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Summary. In this paper, we propose a methodology to sample sequentially from a sequence
of probability distributions known up to a normalizing constant and defined on a common
space. These probability distributions are approximated by a cloud of weighted random sam-
ples which are propagated over time using Sequential Monte Carlo methods. This method-
ology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo al-
gorithms interact in a principled way, to perform global optimization and sequential Bayesian
estimation and to compute ratios of normalizing constants. We illustrate these algorithms for
various integration tasks arising in the context of Bayesian inference.
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1. Introduction

Consider a sequence of probability measures {πn}n∈T
defined on a common measurable

space (E, E), where T = {1, . . . , p}. For ease of presentation, we will assume that each
πn (dx) admits a density πn (x) with respect to a σ−finite dominating measure denoted
dx. We will refer to n as the time index; this variable is simply a counter and need not
have any relation with ‘real time’. We also denote, by En, the support of πn; that is En =
{x ∈ E : πn (x) > 0}. In this paper, we are interested in sampling from the distributions
{πn}n∈T

sequentially; i.e. first sampling from π1, then from π2 and so on.
This problem arises in numerous applications. In the context of sequential Bayesian

inference, πn could be the posterior distribution of a parameter given the data collected
until time n; e.g. πn(x) = p(x|y1, . . . , yn). In a batch setup where a fixed set of observations
y1, . . . , yp is available, one could also consider the sequence of distributions p(x|y1, . . . , yn)
for n ≤ p for the following two reasons. First, for large datasets, standard simulation meth-
ods such as Markov Chain Monte Carlo (MCMC) methods require a complete ‘browsing’ of
the observations, in contrast, a sequential strategy may have reduced computational com-
plexity. Second, by including the observations one at a time, the posterior distributions
exhibit a beneficial tempering effect (Chopin, 2002). Alternatively, we may want to move
from a tractable (easy to sample) distribution π1 to a distribution of interest, πp, through a
sequence of artificial intermediate distributions (Neal, 2001). In the context of optimization,
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and in a manner similar to simulated annealing, one could also consider the sequence of
distributions πn(x) ∝ [π(x)]φn for an increasing schedule {φn}n∈T.

The tools favoured by statisticians, to sample from complex distributions, are MCMC
methods (see, for example, Robert and Casella (2004)). To sample from πn, MCMC meth-
ods consist of building an ergodic Markov kernel Kn with invariant distribution πn using
Metropolis-Hastings (MH) steps and Gibbs moves. MCMC algorithms have been success-
fully applied to many problems in statistics (e.g. mixture modelling (Richardson and Green,
1997) and changepoint analysis (Green, 1995)). However, in general, there are two major
drawbacks with MCMC. It is difficult to assess when the Markov chain has reached its sta-
tionary regime and it can easily become trapped in local modes. Moreover, MCMC cannot
be used in a sequential Bayesian estimation context.

In this paper, we propose a different approach to sample from {πn}n∈T
based upon

Sequential Monte Carlo (SMC) methods (Del Moral, 2004; Doucet et al., 2001; Liu, 2001).
Henceforth, the resulting algorithms will be called SMC samplers. More precisely, this is
a complementary approach to MCMC, as MCMC kernels will often be ingredients of the
methods proposed. SMC methods have been recently studied and used extensively in the
context of sequential Bayesian inference. At a given time n, the basic idea is to obtain
a large collection of N weighted random samples

{
W

(i)
n , X

(i)
n

}
(i = 1, . . .N, W

(i)
n > 0;∑N

i=1 W
(i)
n = 1) named particles whose empirical distribution converges asymptotically

(N → ∞) to πn; i.e. for any πn−integrable function ϕ : E → R

N∑
i=1

W (i)
n ϕ

(
X(i)

n

)
a.s.−→ Eπn (ϕ)

where
Eπn (ϕ) =

∫
E

ϕ (x)πn (x) dx. (1)

and a.s. denotes almost sure convergence. These particles are carried forward over time
using a combination of sequential Importance Sampling (IS) and resampling ideas.

Standard SMC algorithms in the literature do not apply to the problems described above.
This is because these algorithms deal with the case where the target distribution of interest,
at time n, is defined on Sn with dim (Sn−1) < dim (Sn) ; e.g. Sn = En. Conversely, we are
interested in the case where the distributions {πn}n∈T

are all defined on a common space E.
Our approach has some connections to adaptive IS methods (West, 1993; Oh and Berger,
1993; Givens and Raftery, 1996), Resample-Move (RM) strategies (Chopin, 2002; Gilks and
Berzuini, 2001), Annealed IS (AIS) (Neal, 2001) and Population Monte Carlo (Cappé et al.,
2004) which are detailed in Section 3. However, the generic framework we present here
is more flexible. It allows us to define general moves and can be used in scenarios where
previously developed methodologies do not apply (see Section 5). Additionally, we are able
to develop new algorithms to make parallel MCMC runs interact in a simple and principled
way, to perform global optimization or solve sequential Bayesian estimation problems. It is
also possible to estimate ratios of normalizing constants as a by-product of the algorithm.
As for MCMC, the performance of these algorithms is highly dependent on the target
distributions {πn}n∈T

and proposal distributions used to explore the space.
This paper focuses on the algorithmic aspects of SMC samplers. However, it is worth

noting that our algorithms can be interpreted as interacting particle approximations of a
Feynman-Kac flow in distribution space. Many general convergence results are available for
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these approximations and, consequently, for SMC samplers (Del Moral, 2004). Nevertheless,
the SMC samplers developed here are such that many known estimates on the asymptotic
behaviour of these general processes can be greatly improved. Several of these results can
be found in Del Moral and Doucet (2003). In this article we provide the expressions for the
asymptotic variances associated with central limit theorems.

The rest of the paper is organized as follows. In Section 2, we present a generic Sequen-
tial IS (SIS) algorithm to sample from a sequence of distributions {πn}n∈T

. We outline
the limitations of this approach which severely restricts the way one can move the par-
ticles around the space. In Section 3, we provide a method to circumvent this problem
by building an artificial sequence of joint distributions which admits fixed marginals. We
provide guidelines for the design of efficient algorithms. Some extensions and connections
with previous work are outlined. The remaining sections describe how to apply the SMC
sampler methodology to two important special cases. Section 4 presents a generic approach
to convert an MCMC sampler into an SMC sampler so as to sample from a fixed target
distribution. This is illustrated on a Bayesian analysis of finite mixture distributions. Fi-
nally, Section 5 presents an application of SMC samplers to a sequential, trans-dimensional
Bayesian inference problem. The proofs of the results in Section 3 can be found in the
Appendix.

2. Sequential Importance Sampling

In this Section, we describe a generic iterative/sequential IS method to sample from a
sequence of distributions {πn}n∈T. We provide a review of the standard IS method, then
we outline its limitations and describe a sequential version of the algorithm.

2.1. Importance Sampling
Let πn be a target density on E such that

πn (x) =
γn (x)

Zn

where γn : E → R+ is known pointwise and the normalizing constant Zn is unknown. Let
ηn(x) be a positive density with respect to dx, referred to as the importance distribution.
IS is based upon the following identities

Eπn(ϕ) = Z−1
n

∫
E

ϕ(x)wn (x) ηn (x) dx, (2)

Zn =
∫

E

wn(x)ηn(x)dx, (3)

where the unnormalized importance weight function is equal to

wn (x) =
γn (x)
ηn (x)

. (4)

By sampling N particles
{
X

(i)
n

}
from ηn and substituting the Monte Carlo approximation

ηN
n (dx) =

1
N

N∑
i=1

δ
X

(i)
n

(dx)
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(with δ denoting Dirac measure) of this distribution into (2) and (3), we obtain an approx-
imation of Eπn(ϕ) and Zn.

In statistics applications, we are typically interested in estimating (1) for a large range
of test functions ϕ. In these cases, we are usually trying to select ηn ‘close’ to πn as the
variance is approximately proportional to 1+varηn [wn (Xn)] (see Liu (2001) pp. 35-36).
Unfortunately, selecting such an importance distribution is very difficult when πn is a non
standard high dimensional distribution. As a result, despite its relative simplicity, IS is
almost never used when MCMC methods can be applied.

