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1.1— Outline of the talk

e Introduction to MCMC in 3 slides

e Objectives

e Sequentially Interacting MCMC

e Applications

e FExtensions
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1.2— Introduction

e Let 7 (dx) = 7 (x) dxr be a probability measure on E such that

. .

unknown known

o Objectives: Estimate [, ¢ (z)7 (dz) and/or Z = [, 7 (2) dw.

o Application: Bayesian statistics where the target distribution is a posterior
distribution
_ [(z;y) p(z)
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1.3— Introduction to Monte Carlo Integration

e To approximate [ ¢ (z)7 (dz), the Monte Carlo method consists
of sampling N >> 1 i.i.d. random variables X () ~ 7 and build the empirical
measure

N
1
~N o |
N (do) = = ; Sy (dx)
e We estimate [ ¢ (z) 7 (dz) through [ ¢ (x) 7" (dz); we have

5| [e@a @) = [o@),

var /gp(g;) N (da?) _ J ¢ (z) 7 (dz) —N(fgfﬁ(w)?f(dx))

e Problem: How to sample from 77 Standard methods rely on Markov
Chain Monte Carlo (MCMC).
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1.4— Introduction to (Metropolis)-Hastings Algorithm

e We build a Markov chain X (9 such that HE (X (i))

- %HTV — 0.
e Select a proposal dist. ¢ (z) such that ¢ (x) > 0= 7 (x) > 0,
set X Mand run the following algorithm.

t iteration i; 1 > 2.
Sample X* ~ ¢ (+).
With probability

~ * (i—1)
o (X070, X*) =14 X o (7]

set X() = X* otherwise set X (9 = x(—1)

e Uniform ergodicity if for any x € E 7 (x) /q (z) < C; the closer

q is from 7, the better it works.
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1.5— Objectives

o Let {m,} (n=1,..., M) be a sequence of probability distributions,
where 7, is defined on E,, = E" such that m, (dz1.,) = 7, (T1.n) dT1.p.

e Each 7, (x1.,) is known up to a normalizing constant, i.e.

Tn (:Ul:n) — Zgl - Tn (:Ul:n) .
N~ -

VO
unknown known

o Objectives: Estimate [ ¢, (1.,) 7y, (d21.,) and/or Z,.
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1.6— Motivating example: Optimal Filtering

e {Xn},> is an unobserved Markov process

Xi~pand X,|(Xn1=2n_1)~f(|xn_1).

e {Y,},>, is the observation process

o Lixzample:

Xn = o(Xn_1,Vn) where V,, 'K “pv (+),
Y, = VY (X,,W,) where W, L pw (+)

o Applications: Time series, Econometrics, Tracking, Robotics etc.
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1.6— Motivating example: Optimal Filtering

e Optimal Filtering: Estimate the sequence of posterior
distributions {p (z1.n|y1.n)} Where 1., = (1, 22,... ,x,) and
Yin = (Y1,Y25 - - ,Yn). We have

n

P (21| yr:n) o< o (@1) [ | £ (wrl zr1) ][ 9 (wel ) -

k=2

e Marginal Likelihood: Given a model and M observations, compute
the marginal likelihood

M
p(Y1m) = H /g(yk|ﬂfk)f($k|$k—1)p($k—1|y1zk—1)dﬂfk—1:k-
k=1

e (Goodness of Fit: Compute the residuals

Pr(Yn S yn‘ ylzn—l) — /Pr(Yn S yn| ajn) f (xn‘ xn—l)p(xn—l‘ ylzn—l) dxn—l:n-
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1.7— Motivating example: Sampling from a fixed target
distribution

e We want to sample from 7 (z) v (z) and Z = [~ () dx.

e Build a path of M distributions so that 71 (x) is easy to sample
and 7y () is the target: Similar idea in annealing/tempering; e.g.

if 7 (x) o<l (z;y)p(z) then 7, (z) o< (z;9)" p (x)
e Finally construct

n—1

Tn, (xlzn) — %n (xn) H bk (ajk—l—la xk)
k=1

where the backward kernels {b;} are selected as a function of the forward

kernels used to move from 7, (z,) to Tp11 (Thi1) .
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1.8— More Examples

Any problem which can be rewritten as a Feynman-Kac formula.
e Maximizing marginal distributions.
e Counting the number of self-avoiding random walks (polymers, proteins).

e [istimating the largest eigenvalue and associated eigenmeasure

of positive operators (known as quantum Monte Carlo in physics).
e Computing the optimal controller for some nonlinear diffusions.

e Computing the probability of rare events.

— Motivation and Objectives Page 10



1.9— Standard Approaches

e Use M independent MCMC algorithms to sample from each distribution m,,.
= Very computationally intensive and does not use the fact that m,, 4
and ,, are usually “close”.

