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Among many techniques in sequential data assimilation, the ensemble Kalman

�lter (EnKF), proposed by Geir Evensen in 1994, had become popular in recent

years. Nevertheless, EnKF still faces a number of pitfalls in some applications. In

this study, two new variants of EnKF are proposed. The �rst one is initiated by

the Goldberger-Theil�s mixed estimation and the updating equation of the con-

ventional EnKF under this estimation becomes no longer linear. This variant of

the EnKF is called the ensemble Goldberger-Theil Kalman �lter (EnGTKF). Due

to the possible deviation of prediction and �ltering densities from Gaussianity,

the multivariate Gram-Charlier densities were suggested for the estimation of the

error statistics on both measurements and states. As a by-product, an ensemble

Goldberger-Theil Kalman smoother (EnGTKS) was derived in which only infor-

mation of the prediction density and the likelihood of measurement conditional

on the states are required.

The second variant of the EnKF was motivated by the Markov switching of



regimes in the nonlinear state space model. Under the switching between hidden

regimes, both the nonlinearity of state space model and the multi-modal feature of

the measurement and state errors are considered. The resulting variant is called

the ensemble Markov switching Kalman �lter (EnMSKF). Due to the increase

in the number of components over time, an approximation was suggested on

the �ltering density to keep this �lter operational. As a by-product, a recursive

smoother called the ensemble Markov switching Kalman smoother (EnMSKS)

was also derived.

For the parameter identi�cation of both models, a hybrid strategy for maxi-

mum likelihood estimation was proposed. The algorithm consists of three features

(1) an orthogonal transformation procedure was introduced in the optimization

algorithm to ensure the non-negative de�niteness of the variance-covariance ma-

trix during estimation; (2) a localized stochastic search procedure was suggested

to estimate the initial parameter values and (3) conventional local optimization

was used to improve the estimation results of previous global procedure. In order

to draw statistical inference of the estimated model parameters in the case of En-

GTKF, the analytical formulae of standard errors were derived and the ensemble

members of prediction density were used for estimation.

Finally, as empirical applications, the algal bloom data in Hong Kong was

used to show the validity of the suggested data assimilation procedures.
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Chapter 1

Introduction

1.1 Overview of Sequential Data Assimilation

Data assimilation has been applied to the areas of oceanography and meteorology

for many years. Basically, data assimilation consists of two approaches, namely,

variational and sequential. Apart from the variational approach which is based on

the method of optimal control, sequential data assimilation is less computationally

intensive and easy to implement. The sequential data assimilation is closely

related to the state space modelling. In this chapter, the relationship between

the sequential data assimilation and the state space modelling is explained in

details. Indeed, Bertino et al. (2003) provided a detailed review of sequential data

assimilation in oceanography and suggested the usage of Gaussian anamorphosis

in sequential data assimilation. Therefore, only some applications of sequential

data assimilation to oceanography are reviewed here.

In sequential data assimilation, observed measurement yn and a set of di¤er-

ential equations which describe the evolutionary dynamics of unobserved model

state xn are the essential ingredients. In state space modelling, the measurement

equation describes the relationship between the observed measurement and the

unobserved model state and the transition equation represents the discretized

version of the evolutionary dynamics of the model state. Typically, the model

state in the state space model is estimated by the recursive prediction and �lter-

ing procedures and they are called the forecasting and analysis steps respectively
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in the terminology of data assimilation. For example, at time n, given the value

of the �ltered model state, which is denoted as xnjn, the predicted model state

for next period xn+1jn is estimated by the transition equation. Once the measure-

ment at time n+ 1; yn+1, becomes available, the predicted model state xn+1jn is

updated and the updated model state becomes xn+1jn+1. Therefore, the operation

of sequential data assimilation is simple once the initial model state x0 and the

model parameters are available.

Furthermore, smoothing is another direction of sequential data assimilation.

Indeed, the model state xn is estimated by using all observations in the sample.

Suppose that the model state xn is denoted as xnjN where N is the number of

observations in the sample. Here, xnjN represents the mean of model state xn

conditional on all information at time N . In the terminology of Kalman �ltering,

the smoother for the estimation of xnjN is called the �xed-interval smoother in

which the model state xn�1jN is estimated by xnjN recursively for �xed N . Typi-

cally, the smoother is initialized by the �ltered model state at the end point of the

sample, that is, xN jN , and the estimation of the model state xnjN is propagated

backward in time. Actually, two additional types of smoothers are available in

the literature and they are the �xed-point smoother and the �xed-lag smoother.

For �xed-point smoother, the recursive estimation of the model state xnjm by

xnjm�1 for m � n is obtained by �xing the time point n. Clearly, the �xed-point

smoother is initialized by the predicted model state xnjn�1. For the smoother

with �xed-lag m, the model state xn�mjn is estimated by xn�mjn�1 recursively for

0 � m � N where this smoother is initialized by x0j�1 = x0 and x�mj�1 = 0.

The prototype of sequential data assimilation is the Kalman �lter (KF) which

was developed by Kalman (1960). Afterwards, many variants of KF were devel-

2



oped, such as, extended Kalman �lter (EKF), reduced rank square-root (RRSQRT)

�lter (Verlaan and Heemink, 1995), singular evolutive extended Kalman (SEEK)

�lter (Pham et al., 1998) and ensemble Kalman �lter (EnKF) (Evensen, 1994).

Early applications of data assimilation with KF are devoted to Talagrand and

Courtier (1987) and Courtier and Talagrand (1987) although both of them used

the variational approach to assimilate the meteorological data. Since the KF

was developed for linear dynamical systems, the usage of EKF which is based on

linearization of nonlinear dynamical system is a better alternative for data assim-

ilation, for example, see Evensen (1991). Due to the high-dimensional problem of

state space model in the area of meteorology, Verlaan and Heemink (1995) pro-

posed the RRSQRT �lter where the computational time and storage space were

reduced by using the reduced rank of error covariance matrices with a square

root factorization. Verlaan and Heemink (1997) applied the RRSQRT �lter with

a set of swallow water equations to model the tidal �ow of North Sea and then

to forecast the tides and storm surges. Their experimental results showed that

the RRSQRT �lter could reduce the number of computations and storage space

without reducing the accuracy of estimated model state a lot. Brasseur et al.

(1999) extended the SEEK �lter in the directions of statistical learning approach

and dynamic adjustment and assimilated the altimetric data in the mid-latitude

oceans with the Miami Isopycnic Coordinate Ocean Model (MICOM). Verlaan

and Heemink (2001) extended the RRSQRT �lter to capture the second order

approximation of nonlinear dynamical system and proposed a measure of nonlin-

earity of dynamical system. Their assimilation results showed that the measure

could detect the failure of Kalman-type �ltering. Also, they found that, for

highly nonlinear dynamical system, EnKF is more appropriate for data assimila-
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tion while RRSQRT is useful for weakly nonlinear dynamical system.

Pham (2001) proposed the second-order-exact sampling techniques that could

reduce the ensemble size in the Monte Carlo �lters. The experimental results

demonstrated that the ensemble size was signi�cantly reduced in EnKF and par-

ticle �lter. Cãnizares et al. (2001) implemented EnKF with the so-called MIKE

21 model (Madsen and Cãnizares, 1999) and DYNOCS (Dynamics of connecting

seas) model (Jensen, 1997) to assimilate the water levels of inner Danish waters.

Their results demonstrated the possibility of formation of the prototype of storm

surge prediction system. Wolf et al. (2001) adopted the RRSQRT �lter with

the hydrodynamical TRIM3D model (Casulli and Cattani, 1994) to reconstruct

the water level data of Odra lagoon which was across the German-Polish border

during the �ood period in 1997. Their simulation results showed that spatial

and temporal data could be assimilated e¢ ciently with the TRIM3D model es-

pecially in the case of poorly spatially distributed measurement, for example,

the water level around the whole lagoon area. In Bertino et al. (2002), estu-

arine applications by RRSQRT �lter and EnKF with the input of geostatistics

were examined. Two simulations, an 1-D ecological model and TRIM3D model

on Orda lagoon, were studied. They showed that the data assimilation schemes

were e¢ cient for spatial modeling in the estuarine applications. Brusdal et al.

(2003) compared the performance of data assimilation of SEEK �lter, EnKF and

the ensemble Kalman smoother (EnKS) of Evensen and van Leeuwen (2000) by

using the nonlinear MICOM model. The merits of these three data assimilation

procedures were also discussed in that paper. They found that the performance

of these three assimilation methods were similar.

Apart from RRSQRT and SEEK �lters which are referred to their original pa-
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pers, the basic formulation of previously mentioned �lters, together with Gaussian

sum �lter (GSF) and particle �lter, are described in the following sections and

some of the materials are followed from Arulampalam et al. (2002) and Chen

(2003).