2.2. Sequential Importance Sampling
In order to obtain better importance distributions, we propose the following sequential
method. At time n = 1, we start with a target distribution π1 which is assumed easy to
approximate efficiently using IS; that is, η1 can be selected such that the variance of the
importance weights (4) is small. In the simplest case, η1 = π1. Then at time n = 2, we
consider the new target distribution π2. To build the associated IS distribution η2, we use
the particles sampled at time n = 1, say

{
X

(i)
1

}
. The rationale is that if π1 and π2 are not

too different from one another, then it should be possible to move the particles
{

X
(i)
1

}
in

the regions of high probability density of π2 in a sensible way.
At time n − 1 we have N particles

{
X

(i)
n−1

}
distributed according to ηn−1. We propose

to move these particles using a Markov kernel Kn : E × E → [0, 1], with associated density
denoted Kn(x, x′). The particles

{
X

(i)
n

}
obtained this way are marginally distributed

according to

ηn (x′) =
∫

E

ηn−1 (x)Kn (x, x′) dx. (5)

If ηn can be computed pointwise, then it is possible to use the standard IS estimates of πn

and Zn.

2.3. Algorithm Settings
This SIS strategy is very general. There are many potential choices for {πn}n∈T

leading to
various integration and optimization algorithms.

2.3.1. Sequence of distributions {πn}.
• In the context of Bayesian inference for static parameters, where p observations

(y1, . . . , yp) are available, one can consider

πn (x) = p (x| y1, . . . , yn) . (6)

See Chopin (2002) for such applications.
• It can be of interest to consider an inhomogeneous sequence of distributions to move

‘smoothly’ from a tractable distribution π1 = μ1 to a target distribution π through a
sequence of intermediate distributions. For example, one could select a geometric path
(Gelman and Meng, 1998; Neal, 2001)

πn (x) ∝ [π (x)]φn [μ1 (x)]1−φn (7)
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with 0 ≤ φ1 < · · · < φp = 1.
Alternatively, one could simply consider the case where πn = π for all n ∈ T. This has

been proposed numerous times in the literature. However, if π is a complex distribution, it
is difficult to build a sensible initial importance distribution. In particular, such algorithms
may fail when the target is multimodal with well-separated narrow modes. Indeed, in
this case, the probability of obtaining samples in all the modes of the target is very small
and an importance distribution based upon these initial particles is likely to be inefficient.
Therefore, for difficult scenarios, it is unlikely that such approaches will be robust.

• For global optimization, as in simulated annealing, one can select

πn (x) ∝ [π (x)]φn (8)

where {φn}n∈T an increasing sequence such that φp → ∞ for large p.
• Assume we are interested in estimating the probability of a rare event, A ∈ E , under

a probability measure π (π (A) ≈ 0). In most of these applications, π is typically easy to
sample from and the normalizing constant of its density is known. We can consider the
sequence of distributions

πn (x) ∝ π (x) IEn (x)

where En ∈ E ∀n ∈ T, IA(x) is the indicator function for A ∈ E and E1 ⊃ E2 ⊃ · · · ⊃
Ep−1 ⊃ Ep, E1 = E and Ep = A. An estimate of π (A) is given by an estimate of the
normalizing constant Zp.

2.3.2. Sequence of transition kernels {Kn}.
It is easily seen that the optimal proposal, in the sense of minimizing the variance of the
importance weights, is Kn (x, x′) = πn (x′). As this choice is impossible, we must formulate
sensible alternatives.

• Independent proposals. It is possible to select Kn (x, x′) = Kn (x′) where Kn (·) is
a standard distribution (e.g. Gaussian, multinomial) whose parameters can be determined
using some statistics based upon ηN

n−1. This approach is standard in the literature; e.g. West
(1993). However, independent proposals appear overly restrictive and it seems sensible to
design local moves in high-dimensional cases.

• Local random walk moves. A standard alternative consists of using for Kn (x, x′) a
random walk kernel. This idea has appeared several times in the literature where Kn (x, x′)
is selected as a standard smoothing kernel (e.g. Gaussian, Epanechikov); e.g. Givens and
Raftery (1996). However, this approach is problematic. Firstly, the choice of the kernel
bandwidth is difficult. Standard rules to determine kernel bandwidths may indeed not be
appropriate here, because we are not trying to obtain a kernel density estimate ηN

n−1Kn (x′)
of ηn−1 (x′) but to design an importance distribution to approximate πn (x′). Secondly, no
information about πn is typically used to build Kn (x, x′).

Two alternative classes of local moves exploiting the structure of πn are now proposed.
• MCMC moves. It is natural to set Kn as an MCMC kernel of invariant distribution

πn. In particular, this approach is justified if either Kn is fast mixing and/or πn is slowly
evolving so that one can expect ηn to be reasonably close to the target distribution. In
this case, the resulting algorithm is an IS technique which would allow us to correct for the
fact that the N inhomogeneous Markov chains

{
X

(i)
n

}
are such that ηn 
= πn. This is an

attractive strategy: We are able to use the vast literature on the design of efficient MCMC
algorithms to build ‘good’ importance distributions.
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• Approximate Gibbs moves. When it is impossible to sample from the full conditional
distributions required by a Gibbs kernel of invariant distribution πn, an approximation of
these distributions can be used to build Kn. This strategy is very popular in the SMC
literature for optimal filtering where the so-called optimal proposal (Doucet et al., 2000,
p. 199; Liu, 2001, p. 47) corresponds to a Gibbs step but can rarely be implemented and is
approximated.

2.4. Limitations of Sequential Importance Sampling
For any probability density ν, we use the following notation

νKi:j (xj) �
∫

ν (xi−1)
j∏

k=i

Kk (xk−1, xk) dxi−1:j−1

where xi:j , i ≤ j, (resp. Xi:j) denotes (xi, . . . , xj) (resp. (Xi, . . . , Xj)).
The algorithm discussed above suffers from a major drawback. In most cases, it is

impossible to compute the importance distribution ηn (xn) given by

ηn (xn) = η1K2:n (xn) (9)

and hence impossible to compute the importance weights. An important exception is when
one uses independent proposal distributions and, in our opinion, this explains why this
approach is often used in the literature. However, whenever local moves are used, ηn does
not admit a closed-form expression in most cases.

A potential solution is to attempt to approximate ηn pointwise by

ηN
n−1Kn (xn) =

1
N

N∑
i=1

Kn

(
X

(i)
n−1, xn

)
.

This approximation has been used in the literature for local random walk moves. However,
this approach suffers from two major problems. First, the computational complexity of the
resulting algorithm would be in O

(
N2
)

which is prohibitive. Second, it is impossible to
compute Kn (xn−1, xn) pointwise in important scenarios. For example, consider the case
where E = R, Kn is an MH kernel and dx is Lebesgue measure: We cannot, typically,
compute the rejection probability of the MH kernel analytically.

3. SMC Samplers

In this Section, we show how it is possible to use any local move -including MCMC moves-
in the SIS framework while circumventing the calculation of (9). The algorithm preserves
complexity of O (N) and provides asymptotically consistent estimates.

3.1. Methodology and Algorithm
As noted above, the importance weight can be computed exactly at time 1. At time n > 1, it
is typically impossible to compute ηn (xn) pointwise as it requires an integration with respect
to x1:n−1. Instead, we propose an auxiliary variable technique and introduce artificial
backward (in time) Markov kernels Ln−1 : E ×E → [0, 1] with density Ln−1(xn, xn−1). We
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then perform IS between the joint importance distribution ηn (x1:n) and the artificial joint
target distribution defined by

π̃n (x1:n) =
γ̃n (x1:n)

Zn

where

γ̃n (x1:n) = γn (xn)
n−1∏
k=1

Lk (xk+1, xk) .

As π̃n (x1:n) admits πn (xn) as a marginal by construction, IS provides an estimate of
this distribution and its normalizing constant. By proceeding thus, we have defined a
sequence of probability distributions {π̃n} whose dimension is increasing over time; i.e. π̃n

is defined on En. We are then back to the ‘standard’ SMC framework described, for
example, in (Del Moral, 2004; Doucet et al., 2001; Liu, 2001). We now describe a generic
SMC algorithm to sample from this sequence of distributions based upon sequential IS
resampling methodology.

