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Among many techniques in sequential data assimilation, the ensemble Kalman
filter (EnKF), proposed by Geir Evensen in 1994, had become popular in recent
years. Nevertheless, EnKF still faces a number of pitfalls in some applications. In
this study, two new variants of EnKF are proposed. The first one is initiated by
the Goldberger-Theil’s mixed estimation and the updating equation of the con-
ventional EnKF under this estimation becomes no longer linear. This variant of
the EnKF is called the ensemble Goldberger-Theil Kalman filter (EnGTKF). Due
to the possible deviation of prediction and filtering densities from Gaussianity,
the multivariate Gram-Charlier densities were suggested for the estimation of the
error statistics on both measurements and states. As a by-product, an ensemble
Goldberger-Theil Kalman smoother (EnGTKS) was derived in which only infor-
mation of the prediction density and the likelihood of measurement conditional
on the states are required.

The second variant of the EnKF was motivated by the Markov switching of



regimes in the nonlinear state space model. Under the switching between hidden
regimes, both the nonlinearity of state space model and the multi-modal feature of
the measurement and state errors are considered. The resulting variant is called
the ensemble Markov switching Kalman filter (EnMSKF). Due to the increase
in the number of components over time, an approximation was suggested on
the filtering density to keep this filter operational. As a by-product, a recursive
smoother called the ensemble Markov switching Kalman smoother (EnMSKS)
was also derived.

For the parameter identification of both models, a hybrid strategy for maxi-
mum likelihood estimation was proposed. The algorithm consists of three features
(1) an orthogonal transformation procedure was introduced in the optimization
algorithm to ensure the non-negative definiteness of the variance-covariance ma-
trix during estimation; (2) a localized stochastic search procedure was suggested
to estimate the initial parameter values and (3) conventional local optimization
was used to improve the estimation results of previous global procedure. In order
to draw statistical inference of the estimated model parameters in the case of En-
GTKEF, the analytical formulae of standard errors were derived and the ensemble
members of prediction density were used for estimation.

Finally, as empirical applications, the algal bloom data in Hong Kong was

used to show the validity of the suggested data assimilation procedures.
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Chapter 1

Introduction

1.1 Overview of Sequential Data Assimilation

Data assimilation has been applied to the areas of oceanography and meteorology
for many years. Basically, data assimilation consists of two approaches, namely,
variational and sequential. Apart from the variational approach which is based on
the method of optimal control, sequential data assimilation is less computationally
intensive and easy to implement. The sequential data assimilation is closely
related to the state space modelling. In this chapter, the relationship between
the sequential data assimilation and the state space modelling is explained in
details. Indeed, Bertino et al. (2003) provided a detailed review of sequential data
assimilation in oceanography and suggested the usage of Gaussian anamorphosis
in sequential data assimilation. Therefore, only some applications of sequential
data assimilation to oceanography are reviewed here.

In sequential data assimilation, observed measurement y, and a set of differ-
ential equations which describe the evolutionary dynamics of unobserved model
state x,, are the essential ingredients. In state space modelling, the measurement
equation describes the relationship between the observed measurement and the
unobserved model state and the transition equation represents the discretized
version of the evolutionary dynamics of the model state. Typically, the model
state in the state space model is estimated by the recursive prediction and filter-

ing procedures and they are called the forecasting and analysis steps respectively



in the terminology of data assimilation. For example, at time n, given the value
of the filtered model state, which is denoted as x,,, the predicted model state
for next period X, 1|, is estimated by the transition equation. Once the measure-
ment at time n + 1, y, 41, becomes available, the predicted model state x,, 1}, is
updated and the updated model state becomes X, 1j,4+1. Therefore, the operation
of sequential data assimilation is simple once the initial model state xo and the
model parameters are available.

Furthermore, smoothing is another direction of sequential data assimilation.
Indeed, the model state x,, is estimated by using all observations in the sample.
Suppose that the model state x,, is denoted as x, y where N is the number of
observations in the sample. Here, x, represents the mean of model state x,
conditional on all information at time V. In the terminology of Kalman filtering,
the smoother for the estimation of x,y is called the fixed-interval smoother in
which the model state x,,_;y is estimated by x,,y recursively for fixed V. Typi-
cally, the smoother is initialized by the filtered model state at the end point of the
sample, that is, Xy, and the estimation of the model state x,y is propagated
backward in time. Actually, two additional types of smoothers are available in
the literature and they are the fixed-point smoother and the fixed-lag smoother.
For fixed-point smoother, the recursive estimation of the model state x,, by
Xpm—1 for m > n is obtained by fixing the time point n. Clearly, the fixed-point
smoother is initialized by the predicted model state x,,—;. For the smoother
with fixed-lag m, the model state x,,_,, is estimated by x,,_,,—1 recursively for
0 <m < N where this smoother is initialized by x¢—; = X and x_,,,—; = 0.

The prototype of sequential data assimilation is the Kalman filter (KF) which

was developed by Kalman (1960). Afterwards, many variants of KF were devel-



oped, such as, extended Kalman filter (EKF), reduced rank square-root (RRSQRT)
filter (Verlaan and Heemink, 1995), singular evolutive extended Kalman (SEEK)
filter (Pham et al., 1998) and ensemble Kalman filter (EnKF) (Evensen, 1994).
Early applications of data assimilation with KF are devoted to Talagrand and

Courtier (1987) and Courtier and Talagrand (1987) although both of them used
the variational approach to assimilate the meteorological data. Since the KF
was developed for linear dynamical systems, the usage of EKF which is based on
linearization of nonlinear dynamical system is a better alternative for data assim-
ilation, for example, see Evensen (1991). Due to the high-dimensional problem of
state space model in the area of meteorology, Verlaan and Heemink (1995) pro-
posed the RRSQRT filter where the computational time and storage space were
reduced by using the reduced rank of error covariance matrices with a square
root factorization. Verlaan and Heemink (1997) applied the RRSQRT filter with
a set of swallow water equations to model the tidal flow of North Sea and then
to forecast the tides and storm surges. Their experimental results showed that
the RRSQRT filter could reduce the number of computations and storage space
without reducing the accuracy of estimated model state a lot. Brasseur et al.
(1999) extended the SEEK filter in the directions of statistical learning approach
and dynamic adjustment and assimilated the altimetric data in the mid-latitude
oceans with the Miami Isopycnic Coordinate Ocean Model (MICOM). Verlaan
and Heemink (2001) extended the RRSQRT filter to capture the second order
approximation of nonlinear dynamical system and proposed a measure of nonlin-
earity of dynamical system. Their assimilation results showed that the measure
could detect the failure of Kalman-type filtering. Also, they found that, for

highly nonlinear dynamical system, EnKF is more appropriate for data assimila-



tion while RRSQRT is useful for weakly nonlinear dynamical system.

Pham (2001) proposed the second-order-exact sampling techniques that could
reduce the ensemble size in the Monte Carlo filters. The experimental results
demonstrated that the ensemble size was significantly reduced in EnKF and par-
ticle filter. Canizares et al. (2001) implemented EnKF with the so-called MIKE
21 model (Madsen and Canizares, 1999) and DYNOCS (Dynamics of connecting
seas) model (Jensen, 1997) to assimilate the water levels of inner Danish waters.
Their results demonstrated the possibility of formation of the prototype of storm
surge prediction system. Wolf et al. (2001) adopted the RRSQRT filter with
the hydrodynamical TRIM3D model (Casulli and Cattani, 1994) to reconstruct
the water level data of Odra lagoon which was across the German-Polish border
during the flood period in 1997. Their simulation results showed that spatial
and temporal data could be assimilated efficiently with the TRIM3D model es-
pecially in the case of poorly spatially distributed measurement, for example,
the water level around the whole lagoon area. In Bertino et al. (2002), estu-
arine applications by RRSQRT filter and EnKF with the input of geostatistics
were examined. Two simulations, an 1-D ecological model and TRIM3D model
on Orda lagoon, were studied. They showed that the data assimilation schemes
were efficient for spatial modeling in the estuarine applications. Brusdal et al.
(2003) compared the performance of data assimilation of SEEK filter, EnKF and
the ensemble Kalman smoother (EnKS) of Evensen and van Leeuwen (2000) by
using the nonlinear MICOM model. The merits of these three data assimilation
procedures were also discussed in that paper. They found that the performance
of these three assimilation methods were similar.

Apart from RRSQRT and SEEK filters which are referred to their original pa-



pers, the basic formulation of previously mentioned filters, together with Gaussian
sum filter (GSF) and particle filter, are described in the following sections and
some of the materials are followed from Arulampalam et al. (2002) and Chen

(2003).

1.1.1 Prediction and Filtering
1.1.1.1 Kalman Filter

The Kalman filter (KF) was developed by Kalman (1960) and the state space

model follows a linear dynamics:

yn, = h,x, + v, v, ~ N(0O,R,),
(1.1)

X, = %1 + u,, u, ~ N<O7 Qn)a
forn=1,...,N, wherex, € R™,y, € R™, h, and f, are matrices of order m,, x
m, and m, x m, respectively, E(v,u,,) = 0, Vm,n. Denote V,, = {y1,...,¥n}

as a set of measurements up to time n.

To derive the recursive estimation of the state vector x,,, various approaches
have appeared in the literature, least squares, mixed estimation, maximum a
posteriori (MAP) estimation and maximum likelihood estimation (MLE). Among
them, MAP, which indeed is the Bayesian approach, seems to be the most popular
one because this approach can be extended to the nonlinear state space model
easily. Therefore, the derivation of the state estimation is formulated on the basis
of MAP and the derivation can be found in Chen (2003, p.11-12).

Denote x;, and Efﬁ; as the mean and variance of x; conditional on information
up to time s. Then, x;, = B(x;|V,) and I = B((x; — xys) (%1 — x¢s)T|Vs) and
their estimates are represented by Xy, and f);: respectively. Given the initial

5



e . . XX . . . . .
state Xojo and the variance matrix 3o, the recursive state estimation is given by

Xpln—-1 = fnxn71|n71 )

23n|n—1 = fnizilm—lf;{_’_Qn—la

Xnpln = Xp|n—1 + Kn(yn - hnxn\n—l)a
A~ XX A XX o XX
nln T Z}n|nfl - Knhnznmfl?

XX XX

forn =1,...,N, where K, = ¥ h'(h,% hT + R,)"! is the Kalman

nln—1 njn—1

gain matrix. When the recursive formulation is expressed in the form of density

functions, they become

XX

N<Xn—1; 2n—1|n—17 Enfl\n71)7

p<Xn—1 |yn—1)

Q

XX

p(XnD)nfl) ~ N<Xn;§n|n—172n|n71)7

XX

p(Xn|Vn) =~ N(Xn;§n|n,2n|n)a
where

N1, 2) = () [ exp (500 - ) T= - ).

1.1.1.2 Extended Kalman Filter

For the EKF, the formulation is similar to that of KF', but a nonlinear state space

model is considered instead.



(1.2)

X, = £, (Xp_1) + uy, u, ~ N(0,Q,),
forn=1,..., N where x, € Ry, € R™ h, : R™ — R™ and {, : R™ —
R™= are nonlinear continuous and differentiable functions, E(v,u,,) = 0, Ym, n.
Given the initial state Xoo and the variance matrix 2;‘;, the recursive state

estimation is formulated by

in|n71 = fn (Xn71|n71)7

nn T njn—1 K'flhnzn\nfh
KTL = En\nflhl(hnzn\n 1h1 + R’”)717
forn=1,..., N, where
~ df, ~ dh,
f, = () and h,, = ()
dX x=X —1|n—1 X Xzﬁn\nfl

Then, the prediction and filtering densities of the state vector x,, are estimated

recursively by

XX

N<Xn—1; in—l|n—1a En—l\n—l)’

p(xn—1|yn—1)

Q

XX

p(an}nfl) ~ N<Xn§§n|n—172n|n71)7



XX

PEnlVn) ~ N (Xn; Rjms By)-

From the above formulae, one can observe that the coefficient matrices in KF
are replaced by the first order derivatives in EKF. Under EKF, both functions
h,(-) and £, (-) are approximated by the respective first order term in their Taylor’s
expansion. One typical problem of EKF under nonlinear dynamical system is the
possible divergence of the filter because the first order approximation may not
be sufficient to capture the curvature of the functions h,(-) and f,(-) when the
dynamical system is highly nonlinear. Although higher order approximation is
feasible, the formulation becomes more sophisticated, for example, see Tanizaki

(1996, p.52-55).

1.1.1.3 Gaussian Sum Filter

One suggestion to overcome the possible divergence of EKF is that the prediction
and filtering densities be approximated by the sums of Gaussian densities. This
initiates the development of the Gaussian sum filter (GSF). GSF was originated by
Sorenson and Alspach (1971) and Alspach and Sorenson (1972). The nonlinear
state space model considered is the same as that in EKF. The derivation of
GSF by Bayesian estimation can be found in Anderson and Moore (1979, p.214—
216), Sorenson and Alspach (1971) and Tanizaki (1996, p.73-77). The recursive
estimation of the state vector x,, is given by the following formula: suppose that

at time n — 1, the filtering density of the state vector x,,_; is approximated by

m
. XX
p(Xn71|yn 1 Za n— lN Xn 17X]7’L 1ln— 1723n 1ln— 1)

for j=1,...,mwith 0 <@;,; <1 and ZTzl Qjn—1 = 1. Then,



ij,n\n—l = fn (ij,n—l\n—l>7

XX ~ XX

Yot = &m0 1) Eino1no1) + Quon,
foryj=1,....mandn=1,..., N, where

~ df,, (x)

fn<Xj7n—1\n—1) - dx

X=Xjn—-1ln—-1

The overall prediction mean and variance of the state vector x,, are

m
Xpjn—-1 = E Ajn-1Xjnln—1,
j=1
and
m
XX /\Xx ~ ~ ~ T
z:n|nf § j n|n—1 + (X] nin—1 — Xn|n—1)<xj,n|n—1 - Xn\n—l) 5

respectively. Then, the prediction density of the state vector x,, is approximated

by

m
. ~XX
Xn|yn 1 Za n— lN X’n)X]TL|’VL 172]n|n 1)

During the filtering stage, the predicted state vector X, ,,,—1 is updated by

ﬁj,n|n - §j,n|nfl + Kj,n(Yn - hn(§j,n\nfl))7



XX XX - =~ XX

5 — K nho(Xjnpn-1)%5 1015

jm|n—1

ij - Zj,n|nflhz(§]}n\N—1)(hn(gj}n"fZ—l)E] nln— lh (XJ nln— 1) + R )
aj,n—lN(Yn; hn<§j,n|n71>a hn(Xj,n|n71)2j7n|n_1h1(xj,n|n71) + Rn)

ajn = ~ ~XX

7 Z:il ai,n—lN(Yn; hn(ii,n\nflx hn(ﬁi,mnfl)zz"nm_lfll (ﬁi,n\nfl) + Rn)

for j =1,...,m, where

dh, (x)
dx

hn (ﬁj,n\n—l) -

X=Xjn|n—-1

The overall filtered mean and variance of the state vector x,, are

n|n § aj an nln

and

Axx ~ ~ ~
n|n Z Ajn < jnln (Xj,n|n - Xn|n)(xj,n\n - Xn\n)T> )

respectively. The filtering density of the state vector x,, is approximated by

m
R R XX
p(XTL'y’ﬂ) ~ Z Oéj,n'/\/‘(xn; Xj,n|n7 z:j,n|n)'
j=1
Therefore, the GSF can be considered as a parallel run of m EKF’s at the
same time and the recursive approximation of prediction and filtering densities

by Gaussian sums. The component means and variances are then combined after

each stage is completed.

10



1.1.1.4 Particle Filter

In previously described filters, the measurement and state errors are Gaussian.
When they are non-Gaussian, Kalman-type filtering does not seem to be appropri-
ate and this initiates the development of the particle filter. Particle filtering was
originated from the sequential Monte Carlo method which was developed by vari-
ous authors individually. Sometimes, it may be called bootstrap filtering (Gordon
et al., 1993), condensation algorithm (MacCormick and Blake, 2000), particle fil-
tering (Carpenter et al., 1999), interacting particle approximation (Crisan et al.,
1999; del Moral, 1996) and survival of the fittest (Kanazawa et al., 1995). In-
deed, Arulampalam et al. (2002), Doucet et al. (2001) and Chen (2003) provided
the overview and practical details of the particle filter. Therefore, only the main
feature of the particle filter is presented here.

Suppose that the nonlinear state space model is

Y = h,(x,) + Vg, 13)

X, = £, (x,-1) + u,.
forn =1,..., N, where the density functions of v,, and u,, may not be Gaussian.
Basically, particle filtering can be considered as the estimation of the posterior
density of the state vector by a set of particles which are generated by the Monte
Carlo method. Indeed, a technique of sequential importance sampling (SIS) is
used here. In addition to the notation of ), denote X, = {xo,...,x,} as a set

of state vectors up to time n. Note that the initial state vector is included in X,.

Under the particle filter, the posterior density of &, is approximated by

K
P(X|In) ~ Z wflk)(S(Xn - Xék))a
k=1

11



where 4(-) is the delta-Dirac mass, {X,gk), wék)}le represents a set of particles
{Xék)}gzl which are weighted by {wff)}le respectively with 0 < w'” < 1 and
ZkK:I wit) = 1.

However, in many cases, drawing random samples from p(X,,|)),,) is not an easy
task. Thus, one may draw the particles {X,gk)}le from an importance density

q(X,| V) and the weights are re-defined as

o o DA 1Y0)
n () ’
a(X13)

Furthermore, assume that the importance density can be factorized as

Q(Xn|yn) = Q(Xn|Xn—1a yn)Q(Xn—1|yn—1)-

Then, the set of particles {X{”}X | can be generated from {X* }X  with
the augmentation of q(x,|X,—1,YV,) recursively. The recursive derivation of the

importance weights in the posterior density can be obtained from

p(Yn'-/Yna yn—l)p(Xn|yn—l)

P(X| V) =

P(yn|Vn-1)
_ (¥l Xy Vi1)P(Xn | X1, Voo 1)D( X1 V1)
P(¥n|Vn-1)
_ P(Yn|%n)P(Xn %0 1) P( X 1| V1)
P(ynl|Yn-1)

X p(y'n|xn)p(xn|xn71)p(){nfl D}nfl)v

where the last equality follows from the assumed state space model. Followed

from the re-defined weights, the importance weights are written as

12



0 o POl )P0 )P Vo)
g(x \X“n,yn) <X<’“1\yn 1)
(k) p(Yn|X )( |X 1)

n—1 q(XSf) |X(k ’ yn> :

S

If a more restrictive assumption q(x,|X,-1, V») = q¢(Xn|Xn-1,yn) is imposed,

the weights can be simplified further as

k k
oW p(yn|x< Np < Px®))

(
wn chn—l 3
( )| 17Yn)
or
k k
S — oyl )p(e >/q< 10, y)

K
S W p(yalx)p(x xS ) fa(x \X“ LY

The filtering density of the model state x,, becomes

K
poxal) & 3w, —x).
k=1

Due to the possible degeneration of weights wﬁk), a resampling step was sug-

gested by Gordon et al. (1993) in which the K particles {xﬂ“>},§:1 are resampled
with replacement according to the importance weights {w’" }k 1- Nevertheless,
the resampling step occurs when N, = {Z,i(:l(wq(f) )2} 1 is less than a threshold
value under conventional SIS. Ever since, many variants of the particle filter were
developed, for example, sequential importance resampling (SIR) particle filter
(Gordon et al., 1993), auxiliary particle filter (Pitt and Shephard, 1999), rejec-

tion particle filter (Tanizaki, 1999) and regularized particle filter (Musso et al.,

13



2001).

1.1.1.5 Ensemble Kalman Filter

EnKF was suggested by Evensen (1994) and the comprehensive review and tech-
nical treatment can be found in Evensen (2003) and Evensen (2007). One ad-
vantage of this filter is that only the mean and variance of the state vector x,
are propagated over time in contrast to the particle filter where the whole pos-
terior density function of the state vector x,, is propagated. Also, the mean and
variance are approximated by a cloud of ensemble members and even in highly
nonlinear dynamical systems this results in an improvement of estimation of mean
and variance of the state vector x,, over EKF.

Suppose that the nonlinear state space model is

Yn = hnxn + Vi, Vi~ N(O, Rn)a
(1.4)
Xn = fn(xnfl) +u,, u, ~~ N<07 Qn)a
forn =1,...,N, where x,, € R"*, y, € R™ f, : R™ — R™* is a nonlinear

function, h,, is a m, x m, matrix, E(v,u,,) = 0, Vm,n. Given the mean and
variance of the initial state, Xgo and ig;, the ensemble members of the state

vector x,, are generated by

B =, &Y, ) +u®, u®~N(0,Q,),

n|n—1 n—1|n—1

fornzl,...,Nandk:1,...,Kwhere§(k)

101 is the kth ensemble member in

the previous filtering stage, u® is drawn from the Gaussian density NV (u,;0,Q,).

The ensemble mean and variance of the predicted state vector x,, are
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and

K
oxx ~(k) ~ T
2377,|n 1= § : n\n 1 _X”|n 1)<Xn|n71 _X"‘”*1> ’
k:

respectively. During the filtering stage, each ensemble member is updated by the

following linear updating equation.

) =g LK, (y® -,z ),

nin — n\n 1

for k=1,..., K, where

y;k) = Y.t szk)a Vgg) ~ N(O, Rn)>

K, = =, h'(h,%  h'+R,)"

n|n 1 njn—1

The ensemble filtered mean and variance can be obtained in a similar way,

that is,

K
~ A(k ~ A( )~ T
Xnln = n\n and En|n - 1 § : n|n - X”|n n\n Xn\n) ’
k=1

Note that the measurement y, is perturbed by the stochastic error v from
Gaussian density N (v,;0,R,,). This is the special feature of EnKF and its va-

lidity was shown by Burgers et al. (1998). The recursive approximation of the
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posterior density functions of the state vector x,, is given by

XX

N(Xn—l; 2n—1|n—17 Enfl\n71)7

p<xn—1 |yn—1)

Q

XX

p(XnD)nfl) ~ N<Xn;§n|n—172n|n71)7

XX

Therefore, EnKF can be considered as the recursive Gaussian approximation
of the prediction and filtering densities. This also explains why EnKF is an

suboptimal solution of particle filter when v, and u,, are not Gaussian.

1.1.2 Smoothing
1.1.2.1 Kalman Smoother

The Kalman smoother was derived on the basis of the linear state space model
(1.1). Here, only the fixed-interval smoother is considered since the state vector
X, can be estimated by this smoother more accurately intuitively. For the fixed-
point and fixed-lag smoothers, the derivation and technical details can be found
in (Anderson and Moore, 1979, Chapter 7). For the fixed-interval smoother which
estimates the model state x,, by using all information of the sample, given the

filtered model state Xy and the variance matrix 3y, the recursive estimation

of x,,x and its variance is given by

Xp—1IN = Xp—-1|n—1 + An—1<xn|N - Xn\n71)7

XX ) XX XX

z)nfl\N = z:n71|n71 + A’ﬂ—1<2n|N - 2n|n71)(An—1)T7
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XX

forn =N,...,2, where A, ; = % £fr

n_l(ﬁzl);_l)*l is the gain matrix for the

n—1|n—1
fixed-interval smoother. Clearly, the recursive formula requires both prediction

and filtering results. In density form, the smoothing density of the state vector

X, is approximated recursively by

XX

p(anllyN> ~ N(anl; §TL*I|N7 2n—1\N)>

AXX

PO 1|Ya1) A N 15K 115 Z1jusr);

XX

p(anyn—l) ~ N<Xn;§n|n—172n|n—1)'

1.1.2.2 Gaussian Sum Smoother

As proposed by Kitagawa (1994), the Gaussian sum smoother was derived for the

linear state space model

Yn:Xn+Vna VnNN(OaRn)a
(15)
Xpn = fnxnfl + u,, u, ~ N<07 Qn)u

forn=1,...,N.

Basically, the Gaussian sum smoother consists of two components: the deriva-
tion of two-filter formula (which consists of the conventional filtering and the
backward filtering algorithms) and the Gaussian sum approximation. Denote
V" = {yn,...,yn} which contains the current and future information of the
measurement. Then, by the Bayes’ Theorem, the smoothing density p(x,|)Vy) is

expressed as
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p(xn’yN) = p(xn’ynflayn)
X p(ynyxn)p(xntyn—l)

Clearly, the smoothing density p(x,|)y) is determined by the one-step ahead
prediction density p(x,|V,—1) and the density p(Y"|x,). Once the recursive
derivation of p()"|x,) is available, the smoothing density p(x,|Vy) can be derived
recursively. Then, the recursive formula of p()"|x,) is derived by the backward

filtering algorithm. Specifically,

p(yn+17 Xn+1 |Xn)dxn+1

p(ynJrl ‘Xn+1)p(xn+1 ’Xn>dxn+1 )

_ / PV X1, %0 )P (Ko % )11
and

p(V"xn) = p(YV" T yalxn)
= p(yul%n, YV x,)

= p(yn|xn)p(yn+1 ‘Xn)

forn=N—-1,...,1. When n = N, p(Y"|x,) = p(yn|xn).

Now, assume that the densities p(Y"|x,) and p(x,|V,_1) are approximated
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by the sum of Gaussian densities, that is,

~

~ QYY
y”|xn ~ Z Yn; Yin|ns Ei,nm)?
and
~ XX
Xn|yn 1 Zryjn X”;van‘n_l’zjvn‘nfl)’
, ~ . , ¢ B ~
with 0 < 3,,,9;, <lfori=1,....6j=1,...omand >, 8;,=> " 7, =

1. Then, the Gaussian sum smoother is obtained by

P(Xp|Vn) o< p(V"%n)P(Xn|Vn-1)

V4 m
Z Z ~ ~ oYy ~ o xx
- 51,7),,}/']777"/\/(}’71’ Yi,n|na Ez7n|n)N(Xn7 Xj,n"f'L*l? Ej7n‘n—1)
i=1 j=1
V4 m
= > D BN s Kijnins B )
i=1 j=1
where
~ XX ~yy ~ XX 1
Jij,n - 2j,n|n71<2i,n|n + 2j,n|nfl) )
XijnN = Xjnln-1 + JijnFinn — Xjnjn-1);

A XX

Ez‘j,n\N = (I_Jij,n)zj,nm—p

fort=1,...,fand j=1,...,m
After renumbering the double summation by a single summation, the smooth-

ing density p(x,|Vy) can also be expressed in the form of a Gaussian sum.
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1.1.2.3 Particle Smoother

The particle smoother was derived based on the nonlinear state space model (1.3).
At the beginning, the particle filter is run to propagate forward in time so that the
results of the prediction and filtering densities of the state vector x,, are stored.
Then, the density of X" ! = {x,,_1,...,xy} conditional on all measurements Yy

is obtained backward in time recursively.

P(anllyN) = p(anlv‘)(nD}N)
= p(Xn71|Xn>yN)p(Xn’yN)

= p(XN—1|Xn7 yn—l)p<Xn|yN)

p(xn‘xnfla ynfl)p(xnfﬂynfl)
p(xn‘yn—l) 7

= p(&"In)

forn =N —1,...,2. The third equality is obtained by the Markovian property of
x,, and the fourth equality is derived by the Bayes’ Theorem. As a usual practice
in particle filtering, the smoothing density p(X™!|)y) can be approximated by

a set of particles:

K
p(X”_1|yN) ~ ng\][ﬁ)(s(‘xn—l - Xn_l(k)),
k=1

where §(-) is the delta-Dirac mass, {7~ 1(*%), wg\]f)}szl represents a set of particles
{xm 10K which are weighted by {w(P}E | respectively with 0 < w'l) < 1
and Zle w%c) = 1. One may see that the smoothing density p(x"~!|Vy) may
be obtained by marginalizing out X”. However, it is infeasible in the practical

sense because of the degeneration of weights during resampling. On the other
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hand, Doucet et al. (2000) proposed a fixed-interval particle smoother to tackle
this problem. The smoothing density p(x,_1|Yx) can be written in the following

recursive form:

P(Xn| VN )p(%n X5 1)
P(%n|Vn-1)

p(%n 1| Vn) = P2 |V1) / ix..

Then, the smoothing density p(x,,_1|)y) is approximated by

P31 | V) & an vk —x19),

where the smoothing weight wgi)l‘  is obtained by the following formula recur-
sively.