1.1.1 Prediction and Filtering

1.1.1.1 Kalman Filter

The Kalman �lter (KF) was developed by Kalman (1960) and the state space

model follows a linear dynamics:

yn = hnxn + vn; vn � N(0;Rn);

xn = fnxn�1 + un; un � N(0;Qn);

(1.1)

for n = 1; : : : ; N , where xn 2 Rmx, yn 2 Rmy , hn and fn are matrices of ordermx�

my and mx �my respectively, E(vnum) = 0, 8m;n. Denote Yn � fy1; : : : ;yng

as a set of measurements up to time n.

To derive the recursive estimation of the state vector xn, various approaches

have appeared in the literature, least squares, mixed estimation, maximum a

posteriori (MAP) estimation and maximum likelihood estimation (MLE). Among

them, MAP, which indeed is the Bayesian approach, seems to be the most popular

one because this approach can be extended to the nonlinear state space model

easily. Therefore, the derivation of the state estimation is formulated on the basis

of MAP and the derivation can be found in Chen (2003, p.11�12).

Denote xtjs and�
xx
tjs as the mean and variance of xt conditional on information

up to time s. Then, xtjs � E(xtjYs) and �xxtjs � E((xt � xtjs)(xt � xtjs)TjYs) and

their estimates are represented by bxtjs and b�xxtjs respectively. Given the initial
5



state bx0j0 and the variance matrix b�xx0j0, the recursive state estimation is given by

bxnjn�1 = fnbxn�1jn�1;
b�xx

njn�1 = fn b�xx

n�1jn�1f
T
n +Qn�1;

bxnjn = bxnjn�1 + bKn(yn � hnbxnjn�1);
b�xxnjn = b�xx

njn�1 � bKnhn b�xxnjn�1;
for n = 1; : : : ; N , where bKn = b�xxnjn�1hTn(hn b�xxnjn�1hTn + Rn)

�1 is the Kalman

gain matrix. When the recursive formulation is expressed in the form of density

functions, they become

p(xn�1jYn�1) � N (xn�1; bxn�1jn�1; b�xxn�1jn�1);
p(xnjYn�1) � N (xn; bxnjn�1; b�xx

njn�1);

p(xnjYn) � N (xn; bxnjn; b�xxnjn);
where

N (x;�;�) = (2�)�
mx
2 j�j�

1
2 exp

�
�1
2
(x� �)T��1(x� �)

�
:

1.1.1.2 Extended Kalman Filter

For the EKF, the formulation is similar to that of KF, but a nonlinear state space

model is considered instead.
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yn = hn(xn) + vn; vn � N(0;Rn);

xn = fn(xn�1) + un; un � N(0;Qn);

(1.2)

for n = 1; : : : ; N where xn 2 Rmx, yn 2 Rmy , hn : Rmx ! Rmy and fn : Rmx !

Rmx are nonlinear continuous and di¤erentiable functions, E(vnum) = 0, 8m;n.

Given the initial state bx0j0 and the variance matrix b�xx

0j0, the recursive state

estimation is formulated by

bxnjn�1 = fn(bxn�1jn�1);
b�xx

njn�1 = efn b�xx

n�1jn�1
efTn +Qn�1;

bxnjn = bxnjn�1 + bKn(yn � hn(bxnjn�1));
b�xx

njn = b�xx

njn�1 � bKn
ehn b�xxnjn�1;

bKn = b�xx

njn�1
ehTn(ehn b�xx

njn�1
ehTn +Rn)

�1;

for n = 1; : : : ; N , where

efn = dfn(x)

dx

����
x=bxn�1jn�1 and

ehn = dhn(x)

dx

����
x=bxnjn�1 .

Then, the prediction and �ltering densities of the state vector xn are estimated

recursively by

p(xn�1jYn�1) � N (xn�1; bxn�1jn�1; b�xxn�1jn�1);
p(xnjYn�1) � N (xn; bxnjn�1; b�xx

njn�1);

7



p(xnjYn) � N (xn; bxnjn; b�xxnjn):
From the above formulae, one can observe that the coe¢ cient matrices in KF

are replaced by the �rst order derivatives in EKF. Under EKF, both functions

hn(�) and fn(�) are approximated by the respective �rst order term in their Taylor�s

expansion. One typical problem of EKF under nonlinear dynamical system is the

possible divergence of the �lter because the �rst order approximation may not

be su¢ cient to capture the curvature of the functions hn(�) and fn(�) when the

dynamical system is highly nonlinear. Although higher order approximation is

feasible, the formulation becomes more sophisticated, for example, see Tanizaki

(1996, p.52�55).

1.1.1.3 Gaussian Sum Filter

One suggestion to overcome the possible divergence of EKF is that the prediction

and �ltering densities be approximated by the sums of Gaussian densities. This

initiates the development of the Gaussian sum �lter (GSF). GSF was originated by

Sorenson and Alspach (1971) and Alspach and Sorenson (1972). The nonlinear

state space model considered is the same as that in EKF. The derivation of

GSF by Bayesian estimation can be found in Anderson and Moore (1979, p.214�

216), Sorenson and Alspach (1971) and Tanizaki (1996, p.73�77). The recursive

estimation of the state vector xn is given by the following formula: suppose that

at time n� 1, the �ltering density of the state vector xn�1 is approximated by

p(xn�1jYn�1) �
mX
j=1

b�j;n�1N (xn�1; bxj;n�1jn�1; b�xx

j;n�1jn�1);

for j = 1; : : : ;m with 0 � b�j;n�1 � 1 andPm
j=1 b�j;n�1 = 1. Then,
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bxj;njn�1 = fn(bxj;n�1jn�1);
b�xx

j;njn�1 = efn(bxj;n�1jn�1)b�xx

j;n�1jn�1
efTn (bxj;n�1jn�1) +Qn�1;

for j = 1; : : : ;m and n = 1; : : : ; N , where

efn(bxj;n�1jn�1) = dfn(x)

dx

����
x=bxj;n�1jn�1 :

The overall prediction mean and variance of the state vector xn are

bxnjn�1 = mX
j=1

b�j;n�1bxj;njn�1;
and

b�xx

njn�1 =
mX
j=1

b�j;n�1 �b�xx

j;njn�1 + (bxj;njn�1 � bxnjn�1)(bxj;njn�1 � bxnjn�1)T� ;
respectively. Then, the prediction density of the state vector xn is approximated

by

p(xnjYn�1) �
mX
j=1

b�j;n�1N (xn; bxj;njn�1; b�xx

j;njn�1);

During the �ltering stage, the predicted state vector bxj;njn�1 is updated by

bxj;njn = bxj;njn�1 + bKj;n(yn � hn(bxj;njn�1));
9



b�xx

j;njn = b�xx

j;njn�1 � bKj;n
ehn(bxj;njn�1)b�xx

j;njn�1;

bKj;n = b�xx

j;njn�1
ehTn(bxj;njn�1)(ehn(bxj;njn�1)b�xxj;njn�1ehTn(bxj;njn�1) +Rn)

�1;

b�j;n =
b�j;n�1N (yn;hn(bxj;njn�1); ehn(bxj;njn�1)b�xxj;njn�1ehTn(bxj;njn�1) +Rn)Pm
i=1 b�i;n�1N (yn;hn(bxi;njn�1); ehn(bxi;njn�1)b�xxi;njn�1ehTn(bxi;njn�1) +Rn)

;

for j = 1; : : : ;m, where

ehn(bxj;njn�1) = dhn(x)

dx

����
x=bxj;njn�1 :

The overall �ltered mean and variance of the state vector xn are

bxnjn = mX
j=1

b�j;nbxj;njn
and

b�xx

njn =
mX
j=1

b�j;n �b�xx

j;njn + (bxj;njn � bxnjn)(bxj;njn � bxnjn)T� ;
respectively. The �ltering density of the state vector xn is approximated by

p(xnjYn) �
mX
j=1

b�j;nN (xn; bxj;njn; b�xx

j;njn):

Therefore, the GSF can be considered as a parallel run of m EKF�s at the

same time and the recursive approximation of prediction and �ltering densities

by Gaussian sums. The component means and variances are then combined after

each stage is completed.
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1.1.1.4 Particle Filter

In previously described �lters, the measurement and state errors are Gaussian.

When they are non-Gaussian, Kalman-type �ltering does not seem to be appropri-

ate and this initiates the development of the particle �lter. Particle �ltering was

originated from the sequential Monte Carlo method which was developed by vari-

ous authors individually. Sometimes, it may be called bootstrap �ltering (Gordon

et al., 1993), condensation algorithm (MacCormick and Blake, 2000), particle �l-

tering (Carpenter et al., 1999), interacting particle approximation (Crisan et al.,

1999; del Moral, 1996) and survival of the �ttest (Kanazawa et al., 1995). In-

deed, Arulampalam et al. (2002), Doucet et al. (2001) and Chen (2003) provided

the overview and practical details of the particle �lter. Therefore, only the main

feature of the particle �lter is presented here.

Suppose that the nonlinear state space model is

yn = hn(xn) + vn;

xn = fn(xn�1) + un:

(1.3)

for n = 1; : : : ; N; where the density functions of vn and un may not be Gaussian.