At time n − 1, assume a set of weighted particles
{
W

(i)
n−1, X

(i)
1:n−1

}
(i = 1, . . . , N) ap-

proximating π̃n−1 is available,

π̃N
n−1 (dx1:n−1) =

N∑
i=1

W
(i)
n−1δX

(i)
1:n−1

(dx1:n−1) (10)

W
(i)
n−1 =

wn−1(X
(i)
1:n−1)∑N

j=1 wn−1(X
(j)
1:n−1)

At time n, we extend the path of each particle with a Markov kernel Kn (xn−1, xn). Impor-
tance sampling is then used to correct for the discrepancy between the sampling distribution
ηn (x1:n) and π̃n (x1:n). In this case the new expression for the unnormalized importance
weights is given by

wn (x1:n) =
γ̃n (x1:n)
ηn (x1:n)

(11)

= wn−1 (x1:n−1) w̃n (xn−1, xn)

where the so-called (unnormalized) incremental weight w̃n (xn−1, xn) is equal to

w̃n (xn−1, xn) =
γn (xn)Ln−1 (xn, xn−1)

γn−1 (xn−1)Kn (xn−1, xn)
. (12)

As the discrepancy between ηn and π̃n tends to increase with n, the variance of the un-
normalized importance weights tends to increase resulting in a potential degeneracy of the
particle approximation. This degeneracy is routinely measured using the effective sample

size (ESS) criterion
(∑N

i=1

(
W

(i)
n

)2
)−1

(Liu and Chen, 1998). The ESS takes values be-

tween 1 and N . If the degeneracy is too high, i.e. the ESS is below a pre-specified threshold,
say N/2, then each particle X

(i)
1:n is copied N

(i)
n times under the constraint

∑N
i=1 N

(i)
n = N ;

the expectation of N
(i)
n being equal to NW

(i)
n such that particles with high weights are

copied multiple times whereas particles with low weights are discarded. Finally, all resam-
pled particles are assigned equal weights. The simplest way to perform resampling consists
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of sampling the N new particles from the weighted distribution π̃N
n ; the resulting

{
N

(i)
n

}
are distributed according to a multinomial distribution of parameters

{
W

(i)
n

}
. Stratified re-

sampling (Kitagawa, 1996) and residual resampling can also be used and all of these reduce
the variance of N

(i)
n relative to that of the multinomial scheme.

A summary of the algorithm can be found in Algorithm 1. The complexity of this
algorithm is in O (N) and it can be parallelized easily.

Algorithm 1 Sequential Monte Carlo Sampler.
1. Initialization

• Set n = 1.

• For i = 1, . . . , N draw X
(i)
1 ∼ η1.

• Evaluate
{
w1(X

(i)
1 )
}

using (4) and normalize these weights to obtain
{
W

(i)
1

}
.

Iterate steps 2. and 3.

2. Resampling

• If ESS < T (for some threshold T ), resample the particles and set W
(i)
n = 1/N .

3. Sampling

• Set n = n + 1, if n = p + 1 stop.

• For i = 1, . . . , N draw X
(i)
n ∼ Kn(X(i)

n−1, ·).

• Evaluate
{
w̃n(X(i)

n−1:n)
}

using (12) and normalize the weights

W (i)
n =

W
(i)
n−1w̃n(X(i)

n−1:n)∑N
j=1 W

(j)
n−1w̃n(X(j)

n−1:n)

Remark. If the weights
{
W

(i)
n

}
are independent of

{
X

(i)
n

}
, then the particles

{
X

(i)
n

}
should be sampled after the weights

{
W

(i)
n

}
have been computed and after the particle

approximation
{
W

(i)
n , X

(i)
n−1

}
of πn (xn−1) has possibly been resampled. This scenario

appears when {Ln} is given by (30).
Remark. It is also possible to derive an auxiliary version of this algorithm in the spirit of
(Pitt and Shephard, 1999).

3.2. Notes on the Algorithm
3.2.1. Estimates of Target Distributions and Normalizing Constants

At time n, we obtain after the sampling step a particle approximation
{
W

(i)
n , X

(i)
1:n

}
of

π̃n (x1:n). As the target πn (xn) is a marginal of π̃n (x1:n) by construction, an approximation
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of it is given by

πN
n (dx) =

N∑
i=1

W (i)
n δ

X
(i)
n

(dx) .

The particle approximation
{
W

(i)
n−1, X

(i)
n−1:n

}
of πn−1 (xn−1)Kn (xn−1, xn) obtained af-

ter the sampling step also allows us to approximate

Zn

Zn−1
=

∫
γn (xn) dxn∫

γn−1 (xn−1) dxn−1
by

Ẑn

Zn−1
=

N∑
i=1

W
(i)
n−1w̃n

(
X

(i)
n−1:n

)
. (13)

To estimate Zn/Z1, one can use the product of estimates of the form (13) from time
k = 2 to n. However, if one does not resample at each iteration, a simpler alternative is
given by

Ẑn

Z1
=

rn−1+1∏
j=1

Ẑkj

Zkj−1

,

with
Ẑkj

Zkj−1

=
N∑

i=1

W
(i)
kj−1

kj∏
m=kj−1+1

w̃m

(
X

(i)
m−1:m

)
(14)

where k0 = 1, kj is the jth time index at which one resamples for j > 1. The number of
resampling steps between 1 and n − 1 is denoted rn−1 and we set krn−1+1 = n.

There is a potential alternative estimate for ratios of normalizing constants based upon
path sampling (Gelman and Meng, 1998). Indeed, consider a continuous path of distribu-
tions

πθ(t) =
γθ(t)

Zθ(t)

where t ∈ [0, 1], θ (0) = 0 and θ (1) = 1. Then under regularity assumptions, we have the
following path sampling identity

log
Z1

Z0
=
∫ 1

0

dθ (t)
dt

∫
d log

(
γθ(t) (x)

)
dt

πθ(t) (dx) dt. (15)

In the SMC samplers context, if we consider a sequence of p + 1 intermediate distributions
denoted here πθ( k

P ) k = 0, . . . , p to move from π0 to π1 then (15) can be approximated

using a trapezoidal integration scheme and substituting π̂N
θ( k

P ) (dx) to πθ( k
P ) (dx). Some

applications of this identity in an SMC framework are detailed in Johansen et al. (2005)
and Rousset and Stoltz (2005).

3.2.2. Mixture of Markov Kernels
The algorithm described in this section must be interpreted as the basic element of more
complex algorithms. It is to SMC what the MH algorithm is to MCMC. For complex
MCMC problems, one typically uses a combination of MH steps where the J components
of x say (x1, . . . , xJ ) are updated in sub-blocks. Similarly, to sample from high dimensional
distributions, a practical SMC sampler can update the components of x via sub-blocks and
a mixture of transition kernels can be used at each time n.



10 Del Moral, Doucet and Jasra

Let us assume Kn (xn−1, xn) is of the form

Kn (xn−1, xn) =
M∑

m=1

αn,m (xn−1)Kn,m (xn−1, xn) (16)

where αn,m (xn−1) ≥ 0,
∑M

m=1 αn,m (xn−1) = 1 and {Kn,m} is a collection of transition
kernels. In this case, the incremental weights can be computed by the standard formula
(12). However, this could be too expensive if M is large. An alternative, valid, approach
consists of considering a backward Markov kernel of the form

Ln−1 (xn, xn−1) =
M∑

m=1

βn−1,m (xn)Ln−1,m (xn, xn−1) (17)

where βn−1,m (xn) ≥ 0,
∑M

m=1 βn−1,m (xn) = 1 and {Ln−1,m} is a collection of backward
transition kernels. We now introduce, explicitly, a discrete latent variable Mn taking values
in M = {1, . . . , M} such that P (Mn = m) = αn,m (xn−1) and perform IS on the extended
space E × E ×M. This yields an incremental importance weight equal to

w̃n (xn−1, xn, mn) =
γn (xn)βn−1,mn (xn)Ln−1,mn (xn, xn−1)

γn−1 (xn−1)αn,mn (xn−1)Kn,mn (xn−1, xn)
. (18)

The variance of (18) will always be superior or equal to the variance of (12).

3.3. Algorithm Settings
3.3.1. Optimal Backward Kernels
In standard applications of SMC methods, only the proposal kernels {Kn} have to be
selected as the joint distributions {π̃n} are given by the problem at hand. In the framework
considered here, {Ln} is arbitrary. However, in practice, {Ln} should be optimized with
respect to {Kn} in order to obtain good performance. Recall that {Ln} has been introduced
because it was impossible to compute the marginal importance distribution {ηn} pointwise.

The marginal distribution of the particles
{
X

(i)
n

}
at time n is given by

ηn (xn) = η1K2:n (xn) (19)

if the particles have not been resampled before time n and approximately

ηn (xn) = πlKl+1:n (xn) (20)

if the last time the particles were resampled was l. To simplify the discussion, we consider
here the case (19), note that the more general case (20) can be handled similarly.

The introduction of the auxiliary kernels {Ln} means that we need not compute ηn (xn).
This comes at the price of extending the integration domain from E to En and increasing
the variance (if it exists) of the importance weights. The following proposition establishes
the expression of the sequence of optimal backward Markov kernels.