= No “natural” estimates of {Z,,}.

e Trans-dimensional MCMC (Green, Biometrika, 1995) cannot
be used as {Z,/Z1} unknown.

e Importance sampling (Durbin & Koopman, JRSS B, 2000): “In my opinion
their approach s a stmple, quick and dirty way of deriving a numerical

approzimation” (J.Q. Smith, first discussant); inefficient in high dim.

e Standard methods to solve this problem: Sequential Monte Carlo.
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1.10— Sequential Monte Carlo Methods

e SMC methods are a combination of importance sampling/resampling
algorithms where a collection of IV interacting particles approximate

the distribution of interest.

o Advantages

e On-line method, can be used for large datasets.

e Drawbacks

e Listimates cannot be improved iteratively.

e Can be difficult to code for non-specialists
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2.1— Objectives

e Develop an alternative MCMC-like algorithm to sample from {7, }
and compute {7, }.

e [terative algorithm, trivial to code when one knows MCMC.

e Computationally much cheaper than running M independent
MCMC chains.
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2.2— Basic Idea

e Assume for the time being you are able to sample from m,, 1 (£1.n_1)-
You know that 7, (x1.,_1) & mn_1 (T1.,_1) S0 it makes sense to use it
as a proposal distribution in a Metropolis-Hastings algorithm.

t iteration i; 1 > 2.
Sample X7, ~mp—1 (-) and X} ~ ¢, (X7 1, )

With probability

i—1 i—1 i—1
o (Xg,) o (K)o (X155, X00)

(i—1) * ):
(079 (Xlzn 7X1:n LA T (Xl(z;l)) Tn—1 (Xf:n—1> dn (Xf:n—le;;)

set Xl(zq),b = X{.,,, otherwise set Xl(zq),b = Xl(fgl).
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2.2— Basic Idea

o If

Yn (ajlzn)
Tn—1 (xlzn—l) dn (xlzn—la xn)

< M, < o0

then we have

e (x12) =

< Cpa' where ay, < 1.
TV

e The Markov chain is uniformly ergodic even if 7, is defined on E,,.

e Problem: We cannot sample from m,,_; in practice!

— Sequentially Interacting Markov Chain Monte Carlo Page 15



2.3— Towards Sequentially Interacting MCMC

e We sample from m; using a standard MH algorithm and obtained
at iteration ¢ the following approximation

A() dﬂfl ZdX(k}) dﬂfl

To sample from 7o (dz1.2), we propose the following algorithm running
in parallel.
t iteration i; 1 > 2.

Sample Xf( )~ 7r§ 2 (+) and X, ) g (X*(Z), )
With probability

o (Xf;(zi)) T (Xz(ffl)) q2 (Xz(ffl),Xz(fz_l))

o (Xz(zf?) 1 (Xik(w) q2 (Xf(i)aX;(i))

1—1 * (17
(X2<12>,X ”)_m

set X1(Z% = X{.,, otherwise set X{% = X&_l).
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2.3— Towards Sequentially Interacting MCMC

e Assume that at iteration 7, you have the approximation generated by
another MCMC algorithm

i
~ (1) 1
T g (d1n-1) = = kzl Sy (dwrni)
then we approximate the Metropolis-Hastings algorithm

to sample from m,, by the following algorithm.
t iteration i; 1 > 2.

Sample Xf(?z)—l ~ /7-‘\-7(;11 () and X;(Z) ~ 4n (Xf%)—lv )
With probability

Tn (Xik(f:b)) MTn—1 (X”Ig:,I}”L)—l) dn (ngz,ﬁfg—l: Xﬁi;l))

n,l:n >

An (X ot Xikﬁ(??) = 1A (i—1) @) e R—
Tn (Xn,lzn) MTn—1 (Xlzn—l) dn (Xlzn—17Xn )

= X7.,,, otherwise set xW = xUr

n,l:n n,l:n

set X(i)

n,l:n
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2.4— Sequentially Interacting MCMC

t iteration ;¢ > 2

At time n=1

Use MH step of target 7y (x1) with proposal ¢; (x1)
to sample X( " and update your estimate 7r( ) (x1) of m1 (1) .