Basically, particle �ltering can be considered as the estimation of the posterior

density of the state vector by a set of particles which are generated by the Monte

Carlo method. Indeed, a technique of sequential importance sampling (SIS) is

used here. In addition to the notation of Yn, denote Xn � fx0; : : : ;xng as a set

of state vectors up to time n. Note that the initial state vector is included in Xn.

Under the particle �lter, the posterior density of Xn is approximated by

p(XnjYn) �
KX
k=1

w(k)n �(Xn �X (k)
n );

11



where �(�) is the delta-Dirac mass, fX (k)
n ; w

(k)
n gKk=1 represents a set of particles

fX (k)
n gKk=1 which are weighted by fw

(k)
n gKk=1 respectively with 0 � w

(k)
n � 1 andPK

k=1w
(k)
n = 1.

However, in many cases, drawing random samples from p(XnjYn) is not an easy

task. Thus, one may draw the particles fX (k)
n gKk=1 from an importance density

q(XnjYn) and the weights are re-de�ned as

w(k)n / p(X (k)
n jYn)

q(X (k)
n jYn)

:

Furthermore, assume that the importance density can be factorized as

q(XnjYn) = q(xnjXn�1;Yn)q(Xn�1jYn�1).

Then, the set of particles fX (k)
n gKk=1 can be generated from fX (k)

n�1gKk=1 with

the augmentation of q(xnjXn�1;Yn) recursively. The recursive derivation of the

importance weights in the posterior density can be obtained from

p(XnjYn) =
p(ynjXn;Yn�1)p(XnjYn�1)

p(ynjYn�1)

=
p(ynjXn;Yn�1)p(xnjXn�1;Yn�1)p(Xn�1jYn�1)

p(ynjYn�1)

=
p(ynjxn)p(xnjxn�1)p(Xn�1jYn�1)

p(ynjYn�1)
/ p(ynjxn)p(xnjxn�1)p(Xn�1jYn�1);

where the last equality follows from the assumed state space model. Followed

from the re-de�ned weights, the importance weights are written as
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w(k)n / p(ynjx(k)n )p(x(k)n jx(k)n�1)p(X
(k)
n�1jYn�1)

q(x
(k)
n jX (k)

n�1;Yn)q(X
(k)
n�1jYn�1)

= w
(k)
n�1
p(ynjx(k)n )p(x(k)n jx(k)n�1)
q(x

(k)
n jX (k)

n�1;Yn)
:

If a more restrictive assumption q(xnjXn�1;Yn) = q(xnjXn�1;yn) is imposed,

the weights can be simpli�ed further as

w(k)n / w(k)n�1
p(ynjx(k)n )p(x(k)n jx(k)n�1)
q(x

(k)
n jX (k)

n�1;yn)
;

or

w(k)n =
w
(k)
n�1p(ynjx

(k)
n )p(x

(k)
n jx(k)n�1)=q(x

(k)
n jX (k)

n�1;yn)PK
j=1w

(j)
n�1p(ynjx

(j)
n )p(x

(j)
n jx(j)n�1)=q(x

(j)
n jX (j)

n�1;yn)
:

The �ltering density of the model state xn becomes

p(xnjYn) �
KX
k=1

w(k)n �(xn � x(k)n ):

Due to the possible degeneration of weights w(k)n , a resampling step was sug-

gested by Gordon et al. (1993) in which the K particles fx(k)n gKk=1 are resampled

with replacement according to the importance weights fw(k)n gKk=1. Nevertheless,

the resampling step occurs when bNeff � fPK
k=1(w

(k)
n )2g�1 is less than a threshold

value under conventional SIS. Ever since, many variants of the particle �lter were

developed, for example, sequential importance resampling (SIR) particle �lter

(Gordon et al., 1993), auxiliary particle �lter (Pitt and Shephard, 1999), rejec-

tion particle �lter (Tanizaki, 1999) and regularized particle �lter (Musso et al.,

13



2001).

1.1.1.5 Ensemble Kalman Filter

EnKF was suggested by Evensen (1994) and the comprehensive review and tech-

nical treatment can be found in Evensen (2003) and Evensen (2007). One ad-

vantage of this �lter is that only the mean and variance of the state vector xn

are propagated over time in contrast to the particle �lter where the whole pos-

terior density function of the state vector xn is propagated. Also, the mean and

variance are approximated by a cloud of ensemble members and even in highly

nonlinear dynamical systems this results in an improvement of estimation of mean

and variance of the state vector xn over EKF.

Suppose that the nonlinear state space model is

yn = hnxn + vn; vn � N(0;Rn);

xn = fn(xn�1) + un; un � N(0;Qn);

(1.4)

for n = 1; : : : ; N; where xn 2 Rmx, yn 2 Rmy , fn : Rmx ! Rmx is a nonlinear

function, hn is a mx � my matrix, E(vnum) = 0, 8m;n. Given the mean and

variance of the initial state, bx0j0 and b�xx

0j0, the ensemble members of the state

vector xn are generated by

bx(k)njn�1 = fn(bx(k)n�1jn�1) + u(k)n ; u(k)n � N(0;Qn);

for n = 1; : : : ; N and k = 1; : : : ; K where bx(k)n�1jn�1 is the kth ensemble member in
the previous �ltering stage, u(k)n is drawn from the Gaussian densityN (un;0;Qn).

The ensemble mean and variance of the predicted state vector xn are

14



bxnjn�1 = 1

K

KX
k=1

bx(k)njn�1;
and

b�xx

njn�1 =
1

K � 1

KX
k=1

(bx(k)njn�1 � bxnjn�1)(bx(k)njn�1 � bxnjn�1)T;
respectively. During the �ltering stage, each ensemble member is updated by the

following linear updating equation.

bx(k)njn = bx(k)njn�1 + bKn(y
(k)
n � hnbx(k)njn�1);

for k = 1; : : : ; K; where

y(k)n = yn + v
(k)
n ; v(k)n � N(0;Rn);

bKn = b�xx

njn�1h
T
n(hn

b�xxnjn�1hTn +Rn)
�1:

The ensemble �ltered mean and variance can be obtained in a similar way,

that is,

bxnjn = 1

K

KX
k=1

bx(k)njn and b�xx

njn =
1

K � 1

KX
k=1

(bx(k)njn � bxnjn)(bx(k)njn � bxnjn)T:
Note that the measurement yn is perturbed by the stochastic error v

(k)
n from

Gaussian density N (vn;0;Rn). This is the special feature of EnKF and its va-

lidity was shown by Burgers et al. (1998). The recursive approximation of the
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posterior density functions of the state vector xn is given by

p(xn�1jYn�1) � N (xn�1; bxn�1jn�1; b�xxn�1jn�1);
p(xnjYn�1) � N (xn; bxnjn�1; b�xx

njn�1);

p(xnjYn) � N (xn; bxnjn; b�xxnjn):
Therefore, EnKF can be considered as the recursive Gaussian approximation

of the prediction and �ltering densities. This also explains why EnKF is an

suboptimal solution of particle �lter when vn and un are not Gaussian.

1.1.2 Smoothing

1.1.2.1 Kalman Smoother

The Kalman smoother was derived on the basis of the linear state space model

(1.1). Here, only the �xed-interval smoother is considered since the state vector

xn can be estimated by this smoother more accurately intuitively. For the �xed-

point and �xed-lag smoothers, the derivation and technical details can be found

in (Anderson and Moore, 1979, Chapter 7). For the �xed-interval smoother which

estimates the model state xn by using all information of the sample, given the

�ltered model state bxN jN and the variance matrix b�xxN jN , the recursive estimation
of xnjN and its variance is given by

bxn�1jN = bxn�1jn�1 + bAn�1(bxnjN � bxnjn�1);
b�xxn�1jN = b�xxn�1jn�1 + bAn�1(b�xx

njN � b�xxnjn�1)(bAn�1)
T;
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for n = N; : : : ; 2, where bAn�1 = b�xxn�1jn�1fTn�1(b�xx

njn�1)
�1 is the gain matrix for the

�xed-interval smoother. Clearly, the recursive formula requires both prediction

and �ltering results. In density form, the smoothing density of the state vector

xn is approximated recursively by

p(xn�1jYN) � N (xn�1; bxn�1jN ; b�xx

n�1jN);

p(xn�1jYn�1) � N (xn�1; bxn�1jn�1; b�xxn�1jn�1);
p(xnjYn�1) � N (xn; bxnjn�1; b�xx

njn�1):

1.1.2.2 Gaussian Sum Smoother

As proposed by Kitagawa (1994), the Gaussian sum smoother was derived for the

linear state space model

yn = xn + vn; vn � N(0;Rn);

xn = fnxn�1 + un; un � N(0;Qn);

(1.5)

for n = 1; : : : ; N .