Proposition 3.1. The sequence of kernels
{
Lopt

k

}
(k = 1, . . . , n) minimizing the vari-

ance of the unnormalized importance weight wn (x1:n) is given for any k, n by

Lopt
k−1 (xk, xk−1) =

ηk−1 (xk−1)Kk (xk−1, xk)
ηk (xk)

(21)
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and in this case

wn (x1:n) =
γn (xn)
ηn (xn)

.

Remark. This proposition is intuitive and simply states that the optimal backward Markov
kernels take us back to the case where one performs importance sampling on E instead of
En. Note that the result can also be intuitively understood through the following forward-
backward formula for Markov processes

η1 (x1)
n∏

k=2

Kk (xk−1, xk) = ηn (xn)
n∏

k=2

Lopt
k−1 (xk, xk−1) . (22)

In the context of a mixture of kernels (16), one can use Proposition 3.1 to establish that
the optimal backward kernel is of the form (17) with

βopt
n−1,m (xn) ∝

∫
αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1, xn) dxn−1, (23)

Lopt
n−1,m (xn, xn−1) =

αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1, xn)∫
αn,m (xn−1) ηn−1 (xn−1)Kn (xn−1, xn) dxn−1

. (24)

3.3.2. Sub-Optimal Backwards Kernels
It is typically impossible, in practice, to use the optimal kernel as they themselves rely
on marginal distributions which do not admit any closed-form expression. However, this
suggests that we should select {Lk} to approximate (21). The key point is that, even if {Lk}
is different from (21), the algorithm will still provide asymptotically consistent estimates.
Some approximations are now discussed.

• Substituting πn−1 for ηn−1. One point used recurrently is that (12) suggests that a
sensible, sub-optimal, strategy consists of using an Ln which is an approximation of the
optimal kernel (21) where one has substituted πn−1 for ηn−1, that is:

Ln−1 (xn, xn−1) =
πn−1 (xn−1)Kn (xn−1, xn)

πn−1Kn (xn)
(25)

which yields

w̃n (xn−1, xn) =
γn (xn)∫

E
γn−1 (xn−1)Kn (xn−1, xn) dxn−1

. (26)

It is often more convenient to use (26) than (21) as {γn} is known analytically, whilst {ηn}
is not. It should be noted that, if particles have been resampled at time n − 1, then ηn−1

is indeed approximately equal to πn−1 and thus (21) is equal to (25).
• Gibbs Type Updates. Consider the case where x = (x1, . . . , xJ) and we only want to

update the kth (k ∈ {1, ..., J}) component xk of x denoted xn,k at time n. It is straightfor-
ward to establish that the proposal distribution minimizing the variance of (26) conditional
upon xn−1 is a Gibbs update; i.e.

Kn (xn−1, dxn) = δxn−1,−k
(dxn,−k)πn (dxn,k|xn,−k) (27)

where xn,−k = (xn,1, . . . , xn,k−1, xn,k+1, . . . , xn,J ). In this case (25) and (26) are given by

Ln−1 (xn, dxn−1) = δxn,−k
(dxn−1,−k)πn−1 (dxn−1,k|xn−1,−k) ,
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w̃n (xn−1, xn) =
γn (xn−1,−k, xn,k)

γn−1 (xn−1,−k)πn (xn,k|xn−1,−k)
.

When it is not possible to sample from πn (xn,k|xn−1,−k) and/or compute γn−1 (xn−1,−k) =∫
γn−1 (xn−1) dxn−1,k analytically, this suggests using an approximation π̂n (xn,k|xn−1,−k)

of πn (xn,k|xn−1,−k) to sample the particles and another approximation π̂n−1 (xn−1,k|xn−1,−k)
of πn−1 (xn−1,k|xn−1,−k) to obtain

Ln−1 (xn, dxn−1) = δxn,−k
(dxn−1,−k) π̂n−1 (dxn−1,k|xn−1,−k) , (28)

w̃n (xn−1, xn) =
γn (xn−1,−k, xn,k) π̂n−1 (xn−1,k|xn−1,−k)

γn−1 (xn−1) π̂n (xn,k|xn−1,−k)
. (29)

• MCMC Kernels. A generic alternative approximation of (25) can also be made when
Kn is an MCMC kernel of invariant distribution πn. It is given by

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)

πn (xn)
(30)

and will be a good approximation of (25) if πn−1 ≈ πn; note that (30) is the reversal Markov
kernel associated with Kn. In this case, one has unnormalized incremental weight

w̃n (xn−1, xn) =
γn (xn−1)

γn−1 (xn−1)
. (31)

Contrary to (25), this approach does not apply in scenarios where En−1 ⊂ En and En ∈
E ∀n ∈ T as discussed in Section 5. Indeed, in this case

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)∫

En−1
πn (xn−1)Kn (xn−1, xn) dxn−1

(32)

but the denominator of this expression is different from πn (xn) as the integration is over
En−1 and not En.

• Mixtures of Kernels. Practically, one cannot typically compute the expressions (23)
and (24) in closed form and so approximations are also necessary. As discussed previously,
one sub-optimal choice consists of replacing ηn−1 with πn−1 in (23) and (24) or use further
approximations like (30).

3.3.3. Summary
To conclude this subsection, we emphasize that selecting {Ln} as close as possible to {Lopt

n }
is crucial for this method to be efficient. It could be tempting to select {Ln} in a different
way. For example, if we select Ln−1 = Kn then the incremental importance weight looks
like a MH ratio. However, this ‘aesthetic’ choice will be inefficient in most cases resulting
in importance weights with a very large or infinite variance.

3.4. Convergence Results
Using (10), the SMC algorithm yields estimates of expectations (1) via

EπN
n

(ϕ) =
∫

E

ϕ (x) πN
n (dx) . (33)
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Using (13), we can also obtain an estimate of log (Zn/Z1)

log
Ẑn

Z1
=

n∑
k=2

log
Ẑk

Zk−1
. (34)

We now present a central limit theorem, giving the asymptotic variance of these estimates
in two ‘extreme’ cases: when we never resample and when we resample at each iteration.
For the sake of simplicity, we have only considered the case where multinomial resampling
is used (see Chopin (2004a) for analysis using residual resampling and also Künsch (2005)
for results in the context of filtering). The asymptotic variance expressions of (33) and (34)
for general SMC algorithms have previously been established in the literature. However,
we propose here a new representation which clarifies the influence of the kernels {Ln} .

In the following proposition, we denote by N (μ, σ2) the Normal distribution with mean μ
and variance σ2, convergence in distribution by ‘⇒’,

∫
π̃n (x1:n) dx1:k−1 dxk+1:n by π̃n (xk)

and
∫

π̃n (x1:n) dx1:k−1 dxk+1:n−1/ π̃n (xk) by π̃n (xn|xk).

Proposition 3.2. Under the weak integrability conditions given in (Chopin, 2004; The-
orem 1) or (Del Moral, 2004, Section 9.4, pp. 300-306), one obtains the following results.
When no resampling is performed, one has

√
N
(
EπN

n
(ϕ) − Eπn (ϕ)

)⇒ N (
0, σ2

IS,n (ϕ)
)

with

σ2
IS,n (ϕ) =

∫
π̃n (x1:n)2

ηn (x1:n)
(ϕ (xn) − Eπn (ϕ))2 dx1:n (35)

where the joint importance distribution ηn is given by

ηn (x1:n) = η1 (x1)
n∏

k=2

Kk (xk−1, xk) .

We also have
√

N

(
log

Ẑn

Z1
− log

Zn

Z1

)
⇒ N (

0, σ2
IS,n

)
with

σ2
IS,n =

∫
π̃n (x1:n)2

ηn (x1:n)
dx1:n − 1. (36)

When multinomial resampling is used at each iteration, one has
√

N
(
EπN

n
(ϕ) − Eπn (ϕ)

)⇒ N (
0, σ2

SMC,n (ϕ)
)

where, for n ≥ 2,

σ2
SMC,n (ϕ) (37)

=
∫

π̃n (x1)
2

η1 (x1)

(∫
ϕ (xn) π̃n (xn|x1) dxn − Eπn (ϕ)

)2

dx1

+
n−1∑
k=2

∫
(π̃n (xk)Lk−1 (xk, xk−1))

2

πk−1 (xk−1)Kk (xk−1, xk)

(∫
ϕ (xn) π̃n (xn|xk) dxn − Eπn (ϕ)

)2

dxk−1:k

+
∫

(πn (xn)Ln−1 (xn, xn−1))
2

πn−1 (xn−1)Kn (xn−1, xn)
(ϕ (xn) − Eπn (ϕ))2 dxn−1:n
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and
√

N

(
log

Ẑn

Z1
− log

Zn

Z1

)
⇒ N (

0, σ2
SMC,n

)
where

σ2
SMC,n =

∫
π̃n (x1)

2

η1 (x1)
dx1 − 1 (38)

+
n−1∑
k=2

(∫
(π̃n (xk)Lk−1 (xk, xk−1))

2

πk−1 (xk−1)Kk (xk−1, xk)
dxk−1:k − 1

)

+
∫

(πn (xn)Ln−1 (xn, xn−1))
2

πn−1 (xn−1)Kn (xn−1, xn)
dxn−1:n − 1.