At timen=2,.... M

Use MH step of target m, (x1.,) with proposal %7(,:’11 (1:n—-1) @n (T1.n—1, Tp)

to obtain X ()(

n.1:n and update your estimate 7 T1.,) of m, (1.0) -
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2.5— Sequentially Interacting MCMC

o At iteration 7, we have the approximation for alln =1,..., M

( dil?l n = Z 5X(k) dilfl;n) .

n,l:n

e The ratio of normalizing constants can be approximated through

/\ *(k
Tn (Xl(n))

Lt (X000 ) an (X002, X))
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2.6— Extensions

e MH step coupled with Accept-Reject can be used to improve performance
(Tierney, 1994).

e An auxiliary variable version (Pitt & Shephard, JASA, 1999) of SIMCMC

can be derived but it is too computationally intensive.

e Rao-Blackwellisation versions can easily be derived.
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3.1- SIMCMUC for Optimal Filtering

e Assume you want to sample from {p (z,|y1.n)} .

e At iteration ;¢ > 2

At time n =1. Sample X ~ p. With proba. 1 A g(y”ffa) :
g(y1IX1 )

set Xl(i) = X7 otherwise Xl(i) = Xl(i_l).

At time n =2,..., M. Sample X*_, ~ p (zp_1|y1:n_1) and

n—1

X~ f(]Xz_y). With proba. 1A g(gy(j’;?ﬁz)) ,

set Xﬁf) = X' otherwise Xﬁ? = Xf,gi_l).
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3.2— Simulations for Optimal Filter

e Linear Gaussian model

Xn — ¢Xn—1 ‘|_O-vvn7

Y, = X,+o,W,.

e We use SIMCMC with

Prior proposal: q (x1.n—1,%n) = f (Zn| Tn_1) .

Opimal Proposalg(r1-1,2) = 7Sz stz

e We compare SIMCMC to Kalman and SMC.
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3.2— Simulations for Optimal Filter

e For V = 5000 over 10 runs of M = 100 observations, results between
SIMCMC, SMC and Kalman are virtually identical
in terms of £ | X,|y1.,] and logp (y1.p) -

e For lower values of NV, the optimal proposal yields significantly better results

when o, /0, is large.

e SIMCMC and SMC performs similarly although SMC yields better estimates

for small V.
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3.2— Simulations for Optimal Filter

e Switching state-space model

X, = A(l,)Xn_1+B(,)Va,

Y, = C(,)X,+D(,)W,

where {I, } is an unobserved binary discrete-time Markov chain.
e Optimal filter is a mixture of 2" Kalman filters at time n.
e We can use SIMCMC to sample from p (1.0, T1.n| Y1.n) and p (41.0] Y1:1)

(Rao-blackwellisation through Kalman filter).
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3.2— Simulations for Optimal Filter

e We use a prior proposal in both cases.

e For V = 5000 over 10 runs of M = 100 observations, results between
SIMCMC and SMC are virtually identical
in terms of F | X,|y1..] and logp (y1.p) -

e For lower values of N, Rao-Blackwellisation significantly improves

results and estimates stabilize around N = 1000.
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3.2— Simulations for Optimal Filter

e Stochastic volatility

Xn — ¢Xn—1 + van7

Y, = pBexp(X,/2)W,.
e We use both the prior distribution and an approximation of the optimal.

e Once more, SIMCMC and SMC yields similar results.
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3.3— Bayesian Analysis of Finite Mixture of Gaussians

e Model

L
Y; ~ ZMN (ks 07) -
k=1

e Standard conjugate priors on 6 = (7Tk, L J,%), no identifiability constraint,

posterior is a mixture of L! components.
e Simulations with L = 4, components “far” from each other.

e MCMC algorithm sampling directly from p (0| y1.7) get trapped in one mode.
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3.4— Algorithm Settings

e To sample p (0| y1.7), set m, (0) o I (y1.7;0)"" p (0)
where n € {1,... , M}, N =5000, n, =0, n, > n,_1 and 1y = 1.

e ¢, is an MCMC kernel of invariant distribution 7, (Thanks to Ajay Jasra).

e Over 10 runs with M = 800, SIMCMC discovers the 4! modes.

e Moreover, E [ 1] y1.7] = E [ | y1.7] = E [ 3| y1.7] =~ E | 14| y1.7] as expected.
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4.1— Discussion

e SIMCMC samplers are an iterative alternative to SMC.

e Can be used on all problems addressed through SMC.

e All your SMC knowledge can be reused straightaway.

e Nice convergence properties inherited from the “ideal” algorithm.
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5.1— Extensions: The Bigger Picture

e MCMC:' Build a Markov transition K : E — P (E) such that
T=nK

and the fixed point is approximated through
Pntl = pn S — T

e Nonlinear MCMC: Build a nonlinear Markov transition
K:P(F)x E— P(F) (e.g. McKean-Vlasov) such that

T=mnK,

and the fixed point is approximated through

fnt1 = pHn Ky, — T

e Nonlinear MCMC can be implemented through particles or self-interacting
Markov chains (Del Moral & Doucet, 2003; Andrieu et al., 2006).
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