K k K)o (k

w™® Z (k) w7(z )1p(x,(1 )|X7(z—)1)
n—1|N = n|N <K K k) \’

T e

forn = N —1,...,2 where wflk_)l is obtained in the filtering stage. Clearly,

when n = N, the smoothing weight wfﬁj)\, is initialized by w](\lf) and this setting is

reasonable because the filtering density and the smoothing density are the same
when n = N.

Furthermore, the particle smoother can also be derived from the rejection
particle filters and the details can be found in Kitagawa (1996), Tanizaki and

Mariano (1998) and Hiizeler and Kiinsch (1998).

1.2 Some Backgrounds of Algal Blooms

Generally, algal blooms can be considered as the dramatic growth of phytoplank-

ton cells. In some cases, they are called “red tides” due to the red color pigments

21



in the phytoplankton cells. Usually, red tides occur during the spring season.
One consequence of algal blooms is hypoxia because a huge amount of dissolved
oxygen is consumed by the large population of phytoplankton cells. Another
consequence is the release of toxin into water. This in turn leads to the massive
kill of fish, shellfish and marine mammals by various toxins, such as, ciguatoxin
(ciguatera poisoning), brevetoxin (neurotoixc poisoning) and saxitoxin (paralytic
poisoning). The consumption of poisoned fish and shellfish is also harmful to the
human health. On the other hand, the blooms of blue-green algae (cyanobacte-
ria) are also typical in waters. Certain kinds of toxin by these algae are harmful
to the liver and cause eye and skin irritation because of prolonged exposure in
the waters. Therefore, the study of algal dynamics is essential to maintain the
diversity of mariculture and the human health.

Mainly, phytoplankton which causes algal blooms consists of two types, namely,
diatoms and dinoflagellates. The biological behavior of these two species varies a
lot due to the difference in the biological structure. For diatom cells, they have a
thick cell wall which is made of silicate and hence their biomass is typically larger
than that of dinoflagellates. On the other hand, dinoflagellates do not possess the
silicate cell walls, but most of them have two dissimilar flagella. They can move
along the water column with diurnal variation of environmental factors, such as
water temperature and solar radiation. Therefore, during daytime, dinoflagellates
can move to the water surface for photosynthesis and produce oxygen and glu-
cose. During nighttime, they can move downward to the sea bed for respiration
and absorption of nutrients. However, diatoms do not have the same biological
behavior. Due to its biomass, they can move along the water column by up-

welling and downwelling with turbulence. Therefore, their production of oxygen
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is relied on the upwelling effect of turbulence (Kamykowski and Yamazaki, 1997;
Yamamoto and Okai, 2000). The decomposition of dinoflagellates and diatoms
after death raises the level of nutrient concentration and then induces the growth
of phytoplankton cells.

Generally, the occurrence of algal blooms is determined by many environmen-
tal factors, for example, concentration of chlorophyll-a, concentration of dissolved
oxygen, concentration of nutrients (nitrates and phosphates mainly), water tem-
perature, wind direction, wind speed, turbulence, solar radiation, salinity and so
on (see, for example, Thomann and Mueller, 1987). However, the algal dynamics
is not known clearly. Typically, the concentration of nitrates and phosphates is a
crucial factor to cause algal blooms. Due to the biological structure of diatoms,
the concentration of silicate is a factor for their growth as well. Although one
can consider that the fertilization of nitrates and phosphates leads to the algal
blooms, it need not be the case in certain scenarios, such as the seasonal variation
of water temperature and the upwelling of nutrients by turbulence. One of the
complexities could be due to various biological behavior across the species of phy-
toplankton and the mix of species in the waters. In addition, due to the stochastic
behavior of environmental factors, for example, solar radiation, wind direction,
wind speed and turbulence, these also enhance the difficulty of understanding of
the algal bloom dynamics. These in turn lead to the outcome of many physi-
cal models which attempt to explain the algal dynamics. For example, Franks
(1997) reviewed the models of harmful algal blooms and they were categorized
into four types, (1) aggregated models; (2) multispecies models; (3) models with
simple physics and (4) model with detailed physics. Recently, Chattopadhyay

et al. (2002) and Chattopadhyay et al. (2004) suggested mathematical models to
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explain the interaction behavior between phytoplankton and zooplankton where
both toxin producing phytoplankton and non-toxic phytoplankton were included
into the models. Then, the behavior of the models were verified by the field data
and numerical simulations.

Due to the increasing complexity of mathematical models, sequential data
assimilation with these models becomes more difficult than before. Therefore,
statistical models could be another direction to explain the algal dynamics and

they are attempted to use in this thesis.

1.3 Outline of the Thesis

In this thesis, two extensions of ensemble Kalman filter (EnKF') are proposed in
Chapters 2 and 3 respectively. Specifically, the nonlinear updating equation in
EnKF is shown in Chapter 2 while the EnKF with Markov switching structure
is given in Chapter 3.

In Chapter 2, since the linear updating equation is implemented with the
conventional version of EnKF, a nonlinear updating equation is suggested to
improve EnKF and the existence of the nonlinear updating equation is derived
mathematically. The estimation of ensemble states is derived using Goldberger-
Theil’s mixed estimation (Theil and Goldberger, 1961). The variant of EnKF
under this kind of operation is called the ensemble Goldberger-Theil Kalman fil-
ter (EnGTKF). Due to the possible severe deviation of asymptotic Gaussianity of
estimated ensemble mean and variances, a multivariate version of Gram-Charlier
density is suggested to approximate the prediction and filtering densities of the

model state. This suggestion can be extended to the derivation of the likeli-
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hood function in parameter identification. Furthermore, as a natural extension
of EnGTKF, a recursive ensemble smoother, ensemble Kalman Goldberger-Theil
smoother (EnGTKS), is derived and the formulation is different from those by
van Leeuwen and Evensen (1996) and Evensen and van Leeuwen (2000). Under
this ensemble smoother, only information of the prediction density of the model
state and the likelihood of measurement conditional on the predicted model state
are required to be stored. Thus, it is computationally favorable and can save a
lot of storage space.

For parameter identification, a hybrid approach of maximum likelihood es-
timation is adopted here. Traditionally, the likelihood function is obtained by
the decomposition of the measurement prediction error and the unknown para-
meters are estimated by conventional local optimization algorithms, for example,
Newton-Raphson and Quasi-Newton. Due to the high-dimensional feature in the
state space model, the positive definiteness of error covariance matrices of the
measurements and model state are difficult to maintain. As a result, a kind
of orthogonal decomposition of the matrices is suggested together with a local-
ized stochastic search algorithm, a kind of global optimization algorithm. The
global search result is used as the initial parameter estimates of conventional
local optimization algorithms. To draw statistical inference on the parameters,
a recursive estimation method for the observed Fisher’s information matrix is
suggested. Then, asymptotic standard errors of estimated parameters can be
obtained accordingly.

As an application of the newly derived filter, the algal bloom data in Hong
Kong is assimilated. The complete sampling period is 2000-2004. The observa-

tions in 2000-2001 are selected as the in-sample period, that is, they are used
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for parameter identification, and those in 2002-2004 are selected as the out-of-
the-sample period. To capture the transitions between non-blooming and bloom-
ing periods, the time-varying vector smoothed transition autoregressive (TV-
VSTAR) model is proposed to fit the observations. To validate the prediction
performance of the TV-STAR model, the vector autoregressive (VAR) model is
used as a benchmark. For the selection of lag parameters in the TV-VSTAR
model, the one with the smallest Akaike information criterion (AIC) during the
in-sample period is selected as the appropriate one.

In Chapter 3, although the assumption of Gaussian error in the measurement
and model state is sufficient in many applications, this assumption is inappropri-
ate in certain cases. As a result, the structure of Markov switching in unobserved
regimes is introduced into the EnKF and this new filter is called the ensemble
Markov switching Kalman filter (EnMSKF). This new filter serves two purposes:
the switching between nonlinear dynamics and the use of mixtures of Gaussian
densities. Unlike the dynamic linear state space model by Kim (1994), the model
state is estimated by ensemble members. Hence, even under switching between
nonlinear dynamic models, the ensemble mean and variance can be estimated in
the usual way. The growth in the number of unobserved regimes over time is
controlled by the marginalization of the filtering density with the same filtering
mean and variance. As a by-product of this filter, a new version of the ensemble
smoother, the ensemble Markov switching Kalman smoother (EnMSKS), is de-
rived and this smoother can act as an alternative smoother for the non-Gaussian
case.

For parameter identification, the hybrid optimization algorithm suggested in

Chapter 2 is applied again. Furthermore, due to the complexity of the likelihood
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function of the Markov switching model, a recursive method is suggested to es-
timate the observed Fisher’s information matrix. Then, the standard errors of
model parameters can be estimated for statistical inference. To choose the num-
ber of switching regimes, the Bayesian information criterion (BIC) is suggested.

For an application of EnMSKF, some assimilations of algal bloom data in
Hong Kong are carried out. As in Chapter 2, the complete sampling period
covers 2000-2004 is splitted into in-sample and out-of-sample periods by the same
criterion. The underlying model used is a Markov switching vector autoregressive
(MS-VAR) model. The two features of this model may be appropriate for the
algal bloom data. The MS-VAR model can capture the sudden changes in algal
bloom data during blooming periods and the drops in biomass of phytoplankton
cells near the end of blooming periods. Furthermore, the prediction probability
of algal blooms can also be produced and this is informative in constructing an
algal bloom alarm system.

Finally, the conclusions of the thesis are drawn are drawn in Chapter 4.
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Chapter 2

Ensemble Kalman Filter with Nonlinear
Updating Equation

2.1 Introduction

Kalman (1960) developed the Kalman filter (KF) which has been applied to var-
ious aspects of engineering, atmospheric science, economics, finance for a long
period of time. One advantage of KF is easy to implement. However, its optimal-
ity is maintained under the assumptions of linearity of model with Gaussian er-
rors. Afterwards, many variants of KF have been proposed, such as the extended
Kalman filter (EKF), iterative extended Kalman filter (IEKF), square root filter
(SQKF) and so on. The details of these filters can be found in Jazwinski (1970)
and Anderson and Moore (1979).

The ensemble Kalman filter (EnKF) was proposed by Evensen (1994) and
has been used in the atmospheric science over 10 years. Indeed, EnKF could
be considered as a suboptimal solution of the particle filter (for example, Carlin
et al., 1992; Gordon et al., 1993; del Moral, 1996; Crisan et al., 1999; Gilks and
Berzuini, 2001; and Arulampalam et al., 2002) in which the whole density func-
tion is estimated by simulations. Under the framework of EnKF, the means and
variances of prediction and filtering densities are obtained by simulated measure-
ments and states. Then, by the law of large numbers, the estimated means and
variances are consistent. Unlike EKF where the linearization of the state space

model is required, no linearization is required in EnKF and the nonlinearity of the
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state space model is captured by a cloud of ensemble members. Evensen (2003)
and Evensen (2007) gave an overview of development of EnKF and discussed the
implementation issues of this filter.

Mainly, the applications of EnKF have been focused on atmospheric data
assimilation due to its historical background. For example, Eknes and Evensen
(2002) applied EnKF to assimilate biological data, that is, concentrations of nutri-
ent, phytoplankton and zooplankton. They showed that the EnKF could handle
the nonlinear instabilities of data assimilation during Spring algal bloom. In par-
ticular, the assimilation of concentration of phytoplankton seemed to denominate
the concentrations of nutrient and zooplankton and this resulted in the control
of the whole assimilation system. Haugen and Evensen (2002) implemented the
EnKF to monitor and predict the variations of Indian Ocean by using remotely
sensed observations of sea-level anomaly and sea-surface temperature with the
Miami Isopycnic Coordinate Ocean Model (MICOM). They demonstrated that
the EnKF can control the model evolution over time effectively. Also, the mul-
tivariate correlation between variables were highly anisotropic and dependent on
location. Mitchell et al. (2002) studied the effects of ensemble size and the local-
ization on EnKF with a global forecast model by the Canadian Meteorological
Centre. Their results indicated that an increase in the ensemble size and more se-
vere localization could improve the assimilation of atmospheric data although the
computational cost could be expensive. Vrugt et al. (2005) applied a global op-
timization algorithm with EnKF to assimilate streamflow data of the Leaf River
watershed which was located north of Collins, Mississippi. They demonstrated
the possibility of simultaneous optimization, which indeed was a process of model

calibration, and data assimilation.
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In most cases, EnKF can produce reasonable and consistent predictions of
states and measurements in the sense of minimum mean squared errors. In-
evitably, it still faces the problems of state estimation and parameter estimation.

Firstly, EnKF faced a problem that its updating equation is linear in both
new measurement and predicted states. Consequently, in the case of nonlinear
measurements and /or states, the conditional variance of filtered states may not be
minimized and this implies that measurement data during the updating step may
not be used efficiently. This initiates the proposal of a new EnKF, which is called
the ensemble Goldberger-Theil Kalman filter (EnGTKF), in this chapter. Under
this new filter, the updating equation needs no longer be linear. The derivation of
the nonlinear updating equation is shown as an extension of the linear updating
equation of the conventional EnKF. Furthermore, since the prediction densities
of states and measurements and the filtering density of states may deviate from
that of asymptotic Gaussianity, the construction of error statistics by ensemble
averages may not be appropriate. Consequently, the nonlinear updating equation
is extended to adapt to the case of non-Gaussian density. Indeed, the multivariate
Gram-Charlier densities by Perote and del Brio (2006) is suggested to approxi-
mate the densities so that the error statistics for states and measurements can
then be calculated accordingly. This specification of multivariate Gram-Charlier
density ensures its positive density over the support without specific restrictions
on the parameter values.

As a by-product of EnGTKF, the ensemble Goldberger-Theil Kalman smoother
(EnGTKS) is derived. Indeed, the smoothed estimates of mean and variance-
covariance matrix of states and measurements are expressed in the forms of

weighted ensemble averages where the weights are determined by the likelihood
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of measurements conditional on states recursively.

Secondly, focused on the issue of parameter estimation, due to the large num-
bers of unknown parameters in multivariate state space model, maximization of
the likelihood function by conventional estimation methods, such as the Newton-
Raphson and Quasi-Newton methods, is typical, but they may not be suitable
in the current situation because the positive definiteness of a high-dimensional
variance-covariance matrix is hard to maintain. One may suggest that global op-
timization algorithm can find the estimation results easily. However, one pitfall
of global optimization algorithm is its accuracy, except in the case of discrete pa-
rameter values. On the other hand, the local optimization algorithms can provide
accurate parameter estimates. However, the optimal solutions can be trapped in
local optimal when the objective function is not unimodal. To tackle the prob-
lems of parameter estimation, a hybrid optimization procedure is suggested to
estimate the unknown parameters. Indeed, the proposed algorithm consists of
three components, namely, (1) localized stochastic search algorithm; (2) evolu-
tionary strategy, a kind of evolutionary algorithm; and (3) local optimization
algorithm, for example Quasi-Newton algorithm. A brief description of this al-
gorithm can be given as follows. A transformation procedure in evolutionary
strategy is applied to decompose the variance-covariance matrices into products
of orthogonal rotation matrices which are determined by rotation angles only.
Then, a localized stochastic search algorithm is applied to search for the optimal
parameter estimates. Finally, a local optimization algorithm is used to enhance
the estimation results in the global optimization. In addition to the estimation
of unknown parameters in the model, drawing inference on unknown parameters

is also essential. Therefore, the derivatives of the objective function are essential
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in estimation of standard errors and they are also derived in this chapter.

In the followings, the specification of the model and its assumptions are given
in Section 2.2. The derivation of the ensemble Goldberger-Theil Kalman filter
(EnGTKF) and the ensemble Goldberger-Theil Kalman smoother (EnGTKS) is
presented in Section 2.3. Then, a detailed description of the estimation algorithm
is provided in Section 2.4. The estimation of standard errors of estimated para-
meters is then discussed in Section 2.5. Since the prediction and filtering densities
may deviate from the asymptotic Gaussianity, a method to approximate the non-
Gaussian densities by the multivariate Gram-Charlier expansion is suggested in
Section 2.6. In Section 2.7, numerical simulations and empirical application of

EnGTKF are provided. Finally, conclusions are drawn in Section 2.8.

2.2 The Model

Consider the following general nonlinear state space model:

Yn = h(Xn;fn)‘i‘Vm (21)

Xp = f(xn—l;sn)+un7 (22)

forn=1,...,N, wherey, € R™ x, € R™ h:R"™ — R"™ and f : R"* — R™
are measurable functions. Also, &, € RP is a vector of model parameters. Both
functions h (+) and f (+) are assumed to be smooth, that is, all derivatives of h (+)
and f () exist and continuous. In the state space modelling, equations (2.1) and
(2.2) are known as the measurement equation and the transition equation re-

spectively. The specification of (2.1) and (2.2) is fairly general including many
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parametric and non-parametric nonlinear time series models. Particularly non-
parametric models such as smoothing splines and nonparametric regression can
be considered as special cases of (2.1) and (2.2). Note that the time-varying
parameters can be included in the state equation. Under this situation, the aug-
mented state vector which contains the model state vector and the time-varying
parameter. simultaneously. Indeed, Kitagawa (1998) investigated this problem
carefully and considered the time-varying parameters to follow a random walks
as an example.

The density functions of v,, and u,, are assumed to be

p(u,) =N (u,;0,Q,), (2.3)

and

p (Vn> = N (Vna 07 Rn) ) (24)
respectively where

Ao 1, 2) = (20) [ exp (500 W= x- )).

Here, both Q,, and R,, are assumed to be non-negative definite. In the cases
of singular Q,, and R,,, their generalized inverses are used instead. Both m, and
m,, are assumed to be finite. The density function of the initial state x, is defined

by
p(%0) = N (X0§X0\07 230|0) .
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The assumptions for the conditional density functions of y, and x, are given
below:

Assumption 2.1 Denote X, = {x3,...,x,} and V,, = {y1,...,yn}. Then,

(i) Conditional on x,,, current measurement y, is independent of the past in-

formation of x,, and y,,, X,,_1 and ),,_1, that is,

p (Yn|Xna yn—l) =P <Yn|xna X1, yn—l) =D (Yn|xn) forn=2... N,

and

P (yulXn) = p(ynlx,) forn=1

The conditional independence assumption is implied by the measurement

equation (2.1).

(ii) The state process {x,}._, is Markovian and homogenous. Also, it admits

an invariant probability measure, that is,

D (Xn|Xn—1; yn—l) =p (Xn|xn—1; Xn—Qa yn—l) =Pp (Xn|xn—1> for n = 17 ceey N.

(iti) The Markov chain {x,}"_, is irreducible and aperiodic.
(iv) The initial distribution of xq is stationary.

Assumption 2.1 implies that given the values of x,,, the density function of y,,
can be derived directly. Furthermore, the density function of the state vector x,,
can be derived only from the state vector x,, at time n — 1. Indeed, condition (ii)

implies that the Markov chain {xn}fj:1 is ergodic (Chan and Tong, 2001, p.34).

N
n=1"

In addition to the assumption of Harris recurrent Markov chain {x,}, _,, by Meyn
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and Tweedie (1993, Theorem 13.0.1), the state process {x,}_, converges to a
stationary distribution for every initial condition x3 € R™#. This theorem also
ensures the stability of the state space model of (2.1) and (2.2) since the Foster’s
condition (Meyn and Tweedie, 1993, p.501) is satisfied automatically. To enable
the EnKF, more assumptions on the independence of u,,, v,, and x, are necessary
and given below:

Assumption 2.2

(i) The disturbances u,, and v,, are uncorrelated within themselves over n and

with each other for all time periods, that is, E (unv;) = 0 for all m and n.

(ii) The initial state vector xq is uncorrelated with u,, and v,,, that is, (unxoT) =

E(v,x{) =0forn=1,...,N.

This assumption can simplify the result of nonlinear updating equation.

2.3 Recursive Estimation of Model States

Now, a new version of EnKF for the general nonlinear state space model is derived
in this section. The prediction step of the new filter follows from Evensen’s
EnKF and the nonlinear updating rule is provided in Section 2.3.2. For the state
estimation, assume that parameters {£,,R,, Q,}2_, Xo/0 and 3¢y are known.

The prediction and filtering densities for the state vector x,, are given by

p Xn 1|yn 1 (Xn|Xn—1)an—17 for n 21 (25)

p(xn|yn71) - /p Xny Xp— 1|yn 1)dxn 1
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and p(xn|yn) = p(xn|Yn7yn—l)

P (X V1) p (¥nlXn)
p (yn|yn—1)
P (X0 Vn—1) P (Yn|Xn)

- fp(xn‘ynfl)p<yn|xn) an, forn >1 (26)

respectively. The derivation of the above densities requires Assumptions 2.1(i)
and (ii) and the Bayes’ Theorem. To initiate EnKF, the initial density p (xo0|yo)

is assumed to be

p (YO\XO) p (Xo)
p (yo)

P (Xolyo) = =p(xo) = N(Xo;Xo\m EBT(C)), (2.7)

Implicitly, p (yo|xo0) = p (yo) is assumed in the above expression.

2.3.1 Prediction

Due to a flaw in the literature of the conventional EnKF, it is desirable to inves-
tigate the statistical properties of ensemble mean and ensemble variance in the
prediction stage.

Assume that the filtering density for the state vector x,, for n > 1 is

p (Xn—1|yn—1> - N(Xn—l; Xn—l\n—h 2§1\n—1)7 (28)

XX

where x,,_1j,—1 and 2n—1|n—1 denote the mean and variance of x,,_; conditional

on ), 1 respectively, that is,

Xn—l|n—l = /Xn—lp (Xn—1|yn—1) dxn—l
and
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T
Zfl\n—l = / (anl - Xn—1|n—1) (anl - Xn—l\n—l) p (anl‘ynfl) dxnfl-

Although the conditional mean and variance are functions of parameter &,
implicitly, &, is omitted in the formula for notation simplification.

Then, from (2.5), the conditional mean and variance of the one-step ahead
prediction for the state vector x,, at time n given the measurement up to time

n — 1 are

Xn|n—1 = /an (XnD}nfl) dxn

and

iﬁl_l = / (Xn - Xn|n71) (Xn - Xn|n71)Tp (anyn—l) an,

XX

where x,,,,_; and an_l denote the mean and variance of x,, conditional on V,,_;

respectively.

Under the criterion of minimum mean squared error (MMSE), the one-step

XX

nln—1 for state vector x,, are esti-

ahead prediction mean X,,—; and variance X

mated when its conditional prediction variance is minimized:

V|-

Xpjn—1 = argmin B | (X,, — Xn)T (X, — Xn)

XnERMz

The one-step ahead prediction estimate of x,, is its conditional mean
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Xpn—-1 = E(Xn’ynfl)
= E(f<xn—l;€n)+un|yn—l)

= /f(xn—l;gn)p<xn—1|yn—1)an—l+/unp (un) dun;

in which the first term can be approximated by a cloud of ensemble members
f ( o 1|n ;&) where ngkzl\nfl is drawn from the Gaussian density p(x,—1|Vn—1)
for k =1,..., K. The second term can be approximated by an ensemble of u,

which is drawn from the density function p (u,) = N (u,;0,Q,). This results in

the one-step ahead prediction for x,, by K ensemble members.

B =&Y, e +u® uP N (0,Q,), fork=1,...,K, (2.9)

nin—1 n—1ln—1’ n
1 K
~(k
Xnln—1 = E Xflh)l—l’ (210)
k=1

K
A XX - (ke R T
an 1= Z < n\n 1 X”‘”*1> <X£L|’I)7,71 B Xn|”*1> : (211)

On the other hand, the one-step ahead prediction density for the measurement

vector y,, is

p(Yn|yn—1) = /p(}’naan}n—l)an
= /p(yn|Xn)p(Xn|yn1)an. (2'12)

Similar to the prediction of the state vector x,,, the one-step ahead prediction
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for the measurement vector y,, is estimated by minimizing its prediction variance

Yot = argminE | (§, — 0, €))7 (= B0 ,)) | Yo

FnERMY

The one-step ahead prediction estimate of y,, is given by its conditional mean,

yn|n71 = E (h (Xn; Sn) D}n71>

= /h(xn;gn)p(xn|yn—l)dxn-

Its conditional variance is

EZ?;L—I = / (h (Xn7 £n) - ymn—l) (h (XTH En) - yn|n—1)Tp (Xn’ynfl) an.

Then, their ensemble estimates are given by

1| K K
~ ~(k ~(k)
Valn1 = 72 D Tonor = Z &€, (2.13)
k=1 k:
and
Yy K T
~ R o R
2n|n 1= Z ( n\n 1 ymn—l) (y,(ﬂi_l - yn|n_1> , (214)

k:
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(k)

respectively where the kth ensemble member ?n|n—1

is generated by

$%  =h&Y_e,) for k=1...,K.

njn—1’

(k)

inln—1 and h;, denote the ith elements of

From now on, fm 1n—1° fin-1, h

f( o 1|n 5€n)s f(xn-13€,), (Xfﬁi 1;€,) and h(x,;§,) respectively; EU\Z(.??”WP

N T

i,n|n—17 Yi n|n— U

(k) (k)

<) (k)

and U denote the ith elements of X X Xpin-17 Ynjn-1>

1| -1’

u,’ and Vn respectively; o ,—1jn—1, Tinn—1 and y; njn—1 denote the ith elements
1 . XX
of X, _1jn—1, Xpjn—1 and y,,—1 respectively; Zij,n‘n_l, E” nln and Z” nfn—1 denote

the (4, j)th elements of 37 nm and 39¥ | respectively. Then, the following

nin—1»

theorem is provided.

Theorem 2.1. Asymptotics of One-step Ahead Predicted States Assume

that the filtering density for the state vector x,, forn > 1 is

p (Xn—1|yn—1) - N(Xn—l; Xn—1|n—17 Z)riflm—l)' (215)

Then, the ensemble mean and variance of the state vector x,, under the pre-
diction density p (x,|Vn_1) can be estimated by (2.10) and (2.11) respectively.
Furthermore, assume that
(1) E|f fin- 1|n 1
(i) E< ) 1) —E(fins| Vo) fori=1,....mpk=1,... K,
(iii) B | f £ ()

i,n—1ln— lujn

<o fori=1,.... myk=1,... K,

< 00,

zn l\n lfn 1jn—1 < OOfOT’Z,] - 17"-7mx7k -

1,.

, K,
(ZU) ( 1n|n 1§§2\n 1> 2]zjxnm 1+ Linln—1Ljnln—1 fOT iy = 1, .0 my, k=
1,... K.
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The strong consistency of Xppm—1 can then be ensured, that is,

XX

~ a.s.
Xnpln—1 — Xpjn-1  and Emn 1 L Vet "1 when K — oo,

n|

2
Furthermore, if condition (i) is replaced by B < oo and positive

fzn 1jn—1

definite 3377, 1 is assumed, the asymptotic normality of Xnjn—1 18 ensured as well,
that 1s,

\/?(ﬁn\n_l — Xn|n_1> — N(0,3%7, ) when K — oo.

Theorem 2.2. Asymptotics of One-step Ahead Predicted Measurements
Assume that the ensemble prediction mean and variance for the measurement
vector y, are estimated by (2.13) and (2.14) respectively. In addition to the

assumptions of Theorem 2.1, assume that

(v) B |h

<oo fori=1,... myk=1... K,

zn\n 1)

(m)E< ”jm 1) = B (hin|Voi) fori=1,....myk=1,... K,
(vii) B |h m‘n 1h§kn\n | <ooforij=1,....m,k=1,... K,

(viii) E ( RN ) = E (hinhjn

inin—1"jnin—1

y’”»_l) fo,r'ihj:17"'amy;k:1,...,K,

Their asymptotic properties are similar to those of the state vector, that is,

~ a.s. SYY
Yon—-1 — ¥njn-1  and Enm 1 % En\n 1 when K — 0,

2

h() < 00

As in the case of ensemble states, if condition (v) is replaced by I |h; -1

and Zﬁ;_l is positive definite, the asymptotic normality of ¥, ,—1 is ensured, that
18,

\/? (S;n\nfl - yn|n71) - N(O Dk ) when K — oo.

njn—1
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Proof of Theorems 2.1 and 2.2. Since the estimators are in the forms of sample
averages and all ensemble members are considered as i.i.d. within an ensemble,
their consistencies can be shown easily by White (2001, Proposition 3.2).