Remark. In the general case, we cannot claim that σ2
SMC,n (ϕ) < σ2

IS,n (ϕ) or σ2
SMC,n <

σ2
IS,n. This is because, if the importance weights do not have a large variance, resampling is

typically wasteful as any resampling scheme introduces some variance. However, resampling
is beneficial in cases where successive distributions can vary significantly. This has been
established theoretically in the filtering case in (Chopin, 2004; Theorem 5): Under mixing
assumptions, the variance is shown to be upper bounded uniformly in time with resampling
and to go to infinity without it. The proof may adapted to the class of problems considered
here, and it can be shown that for (8) - under mixing assumptions on {Kn} and using (25) or
(30) for {Ln} - the variance σ2

SMC,n (ϕ) is upper bounded uniformly in time for a logarithmic
schedule {φn} whereas σ2

IS,n (ϕ) goes to infinity with n. Similar results hold for residual
resampling. Finally we note that, although the resampling step appears somewhat artificial
in discrete time, it appears naturally in the continuous time version of these algorithms
(Del Moral, 2004; Rousset and Stoltz, 2005).

3.5. Connections to other work
To illustrate the connections with, and differences to, other work published in the literature,
let us consider the case where we sample from {πn} using MCMC kernels {Kn} where Kn

is πn-invariant.
Suppose, at time n − 1, we have the particle approximation

{
W

(i)
n−1, X

(i)
n−1

}
of πn−1.

Several recent algorithms are based upon the implicit or explicit use of the backward kernel
(30). In the case addressed here, where all the target distributions are defined on the same
space, it is used for example in: Chopin (2002), Jarzynski (1997) and Neal (2001). In the
case where the dimension of the target distributions increases over time, it is used in Gilks
and Berzuini (2001) and MacEachern et al. (1999).

For the algorithms listed above, the associated backward kernels lead to the incremental
weights:

w̃n

(
X

(i)
n−1, X

(i)
n

)
∝

πn

(
X

(i)
n−1

)
πn−1

(
X

(i)
n−1

) . (39)

The potential problem with (39) is that these weights are independent of
{

X
(i)
n

}
where

X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
. In particular, the variance of (39) will typically be high if the
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discrepancy between πn−1 and πn is large even if the kernel Kn mixes very well. This
result is counter-intuitive. In the context of AIS (Neal, 2001) where the sequence of p
target distributions (7) is supposed to satisfy πn−1 ≈ πn, this is not a problem. However,
if successive distributions vary significantly, as in sequential Bayesian estimation, this can
become a significant problem. For example, in the limiting case where Kn (xn−1, xn) =
πn (xn), one would end up with a particle approximation

{
W

(i)
n , X

(i)
n

}
of πn where the

weights
{

W
(i)
n

}
have an high variance whereas

{
X

(i)
n

}
are i.i.d samples from πn; this is

clearly suboptimal.
To deal with the above problem, RM strategies are used by (among others) Chopin

(2002) and Gilks and Berzuini (2001). RM corresponds to the SMC algorithm described
in Section 3 using the backward kernel (30). RM resamples the particle approximation{
W

(i)
n , X

(i)
n−1

}
of π̃n (xn−1) (if the variance of

{
W

(i)
n

}
measured approximately through

the ESS is high) and only then do we sample
{
X

(i)
n

}
to obtain a particle approximation{

N−1, X
(i)
n

}
of πn; i.e. all particles have an equal weight. This can be expected to improve

over not resampling if consecutive targets differ significantly and the kernels {Kn} mix
reasonably well; we demonstrate this in Section 4.

Proposition 3.1 suggests that a better choice (than (30)) of backward kernels is given
by (25) for which the incremental weights are given by

w̃n

(
X

(i)
n−1, X

(i)
n

)
∝

πn

(
X

(i)
n

)
πn−1Kn

(
X

(i)
n

) . (40)

The expression of (40) is much more intuitive than (39). It depends on Kn and thus the
expression of the weights (40) reflects the mixing properties of the kernel Kn. In particular,
the variance of (40) decreases as the mixing properties of the kernel increases.

To illustrate the difference between SMC using (40) instead of (39), consider the case
where x = (x1, . . . , xJ) and we use the Gibbs kernel (27) to update the component xk so
that (40) is given by

w̃n

(
X

(i)
n−1, X

(i)
n

)
∝

πn

(
X

(i)
n−1,−k

)
πn−1

(
X

(i)
n−1,−k

) . (41)

By a simple Rao-Blackwell argument, the variance of (41) is always smaller than the vari-
ance of (39). The difference will be particularly significant in scenarios where the marginals
πn−1 (x−k) and πn (x−k) are close to each other but the full conditional distributions
πn (xk|x−k) and πn−1 (xk|x−k) differ significantly. In such cases, SMC using (39) re-
samples many more times than SMC using (41). Such scenarios appear for example in
sequential Bayesian inference as described in Section 5 where each new observation only
modifies the distribution of a subset of the variables significantly.

It is, unfortunately, not always possible to use (25) instead of (30) as an integral appears
in (40). However, if the full conditional distributions of πn−1 and πn can be approximated
analytically, it is possible to use (28)-(29) instead.

Recent work of Cappé et al. (2004) is another special case of the proposed framework.
The authors consider the homogeneous case where πn = π and Ln (x, x′) = π(x′). Their
algorithm corresponds to the case where Kn (x, x′) = Kn (x′) and the parameters of Kn (x′)
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are determined using statistics over the entire population of particles at time n− 1. Exten-
sions of this work for missing data problems are presented in Celeux et al. (2006).

Finally Liang (2002) presents a related algorithm where πn = π, Kn (x, x′) = Ln (x, x′) =
K (x, x′).

4. From MCMC to SMC

4.1. Methodology
We now summarize how it is possible to obtain an SMC algorithm to sample from a fixed
target distribution, π, using MCMC kernels or approximate Gibbs steps to move the parti-
cles around the space. The procedure is:

• Build a sequence of distributions {πn}, n = 1, . . . , p, such that π1 is easy to sample
from/approximate and πp = π,

• Build a sequence of MCMC transition kernels {Kn} such that Kn is πn−invariant or
Kn is an approximate Gibbs move of invariant distribution πn,

• Based upon {πn} and {Kn}, build a sequence of artificial backward Markov kernels
{Ln} approximating {Lopt

n }. Two generic choices are (25) and (30). For approximate Gibbs
moves, we can use (28).

• Use the SMC algorithm described in the previous section to approximate {πn} and
estimate {Zn} .

4.2. Bayesian Analysis of Finite Mixture Distributions
In the following example, we consider a mixture modelling problem. Our objective is to
illustrate the potential benefits of resampling in the SMC methodology.

4.2.1. Model
Mixture models are typically used to model heterogeneous data, or as a simple means of
density estimation; see Richardson and Green (1997) and the references therein for an
overview. Bayesian analysis of mixtures has been fairly recent and there is often substantial
difficulty in simulation from posterior distributions for such models; see Jasra et al. (2005b)
for example.

We use the model of Richardson and Green (1997), which is as follows; data y1, . . . , yc

are i.i.d with distribution

yi|θr ∼
r∑

j=1

ωjN (μj , λ
−1
j )

where θr = (μ1:r, λ1:r , ω1:r), 2 ≤ r < ∞ and r known. The parameter space is E =
Rr × (R+)r × Sr for the r−component mixture model where Sr = {ω1:r : 0 ≤ ωj ≤
1 ∩∑r

j=1 ωj = 1}. The priors, which are the same for each component j = 1, . . . , r, are
taken to be: μj ∼ N (ξ, κ−1), λj ∼ Ga(ν, χ), ω1:r−1 ∼ D(ρ), where D(ρ) is the Dirichlet
distribution with parameter ρ and Ga(ν, χ) is the Gamma distribution with shape ν and
scale χ. We set the priors in an identical manner to Richardson and Green (1997), with the
χ parameter set as the mean of the hyper-prior they assigned that parameter.

