exercise.

Solution to exercise 491:

We simply use the Bayes’ rule. Let D;, Do, D3 be the three doors. We assume that
the contestant first selects the door D; with nothing behind, and then Monty opens the
second door D with nothing behind. We denote by H the event "Monty chooses the door
Dy and nothing is behind", and we let P; be the event "the price is hidden behind D; " with
1=1,2,3.

We have the three cases

=1/2

—_— =1/3
P(H | P) *

P(P[H) = TP(H) P(P) =1/3
I
—_—— =1/3
P(P, | H) — W B(Py) = 0
——
1/2
and finally
REIR o
P(Py | H) — (P(|H>3) B(Py) = 2/3.
Y

Since P(Py | H) < P(Ps | H) the best strategy is to switch the door.

If we have 1000 doors Dy, Ds, ..., Diggg, we let H be the event "Monty chooses all the
doors Ds; . .., Dogg and nothing is behind”. In this case, when the host chooses the 998 doors
Ds; ..., Dggg among the 999 with nothing behind. If the door chosen by the contestant is
the correct one, Monty could have selected only one of the 999 sequences of 998 doors among
{Da, ..., Diooo} excluding Dy, or Ds,..., or Dyggp- This yields the Bayes’ formula

=1/999
—— =1/1000
P(H | P) = _
P (P, | H):W P(P,) =1073.
~——
1/999

When the prize is behind one of the doors D; selected by the host for some ¢ = 2,...,999,
we have

—— =1/1000

P | )= T B o
——

1/999
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Finally, we have
,_L =1/1000

P(H | P, —
I['D(PIOOO | H) = (]Pl(I_Il)OOO) ]P)(P1000) = 0.999.
——

1/999

Clearly, switching is the best strategy. This ends the proof of the exercise.

[
Solution to exercise 492:
We have
AY, = Y,-Y, 1
= X2-X?2 | -*=(X,1+AX,)?—X2 | - with AX, =X, - X, 1

= 2X, 1AX, + (AX,)? =

In addition, we have
2 1L 5,1 2 2
E(AX,)" | Fao1) = 3¢ + 3 (—e) =c

and
EQ2X,—1AX, | Fu-1) =2X,1AX,, E(AX,, | Fn-1).
| —

This shows that
E(AY,, | Fno1) =0 = Y, is a martingale.

By the optional stopping theorem, theorem 8.4.16 (after checking that T is finite and has a
finite mean, cf. lemma 8.4.18), we have

a? Vv b2
TR

0 =E(Yr) - E(Yy) = E(X2) — ZE(T) < (a® vV b?) — 2E(T) = E(T) < -

This ends the proof of the exercise.

Solution to exercise 493:

Recall that —1 = 2 mod(3)

M(0,0) M(0,1) M(0,2) = M(0, —1)
M(1,0) M(1,1) M(1,2)
M(2,0) = M(2,3) M(2,1) M(2,2)
M =
0 Pm am 0 + 2
=(q¢ 0 p |= é 0 ]%O
p g 0O i1 0

When € = 0, the probability P(n) to win game (G3) at time n is given by

=~ w

P(n) = P(Y,, = 0) pp + P(Y, € {1,2}) p = P(Y,, = 0) lio (1= P(Y, = 0))
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Notice that

0 % 1p
2 181 69 3
526 £ 0 2 |=|4+= 4= Z4+Z|=1526].
5,2, 6] 4 1 6 1Tt raty [5,2,6]
4 4

This shows that ™ = % [5,2, 6] is the invariant measure of M. Thus, the stationary proba-
bility P to win game (G5) after long runs is given by

5 1 83 1 6 13 1
P=r(0)pm+(1-70)p=— —+ — "= — 4 — == =_,
O pm+ Q=m0 p=73 5+ 37 26 13 2 2
When € > 0, the transition of the chain is given by
1 9
0 ¢ 1 T€
M, = 0 %—e