To show the consistency of in‘n_l, one need to show that

E is\l(n‘n 1‘<oo for i1=1,...,my.
Now,
~(k) (k) (k)
B xi,n\nfl = B fzn 1n—1 +U
)
< E fzn 1n—1
< 0o,

for7=1,...,m,. The first inequality is obtained by the triangle inequality and
the second one is obtained by condition (i) above and the normality of u§’jj In
addition to condition (ii) above which is satisfied automatically, by Komolgorov’s

SLLN (Rao, 1973, p.114),

A~ a.s.
Xpln—-1 — Xpjn—1 When K — oo.

. XX . .
The consistency of 3, ; can be shown similarly because

XX K T K ~ ~ T
2n|n 1= 1 Z( n|n 1> ( n|ZL 1) - K —1 (Xn\n—l) (Xn|n—l) .

k=1

Then, it can be shown that
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K
1 *) (k) a.s
o~ ~ S §IXX
> ATy S I+ Tinin 11 When K — 00

fori,7 =1,...,m, by conditions (iii) and (iv) above. The consistency result can
be implied directly because the sequence {§§2|n—1§§f2‘n—1}kl{=1 is i.i.d..

The consistency result for the prediction of the measurement vector y,, is
shown by similar method, but the conditions (v) to (viii) above are used instead.

The asymptotic normality of X,,—1 and y,,—1 can be proved by two ap-
proaches, namely: (1) by using the Cramér-Wold theorem (Rao, 1973, p.123)
and the univariate version of Lindeberg-Lévy’s central limit theorem (CLT); (2)
by deriving the joint characteristic functions of X,,—1 and y,,—1 accordingly
(Ferguson, 1996, p.26-27; White, 2001, p.114-115). Indeed, the Cramér-Wold
theorem can show the multivariate Gaussianity of a random vector Z by showing
that the linear combinations of elements of z in Z are Gaussian where the weights
of linear combinations are normalized to a unit circle. |

Theorems 2.1 and 2.2 imply that the prediction densities (2.5) and (2.12) can
be approximated by Gaussian density. Stronger assumptions on f (ﬁilk_)l‘n_l; £,
and h(ﬁgﬁgﬁl; &,,) are used here because no concavity is assumed on h (+) and f (+).
As aresult, Jensen’s inequality cannot be used. Next, the case of multi-step ahead
prediction of measurement and state is considered.

For the g-step ahead prediction of the state vector x,, and ¢ > 1, the con-

ditional mean and variance are obtained by (2.9), (2.10) and (2.11) iteratively.

Specifically,
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<*) = f£(x™ £), k=1,... K,

n+q—1|n—1

~ 1 ~(k)
Xntq—1n—1 = E Xn+q—1|n—1’

k
K
= I S (3% P < (k) P T
nt+g—1ln—1 = K —1 Xn+q—l|n—1 Xn+q—1n—1 Xn—i—q—l\n—l Xntq—1n—1 :

Similarly, the g-step ahead prediction means and variances of measurement

vector y,, under the conditional Gaussian density function for ¢ > 1 are given by

(k) o ~ (k) ] B
yn+q—1|n—1 - h(Xn+q_1|n_17 £n)7 k= 1, Cee K,
1 K
% — Sk)
Ynt+q-1n—1 = ? Z yn+q_1|n_1a
k=1

-
_ (k) < (k) o
2n+q—1|n—1 - K1 E <yn+q,1|n,1 - YH+q71|n71> (ynﬂ,l\n,l - Yn+q71\n71>

K
oYY 1 ~(k
k=1

respectively.

Actually, the g-step ahead prediction is preceded by the previous (¢ — 1)-step
ahead predictions recursively. One can expect that the prediction variances of the
measurement and state variables increase with the prediction horizon because no

new information of measurements is provided for updating previous predictions.

2.3.2 Filtering

Assume that the prediction density for the state vector x,, is

p (Xn|yn—1) - N(Xna Xn\n—ly En\n—l)7
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and the conditional mean and variance of the filtered state vector x,, for n > 1

are denoted as x,),, and X,,, respectively, that is,

Xn|n = /an (Xn|yn) dxn

and

2n|n = / (Xn - Xn|n) (Xn - Xn|n)Tp (Xn|yn) an-

Rather than generating ensemble members of x,,, from the posterior density
P (x,|Vy) directly, an estimation procedure is suggested here instead. Following
Evensen (1994) and Burgers et al. (1998), v denotes the kth ensemble member

which is constructed by the perturbation of measurement y,, at time n, that is,

y® =y, +v®  v® O N(OR,), fork=1,... K,
Furthermore, the relationship between the true and the predicted state vector
is

<k = x, —a® fork=1,...,K,

nin—1 —

where ﬁ,(lk) denotes the prediction error for the the kth ensemble member of the
state vector x,,.

The above two expressions in the conventional EnKF are essential for the
derivation of the nonlinear updating equation by Goldberger-Theil’s mixed esti-
mation which was proposed by Theil and Goldberger (1961). Their original for-

mulation considered how extraneous information could be incorporated into the
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generalized least squares estimation. Indeed, their idea can be regarded as the
Bayesian estimation because the extraneous statistical information and general-
ized least squares estimation considered in their paper were the prior information
and the likelihood respectively, if Gaussian densities were assumed for the distur-
bance terms and regression parameters. Hence, the mixed estimator of regression
parameters was the posterior mean.

Now, their idea of mixed estimation is extended to the case where the measure-
ment equation (2.1) at time n is considered as the extraneous nonlinear statistical
information and the estimated ensemble states have the conditional mean of the
state vector x,, up to the information at time n — 1. Hence, the filtering process

in terms of ensemble members above and the one-step ahead prediction ensemble

(k)

nln—1 Can be reformulated as

member X

(k) (k)
Yn h(x,;&,) vn
= + . (2.16)
ﬁfz?mq Xn _agﬂ)

Note that V7(1k) and ﬁ%k) are uncorrelated because v,(f) is uncorrelated with x,,

and ﬁfﬁi_l. Then, the error covariance structure of (2.16) is

vgf) R, 0
Var =
ﬁ%k) 0 2n|n71

By Goldberger-Theil’s mixed estimation, the unknown state x, can be ob-

tained by minimizing the weighted sum of squared residuals

< (k)

X
n|n

— argmin B(X)), (2.17)

%P crma
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.
where BE() = (v - nxli¢,)) R (v - n&lie,)

T XX ~ ~ ~
+ <3Z§Lk) — 5 > (Zp) ™ <x,(1k) —xW >, <) denotes the kth ensemble

n|n—1 njn—1 njn—1

member of X,,—1 in the previous prediction step. The formulation of (2.17) is
sensible since the minimization function can be interpreted as the maximization

of the posterior density in (2.6):

argmax p (X, |Y»)

X ER™

= argmaxp (yn‘xn) p (Xn‘ynfl)

Xn GR'mz

= argmax [logp (yn|Xn) +10g p (Xn|Vn-1)]

Xy ERMa
= argmin [(YSL’“’ ~h(x®;¢)) R (y® —h(ExD;g,))
2P crma

T
- (k XX 1 [~ ~(k
+ <X7(’Lk) - Xim)zfl) (2n|n—1) ! <X7(1k) - X1(11)11>:| ’

where the conditional mean and variance are replaced by the ensemble estimates
in previous prediction step. Note that the first equality is obtained by the Bayes’
Theorem and the denominator term p(y,|),_1) does not depend on X,. The
second equality is trivial as a monotonic transformation is applied. The third
equality is trivial under Gaussian density.

Typically, the optimal ﬁfﬁ; of (2.17) is obtained by solving the first order

condition, that is,

ohxY; )T
oxW

XX

R, (v &)+ S0 (74 -=0) =o.

2 =5
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Now, we assume that the Jacobian matrix of the left hand side of (2.18) with

respect to yff) and 2557)1—1 is invertible, then, by the Implicit Function Theorem,

there exists a function g : R™v x R™* — R™= such that

~(k ok
Ry = 8P X0 _). (2.19)

Obviously, the updating equation (2.19) for the predicted ensemble state
(k)

Xpin-1 is more general than the one suggested by Evensen (1994) in which the
conventional Kalman filter updating equation was used. Although the ensemble

(k)

njn—1

is updated by the perturbed measurement y,(lk), no Kalman

predicted state X
filter gain matrix is computed. Indeed, the explicit formulation of the updating
equation can be found in a few special cases only. This nonlinear updating equa-
tion is related to the single-stage iteration filter by Wishner et al. (1969) where
the updating process was performed by an iterative Newton-Raphson algorithm.

Since the Goldberger-Theil’s mixed estimation has been incorporated into EnKF,

this new filter is called the ensemble Goldberger-Theil Kalman filter (EnGTKF).
(k)

nin_1> a0 estimate ®) s obtained from (2.19).

For each ensemble member x i

In most cases, the analytical solution of QSTZL cannot be found easily because the

(k)

perturbed measurement y,, ' is nonlinear in the state <k

i This in turn results in a

suggestion of a hybrid optimization of QSTZL which consists of two parts: (1) select
the initial value for filtered state vector by stochastic search algorithm (Spall,
2003, p.38) and (2) improve the estimation of the filtered state vector further
by local optimization procedure, for example Quasi-Newton. The procedure is

described below:

1. Simulate an initial value for the state vector X in (2.17) from a specified
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distribution, for example, uniform distribution or Gaussian distribution and
denote its value as X\ (0). Set j = 0. Compute the objective function
B(xY (0)).

2. At iteration j (j > 0), generate a new value for the state vector i&’“) ac-

cording to the specified distribution. If B (ig“) (j+1) <B (ﬁ,(f) (7)), then

z® — ® (j +1). Otherwise, ) =z (5).

3. Repeat Step 2 if the maximum number of iterations is not exceeded or the

(%)

recent iterations of X" (7) yield an improvement in the estimate §n|n.

4. Once ifﬁgl is selected by stochastic search algorithm, it is then used as the

initial value in the Quasi-Newton method.

The convergence result of the stochastic search optimization procedure above
was shown with an enormous number of iterations and the existence of a unique
solution (Spall, 2003, Theorem 2.1). However, it is infeasible to use a huge number
of iterations to estimate the filtered state. The local optimization procedure, for
example Quasi-Newton method, is used to improve the estimated filtered state
further.

)

Over the K ensemble members, the filtered mean and variance of ﬁgﬁn are

estimated by

1 K

~ ~(k

Rl = 7 o, (2.20)
P
1 T

XX ~(k ~ ~(k ~
and  Xpn = 7 > (Xfm)z - Xn\n> (Xfﬂi - Xn\n> ) (2.21)
k=1

respectively. The asymptotic properties of (2.20) and (2.21) are given by the

following theorem.
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Theorem 2.3. Nonlinear Filtering Given that the prediction density for the

state vector x,, 18
p (XnD)n—l) - N (Xnu Xn\n—la En\n—l) ;

and assume that

) (0

(i) E Ty i

(ii) B (fgfjj'n) — B (20| V0), fori=1,...,mpk=1,.... K,

(iii) B, 7%

nln

<oo, fori=1,.... myk=1,... K,

<oo fori,j=1,.... my, k=1, ... K,

(iv) B (f(’“) 79 ) = B (2inz;nV0) forij=1,....mek=1,... K.

i,n|n" jnln

Then,

~ a.s. SXX qg.s. XX
Xnln = Xnln and En\n - 2n|n when K — oo.

2
i‘\g,kn)\n < 00 and X3 is positive definite, the

If condition (i) is replaced by B

asymptotic normality is also ensured, that is,

VK (§n|n — xn|n) 4N (O xx) when K — oo.

) “nln

Proof. The asymptotic properties of X,,, and f]::; can be derived from the same
reference as in Theorem 2.1. [ |

This theorem has a similar implication as in Theorem 2.1 and the filtering
density (2.6) can be approximated by the Gaussian density. The combined results
of Theorems 2.1 and 2.3 imply that the density functions of the state vector x,
in EnGTKF can be approximated by the Gaussian density recursively and this
also holds for Evensen’s EnKF'.

The method of nonlinear state updating has been described already. This

20



proposed method can also be reduced to the linear updating equation of EnKF
and the asymptotic properties of ensemble filtered state are summarized by the

following corollary.

Corollary 2.4. Ifh(x,;§,) is linear in x,,, that is, h(x,;&,) = h,x,, the ensem-
(k)

ble members Xyin

can be derived from the case of EnKF with linear measurement,

that 1s,

Q(IT) =x® LK, (yW —h,x® ), (2.22)

nin n|n—1 njn—1

XX

where K, = (bR, 'h, + (X,,,,_1) ) 'h/R 1.

nin—1

Furthermore, its asymptotic properties in Theorem 2.3 are maintained.
Proof. When h(x,;§&,,) = h,x,, the optimization problem becomes

k) = argmin [(ygf) — hnﬁn)T R," (yq(lk) - hnﬁn)

nln -
Xp ERMz

~(k R T ~xx _ ~(k R
+ <X7(1|2171 — xn> (Xn1) ! <X£L|7)171 — xn> :

From (2.18), we have

bR, (v~ 0, &) + (27,07 (R — %)) =0

nln

BIR; 'y + ()%, = (BIR o+ (27 )7) %)

n nln—1 n|n—1 nln”

Hence,
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nln n|n—1 njn—1

< _ (hle;lthr@XX_ )71>‘ <hTR 1y(®) (gzn_l)flgk) )

By using the results in Meditch (1969, p.190) or Lemma in Diderrich (1985),

letting Po = £, |, P1 = (bR, 'h, + P;) " and K, = P;h]R,". Then,

n\n 1

%) = Pi(h[R, 'y + PR )
= KnYn)+P Py 1/\’)(7,]];7)7, 1
~(k)
= Ky® + (L, - K.h) 28

= % 1K,y - n,zW ),

nln—1 N pln—1

where P1 P 1 — L., — K,h, in the third equality is shown below:

1

P, = (b R, 'h, +P;")"
P;' = P,'+h/R;'h,

I,, = P,P;'+Ph/R 'h,,

T

and the result is shown.
Alternatively, the same result can be achieved by considering ﬁfﬁi as a gener-

alized least squares estimator. Equation (2.16) in this linear case can be rewritten

as
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o h, v
= Xy, + 5
(k) =(k)
njn—1 ImT Un i
v v R, O
where [ = 0 and Var = . Then, by generalized
al P 0 .,

least squares, an ensemble member of the estimated filtered state is

1 -1

i R, 0 h,
0 = || h, L., } .
- 0 X, | I
—1
R, 0 y,(lk)
([ ]|™ 2
0 z}n|nfl ﬁgTzz—l
~xx -1 ~xx
= <hnR;1hn + (En\nfl)il> (hnRglygﬂ) + (En\nfl)ilifﬁi—l> )
which indeed is the same as the one derived previously. |

An analogous proof was given in Harvey (1981, p.108-109), Diderrich (1985)
and Tanizaki (1996) for classical Kalman filter.

From Theorems 2.1, 2.2 and 2.3, one can construct the confidence regions for
the prediction state vector x,,,—1, the measurement vector y,,—1 and the filtered
state vector x,, easily due to its recursive Gaussian properties. Specifically, their

(1 — @)% confidence regions can be obtained by

Srbz’|n—1 = {y : (y - ?nm—l)—r (EZ\}:@—I)_l (y - S’\n\n—l) < Zl—a/2} )
Sppn—1 = {X : (X - in\n—l)T (22;71)_1 (X - §n|n—1) < Zl—a/Q} )
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and ’r)zc|n = {X : (X - §n\n)T (i\];};)_l (X - §n|n> < Zlfa/Q} )

respectively where z;_,/2 is the 100 (1 — o/2)th quantile of the Gaussian density.

Recursive state estimation procedures are summarized below:

1. Generate the initial ensemble states. When n = 0, given the values of xg
and 3|9, draw K ensembles from the density function N (XO;X0|0, 20|0)

and denote them as {X"}< .

2. Predict the ensemble states. When n = 1, draw an ensemble of K mem-
bers from the density function N (u,;0,Q,,) and denote them as {u%k)}szl.

Then, generate ensemble predictions with stochastic forces by

<k f(ﬁ(k) £,)+ u® for k = 1,... K.

njn—1 n—1|n—1’ n

3. Generate the ensemble measurements. When n = 1, draw an ensemble of
K members from the density function A (v,;0,R,) and denote them as

{ng)}szl. Then, generate ensemble measurements by

yg“):yn—i—v(k) fork=1,..., K.

n

4. Update the ensemble states. The kth ensemble member of the state vector

X, is updated by minimizing (2.17).
5. Repeat Steps 2, 3 and 4 forn =2,..., N.

6. Forn =1,..., N, the prediction and filtered mean and variance of the state

vector x,, are estimated by (2.10), (2.11), (2.20) and (2.21) respectively.
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Also, the one-step prediction mean and variance of the measurement vector

yn are given by (2.13) and (2.14) respectively.

2.3.3 Smoothing

After the derivation of prediction and filtered states which progress forward in
time, a fixed-interval smoother for EnGTKF is derived in this section. The

smoothing density for the state vector x,, is

p (anlny) =

P (Xn—1,Xp|Vn-1)
p (Xn|yn—1)
p (Xn|xn—1) p (Xn—l|yn—1)
p (Xn|Vn-1)

p (Xn|Xn71)p (Xn|yN)
= n— n— d )
P (a1l 1)/ P (Xn|Vn-1) *

dx,,

dx,,

/
/
= /p(xn|yN)p(Xn—1|men_1)dxn
/
/

forn = N,N —1,...,2. Note that Assumptions 2.1(i) and (ii) is used to show

the third equality. Specifically,

p (Xn—1|xn7 yN)

p(xn—17xn7y17 s ;YN)
p(Xth B ayN)
p(yN|yN71> Xn, anl) o -p(}InJrl‘yn; Xn, anl)p

Yn‘ynfb Xn, anl)p(ynfla Xn, anl)

(
B p(YN|yN—1> Xn) ‘e -p(Yn+1|yn> Xn)p<3’n|yn—1> Xn)p(yn—la Xn)
p(ynflaxnyxnfl)

p(ynfla Xn)

_ p(yND)Nfl) .. -p<Yn+1‘yn)p(Yn‘yn717Xnaxnfl)
)

p(YND}Nfl) .. -p<yn+1‘yn)p(Yn‘ynfla Xn
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(Yl Vo1, X0, Xn1)P( Vo1, Xn, Xn—1)
p(yn|yn—lv Xn)p(yn—la Xn)
P(Yn|Xn)P( Vi1, Xns X 1)
P(YnlXn)P(Vn-1, %)
p(yn*b Xn, Xﬂ*1>
P(Vn-1,%n)

= p(xn—1|xn7 yn—l)-

The posterior density p (x,,_1|Vn) for the state vector x,, follows from Harvey
(1989) and Kitagawa (1987). Although the smoothing density can be derived
by backward recursion in this way, both the prediction density and the filtering
density of the state vector need to be stored. Typically, the smoothed mean
and variance of x, ; can be estimated by the Bayesian method. Nevertheless,
following Tanizaki (1996, p.217-220), the estimates can be derived by the MMSE

criterion.

Xn—1|N = argminE (ﬁn—l — Xn_l)T (ﬁn—l — Xn—l)
QnER"LI

yN] ;

forn=N,N—1,...,2.

The optimal value should be its conditional mean which is given by

Xp-1n = B (Xn1|Vn)
= /Xn—lp(xn—1|yN)dX”_1
= / / Xp-1D (Xn—1, XN~ (n-1) | V) dXN — (n-1)dXp—1
- /Xn_lp(XNWN)dXN

_ Jxp Vx| XN) p (Xy) i (2.23)

2 (In|XN) p(Xy) dXy
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forn = NN —1,...,2, where Xy _(,—1) = {X1,...,X,-2,Xp,... Xy} indicates
the set of all state vectors excluding the one at time n — 1.

From Assumptions 2.1(i) and (ii),

p(Xy) = pxo) [[p(xaulxn1),
and p(nlXy) = HP(Yn|Xn)-

Then, (2.23) becomes

_ f Xn-1 Hfzvzlp (ynlxn)p (anxnfl) dXy

Xp—1|N = ) (224)
f HnNzl p (yn‘xn) P (Xn‘xnfl) dXN
forn = N,N —1,...,2. Similarly, the conditional variance can be obtained by
T
xx J (-1 = Xn-ay) (%n-1 = Xn-ay) [Ty P (Yl Xn) P (Xn[%n1) dy

n—1|N — )

JTL P (Yal%n) p (Xn|x0-1) dXy

forn=NN—-1,...,2

From (2.24), the computation of the smoothed state vector x,,_1x requires (i)
the ensemble members {ﬁiﬁ;_l}kﬁl from the prediction density p (x,|x,_1) and
(ii) the density of y,, conditional on x,, p(y,|x, = QSTLI) fork=1,...,K. The

ensemble mean and variance of the smoothed state vector x,_jy are estimated

by

K ~(k)=(k
D ket wEV)ngzL—l

K ~(k
> ket wj(\f)

~

Xn—1|N =

: (2.25)

27



and

T
K ~(k) [~k -~ ~(k ~
gxx Zk:l U)EV) (X’f’b|31—1 o Xn—l\N) (X51|21—1 - X”_1|N> (2 26)
n—1|N Zle ﬂ}g\’f) ) .

respectively forn = N, N—1,...,2. Indeed, a more accurate estimator of variance

can be obtained by

S =
(Zkl N2 = S (@y)?

N
sz ( (|n |~ X 1\N> (Xfm\r)z—l_xn_”N) .

(k)

The smoothing weight W)’ is computed by the following recursive relation:

B = NG Fan-1, Ty, )00y forn=1,... N, (2.27)
and @(()k) is initialized with ﬁ)\(()k) = K tfork=1,..., K. Indeed, the initialization
of weight @ék) is somewhat arbitrary because

SYY \ ~(k
~ >t ITne 1N( n|n 1vyﬂ\n 1 Zn1) W )% ;|21—1
Xp—1IN = %)

&QYY ~
Zk IHn 1N( Yon— 17Yn|n la2n|n 1)w0
|
<Y ~(k
Zk; 1Hn 1N< n|n 1,ymn 1727’&‘” 1) 7(’L|’I)'L 1
~ QYY
Zk 1Hn IN( n|n 1) Yn|n— 172n|n—1)

?

is independent of @ék) for fixed @((]k). Similar property can also applied to f}zi” N
On the other hand, the measurement vector y,_; can also be smoothed, that

is,
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Yo-in = E(yn-1|Vn)
= E(h(x.15€,1) V)
0G0 p V)
= / / b (%0 15€1) P (X1, XN (0-) V) dXN -1y

_ / h (x5, 1) p (Xn] V) dXy

Jh(x0-13€,_1) p (Vn|AN) p (Xy) dXy
fp (yN|XN)P (XN) dXn ’

forn=NN—-1,...,2.
By using the same smoothing method as for the state vector x,,_1, the ensem-
ble mean and variance of the smoothed measurement vector y, iy are estimated

recursively by

K (o)
~ D k1 Uy Yoln—1
Yn71|N = K /\(k:) 9 (228)
Zk:1 Wy
and
K k) (o®) < (k) < T
~yy Zk:l Wy (yn|n71 - Ynfl\N> (yn|n71 - Yn71|N>
n—1|N - s (229)

K ~(k
Zk:1 wgv)

forn=N,N—-1,...,2.
The estimation of smoothed states and measurements by (2.25), (2.26), (2.28)
and (2.29) is called the ensemble Goldberger-Theil Kalman smoother (EnGTKS).

It seems that the derived smoothers used information of the prediction density
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P (¥n|Vn-1) only. Indeed, information from the filtering density is also used in

the recursive derivation of the prediction density. However, only the ensemble

)

n—1

members of igT and ?fﬁ)fl are required and the computation time of the

smoothed estimates is reduced. Indeed, this smoother is analogous to those by van
Leeuwen and Evensen (1996) and Evensen and van Leeuwen (2000) in which both
of them were derived by the representer method (Bennett, 2004, p.19). Unlike the
EnGTKF, both of their smoothers have used linear updating equations during

the filtering stage. The asymptotic properties of smoothed mean and variance

are given by the following theorem.

Theorem 2.5. Fized-interval Smoothing Assume that the one-step ahead pre-

diction densities of x, and y, are given by Theorems 2.1 and 2.2. Furthermore,
assume that forn =N, N —1,..., 2.

B[,
(ii) B fz(,i)fuang,i)funq

1,... K,

< oo for somed >0 withi=1,..., my,, k=1,..., K,

1+5
< oo for some 0 > 0 with i,7 = 1,... ., my, k =

(idi) 3354 v is positive definite.
Then, by the Markov’s SLLN, the estimated mean and variance of the smoothed
state vector by (2.25) and (2.26) are consistent when the ensemble size increases

infinitely, that 1s,
§n71|N = Xp—1|N and En—l‘]\[ 5 2§§1|N when K — oo.
Furthermore, by CLT,

VK (Xn—1/v — Xp—1v) <, N(0,37%,y) when K — oo.
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On the other hand, for the measurement vector y,_1, assume that forn = N,

N-1..,2
2+6
(iv) & hgl;)‘n_l’ < oo for somed >0 withi=1,... . my,k=1,... K,
OGRS b _
(v) E hi,n\nth,nmq < oo for somed >0 withi,j=1,....my,k=1,... K,

(vi) 37V is positive definite.
The estimated mean and variance of smoothed measurement vector y,_1 by

(2.28) and (2.29) share the similar properties as the state vector, that is,

~ a.s. QYY a.s. yy
Yn—-1N = Yn—1IN and 2n—1|N - EWHN when K — o0,

by Markov’s SLLN and

VK (S’\n—l\N - Yn—1|N) <, N(O, EZ{HN) when K — o0,
by CLT.

Proof. From (2.25),

Kl R

njn—1

1 K ~(k
K 1Zk=1w§\f)

Xp—1|N =

Under the regularity conditions for Markov’s SLLN, the denominator term

converges almost surely, that is,

By Minkowski’s inequality,
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249

E ’wg\f)flxz(,rz\nfl
218\ 1/(2+9) prs\ U/ @+9)] %0
< (E fz'(,I:L)—1|n—1 ) + (E ugkn) )
< 00,

for i = 1,...,m,. The first term should be finite by condition (i) above and
the second term is also finite due to the Gaussianity of u,. Then, by Markov’s
SLLN (White, 2001, p.35), the consistency of X,,_qy is shown directly. Similar
procedure can be applied to show the consistency of iziu ~- The asymptotic
Gaussianity of X, iy can be derived by using Liapounov’s CLT and Cramér-
Wold theorem. The details of proofs are referred to White (2001, p.114, 118).
Similar arguments can be applied to prove for the smoothed measurement vector
Yn-1)n as well. [ |

Unlike previous prediction and filtering steps, the slightly higher order mo-

ments of x,, are controlled in the smoothing stage because of the heterogeneities

) (K)

n|n—1

and @55)377(;721_1 within an ensemble. Conditions (i) and (iv) in this

of @E\lf X
theorem are stronger than needed. Indeed, they are referred to as a simplified
version of Markov’s conditions (White, 2001, p.35). To show the consistencies of
Xn—1|n and f]::u ~, only the moments of order slightly greater than one are nec-

essary. Stronger assumptions are specified here to satisfy the Lindeberg condition

and hence to induce the asymptotic Gaussianity of X,,_q|n-
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2.4 Estimation of Model Parameters

In this section, the likelihood function the state space model (2.1) and (2.2) is
constructed and the estimation of unknown parameters is considered. Following
Dee (1995) and Dee and Silva (1995), the likelihood function for this EnGTKF
problem is expressed in terms of prediction errors of measurement and approxi-

mated by

L(0; V)

= p(yn|In-1)p(yn-1|YNn=2) ... p(¥2| 1) 0 (¥1)

= Hp (YnlVn-1)

n=1

Nmy

= (2m) 2

1

N 1 )
TT1= e (—§VI|n-1 (=) vn|n1) |

n=1

with p(y1) = p(y1|Yo) where Vo1 = Yo — Yajn-1, 2;"‘;_1 = 2%?;171 + R,
T

0 =[x, veeh(Sg0)T, 4T, k|, w, = [€], vech(Qu)T, vech(R,,)T] ", The

Gaussian prediction density of the measurement vector y,, conditional on ), is

derived from Theorem 2.2.