Basically, the Gaussian sum smoother consists of two components: the deriva-

tion of two-�lter formula (which consists of the conventional �ltering and the

backward �ltering algorithms) and the Gaussian sum approximation. Denote

Yn � fyn; : : : ;yNg which contains the current and future information of the

measurement. Then, by the Bayes�Theorem, the smoothing density p(xnjYN) is

expressed as
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p(xnjYN) = p(xnjYn�1;Yn)

/ p(Ynjxn)p(xnjYn�1):

Clearly, the smoothing density p(xnjYN) is determined by the one-step ahead

prediction density p(xnjYn�1) and the density p(Ynjxn). Once the recursive

derivation of p(Ynjxn) is available, the smoothing density p(xnjYN) can be derived

recursively. Then, the recursive formula of p(Ynjxn) is derived by the backward

�ltering algorithm. Speci�cally,

p(Yn+1jxn) =

Z
p(Yn+1;xn+1jxn)dxn+1

=

Z
p(Yn+1jxn+1;xn)p(xn+1jxn)dxn+1

=

Z
p(Yn+1jxn+1)p(xn+1jxn)dxn+1;

and

p(Ynjxn) = p(Yn+1;ynjxn)

= p(ynjxn;Yn+1)p(Yn+1jxn)

= p(ynjxn)p(Yn+1jxn):

for n = N � 1; : : : ; 1. When n = N , p(Ynjxn) = p(yN jxN).

Now, assume that the densities p(Ynjxn) and p(xnjYn�1) are approximated
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by the sum of Gaussian densities, that is,

p(Ynjxn) �
X̀
i=1

b�i;nN (yn; byi;njn; b�yyi;njn);
and

p(xnjYn�1) �
mX
j=1

bj;nN (xn; bxj;njn�1; b�xx

j;njn�1);

with 0 � b�i;n; bj;n � 1 for i = 1; : : : ; `; j = 1; : : : ;m and
P`

i=1
b�i;n =Pm

j=1 bj;n =
1. Then, the Gaussian sum smoother is obtained by

p(xnjYN) / p(Ynjxn)p(xnjYn�1)

=
X̀
i=1

mX
j=1

b�i;nbj;nN (yn; byi;njn; b�yy

i;njn)N (xn; bxj;njn�1; b�xx

j;njn�1)

�
X̀
i=1

mX
j=1

b�i;nbj;nN (xn; bxij;njN ; b�xxij;njN);
where

bJij;n = b�xx

j;njn�1(
b�yyi;njn + b�xx

j;njn�1)
�1;

bxij;njN = bxj;njn�1 + bJij;n(byi;njn � bxj;njn�1);
b�xxij;njN = (I� bJij;n)b�xx

j;njn�1;

for i = 1; : : : ; ` and j = 1; : : : ;m.

After renumbering the double summation by a single summation, the smooth-

ing density p(xnjYN) can also be expressed in the form of a Gaussian sum.
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1.1.2.3 Particle Smoother

The particle smoother was derived based on the nonlinear state space model (1.3).

At the beginning, the particle �lter is run to propagate forward in time so that the

results of the prediction and �ltering densities of the state vector xn are stored.

Then, the density of X n�1 � fxn�1; : : : ;xNg conditional on all measurements YN

is obtained backward in time recursively.

p(X n�1jYN) = p(xn�1;X njYN)

= p(xn�1jX n;YN)p(X njYN)

= p(xn�1jX n;Yn�1)p(X njYN)

= p(X njYN)
p(xnjxn�1;Yn�1)p(xn�1jYn�1)

p(xnjYn�1)
;

for n = N�1; : : : ; 2. The third equality is obtained by the Markovian property of

xn and the fourth equality is derived by the Bayes�Theorem. As a usual practice

in particle �ltering, the smoothing density p(X n�1jYN) can be approximated by

a set of particles:

p(X n�1jYN) �
KX
k=1

w
(k)
N �(X n�1 �X n�1(k));

where �(�) is the delta-Dirac mass, fX n�1(k); w
(k)
N gKk=1 represents a set of particles

fX n�1(k)gKk=1 which are weighted by fw
(k)
N gKk=1 respectively with 0 � w

(k)
N � 1

and
PK

k=1w
(k)
N = 1. One may see that the smoothing density p(xn�1jYN) may

be obtained by marginalizing out X n. However, it is infeasible in the practical

sense because of the degeneration of weights during resampling. On the other
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hand, Doucet et al. (2000) proposed a �xed-interval particle smoother to tackle

this problem. The smoothing density p(xn�1jYN) can be written in the following

recursive form:

p(xn�1jYN) = p(xn�1jYn�1)
Z
p(xnjYN)p(xnjxn�1)

p(xnjYn�1)
dxn:

Then, the smoothing density p(xn�1jYN) is approximated by

p(xn�1jYN) �
KX
k=1

w
(k)
n�1jN�(xn � x

(k)
n );

where the smoothing weight w(k)n�1jN is obtained by the following formula recur-

sively.

w
(k)
n�1jN =

KX
k0=1

w
(k)
njN

w
(k)
n�1p(x

(k0)
n jx(k)n�1)PK

k=1w
(k)
n�1p(x

(k0)
n jx(k)n�1)

;

for n = N � 1; : : : ; 2 where w(k)n�1 is obtained in the �ltering stage. Clearly,

when n = N , the smoothing weight w(k)njN is initialized by w
(k)
N and this setting is

reasonable because the �ltering density and the smoothing density are the same

when n = N .

Furthermore, the particle smoother can also be derived from the rejection

particle �lters and the details can be found in Kitagawa (1996), Tanizaki and

Mariano (1998) and Hüzeler and Künsch (1998).

1.2 Some Backgrounds of Algal Blooms

Generally, algal blooms can be considered as the dramatic growth of phytoplank-

ton cells. In some cases, they are called �red tides�due to the red color pigments
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in the phytoplankton cells. Usually, red tides occur during the spring season.

One consequence of algal blooms is hypoxia because a huge amount of dissolved

oxygen is consumed by the large population of phytoplankton cells. Another

consequence is the release of toxin into water. This in turn leads to the massive

kill of �sh, shell�sh and marine mammals by various toxins, such as, ciguatoxin

(ciguatera poisoning), brevetoxin (neurotoixc poisoning) and saxitoxin (paralytic

poisoning). The consumption of poisoned �sh and shell�sh is also harmful to the

human health. On the other hand, the blooms of blue-green algae (cyanobacte-

ria) are also typical in waters. Certain kinds of toxin by these algae are harmful

to the liver and cause eye and skin irritation because of prolonged exposure in

the waters. Therefore, the study of algal dynamics is essential to maintain the

diversity of mariculture and the human health.

Mainly, phytoplankton which causes algal blooms consists of two types, namely,

diatoms and dino�agellates. The biological behavior of these two species varies a

lot due to the di¤erence in the biological structure. For diatom cells, they have a

thick cell wall which is made of silicate and hence their biomass is typically larger

than that of dino�agellates. On the other hand, dino�agellates do not possess the

silicate cell walls, but most of them have two dissimilar �agella. They can move

along the water column with diurnal variation of environmental factors, such as

water temperature and solar radiation. Therefore, during daytime, dino�agellates

can move to the water surface for photosynthesis and produce oxygen and glu-

cose. During nighttime, they can move downward to the sea bed for respiration

and absorption of nutrients. However, diatoms do not have the same biological

behavior. Due to its biomass, they can move along the water column by up-

welling and downwelling with turbulence. Therefore, their production of oxygen
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is relied on the upwelling e¤ect of turbulence (Kamykowski and Yamazaki, 1997;

Yamamoto and Okai, 2000). The decomposition of dino�agellates and diatoms

after death raises the level of nutrient concentration and then induces the growth

of phytoplankton cells.

Generally, the occurrence of algal blooms is determined by many environmen-

tal factors, for example, concentration of chlorophyll-a, concentration of dissolved

oxygen, concentration of nutrients (nitrates and phosphates mainly), water tem-

perature, wind direction, wind speed, turbulence, solar radiation, salinity and so

on (see, for example, Thomann and Mueller, 1987). However, the algal dynamics

is not known clearly. Typically, the concentration of nitrates and phosphates is a

crucial factor to cause algal blooms. Due to the biological structure of diatoms,

the concentration of silicate is a factor for their growth as well. Although one

can consider that the fertilization of nitrates and phosphates leads to the algal

blooms, it need not be the case in certain scenarios, such as the seasonal variation

of water temperature and the upwelling of nutrients by turbulence. One of the

complexities could be due to various biological behavior across the species of phy-

toplankton and the mix of species in the waters. In addition, due to the stochastic

behavior of environmental factors, for example, solar radiation, wind direction,

wind speed and turbulence, these also enhance the di¢ culty of understanding of

the algal bloom dynamics. These in turn lead to the outcome of many physi-

cal models which attempt to explain the algal dynamics. For example, Franks

(1997) reviewed the models of harmful algal blooms and they were categorized

into four types, (1) aggregated models; (2) multispecies models; (3) models with

simple physics and (4) model with detailed physics. Recently, Chattopadhyay

et al. (2002) and Chattopadhyay et al. (2004) suggested mathematical models to
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explain the interaction behavior between phytoplankton and zooplankton where

both toxin producing phytoplankton and non-toxic phytoplankton were included

into the models. Then, the behavior of the models were veri�ed by the �eld data

and numerical simulations.

