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1.1– Outline of the talk

• Introduction to MCMC in 3 slides

• Objectives

• Sequentially Interacting MCMC

• Applications

• Extensions
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1.2– Introduction

• Let π̃ (dx) = π̃ (x) dx be a probability measure on E such that

π̃ (x) = Z̃−1
︸︷︷︸

unknown

. γ̃ (x)︸ ︷︷ ︸ .

known

• Objectives: Estimate
∫

E ϕ (x) π̃ (dx) and/or Z̃ =
∫

E γ̃ (x) dx.

• Application: Bayesian statistics where the target distribution is a posterior
distribution

π̃ (x) := p (x| y) =
l (x; y) p (x)∫

E l (x; y) p (x) dx
.
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1.3– Introduction to Monte Carlo Integration

• To approximate
∫
ϕ (x) π̃ (dx), the Monte Carlo method consists

of sampling N >> 1 i.i.d. random variables X(i) ∼ π̃ and build the empirical
measure

π̃N (dx) =
1
N

N∑

i=1

δX(i) (dx)

• We estimate
∫
ϕ (x) π̃ (dx) through

∫
ϕ (x) π̃N (dx) ; we have

E
[∫

ϕ (x) π̃N (dx)
]

=
∫

ϕ (x) π̃ (dx) ,

var

[∫
ϕ (x) π̃N (dx)

]
=

∫
ϕ2 (x) π̃ (dx) −

(∫
ϕ (x) π̃ (dx)

)2

N

• Problem: How to sample from π̃? Standard methods rely on Markov
Chain Monte Carlo (MCMC).
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1.4– Introduction to (Metropolis)-Hastings Algorithm

• We build a Markov chain X(i) such that
∥∥L

(
X(i)

)
− π̃

∥∥
TV

→ 0.

• Select a proposal dist. q (x) such that q (x) > 0 ⇒ π̃ (x) ≥ 0,
set X(1)and run the following algorithm.

At iteration i; i ≥ 2.

Sample X∗ ∼ q (·).
With probability

α
(
X(i−1), X∗

)
= 1 ∧ π̃ (X∗)

π̃
(
X(i−1)

) q
(
X(i−1)

)

q (X∗)

set X(i) = X∗, otherwise set X(i) = X(i−1).

• Uniform ergodicity if for any x ∈ E π̃ (x) /q (x) < C; the closer
q is from π, the better it works.
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1.5– Objectives

• Let {πn} (n = 1, ..., M) be a sequence of probability distributions,
where πn is defined on En = En such that πn (dx1:n) = πn (x1:n) dx1:n.

• Each πn (x1:n) is known up to a normalizing constant, i.e.

πn (x1:n) = Z−1
n︸︷︷︸

unknown

. γn (x1:n)︸ ︷︷ ︸ .

known

• Objectives: Estimate
∫
ϕn (x1:n)πn (dx1:n) and/or Zn.
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1.6– Motivating example: Optimal Filtering

• {Xn}n≥1 is an unobserved Markov process

X1 ∼ µ and Xn| (Xn−1 = xn−1) ∼ f ( ·|xn−1) .

• {Yn}n≥1 is the observation process

Yn| (Xn = xn) ∼ g ( ·|xn) .

• Example:

Xn = ϕ (Xn−1, Vn) where Vn
i.i.d.∼ pV (·) ,

Yn = Ψ(Xn, Wn) where Wn
i.i.d.∼ pW (·) .

• Applications: Time series, Econometrics, Tracking, Robotics etc.
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1.6– Motivating example: Optimal Filtering

• Optimal Filtering: Estimate the sequence of posterior
distributions {p (x1:n| y1:n)} where x1:n = (x1, x2, . . . , xn) and
y1:n = (y1, y2, . . . , yn). We have

p (x1:n| y1:n) ∝ µ (x1)
n∏

k=2

f (xk|xk−1)
n∏

k=1

g (yk|xk) .

• Marginal Likelihood: Given a model and M observations, compute
the marginal likelihood

p (y1:M ) =
M∏

k=1

∫
g (yk|xk) f (xk|xk−1) p (xk−1| y1:k−1) dxk−1:k.