The log-likelihood is then given by

Nm 1 &
log £ (6:Vy) = ——52log(2m) = 5> log =},
n=1
N
1 vV -1
n=1

The unknown parameter estimate is the solution of the following optimization
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problem:

6 = argmax log £ (0; Vn) . (2.31)
0

Under the regularity conditions of Jensen and Petersen (1999), the estimate
0 is strongly consistent and asymptotically normal (Jensen and Petersen, 1999,
Theorem 3.3).

Practically, the maximization of (2.30) can be performed by conventional lo-
cal optimization algorithms, such as Newton-Raphson, Quasi-Newton and so on.
However, in many cases, the log-likelihood may not be unimodal even if the
measurement and state errors are Gaussian. In addition, the initial values are
essential for the convergence of local optimization algorithm. Consequently, a
hybrid procedure of optimization algorithm is suggested to estimate unknown

parameters in (2.30).

2.4.1 Orthogonal Decomposition

Due to the multivariate nature of the state space model, the positive definite-
ness of variance-covariance matrices are difficult to ensure during the process of
estimation especially the high-dimensional cases. Nevertheless, a special trans-
formation technique is suggested here. Specifically, a variance-covariance matrix
can be expressed as a product of rotation matrices and column vector of variances
(Schwefel, 1981; Rudolph, 1992). This technique has been used in evolutionary
strategy which is a kind of evolutionary algorithms (Béck, 1996), for a long period
of time.

Let C = (¢;5) be an s x s variance-covariance matrix which is positive definite
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and symmetric. Then, it can be decomposed into elementary rotation matrices

and diagonal matrices (Faddeev and Faddeeva, 1963, p.27). Specifically,

n—1 n T n—1 n

C= (H 11 ﬁ(aij)> D'D (H 11 ﬁ(aij)>, (2.32)
i=1 j=it+1 =1 j

where «;; € (—m, 7], f{(azj) = f{T(—aij) is an s X s elementary rotation matrix
which indeed is a unit matrix except elements r;; = r;; = cos;j, 1;; = —Tj =
—sina,; and D = (diag(C))? denotes a diagonal matrix whose diagonal ele-

ments are square roots of diagonal elements of C. For example, f{(a24) is given

by

1 0 0 0 0 --- 0
0 cosagy 0O —sinagy O --- 0
0 0 1 0 0 --- 0
ﬁ<0‘24) =10 sinags 0 cosagy 0 --- 0
0 0 0 0 1 -0
_0 0 0 0 0 --- 1 |

By using this orthogonal decomposition, the total number of unknown para-
meters of variance matrix C remains the same, that is, s(s—1)/24s or s(s+1)/2.
Nevertheless, the positive definiteness of matrix C during optimization can be
maintained easily. Rudolph (1992) showed the usefulness of this orthogonal de-
composition with the mutation operator in evolutionary strategy.

In the current situation, the matrices R’s, Q’s and X are the unknown

matrices being estimated.
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2.4.2 Stochastic Search Optimization

To find the optimal values of parameters in the case of (2.31), one can draw a set of
random parameter values for @ from a specified distribution, typically the uniform
distribution, and substitute the values into the objective function in (2.31). Then,
the set of parameter values with the largest value of the objective function will
be the optimal parameter values for the problem. If the number of random draws
is sufficiently large, it can be shown that the estimated optimal parameter value
converges to the true optimal parameter value (Spall, 2003, Theorem 2.1). This
result is intuitive because a random draw of parameter values can be considered
as a stochastic search over the parameter space globally. Then, a sufficiently
large number of random draws can cover a wide range of parameter values over
the parameter space and hence the optimal parameter values can be located. To
improve the searching results, a localized stochastic search method can be adapted
here (Spall, 2003, p.44). Indeed, this approach can incorporate priori information
of parameters into the stochastic search. Rather than searching for the whole
spectrum of parameter space, the priori information of parameters is used to
construct the initial parameter estimates and the range of parameter estimates.
Then, the stochastic search begins around the initial parameter estimates with
specified range. Theoretical convergence results of the search were proved by
many researchers, as mentioned in Spall (2003, p.44).

However, as shown in Spall (2003), it is difficult to ensure this kind of global
convergence practically because a huge number of iterations is required. As in the
case of state estimation, local optimization is adapted to improve the estimation

results. Then, the optimization algorithm for (2.31) can be summarized below:

1. Determine the initial parameter values by using information of the structure
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of the state space model.

2. Decide the ranges of unknown parameters except variance-covariance ma-

trices where the localized stochastic search occurs.

3. By using (2.32), each variance-covariance matrices of dimension d should
have d(d + 1)/2 parameters. The first d ones are corresponding to the
standard deviations and the remaining d(d — 1)/2 ones are those rotation

angles over ranges (—, 7].

4. Generate a sufficiently large number of possible parameter values by uniform

distribution according to the intervals defined previously.

5. Locate the set of parameter values with the largest value in (2.31) and the

result is obtained directly.

6. The set of parameter values in Step 5 is considered as the initial values of

a local optimization algorithm, for example, Quasi-Newton.

2.5 Estimation of Standard Errors

In this section, all parameter estimates by (2.31) are indicated by ~. In order to
estimate the standard errors of estimated parameters in Section 2.4, the expected

Fisher’s information matrix is required and defined by

B Olog L dlog L
(o) (Vs OsE)

Apart from Cavanaugh and Shumway (1996) which computed the expected

(2.33)

Fisher’s information matrix (2.33) for linear state space model, a typical and
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consistent approximation of Fisher’s information matrix, the observed Fisher’s

information matrix, is used here, that is,

N
AA 1 Z dlog L, dlog L,
7N n=1 ( 00" )9:5’ (234

where £, stands for the likelihood of the nth observation. Note that (Z (5))_1
is the variance of the estimated parameter 0 by Cramér-Rao lower bound under
suitable regularity conditions (Casella and Berger, 2001, p.335). In order to
simplify the derivation of the observed Fisher information matrix (2.34), the

likelihood and hence the log-likelihood functions are reformulated as

N N
LO:In) = [[p@alVur) =] £
n=1 n=1
and
N
log £(6: Yy) = _log L. (2.35)

respectively where

ffp (y1]x1) p (x1]|%0) p (X0) dXodx; forn =1,

L,
fp <Yn|xn)p (Xn|yn—1) dxn for n > 1.

Note that @ is omitted in £,, for notation simplicity. Also, £, is complicated
for n = 1 because the stochastic initial state vector xq is assumed. The repre-
sentation of the likelihood function here follows from Assumptions 2.1(i) and (ii).

Indeed, the parameter vector 0 is given by

- T
06— [X;)I—‘O, vech (Eo\o) Py, 71:b—|]\—f] 5
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where 1, = [51, vech (Q,)T, vech (Rn)T]T.

When n = 1, the derivative of £,, with respect to 0 is

3£ 0
ot // P YI|X1 X1’X0> (Xo) dX[)Xm

op (x1]x
// y1|X1 p 1‘ 0) ( 0) dX()Xm

+//p(y1|xl)p(X1!Xo) a(eo>d><odxl- (2.36)

When n > 1, the derivative of £, with respect to 0 is

oL, Op(yn|x, Op(Xn | V-
o= [Py e+ [ ool i, (28)

Recall that the recursive relationship of prediction and filtering densities of

the model state is

p (anyn—l) = /p (Xn|xn—1)p(xn—1|yn—1)dxn—17

p(Yn’Xn)p(XnD}nfl)
L, ’

p(XnD)n) =

for n > 1. Then, the recursive relationship of their derivatives with respect to 0

is given by

ap(xn|yn—1> _ / dp (Xn|xn—1)

00 00 P(Xp—1|Vp1)dxp 1
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+/p(xn]xn1) 3p(Xné‘19|yn—1)anh (2.38a)
~— 20 E—H{TP(Xanl)‘i‘p(YMXn)T}
 p(Xn| V) OLn

. 2.38b
L, 00 ( )
At this stage, Op(x1/)41)/00 is considered as the initial value of recursive

derivatives in (2.37) and it is obtained by

plalyn) = 0P [

P 1 (0
% = Z{%/P(Xﬂxﬂp(m)dm

sy [ OpBalxo) o iy

00
9 V) oL

(2.39)

Furthermore, the derivatives in (2.36), (2.37), (2.38) and (2.39) are rewritten

in the form of

dp(z)  Ologp(z)
%0 - 50 p(z),

where p(z) represents the densities p(x,,|Vn—1), p(Xn|Vn), p(X1|x0) and p(xg). Af-
ter the above expression is applied to (2.36), (2.37), (2.38) and (2.39), the recur-
sive relationship of derivatives of log-density is obtained directly. More explicitly,

they become

alng(Xn|yn—l>
00
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1 81 n|“n—
{/ B Xl 1)p(Xn|xn—1)p(X”—1|yn_1)dxn_1

p(xn|yn—1) 80
01 n—1|Vn—
+/ ogp(xael‘y 1)p(Xn|Xn_1)p(Xn—1|yn—1)an—1}’ (2.40a)
00
Ologp(ynlxs) | Ologp(xn|Vu-1) 1 0L,
ly x. — (2.40b)
dlog p(x1| 1)
00
dlog p(y1|x1) p(y1]x1)
00 p(x1| V1) Ly
o1 0l
x/{ Ogl(;sgxﬂxo) + O%%(XO)}P(XJXO)I?(XO)GZXO
1 0L,
1oL 2.4
Ly 00 (2400

and the derivative of the likelihood with respect to 0 in terms of the derivatives

of log-density becomes

_ /{alogp(ynb(n) +810gp(xn‘yn_1)

forn=2,...,

851
// 6logp Y1’X1) i dlog p (x1]x0) i dlogp (xo)
00 00
Xp (x1]%0) p (XO) dxodx;. (2.41a)
oL,
00

} P(Yn|Xn)P(Xn | Vn-1)dxp

(2.41b)

00 00

N.

Indeed, the log-density functions used in (2.40) and (2.41) are specified as
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and

log p (x0)

T 1 XX 1 xx\
_m7 log(27) — 3 log |35 — 3 (x0 — X0|0>T (20‘0) ' (x0 — Xop0)

log p (yn|%n)

—% log(27r) - %log |Rn| - % (Yn —h (Xn; €n))T RT_LI (Yn —h (X”; 571)) )
log p (Xn[%n—1)
" log(2m) — 10 Qul — 5 (% — £ (xuai €))7 Qu (00— F (a1:6,).

2 2

respectively. Since the estimation of the model state and hence the measurement

can be computed in Section 2.2, iterative estimations between parameter 8 and

the model state x,, by the EnGTKF imply the joint estimation of parameter and

model state by maximization of (2.35).

In order to derive the derivatives of log-density with respect to 6, the following

expressions (Schott, 1997, p.336) are required:

and

Jlog|A| Olog|A| 0]A| . T
= = |A ec (A D,,
dvech (A)" I|A| dvech (A)T Al vee (A4)
= vec (A_l)T D,,. (2.42)
Ovec (A1) o .
——— v 7 = —(A'®A D,,. 2.43
dvech (A)" ( ) (243)

with A~' = |A|~" A where D,, denotes the duplication matrix of order m such

that D,,vech(A) = vec(A), A is the adjoint of A and A is a m x m symmetric

matrix.

Now, consider the derivatives of log-density with respect to 6.
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dlogp (Xo)

8xg—|0
10 e
- _5(9)(—0T‘0 ((XO - XO\O)T (Eom) ' (Xo — Xo|0)>
= (xo—xo0)" (Z55) (2.44)
dlog p (x0)

Ovech (EBT(‘)) T

1 otog|m| 100 (o —xa0) T (Z) " (0~ xan))
2 9vech (ZBT&)T 2 Ovech (EB‘fS)T

1 XX T
= —§vec (20|0) D,

1

2 ((Xo — Xo0) ' ® (%0 - X0|°)T>

ovec ( f)‘f(‘)) !

dvech ( a’[‘))

1
= —5vee (55) Do,

+1 ((Xo - XO\O)T ® (%0 — XOIO)T> ((25{\)5)_1 ® (23\)6)_1> Do,

2
_ _%Vec (=) Dy,
1 - —_
5 (6o =x00)" (=5) ™) @ (00— x00)” (255) ")) Do
(2.45)
where mevech( B‘fg) = Vec( B‘r(‘)). The first term in the second equality of

dlogp (x¢) / Ovech(ZB‘rS)T is obtained by (2.42) while the second term is obtained

by first using the following identity (Schott, 1997, p.263):

tr (%0 = x00) T (Z35) ™" (%0 = x0) ) = ((x0 = Xo0)" & (x0 = Xop) ) vee (Z35)

and then by (2.43). Note that the derivatives corresponding to the components
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other than x| and vech( B‘f(‘)) are zero. Note that

dlogp (ynlxn)
oET

n

— (y,—h(x, ) R E)
dlog p (ynlxs)
dvech (R,)"
= —%vec (R,)" D,,,
(50~ m €))7 (v~ h(x,s€)T) (R @R, D,
= —jwec(R,)D,,
b (0 =m0 &) R ) @ (90~ B (0 €) R, ) Do,
(2.47)

where D,, vech(R,) = vec(R,). Note that the derivatives corresponding to the

components other than £, and vech(R,,) are zero. Then,

dlogp (x,]%Xn-1)
I3
= (x5 — f(xnl;en»TinW, (2.48)

n

0 IOg p (Xn |Xn71)
dvech (Q,,)"

= —%VGC (Qn)T D,
—l—% ((xn —f(xp-1:€,))" @ (%0 — £ (Xp_1; 5n))T) (QEI ® Q;l) D,,,

1
= —§V€C (Qn)T D,

1

5 (6o = £ 13607 Q1) @ (00— £ (x013€,))7 Q5" ) ) D
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(2.49)

where D,,,_vech(Q,) = vec(Q,). Note that the derivatives corresponding to the
components other than £, and vech(Q,,) are zero.

Indeed, the derivatives of the log-densities and hence those of the likelihood
can be estimated by the Monte Carlo method because they can be considered as

the expectation terms. Specifically,

00
_ oy [[2lomrtraba)] | Totospx )] Tologp(xy)]®
- : 00 00 00 ’
k=1 j=1
(2.50a)
oL,
00
_ o | [2logplaban) 1 T0logp(xalYur)] (2.50b)
n 00 00 ’ '
k=1
and the subsequent derivatives are
alogp(xn|yn—1) (j)
00
_ L 35U { 1t ] 6
p(xn = ﬁnﬂnfl‘yn—l) k=1 08
0log p(xn1)Vu-1)]"
2.51
+ [ 20 , (2.51a)
9log p(x,|,) TV
00
~ [0logp(yalx.) ] | [0logp(xalVui)]¥ 1 OL,
- { 00 * 06 7 o6 (2O
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LA

00

] (4)

00

_ dlog p(y1]x1) G) 1
- TSk pom
> k1 Bi

K
X ZB?”“) { {
k=1
1 0L,
Lo

and

dlogp (xo) |
ox T

00

_9logp (o) |
Ovech ( O‘O)T_

{mogp (¥nlxn) ]
o€

n

Ologp (ya[x) |
Ovech (R,,)"

7 (k)

{310gp (Xn|%n-1)
oeT

n

(J:F)

D108 p (Xu[%n 1)
Ovech (Qn)T

(k)

for-jakzl,..., u0|0

N where

Dlogp (xafx0)] ", [9logp (x0) ]
00 00
(2.51c¢)
i (Zo0)
_§Vec(§§;)Tsz (2.52a)

XX

1 ~T(k)  OXX Tk B
T3 (( 0|E) )(Eol()) 1) ® <u0|EJ )<20|0) 1)) D,

(2.52b)
NP . (4)
ViR {M} : (2.52¢)
o agn xnzﬁ(jl) )
1 D \T
_§vec(Rn) D,,,
1/ o - ~
(12 B @ (310,8;7)) Dy, (2520)
(k)
G700 S of (x,_1;&,,)
T T 2.52
n\n lQ |: 861’ L s ( e)
n—1=X, 1jn-1
1 A \T
_§VeC(Qn) D,.,
1/ /i A ~
< ((EhQ) @ (8755Q,") ) Du. (2:520)
k)~  ~Gik L o R
= X(()|8 — Xp|o0, ui]'n)_l = X51J|Zz—1 — f(X'El—)Hn—l;gn)a
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A Vo — h(ﬁ(k) .En% BUR — p(x, = < 1%, = <®) ), ek —

njn—1 nin—1’ nln—1 n—1jn—1
p(Ynlxn = QSTZLA) for n > 1, ﬁgré is drawn from the density p(xo), L, is the
likelihood of the nth observation evaluated at 6 = 8.
In the case of time-invariant parameters, that is, ¥, = --- = ¥y = 9, the
estimated parameter vector 0 is reduced to

~ ~T17T

0 = |:§;)|—|0’ VeCh(i[NO)T’ 1# )

and the derivatives of the likelihood function are followed by the same procedures
easily. Thus, they are not reproduced here for convenience.
Then, the components in the observed Fisher’s information matrix 7 (5) in

(2.34) can be constructed from the outer product of (2.50). Specifically, Z(0) is

estimated by

N = o
= 1~ 0L, 0L
10)=—= > ———.
©) N = 06 96"

~

Once all estimates of 7 (/0\) are obtained, the standard errors of 0 are just the
square roots of the diagonal elements of (Z (5))_1 Although the first derivatives
given in (2.50) show the feasibility of the estimation of standard errors, it may
be impractical as the number of parameters increases faster than that of observa-
tions resulting an identification problem. Nevertheless, these first derivatives can
provide the general framework for models in the reduced form of (2.1) and (2.2),

for example, models with time-invariant parameters or the model in Section 2.7.
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2.6 Extension to Non-Gaussian Prediction Den-
sities

In previous sections, the prediction densities for the state vector x, and the
measurement vector y,,, that is, p (x,|V,—1) and p (y,|Vn_1), are asymptotically
Gaussian. However, practically, they may deviate from the Gaussian density even
if the measurement and state errors are Gaussian. This in turn leads to suggest
that the prediction densities p (x,|V,-1) and p (y.|Vn_1) are approximated by
the Gram-Charlier densities. Indeed, they are obtained from the Gram-Charlier
type-A series expansion around Gaussian densities. Specifically, for a random
variable X with mean zero and variance o2, the Gram-Charlier expansion of a

density function f (z) around a Gaussian density N (z;0,0?) is given by

f(z) =N (z;0,0%) [1 + i dsHs (:L’):| , (2.53)

where

202

N (a3p.0%) = (2m0%) P exp <—(~T—_/~L>Z) ,

and Hs (z) denotes the Hermite polynomials of order s. Following Kendall et al.

(1977),
H. (x) foo (—1)' $S*2iW!_2m if s is even,
s\L) =
SN2 (~1) e i s s odd.

As mentioned in Cramér (1946, p.223), the convergence of the series in (2.53)

is ensured when [ exp (22/4)dF (z) < oo for b — oo where F (z) denotes
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the cumulative distribution function of z. Practically, a finite and small number
of terms, b, is always used to approximate the density function f (z). On the
other hand, the definition of the Gram-Charlier density in (2.53) faced a problem
that the positive estimated density is not guaranteed without certain restrictions
imposed on the parameters d,’s. In the univariate case, Jondeau and Rockinger
(2001) showed the positivity conditions on the parameters dy’s and developed a
two-step procedure for parameter estimation. Alternatively, Perote and del Brio
(2006) suggested a restricted form of the Gram-Charlier density for a random
variable X with mean zero and variance o2, that is,

b 2
f (@) =N (2;0,0%) |1+ Z dsH, (x)] %, (2.54)

where Kk = 1+ 2221 d?s!. Indeed, this specification of the Gram-Charlier density
can lead to a separable form of the log-likelihood function, which can be computed
more efficiently,

X 2
log f (z) = log N (2;0,07) +log |1 + stHs (l‘)] — log k.

s=1

However, in the multivariate case, the situation becomes more complicated
because of the correlations among variables and more complicated function of
Hermite polynomials. Perote and del Brio (2006) specified a restricted form of
multivariate Gram-Charlier density to ensure positive density rather than im-
posing restrictions on the parameter dy’s. In fact, an m-variate Gram-Charlier

density for a random vector X can be specified in the following two forms:
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F(x;p,%,d)

_ 1 . . . 2 - 1 b ?
(2.55)
or
F(x;p,%,d)
L ) v eps) £ T 1y i
R (x;0,%2) + g fl?z,,% ; C_z L (25 — Mi)} ;
(2.56)

where z;, it; and o represent the ith element of x, the ith element of p and the
1th diagonal element of X respectively, x; = 1 + ZS ,d%s!and ¢; = k; — 1. The
specifications (2.55) and (2.56) are different from those specified by Perote and
del Brio (2006) in which F (x) was a density of random vector X with mean zero
while the density with non-zero mean random vector X is specified here. Note
that both specifications (2.55) and (2.56) cannot be reduced to (2.54) by putting
m = 1 directly. Nevertheless, as shown in Perote and del Brio (2006), one sound
feature of (2.55) and (2.56) is that the marginal density of a variate in X in (2.55)
and (2.56) can also be expressed in the univariate versions of (2.55) and (2.56)
respectively.

Returning to the current situation, the ensemble mean and variance for pos-

sible non-Gassianities of p (x,,|V,—1) and p (y.|V.—1) are estimated by the maxi-
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mization of the likelihood for (2.55) or (2.56) rather than using the simple averages
in (2.10), (2.11), (2.13) and (2.14). Focusing on the multivariate Gram-Charlier
density (2.55), the ensemble mean and variance of state vector x,, given })),,_; are

estimated by the maximization of the function

K
(in\nq, 2::;_1, dx’n‘n,1> = argmax H f(ﬁik‘ifl; x, %, d),
x,3,d
k=1

whered = (dy1, .-, dimy, -+ -y ds1y -+ - s dsmyy -« - s Aoy s - - -, dbm, ). Note that the or-
ders of Hermite polynomials are restricted to b in all cases for simplicity although
this restriction is not essential.

Similar operation can be applied to p (y.|V.—1) as well, that is, the ensemble

mean and variance of measurement vector y, conditional on ),_; are obtained

by the maximization of the following likelihood function:

K
~ Yy ~
(ymn—la Enm,l, dy,n\n—l) = argmax H F(ySTZL—l; Yy, 27 d)a
y,2.d k=1

where the dimension of d is conformable with that of y.

In the case of Gaussian density, the ensemble members of filtering density
p (%,|Yn) can be obtained by the generalized least squares method. Now, the en-
semble members of filtering density p (x,|),) in the current situation are obtained

by maximum a posteriori (MAP) (Sorenson, 1980, p.199).

iiﬁi = argmaxp (X,|M)
Xn ERMa

= argmax [p (yn|%) P (%] Va_1)]

Xn ERMx
= argmax V(v — B} £,);0, R)FEY; X)) 1 201 dnin1):
P erma
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(k)

can be ex-
nin

Similar to the Gaussian case, the ensemble of filtered state X

pressed as a function of y%k) and ig‘fifl although the formulation becomes more
complicated. Then, the ensemble mean and variance for filtering density can be

found by the maximization of

K
<)~cn‘n, f):‘);, ’&x7n‘n> = argmax H f(ﬁfﬁ;, x, %, d).
k=1

x,3,d

Furthermore, the smoothed state vector x,, and measurement vector y,, can be
derived in a similar sense because they relied on the derivation of the prediction
densities of the state vector x,, and the measurement vectors y,, ..., yn. Together
with the conditional density p(y,|x,), the smoothed estimates ¥,y and X,y can
be computed easily.

For parameter estimation, the likelihood function is no longer expressed in
terms of approximated Gaussian densities. Instead, the unknown parameters are

estimated by maximizing the following likelihood function:

)
I

argmax L (6; Vy)

OcRp

N
= argmax [ [ p (yalVa-1)
n=1

OcRp
N
~ <YY =1
= argmax H f<yn7 Ynn—-1, 2n|n—17 d)’v"‘”_l)‘
O€RP n=1

2.7 Empirical Applications

In this section, the assimilation of data by EnGTKF is focused on the time-

varying vector smooth transition autoregressive model (TV-VSTAR) which was
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a multivariate extension of Lundbergh et al. (2003) but a simplified version of
He et al. (2005). Here, the case of a two-regime transition function and the same
transition function for all measurements in y,, is considered. Specifically, we can

consider the following p-order two-regime TV-VSTAR model for the measurement

vector y,,.
] , . ]
Yo = |[(1=G1(yn-d)) ] ) Q1,¥n—j + G1 (Yn-a) 21 P2 jyn—j| (1 = G2 (n))

J= J=

- ) ) -

(1= G1(yn-d)) 21 ®3,;yn—j + G1(Yn-a) 21 Py jyn—j| G2 (n)

J= J=

+Va, (2.57)

forn =1,...,N, where v, ~ N(0O,R), y, = (ylm,...,ymy,n)T is a (my, x 1)
column vector, ®,,’s are (m, x m,) coefficient matrices for r = 1,...,4 and
s=1,...,p, transition functions G; (y,_4) and G5 (n) are defined as G (y,_q) =
[+ exp {=7 IT% Win-a— 1) }] " and Go(n) = [1+exp{—y,(n—e)}]”
respectively with v;,7, > 0. Note that both of them satisfy the condition
0 < Gi(-),Ga2(-) < 1. Here, the model (2.57) is denoted as VSTAR(p,d).
Without loss of generality, assume that 1 < d < p. In state space form, the

measurement and transition equations for (2.57) can be rewritten as

Yn = Imy 0 --- 0 |Xn+Vp, (258&)
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Yn ‘I’l U \Ilpfl ‘Ilp nn
Vo1 I,, -~ 0 0 0
Yoopi1 o -~ L, O 0

forn=1,..., N, where n,, ~ N (0,X"),

W, =(1—02,) (1 —g10) Pri + 91.0Poi] + 920 [(1 — g10) P3i + 910 Pus]

fori =1,...,p, g1, = G1(¥n-a) and g2, = Ga(n). After reparameterization,

the vector autoregressive coefficient W, consists of the time-invariant component

(1—0g10) P1i + 1.2 P2s,

and the time-varying component

Gon (1 —g10) (L3 — 1) + g1.0 (Pai — P2y)]

According to (2.57) and (2.58), the nonlinearity of the model arises from the
randomness of coefficient matrices ¥;’s which are determined by the transition
functions G (y,,—a) and Go (n). These two functions share the same property that
they are a type of logistic curve and always transit between zero and one. Focusing
on G1 (Yn—a), when the level of measurement y,_, falls below the threshold level
c1 = (c11,¢12), the function Gy (y,—q) moves between 0 and 0.5. This implies
that the measurement y, moves between the regimes with coefficients ®, ;’s and

®;;’s more probably. On the other hand, if the measurement y,,_4 jumps above
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the threshold level ¢y, the function G; (y,_4) moves between 0.5 and 1. the
measurement y, moves between the regimes with coefficients ®,,;’s and ®4,’s
more probably. Similar interpretation is applied to the function G (n). It allows
the measurement y, to move between the regimes with the coefficients ®;;’s
and ®,,’s more probably when n < ¢;. When ¢ > c¢;, the measurement y,
moves between the regimes with the coefficients ®3;’s and ®,4;’s more probably.
The purpose of the logistic function for G () and Gs (-) is to allow the smooth
transition between regimes.

When both Gy (-) and G (-) are considered together, the situation becomes
more complicated. At the beginning of the time series, the measurement y,
transits between the regimes with coefficients ®,,’s and ®,,’s more probably
and the level of y,,_; determine whether the coefficients ®;;’s or ®,;’s play the
role of movement. As the time goes by and after time n = ¢, the movement of
measurement y,, is determined by ®;3,’s and ®,,’s more probably. The smooth
transition between coefficient ®3;’s and ®4,’s determined by the level of y,,_4.
The speed of transition is determined by the parameters v, and 7,. When both
of them are large, the model coefficients can transit between regimes very quickly.
In extreme cases, when v, and 7, become infinite, the model coefficients switch
between regimes instantaneously and the model (2.57) is reduced to the case
of self-excited threshold autoregressive (SETAR) model by Tong (1983). On
the other hand, when both G, (-) and G, (-) are constant, (2.57) is reduced to
standard case of vector autoregressive model.