1t
L
Using exercise 98, the invariant measure m.M,. = 7, is given by

me(0) oc M(1,0)M(2,0) + M(1,2)M(2,0) + M.(2,1)M(1,0)
()G9 ()
= 1- (i—ke) (i—e) =1—2—%e +é,

me(1) o M(0,1)M(2,1) + M(0,2)M(2,1) + M(2,0)M(0,1)

and

(2 9)M, (1,2) + M.(0,1)M.(1,2) + M.(1,0)M,(0,2)
(B (9 () () (o) (39
(v )+ () (i)

- Zo*%ﬁ“

Thus, the normalizing constant is given by

13 |1 1 3 1 3 1313 1
— |+ =+=|-=(1-= o o 3€2.
1 {4-1-10—&-10] ( >e—|—36 € + 3¢



Chapter 29

We conclude that

7 (0)

1247

Bo1cge

TR T

5 1- & e+0(e)

13 1— 35 e+0(e?)

) 1 16 11

= (1-e=(8-= 3 = —40 — 2.
13( 613<8 13>)+O(6) w(0) 01336+O(e)

The stationary probability P, to win game (G5) after long runs is given by

P

Me(0,0) M&(Ovl) Me(o’fl)
M& = Me(LO) Me(Ll) Me(lvz)
M. (2,3) M.(2,1) M.(2,2)
0 ¢ l+4¢
= Lie ’ 0 g —€
g —€ % +e 0

1 3
We(O)TOJF(l 7(0)) 1€
1 11 147
S (122 Z_p_ L 2
5 ( 132) e+ O(e%) 132 e+ O(e%)

1

§(M€+M6)
1 1 1

1 1O 5 —€ ?—Fe 1O 56— € 19 tE€

3 ?—i-e 0 5—€ |+ §—|—e 0 g€
2-€ i+4e 0 2—e I+te 0
3 7

30 0 — € @—i—e

§+€ 0 i

e %—l—e 0

Using exercise 98, the invariant measure 7. M. = M, is given by

7e(0)

K

M. (1,0)M,.(2,0) + M.(1,2)M.(2,0) + M.(2,1)M.(1,0)

()G () o)
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o~ —~

Fo(1) o M.(0,1)M.(2,1) + M.(0,2)M.(2,1) + M.(2,0)M,.(0,1)

C ()6 (5 60+ () )
G-

1
(3 7 3
-\ (w“) (w)
45 3 2
REETRPTIR

and finally by

Fo(2) o M.(0,2)M.(1,2) + M.(0,1)M.(1,2) + M.(1,0)M.(0,2)

7 3 5
- (10+ (10‘6> (8‘6>
T3 5
T80T

Thus, the normalizing constant is now given by

2
7N? 116 1 , 1709 1 )
(8) g0 10T =gy Tt
This implies that
2.(0) () -3e+e
Te =
5 — 1o €3¢
245 1-(3)° ¢ + (3¢’
- ~0.35+ 0
709 1— 32 ¢+ (8¢)%A2 (©)-

The stationary probability P. to win game (G3) after long runs is given by

P o= %0 (f;)—e>+(1—%5(0)) (Z—e)

1
3= P when e is sufficiently small.
The effect we just observed is the “Parrondo’s paradox". As we have just realised, two
losing games, when alternated in a periodic or random fashion, can produce a winning game.
This ends the proof of the exercise.
]

Solution to exercise 494:
At each point in time n, the gambler bets a x S(X,,) with the re-scaled gambling strategy
defined by
a X, if X,<1/2
5(Xn) '_{ 1-X, if 1/2<1-X,<1



Chapter 29 1249

When the relative fortune x < 1/2 (i.e. real fortune az := y < a/2) he bets the relative
amount z (i.e. the real amount y := ax) and wins 2z (i.e. the real amount 2y := 2ax). (Of
course, the win is zero when he loses.) Thus, when z < 1/2 < y = ax < a/2 we have

P(y) = P (Reach the fortune a | Yy = y)
= P (Reach the fortune a | Y1 =2y)P(Y1 =2y | Yo =y)

+P (Reach the fortune a | Y1 =0)P(Y1 =0 | Yo = v)
= pP(2y)+q0.