• Goodness of Fit: Compute the residuals

Pr (Yn ≤ yn| y1:n−1) =
∫

Pr (Yn ≤ yn|xn) f (xn|xn−1) p (xn−1| y1:n−1) dxn−1:n.
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1.7– Motivating example: Sampling from a fixed target
distribution

• We want to sample from π̃ (x) ∝ γ (x) and Z̃ =
∫
γ (x) dx.

• Build a path of M distributions so that π̃1 (x) is easy to sample
and π̃M (x) is the target: Similar idea in annealing/tempering; e.g.
if π̃ (x) ∝ l (x; y) p (x) then π̃n (x) ∝ l (x; y)ηn p (x)

• Finally construct

πn (x1:n) = π̃n (xn)
n−1∏

k=1

bk (xk+1, xk)

where the backward kernels {bk} are selected as a function of the forward
kernels used to move from π̃n (xn) to π̃n+1 (xn+1) .
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1.8– More Examples

Any problem which can be rewritten as a Feynman-Kac formula.

• Maximizing marginal distributions.

• Counting the number of self-avoiding random walks (polymers, proteins).

• Estimating the largest eigenvalue and associated eigenmeasure
of positive operators (known as quantum Monte Carlo in physics).

• Computing the optimal controller for some nonlinear diffusions.

• Computing the probability of rare events.
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1.9– Standard Approaches

• Use M independent MCMC algorithms to sample from each distribution πn.
⇒ Very computationally intensive and does not use the fact that πn−1

and πn are usually “close”.
⇒ No “natural” estimates of {Zn}.

• Trans-dimensional MCMC (Green, Biometrika, 1995) cannot
be used as {Zn/Z1} unknown.

• Importance sampling (Durbin & Koopman, JRSS B, 2000): “In my opinion
their approach is a simple, quick and dirty way of deriving a numerical
approximation” (J.Q. Smith, first discussant); inefficient in high dim.

• Standard methods to solve this problem: Sequential Monte Carlo.
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1.10– Sequential Monte Carlo Methods

• SMC methods are a combination of importance sampling/resampling
algorithms where a collection of N interacting particles approximate
the distribution of interest.

• Advantages

• On-line method, can be used for large datasets.

• Drawbacks

• Estimates cannot be improved iteratively.
• Can be difficult to code for non-specialists
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2.1– Objectives

• Develop an alternative MCMC-like algorithm to sample from {πn}
and compute {Zn} .

• Iterative algorithm, trivial to code when one knows MCMC.

• Computationally much cheaper than running M independent
MCMC chains.
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2.2– Basic Idea

• Assume for the time being you are able to sample from πn−1 (x1:n−1).
You know that πn (x1:n−1) ≈ πn−1 (x1:n−1) so it makes sense to use it
as a proposal distribution in a Metropolis-Hastings algorithm.

At iteration i; i ≥ 2.

Sample X∗
1:n−1 ∼ πn−1 (·) and X∗

n ∼ qn

(
X∗

1:n−1, ·
)
.

With probability

αn

(
X(i−1)

1:n , X∗
1:n

)
= 1 ∧ πn (X∗

1:n)

πn

(
X(i−1)

1:n

)
πn−1

(
X(i−1)

1:n−1

)
qn

(
X(i−1)

1:n−1, X
(i−1)
n

)

πn−1

(
X∗

1:n−1

)
qn

(
X∗

1:n−1, X
∗
n

)

set X(i)
1:n = X∗

1:n, otherwise set X(i)
1:n = X(i−1)

1:n .
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2.2– Basic Idea

• If

γn (x1:n)
γn−1 (x1:n−1) qn (x1:n−1, xn)

< Mn < ∞

then we have
∥∥∥L

(
X(i)

1:n

)
− πn

∥∥∥
TV

≤ Cnα
i
n where αn < 1.

• The Markov chain is uniformly ergodic even if πn is defined on En.

• Problem: We cannot sample from πn−1 in practice!
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2.3– Towards Sequentially Interacting MCMC

• We sample from π1 using a standard MH algorithm and obtained
at iteration i the following approximation

π̂(i)
1 (dx1) =

1
i

i∑

k=1

δ
X(k)

1,1
(dx1) .