In vector form, the unknown parameters of (2.58) in the corresponding likeli-

hood function are represented as
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9 — [XOTK), vech(Sop)T, €7, vech (R)" ,vech(zﬁ)q ,

where &7 = [vec(®1,1)7,...,vec(®u,) . 71, Vas €11y - - - s Clim, » C2] . These unknown
parameters are estimated by maximization of (2.30) while their standard errors
are computed by (2.50) in which the derivatives of h (-) and f () with respect to

€7 are required. Obviously,

e ’
for n = 1,...,N. On the other hand, the function f (x,_1;&) for the transition

equation in (2.58) can be written as

p
i=1 \IIZYn—z

f (Xn—l; 5) = Y

Yn—p

Then, the derivative of f (x,_1; &) with respect to & is partitioned into two

parts, namely,

of (Xn—l; 5)
Ovec(®11)7, ..., vec(®y )T, ..., vec(Py1)T, ..., vec(Py,)T]
[ 8‘1’1)’7171 .. a‘I’pynfp . 8\I’lyn71 . 8‘Ilpyn7p i
Ovec(®1,1)T Ovec(®1,p)T Ovec(®4,1)T Ovec(Pap)T
0 . 0 . 0 . 0
0 0 0 0
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and

af (Xn—l; E)
a [717 Y2, 01,17 s 7cl,my7 02]
17’;’:1 (?;Iy’lz Yn—i f:l g_:zYn—z f:l %Yn—i Zle 8?1‘,1:13, Yn—i le %‘i’; Yn—i
0 0 0 0 0
0 0 0 0 0
where for 1 =1,...,p,
8\IliYn—i 6@1 i¥Yn—i
———= = (l-—g1n) 1 —920) ————,
ovec (<I>1,i)T (1= 912) (1 = g20) ovec (<I>1’i)T
OV, yn—i — g (1 _g ) 8@2,z’)’n—z
Ovec (CIDQJ-)T b 2 8vec(<I’21)T’
OV, yn—i . (1 ) (9‘1’3,1‘}’714
ovec ((I)g’i)—r Jin) 2 ovec (@371')1— 7
oWiyni 0Py iyn—i
dvec (B4;)" Sndn dvec (®4,)"
D;iyn_i .
33,—}’T = yr ®1I,, for j =1,2,3,4,
Ovec (®;,)
= (1 —g2n) (P2 — P1;i) + gon (Psa; — P3; ( : ) ;
= - ) )+ g i (2
= (1 —g2n) (P2 — P1 n (Pa; — Psi :
Gt = (0= 000) (B = #0) 2, (B~ 2] (52
forj=1,...,m,,
= (1 =0g1n) (P3; — P1i) + gin (Pa; — Poy ( 7 ) ;
= 0= )+ g1 (2
= 1 — n @ i @ i n @ T (ﬁ 7 : )
B = T ) (B @) g (B )] ()
I91n [T Wkn—a — cre) exp { =71 TTiy Wkn—a — 1) }
— o 5 ,
O (1 + exp {—’71 L2 Wrn—a — Cl,k)})
991 T Hky&j (Ykn—d — C1,5) €XP {_71 HZL:yl (Ykyn—d — Cl,k)}
m 2
dcyj (1 + exp {_71 IL:2 Wrkn—a — Cl,k)})
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for j =1,...,my,

992 _ (n—c)exp{—7,(n— )}
97 (1+exp{—y, (n—c2)})*
O92n  _  vaexp{—72(n — )}
Ocy (1+exp{—7, (n—2)})*

Before the illustration of the assimilation of empirical data by the TV-VSTAR
model, numerical simulations, which show the validity of the EnGTKF filter, are

given in the following sections.

2.7.1 Numerical Simulations
2.7.1.1 Vector Autoregressive Model

In state space form, the observations in the vector autoregressive (VAR) model

of order 1 are generated in the following form:

Yo = Xp+Vy,

x, = ®x,1+mn,.

for n = 1,...,100, where y, = (yl,n,ygm)T is a (2 x 1) column vector, ® is a

coefficient matrix of order (2 x 2). The values of parameters are specified below:

0.8 —-0.2 0 05 0
¢ = , Xo N ) )
-0.2 0.7 0 0 0.5
0 1.0 0.3 0 1.6 —-0.2
v, ~ N ) y My ™ N )
0 0.3 1.5 0 —0.2 18
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From Figure 2.1, one can see that the prediction, filtering and smoothing by
the EnGTKF perform well over the sample. The main reason is attributed to
the linear feature of the state space model. Then, the prediction and filtering
densities of state and measurement variables do not deviate from the Gaussian
density. Hence, consistent estimates of the ensemble mean and variance can be
achieved easily. From Figure 2.2, the interval estimates of measurement variables
are displayed as well. The confidence limits are approximated by the asymptotic
Gaussianity due to the ensemble size. Obviously, due to the asymptotic normal-
ity of estimated ensemble means and stable estimates of ensemble variances, the
widths of confidence intervals do not change over the sample dramatically. Fur-
thermore, the confidence limits of predicted model states are wider than those of
filtered and smoothed model states. Intuitively, the filtered and smoothed esti-
mates are obtained by using more information and then more accurate estimates

are obtained.

2.7.1.2 Time-varying Vector Smooth Transition Autoregressive Model

The lags chosen for simulation of model (2.57) are m, =2, p=1 and d = 1, that
is, a bivariate VSTAR(1,1) model. The detailed specification of parameters are

given below:

0.8 —0.2 0.5 -0.3
P, = , @y = )
—-0.2 0.7 —-0.3 04
0.6 0.1 0.2 -0.01
3, = , Py = )
0.1 0.2 —0.01 0.6
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0 05 0
xg ~ N , Y =87, 7, =2.7,¢1 = (—0.3,-0.5) , co = 20,
0 0 0.5
0 1.0 0.3 0 1.6 —0.2
VTL ~ N ) ) "7n ~ N ’
0 0.3 1.5 0 —-0.2 1.8

forn=1,...,100.

Unlike the previous example, although the measurement equation is still linear
in this case, the transition equation is not linear any more. Indeed, the coeffi-
cients in the transition equation vary with the level of measurement y,. The
prediction and filtering results in Figure 2.3 show that the predicted and filtered
measurement variables move along with actual values of measurement. Indeed,
the state vector x,, is updated efficiently as shown in Figures 2.3(b) and (e). This
can be explained by the similar reason as in previous example. Furthermore, the
confidence intervals in Figure 2.4 show the performance of EnGTKF under this

model is similar to that under previous model.

2.7.1.3 A Nonlinear Gaussian Simulation Model by Kitagawa

Here, Gaussian means that the measurement and state errors are Gaussian. The
model being studied in this section was originated in Netto et al. (1978) and then
studied in Kitagawa (1987, 1991, 1996, 1998) for smoothers. Indeed, the model

is given by

2
_ Tn
Yn = g + Un,
25z,
T, = 0.5z,_1+ * 21 + 8cos(1.2n) + uy,
14+



where v, ~ N(0,1), u, ~ N(0,1), 2o ~ N(0,1) for n =1,...,200.

According to Figure 2.5(a), the simulated measurement y,, fluctuates between
0 and 20 and below 0 occasionally because of the term x? and the noise v, in the
measurement equation. For the simulated state x, in Figure 2.5(b), the values
always fall within the range —20 and 20. Due to the presence of the deterministic
cosine function in the transition equation, together with the stochastic component
of the equation, the state x,, proceeds periodically over a number of time points
above zero and continues the oscillations below zero.

The prediction and filtering results by the conventional EnKF are shown in
Figures 2.5(d) to (f). Several unexpected spikes of prediction and filtering of
measurement and state variables are observed in the diagrams. These estimates
can be explained by the fact that the prediction and filtering densities of state
x, deviate from Gaussian. The same reason can also be applied to the case of
measurement y,. A pick of observation at n = 50 shows their multimodal condi-
tional densities. In Figures 2.6(a) to (c), the prediction density of y, is skewed
to the right. On the other hand, when the prediction and filtering densities of
measurement and state variables at n = 100 are investigated in Figures 2.6(d)
and (e), the situation is much better than the previous case. The prediction den-
sity of y, is not skewed to the right although certain bimodal feature is observed
near the tail of the density. As a result, the conventional EnKF cannot provide a
satisfactory result of the predicted mean of x,, and ¥, and the method discussed
in Section 2.6 is attempted here, that is, the Gram-Charlier density is used to
approximate these densities.

To estimate the ensemble mean and variance Gram-Charlier density, one

should choose the order of the Hermite polynomial. Here, the order is chosen
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by the one with minimum RMSE in the prediction stage and the results are

shown in Table 2.1.

Table 2.1: RMSEs of predicted z,, and y,, under various orders of Hermite poly-
nomial, b

Order Yn Tn
1 5.2239 9.3915
2 5.6118 9.1596
3 6.4111 10.6886
4 6.9949 11.4211
5 7.8988 12.2895
6 7.6440 11.5733

From Table 2.1, the RMSE of v, increases with the order of Hermite poly-
nomial while that of x,, is minimized at order b = 2. Hence, the diagrams in
Figures 2.5(a) to (c) are referred to the case of order b = 2. From Figure 2.5,
the spikes in the predictions of the measurement 1y, and the state variable z,
disappear. However, the prediction and filtering results of the state variable z,,
are not totally satisfactory. Two possible reasons are suggested here. Firstly,
the periodical term 8 cos(1.2n) induces the process z,, to be periodic and hence
non-ergodic. Then, Assumption 2.1(iii) is violated and the performance of EnKF
is accountable in Figure 2.5. Secondly, the method discussed in Section 2.6 can
solve the problem in the conditional densities of y,, and x,, partially. From Table
2.1, the RMSESs of predicted y, and x,, increase quickly when the order of Her-
mite polynomial increases. This is possibly due to the divergence feature of the
Gram-Charlier density with high order of Hermite polynomial, as demonstrated
by Blinnikov and Moessner (1998). Nevertheless, since the prediction of the mea-
surement variables is more important than that of the state variables in many

real applications, under this simulation model, the EnGTKF still outperforms
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the conventional EnKF marginally.

2.7.2 Algal Bloom Data

To demonstrate the use of EnGTKEF with empirical application, a bivariate model
of algal bloom data is assimilated by the TV-VSTAR model in (2.57). The TV-
VSTAR model is chosen due to its capability of capturing the asymmetric cyclical
fluctuations during bloom and non-bloom periods. In this application, the bivari-
ate model contains dependent variables of standardized chlorophyll fluorescence
(CHL) and standardized dissolved oxygen concentration (DO) which were ob-
tained from the algal bloom dynamics field monitoring station of the University
of Hong Kong at Kat O, Hong Kong. The full sampling period covered between
2000 and 2004. The detailed data description was provided by Lee et al. (2003,
2004).

In this empirical application, the daily observations during 2000-2001 are se-
lected to perform the in-sample estimation. Before the estimation of the model
parameters, the lag parameters p and d in the TV-VSTAR model should be
identified firstly. A common approach is the usage of the Akaike information
criterion (AIC) and the lag parameters p and d are selected with the minimum

AIC. Indeed, the AIC is defined by

~

AIC = —2log L(8; V) + 2dim(6),

-~

where dim(6) represents the number of parameters in the model.
The results of AICs of the models are presented in Table 2.2. Clearly, TV-

VSTAR(1,1) model is chosen among the model candidates, with AIC=14318. On
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the other hand, VAR(1) model is chosen with AIC=14368. When the RMSEs
of both models are compared, the prediction of CHL by the TV-VSTAR model
is outerperformed by the VAR model except when p = 1 and 3. Furthermore,
the prediction of DO by the TV-VSTAR model improves that by the VAR model
generally. To highlight the results of VSTAR(1,1) model, the RMSEs of CHL and
DO are 0.7174 and 0.5488 respectively and they are smaller than those of VAR(1)
model. From Table 2.3, the in-sample predictions of both measurements by the
univariate versions of TV-VSTAR and VAR models demonstrate the domination

of their results over those by multivariate models.

Table 2.2: In-sample performance of TV-VSTAR and VAR models where the
columns of CHL and represent the RMSEs of CHL and DO respectively. The
columns of AIC represent the AICs of corresponding models.

TV-VSTAR VAR
D d CHL DO AIC CHL DO AIC
1 1 07174 0.5488 14318 0.7713  0.6036 14368
2 1 15319 0.5466 47245 0.6952  0.6127 14761
2 2 07110 0.5921 51778 0.6952  0.6127 14761
3 1 07614 0.6332 34521 0.8117  0.7173 42484
3 2 08070  0.7277 45472 0.8117  0.7173 42484
3 3 08168 0.7323 47360 0.8117  0.7173 42484

After the determination of the lag parameters of TV-VSTAR model, the pa-

rameter estimates and its standard errors are given in Table 2.4.
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Table 2.3: In-sample performance of TV-VSTAR and VAR models (univariate)
where the columns of CHL and DO represent the RMSEs of CHL and DO re-
spectively.

TV-VSTAR VAR

D d CHL DO CHL DO

1 1 0.7044 0.5473 0.7329 0.5595
2 1 0.6982 0.5796 0.7116 0.5410
2 2 0.6982 0.5910 0.7116 0.5410
3 1 0.7015 0.5621 0.7016 0.6180
3 2 0.7015 0.5621 0.7016 0.6180
3 3 0.7016 0.5620 0.7016 0.6180

Table 2.4: Parameter estimates of VSTAR(1,1) model by EnGTKF for CHL and
DO where the numbers insides the brackets represent the corresponding elements
within the matrices or vectors. The p-values are approximated by the asymptotic

Gaussianity.

Parameters Estimates Standard Errors p-values

Xo[o (1) 0.0710 0.0332 0.0323
Xo(0 (2) —0.1093 0.0650 0.0925
o (1,1) 0.2212 0.1167 0.0581
o (2,1) —0.3935 0.2582 0.1275
o0 (2,2) 0.7435 0.4353 0.0877
&, (1,1) 0.6976 0.3297 0.0343
®,,(1,2) 0.1716 0.1107 0.1211
@, (2,1) —0.1011 0.0839 0.2282
®,,(2,2) 0.8898 0.3725 0.0169
Py, (1,1) 0.7102 0.3241 0.0285

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values
®,,(1,2) —0.0929 0.0633 0.1420
®y,1(2,1) —0.2196 0.0948 0.0205
®,,(2,2) 0.9011 0.4418 0.0414
®3,(1,1) 0.7861 0.3277 0.0164
®3,(1,2) 0.0603 0.0434 0.1650
3, (2,1) 0.0579 0.0319 0.0699
3, (2,2) 0.9999 0.5415 0.0648
®,4(1,1) 0.6165 0.2850 0.0305
®,,(1,2) —0.0333 0.0217 0.1246
®,1(2,1) 0.3788 0.2175 0.0816
®,41(2,2) 0.7682 0.3298 0.0198
R(1,1) 0.1732 0.1006 0.0849
R (2,1) —0.3283 0.2170 0.1303
R (2,2) 0.6498 0.5080 0.2009
»7(1,1) 0.2999 0.1357 0.0271
¥7(2,1) —0.6075 0.2912 0.0369
%7(2,2) 1.2306 0.9330 0.1872
o 19.8845 11.2258 0.0765
Yy 20.1574 11.8266 0.0883
c; (1) 0.0098 0.0075 0.1898
ci (2) —0.0236 0.0141 0.0936
Co 10.1231 4.5180 0.0251
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According to Table 2.4, almost all parameters are significantly different from
zero. When the parameter estimate of c; is investigated, the values of 0.0098
and —0.0236 correspond to the threshold level of standardized CHL and DO at
which the transition between bloom and non-bloom periods occurred on average
respectively. Furthermore, the time-varying transition function indicates that a
10-day cycle is observed for CHL and DO to change coefficients on average.

To see the in-sample prediction performance of the TV-VSTAR model, the
first 100 in-sample estimation of CHL and DO are presented in Figure 2.7. Refer
to Figure 2.7(a), the prediction of CHL is reasonably well including the peaks
at n = 6, n = 33 and n = 66. When the filtering result of CHL is considered,
the filtered values of CHL are sufficiently close to the actual values. From Figure
2.7(c), the smoothers of CHL and DO perform well in a sense that the actual
movements of both variables are reflected in their smoothed values. In Figure 2.8,
the estimated confidence intervals in prediction, filtering and smoothing stages
shows that the performance of EnGTKEF is fairly stable for both CHL and DO.

As mentioned in Lee et al. (2003, 2004) and Muttil et al. (2004), algal blooms
occurred frequently during July 2001 and October 2001. This also initiates the
study of the predictability and filtering of TV-VSTAR model by EnGTKEF for this
period. The estimated CHL and DO and their interval estimates are displayed
in Figures 2.9 and 2.10 respectively. The RMSEs of standardized CHL and DO
within this period are 0.6259 and 0.6385 respectively and they are comparable
with the results in Lee et al. (2004) and Muttil et al. (2004). In fact, the
RMSE of CHL was 0.5345 in the paper of Lee et al. (2004) after standardization
where the artificial neural network was used to perform the prediction. On the

other hand, Muttil et al. (2004) produced the RMSE of 0.4793 for CHL after
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standardization in which the genetic programming was applied to predict CHL.
Nevertheless, one should emphasize that only a bivariate model with 2 lags for
prediction is considered.

From these figures, the in-sample prediction by TV-VSTAR model seems to
capture the algal blooms at n = 421 quite well. When the results of filtering
are investigated, it seems that the observations can be assimilated very well even
in the cases of spikes. Therefore, it is interesting to investigate the prediction
and filtering densities of CHL and DO and they are shown in Figure 2.11 where
the prediction and filtering density of CHL and DO at n = 421 and n = 431
are produced. From the figures, even if the prediction and filtering densities of
CHL and DO deviate from the Gaussian density a bit, the assimilations of mea-
surements CHL and DO are still successful. This also implies that the nonlinear
updating equation is not very sensitive to the assumption of Gaussian density
under current empirical application.

To assess the out-of-sample prediction performance of CHL and DO in 2002-
2004, their RMSEs and AICs under various orders of the TV-VSTAR models are

reported in Table 2.5.

Table 2.5: Out-of-sample performance of TV-VSTAR and VAR models in 2002-
2004 where the columns of CHL and DO represent the RMSEs of CHL and DO
respectively. The columns of AIC represent the AICs of corresponding models.

TV-VSTAR VAR
CHL DO AIC CHL DO AIC
0.3061 0.4638 4336 0.4846 0.4979 5787
0.3743 0.4605 25533 0.2447 0.5672 3675
0.3832 0.4587 35194 0.2447 0.5672 3675
0.4201 0.4859 22477 0.4573 0.4920 25661
0.4670 0.4993 31160 0.4573 0.4920 25661
0.4800 0.4991 33207 0.4573 0.4920 25661

W oW W N [T
SCRE CR S NN
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Table 2.6: Out-of-sample RMSEs of TV-VSTAR and VAR models in 2002-2004
(univariate) where the columns of CHL and DO represent the RMSEs of CHL
and DO respectively.

TV-VSTAR VAR

D d CHL DO CHL DO

1 1 0.5964 0.4617 0.4990 0.4690
2 1 0.3309 0.5060 0.4683 0.4627
2 2 0.3314 0.5222 0.4683 0.4627
3 1 0.3387 0.4567 0.3386 0.5021
3 2 0.3392 0.4567 0.3386 0.5021
3 3 0.3392 0.4569 0.3386 0.5021

From Table 2.5, the performance of the VSTAR(1,1) model is still better
than that of the other TV-VSTAR models and this is consistent with the in-
sample prediction performance. Surprisingly, the out-of-sample prediction of CHL
by the VAR(2) model is better than the other models and an improvement of
accuracy over the TV-VSTAR models is nearly 20%. Nevertheless, the out-of-
sample prediction of DO by the TV-VSTAR model is better and this is different
from its in-sample prediction performance. The univariate prediction in Table 2.6
demonstrates the consistency of model performance during in-sample prediction.
In general, the RMSEs in Table 2.6 are smaller than those in Table 2.5 except
the VSTAR(1,1) model.

The out-of-sample predictions of CHL and DO by the VSTAR(1,1) model
are shown in Figure 2.12. The prediction performance of CHL during the start
and the end of the sampling period is reasonably well even when the variation
of CHL is larger relative to the remaining observations during the out-of-sample
period. Furthermore, the prediction of DO is satisfactory over the full out-of-

sample period.
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2.8 Conclusion

In this chapter, a new filter EnGTKF is proposed in which the conventional EnKF
is extended in two directions. Firstly, the nonlinear updating equation is derived
based on the Gaussian density assumption of the measurement and state errors.
Under the Gaussian assumption, together with the use of Goldberger-Theil’s
mixed estimation, the filtered state can be obtained by the method of generalized
least squares. Then, the ensemble mean and variance of state vector x, are
estimated by the ensemble averages. Secondly, when the prediction densities of
the measurement and state vectors, y,, and x,,, deviate from that of Gaussian, the
multivariate Gram-Charlier density is suggested to approximate the non-Gaussian
densities. The ensemble mean and variances are obtained by the maximization
of the corresponding likelihood functions. Under the non-Gaussian prediction
densities, the generalized least squares method becomes not robust enough to
estimate the filtered state. As a result, the MAP approach is used to derive the
nonlinear updating equation. As in the case of prediction densities, the ensemble
filtering mean and filtering variance are estimated by the maximization of the
likelihood function.

To estimate the model parameters in the multivariate state space model, an or-
thogonal transformation technique is suggested to ensure the positive definiteness
of a variance-covariance matrix. In addition, a hybrid approach of optimization
procedure is suggested where the localized stochastic search algorithm is incorpo-
rated with the local optimization procedure, quasi-Newton say, to estimate the
parameters. To draw statistical inference on the parameters, a recursive estima-
tion method of the derivative of the likelihood with respect to the parameters is

provided and hence the observed information matrix can then be estimated.
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In the numerical simulations of the VAR and TV-VSTAR models, the estima-
tion of the state variables shows a satisfactory result in prediction, filtering and
smoothing. In the case of nonlinear simulation model by Kitagawa, the prediction
of measurement variable v, is satisfactory after choosing the appropriate order of
Hermite polynomial while that of state variable z,, is not completely satisfactory
due to the presence of the sinusoidal component.

Furthermore, an empirical application of EnGTKF is illustrated for the algal
bloom data in Hong Kong. However, since its measurement equation is linear in
the state variables under TV-VSTAR model, its performance should be equivalent
to the conventional EnKF'. In this study, the amount of standardized chlorophyll
fluorescence and standardized concentration of dissolved oxygen in water are the
measurement variables in the TV-VSTAR and VAR models. Their in-sample pre-
diction RMSEs show that the TV-VSTAR model can outperform the VAR model
at the optimal lag chosen by the AIC. On the other hand, the in-sample prediction
of CHL in the selected period is comparable with those by Lee et al. (2004) and
Muttil et al. (2004). However, one should emphasize that only a bivariate model
with 2 lags is considered for prediction while they used multivariate prediction
equations with longer lags. For the out-of-sample predictability of the model, the
prediction RMSEs of various orders of p and d show that the out-of-sample pre-
diction performance is consistent with the in-sample prediction performance of
the models generally. Finally, the specified state space model can be extended to
the non-Gaussian model and state errors, for example Gaussian mixtures, while

more theoretical and empirical works should be done in the future.
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Figure 2.1: Prediction, filtering and smoothing of simulated VAR(1) model by
EnGTKF where the left and right panels represent the results of prediction,

filtering and smoothing of z; and xy respectively.

The red lines indicate the

estimated quantities while the blue lines indicate the simulated quantities.
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Figure 2.2: Estimation of confidence intervals of prediction, filtering and smooth-
ing of simulated VAR(1) model by EnGTKF where the left and right panels
represent the results of prediction, filtering and smoothing of x; and x5 respec-
tively. The middle thick lines indicate the estimated quantities while the thin
lines indicate the lower and upper confidence limits.
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Figure 2.3: Prediction, filtering and smoothing of simulated TV-VSTAR(1,1)
model by EnGTKF where the left and right panels represent the results of pre-
diction, filtering and smoothing of x; and x5 respectively. The red lines indicate
the estimated quantities while the blue lines indicate the simulated quantities.

104



(a) 27 - Prediction
40

20 -

0.0

-2.0

-4.0

0 20 40 60 80 100

(b) x; - Filtering

4.0

20 r

0.0 -

-20 r

-4.0

0 20 40 60 80 100

(¢) x1 - Smoothing

40
20 |
00 ?V\/WWM\A
2.0 +
-4.0
0 20 40 60 80 100

(d) xo - Prediction
40

20

0.0

-2.0

-4.0

0 20 40 60 80 100

(e) x5 - Filtering
4.0

2.0

0.0

-2.0

-4.0

0 20 40 60 80 100

(f) z3 - Smoothing
4.0

2.0

0.0

20 +

-4.0

0 20 40 60 80 100

Figure 2.4: Estimation of confidence intervals of prediction, filtering and smooth-
ing of simulated VSTAR(1,1) model by EnGTKF where the left and right panels
represent the results of prediction, filtering and smoothing of x; and x, respec-
tively. The middle thick lines indicate the estimated quantities while the thin
lines indicate the lower and upper confidence limits.
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Figure 2.5: Prediction and filtering of Kitagawa’s simulation model by EnGTKF
and EnKF where the left and right panels represent the nonlinear and linear
updating equations respectively. The red lines indicate the estimated quantities
while the blue lines indicate the simulated quantities.
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(a) y - Prediction, n = 50 (d) y - Prediction, n = 100
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Figure 2.6: Prediction density of y,, prediction and filtering densities of x,, when
n = 50 and n = 100 where the solid lines denote the estimated density and the
dotted lines denote the Gaussian density. The order of Hermite polynomial used
in the Gram-Charlier density is 2.
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Figure 2.7: In-sample estimation of CHL and DO by EnGTKF with VSTAR(1,1)
model for the first 100 observations where the left and right panels indicate the
prediction, filtering and smoothing of CHL and DO respectively. Red lines repre-
sent the estimated quantities while the blue lines represent the actual qnanitites
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Figure 2.8: In-sample estimated confidence intervals of CHL and DO with VS-
TAR(1,1) model for the first 100 observations where the left and right panels
indicate the prediction, filtering and smoothing of CHL and DO respectively.
The middle thick lines represent the estimated quantities while the thin lines
represent the lower and upper confidence limits.
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(a) CHL - Prediction (d) DO - Prediction
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Figure 2.9: In-sample estimation of CHL and DO by EnGTKF with VSTAR(1,1)
model during 1 July, 2001 and 31 October, 2001 where the left and right panels
indicate the prediction, filtering and smoothing of CHL and DO respectively. Red
lines represent the estimated quantities while the blue lines represent the actual
gnanitites.
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(a) CHL - Prediction (d) DO - Prediction
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Figure 2.10: In-sample estimated confidence intervals of CHL and DO with VS-
TAR(1,1) model during 1 July, 2001 and 31 October, 2001 where the left and
right panels indicate the prediction, filtering and smoothing of CHL and DO re-
spectively. The middle thick lines represent the estimated quantities while the
thin lines represent the lower and upper confidence limits.
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(a) CHL (Predicted), n = 421

(e) CHL (Predicted), n = 431
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Figure 2.11: Prediction and filtering densities of CHL and DO when n = 421 and
n = 431 where the solid lines denote the estimated density and the dotted lines
denote the Gaussian density
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Figure 2.12: Out-of-sample prediction of CHL and DO by EnGTKF during 2002-
2004 where the upper and lower panels denote CHL and DO respectively. The
red lines represent the predicted quantities and the blue lines represent the actual
quantities.
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Chapter 3

An Ensemble-based Dynamic Switching
Kalman Filter

3.1 Introduction

In atmospheric science, Evensen (1994)’s ensemble Kalman filter (EnKF) has
been applied to data assimilation over ten years. The main feature of this filter is
to improve over the estimation of the first two moments of prediction and filtering
densities under nonlinear state space models although the Gaussian densities of
disturbance terms are still assumed. Unlike the particle filter (Carlin et al., 1992;
Gordon et al., 1993; del Moral, 1996; Crisan et al., 1999; Gilks and Berzuini,
2001; and Arulampalam et al., 2002), the computational burden is reduced by
the estimation of only the first two moments and their propagation over time.
Since the EnKF generates stochastic distribution to brute force the propagation
of state variables over time, it needs to know the functional forms of the density
functions. Although Gaussian density is sufficient in many applications, large
deviation from the Gaussian density may lead to divergence of propagated means
and variances over time due to incorrect estimation of the mean and variance by
the ensemble members.