In other words
rv:=y/a€0,1] and Q(y/a):=P(y)= Qz)=pQ(2z).

When the relative fortune 1/2 < z < 1 (i.e. real fortune a > az := y > a/2) to reach
the rescaled fortune 1 (i.e. the real target fortune a,) one needs to bet the relative amount
1 —x (i.e. the real amount a — ax = a — y.) Arguing as above we find that

P(y) = P(Reach the fortune a | Yy = y)

=P | Reach the fortune a | Y1 =2y | P(Y1 =2y | Yo =v)
——

>2 a/2=a

=1

+P (Reach the fortune a | Y1 =y —(a—y))PV1=y—(a—vy) | Yo =1y)

=p +q P2y —a).
In other words:
vi=yla and Q(y/a):=P(y) = Qz)=p+qQ2x—1).

The probability to reach the fortune a starting with an initial fortune y € [0, a] is defined
by the function Q(y/a) with

_ pQ(2z) if z<1/2
Q<x)'_{p+qQ(2xl) it 1/2<z<1,

with the boundary conditions (Q(0),Q(1)) = (0,1).
Now compute Q(i/2") for i < 2" and n =1,2,3. For n =1 and i = 1 we have we have

Q(1/2) =p Q(1) = p.
For n =2 and © = 1,2, 3, we have
QU =p QA =1 and QG =p+aQ(2] 1) =p+a QU =pl1+a)

Forn=3and i € {1,...,7} we have

Q(/8) = pQ(1/4) =p*Q(1/2) =p’
Q(3/8) = pQB/4)=p*(1+q)
Q(4/8) = Q@1/2)=p
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and
Q(/8) = p+qQ<2Z— )=p+qQ<i>:p+p2q=p(1+pq)
Q6/8) = Q3/4)=p(1+q)
Q(7/8) = p+qQ<2;1)—p+qQ(i>—p+%@*Q)—pO+QO+®%

This ends the proof of the exercise.

Solution to exercise 495:

After n = (a + b) votes are counted, the difference of A votes and B votes is given by
X, = (a—1). For any k such that 0 < k < n we let X, be the difference of A votes and B
votes after counting k votes. After counting k votes, A has k*% votes while B has k*%
votes. Given Xj1, the difference of votes Xy can be X1 + 1 if the (k 4 1)-th vote was
for B; or Xj11 — 1 if the (k + 1)-th vote was for A. In addition, we have

[(k+1) = Xj11]/2
k+1
[(k+1) 4+ Xi11]/2

E+1 '

P(Xp = Xpp1 + 1| Xpi1)

P(Xg = Xpy1 — 1| Xp1) =

If we set

b

nE (s My =(a—1b)/(a+b))

M, =
k n—=k

then we have

E(My | Mo, My, ..., My_1)

Xn—k
n—=~k

= E( | Xo, Xoe1y -+ X(neiy+1) = E(Xn—k | X(n—r)+1)

_(n—k)+1) = X(n_p)41]/2 (X(nk)+1 + 1)
B (n—k)+1 n—=k

((n=FE)+ 1)+ Xn—ry+1)/2 ([ Xn—ry41 — 1
+ (n—k)+1 - ( n—+k )

1 1 X(n—k)+1
= 1 — Xin— 1
2(n—kz)+2{<{ +n—k} n—k (Kn-ry 1 +1)

1 X(n—k)+1
+<{1+nk}+ n—=k (X(nkal_l)

1 1 X(n—k)+1 X(n—k)+1
= o1+ —) X 2 - = Mj_1.
2(n—k’)+2{ ( T k:) (n=k)+1 n—k (n—k)+1 bt

In addition we have |My| < n. We let T be the first time £k = 0,...,n we have X} = 0. At
that time 2 situations may occur:

e The candidate A is always ahead if and only if we have T = (n — 1) and My = M,,_ =
X1 =1
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e Otherwise, as some time X}, hits the null axis and X7 =0 = Mr.