To sample from π2 (dx1:2), we propose the following algorithm running
in parallel.

At iteration i; i ≥ 2.

Sample X∗(i)
1 ∼ π̂(i)

1 (·) and X∗(i)
2 ∼ q2

(
X∗(i)

1 , ·
)
.

With probability

α2

(
X(i−1)

2,1:2 , X∗(i)
1:2

)
= 1 ∧

π2

(
X∗(i)

1:2

)

π2

(
X(i−1)

2,1:2

)
π1

(
X(i−1)

2,1

)
q2

(
X(i−1)

2,1 , X(i−1)
2,2

)

π1

(
X∗(i)

1

)
q2

(
X∗(i)

1 , X∗(i)
2

)

set X(i)
1:2 = X∗

1:2, otherwise set X(i)
1:2 = X(i−1)

1:2 .
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2.3– Towards Sequentially Interacting MCMC

• Assume that at iteration i, you have the approximation generated by
another MCMC algorithm

π̂(i)
n−1 (dx1:n−1) =

1
i

i∑

k=1

δ
X(k)

n−1,1:n−1
(dx1:n−1)

then we approximate the Metropolis-Hastings algorithm
to sample from πn by the following algorithm.

At iteration i; i ≥ 2.

Sample X∗(i)
1:n−1 ∼ π̂(i)

n−1 (·) and X∗(i)
n ∼ qn

(
X∗(i)

1:n−1, ·
)
.

With probability

αn

(
X(i−1)

n,1:n , X∗(i)
1:n

)
= 1 ∧

πn

(
X∗(i)

1:n

)

πn

(
X(i−1)

n,1:n

)
πn−1

(
X(i−1)

n,1:n−1

)
qn

(
X(i−1)

n,1:n−1, X
(i−1)
n,n

)

πn−1

(
X∗(i)

1:n−1

)
qn

(
X∗(i)

1:n−1, X
∗(i)
n

)

set X(i)
n,1:n = X∗

1:n, otherwise set X(i)
n,1:n = X(i−1)

n,1:n .
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2.4– Sequentially Interacting MCMC

At iteration i; i ≥ 2

At time n = 1

Use MH step of target π1 (x1) with proposal q1 (x1)

to sample X(i)
1 and update your estimate π̂(i)

1 (x1) of π1 (x1) .

At time n = 2, ..., M

Use MH step of target πn (x1:n) with proposal π̂(i)
n−1 (x1:n−1) qn (x1:n−1, xn)

to obtain X(i)
n,1:n and update your estimate π̂(i)

n (x1:n) of πn (x1:n) .
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2.5– Sequentially Interacting MCMC

• At iteration i, we have the approximation for all n = 1, ..., M

π(i)
n (dx1:n) =

1
i

i∑

k=1

δ
X(k)

n,1:n
(dx1:n) .

• The ratio of normalizing constants can be approximated through

Ẑn

Zn−1
=

1
i

i∑

k=1

γn

(
X∗(k)

1:n

)

γn−1

(
X∗(k)

1:n−1

)
qn

(
X∗(k)

1:n−1, X
∗(k)
n

) .
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2.6– Extensions

• MH step coupled with Accept-Reject can be used to improve performance
(Tierney, 1994).

• An auxiliary variable version (Pitt & Shephard, JASA, 1999) of SIMCMC
can be derived but it is too computationally intensive.

• Rao-Blackwellisation versions can easily be derived.
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3.1– SIMCMC for Optimal Filtering

• Assume you want to sample from {p (xn| y1:n)} .

• At iteration i; i ≥ 2

At time n = 1. Sample X∗
1 ∼ µ. With proba. 1 ∧ g( y1|X∗

1 )

g y1|X(i−1)
1

,

set X(i)
1 = X∗

1 otherwise X(i)
1 = X(i−1)

1 .