Due to the increasing complexity of mathematical models, sequential data

assimilation with these models becomes more di¢ cult than before. Therefore,

statistical models could be another direction to explain the algal dynamics and

they are attempted to use in this thesis.

1.3 Outline of the Thesis

In this thesis, two extensions of ensemble Kalman �lter (EnKF) are proposed in

Chapters 2 and 3 respectively. Speci�cally, the nonlinear updating equation in

EnKF is shown in Chapter 2 while the EnKF with Markov switching structure

is given in Chapter 3.

In Chapter 2, since the linear updating equation is implemented with the

conventional version of EnKF, a nonlinear updating equation is suggested to

improve EnKF and the existence of the nonlinear updating equation is derived

mathematically. The estimation of ensemble states is derived using Goldberger-

Theil�s mixed estimation (Theil and Goldberger, 1961). The variant of EnKF

under this kind of operation is called the ensemble Goldberger-Theil Kalman �l-

ter (EnGTKF). Due to the possible severe deviation of asymptotic Gaussianity of

estimated ensemble mean and variances, a multivariate version of Gram-Charlier

density is suggested to approximate the prediction and �ltering densities of the

model state. This suggestion can be extended to the derivation of the likeli-
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hood function in parameter identi�cation. Furthermore, as a natural extension

of EnGTKF, a recursive ensemble smoother, ensemble Kalman Goldberger-Theil

smoother (EnGTKS), is derived and the formulation is di¤erent from those by

van Leeuwen and Evensen (1996) and Evensen and van Leeuwen (2000). Under

this ensemble smoother, only information of the prediction density of the model

state and the likelihood of measurement conditional on the predicted model state

are required to be stored. Thus, it is computationally favorable and can save a

lot of storage space.

For parameter identi�cation, a hybrid approach of maximum likelihood es-

timation is adopted here. Traditionally, the likelihood function is obtained by

the decomposition of the measurement prediction error and the unknown para-

meters are estimated by conventional local optimization algorithms, for example,

Newton-Raphson and Quasi-Newton. Due to the high-dimensional feature in the

state space model, the positive de�niteness of error covariance matrices of the

measurements and model state are di¢ cult to maintain. As a result, a kind

of orthogonal decomposition of the matrices is suggested together with a local-

ized stochastic search algorithm, a kind of global optimization algorithm. The

global search result is used as the initial parameter estimates of conventional

local optimization algorithms. To draw statistical inference on the parameters,

a recursive estimation method for the observed Fisher�s information matrix is

suggested. Then, asymptotic standard errors of estimated parameters can be

obtained accordingly.

As an application of the newly derived �lter, the algal bloom data in Hong

Kong is assimilated. The complete sampling period is 2000-2004. The observa-

tions in 2000-2001 are selected as the in-sample period, that is, they are used
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for parameter identi�cation, and those in 2002-2004 are selected as the out-of-

the-sample period. To capture the transitions between non-blooming and bloom-

ing periods, the time-varying vector smoothed transition autoregressive (TV-

VSTAR) model is proposed to �t the observations. To validate the prediction

performance of the TV-STAR model, the vector autoregressive (VAR) model is

used as a benchmark. For the selection of lag parameters in the TV-VSTAR

model, the one with the smallest Akaike information criterion (AIC) during the

in-sample period is selected as the appropriate one.

In Chapter 3, although the assumption of Gaussian error in the measurement

and model state is su¢ cient in many applications, this assumption is inappropri-

ate in certain cases. As a result, the structure of Markov switching in unobserved

regimes is introduced into the EnKF and this new �lter is called the ensemble

Markov switching Kalman �lter (EnMSKF). This new �lter serves two purposes:

the switching between nonlinear dynamics and the use of mixtures of Gaussian

densities. Unlike the dynamic linear state space model by Kim (1994), the model

state is estimated by ensemble members. Hence, even under switching between

nonlinear dynamic models, the ensemble mean and variance can be estimated in

the usual way. The growth in the number of unobserved regimes over time is

controlled by the marginalization of the �ltering density with the same �ltering

mean and variance. As a by-product of this �lter, a new version of the ensemble

smoother, the ensemble Markov switching Kalman smoother (EnMSKS), is de-

rived and this smoother can act as an alternative smoother for the non-Gaussian

case.

For parameter identi�cation, the hybrid optimization algorithm suggested in

Chapter 2 is applied again. Furthermore, due to the complexity of the likelihood
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function of the Markov switching model, a recursive method is suggested to es-

timate the observed Fisher�s information matrix. Then, the standard errors of

model parameters can be estimated for statistical inference. To choose the num-

ber of switching regimes, the Bayesian information criterion (BIC) is suggested.

For an application of EnMSKF, some assimilations of algal bloom data in

Hong Kong are carried out. As in Chapter 2, the complete sampling period

covers 2000-2004 is splitted into in-sample and out-of-sample periods by the same

criterion. The underlying model used is a Markov switching vector autoregressive

(MS-VAR) model. The two features of this model may be appropriate for the

algal bloom data. The MS-VAR model can capture the sudden changes in algal

bloom data during blooming periods and the drops in biomass of phytoplankton

cells near the end of blooming periods. Furthermore, the prediction probability

of algal blooms can also be produced and this is informative in constructing an

algal bloom alarm system.

Finally, the conclusions of the thesis are drawn are drawn in Chapter 4.
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Chapter 2

Ensemble Kalman Filter with Nonlinear
Updating Equation

2.1 Introduction

Kalman (1960) developed the Kalman �lter (KF) which has been applied to var-

ious aspects of engineering, atmospheric science, economics, �nance for a long

period of time. One advantage of KF is easy to implement. However, its optimal-

ity is maintained under the assumptions of linearity of model with Gaussian er-

rors. Afterwards, many variants of KF have been proposed, such as the extended

Kalman �lter (EKF), iterative extended Kalman �lter (IEKF), square root �lter

(SQKF) and so on. The details of these �lters can be found in Jazwinski (1970)

and Anderson and Moore (1979).

The ensemble Kalman �lter (EnKF) was proposed by Evensen (1994) and

has been used in the atmospheric science over 10 years. Indeed, EnKF could

be considered as a suboptimal solution of the particle �lter (for example, Carlin

et al., 1992; Gordon et al., 1993; del Moral, 1996; Crisan et al., 1999; Gilks and

Berzuini, 2001; and Arulampalam et al., 2002) in which the whole density func-

tion is estimated by simulations. Under the framework of EnKF, the means and

variances of prediction and �ltering densities are obtained by simulated measure-

ments and states. Then, by the law of large numbers, the estimated means and

variances are consistent. Unlike EKF where the linearization of the state space

model is required, no linearization is required in EnKF and the nonlinearity of the
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state space model is captured by a cloud of ensemble members. Evensen (2003)

and Evensen (2007) gave an overview of development of EnKF and discussed the

implementation issues of this �lter.

Mainly, the applications of EnKF have been focused on atmospheric data

assimilation due to its historical background. For example, Eknes and Evensen

(2002) applied EnKF to assimilate biological data, that is, concentrations of nutri-

ent, phytoplankton and zooplankton. They showed that the EnKF could handle

the nonlinear instabilities of data assimilation during Spring algal bloom. In par-

ticular, the assimilation of concentration of phytoplankton seemed to denominate

the concentrations of nutrient and zooplankton and this resulted in the control

of the whole assimilation system. Haugen and Evensen (2002) implemented the

EnKF to monitor and predict the variations of Indian Ocean by using remotely

sensed observations of sea-level anomaly and sea-surface temperature with the

Miami Isopycnic Coordinate Ocean Model (MICOM). They demonstrated that

the EnKF can control the model evolution over time e¤ectively. Also, the mul-

tivariate correlation between variables were highly anisotropic and dependent on

location. Mitchell et al. (2002) studied the e¤ects of ensemble size and the local-

ization on EnKF with a global forecast model by the Canadian Meteorological

Centre. Their results indicated that an increase in the ensemble size and more se-

vere localization could improve the assimilation of atmospheric data although the

computational cost could be expensive. Vrugt et al. (2005) applied a global op-

timization algorithm with EnKF to assimilate stream�ow data of the Leaf River

watershed which was located north of Collins, Mississippi. They demonstrated

the possibility of simultaneous optimization, which indeed was a process of model

calibration, and data assimilation.
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In most cases, EnKF can produce reasonable and consistent predictions of

states and measurements in the sense of minimum mean squared errors. In-

evitably, it still faces the problems of state estimation and parameter estimation.