A simple scenario is that the density functions of measurement and state errors
may not be unimodal, but multimodal. Some researchers have suggested that the
multimodal densities can be approximated by a Gaussian mixture or Gaussian

densities with Markov switching. Early studies of Gaussian mixture in Kalman
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filter was due to Sorenson and Alspach (1971) and Alspach and Sorenson (1972).
Afterwards, some researchers suggested the usage of Gaussian mixtures in the
EnKF although this results in the estimation of more parameters. For example,
Anderson and Anderson (1999) was the earliest one to consider the application
of EnKF with Gaussian mixtures in which the unknown density function is ap-
proximated by a sum of two Gaussian densities with different means and same
variance matrix by different scalars. Miller and Ehret (2002) suggested that if the
covariances of state variables in the state equation was large, even if the initial
density function is Gaussian, bimodal density may be generated by certain highly
dynamical systems. Also, Chen and Liu (2000) suggested the mixture Kalman fil-
ter (MKF) which included the sequential Monte Carlo and resampling features of
particle filter with Kalman filter prediction and updating rules. Bengtsson et al.
(2003) proposed the mixture ensemble Kalman filter (XEnsF) and local-local en-
semble filter (LLEnsF) where the prior density was assumed to be a Gaussian
mixture and the number of Gaussian components was re-estimated by clustering
techniques. Concerning with Markov switching, Hamiltion (1989, 1990) was a
pioneer to introduce Markov switching into time series model. Furthermore, Kim
(1994), Krolzig (1997), Chen and Liu (2000) and Higuchi and Fukuda (2003)
specified various dynamic linear models in the form of state space models with
Markov switching structure and different approximations of densities were used
during the operation of the filters. It is well known that the structure of Markov
switching can include the mixture of densities as a special case.

In this chapter, a new variant of EnKF called the ensemble Markov switching
Kalman filter (EnMSKF) is proposed in which the feature of Markov switching

is incorporated into EnKF such that the dynamic nonlinear time series model
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can switch between unobserved regimes over time. Indeed, the proposed filter is
closely related to that by Kim (1994). However, a different sampling method of
ensemble members is considered in this new nonlinear filter. Therefore, the setting
of Gaussian mixture in Anderson and Anderson (1999) is extended to Markov
switching by a formal statistical treatment. To allow for Markov switching of the
measurement and state errors, the number of Gaussian components and hence the
number of parameters increases with the sample size exponentially. This results
in the infeasible operation of the filter. An approximation is suggested in Kim
(1994) to control the number of Gaussian components.

In many atmospheric applications, little emphases were placed on the estima-
tion of unknown parameters. Typically, unknown parameters are estimated by
some ad hoc methods, for example, the method of moment estimation. In fact,
a vast literature in statistics focused on the issue of parameter estimation, for
example, see McLachlan and Peel (2000) and Frithwirth-Schnatter (2006) for an
overview. Typically, local optimization algorithm is applied to find the unknown
parameters. However, a typical difficulty in the estimation of model with mix-
ture errors is the multimodal feature of likelihood. As a result, in this chapter,
a localized stochastic search algorithm, is implemented to improve the quality of
the initial values. As well known in many local optimization algorithms, good
quality of initial values can lead to the fast convergence of estimation results. One
advantage of this algorithm is that it does not require the objective function to
be differentiable with respect to the unknown parameters. A feature in evolution-
ary strategy is introduced into this algorithm to ensure the positive definiteness
of variance-covariance matrices across generations. The variance-covariance ma-

trices are decomposed into products of orthogonal rotation matrices which are
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determined by rotation angles only. After the global optimization of the like-
lihood function, a local optimization algorithm, such as Newton-Raphson and
Quasi-Newton algorithms, is used to improve the estimation results further.

In Section 3.2, the model and assumptions are presented. Then, in Section 3.3,
EnMSKEF is derived in which the ensemble predictions of measurement and state
variables and prediction and filtered probabilities of the switching regimes are
included. The asymptotic properties of estimated mean and variances are studied
afterwards. A natural extension of the ensemble Kalman smoother (EnKS) is
given in deriving an smoother which is called the ensemble Markov switching
Kalman smoother (EnMSKS). In Section 3.4, the estimation of model parameters
is investigated. The estimation of standard errors of model parameters and the
determination of the number of switching regimes are given in Sections 3.5 and
3.6 respectively. An empirical application of this filter is given in Section 3.7.

Finally, the conclusions are drawn in Section 3.8.

3.2 The Model

Consider the nonlinear state space model:

yn = h(Xn; E[Sn]> + Vi, (31)

Xnp = f(xn—l; £[sn]) + u,, (32)

forn=1,2,...,N, wherey, € R, x, € R™ h:R"™ — R™ and f : R™ —
R™= are vector-valued functions. Also, £ € R is a vector of model parame-

ters which depend on the hidden state variable s,,. Both functions h () and f (+)
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are assumed to be smooth, that is, all derivatives of h(-) and f(-) exist and
continuous. In state space modelling, equations (3.1) and (3.2) are known as
measurement equation and transition equation respectively. The specification of
(3.1) and (3.2) can include many time series models, such as, Markov switch-
ing vector autoregressive (MS-VAR) model, multivariate version of self-excited
threshold autoregressive (SETAR) model and vector smooth transition autore-
gressive (VSTAR) model. The details are referred to Krolzig (1997, p.36).

For notation simplicity, we denote X,, = {x1,...,X,}, Y = {y1,-..,yn} and
S, = {s1,---,8,}. The conditional density functions of v,, and u,, are assumed

to be

p(vn|yn—17 Sn) = N(Vn; 07 Q[sn]) and p (un|yn—1a Sn) - N(un; 07 R[sn]) (33)

respectively where

mg

N p,X)=(2r) 2 ]2|_% exp <—%(x —p)"TE N (x — p,)) :

Q*») and Rl*»} are non-negative definite for all n and s,,. The hidden state variable
sn possesses a Markovian structure and takes a value from {1,..., M} where M
is finite. The transition probability for s, is defined by p;; = Pr(s,, = j|s,—1 =
i) > 0 fori,j =1,...,M. Then, it follows that Zjﬂilpij =1fori=1,..., M.
Note that the Markov switching model can be reduced to the mixture model when
Pr (s, = j|sn—1 =1) = Pr(s, = j) or p;j = py; for i # i’ is assumed.

The density function of the initial state xq is defined by
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p(X0|SO :j) :N<X07X([)j‘]0725|]0)7 fOI'j: 17"‘7M'

For identifiability of the mixture components, many authors have proposed
various constraints on the model parameters. For example, Titterington et al.
(1985, Corollary 3.11) showed a generic identifiability constraint on a finite mix-
ture in which the transformed component densities are linearly independent.
Frithwirth-Schnatter (2006, p.19-20) suggested that in a multi-parameter case,
two mixture components can be identified when at least one of the parameter
elements are distinct from the other components and the mixing proportions are
arranged in ascending order. This can avoid the problem of label switching. In

this chapter, the constraints by Frithwirth-Schnatter (2006) are imposed on the

[sn] E[sn]

0[0 > “40|0 >

model parameters, x 5[5"}, RlI*) and Qlsn!.
The assumptions for conditional density functions of y,,, x,, and s,, are given

below:

Assumption 3.1
(i) Conditional on x,,, the current measurements y,, are independent of X,, 1,

Y,-1 and S,,_1, that is,

p(yn‘Xnaynthn) :p(Yn’XmSn)a fOI‘ n:27"-7N7
and
p(Yn|Xn78n) =Pp (Yn|xm Sn) 5 for n = 1.

The conditional independence assumption follows from the measurement

equation (3.1).
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(ii) The state vector x,, depends on its one-period lagged value x,,_; and the

current hidden state variable s,, only, that is,

p(xn|Xn—17yn—178n) :p(xn|xn—178n)7 for = 17 o '7N'

(iii) The hidden state variable s, is Markovian and the Markov chain {Sn}gﬂ

is homogenous. Then,

Pr(s,|Sn-1,Vn_1) = Pr(su|sn-1), for n=1,...,N.

(iv) The Markov chain {x,,s,}._, is irreducible, aperiodic and admits an in-

variant probability measure.

Assumption 3.1 implies that given the values of x,, and current hidden state
Sn, the density function of y, can be derived directly. Furthermore, the den-
sity function of the state vector x, can be derived only from the state vector
x, at time n — 1 and the current hidden state s,. Indeed, conditions (ii), (iii)
and (iv) imply that the Markov chain {x,,s,}._, is ergodic (Chan and Tong,
2001, p.34). Furthermore, when the Markov chain {xn,sn}ivzl is assumed to
be Harris recurrent by Meyn and Tweedie (1993, Theorem 13.0.1), the state
process {x,, sn}szl converges to a stationary distribution for every initial con-
dition (xg,s9) € R™ x {1,...,M}. This theorem also ensures the stability
of the state space model of (3.1) and (3.2) since the Foster’s condition (Meyn
and Tweedie, 1993, p.501) is satisfied automatically. One may suggest that
{xn, sn}fj:1 can be considered as an augmented state space and the state space

model can be expressed in a simpler form. Note that {xn}nN:1 and {sn}gzl are
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defined in continuous and discrete state spaces respectively. One feature of the
proposed filter is that no simulation related to {sn}fj:l is required and the oper-
ation of this filter is in parallel with the conventional EnKF. To enable the new
filter, more assumptions on u,, v,, and X, are necessary and given below:

Assumption 3.2

(i) The disturbances u,, and v,, are uncorrelated with each other for all time

periods, that is, [ (unvl;) = 0 for all m and n.

(ii) The initial state vector xq is uncorrelated with u,, and v,,, that is, E (unxg) =

E(v,x{)=0forn=1,...,N.

3.3 Recursive Estimation of Model States

In this section, the recursive estimations of the state vector x,, and the prob-
ability mass of the hidden state variable s, are derived. As a by-product, the
prediction of the measurement vector y,, is derived as well. To simplify the no-

[i,4]

n—1n

tation for the probability of the hidden state s,, s¥' and s denote (s, = j)
and (s, = j, Sp,—1 = 1) respectively. Hence, Pr(s,, [’j] n) = Pr(sg”sg}_l) X Pr(sg]_l).

The parameters {Pr(so )L {xgs‘g : Oslgl’gsn] Rl Q13N and {pij}%:1 are

assumed to be known in this section. Then, the recursive estimation of the model
states and measurements in the forms of density functions is given below.

(5]

Given sy, the prediction and filtering densities for the state vector x,, are

given by
(Xn‘yn 1,S [j]) / ( |Xn 1,S m)]?(anl‘ynflaSgbdxnfla (34)
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and

(Xn‘yn 1,S [j]>p(y'n‘xna [j])
[s]

[ p(%n| Vo1, )P (yn %, 55 dx,

p(an}naS%) = (3-5)

respectively for n > 1 where the filtering density is initialized by

P(XOIY(J,SBJ}) :p(X0|Sg}) :N<X07X([)j\]072:)(|)(() )-

The one-step ahead prediction density for the measurement vector y,, is

Pl Vrr, ) = / (Fnlrs 85030 Vs, s (3.6)

The recursive estimation of filtering and prediction probabilities of the hidden

state variable s, Pr(st)n) and Pr(s[j]]yn,l), is

Pr(sguyn) - Pr(‘sg]b’n)yn 1)
p(Yn|yn—17 [j])Pr(Sv[g”yn 1)
(yn\yn ) Pr(s )
Zizlp(}’nD)n—laSn) r<3n]|yn—1)’

(3.7)

with Pr(s¥|Vy) = Pr(s5)) and

M
Pr(s? V1) = Y Pr(si?) [ Vao1)
=1

M
= N Pr(sUsily, Yust) Pr(sh [Voa)
=1
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M
= Y Pr(slsi) ) Pr(sly 4 |Vu1)
=1

M .
= Zpij Pr(sl || Vuo1), (3.8)
i=1

where the third equality in (3.8) is deduced by the homogeneity of Markov chain
{5} n—1- The probability Pr(y,|)V,-1,s s ]) in (3.7) in fact is the denominator term
n (3.5). Therefore, the conditional probabilities (3.7) and (3.8) are derived by
using the transition probabilities p;; and the normalizing constant in the filtering
density (3.5).

Now, the notations of conditional mean and variance of the measurement and

state vectors are denoted in the following manner:

Nr—‘
Il
=

Zt|y57 3?) )

(20— 21) (20 — 20T Vs )

14
S

Il

=

EZZ[’L.,]'}

t|s

N
=+
® &

Il

&=

/N 7N 7N N
=

=

»
e
Rl
N———

Il
&=
—~
N
-

|
N
-+ 5
?b
N
—
N
-

|
N
&+ 5T
ERS
Ny
_
;<
» =
+ O
——

where the variable z is replaced by x and y correspondingly.

Furthermore, ( f“’_ﬂ1<|jj>_1> , ( f[”])p, <hzl’ﬁ£’?)p and (h,[;”ﬂ)p denote the pth
elements of f(X, [”] ) e B ( (Xn—1; €| V1, 807 1n> ; h(Ak\ﬁ };¢%) and
E (h(xn, )D/n 1, Sp 1n) respectively; < E]]l((;) 1>p, (fg’i]ibp, (@ﬂ’f}f?)p, (u[g](k))p

and (vif}(k)> denote the pth elements of x[ Bgl(k)  lidl(k) ?WWC) u?® and viI*)
p

—1n—1> “njn—17 I n|n—1"

respectively for i, = 1,..., M, (x[i’j] > , (x[i’ﬂ ) and (y[i’ﬂ ) denote
p p

n—1|n—1 njn—1 njn—1
p

the pth elements of Xn 1|n 1 Xz\i] , and yn‘n , respectively for 4,5 = 1,..., M;
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(gmﬁjb 7 (imi,ﬂ> ’ (izlyn[i—ﬂb ’ (Emml]) , <Ezl>;[i,ﬂ> and (Eylyn[u1]>
pPq bq bq pq bq bq

denote the (p, ¢)th elements of E;T;[wl] , EA]:‘X[W], EA]Z‘};[ Jl} : EZT;[Z;’]E, EXT;[Z’] and Eyﬁ ’]1]

respectively for ¢, =1,..., M.

The propagation of the whole conditional density function of the state vector
X, is clearly computationally unfavorable and it is more desirable to consider

propagating its mean and variance over time.

3.3.1 Prediction

Assume that the filtering density for the state vector x,, for n > 1 is
p(xnfl |yn717 SE?—l) = N(anl; XE},”n,la Ez}i[ﬂnfl)? (39)

fori=1,..., M.
From (3.4) and (3.5), one may consider to generate ensemble members of the

state vector x,,_1,—1 by a jumping of the hidden state from SE]_l to sg}, that is,

generating ensemble members of density p(x,—1|Vn-1, sg]) from p(x,—1|Vn-1, sg}_l).

sY

[j]) from p(x,—1|Yn-1,8,_1) is then given

The derivation of density p(x,_1|Vu_1, $

below:

p(xn—la S%] |yn—1)

p(Xn—1|yn—1,37[{}) - -
Pr(s|Vn1)

(3.10)

Consider the numerator term p(x,,_1, sl | V1),

M

p<xn—1asq['{]|yn—1) = Zp(xn—la 1[i7j]1n|yn 1)

i=1
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= Zp [J]|Sn 17ynflaxnfl)p(xnflaSz}_l‘ynfl)

- Zpijp<xn—1|yn—17 55]71) Pr(sz},ﬁyn—l)v
=1

where the third equality is obtained by the homogeneity of Markov chain {sn}ivzl

Then, together with (3.8), (3.10) becomes

> P Pr(s? |V )p(Xn1| Vo1, s))

p(xn—1|yn—17 Sg]) = i
Zﬁ\il Dij Pr<5[n]fl|yn71)

(3.11)

forj=1,..., M.

Obviously, p(x,-1|Vn-1, s,[f}) is a mixture of Gaussian densities due to (3.9).
The derivation here is slightly different from that in Frithwirth-Schnatter (2006,
p.408). Furthermore, the mixing proportions in (3.11) are generated from (3.7).

Then, following from (3.4), (3.6) and (3.11), the kth ensemble members of the

predicted state and measurement vectors are generated by

il ik . . .
R0 _ (&0 el ol O N(0,QY), for i =1,..., M,
(3.12)
and
ol — & e, for i =1, M, (3.13)
respectively for k = 1,..., K. The ensemble member X xn }1(|n) , is generated from

<) _, with density (3.11). Although this approach is similar to that of Kim

n—1|n
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(1994), the Gaussian mixture of the filtering density at time n — 1 arises from the
jump in the hidden state s,, which was not pointed out explicitly by Kim (1994).
The conditional mean and variance of the (i, j)th component of the predicted

state vector x,,—, are approximated by

1 K
~[i,j ~[i,5](k
R = 72 D X (3.14)
k=1
and
-] () _ gl )k _ gligl \T
axx|i, ~[i.g](k , ~Jif](k ~[i,j
2"|”_1 B 1 Z( nliz 1 n|iL 1> (Xn|iz—1 _Xn|ih1> ) (3'15)

k=1

respectively for ¢, =1,..., M.

Similar formulae can be applied to the measurement vector y,. Hence,

~|, |2, k
L\i 17K Z L|ij(1v (3.16)

and

K

oyyligl i)k i.d] ~ligl(k)  sligl )T

En\n 1= 1 Z( niz 1 n|7]1 1) (yn\zz—l _yn|zz—1> ) (317)
k=1

fori,j=1,..., M.
The overall one-step ahead prediction mean and variance for the state vector

X, are
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~[4] Zz 1PI‘( Sp— 1n|yn*) n|n 1
X

nm— 7 ) (3.18)
| L Zz 1Pr< nj]1n|yﬂ*1)

and

Sl

nln—1
M i xx[”] i, N7 i N7 T
Zi:l PI‘( n]]ln‘yn 1) ( nln—1 + (X£L|ZL]—1 - XEEn—I) (XLﬂj—l - Xg\]n—l) >
M i,
S Pr(s,halYacn)

respectively for j = 1,..., M where the discrete probabilities in (3.18) and (3.19)

are estimated by the following formulae recursively:

M
Pr(syy | Vao1) = Pr(s¥sh ) Pr(shd, | Va1)
=1

= DPij ZPT ngn 1D}n—1)7 (320&)
i'=1
[4,5] p(sgj’ﬂQn layn—1|yn—2)
PI‘( Sp—2,n— 1’)}71« 1) = ) (320b)

Zz 12] lp( Sp_ 2n 15 Yn— 1|yn 2)
PV Vn2) = (¥t V2, silh 1) Pr(si?h [ Vns)

Q

~[,7 Ayy[iaj] 7
N(Yn—l;y,[-b_]}un_gvEn—l\n—2) PI‘( LLJ]2n 1|y’fl 2)

(3.20c)

The derivation of probabilities in (3.20) above follows from that of Kim (1994)
where the estimates of prediction mean and variance are replaced by the ensemble

estimates (3.16) and (3.17) respectively. The approximation of Gaussian density
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arises from the estimated mean and variance and this approximation also holds
for the dynamic linear state space model of Kim (1994).
Similar procedures can be applied to obtain the overall mean and variance of

the measurement vector y,, that is,

M ij ~[i,j
S’\m B Dzt Pr(SLZ}l,nlyn—l)YL|gj_1
nln—1 i,j
Sy Pr(s, Vo)

(3.21)

and

ayylil

2n|n—l
i Ayy[i,j} ~[i,j R ~[i,j 7 T
Zi]\il Pr<81[1£]1,n|yn—1> (Enn—l + <yr[t|7]1]—1 - yf’fﬂn—l) <y’[1‘£—1 - ygﬂn—l) )

M i,] ’
S Pr(shd V)

forj=1,..., M.

Actually, the overall mean and variance of the predicted state and measure-
ment vectors are derived based on the marginalization of prediction densities of x,,
and y,, respectively (Harrison and Stevens, 1976). The asymptotic properties are
shown easily once those of individual components are derived. The asymptotic

properties of ensemble estimates are given by the following theorem.

Theorem 3.1. Asymptotics of One-step Ahead Predicted States Assume
that the filtering density for the state vector x,_, given 35L1 forie{l,..., M},
n>11s

P(Xp—1|Vn-1, S[,f]_l) = N(x,_1; Xgll\n—p o] ).

n—1|n—1

Then, the ensemble mean and variance of the state vector x,, by prediction den-
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[]]) are estimated by (3.18) and (3.19) respectively. Furthermore,

SZtyp<Xn|yn 1,S
given (i,7) € {1,..., M} x{1,..., M}, assume that

246
(z)E‘(f}f’jhn 1) ‘ < oo for some§d >0 withp=1,...,my,k=1,..., K,

146
(ii) E'( n’]]lﬁgf)l) <fr[f]l[‘n 1) ‘ < oo for some § > 0 with p,q = 1,...,my;
k=1, .. K,

Then,

ig] i Xgﬂn_l and 22‘);[]]1 i Ex’ij_}l when K — oo,

n|

and igﬂn_l converges in distribution to a mixture of Gaussian densities, that is,

M
v K( Eﬂn 17 5\]11 1) - Za,[i’ﬂ/\/(xn,ﬂ Ezﬁml) when K — o0,
i=1

where ali?) = piy Pr(si 1|V 1)/ 0L, pey Pr(sily| V).

Theorem 3.2. Asymptotics of One-step Ahead Predicted Measurements
Assume that the ensemble prediction mean and variance for the measurement

vector y, are estimated by (3.21) and (3.22) respectively. In addition to the

assumptions for ensemble states, given (i,7) € {1,..., M} x{1,..., M}, assume
that
(m)]E‘ nlfl kl) < 00 for some & >0 withp=1,...,my, k=1,..., K,
1446
(iv) E' niij(kl) Lii}@)q < oo for some 6 > 0 with p,q = 1,...,m,,
k=1,.
Then,
§7[f|]n71 % yg‘]nfl and iiﬁj]l 3 Eyf'[i] when K — oo,
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[j]

and ?n|n—l converges in distribution to a mizture of Gaussian densities, that is,
VE (59, =y 1) 5 3 el (3,0, 5231)), when K — oc.

=1

where o' = py; Pr(sEL 1V, 1)/ S0 pey Pr(stL [ V1)

Proof of Theorems 3.1 and 3.2. Note that the estimators are in the form of sample
averages. All ensemble members are considered as heterogeneous but indepen-
dent since they are generated from a Gaussian mixture where their variances are
dependent on the hidden state variable.

To show the consistency of in‘n_l, one need to show that

B (fﬁﬂj@) <E <3J\Z|££ﬁ)> <ooforp=1,...,m,.
P P
By Minkowski’s inequality,
2+6 246

i,j](k
(.’ﬂn\jn]—( 1)>
P

_ E'(fu,m) ) +ull®
p

n—1|n—1
245\ 1/(2+9)
) I (E ’ (1)
n P

< @](ﬁﬂ%{l)p

B| (A1), | + Bl

n

246
2+6) 1/(2+9)

IA

< o0,

for p=1,...,m,. The first term should be finite by condition (i) above and the
second term is also finite due to the Gaussianity of u,,. Then, by Markov’s SLLN

(White, 2001, p.35), the consistency of % s shown directly. This also induces

nin—1

the strong consistency of ﬁgﬂnq from (3.18). Similar procedure can be applied to
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xx[2,J]

show the consistency of 2n|n 1

by condition (ii) because

K
cxxlid] AR\ (<l K (i) TN
2n\n 1= 1 Z( nln— 1) ( n\n 1) - K—1 (Xn|n71> (Xn|n71> :

k=1

Now, the asymptotic distribution of X" |n LIS N (x5 x [l spexdialy with order

n|n 1 “nn—1

O,(K~1/%) by using Liapounov’s CLT and Cramér-Wold theorem. The details of

proofs are referred to White (2001, p.114, 118). Furthermore,

p(Xn|yn71751[~]ﬂ) = ZP Xn, S |yn 1,S []])

= Zpr ‘yn 1,S [J]) (Xn|yn 1,S L,J}1n>
=1

Zi]\il Dij Pr(sz}_l [ Vn—1)p(Xn| Vi1, 853}1,71)
S by Pr(sel [ Va1)

Y

which is a weighted average of p(x,|Vs—1, szflln) Then, by the Continuous Map-

ping Theorem (Pollard, 1984, p.68), the igﬂnq converges in distribution to a

mixture of Gaussian densities, that is,

nn—1 " n\n 1 njn—1

M
VE (im ] ) 4, Y alN (x50, syl
=1

Similar arguments can be applied to prove for the predicted measurement
vector ¥ |’j ] , as well while the conditions (iii) and (iv) are used instead. |
Theorem 3.1 indicates that the one-step ahead prediction of the state vector

X, can be considered as a combined prediction of the state vector x, for each

Gaussian error. Hence, its prediction density can be described by Gaussian mix-
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,[f } Ul Similar

ture in the best due to the jump in the hidden state from s;’; to s,
phenomenon can also be found for the measurement vector y,. Consequently,
Bayesian forecasting can be performed in the way of classical forecasting while
the forecasting results are combined linearly although they are weighted by dis-
crete probabilities which are determined by ensemble members of the state vector
X, in previous period.

Following the result of Theorem 3.2, the prediction density of the measurement

Y, is approximated by

Yy[i.g]

M i ~[i,j
S Dy Pr(sh [V )N (yus ol 500,70)
Zﬁ\il Dij Pr(sg]q‘ynfl)

The formula is useful in approximating the likelihood function for parameter

estimation.

3.3.2 Filtering

In this section, the filtering problem of the state vector x, is studied once the
measurement data y, becomes available. One can expect that the prediction
density of the state vector x,, is a mixture of Gaussian densities. Then, following
Kim (1994) and Evensen (2003), the (,j)th component of the predicted state

vector X,|,—1 is updated by the following equation:

R g0 L Ryl 00 for g 1 Mk =1, K,

nln n|n—1 njn—1

(3.24)
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where K7 = f]zﬁi_’]i](f]yy[i’j] +RVH yI® =y v, v, ~ N(0,RV) and the

njn—1
estimate Enlb;[ ’Jl] in K7 is given by
K
vl L) _ gligl ) (Gliadm _ gl \T
En\n 1= —1 < n\iz 1 n|ZL 1) <yn\3171 _yn|i171> :
k=1

Similar to the prediction of the state vector, the conditional mean and variance

of the updated state vector x!! ﬁj are estimated by

1 K
XLiﬁ + ﬁgiﬁ(k)v (3.25)
k=1
and
K . N T
S = K 1 Z( ain = Eﬁ) (im(k) _szﬁ) ’ (3:26)
k=1

respectively for ¢, =1,..., M.
The overall conditional mean and variance are then estimated by

M [3,]
. i Pr(s, 77, | V)X nin
an _ TP R .

M P )

and

M [i.4] soodial | (ofig) ol (gl _ gl )T
~ xex[j] Zi:l Pr(‘snfl n|yn) ( n|n + (ann - Xn\n) ( n\n Xn\n) )
s = - . (3.28)
Zizl PI‘( n ln‘yn)

respectively j =1,..., M.
Alternatively, one may consider the filtered ensemble members to be generated

by the method of maximum a posteriori (MAP) (Sorenson, 1980, p.199) from
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(3.5). However, this approach is computationally unfavorable as it can be shown

as follows. The posterior density p(x, |V, sﬁﬂ,n) is given by

D% Vs 5270 0) 0 (Y % s7h DX Yty 507 )

= (yu|xn7 []]) (x |yn 1, S Edln)

where the equality is obtained from Assumption 3.1(i).

Note that both densities are approximately Gaussian from (3.1) and the result
of Theorem 3.1. Nevertheless, the maximum of this product of densities may not
be easy to achieve due to the nonlinear feature of measurement equation (3.1).
Furthermore, M? optimizations are required to carry out although more precise
estimates of updated state vector can be obtained. Therefore, the method of
MAP is not preferred due to its computational complexity.

As pointed out by Kim (1994), the updating equation by (3.24) is not the
best estimate under the mixture of Gaussian densities even in the case of linear
state space. Nevertheless, under certain regularity conditions, the approximation

of updating equation (3.24) can still be reasonable.

Theorem 3.3. Filtering In addition to the assumptions in Theorem 3.1, given
(1,7) €{1,..., M} x{1,..., M} assume that
245
(i) E <A[l’j](k> ‘ < oo for somed >0 withp=1,... my,k=1,..., K,
p
~[4,7][(k ~i,7][(k
o 5| G40 (s,
k=1,...,K,

1+6
< oo for some & > 0 with p,q = 1,...,my;

Then, the ensemble estimates by (3.27) and (3.28) have the following prop-
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erties:

axxli] a.s.
nln

5 37Ul hen K — 00,

ﬁ[j] (E?X[j] and 3 o

nln nln

and ﬁgﬂn converges in distribution to a mixture of Gaussian densities, that is,

n|n

. . Mo .
VK (ﬁm — xgﬂn) LS el (x,,: 0, EZT;[W]), when K — oo,
i=1

where aly?! = py; Pr(sEL |1V, 1)/ S0 pe Pr(si [V a).