We conclude that

X, a-—b
E(Mr) =EMo) =27 =0

a—2b a—>b

=P(Mr=1 14+P(Mpr =0 O0=PMr=1)= .
arp - PMr=1) x1+P(Mr=0) x0=P(Mr=1)=-—-
This ends the proof of the first assertion.

Now we turn to the path counting problems.

e The number of permutations of the (a+b) ballots is clearly given by the number of possible
positions of A or B among (a + b) ballots. One instance of a position is:

AA...AAABBBB...B.

a-times b-times
. . . a+b a+b
This number is clearly given by a = b .

e We need to find the number of paths with a up-steps and b down-steps where no step
ends on or below the (0,x)-axis. We observe that for k = n, P, is the set of all the

atb-1 bad paths starting with a down-step (1,—n), and Up<xk<,Ps coincides

with all the possible "bad" paths.

Let P = P, P, be a path in Py, with £ < n and path P; ending with the first bad step
ending k units below (0,x). We denote by @ the path obtained by rotating P; by = and
exchanging the end-points. By construction @ = @1 P; starts with a down-step so that
Q@ € P, (and inversely). This shows that Card(P,,) = Card(Py) for any k.

We deduce that
Card(P) = ( al—b > — Z Card(Py)

0<k<n

(al—b>(n+l) <a+2—1>_aa+nbb <a:b)

The last assertion follows trivially from:
a+b—1Y\ (a+b-1)! b a+b
a a1 a+b a

(n+1)b a—nb
= 1- = .
a+b a+b

e Checking the formulae Ny (a,0) = 1 and N, (nb,b) = 0 for any a,b > 0 is direct. The
recurrence formula is

Np(a,b) = N,(a —1,b) + Ny(a,b—1).

To show it inductively using the previous result, we calculate the r.h.s. in detail:

_(a=1)—nb [ (a—1)+b a—nb-1) (a+(b-1)
Nn(al,b)+Nn(a,b1)<a_1>+b< a—1 )Jra-i-(l)—l)( a )

—_— ———
. [ a+tb , [ a+bd
T ate a T a
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The last assertion provides a proof by induction. Indeed:

(a—1)—nb ba—n(b—l)

(a—1)+b a+(b-1)
W ((a—1)+b)—(n+1)b+b (a+(b-=1)—(n+1)(b-1)
(a—1)+b a+(b—-1)
a+(b—1)

=(a+b)—(n+1)b = a — nb.

(a—1)+b

This ends the proof of the exercise.

Solution to exercise 496:
e The random variables X are independent with distribution

PX,=1)=...=P(X,=n)=1/n.

e The chance for Y, = ¢; coincides with the probability that the candidate with qualifi-
cation ¢; appears among the first k interviewed candidates. This implies that P(Y; =
q1 | Xl,...,Xk) = 1Xk=1 k

n"
e We have

PYr=q) = Y E(lr=nE(ly,— | (X1,...,X0))) =E(fr(Xr)).
1<k<n

e The Snell envelope associated with this optimal stopping problem is defined by the back-
ward induction

Vila) = (o) V Vit (X) | X =) =Max | fula) g 32 Vi)

1<I<(k+1)
with the terminal condition V,, = f,.
We let m,, be the first and unique value k : 2 < k < n such that
Lo L
E k+1 7 n-1- k—1 E+1 7 n-—1'
For any n we notice that
V@) = ey = = 3 Vall) = =
n\T) = lg= - n = —.
! n n
1<i<n
This implies that
n—11
Voo = - —
n 1($) Max 1171 n ) n Z Vn(l)
1<i<n

Il
=
v
<]
RS
—
8
Il
—_
3
S|
—_
S|~
N—
Il
3
S
—_
=
[V
"
N
—
8
ﬂ‘
—_
—_
N———
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so that

1 n—2 1 1
_— Via—1(l) = .
n—1 Z 1() n <n2+n1>

1<I<(n—1)