At time n = 2, ..., M . Sample X∗
n−1 ∼ p̂(i) (xn−1| y1:n−1) and

X∗
n ∼ f

(
·|X∗

n−1

)
. With proba. 1 ∧ g( yn|X∗

n)

g yn|X(i−1)
n

,

set X(i)
n = X∗

n otherwise X(i)
n = X(i−1)

n .
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3.2– Simulations for Optimal Filter

• Linear Gaussian model

Xn = φXn−1 + σvVn,

Yn = Xn + σwWn.

• We use SIMCMC with

Prior proposal: q (x1:n−1, xn) = f (xn|xn−1) .

Optimal Proposal q (x1:n−1, xn) = g( yn|xn)f(xn|xn−1)
g( yn|xn)f(xn|xn−1)dxn

.

• We compare SIMCMC to Kalman and SMC.
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3.2– Simulations for Optimal Filter

• For N = 5000 over 10 runs of M = 100 observations, results between
SIMCMC, SMC and Kalman are virtually identical
in terms of E [Xn| y1:n] and log p (y1:P ) .

• For lower values of N, the optimal proposal yields significantly better results

when σv/σw is large.

• SIMCMC and SMC performs similarly although SMC yields better estimates

for small N.
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3.2– Simulations for Optimal Filter

• Switching state-space model

Xn = A (In)Xn−1 + B (In)Vn,

Yn = C (In)Xn + D (In)Wn

where {In} is an unobserved binary discrete-time Markov chain.

• Optimal filter is a mixture of 2n Kalman filters at time n.

• We can use SIMCMC to sample from p ( i1:n, x1:n| y1:n) and p ( i1:n| y1:n)

(Rao-blackwellisation through Kalman filter).
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3.2– Simulations for Optimal Filter

• We use a prior proposal in both cases.

• For N = 5000 over 10 runs of M = 100 observations, results between
SIMCMC and SMC are virtually identical
in terms of E [Xn| y1:n] and log p (y1:P ) .

• For lower values of N, Rao-Blackwellisation significantly improves
results and estimates stabilize around N = 1000.
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3.2– Simulations for Optimal Filter

• Stochastic volatility

Xn = φXn−1 + σvVn,

Yn = β exp (Xn/2) Wn.

• We use both the prior distribution and an approximation of the optimal.

• Once more, SIMCMC and SMC yields similar results.

– Application to Optimal Filtering Page 26



3.3– Bayesian Analysis of Finite Mixture of Gaussians

• Model

Yi ∼
L∑

k=1

πkN
(
µk, σ2

k

)
.

• Standard conjugate priors on θ =
(
πk, µk, σ2

k

)
, no identifiability constraint,

posterior is a mixture of L! components.

• Simulations with L = 4, components “far” from each other.

• MCMC algorithm sampling directly from p (θ| y1:T ) get trapped in one mode.
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3.4– Algorithm Settings

• To sample p (θ| y1:T ), set πn (θ) ∝ l (y1:T ; θ)ηn p (θ)
where n ∈ {1, . . . , M} , N = 5000, η1 = 0, ηn > ηn−1 and ηM = 1.

• qn is an MCMC kernel of invariant distribution πn (Thanks to Ajay Jasra).

• Over 10 runs with M = 800, SIMCMC discovers the 4! modes.

• Moreover, Ê [µ1| y1:T ] , Ê [µ2| y1:T ] , Ê [µ3| y1:T ] , Ê [µ4| y1:T ] as expected.
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4.1– Discussion

• SIMCMC samplers are an iterative alternative to SMC.

• Can be used on all problems addressed through SMC.

• All your SMC knowledge can be reused straightaway.

• Nice convergence properties inherited from the “ideal” algorithm.
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5.1– Extensions: The Bigger Picture

• MCMC: Build a Markov transition K : E → P (E) such that

π = πK

and the fixed point is approximated through

µn+1 = µnK → π

• Nonlinear MCMC: Build a nonlinear Markov transition
K : P (E) × E → P (E) (e.g. McKean-Vlasov) such that

π = πKπ

and the fixed point is approximated through

µn+1 = µnKµn → π.

• Nonlinear MCMC can be implemented through particles or self-interacting
Markov chains (Del Moral & Doucet, 2003; Andrieu et al., 2006).
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