One particular aspect of this model, which makes it an appropriate test example, is the
feature of label switching. As noted above, the priors on each component are exchangeable,
and consequently, in the posterior, the marginal distribution of μ1 is the same as μ2. That
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is, the marginal posterior is equivalent for each component specific quantity. This provides
us with a diagnostic to establish the effectiveness of the simulation procedure. For more
discussion see, for example, Jasra et al. (2005b). It should be noted that very long runs of
an MCMC sampler targeting πp were unable to explore all the modes of this distribution
and failed to produce correct estimates (see Jasra et al. (2005b)).

4.2.2. SMC Sampler
We will consider AIS and SMC samplers. Both algorithms use the same MCMC kernels Kn

with invariant distribution πn and the same backward kernels (30). The MCMC kernel is
a composition of the following update steps:

(a) Update μ1:r via a MH kernel with additive normal random walk proposal.
(b) Update λ1:r via a MH kernel with multiplicative log-normal random walk proposal.
(c) Update ω1:r via a MH kernel with additive normal random walk proposal on the logit

scale.

For some of the runs of the algorithm, we will allow more than one iteration of the above
Markov kernel per time step. Finally, the sequence of densities is taken as

πn(θr) ∝ l(y1:c; θr)φnf(θr)

where 0 ≤ φ1 < · · · < φp = 1 are tempering parameters and we have denoted the prior
density as f and likelihood function as l.

4.2.3. Illustration
• Data & Simulation Parameters. For the comparison, we used the simulated data from
Jasra et al. (2005b): 100 simulated data points from an equally weighted mixture of 4
(i.e. r = 4) normal densities with means at (-3,0,3,6) and standard deviations 0.55. We
ran SMC samplers and AIS with MCMC kernels with invariant distribution πn for 50, 100,
200, 500 and 1000 time steps with 1 and 10 MCMC iterations per time step. The proposal
variances for the MH steps were the same for both procedures and were dynamically falling
to produce an average acceptance rate in (0.15, 0.6). The initial importance distribution
was the prior. The C++ code and the data are available at the following address
http://www.cs.ubc.ca/~arnaud/smcsamplers.html.

We ran the SMC algorithm with N = 1000 particles and we ran AIS for a similar CPU
time. The absence of a resampling step allows AIS to run for a few more iterations than
SMC. We ran each sampler 10 times (i.e. for each time specification and iteration number,
each time with 1000 particles). For this demonstration, the resampling threshold was 500
particles. We use systematic resampling. The results with residual resampling are very
similar.

We selected a piecewise linear cooling schedule {φn}. Over 1000 time steps, the sequence
increased uniformly from 0 to 15/100 for the first 200 time points then from 15/100 to
40/100 for the next 400 and finally from 40/100 to 1 for the last 400 time points. The other
time specifications had the same proportion of time attributed to the tempering parameter
setting. The choice was made to allow an initially slow evolution of the densities and then
to allow more complex densities to appear at a faster rate. We note that other cooling
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Table 1. Results from Mixture Comparison for SMC and AIS; We ran
each sampler 10 times with 1000 particles. For AIS the number of time
steps is slightly higher than stated, as it corresponds to the same CPU
time as SMC.

Sampler Details Iterations per time step

SMC (50 time steps) 1 10
Avg. Log Posterior -155.22 -152.03

Avg. Times Resampled 7.70 10.90
Avg. Log Normalizing Constant -245.86 -240.90

AIS (50 time steps)
Avg. Log Posterior -191.07 -166.73

Avg. Log Normalizing Constant -249.04 -242.07

SMC (100 time steps)
Avg. Log Posterior -153.08 -152.97

Avg. Times Resampled 8.20 5.10
Avg. Log Normalizing Constant -245.43 -244.18

AIS (100 time steps)
Avg. Log Posterior -180.76 -162.37

Avg. Log Normalizing Constant -250.22 -244.17

SMC (200 time steps)
Avg. Log Posterior -152.62 -152.99

Avg. Times Resampled 8.30 4.20
Avg. Log Normalizing Constant -246.22 -245.84

AIS (200 time steps)
Avg. Log Posterior -174.40 -160.00

Avg. Log Normalizing Constant -247.45 -245.92

SMC (500 time steps) 1 10
Avg. Log Posterior -152.31 -151.90

Avg. Times Resampled 7.00 3.00
Avg. Log Normalizing Constant -247.08 -247.01

AIS (500 time steps)
Avg. Log Posterior -167.67 -157.06

Avg. Log Normalizing Constant -247.30 -247.94

SMC (1000 time steps)
Avg. Log Posterior -152.12 -151.94

Avg. Times Resampled 5.70 2.00
Avg. Log Normalizing Constant -247.40 -247.40

AIS (1000 time steps)
Avg. Log Posterior -163.14 -155.31

Avg. Log Normalizing Constant -247.50 -247.36
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Table 2. Estimates of Means from Mixture Comparison for SMC
and AIS. We ran each sampler 10 times with 1000 particles.
The estimates are presented in increasing order, for presentation
purposes.

Sampler Details Component

1 2 3 4

SMC (50 steps, 1 iteration) 0.38 0.83 1.76 2.69
AIS (50 steps, 1 iteration) 0.03 0.75 1.68 2.28

SMC (50 steps, 10 iterations) 1.06 1.39 1.62 1.70
AIS (50 steps, 10 iterations) 0.26 0.96 1.61 2.85

SMC (100 steps, 1 iteration) 0.68 0.91 2.02 2.14
AIS (100 steps, 1 iteration) 0.61 0.75 1.46 2.72

SMC (100 steps, 10 iterations) 1.34 1.44 1.44 1.54
AIS (100 steps, 10 iterations) 0.88 1.06 1.59 2.25

SMC (200 steps, 1 iteration) 1.11 1.29 1.39 1.98
AIS (200 steps, 1 iteration) 0.89 1.23 1.72 1.96

SMC (200 steps, 10 iterations) 1.34 1.37 1.53 1.53
AIS (200 steps, 10 iterations) 1.26 1.34 1.45 1.74

SMC (500 steps, 1 iteration) 0.98 1.38 1.54 1.87
AIS (500 steps, 1 iteration) 0.87 1.31 1.47 2.12

SMC (500 steps, 10 iterations) 1.40 1.44 1.42 1.50
AIS (500 steps, 10 iterations) 1.36 1.38 1.48 1.57

SMC (1000 steps, 1 iteration) 1.10 1.48 1.50 1.69
AIS (1000 steps, 1 iteration) 1.17 1.36 1.57 1.60

SMC (1000 steps, 10 iterations) 1.39 1.39 1.41 1.51
AIS (1000 steps, 10 iterations) 1.39 1.41 1.41 1.53
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schedules may be implemented (such logarithmic, quadratic) but we did not find significant
improvement with such approaches.

• Results. Table 4.2.3 gives the average of the (unnormalized) log posterior values of
the particles at time p (averaged over 10 runs), the average number of times resampling oc-
curred for SMC and the averaged estimates of the log normalizing constant (or log marginal
likelihood).

Table 4.2.3 displays the following: The particles generated by the SMC samplers have on
average much higher log posterior values. The standard deviation of these values (not given
here) is also significantly smaller than for AIS. However, the estimates of the normalizing
constant obtained via SMC are not improved compared to AIS. For a low number of time
steps p, the estimates for both algorithms are particularly poor and improve similarly as p
increases. Therefore, if one is interested in estimating normalizing constants, it appears that
it is preferable to use only one iterate of the kernel and more time steps. In addition, and as
expected, the number of resampling steps decreases when p increases. This is because the
discrepancy between consecutive densities falls, and this leads to reduced weight degeneracy.
As the number of iterations per time step increases, this further reduces the number of
resampling steps which we attribute to the fact that the kernels mix faster allowing us a
better coverage of the space.

We now turn to Table 4.2.3 which displays estimates of the posterior means for {μr} for
both algorithms. Due to the non-identifiability of the mixture components, we expect the
estimated means (for each component) to be all equal and approximately 1.5. In this case,
SMC provides more accurate estimates of these quantities than AIS. This is particularly
significant when p is moderate (p = 100, 200) and when the kernel is mixing reasonably
well (i.e. the number of iterations is 10). This underlines that the resampling step can
improve the sampler substantially, with little extra coding effort. This is consistent with
the discussion in Section 3.5.