In the same way, when (n — 1) > m,, we have

-2 -2 1 1
Max 1$:1n 77’?, +
n n n—2 n-—1
n—2 1 1
M 1:E:7 Y ’
n ax< 1<n2+n1>)

niQ Y Vaa(l) = 711<1+(n—3) (n12+n11>>

_on-3(1 1 1
" n \n-3 n-=-2 n-1/"

k 1 1 1

Vn_g(l‘)

so that

T =
|
il
=
—
=
=
Il

1 1 1 1
n <1+<’f‘1> (w*”*m%))
k

h n n—-1 """k k-—1)"

! 3 an(l):”“_l( LRSI )

m n—1 m m, — 1
TnglSmn n n

>1

This implies that the function V;,, _; is the constant function

my — 1 1 1 1
Vin, — = e
n-1(2) n (n—1+ +mn+mn—1>
so that 1
e Y Vet ) = Vi ala),
1<Ii<m,—1
This implies that
my, — 1 My, — 2 1 1 1
Vi, —a() = M (e L
n2(2) n ax my, — 1 (n—1+ +mn+mn—1)
——
<1 >1

and therefore
‘/mn—Q = ‘/mn—l .
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Iterating this procedure, we prove that
vk < my, Vie=Vm,—1.

This implies that

my — 1 1 1 1
P(Yr = q) = Vi(1) = o — :
ﬁgg (Yr =q1) = Vi(1) n (n—1+ +mn+mn—1)

e The optimal policy is defined by

T

inf{l<k<n: klx,=1=n"Vi(Xs)}
inf {m, <k <n : klx,=1=nVi(Xp)} =inf{m, <k<n : Xp=1}

The last assertion follows from the fact that
Ym, <k<n Vee{2,...,n} (0 <n Vi(z) <)n Vi(1) = k.

We conclude that the optimal strategy is to reject the first m, — 1 candidates, and to
continue the interviewing until we find the best candidate among those examined so far.

This ends the proof of the exercise.
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Solution to exercise 497:
If we set

]P(gl = 50,1 ‘ 30 = 50)
P (31 = 80,2 ‘ 30 = 80)

then we find that

E (S| So=s0) =

In the same way, if we set

P(S2 = s01)1 | S1=s501) =

P (S2 = s0,1),2 | S1=501) =

and

P(S2= 5021 | S1=502) =

P(S2=s02)2 | S1=502) =

then we have
E(S2 | S1=s501) =501

This ends the proof of the exercise.

Solution to exercise 498:

50,2 — 50
50,2 — 50,1
- 50 — 50,1 1 50,2 — S0
S0,2 — S0,1 50,2 — 50,1
50,2 — S0 S0 — So,1
Sp,1 —————— + 802 ——
50,2 — S0,1 50,2 — S0,1
$050,2 — S050,1
——— = §p.
50,2 — S0,1
5(0,1),2 — 5(0,1)
5(0,1),2 — 5(0,1),2
5m4>—5mdxl<_1 5(0,1),2 — 5(0,1)

5(0,1),2 — 5(0,1),1 5(0,1),2 — 5(0,1),1

5(0,2),2 ~ 5(0,2)
5(0,2),2 ~ 5(0,2),2

5(0,2) ~ 5(0,2),1 $(0,2),2 — 5(0,2)

=1-

5(0,2),2 — $(0,2),1 5(0,2),2 — 5(0,2),1

and E (32 | S = 3(0,2)) = 5(0,2)

Applying the Doeblin-Ito formula to the function

AT )

we find that

dg(t7 Wt) =

1
amunm)ﬁ+¢%ﬂnwwdwq+§éﬁﬂawmdwmwg

2 1
= (7' — O-2> (](t, VVf) dt + o g(t, Wf) de + 5 0'2 g(t, Wt)dt

= T g(ta Wt)dt+a g(tth) th

1255
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We conclude that

(St/SO) = g(t, Wt) — d(St/SO) =T (St/SO) dt +o (St/S()) th
<~ dSt:TSt dt+o St th
This ends the proof of the exercise. ]

Solution to exercise 499:

We have
Sat 1= exp (UWM + at (r - %2)> > Stﬁ 1= exp (ﬁaWt + Bt (r — %2))

S B-a)(L=3) t < (War — W) = (War — We) + (1 — B)Ws.