Proof. 'The strong consistency of the mean and variance of filtered ensemble
members can be shown by the similar method as in the case of Theorem 3.1.
Now, the asymptotic distribution of the mean of filtered ensemble members is
shown below. As mentioned in Frithwirth-Schnatter (2006, p.409), the filtering

density of the state vector x,, is

(Xn|yn7 []]) = Xn, S |yna n)

M
2
i=1

M . .
> p(xal Vs s ) Pr(sl 1|V, sH).
i=1

As in the proof of Theorem 3.1, the first density is asymptotically Gaussian
N(x,;x [ia] 5led ]) by condition (i). By the Bayes’ Theorem, the conditional prob-

n\n’ nln

ability Pr(st |, s¥) is

pij PI‘(SE],l |yn)
Zej\; Dej Pr(s%}fﬂyn)

Then, by the Continuous Mapping Theorem (Pollard, 1984, p.68),

Pr(s, [ Vn, 1) =
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n|n nin nln

M
VE (im ) ) a4 Y alfiIN (x,; 0,37,
i=1

|

From the filtering density of the state vector x,,, the measurement vector y,,
is brute force by Gaussian component v~ N (0,RV)) for j = 1,..., M and this
follows from the conventional feature of EnKF. On the other hand, the number
of Gaussian components in the mixture is increased by M times. However, this
problem was not found in the conventional EnKF of Evensen (1994, 2003) and
the mixture ensemble Kalman filter of Bengtsson et al. (2003). Specifically, at
time n, the number of Gaussian components becomes M™.

Therefore, the filtering density should be approximated in an appropriate way
such that the number of Gaussian components is controlled over time. In the
literature, many authors have suggested various methods to tackle this problem.
For example, Kitagawa (1989, 1994) proposed that the Gaussian components
in the Gaussian mixture be combined after each filtering stage based on the
Kullback-Leibler divergence criterion. Intuitively, two Gaussian components with
similar mean and variance were combined and approximated by one Gaussian
component with the same combined mean and variance of these two components.
On the other hand, Kim (1994) collapsed the mixture filtering density of 325‘]” to a
single Gaussian by keeping the same filtered mean and variance after each filtering
stage. In this chapter, this approach is adopted where the estimated mean and
variance are replaced by ensemble mean and ensemble variance respectively, that
is,

P3|V ) 2 N (o, U1 S0, (3.20)
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forj =1,..., M where X x ., and s njn o<l are the ensemble estimates given by (3.27)
and (3.28) respectively.

The recursive operation of prediction and filtering on the state vector x,
provides the estimates of ensemble mean and variance in (3.18), (3.19), (3.27) and
(3.28). The Markov switching state space model operated by EnKF in this way
is called the ensemble Markov switching Kalman filter (EnMSKF'). Actually, the
ensemble mean and variances are adjusted by the marginalization of prediction
and filtering densities of the state vector x,,. The idea of the estimation of mean
and variance is originated from Kim (1994) in which the linear state space model
with Markov switching structure was considered, but now the method is extended
to the nonlinear state space model and incorporated into EnKF.

The recursive state estimation procedure is given below:

1. Generate the initial ensemble states. When n = 0, given the values of XV

o|o7
25]0 and j, draw K ensembles from the density function N (xo; EI}O’ 2[0]‘]0)
and denote them as {X'™ X for j=1,..., M.

2. Generate the modified ensemble states. When n = 0, generate the ensemble

slidl(k

00

(3.11) with mixing proportions p;; Pr(sl[)j])/ My Pr(sgj]) = pi;/ oM iy

member X ) for i Jj=1,...,M;k=1,..., K from the Gaussian mixture

3. Predict the ensemble states. When n = 1, draw an ensemble of KX members
from the density function A(u,;0,QV!) and denote them as {uf ™}
for j = 1,..., M. Then, generate the ensemble predictions for the (i, j)th
Gaussian component with stochastic forces by

R0 — &0 el ul® for k=1, K.

n\n 1 n—1|n—
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4. Generate the ensemble measurements. When n = 1, draw an ensemble of
K members from the density function N (v,;0,RY) and denote them as
{vg](k) K  for j =1,...,M. Then, generate the ensemble measurements
by

yilt) — g v for kb =1,... K.

5. Obtain the updated ensemble states by (3.24).

6. Compute the prediction and filtering probabilities of the hidden state s,, by

(3.7) and (3.8) respectively, that is, Pr(s1]|)p) and Pr (s1])1).

7. Collapse the number of components of the filtering density p(x,|V,, sg])

from M to 1 by using (3.29).
8. Repeat Steps 1 to 7 for time n =2,..., N.

9. At any time n =1, ..., N, the prediction and filtered mean and variance of
the state vector x,, are given by (3.18), (3.19), (3.27) and (3.28). Also, the
one-step prediction mean and variance of the measurement vector y, are

given by (3.21) and (3.22) respectively.

3.3.3 Smoothing

Now, a fixed-interval smoother for EnMSKF is derived. The joint smoothing

density for the state vector x,, and the hidden state variable s,, is

p(xnfbs?[i]—l’y]\ﬁ
M . .
- Z/p(xmxn—bSzf}l,nD}N)an

Jj=1
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- 2/ P(%as s VP, 5L, 51, )

= Z/ P\Xn, Sy, |yN (Xn 1,S n 1|Xn7 ] yn 1)

[4]
= Z/p(xn’sg”ij)p(xngsn |Xn 1S n 173)[?] 1) (Xn_1,8n71|yn_1)dxn
=1 (XTHSTL |yn 1)

- 5l bl
7 Xns Sn Xp—1, n s Vn-1)p(Xn, Sn
= P(anhsy_l!ynfl) E /p ‘ 1 1 y 1) ( D)N)dxn
J=1 (Xn7 Sn |yn71)

[J])

i [ p(Xal%n1, 52)p(%n, 55 [ V)
= Pty 551 Va1) ) / ’ : dx,,  (3.30)
j=1

pxn|yn 1,9 [j])Pr( [J]|yn 1)

fori,j=1,...,M and n =N, N —1,...,2. Note that {x,, sn}gzl is considered
as a Markov chain and Assumptions 3.1(i), (ii) and (iii) are used to show the

third equality. Specifically,

p(xn—hsg]_llxna [J] yN)

p(X'rL 17Xn75£71;] 1 87[g]7y17 cee 7yN)

p(xn,sy,yl,...,yN)
POYNIIN 1) - PYasa| V)P ([, X1, s, 51 1,yn 1>p<xn,xn 1 sy, Y1)
pynIIn-1) - p(Ynr1|Vn)P(¥n Xn, Sn L Vn )P (X, sE, V)
p(Yn|XnaXn—1757[~{},SE]_l,ynq) (Xn,Xn 1,821, Spe1> Vn— 1)
P(Yn|Xn, 21, V0 1) (%, 21, V1)

p(Yn|Xn’S£{})p(Xan 175£{]7 n 17yn 1)

p(Yn|Xn, SL})p(Xn,Sn 7y'n,—1)
p(men 1>S£€]7 n 17yn 1)
p(Xnvsn ayn 1)

= p(xn—lasg]—llxna ] yn 1)

In fact, the derivation of posterior density of the smoothed state vector in
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(3.30) follows from Harvey (1989) and Kitagawa (1987). Although the smooth-
ing density can be derived by backward recursion, both prediction and filtering
densities of the state vector need to be stored. Moreover, in order to obtain the
smoothed mean and variance of the state vector, the hidden state variable s,,_;
should be integrated out. Typically, the smoothed mean and variance of x,,_; and
smoothed probability of 55]_1 are estimated by the Bayesian method. Unlike the
fixed-interval smoothers derived by Koopman (1993) and deJong and Shephard
(1995) which were based on the minimum mean squared error (MMSE) criterion
in which a linear state space model was considered, the joint density (3.30) is
non-Gaussian and intractable. As a result, an alternative derivation of smoothed
mean of the state vector x,_; based on the MMSE criterion is provided here.
Following Tanizaki (1996, p.217-220), the smoothed mean of x,,_; given SE}_l

for i € {1,..., M} is estimated by the MMSE criterion, that is,

x4
Xp— 1IN

= BX_1|Vn, s ))
= /anp(xnl‘yN7 SE]—l)dxnfl

= Z//Xn 1P(Xn—1, XnN,—(n— 1)7SN|yN7 )dXN (n—1)dXpn_1

= Z/Xn—lp(XN,SNWN;Srz_DdXN

_ / ZSN XN,yN’SN)dXN
n 17yN)
/ ZSN (In| XN, Sn) p (Xn|Sy) Pr(Sw)
= dXn
Pr(sh. | Vv )p(Vn)
> sy [ %010 (Yn| XN, Sn) p (Xn|Sn) Pr(Sy)d XN

- , (331
PI‘(SZ}_l‘yN) >ose S 2 (In| XN, Sv) p (Xn|Sn) Pr(Sy)dXy (331)
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forn=N,N—1,...,2, where Xn _(,—1) = {X1,...,Xn_2, Xy, ... Xy} indicates a

set of all state vectors except the one at time n — 1 and the sum ) 5~ denotes
M M M

ng:l Zslzl e ZsNzl'

From Assumption 3.1,

N
p(Xn|Sn) = p(X0|80)HP(Xn|Xn—1,Sn)7
n=1
N
pnXn,Sy) = [P (yalxn sn)
n=1
N
and Pr(Sy) = Pr(so) ][ Pr(snlsn-1).
n=1

From (3.31), the computation of the smoothed state vector x,,_1x requires (i)

A[S’nflvsn](k

the ensemble members {x, "™ )}szl from the prediction density p (x,|X,_1, $n)

and (i) p(yn|x, = ﬁij}fﬁ)) for k =1,..., K and (iii) the smoothed probability
Pr(sg]_l\yN). The main difficulty of this smoother is integrating out the hidden

state variable s,, for all n.

From (3.18) and (3.20a), one can observe that

Zij\il Dij PT(SE]—ﬂynfl)XEiﬁq
S by Pr(si [ Va)

Xg\]n—l =

To integrate out the hidden state sg], the following relation is used:

M M
p(Xn|yn—1) - ZP(Xm Sg]lyn—l) - Zp(xnlyn—la Sg]) PT(SL{”yn—l)‘
j=1 j=1

Hence,
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M
Xpln—1 = Z PI‘(SE] D}n—l)xgﬂn—l'

j=1
Then, the ensemble mean and variance of the smoothed state vector given

351_1 fori e {1,..., M} are estimated by

K

i 1 S %)
Xn— i N nn ) (332)
W Bl ) 2 Y T
and
sl 1 ) () ol O
YN = i ZU’N (Xn|n—1_xn—l|N> <Xn\n—1_xn_1|N> , (3.33)
( D}N) k=1

respectively forn = N, N — 1,...,2, where

Gl glidl Sl i
. pi'N ynn 7ynn 72nn
DA = A S Va1 i1 forn=2,...,N

Ak A~ oyyligl k
Zk 1Pij ( n|ZL](1)’y7[1\fl] 172n|n l)wH—()

7 , k) ~ i, yy[lrj]
Sk _ Pr(sé})pijN(yglfj( 1), yq[1|i] 1 En|n—1) for j—1 u
1 - K 7 |2, k |1, Ayy[mﬂ - e ’
S Pr(s p N L S

M
@0 = 3 @0 for p=1,...,N,

oS

Y,
— Y@,
j=1

M S i
LUil(K) SN pi Pr(sn D)nf Ry
Xn\nfl ’

M
Zi 1 Pij Pr( Sn— 1|yn—1)
(k)

k
Xn\nfl = ZPI" []]|y Tz]’r(l, )1
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The measurement vector y,,_; can also be smoothed in a similar way, that is,

yq[?—uzv
= E(yn,lyyw,sifg)
_ Z/ X, i€ (yN|XN78N)p(XN’SN) dXn
( YN (Y )
ZsN (Xn—l;f“ fp yN\XN, N) (XN|SN) (SN)dXN
Pr(sy | V) >osy [ P (VN XN, Sy) p (Xn|Sn) P Pr(Sy)dXy

(3.34)

forn=N,N—-1,...,2.

By using the same smoothing method as in the state vector x,,_1, the ensemble

(4]

mean and variance of the smoothed measurement vector y,_; given s, ; for
ie€{l,...,M} are estimated by
1 K
~[i (k) ~(k
yL] N = il ngv)yfqufl’ (3.35)
( D}N) k=1
and
yylil 1 S ) (o) i () i\T
X ? ~(k ~(k i ~(k 7
z:”*1|N [z] Z Wy (yn|n—1 _yn—1|N) (yn\n—l - yn—1|N> ) (336)
( D}N) k=1
respectively for n = N, N — 1,...,2 where the notation of ?ﬁj}@_l follows from

ﬁgﬁi_l easily.

To compute the smoothed mean and variance of the measurement and state

vectors in (3.32), (3.33), (3.35) and (3.36), it is necessary to derive the recursive es-
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timation of smoothed probability Plr(sg]_1 |Vn). Given the valueofi € {1,..., M},

the smoothed probability for the hidden state variable s,,_; is given by

Pr(si || Vy) = ZPr (st 1vw)
= ZPr@ZLrSLﬂ,yN) Pr(s¥| V)
=1

M
- Z Pr(‘sz]—l |S'[r{}7 yn—17 yn:N) PI(SLLH |yN)
j=1

. i/[:p(yn:N"g%’_j]Lnaynl)Pr( [l] ’577, 7yn 1)

[4]

: Pr(s;}|Vn)
j=1 p(yn:N’S’E{}a ynfl)
M 3

= ZPr<s£?_1|s£zhyn_1>Pr(sizwm

zj 05 Pr(si) [ Vo) Pr(si | )
S pi Pr(s W Vat)

where V,.y = {¥n,.-.,¥n}. The fifth equality follows from Assumption 3.1(i).
Indeed, the recursion of smoothed probability follows from Kim (1994) although
the derivation is somehow related to Tanizaki (1996). It is interesting that the
smoothed probability of the hidden state s,_; is a mixture of the filtered proba-
bility of the hidden state s,,. The mixing proportions are computed by using the
results in the prediction and filtering stages, that is, equations (3.7) and (3.8).
The estimation of smoothed states and measurements by (3.32), (3.33), (3.35)
and (3.36) is called the ensemble Markov switching Kalman smoother (EnMSKS).

At first glance of (3.32) and (3.33), the estimation of mean and variance of the
x[i]

i requires information of the prediction

smoothed model state, XH LN and Z

density p(y,|Vn-1, sLid] ) and the smoothed probability of the hidden state s,,_1

n—1,n
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only. Implicitly, the smoothed probability Pr(sg]_le) is also dependent on the
state vector x,, from (3.20), Indeed, information from the filtering density is used
in the recursive derivation of the prediction density of the model state implicitly.
Furthermore, the recursion of smoothed probability of the hidden state variable

requires the likelihood p(y,|Vn-1,5,) and the transition probabilities {p;;}_;.

oliglk

nin— 1

Therefore, the ensemble members of X X 1 ) and y and the predicted and
filtered probabilities of the hidden state s,, are needed for the computation of the

smoothed estimates. The strong consistency of the ensemble estimates is given

by the following theorem.

Theorem 3.4. Smoothing Assume that the one-step ahead prediction densities
of x,, andy,, are given by Theorems 3.1 and 8.2. Given thati € {1,..., M}, the
ensemble estimates (3.32) and (3.33) have the following strong consistency.

< XE]_I\N and izX[ﬂN = 2m([l]IN when K = oo.

Similarly, for measurement vector y, 1,

7 a.s. ] ayvlil  as. 7
L} N — y,[j v and oy — Eyz[llw when K — oo,
Proof. Since the estimates of the smoothed model states are derived from the
predicted model states and the number of switching states M is finite, the strong
consistency of smoothed ensemble mean and variance follows from the result of

Theorems 3.1 and 3.2 directly. |
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3.4 Hybrid Estimation of Model Parameters

From the result of Theorems 3.1 and 3.2, the joint density of observations is

approximated by

L(6; Yn) = {Hzp YnlVn-1,$ m)Pr U1|yn 1 }{Zpy |S[J] Pr( [J])}’

n=2 j=1
(3.37)
where @ = [{py 11, T, ] T = [Pr(s). ()T, vech(S1)T, €07,
vech(RV)T, vech(QY)T] for j =1,..., M and the calculations of densities follow
from (3.7), (3.8) and (3.23).

The log-likelihood is then given by

N
log £(6: Yy) = _log L. (3.38)
n=1

where £, stands for the likelihood of the nth observation, that is,

M
~[j oyl
£n - ZN(mer[fﬂn—p En\n 1) ( U ]|y —1)
j=1
for n > 1. When n = 1,
M ' 4
L= plyilsi) Pr(s)).

1

J

The prediction probability of the hidden state variable s,, is estimated by (3.7)
and (3.8) recursively.
The unknown parameter estimate is the solution of following optimization

problem:
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6 = argmaxlog £ (6; V) . (3.39)
0

Under the regularity conditions of Fuh (2006, p.2042-2043), it can be shown
that estimate 6 should be strongly consistent and asymptotically normal (Fuh,
2006, Theorems 5 and 6).

Although the maximization problem of (3.38) can be performed by standard
optimization algorithm, such as Newton-Raphson, Quasi-Newton and so on. In
particular, the expectation-maximum (EM) algorithm is a popular method in the
estimation of Markov switching and mixture models. However, this algorithm still
faces the similar problem as in conventional optimization algorithm, for example,
traps in multiple modes of likelihood functions. Several authors have proposed
various variants of EM algorithms to tackle this problem, such as, Monte Carlo
EM by Wei and Tanner (1990), stochastic EM by Celeux and Diebolt (1985),
supplementary EM by Meng and Rubin (1991) and simulated EM by Ruud (1991).
Nevertheless, the EM algorithm faces a problem in the state space model where
the model states of full sample are smoothed for conditional expectation of the
model states (Shumway and Stoffer, 2006, Chapter 6). Due to the computation
burden of the smoother in the nonlinear state space model, the EM algorithm
does not seem to be a favorable tool in maximizing the likelihood (3.38).

To avoid the traps in local optimal and multiple optimal solutions and en-
sure the numerical stability of the estimation process, the global optimization
algorithm suggested in Chapter 2 is then implemented in this chapter again to
estimate the unknown parameters in (3.38). Indeed, this algorithm sheds lights
on both localized stochastic search algorithm and evolutionary strategy and is

suitable to tackle the current estimation problem.
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3.5 Estimation of Standard Errors

In this section, all parameter estimates by (3.39) are indicated by ~. In order to
estimate the approximate standard errors of estimated parameters in Section 3.3,

the expected Fisher’s information matrix is required and defined by

8log£810g£), (3.40)

I<0)_E< 90 00"

Unlike Cavanaugh and Shumway (1996) which computed the expected Fisher’s
information matrix for linear state space model, a typical and consistent approxi-
mation of Fisher’s information matrix, the observed Fisher’s information matrix,

is used here, that is,

N

o 1 dlog L, dlog L,

(0)=— E : A1
®)=% ( 960 00" )05 (3.41)

o~

Once all estimates of 7 (5) are obtained, the standard errors of 0 are just the
square roots of the diagonal elements of (Z (5))_1
To obtain the derivative of the likelihood £,, with respect to the parameter 0,

a recursive procedure is proposed here. From (3.37), we have

L£(0;Vn)

Il
1=

Ly
1

it

n=2 1=1

3
Il

M:

1 =1 j=1

M M
Piyp(Ynl Vo, s Pr(si m_l)} {Z > pip(yalst’) Pr(sg)
=1

=1 j=1

.

M:

|
——

1

.
Il
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Then,

Y Zj\il pz‘jﬁ[r{] Pr(s})) for n =1,

S S p L Pr(si Ly Vas)  forn=2, N,

Ly

where

, plyilsi) form = 1,
£l =
DYl Va1, s forn=2,...,N.
Note that EL{} can be expanded to
il [ p(y1lx, s7 [j] )p(x1 |0, s[lﬂ)p(xo|s[lﬂ)dxodx1 forn =1,
jl =
fp(YH|Xn7 Sg])p(xn|yn—17 SL{})an fOI' n = 2, e

When n = 1, the derivative of £,, with respect to 0 is

L1 0 e
G0 = o9 2 2
M M (4] M M (5]
10p;; Pr(s 0Ly i
3y g tin) <°)+ZZ i Pr(st)
=1 j—1 =1 j—1
where
apijPr(s([)i]) _ Opyj [ 8Pr(3g])
T = oo ) Tr e
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E[J]

[J] .
=[P, sl o

Op(x X,SH
// (yulx1, sy [J] —< 1o, 57)

g Pxalsidxodx,
, (5]
// (y1|x1, 8§ [‘7] |X0,s[1]])—ap(>§:9|81 )dxodxl.

The derivative 8p(x0|s[1j]) /00 is obtained by rearranging the expression for

p(x \s[j ]) and differentiating both sides with respect to 8. Then

plocolsll) = i Pis Pr(s0 )p(xolsp)
S by Pr(sy)
dp(xolsi’) M O Pr(sy) . p(olst)
JPAR0I01 ) g 7 2\°0 ) P £A70120 J
M Op;; Pr sl : 1
‘ Jae( : )p(x0|sgﬂ)} i i
=1 Zz’:l pij PI‘(SO )
where
Opij Pr(sg]) 8pw [ 0 Pr(sg})
Pr B
6 o8 L) P,
When n > 1, the derivative of £, with respect 0 is
8}9 PI‘ |y 1 8£
[J] i " 1 ny i Pr(s, 1| Vn 3.43
2.2 ;;py L 1)80 (3.43)

where
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oLl (Y%, 55 Op(xXp| V1, sY
o = /%d&ﬂr/ (7 |%n, 511) p( |80 1 )dxn,
(anyn 1,5 [j]) - ap(xn’anng}) 7]
80 - / 89 p(xn—1|yn—17 Sn )dxn—l
a n— yn .S [J]
+/ (Xn’Xn 178n) p(x 1|80 . >an,1.

Recall that the recursive relationships of conditional densities of state variables

and hidden variables are given by

. M :
Pr(siy,-) = ZpijPI(SLL1|yn—1)7

=1
LI Pr(si Y, 1)

Pr(sfy,) = Zoenl

(Xn’yn 1,S []]) = / (Xn|xn 1732])19(}% 1|yn 1,S n)dxn 1

DSl SE)P(Xn| V1, 55))
ci
M 7 7
( B [y]) _ Zi:lpijPr(SL]—ID}n—l) (Xn-1|Vn-1,5 H 1)
P{Xn-1 n—1sS — i P i y ,
Zi:lpw 1”(Sn—1| n—1)

(%0 |V, s9)

Y

for n > 1. Then, the corresponding derivatives for the first three expressions are

OPr(s? |V, 1) OPr(sy) 1| Va-1)

BT Z aapg Pr(s, i UVn=1) + pij 90 , (3.44)
_Pr<s§lryn>aagn7 (3.45)
Gp(xngg—l,s@) _ /(%(anacz—l,sg])p(xnﬂynl,sgl)dxn1
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(4]
—|—/p(xn|xnl,sg])ap(xn_ﬂy”_l’sn )dxn,l, (3.46)

00
(x| Vs s) 1 {ap<yn|xn,s£z‘]>

(7]
89 - ‘C%} 89 p(xn’ynflas )

1 Op(%0| V1, 5] Xp| Vo, s5) DL

06 i o0
(3.47)

respectively.

To consider the derivative Op(x,_1|Vn-1, sg}) /08, the expression for

[

P(Xn-1|Vn-1, sg}) is rearranged.

> iy Pr(si 1 | V)Xt [ Vu1s s8) = 32 pig Pr(sh 1 [V 1)p(Xn-1| Vo1, 500y,
i=1 =1

-1

Differentiation of both sides with respect to 0 yields

M Jpy; Pr(si ||V, M | AV, s

3o PP e aDnt) oyl 450y Pr(sl] 19, 220t )

i=1 i=1

M p,: Pr SB]_ Y, y M ’ Op(Xp—1| Vi ,SE}_
_ ; p] (80 1| 1)p<Xn71‘yn717 37[1}_1) + ;pm PI“(SL]_1|yn,1) p( 1|80 1 1) )

This implies that

8p<xn—1|yn—17 Sg])
00

M Opy; Pr(sh | V- ;
= {ZZ:l pj (891| 1)p<xn71|ynflvsil],1)
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(Xn—l |yn—17 SE]—I)

< il
+ > pij Pr(s, 1| Vn-1)
=1

00
M Opy; PT(SE]—lyynfl) ] 1
i=1 Zizl Dij Pr(s, |Vn-1)
(3.48)
where
Opy Prisa Vo) _ i g gy ORI alYa)
n— 1] °

00 00 00

Clearly, Op(x1|V1, s[lﬂ)/ﬁé’ and 0 Pr(s[lj] |V1)/08 are the initial values of the re-

cursive derivations of 9L,,/06 for n > 1. Consider the derivative dp(x; |, st )/08,

ply1]x1, s7)p(x1 st

(5]
p(X1|y1,Sl ) £[1j]

This implies that

oV s?) 1 fopyaxast) g i dp(xasi”)
_pGxan, st oLt
3.49
Ul 90 (3.49)
where
Op(x S[J]
—<819| ) = 80/ X1|X0, []] ZCU|51 )dXO
Op(x1|x ,s” Op(xols
/ | 1;)90 o) plaols?) + p(xi]xo, 7 )—<a(19| 1 )dxo'
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Consider the derivative aPr(s[lj ) |V1)/08,

L7 Pr(s))

Pr(sy|1) 7
OPr(s') _ 1 ford p iy pndPrs) | Prisy) oLy
06 L, 06 ! T £, 086
(3.50)
where
o Pr(sth 0 X i
56~ 99 PuPrn)
_ L9y i 0 Pr(sy)
= ;%Pr(so)—l—pw 80 .

L]

Since the densities p(xo\sg]), P(Yn|Xn, 57/ 4

) and p(X,|X,—1, 5P ) are Gaussian,
the recursive estimation of derivatives of density can be transformed to the es-

timation of derivatives of log-density easily by rewriting the expressions in the

form of

dp(z)  Ologp(z)
06~ og P

where p(z) represents the densities p(x,|Vn_1), p(Xn|Vn), p(x1|x0) and p(xg).

Indeed, the log-density functions used in 0L, /060 are specified as

log p(xols5)

154



)71(X0 . XU] )’

z 1 . 1 . ,
— e 10g(27r) _ 5 log IE[J] . _(XO B X[J] )T(z[ﬂ o

9 ol 5 00 00

log p(yn|Xn, s

1 » 1 S\ T . A
= —Zlog(2m) — 5 log |RV| = 5 (vo — hxi€)) (RY) ™! (v — hxis €M)
logp(xn|xn—lasq[ﬂ{])

. 1 1 T .
_ —m?log(27r)—§log]Qm|—§<xn—f(xn,1;£m)> QU l(xn—f(xn,l;gw)),

respectively.
In order to derive the derivatives of log-density with respect to 8, the following

expressions (Schott, 1997, p.336) are required:

810g|A|T _ Jdlog|A| 0O|A| __ Al vec (AL)TDm
Ovech (A) O|A] Ovech (A)
= vec (Afl)T D,., (3.51)
dvec (A1) . .
Vet ) (A9 A ) D,, 3.52
and Ovech (A)T ( ) ( )

with A~! = |A|”" A where D,, denotes the duplication matrix of order m such
that D,,vech(A) = vec(A), A is the adjoint of A and A is a m x m symmetric
matrix.

Now, consider the derivatives of log-density with respect to 6.