Firstly, EnKF faced a problem that its updating equation is linear in both

new measurement and predicted states. Consequently, in the case of nonlinear

measurements and/or states, the conditional variance of �ltered states may not be

minimized and this implies that measurement data during the updating step may

not be used e¢ ciently. This initiates the proposal of a new EnKF, which is called

the ensemble Goldberger-Theil Kalman �lter (EnGTKF), in this chapter. Under

this new �lter, the updating equation needs no longer be linear. The derivation of

the nonlinear updating equation is shown as an extension of the linear updating

equation of the conventional EnKF. Furthermore, since the prediction densities

of states and measurements and the �ltering density of states may deviate from

that of asymptotic Gaussianity, the construction of error statistics by ensemble

averages may not be appropriate. Consequently, the nonlinear updating equation

is extended to adapt to the case of non-Gaussian density. Indeed, the multivariate

Gram-Charlier densities by Perote and del Brío (2006) is suggested to approxi-

mate the densities so that the error statistics for states and measurements can

then be calculated accordingly. This speci�cation of multivariate Gram-Charlier

density ensures its positive density over the support without speci�c restrictions

on the parameter values.

As a by-product of EnGTKF, the ensemble Goldberger-Theil Kalman smoother

(EnGTKS) is derived. Indeed, the smoothed estimates of mean and variance-

covariance matrix of states and measurements are expressed in the forms of

weighted ensemble averages where the weights are determined by the likelihood
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of measurements conditional on states recursively.

Secondly, focused on the issue of parameter estimation, due to the large num-

bers of unknown parameters in multivariate state space model, maximization of

the likelihood function by conventional estimation methods, such as the Newton-

Raphson and Quasi-Newton methods, is typical, but they may not be suitable

in the current situation because the positive de�niteness of a high-dimensional

variance-covariance matrix is hard to maintain. One may suggest that global op-

timization algorithm can �nd the estimation results easily. However, one pitfall

of global optimization algorithm is its accuracy, except in the case of discrete pa-

rameter values. On the other hand, the local optimization algorithms can provide

accurate parameter estimates. However, the optimal solutions can be trapped in

local optimal when the objective function is not unimodal. To tackle the prob-

lems of parameter estimation, a hybrid optimization procedure is suggested to

estimate the unknown parameters. Indeed, the proposed algorithm consists of

three components, namely, (1) localized stochastic search algorithm; (2) evolu-

tionary strategy, a kind of evolutionary algorithm; and (3) local optimization

algorithm, for example Quasi-Newton algorithm. A brief description of this al-

gorithm can be given as follows. A transformation procedure in evolutionary

strategy is applied to decompose the variance-covariance matrices into products

of orthogonal rotation matrices which are determined by rotation angles only.

Then, a localized stochastic search algorithm is applied to search for the optimal

parameter estimates. Finally, a local optimization algorithm is used to enhance

the estimation results in the global optimization. In addition to the estimation

of unknown parameters in the model, drawing inference on unknown parameters

is also essential. Therefore, the derivatives of the objective function are essential
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in estimation of standard errors and they are also derived in this chapter.

In the followings, the speci�cation of the model and its assumptions are given

in Section 2.2. The derivation of the ensemble Goldberger-Theil Kalman �lter

(EnGTKF) and the ensemble Goldberger-Theil Kalman smoother (EnGTKS) is

presented in Section 2.3. Then, a detailed description of the estimation algorithm

is provided in Section 2.4. The estimation of standard errors of estimated para-

meters is then discussed in Section 2.5. Since the prediction and �ltering densities

may deviate from the asymptotic Gaussianity, a method to approximate the non-

Gaussian densities by the multivariate Gram-Charlier expansion is suggested in

Section 2.6. In Section 2.7, numerical simulations and empirical application of

EnGTKF are provided. Finally, conclusions are drawn in Section 2.8.

2.2 The Model

Consider the following general nonlinear state space model:

yn = h (xn; �n) + vn, (2.1)

xn = f (xn�1; �n) + un, (2.2)

for n = 1; : : : ; N; where yn 2 Rmy ; xn 2 Rmx ; h : Rmx ! Rmy and f : Rmx ! Rmx

are measurable functions. Also, �n 2 Rp is a vector of model parameters. Both

functions h (�) and f (�) are assumed to be smooth, that is, all derivatives of h (�)

and f (�) exist and continuous. In the state space modelling, equations (2.1) and

(2.2) are known as the measurement equation and the transition equation re-

spectively. The speci�cation of (2.1) and (2.2) is fairly general including many
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parametric and non-parametric nonlinear time series models. Particularly non-

parametric models such as smoothing splines and nonparametric regression can

be considered as special cases of (2.1) and (2.2). Note that the time-varying

parameters can be included in the state equation. Under this situation, the aug-

mented state vector which contains the model state vector and the time-varying

parameter. simultaneously. Indeed, Kitagawa (1998) investigated this problem

carefully and considered the time-varying parameters to follow a random walks

as an example.

The density functions of vn and un are assumed to be

p (un) = N (un;0;Qn) ; (2.3)

and

p (vn) = N (vn;0;Rn) ; (2.4)

respectively where

N (x;�;�) = (2�)�
mx
2 j�j�

1
2 exp

�
�1
2
(x� �)T��1(x� �)

�
.

Here, both Qn and Rn are assumed to be non-negative de�nite. In the cases

of singular Qn and Rn, their generalized inverses are used instead. Both mx and

my are assumed to be �nite. The density function of the initial state x0 is de�ned

by

p (x0) = N
�
x0;x0j0;�0j0

�
.
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The assumptions for the conditional density functions of yn and xn are given

below:

Assumption 2.1 Denote Xn � fx1; : : : ;xng and Yn � fy1; : : : ;yng. Then,

(i) Conditional on xn, current measurement yn is independent of the past in-

formation of xn and yn, Xn�1 and Yn�1, that is,

p (ynjXn;Yn�1) = p (ynjxn;Xn�1;Yn�1) = p (ynjxn) for n = 2; : : : ; N;

and

p (ynjXn) = p(ynjxn) for n = 1:

The conditional independence assumption is implied by the measurement

equation (2.1).

(ii) The state process fxngNn=1 is Markovian and homogenous. Also, it admits

an invariant probability measure, that is,

p (xnjXn�1;Yn�1) = p (xnjxn�1;Xn�2;Yn�1) = p (xnjxn�1) for n = 1; : : : ; N:

(iii) The Markov chain fxngNn=1 is irreducible and aperiodic.

(iv) The initial distribution of x0 is stationary.

Assumption 2.1 implies that given the values of xn, the density function of yn

can be derived directly. Furthermore, the density function of the state vector xn

can be derived only from the state vector xn at time n� 1. Indeed, condition (ii)

implies that the Markov chain fxngNn=1 is ergodic (Chan and Tong, 2001, p.34).

In addition to the assumption of Harris recurrent Markov chain fxngNn=1, by Meyn
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and Tweedie (1993, Theorem 13.0.1), the state process fxngNn=1 converges to a

stationary distribution for every initial condition x0 2 Rmx. This theorem also

ensures the stability of the state space model of (2.1) and (2.2) since the Foster�s

condition (Meyn and Tweedie, 1993, p.501) is satis�ed automatically. To enable

the EnKF, more assumptions on the independence of un, vn and x0 are necessary

and given below:

Assumption 2.2

(i) The disturbances un and vn are uncorrelated within themselves over n and

with each other for all time periods, that is, E
�
unv

T
m

�
= 0 for all m and n.

(ii) The initial state vector x0 is uncorrelated with un and vn, that is, E
�
unx

T
0

�
=

E
�
vnx

T
0

�
= 0 for n = 1; : : : ; N .

This assumption can simplify the result of nonlinear updating equation.

2.3 Recursive Estimation of Model States

Now, a new version of EnKF for the general nonlinear state space model is derived

in this section. The prediction step of the new �lter follows from Evensen�s

EnKF and the nonlinear updating rule is provided in Section 2.3.2. For the state

estimation, assume that parameters f�n;Rn;QngNn=1, x0j0 and �0j0 are known.

The prediction and �ltering densities for the state vector xn are given by

p (xnjYn�1) =

Z
p (xn;xn�1jYn�1) dxn�1

=

Z
p (xn�1jYn�1) p (xnjxn�1) dxn�1; for n � 1 (2.5)
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and p (xnjYn) = p (xnjyn;Yn�1)

=
p (xnjYn�1) p (ynjxn)

p (ynjYn�1)

=
p (xnjYn�1) p (ynjxn)R
p (xnjYn�1) p (ynjxn) dxn

; for n > 1 (2.6)

respectively. The derivation of the above densities requires Assumptions 2.1(i)

and (ii) and the Bayes�Theorem. To initiate EnKF, the initial density p (x0jy0)

is assumed to be

p (x0jy0) =
p (y0jx0) p (x0)

p (y0)
= p (x0) = N (x0;x0j0;�xx

0j0), (2.7)

Implicitly, p (y0jx0) = p (y0) is assumed in the above expression.

2.3.1 Prediction

Due to a �aw in the literature of the conventional EnKF, it is desirable to inves-

tigate the statistical properties of ensemble mean and ensemble variance in the

prediction stage.