Observe that
(War — W) + (1 = B)W,

is a centered Gaussian random variable with variance
E([(War = Wo) + (L= B)WI*) = E((War = W)%) + (1= B)* E (W7)
[(a=1)+(1=p)] ¢

This implies that

IN

P(Sw>5) =P (Wl
This ends the proof of the exercise. ]

Solution to exercise 500:
By (30.12) the process S; is an Fy-martingale. In addition by (30.8) we have

_ _ 2¢
S :=8p exp (aWt — 02) =e " S,

This implies that
E(e™ Sy | Fs) =E(S¢ | Fs) =Ss=e 5,
= E(S, | Fs) =€) 5,
This ends the proof of the exercise. ]

Solution to exercise 501:

Using the elementary formula a = a™ — a~ which is valid for any real number a € R, we
check that

pell _ pP"* —E (87 | So) — Kr = So — Kr.

This ends the proof of the exercise.
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Solution to exercise 502:
We clearly have V5, = f. Using the neutral probability obtained in exercise 497, we have

Vi(so,1) = E (f(§2) | S1 = 80,1)
5(0,1),2 — S(0,1 5(0,1) — S(0,1),1
= f(s01),1) —ON27 70 f(500,1),2) —©D 0.1
5(0,1),2 — 5(0,1),2 5(0,1),2 — S(0,1),1
and
V1(8072) = E (f(gg) | 31 = 80,2)
5(0,2),2 — 5(0,2 5(0,2) — 5(0,2),1
= f(s24) 2(0,2),2 ~ °(0,2) + f(5002).2 2(0.2) 7 5(0.2).1
5(0,2),2 — 5(0,2),2 5(0,2),2 — 5(0,2),1
Finally, for £ = 0 we have
Vo(so) = E(f(S2) | So=s0)
= E (E (f(gg) | 31) | 30 = 80)
= E (Vl(gl) ‘ 30 = 80)
_ V1(80,1) 50,2 — S0 n V1(80,2) S0 — So,1 .
50,2 — 80,1 50,2 — 80,1

This ends the proof of the first assertion. Now we turn to the self-financing portfolio
strategy. The idea is to have

VO<k<2  Pi(b) = Vi(Sk).
This shows that Py(b) = Vo(so), and
APL(b) = b1 ASk = AVi(Sk) = Vi(Sk) — Vieo1(Sk—1)-
Considering the two cases S1 € {801,502}, this implies that

bo (s0,1 —s0) = Vi(s0,1) — Vo(s0) ~ Vi(s0,2) — Vi(s0,1)
{ bo (so2 —s0) = Vi(soz2) —Vo(so) } = b= (s02—s01)

In much the same way, if S; = sq 1, then we have

{ b1 (500,11 —50,1) = Va(s(0,1),1) — Vi(s0,1) } by = Va((0,1),2) — Va(s(0,1),1)
b1 (8(0,1,2 —50,1) = Va(s(0,1),2) — Vi(s0,1) (50,1),2 — $(0,1),1)

and when S; = sg» we have
Va(500,2),2) = Va(8(0,2),1)
(50,22 = S(0,2,1)

{ b1 (5(0,2)1 —502) = Va(5(0,2),1) — Vi(50,2) } by =
b1 (5(0,2),2 —502) = Va(5(0,2),2) — Vi(50,2)

In summary, the strategy is given by

_ Va(s00m.2) = V2(s00).1) - Va(8(0,2),2) — Va(5(0,2).1)
(5(0,1),2 = 5(0,1),1) S1=s01 (5(0,2),2 = 5(0,2),1)

S1=s0,1"

b1

The initial value of the portfolio corresponds to the price of the call option. This ends the

proof of the exercise. [

Solution to exercise 503:
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e We have

I, = a+b(Ip,-1—a)+oW,=a+0bl,_1+0cW, with a=a(l—-0)
= a+bla+blo+cW,_q)+oW,
= a(l+b)+0*I,_ o +boW,_1 + oW,
= a(l+b)+0*(a+bl, 3+0 Wy o) +o (bW, +W,)
= al+b+b°)+ 0340 (BPWyo+bWny +W,).