These experimental results can also be partially explained via the expressions of the
asymptotic variances (38) and (37). (We do not use multinomial resampling in our ex-
periments and we do not resample at each iteration but the variance expressions behave
similarly for more complex resampling schemes). For the estimates of the normalizing con-
stants, when the kernel mixes perfectly (i.e. Kk (xk−1, xk) = πk (xk)) the terms appearing
in the variance expression are of the form∫

(π̃n (xk)Lk−1 (xk, xk−1))
2

πk−1 (xk−1)Kk (xk−1, xk)
dxk−1:k − 1 =

∫
(πk (xk−1) πk+1 (xk))2

πk−1 (xk−1)πk (xk)
dxk−1:k − 1

when Lk−1 is given by (30). These terms will remain high if the discrepancy between
successive target distributions is large. For estimates of conditional expectations, the terms
appearing in the variance expression are of the form∫

(π̃n (xk)Lk−1 (xk, xk−1))
2

πk−1 (xk−1)Kk (xk−1, xk)

(∫
ϕ (xn) π̃n (xn|xk) dxn − Eπn (ϕ)

)2

dxk−1:k.

These terms go to zero as the mixing properties of Kk improve as in such cases π̃n (xn|xk) ≈
πn (xn).

4.2.4. Summary
In this example we have provided a comparison of SMC and AIS. For normalizing constants,
SMC does not seem to improve estimation over AIS. However, for posterior expectations,
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it can provide a substantial gain when p is moderate and the kernels mix well. This is
of importance in more complicated applications. For example, in many modern statistics
problems (e.g. the population genetics example in Jasra et al. (2005a)), the computational
cost of applying many iterations of an MCMC kernel (and thus good performance of AIS)
is prohibitive and thus the usage of the resampling step can enhance the performance of
the algorithm.

In the situations for which the kernels mix quickly but p is small (i.e. where SMC
outperforms AIS for the same N) we might improve AIS by reducing N and increasing p to
obtain similar computational cost and performance. The drawback of this approach is that
it often takes a significant amount of investigation to determine an appropriate trade-off
between N and p for satisfactory results; that is, SMC is often easier to calibrate (specify
simulation parameters) than AIS.

For more complex problems, say if r ≥ 5, it is unlikely that SMC will explore all of the
r! modes for a reasonable number of particles. However, in such contexts, the method could
provide a good indication of the properties of the target density and could be used as an
exploratory technique.

5. Sequential Bayesian Estimation

In the following example we present an application of SMC samplers to a sequential, trans-
dimensional inference problem. In particular, we demonstrate our methodology in a case
where the supports of the target distributions are nested; i.e. En−1 ⊂ En. Such scenarios are
not pathological and appear, for example, in numerous algorithms developed for counting
problems in theoretical computer science; e.g. Jerrum and Sinclair (1996).

5.1. Model
We consider the Bayesian estimation of the rate of an inhomogeneous Poisson process,
sequentially in time. In the static case, a similar problem was addressed in Green (1995).
In the sequential case, related problems are discussed in Chopin (2004b), Fearnhead and
Clifford (2003), Godsill and Vermaak (2005) and Maskell (2004).

We suppose that we record data y1, . . . , ycn up to some time tn with associated likelihood:

ln(y1:cn |{λ(u)}u≤tn) ∝
[ cn∏

j=1

λ(yj)
]

exp
{
−
∫ tn

0

λ(u)du

}
.

In order to model the intensity function, we follow Green (1995) and adopt a piecewise
constant function, defined for u ≤ tn:

λ(u) =
k∑

j=0

λjI[τj ,τj+1)(u)

where τ0 = 0, τk+1 = tn and the changepoints (or knots) τ1:k of the regression function
follow a Poisson process of intensity ν whereas for any k > 0

f(λ0:k) = f(λ0)
k∏

j=1

f(λj |λj−1)
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with λ0 ∼ Ga(μ, υ) and λj |λj−1 ∼ Ga(λ2
j−1/χ, λj−1/χ).

At time tn we restrict ourselves to the estimation of λ(u) over the interval [0, tn). Over
this interval the prior on the number k of changepoints follows a Poisson distribution of
parameter νtn

fn(k) = e−νtn
(νtn)k

k!
and, conditional on k, we have

fn(τ1:k) =
k!

(tn)k
IΘn,k

(τ1, . . . , τk)

where Θn,k = {τ1:k : 0 < τ1 < · · · < τk < tn}. Thus at time tn we have the density

πn(λ0:k, τ1:k, k) ∝ ln(y1:cn |{λ(u)}u≤tn)f(λ0)
[ k∏

j=1

f(λj |λj−1)
]
fn(τ1:k)fn(k).

5.2. SMC Sampler
We will consider a sequence of strictly increasing times {tn}. For the problem considered
above, we have defined a sequence of distributions on spaces:

En =
⋃

k∈N0

(
{k} × (R+)k+1 × Θn,k

)
.

That is, our densities are defined on a sequence of nested trans-dimensional spaces; i.e.
En−1 ⊂ En. As noted in Section 3.3.2, previously developed methodologies such as AIS
and RM cannot be applied in such scenarios. Additionally, we must be careful, as in Green
(1995), to construct incremental weights which are indeed well-defined Radon-Nikodym
derivatives.

As noted in the trans-dimensional MCMC and SMC literatures (e.g. Green (2003),
Carpenter et al. (1999), Doucet et al. (2000), Pitt and Shephard (1999)) and in Section
3.3.2, a potentially good way to generate proposals in new dimensional spaces is to use the
full conditional density. We will use a similar idea to generate the new changepoints.

5.2.1. Extend Move
In the extend move, we modify the location of the last changepoint; that is, use the Markov
kernel

Kn(x, dx′) = δτ1:k−1,λ0:k,k(d(τ ′
1:k−1, λ

′
0:k, k′))πn(dτ ′

k|τ1:k−1, λ0:k, k).

The backward kernel (25) is used.
In the context of the present problem, the full conditional density is given by

πn(τ ′
k|τ1:k−1, λ0:k, k) ∝ λ

n[τk−1:τ′
k
)

k−1 λ
n[τ′

k
:tn)

k exp
{− τ ′

k(λk−1 − λk)
}
I[τk−1,tn)(τ ′

k)

where n[a,b) =
∑cn

j=1 I[a,b)(yj). It is possible to sample exactly from this distribution through
composition. It is also possible to compute in closed-form its normalizing constant, which
is required for the incremental weight (26).
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5.2.2. Birth Move
We also adopt a birth move which is simulated as follows. We generate a new changepoint
τ ′
k+1 from a uniform distribution on [τk, tn) and conditional on this generate a new intensity

according to its full conditional:

πn

(
λ′

k+1|τ ′
k+1, λk

) ∝ (λ′
k+1)

n[τ′
k+1:tn)+λ2

k/χ−1
exp

{− λ′
k+1[(tn − τ ′

k+1) + λk/χ]
}

all other parameters are kept the same. This leads to incremental weight:

πn(k + 1, τ ′
1:k+1, λ

′
0:k+1)(tn − τk)

πn−1(k, τ1:k+1, λ0:k+1)πn

(
λ′

k+1|τ ′
k+1, λk

) .
5.2.3. The Sampler
We thus adopt the following SMC sampler:

(a) At time n make a random choice between the extend move (chosen with probability
αn(x)) or birth move. There is clearly no extend move possible if k = 0.

(b) Perform selected move.
(c) Choose whether or not to resample and do so.
(d) Perform an MCMC sweep of the moves described in Green (1995). That is, we retain

the same target density and thus the incremental weight is 1, due to the invariance of
the MCMC kernel.

5.3. Illustration
To illustrate the approach outlined above we use the popular coal mining disaster data set
analyzed in (among others) Green (1995). The data consists of the times of coal mining
disasters in the UK, between 1851 and 1962. We assume inference is of interest on an annual
basis and so we define 112 densities (i.e. the nth density is defined up to time tn = n). For
illustration we take prior parameters as μ = 4.5, υ = 1.5, χ = 0.1, and ν = 20/112. For
this example, the extend move performed better than the birth move thus we let αn(x) = 1
if k ≥ 1 and 0 otherwise. The backward probability is taken as equal to αn(x) when k ≥ 1
(as this is the only state it is evaluated in).

We ran our SMC sampler with 10000 particles and resampling threshold 3000 particles,
using the systematic resampling approach. The initial (importance) distribution was the
prior. The C++ code and the data are available at the following address
http://www.cs.ubc.ca /~arnaud/smcsamplers.html.