Assume that the �ltering density for the state vector xn for n � 1 is

p (xn�1jYn�1) = N (xn�1;xn�1jn�1;�xxn�1jn�1), (2.8)

where xn�1jn�1 and �
xx
n�1jn�1 denote the mean and variance of xn�1 conditional

on Yn�1 respectively, that is,

xn�1jn�1 �
Z
xn�1p (xn�1jYn�1) dxn�1

and
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�xxn�1jn�1 �
Z �

xn�1 � xn�1jn�1
� �
xn�1 � xn�1jn�1

�T
p (xn�1jYn�1) dxn�1.

Although the conditional mean and variance are functions of parameter �n

implicitly, �n is omitted in the formula for notation simpli�cation.

Then, from (2.5), the conditional mean and variance of the one-step ahead

prediction for the state vector xn at time n given the measurement up to time

n� 1 are

xnjn�1 �
Z
xnp (xnjYn�1) dxn

and

�xx
njn�1 �

Z �
xn � xnjn�1

� �
xn � xnjn�1

�T
p (xnjYn�1) dxn;

where xnjn�1 and �
xx
njn�1 denote the mean and variance of xn conditional on Yn�1

respectively.

Under the criterion of minimum mean squared error (MMSE), the one-step

ahead prediction mean xnjn�1 and variance �
xx
njn�1 for state vector xn are esti-

mated when its conditional prediction variance is minimized:

xnjn�1 = argminbxn2Rmx E
h
(bxn � xn)T (bxn � xn)���Yn�1i :

The one-step ahead prediction estimate of xn is its conditional mean
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xnjn�1 = E (xnjYn�1)

= E (f (xn�1; �n) + unjYn�1)

=

Z
f (xn�1; �n) p (xn�1jYn�1) dxn�1 +

Z
unp (un) dun;

in which the �rst term can be approximated by a cloud of ensemble members

f(x
(k)
n�1jn�1; �n) where x

(k)
n�1jn�1 is drawn from the Gaussian density p(xn�1jYn�1)

for k = 1; : : : ; K. The second term can be approximated by an ensemble of un

which is drawn from the density function p (un) = N (un;0;Qn). This results in

the one-step ahead prediction for xn by K ensemble members.

bx(k)njn�1 = f(bx(k)n�1jn�1; �n) + u(k)n ; u(k)n � N (0;Qn) , for k = 1; : : : ; K; (2.9)

bxnjn�1 = 1

K

KX
k=1

bx(k)njn�1; (2.10)

b�xx

njn�1 =
1

K � 1

KX
k=1

�bx(k)njn�1 � bxnjn�1��bx(k)njn�1 � bxnjn�1�T : (2.11)

On the other hand, the one-step ahead prediction density for the measurement

vector yn is

p (ynjYn�1) =

Z
p (yn;xnjYn�1) dxn

=

Z
p (ynjxn) p (xnjYn�1) dxn: (2.12)

Similar to the prediction of the state vector xn, the one-step ahead prediction
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for the measurement vector yn is estimated by minimizing its prediction variance

ynjn�1 = argminbyn2Rmy E
h
(byn � h(xn; �n))T (byn � h(xn; �n))���Yn�1i :

The one-step ahead prediction estimate of yn is given by its conditional mean,

ynjn�1 = E (h (xn; �n) jYn�1)

=

Z
h (xn; �n) p (xnjYn�1) dxn.

Its conditional variance is

�yynjn�1 =

Z �
h (xn; �n)� ynjn�1

� �
h (xn; �n)� ynjn�1

�T
p (xnjYn�1) dxn:

Then, their ensemble estimates are given by

bynjn�1 = 1

K

KX
k=1

by(k)njn�1 = 1

K

KX
k=1

h(bx(k)njn�1; �n); (2.13)

and

b�yy

njn�1 =
1

K � 1

KX
k=1

�by(k)njn�1 � bynjn�1��by(k)njn�1 � bynjn�1�T ; (2.14)
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respectively where the kth ensemble member by(k)njn�1 is generated by
by(k)njn�1 = h(bx(k)njn�1; �n) for k = 1; : : : ; K:

From now on, f (k)i;n�1jn�1; fi;n�1; h
(k)
i;njn�1 and hi;n denote the ith elements of

f(bx(k)n�1jn�1; �n); f(xn�1; �n); h(bx(k)njn�1; �n) and h(xn; �n) respectively; bx(k)i;n�1jn�1;bx(k)i;njn�1; by(k)i;njn�1; u(k)i;n and v(k)i;n denote the ith elements of bx(k)n�1jn�1; bx(k)njn�1; by(k)njn�1;
u
(k)
n and v(k)n respectively; xi;n�1jn�1; xi;njn�1 and yi;njn�1 denote the ith elements

of xn�1jn�1; xnjn�1 and ynjn�1 respectively; �xxij;njn�1; �
xx
ij;njn and �

yy
ij;njn�1 denote

the (i; j)th elements of �xx
njn�1; �

xx
njn and �

yy
njn�1 respectively. Then, the following

theorem is provided.

Theorem 2.1. Asymptotics of One-step Ahead Predicted States Assume

that the �ltering density for the state vector xn for n � 1 is

p (xn�1jYn�1) = N (xn�1;xn�1jn�1;�xxn�1jn�1). (2.15)

Then, the ensemble mean and variance of the state vector xn under the pre-

diction density p (xnjYn�1) can be estimated by (2.10) and (2.11) respectively.

Furthermore, assume that

(i) E
���f (k)i;n�1jn�1

��� <1 for i = 1; : : : ;mx; k = 1; : : : ; K,

(ii) E
�
f
(k)
i;n�1jn�1

�
= E (fi;n�1jYn�1) for i = 1; : : : ;mx; k = 1; : : : ; K,

(iii) E
���f (k)i;n�1jn�1f

(k)
j;n�1jn�1

��� < 1;E ���f (k)i;n�1jn�1u
(k)
j;n

��� < 1 for i; j = 1; : : : ;mx; k =

1; : : : ; K,

(iv) E
�bx(k)i;njn�1bx(k)j;njn�1� = �xx

ij;njn�1 + xi;njn�1xj;njn�1 for i; j = 1; : : : ;mx; k =

1; : : : ; K.
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The strong consistency of bxnjn�1 can then be ensured, that is,
bxnjn�1 a:s:! xnjn�1 and b�xxnjn�1 a:s:! �xx

njn�1 when K !1;

Furthermore, if condition (i) is replaced by E
���f (k)i;n�1jn�1

���2 < 1 and positive

de�nite �xx
njn�1 is assumed, the asymptotic normality of bxnjn�1 is ensured as well,

that is,
p
K
�bxnjn�1 � xnjn�1� d! N(0;�xx

njn�1) when K !1:

Theorem 2.2. Asymptotics of One-step Ahead Predicted Measurements

Assume that the ensemble prediction mean and variance for the measurement

vector yn are estimated by (2.13) and (2.14) respectively. In addition to the

assumptions of Theorem 2.1, assume that

(v) E
���h(k)i;njn�1��� <1 for i = 1; : : : ;my; k = 1; : : : ; K,

(vi) E
�
h
(k)
i;njn�1

�
= E (hi;njYn�1) for i = 1; : : : ;my; k = 1; : : : ; K,

(vii) E
���h(k)i;njn�1h(k)j;njn�1��� <1 for i; j = 1; : : : ;my; k = 1; : : : ; K,

(viii) E
�
h
(k)
i;njn�1h

(k)
j;njn�1

�
= E (hi;nhj;njYn�1) for i; j = 1; : : : ;my; k = 1; : : : ; K.

Their asymptotic properties are similar to those of the state vector, that is,

bynjn�1 a:s:! ynjn�1 and b�yynjn�1 a:s:! �yy
njn�1 when K !1;

As in the case of ensemble states, if condition (v) is replaced by E
���h(k)i;njn�1���2 <1

and �yynjn�1 is positive de�nite, the asymptotic normality of bynjn�1 is ensured, that
is,

p
K
�bynjn�1 � ynjn�1� d! N(0;�yy

njn�1) when K !1:
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Proof of Theorems 2.1 and 2.2. Since the estimators are in the forms of sample

averages and all ensemble members are considered as i.i.d. within an ensemble,

their consistencies can be shown easily by White (2001, Proposition 3.2).

To show the consistency of bxnjn�1, one need to show that
E
���bx(k)i;njn�1��� <1 for i = 1; : : : ;mx.

Now,

E
���bx(k)i;njn�1��� = E

���f (k)i;n�1jn�1 + u
(k)
i;n

���
� E

���f (k)i;n�1jn�1

���+ E ���u(k)i;n ���
< 1;

for i = 1; : : : ;mx. The �rst inequality is obtained by the triangle inequality and

the second one is obtained by condition (i) above and the normality of u(k)i;n . In

addition to condition (ii) above which is satis�ed automatically, by Komolgorov�s

SLLN (Rao, 1973, p.114),

bxnjn�1 a:s:! xnjn�1 when K !1.