Iterating this procedure, we find that

L =b"Ty+a(l-b) Y b+o Y U'Wer=a+b"To—a)+o > VW, 4
0<k<n 0<k<n 0<k<n

Notice that

Law Z kanfk = Law Z kak N 0, Z p2k :_/\/'(0’ 1_b2n)

1— b2
0<k<n 0<k<n 0<k<n
This yields
. o?
On the other hand, we have
2

g

Law (IO 70,) :N (071_1)2

)ﬁ Law (I; —a) = Law (b (Ip—a)+o W,)
= N(0,821Z5 +0%) =N (0,152) -

The first assertion is now easily completed.

e We have
M, = b"(Iy—a)=p—a)+o Y b " Hw,_,
0<k<n
= (IO — CL) +o Z b_ka =M,_1+b"W,.
1<k<n

This implies that M,, is a martingale. In addition, we have

M721 - M72L—1 = (Mn—l + bian)z - M72L—1
= 207" M, W, +b 2"W2.

This yields
M,-M,1 = (1-v)[ (M2—M:_)—b?"0"]

= (1=0)b7" 2Mu W, +b7" (W7 —0?)].
This clearly implies that M,, is a martingale.

This ends the proof of the exercise. ]

Solution to exercise 504:
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By construction, we have

E(M, | Lo,...,Lyp_1)

Ln—y L \* o))" L\ Tk
= 220<k<Ln s ( 1 > (zn_l) (1 + E) (1 - H)
1 a 1 Ln71 o Ln71
(i )+ () T =) T = M

This ends the proof of the exercise. [

Solution to exercise 505:
In the time homogeneous settings, formula (30.6) is clearly given by

SZLHL = g,}; exp (—Th + enox/ﬁ)

with a collection of independent {—1, +1}-valued Bernoulli random variables with common
law

eo\/ﬁ_erh
pno= Plea=-1)=—"m—"7%
erh_e—o\/ﬁ
G = Plen=+)= "7

This shows that the one step transitions T}, of the Markov chain Mt}i on a time step h are
given for any bounded function f by the formula

Th(f)(x) = f (2 yn) pn+ f (2 21n) an

with

—rh—ovh

Yyn =¢€ and z, == e~ rhtoVh,

A simple Taylor expansion of the second order gives

Flem)—f@) = f@) alm—1+5 @ o~ 1+ ORVE)
1

flaz) = fl@) = f(z)z(z—1)+5 f(z) 2* (zn —1)* + O(hV/h).
On the other hand, we have
. erh _ e—o\/ﬁ
(=g = [e7oVioa] St
1 a\/ﬁ —a\/ﬁ rh —rh
= —— e +e — |e +e
2 sinh (O’\/E) { [ } [ ] }
1
= ——— |cosh(oVh) — cosh (rh ,
sinh (U\/E) [ ( ) ( )}
and
aoVh rh
—rh—o e —e
(v —1) pn = [e rh ‘/E—l} g a—
rh oVh
_ —ovh __rh —rh € — ¢ _ _
o |:€ € } € ea\/ﬁ _ 6_‘7\/E o (zh 1) Gh-
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This implies that

[Th(f)(x) = f(2)]

= [f (@ yn) = f(@)] pn +[f (2 2) — f(2)] au

=5 ["(@) 2* [(yn = 1)%pn + (21 — 1)%an] + O(hVR).
To take the final step, we observe that

(o = 1?pr+ (2 — D%an = [za —ynllzn — 1] @
e ]

= 2¢ "sinh (oVR) [zn — 1] qn

= 27 [cosh (oV'h) — cosh (rh)}

= o’h+0(h?).

This ends the proof of the exercise.