Figure 1 (a) demonstrates the performance of our algorithm with respect to weight de-
generacy. Here we see that after the initial difficulty of the sampler (due to the initialization
from the prior, and the targets’ dynamic nature - we found that using more MCMC sweeps
did not improve performance) the ESS never drops below 25% of its previous value. Ad-
ditionally, we resample, on average, every 8.33 time steps. The former statements are not
meaningless when using resampling. This is because we found, for less efficient forward and
backward kernels, that the ESS would drop to 1 or 2 if consecutive densities had regions of
high probability mass in different areas of the support. Thus the plot indicates that we can
indeed extend the space in an efficient manner.

Figure 1 (b) shows the intensity function for the final density (full line) in the sequence,
the filtered density at each time point (i.e. E[λ(tn)|y1:cn ], the crosses) and the smoothed
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estimate, up to lag 10 (E[λ(tn)|y1:cn+10], the pluses). We can see, as expected, that the
smoothed intensity approaches the final density, with the filtered intensity displaying more
variability. We found that the final rate was exactly the same as Green’s (1995) trans-
dimensional MCMC sampler for our target density.

The bottom row of Figure 1 illustrates the performance when we only allow the MCMC
steps to operate on the last five knot points. This will reduce the amount of CPU time
devoted to sampling the particles and allow us to consider a truly realistic on-line imple-
mentation. This is of interest for large datasets. Here, we see (in (c)) a similar number
of resampling steps to (a). In Figure 1 (d), we observe that the estimate of the intensity
function suffers (slightly), with a more elongated structure at later times (in comparison to
Figure 1 (b)), reflecting the fact that we cannot update the values of early knots in light of
new data.

5.4. Summary
In this example we have presented the application of SMC samplers to a trans-dimensional,
sequential inference problem in Bayesian statistics. We successfully applied our methodol-
ogy to the coal mining disaster data set.

One point of interest, is the performance of the algorithm if we are unable to use the
backward kernel (25) in the extend step for alternative likelihood functions. We found that
not performing the integration and using the approximation idea (28)-(29) could still lead
to good performance; we believe that this idea may also be useful for alternative problems
such as optimal filtering for nonlinear non-Gaussian state-space models.

6. Conclusion

SMC algorithms are a class of flexible and general methods to sample from distributions
and estimate their normalizing constants. Simulations demonstrate that this set of methods
is potentially powerful. However, the performance of these methods are highly dependent
on the sequence of targets {πn}, forward kernels {Kn} and backward kernels {Ln}.

In cases where we want to use SMC to sample from a fixed target π, it would be
interesting - in the spirit of path sampling (Gelman and Meng, 1998) - to obtain the optimal
path (in the sense of minimizing the variance of the importance weights) for moving from
an easy to sample distribution π1 to πp = π. This is a very difficult problem. Given a
parametrized family

{
πθ(t)

}
t∈[0,1]

such that πθ(0) is easy to sample and πθ(1) = π, a more
practical approach consists of monitoring the ESS to move adaptively on the path θ (t); see
Johansen et al. (2005) for details.

Finally, we have restricted ourselves here to Markov kernels {Kn} to sample the particles.
However, it is possible to design kernels whose parameters are a function of the whole
set of current particles as suggested in Crisan and Doucet (2000), Cappé et al. (2004),
Chopin (2002) or West (1993). This allows the algorithm to automatically scale a proposal
distribution. This idea is developed in Jasra et al. (2005a).
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Appendix

Proof of Proposition 3.1. The result follows easily from the variance decomposition
formula

var[wn(X1:n)] = E
(
var[wn(X1:n)|Xn]

)
+ var

(
E[wn(X1:n)|Xn]

)
. (42)

The second term on the right hand side of (42) is independent of the backward Markov
kernels {Lk} as

E [wn (X1:n)|Xn] =
γn (Xn)
ηn (Xn)

whereas var [w (X1:n)|Xn] is equal to zero if one uses (21).
Proof of Proposition 3.2. The expression (35) follows from the delta method. Expression
(37) follows from a convenient rewriting of the variance expression established in (Del Moral,
2004; Proposition 9.4.2, pp. 302); see also (Chopin, 2004; Theorem 1) for an alternative
derivation. The variance is given by

σ2
SMC,n (ϕ) = Eη1

[
w2

1Q2:n (ϕ − Eπn (ϕ))2
]
+

n∑
k=2

Eπk−1Kk

[
w2

kQk+1:n (ϕ − Eπn (ϕ))2
]

(43)

where the semigroup, Q, is defined as Qn+1:n (ϕ) = ϕ,

Qk+1:n (ϕ) = Qk+1 ◦ · · · ◦ Qn (ϕ)

and
Qn (ϕ) (xn−1) = EKn(xn−1,·) [wn (xn−1, Xn)ϕ (Xn)]

where

wn (xn−1, xn) =
πn (xn)Ln−1 (xn, xn−1)

πn−1 (xn−1)Kn (xn−1, xn)

=
Zn−1

Zn
w̃n (xn−1, xn) .

The expression (43) is difficult to interpret. It is conveniently rearranged here. The key is
to notice that

Qn (ϕ) (xn−1) = EKn(xn−1,·) [wn (xn−1, Xn)ϕ (Xn)]

=
∫

Kn (xn−1, xn)
πn (xn)Ln−1 (xn, xn−1)

πn−1 (xn−1) Kn (xn−1, xn)
ϕ (xn) dxn

=
1

πn−1 (xn−1)

∫
ϕ (xn) πn (xn)Ln−1 (xn, xn−1) dxn.

=
π̃n (xn−1)

πn−1 (xn−1)

∫
ϕ (xn) π̃n (xn|xn−1) dxn
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Similarly, one obtains

Qn−1:n (ϕ)
= Qn−1 (Qn (ϕ)) (xn−2)
= EKn−1(xn−2,·) [wn−1 (xn−2:n−1)Qn (ϕ) (xn−1)]

=
1

πn−2 (xn−2)

∫ (
1

πn−1 (xn−1)

∫
ϕ (xn)πn (xn) Ln−1 (xn, xn−1) dxn

)
× πn−1 (xn−1)Ln−2 (xn−1, xn−2) dxn−1.

=
1

πn−2 (xn−2)

∫ (∫
ϕ (xn) π̃n (xn−1:n|xn−2) dxn−1:n

)
π̃n−2 (xn−2) dxn−1.

=
π̃n−1 (xn−2)
πn−2 (xn−2)

∫
ϕ (xn) π̃n (xn|xn−2) dxn

and, by induction, one gets

Qk+1:n (ϕ) =
1

πk (xk)

∫
· · ·
∫

ϕ (xn)πn (xn)
n−1∏
i=k

Li (xi, xi−1) dxk+1:n. (44)

=
π̃n (xk)
πk (xk)

∫
ϕ (xn) π̃n (xn|xk) dxn.

The expression of σ2
SMC,n (ϕ) given (37) follows now directly from (44) and (43). Similarly

we can rewrite the variance expression established in (Del Moral, 2004; Proposition 9.4.1,
pp. 301) and use the delta method to establish (38).
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Cappé, O., Guillin, A., Marin, J. M. and Robert, C. P. (2004) Population Monte Carlo. J.
Comp. Graph. Statist., 13, 907–930.

Carpenter, J., Clifford, P. and Fearnhead, P. (1999) An improved particle filter for non-linear
problems. IEE Proc. Radar, Sonar and Navigation, 146, 2–7.

Celeux, G., Marin, J. M. and Robert, C. P. (2006) Iterated importance sampling in missing
data problems. Comp. Statist. Data Anal.

Chopin, N. (2002) A sequential particle filter for static models. Biometrika, 89, 539–551.

Chopin, N. (2004a) Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference. Ann. Statist., 32, 2385–2411.

Chopin, N. (2004b) Dynamic detection of changepoints in long time series. Technical report,
University of Bristol.

Crisan, D. and Doucet, A. (2000) Convergence of sequential Monte Carlo methods. Technical
report, University of Cambridge, CUED/F-INFENG/TR381.

Del Moral, P. (2004) Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. New York: Springer.



SMC Samplers 27

Del Moral, P. and Doucet, A. (2003) On a class of genealogical and interacting metropolis
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Fig. 1. Effective sample size plot and intensity function for Coal mining disaster data. We ran 10000
particles for 112 densities and resampling threshold ((−−) in (a) & (c)) 3000 particles. In the intensity
plots, the full-line is the estimated intensity given the entire data, the crosses, the filtered density at
each time and the pluses the smoothed estimate (lag 10). The top row ((a) & (b)) are the results
when the MCMC steps operate upon the entire state-space the bottom row ((c) & (d)) are the results
when the MCMC steps only operate upon the last 5, or fewer, knot points.