8logp(x0|sg])

1T
8x0jm
1 0 G \T (5ol y— [s)
= i (BT o)
0[0
~ (o) o
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010gP(X0|3g])

8vech(2[0ﬂ]0)T
B 1 Olog ‘25]0 1 Otr ((Xo — X([)JHO)T(EEJHO)_I(XO — X%))
28vech(2([]j‘]0)T 2 avech(Zg}o)T
bl y—1
Loe(slyT 1 T iy 2veeap)
= ——vec(X/ sz——<(xo—xj )@ (x0 — x0) )—
3vecon) 2 olo 17 dveen(sh])
1 :
— —§Vec(2g‘]0)TDmx
1 , , . L
(07 b ) (520 (5
1 ‘
- —ivec(E([)j‘]O)Tsz
1 . o : s
5 (oo = x5 ) @ (600 = x)T(B50) ") ) D, (354)
where szvech(Eg‘]O) = VGC(E([)j‘]O). The first term in the second equality of

0log p(x0|s[[)j]) /avech(Z([)j‘]o)T is obtained by (3.51) while the second term is ob-

tained by first using the following identity (Schott, 1997, p.263):

tr <(x0 — xS (o — xg{))) _ ((xo — X ® (xo - xg{))) vee(SH)

and then by (3.52). Note that the derivatives corresponding to the components

other than xJ) and vech(E[j ]

[0 o/o) are zero. Note that

0log p(yn|xn, sg])

oelIT
= (e~ hlxs ) (RY)

-1 3h(xn; é[j])

e

D1og p(yn|Xn, 1)
dvech(RUNT
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1
= —§vec(R[J] )" D, +

yn — h(x 5[”)) ®<yn—h(xn;£m))T)

N —

(
« (RY)! © (RV) 1) D,,
(

= —vee®NTD,, + 2 ((( <y ~hix¢) (RH)1>
®<(yn—h &) mY) >) .

where D,, vech(RY!) = vec(RV). Note that the derivatives corresponding to the

components other than £V and vech(RU!) are zero. Then,

810gp<xn‘xn 1,S [J])

o€
— (3~ £x02¢") (@)
[J])

L OF(x,,_1; €V

2T (3.55)

dlog p(x,|x,_1, 8
Ovech(QUNT

= —%VGC(QU])TD,—% + % ((Xn —f(x,_1; éﬂ))T ® (Xn - f(Xn_l;ﬁm)>T>
x (@) ®(QY)™") Du,
(0~ o, 6) @)

o ((x -t :6) (@) ) D (3:56)

1 , 1
- - UNTD z
2vec(Q ) Dy, + 5

VR

where D,,,, vech(QV!) = vec(QV!). Note that the derivatives corresponding to the
components other than &Y and vech(QV!) are zero.

By replacing the unknown parameter @ with the parameter estimate 0 and
following the Monte Carlo approach in Chapter 2, the derivative 9L, /06 can be

estimated by
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P
851 Zcm Pt Z FPr(s)) (% (3.57)

i=1 j=1 i=1 j=1

and

O Pt S92 ) : ol
ﬂﬂ et +ZprPr By Vi) (3.58)

i=1 j=1 =1 j=1

forn=2,...,N.
Note that only the sampling from the conditional density of the state variables

X,, is required during the computation of derivatives of conditional density.

3.6 Determination of M

Up to now, the number of switching regimes M is treated as given. Under certain
circumstances, the value of M can be determined by prior information. However,
if no prior information is provided for M, some criteria should be applied to deter-
mine its value. Otherwise, the number of model parameters becomes extremely
large and the estimation procedure becomes more complicated when M is large.

Here, the Bayesian information criterion (BIC) is suggested (for example,

Frithwirth-Schnatter, 2006, p.422) to determine the value of M.

BIC = —2log £(6; V) + log(N) dim(8),

where log E(@; Yn) is the approximated log-likelihood (3.38) evaluated at 6 and
dim(@) is the number of parameters in the model. Implicitly, this criterion varies

with the value of M. The appropriate value of M is chosen with the smallest
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BIC value.

3.7 Empirical Applications

In this section, the assimilation of environmental data of Markov switching state
space model is considered. Specifically, the Markov switching vector autoregres-
sive (MS-VAR) model is attempted in this study. Here, the case of a two-regime
switching function for all measurements in y,, is considered, that is, M = 2.
Specifically, one can consider the following p-order two-regime MS-VAR model

for the measurement vector y,,.

p
Vo = Zl 'y, i+ v, (3.59)
J:

forn = 1,..., N, where v,, ~ N(0,RE)), y,, = (yl,n,...,ymyﬁn)T is a (my, x 1)
column vector, ®,’s are (m, xm,) coefficient matrices for r =1, ..., p, the hidden
state variable s, takes values within {1,2}. Here, model (3.59) is denoted as MS-
VAR(p). In state space form, the measurement and transition equations for (3.59)

can be rewritten as

Yn = Imy 0 -+ 0 |Xn T+ Vp, (360&)
o | [ w e "
Yn-1 Imy U 0 0 0
| Ynpt1 | | 0 o Iy, U | 0 |
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forn=1,..., N, where n,, ~ N(O,E”[S”]).

In particular, when M = 1, models (3.59) and (3.60) are reduced to the
specification of conventional vector autoregressive (VAR) model. Therefore, in
the current application, the value of M should be greater than 1. According to
(3.59) and (3.60), the operation of the model is described as follows: suppose that
at time n — 1, the hidden state variable s,,_1 = 1. Then, two possible outcomes
are chosen. The hidden state variable may stay at the same state at time n,
that is, s, = 1 or it may jump to the state s, = 2. All the above decisions
are made with probabilities p;; and p;o respectively. Similar explanation can be
given for the case of s, ; = 2, while the transition probabilities pss and ps; are

used instead. Afterwards, the vector autoregressive process propagates over time

1]
J

with coefficients ®’"'’s or (I)EZ]’S correspondingly.

The operation of the state space model (3.60) becomes more complicated
because the prediction and filtering of the density of the state vector x, and
the probability mass of the hidden state s, are estimated recursively. These
features have been described in previous sections, so the repeated description of
the operation is not provided here.

In vector form, the unknown parameters of (3.60) in the corresponding likeli-
hood function are represented as

0= [pllapl2ap21ap227¢[1]T7¢[21T 9

where 'c,me = [Pr(sg]), (xm )T,Vech(Zm )T,EmT,Vech(R[j])T,VeCh(E"[j])T and

0[0 0[0
guim — [vec(cb[lﬂ)-r, o ,vec(ig])q for j = 1,2. These unknown parameters are

estimated by the maximization of (3.38).
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3.7.1 Numerical Simulation

The behavior of MS-VAR model under the EnMSKF is studied by numerical
simulation. For simplicity, the simulated data is generated from the two-regime

MS-VAR(1) model which is expressed as

Yn = X+ Vy,

Xn = Q[Sn]xn—l + ,r]nﬂ

for n = 1,...,100, where y, = (ylin,ym)T is a (2 x 1) column vector, given
sn € {1,2}, ® is a coefficient matrix of order (2x 2). The detailed specification

of parameters is given below:

0.8 —0.2 05 —0.3
ol — gl — |
-0.2 0.7 -0.3 04
P11 P12 - 02 08
D21 P22 06 04
Pr(s([)”) = 0.3, Pr(s?}) = 0.7,
0 05 0 0 08 0
XO|S([)1] ~ N ) 7x0|8[[)2} ~ N ) )
0 0 0.5 0 0 0.8
0 1.0 0.3 0 06 0
Vn|S,[11] ~ N , ,Vn|87[12] ~ N , ,
0 0.3 1.5 0 0 0.3
1.6 —=0.2 0 05 0
Malsi! ~ N , M8~ N ,
0 —-0.2 1.8 0 0 1.2
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From Figure 3.1, the predicted y;, and y,, seem to follow the movement
of simulated measurements. When the results of filtering is investigated, the
predicted y;, and y,, are updated by the new measurements reasonably. This
implies that the current linear updating equation can use information of the new
measurements efficiently even though the filtering density is a Gaussian mixture.
Furthermore, the results in the diagrams show that the lines of the actual and
filtered measurements are almost overlapped while the numerical results show

their minor discrepancy in values.

3.7.2 Algal Bloom Data

In this section, the daily algal bloom data are extracted from the real time
monitoring station at Kat O Island, Hong Kong. In this study, the variables
standardized chlorophyll fluorescence (CHL) and standardized dissolved oxygen
concentration (DO) are considered as the measurements, that is, m, = 2. Fur-
thermore, the full sampling period of 2000-2004 is splitted into 2000-2001 and
2002-2004 individually. The first period is regarded as the in-sample period and
the observations are used for parameter estimation while the second period is
the out-of-sample period used to test the prediction performance of the MS-VAR
model under the EnMSKF filter. For the numerical stability during estimation,
the measurements of standardized CHL and DO is obtained by the subtraction
of the measurements by their respective means and divided by their respective
standard deviations. Detailed data description was provided by Lee et al. (2003,
2004). Furthermore, the interpretation of the hidden state variable becomes more
specific. Suppose that s, = 1 and s,, = 2 stand for the non-blooming and bloom-

ing status at time n respectively. Then, given the current non-blooming status,
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p11 and ppo represent the transition probabilities of moving to non-blooming and
blooming status at next time period respectively. Similar interpretation can be
applied to po; and pas.

One feature of the MS-VAR model is that the hidden state s,, can jump in-
stantaneously to the other state. Therefore, the switching between non-blooming
and blooming status can occur as a sharp movement of CHL and DO without
any transition process. It seems that this is suitable to explain the sharp changes
in CHL and DO during algal blooms and also the sudden drops in CHL after al-
gal blooms are finished. In addition, the MS-VAR model under EnMSKF shares
a feature of providing prediction probability that an algal bloom occurs given
the current condition of water quality. Furthermore, the prediction probability
that an algal bloom collapses can also be provided. They are informative in
constructing an algal bloom alarm system.

Since the primary objective is the prediction of the measurements CHL and
DO by the EnMSKF filter, the lag parameter p of the MS-VAR(p) model is chosen
by the one with the smallest root mean squared error (RMSE) in the prediction

stage. The in-sample prediction results are presented in Table 3.1.

Table 3.1: In-sample RMSEs of CHL and DO by MS-VAR and VAR models where
the columns of CHL and DO represent the RMSEs of CHL and DO respectively.
The columns of BOTH represent the RMSEs of both CHL and DO and they are
obtained by the square roots of the sums of squared RMSEs of CHL and DO.

MS-VAR VAR
D CHL DO BOTH CHL DO BOTH
1 0.7343 0.6222 0.9625 0.7713 0.6036 0.9794
2 0.7172 0.6012 0.9359 0.6952 0.6127 0.9266
3 0.7834 0.6495 1.0176 0.8117 0.7173 1.0832

For benchmark purpose, the vector autoregressive (VAR) model is chosen.
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Table 3.2: In-sample RMSEs of CHL and DO by MS-VAR and VAR models
(univariate) where the columns of CHL and represent the RMSEs of CHL and
DO respectively.

MS-VAR VAR
p CHL DO CHL DO
1 0.6975 0.5911 0.7329 0.5595
2 0.6742 0.5772 0.7116 0.5410
3 0.7520 0.6690 0.7016 0.6180

From Table 3.1, the in-sample prediction performance of the MS-VAR model for
CHL is generally better than that of the VAR model although it is not true for
the dissolved oxygen concentration DO. To identify the lag parameter p of the
MS-VAR model, minimum RMSE of BOTH is shown in Table 3.1 when p = 2.
When the RMSEs of CHL and DO are investigated in details, the RMSE of CHL
is minimized when p = 2 under both models although this does not hold for
DO exactly. Therefore, the lag parameter is chosen to be 2 and the MS-VAR(2)
model is used for the interpretation of algal dynamics.

To compare the prediction results, the predictions of CHL and DO by the
univariate version of the MS-VAR and VAR models are presented in Table 3.2.
Generally, the univariate predictions of CHL and DO improve over the results of
multivariate models. This may be caused by the introduction of variation of DO
during the prediction of CHL and vice versa and the prediction task will become
complicated.

Furthermore, the gain in prediction performance of MS-VAR model over VAR
model increases with the lag parameter p. For example, when p = 2, the RMSEs
of CHL and DO of the MS-VAR model are 0.7172 and 0.6012 respectively while

those of the VAR model are 0.6952 and 0.6127 respectively.

164



The result of estimated parameters of the MS-VAR(2) model is given in the
Table 3.3.
Table 3.3: Parameter estimates of MS-VAR(2) model by EnMSKF for CHL and
DO where the numbers insides the brackets represent the corresponding elements

within the matrices or vectors. The p-values are approximated by the asymptotic

Gaussianity.

Parameters Estimates Standard Errors p-values

o 0.0989 0.0471 0.0359
P12 0.3734 0.2682 0.1639
P 0.9011 0.6763 0.1828
P22 0.6266 0.2868 0.0289
Pr(s))) 0.0720 0.0383 0.0602
Xgin(1) 0.0082 0.0046 0.0708
X4 (2) 0.0109 0.0074 0.1383
Xy (3) 0.0206 0.0115 0.0737
Xpio(4) 0.0100 0.0050 0.0437
Sh(1,1) 0.2849 0.1839 0.1214
Shh(2,1) —0.2384 0.1239 0.0544
Shin(3,1) 0.2038 0.1542 0.1862
Shh(4,1) —0.3098 0.2185 0.1562
Shh(2,2) 0.1995 0.1053 0.0582
hin(3,2) —0.1706 0.0801 0.0333
Shh(4,2) 0.2593 0.2157 0.2293

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

Sh(3,3) 0.1458 0.0698 0.0368
hio(4,3) —0.2216 0.1043 0.0336
Shh(4,4) 0.3370 0.2233 0.1314
(1,1 0.6912 0.3744 0.0649
(2,1 —0.0368 0.0194 0.0577
®l(1,2) —0.0170 0.0088 0.0526
32, 2) 0.8562 0.5561 0.1236
(1,1 0.0612 0.0438 0.1625
®l(2,1) 0.0088 0.0056 0.1164
®l(1,2) 0.0026 0.0016 0.0988
3l(2,2) —0.0121 0.0057 0.0340
RMY(1,1) 0.2902 0.2322 0.2114
R(2,1) —0.4526 0.2281 0.0472
R (2,2) 0.7058 0.5678 0.2139
»l(1,1) 0.2837 0.1894 0.1342
¥, 1) —0.4447 0.2559 0.0822
»lil(2,2) 0.6979 0.4958 0.1593
Pr(sl) 0.9280 0.5403 0.0859
Xg0(1) —0.0221 0.0148 0.1358

(2) —0.0175 0.0093 0.0597
Xg0(3) —0.0239 0.0163 0.1438
Xgi0(4) ~0.0199 0.0104 0.0566

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

Sin(1,1) 0.2836 0.1738 0.1026
Zi(2,1) —0.2404 0.1511 0.1116
(3, 1) 0.2064 0.1253 0.0996
Si(4,1) —0.3250 0.2172 0.1346
Zh(2,2) 0.2039 0.1001 0.0418
(3,2) —0.1750 0.0812 0.0312
Zi(4,2) 0.2756 0.1448 0.0570
Z4(3,3) 0.1502 0.0924 0.1041
(4, 3) —0.2365 0.1120 0.0347
S(4,4) 0.3726 0.2254 0.0984
®(1,1) 0.6811 0.4416 0.1230
®!7(2,1) —0.0291 0.0164 0.0765
®(1,2) —0.0268 0.0149 0.0725
3%(2,2) 0.8492 0.5477 0.1210
®(1,1) 0.0699 0.0565 0.2161
®7(2,1) 0.0008 0.0004 0.0384
®7(1,2) 0.0025 0.0019 0.1761
®(2,2) —0.0041 0.0023 0.0759
RE(1,1) 0.2860 0.1429 0.0453
R (2,1) —0.4623 0.2579 0.0730
R?(2,2) 0.7473 0.5343 0.1619
»i(1,1) 0.2929 0.1366 0.0320

Continued on next page

167



Continued from previous page

Parameters Estimates Standard Errors p-values

»it(2,1) —0.4449 0.2074 0.0319

»lil(2,2) 0.6759 0.3894 0.0826

As before, the non-blooming and blooming statuses are denoted as s,, = 1 and
s, = 2 respectively. From Table 3.3, the high estimated transition probability
P12, 0.9, indicates that the algal blooms are highly probable to occur within the
in-sample period. Furthermore, the estimated pos is over 0.5 showing that once
the algal blooms occur, they will last for a period of time. The probability for
the initial blooming status, Pr(sg]), is rather high and this is consistent with the
frequent occurrence of the algal blooms during 2000-2001.

To investigate the in-sample prediction performance of the MS-VAR model,
the prediction and filtering results of the first 100 observations are presented in
Figure 3.2. The peaks of CHL at n = 6, n = 33 and n = 66 are predicted
reasonably well. Furthermore, the filtering result of CHL is sufficiently close the
actual CHL and the similar result is also found in DO. This reflects the updating
power of predicted CHL and DO with the EnMSKF. When the prediction and
filtering densities of CHL and DO at n = 66 in Figures 3.4(a) to (d) are studied,
the prediction density of CHL is highly concentrated at its mean with thin tails
while that of DO has relatively thick tails. On the other hand, four peaks are
found in their filtering densities although they are not shown in the diagrams
very clearly.

The frequent occurrence of algal bloom during July 2001 and October 2001

as mentioned in Lee et al. (2003, 2004) and Muttil et al. (2004) encourages
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the comparison of prediction performance of the MS-VAR model. Although the
RMSEs of CHL and DO are 0.6532 and 0.6012 respectively, it is comparable with
the results of Lee et al. (2004) and Muttil et al. (2004). Specifically, the RMSE
of CHL was 0.5345 in the paper of Lee et al. (2004) where the artificial neural
network was adopted for the prediction. On the other hand, Muttil et al. (2004)
provided the RMSE of 0.4793 with the assistance of genetic programming. One
should emphasize that a bivariate 2-lag model is used here while the multivariate
model with longer lags were used in both cases of Lee et al. (2004) and Muttil
et al. (2004).

The in-sample prediction results of CHL and DO in Figure 3.3 show that the
movements of CHL and DO are captured reasonably well although the predictions
seem to be smoothed after the peak levels of CHL occurred. When the prediction
and filtering density of CHL and DO at n = 431, which falls within the period of
July and October of 2001, are studied, similar observations as in the case of n = 66
are found in Figures 3.4(e) to (h). The multimodal filtering densities of CHL and
DO represent that both measurements switch between regimes suddenly during
the blooming period is provided. On the other hand, the highly concentrated
prediction densities of CHL and DO shows that both measurements persist at
certain levels for a while before the algal blooms occur.

For the assessment of the out-of-sample prediction of the MS-VAR model, the
prediction RMSEs under various lags are compared with those of VAR model and
they are given in Table 3.4.

From Table 3.4, the out-of-sample prediction performance of the MS-VAR/(2)
model is better than that of MS-VAR(1) and MS-VAR(3) models when both

measurements are investigated. For the prediction of CHL, the performance of
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Table 3.4: Out-of-sample RMSEs of CHL and DO by MS-VAR and VAR models
in 2002-2004 where the columns of CHL and DO represent the RMSEs of CHL
and DO respectively. The columns of BOTH represent the RMSEs of both CHL

and DO and they are obtained by the square roots of the sums of squared RMSEs
of CHL and DO.

MS-VAR VAR
D CHL DO BOTH CHL DO BOTH
1 0.5391 0.5415  0.7641 0.4846 0.4979  0.6948
2 04830 0.5162 0.7070 0.2447 0.5672  0.6177
3 0.5848 0.5638  0.8123 0.4573 0.4920 0.6717

Table 3.5: Out-of-sample RMSEs of CHL and DO by MS-VAR and VAR mod-
els in 2002-2004 (univariate) where the columns of CHL and DO represent the
RMSEs of CHL and DO respectively.

MS-VAR VAR
P CHL DO CHL DO
1 0.4636 0.5001 0.4990 0.4690
2 0.4106 0.4905 0.4683 0.4647
3 0.5030 0.5356 0.3386 0.5021

VAR model denominates that of MS-VAR model generally. However, it may
not be the case for the prediction of DO. Specifically, although the prediction
performance of VAR(2) model for CHL is better, the MS-VAR(2) model can
predict the DO better over the VAR(2) model. To consider the out-of-sample
prediction of CHL and DO by the univariate version of both models in Table 3.5,
the prediction of the MS-VAR model is dominated by its univariate results while
this does not hold for the VAR model, especially the DO concentration.

To illustrate the out-of-sample prediction results, the predictions of CHL and
DO during 25 July 2004 and 3 December, 2004 are presented in Figure 3.5 as
the variation of both variables changes dramatically within this sampling period.

Without the update of model parameters, the prediction of CHL is still quite
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reasonable and the pattern of actual measurement of CHL is followed even though
the variation of predicted values seems to be reduced. On the other hand, the
prediction of DO is more close to the actual measurement of DO despite several

sudden drops in DO concentration.

3.8 Conclusion

In this chapter, the ensemble Markov switching Kalman filter (EnMSKF) is de-
rived and this filter is considered as an extension of the dynamic linear model by
Kim (1994). Indeed, the Markov switching between nonlinear state space models
is considered with the ensemble estimation of mean and variance. Furthermore,
the mixture of Gaussian densities of the prediction density arises from the jump
in switching regimes at the beginning of the prediction stage. Nevertheless, in or-
der to control the growth in the number of components and hence the number of
model parameters over time, the approximation of Gaussian mixture of filtering
density by a single Gaussian density as in the case of Kim (1994) and Harrison
and Stevens (1976) is maintained. The asymptotic properties of ensemble esti-
mation of mean and variance is also justified by the theorems in this chapter.
Once the regularity conditions are satisfied, the ensemble mean and variables
are consistent and the asymptotic distribution of ensemble mean is shown to be
Gaussian mixture.

As a result of EnMSKF, the ensemble Markov switching Kalman smoother
(EnMSKS) is also derived. The complexity of this recursive ensemble smoother
is caused by the marginalization of the hidden state s,,. When the hidden state

variable s, is removed, the resulting smoother can also be considered as an im-
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provement over the ensemble Kalman smoother (EnKS) by Evensen and van
Leeuwen (2000) due to its recursive and computationally efficient feature.

The numerical simulation result of MS-VAR model shows that the predicted
measurements under the EnMSKF can capture the movements of simulated mea-
surements. Surprisingly, the filtered measurements are sufficiently close to the
simulated measurement and this implies the efficiency of linear updating equa-
tion with new coming measurements. For the empirical application of EnMSKF
with the algal bloom data in Hong Kong, the filtering performance of EnMSKF
again shows its capability of updating prediction results and this is consistent
with the numerical simulation result. The in-sample prediction performance of
CHL by the MS-VAR model can improve over the benchmark VAR model. Fur-
thermore, the MS-VAR model can provide the insights of transition probabilities
between blooming and non-blooming periods. As a comparison of the in-sample
prediction, the results are comparable with those of Lee et al. (2004) and Muttil
et al. (2004) within the same selection period. However, it should be noted that
the results in this chapter are derived from a bivariate 2-lag model while their
results relied on the multivariate model with longer lags. From the out-of-sample
prediction results, it seems that the MS-VAR model under EnMSKF is more ap-
propriate to provide some insights for the understandings of the algal dynamics
while the VAR model is useful for the prediction of CHL and DO. Nevertheless, a
nice prediction result of the MS-VAR/(2) model is found for DO as compared with
the VAR(2) model. Finally, further modelling work can be done on the predic-
tion of chlorophyll fluorescence and dissolved oxygen concentration, for example,
allowing the heteroskedasticity of variance over time or using the nonparametric

approach.
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Figure 3.1: Prediction and filtering of simulated MS-VAR(1) model by EnMSKF
where the left and right panels represent the results of prediction and filtering of
x1 and x5 respectively. The red lines indicate the estimated quantities while the
blue lines indicate the simulated quantities.

173



(a) CHL - Prediction (c) DO - Prediction

50 25
40 + 20 -
a0 | 15 |
: 10 |
20 - 05
10 0.0 M
00 051
_1.0 .
-10 s |
20 2.0
0 20 2 60 80 100 0 20 2 60 80 100
(b) CHL - Filtering (d) DO - Filtering
50 25
40 + 20 1
15 |
30 | ol
20 | 05
10 t+ 00 H
00 | 051
10 T
1.0 15 |
2.0 20
0 20 ) 60 80 100 0 20 2 60 80 100

Figure 3.2: In-sample estimation of CHL and DO by EnMSKF with MS-VAR(2)
model for the first 100 observations where the left and right panels indicate the
prediction and filtering of CHL and DO respectively. Red lines represent the
estimated quantities while the blue lines represent the actual gqnanitites
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Figure 3.3: In-sample estimation of CHL and DO by EnMSKF with MS-VAR(2)
model during 1 July, 2001 and 31 October, 2001 where the left and right panels
indicate the prediction and filtering of CHL and DO respectively. Red lines repre-
sent the estimated quantities while the blue lines represent the actual qnanitites
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Figure 3.4: Prediction and filtering densities of CHL and DO when n = 66 and

n = 431
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Figure 3.5: Out-of-sample prediction of CHL and DO by EnMSKF during 25th
July, 2004 and 31st December, 2004 where the upper and lower panels denote
CHL and DO respectively. The red lines represent the predicted quantities and
the blue lines represent the actual quantities.
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Chapter 4

Conclusion

In this thesis, two new variants of conventional EnKF are derived. Firstly, the
ensemble Goldberger-Theil Kalman filter (EnGTKF) has incorporated the feature
of Goldberger-Theil’s mixed estimation into the conventional EnKF. This results
in the nonlinear updating equation which is an extension of conventional linear
updating equation. Since the deviation of asymptotic Gaussianity of the ensemble
mean and variance may lead to the divergence of the filter, the multivariate Gram-
Charlier density is suggested to re-estimate the ensemble mean and variance.
This suggestion can also be applied to extend the nonlinear updating equation in
EnGTKF although the computation becomes more sophisticated.

Secondly, the Markov switching structure of unobserved regimes is introduced
into the EnKF and this results in the derivation of the ensemble Markov switch-
ing Kalman filter (EnMSKF'). This suggested nonlinear filter can encompass the
dynamic linear model by Kim (1994). The mixture of Gaussian densities in the
prediction and filtering densities arises from the jump in the unobserved regimes
during the prediction stage and this in turn leads to an alternative sampling
method for ensembles under the framework of EnKF. The computation of en-
semble mean and variances in the prediction stage basically follows from the
marginalization of the prediction density as in the case of Harrison and Stevens
(1976) and Kim (1994) and this also holds for the computation in the filtering
stage. In parallel to the extensions of EnKF, two recursive ensemble smoothers
are derived. Specifically, the EnGTKS and EnMSKS are derived from the En-

GTKF and EnMSKF respectively.
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To estimate the unknown model parameters in the nonlinear state space mod-
els, the likelihood for each observation is expressed as a function of prediction
error of measurement. Then, it is approximated by the Gaussian density in the
case of EnGTKF while it is approximated by the Gaussian density conditional on
the value of hidden state variable in the case of EnMSKEF. Due to the complexity
of the likelihood function, a hybrid estimation procedure is suggested here. This
algorithm consists of three components, namely, (1) orthogonal decomposition
of error variance matrices; (2) localized stochastic search over parameter space
and (3) conventional local optimization algorithm. This procedure can ensure the
positive definiteness of error variance matrices and escape from the traps in local
optimal during maximization of the likelihood function. The final component is
just used to improve the results in previous localized stochastic search. Since the
number of iterations is enormously large during the stochastic search, the local
optimization can reduce the computational burden.

Focusing on the empirical application of derived filters, the algal bloom data
in Hong Kong is assimilated to demonstrate their usefulness. Specifically, only
two variables, the standardized chlorophyll fluorescence and standardized dis-
solved oxygen concentration, are being assimilated. The TV-VSTAR and MS-
VAR models are formulated in the form of state space model and adopted with
the filters respectively. The TV-VSTAR and MS-VAR models can capture the
movements of measurements between blooming and non-blooming periods. By
using the VAR model as a benchmark, the in-sample prediction results show that
the TV-VSTAR models and MS-VAR models outerperform the VAR model. Sur-
prisingly, the out-of-sample prediction performance of the TV-VSTAR model is

still better than the VAR model at the optimal lag chosen by AIC. Furthermore,
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the TV-VSTAR model can provide some insights of algal bloom dynamics where
the measurements transit between the blooming and non-blooming periods. Fur-
thermore, the MS-VAR model can be used to explain the sudden movements of
chlorophyll fluorescence and dissolved oxygen during the algal blooms. The es-
timation results of both models can be informative to the physical modelling of

algal bloom dynamics.
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