Solution to exercise 506:
By construction, we have

gs(x) = Py (1) ()
with the Feynman-Kac semigroup
t
Pl (f)(z)=E <f(Xt) exp [—/ V(X,) dr} | X, = x) .
By (15.31) we have
aSPsYt(l) = _L;/(Ps‘ft(l)) — 6Sq8 = _L;/(QS)~
In the first situation, we have
Xi=Xs+b(t—s)+o (W —W).

This implies that
t
qs(xz) = E(exp {—/ [x+b(r—s)+o (W, —Wy)] dr} | X :x>
o t(t—s)=b (t—s)2/2 E [exp [*UWt—s]]

with s
Wi = / W, dr.
0

We also notice that W is a centered and Gaussian random variable with variance

El( OH W, drﬂ - /O

/ E [er Wr2] dT’l dTQ
0
S T2

/0 UO 1 drl} dro = 5%/3.
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The last assertion comes from symmetry arguments and the fact that
=0

1 < re = E(WT1WT2) = E(WT1WT1) +E(WT1(WT2 - WT’1)) =T

This implies that
E [exp [-oW ;]| = exp [02 E (Wffs) /2}

from which we conclude that
log [qs(2)] = —a(t —5) — b (t — 8)? /2 + o*(t — 5)?/6.

In the second case, using the exercise 255, we have

t
Xt—XO = /a(b—Xg)ds—FaWt
0

t
abt— a/ X, ds + ocWy.
0

This implies that

ot .
—/ Xods= =Koy oy
0 a a

On the other hand, by exercise 255 we have

t
Xe—Xo (b— Xo) (1—e)+ 7 / e~ =3) aw,.
a

a a 0
This implies that

t _x .
—/ X ds = (b= Xo) (1—e) —bt + 7 [ / e t=3) qw, — Wt]

0 a a 0

_ t
= L Xo) (1 — e_“t) - Z / (1 — e_“(t_s)) dWs.

a a Jo

To take the final step, observe that W, := fot (1 — e 2(t=9)) dW, is a centered and

Gaussian random variable with variance
t 2 t 9
/ (1 — efa(t75)> ds = / (1 — efas) ds
0 0

([ ey )]
= (e 4 g (- ) =t alh)

a a

E

This implies that
(o[- [ x| 12 =2) =2 (ew[- [ xar] 150 =)
exp [P (1o e =) | o[£ 7.

— exp [(b;‘”) (1— =) — bt —s) +% (2)2 a(ts)].

This ends the proof of the exercise.

gs(z)



1262 Chapter 30

Solution to exercise 507:
By (15.31) we have

Osus (1) = — [Ls(us) — rsus) () = —x rs(x)Opus(z) — % 0s(2)2202us () + 7o (7)us ()

with the terminal condition u; = f; for s = ¢. In the above display L stands for the
generator of the diffusion X, defined by

Ls(f)(x) = rs(x) @ 0:(f)(2) + % os(x) a* 93(f)(@).

This ends the proof of the first assertion.
To check the second one, by (15.31) we have the forward equation

Vit € [s,00] NQst(f) = Qs t(Le(f)) — e f

with the initial condition Q ¢(f) = f. Using the fact that

an@:/ﬁm@wﬂw@

a simple integration by parts yields

0Quilf)(x) = =/'@%Aaw]ﬂwdy

/ 4s.e(x,y) y re(y) Oy f(y) dy

1

+5 [ autew) 0 020) - [ auelo) £ re) dy

_/@@n@mmmw>ﬂm@

+/ B@j (gt(y)y2qs7t(x,.))+7"t(y)q&t(xvy)} f(y) dy

for any smooth function f with compact support. We conclude that the density function
(t,y) ¥ gs,(z,y) is a weak solution of the forward equation

1
0rqs,t(z,y) = —0y (y e(y) qs,t($7y)) + b 8; (at(y)yzqs)t(x,y)) - Tt(y)%,t(% Y)
for any ¢ € [s, 0o[, with the initial condition ¢s s(z,y)dy = d,(dy). This yields
O0ia(e. ) == [ g ds = 00aa(.2) = o, 2)

This ends the proof of the exercise.