The consistency of b�xx

njn�1 can be shown similarly because

b�xx

njn�1 =
1

K � 1

KX
k=1

�bx(k)njn�1��bx(k)njn�1�T � K

K � 1
�bxnjn�1� �bxnjn�1�T :

Then, it can be shown that
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1

K � 1

KX
k=1

bx(k)i;njn�1bx(k)j;njn�1 a:s:! �xx
ij;njn�1 + xi;njn�1xj;njn�1 when K !1

for i; j = 1; : : : ;mx by conditions (iii) and (iv) above. The consistency result can

be implied directly because the sequence fbx(k)i;njn�1bx(k)j;njn�1gKk=1 is i.i.d..
The consistency result for the prediction of the measurement vector yn is

shown by similar method, but the conditions (v) to (viii) above are used instead.

The asymptotic normality of bxnjn�1 and bynjn�1 can be proved by two ap-
proaches, namely: (1) by using the Cramér-Wold theorem (Rao, 1973, p.123)

and the univariate version of Lindeberg-Lévy�s central limit theorem (CLT); (2)

by deriving the joint characteristic functions of bxnjn�1 and bynjn�1 accordingly
(Ferguson, 1996, p.26�27; White, 2001, p.114�115). Indeed, the Cramér-Wold

theorem can show the multivariate Gaussianity of a random vector Z by showing

that the linear combinations of elements of z in Z are Gaussian where the weights

of linear combinations are normalized to a unit circle. �

Theorems 2.1 and 2.2 imply that the prediction densities (2.5) and (2.12) can

be approximated by Gaussian density. Stronger assumptions on f(bx(k)n�1jn�1; �n)
and h(bx(k)njn�1; �n) are used here because no concavity is assumed on h (�) and f (�).
As a result, Jensen�s inequality cannot be used. Next, the case of multi-step ahead

prediction of measurement and state is considered.

For the q-step ahead prediction of the state vector xn and q � 1, the con-

ditional mean and variance are obtained by (2.9), (2.10) and (2.11) iteratively.

Speci�cally,
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bx(k)n+q�1jn�1 = f(bx(k)n+q�2jn�1; �n); k = 1; : : : ; K;

bxn+q�1jn�1 =
1

K

KX
k=1

bx(k)n+q�1jn�1;
b�xxn+q�1jn�1 =

1

K � 1

KX
k=1

�bx(k)n+q�1jn�1 � bxn+q�1jn�1��bx(k)n+q�1jn�1 � bxn+q�1jn�1�T :
Similarly, the q-step ahead prediction means and variances of measurement

vector yn under the conditional Gaussian density function for q � 1 are given by

by(k)n+q�1jn�1 = h(bx(k)n+q�1jn�1; �n); k = 1; : : : ; K;

byn+q�1jn�1 =
1

K

KX
k=1

by(k)n+q�1jn�1;
b�yyn+q�1jn�1 =

1

K � 1

KX
k=1

�by(k)n+q�1jn�1 � byn+q�1jn�1��by(k)n+q�1jn�1 � byn+q�1jn�1�T ;
respectively.

Actually, the q-step ahead prediction is preceded by the previous (q� 1)-step

ahead predictions recursively. One can expect that the prediction variances of the

measurement and state variables increase with the prediction horizon because no

new information of measurements is provided for updating previous predictions.

2.3.2 Filtering

Assume that the prediction density for the state vector xn is

p (xnjYn�1) = N (xn;xnjn�1;�njn�1);
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and the conditional mean and variance of the �ltered state vector xn for n > 1

are denoted as xnjn and �njn respectively, that is,

xnjn �
Z
xnp (xnjYn) dxn

and

�njn �
Z �

xn � xnjn
� �
xn � xnjn

�T
p (xnjYn) dxn.

Rather than generating ensemble members of xnjn from the posterior density

p (xnjYn) directly, an estimation procedure is suggested here instead. Following

Evensen (1994) and Burgers et al. (1998), y(k)n denotes the kth ensemble member

which is constructed by the perturbation of measurement yn at time n, that is,

y(k)n = yn + v
(k)
n ; v(k)n � N (0;Rn) ; for k = 1; : : : ; K;

Furthermore, the relationship between the true and the predicted state vector

is

bx(k)njn�1 = xn � bu(k)n for k = 1; : : : ; K;

where bu(k)n denotes the prediction error for the the kth ensemble member of the

state vector xn.

The above two expressions in the conventional EnKF are essential for the

derivation of the nonlinear updating equation by Goldberger-Theil�s mixed esti-

mation which was proposed by Theil and Goldberger (1961). Their original for-

mulation considered how extraneous information could be incorporated into the
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generalized least squares estimation. Indeed, their idea can be regarded as the

Bayesian estimation because the extraneous statistical information and general-

ized least squares estimation considered in their paper were the prior information

and the likelihood respectively, if Gaussian densities were assumed for the distur-

bance terms and regression parameters. Hence, the mixed estimator of regression

parameters was the posterior mean.

Now, their idea of mixed estimation is extended to the case where the measure-

ment equation (2.1) at time n is considered as the extraneous nonlinear statistical

information and the estimated ensemble states have the conditional mean of the

state vector xn up to the information at time n� 1. Hence, the �ltering process

in terms of ensemble members above and the one-step ahead prediction ensemble

member bx(k)njn�1 can be reformulated as
264 y

(k)
n

bx(k)njn�1
375 =

264 h(xn; �n)
xn

375+
264 v

(k)
n

�bu(k)n
375 : (2.16)

Note that v(k)n and bu(k)n are uncorrelated because v(k)n is uncorrelated with xn

and bx(k)njn�1. Then, the error covariance structure of (2.16) is

Var

264 v(k)nbu(k)n
375 =

264 Rn 0

0 b�xxnjn�1
375 :

By Goldberger-Theil�s mixed estimation, the unknown state xn can be ob-

tained by minimizing the weighted sum of squared residuals

bx(k)njn = argminbx(k)n 2Rmx
B(bx(k)n ); (2.17)
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where B(bx(k)n ) � �y(k)n � h(bx(k)n ; �n)�TR�1
n

�
y
(k)
n � h(bx(k)n ; �n)�

+
�bx(k)n � bx(k)njn�1�T (b�xx

njn�1)
�1
�bx(k)n � bx(k)njn�1�, bx(k)njn�1 denotes the kth ensemble

member of bxnjn�1 in the previous prediction step. The formulation of (2.17) is
sensible since the minimization function can be interpreted as the maximization

of the posterior density in (2.6):

argmax
xn2Rmx

p (xnjYn)

= argmax
xn2Rmx

p (ynjxn) p (xnjYn�1)

= argmax
xn2Rmx

[log p (ynjxn) + log p (xnjYn�1)]

= argminbx(k)n 2Rmx

h�
y(k)n � h(bx(k)n ; �n)�TR�1

n

�
y(k)n � h(bx(k)n ; �n)�

+
�bx(k)n � bx(k)njn�1�T (b�xxnjn�1)�1 �bx(k)n � bx(k)njn�1�� ,

where the conditional mean and variance are replaced by the ensemble estimates

in previous prediction step. Note that the �rst equality is obtained by the Bayes�

Theorem and the denominator term p (ynjYn�1) does not depend on bxn. The
second equality is trivial as a monotonic transformation is applied. The third

equality is trivial under Gaussian density.

Typically, the optimal bx(k)njn of (2.17) is obtained by solving the �rst order
condition, that is,

@h(bx(k)n ; �n)T
@bx(k)n

�����bx(k)n =bx(k)
njn

R�1
n

�
y(k)n � h(bx(k)njn; �n)�+(b�xxnjn�1)�1 �bx(k)njn � bx(k)njn�1� = 0:

(2.18)
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Now, we assume that the Jacobian matrix of the left hand side of (2.18) with

respect to y(k)n and bx(k)njn�1 is invertible, then, by the Implicit Function Theorem,
there exists a function g : Rmy � Rmx ! Rmx such that

bx(k)njn = g(y(k)n ; bx(k)njn�1). (2.19)

Obviously, the updating equation (2.19) for the predicted ensemble state

bx(k)njn�1 is more general than the one suggested by Evensen (1994) in which the
conventional Kalman �lter updating equation was used. Although the ensemble

predicted state bx(k)njn�1 is updated by the perturbed measurement y(k)n , no Kalman
�lter gain matrix is computed. Indeed, the explicit formulation of the updating

equation can be found in a few special cases only. This nonlinear updating equa-

tion is related to the single-stage iteration �lter by Wishner et al. (1969) where

the updating process was performed by an iterative Newton-Raphson algorithm.

Since the Goldberger-Theil�s mixed estimation has been incorporated into EnKF,

this new �lter is called the ensemble Goldberger-Theil Kalman �lter (EnGTKF).

For each ensemble member bx(k)njn�1, an estimate bx(k)njn is obtained from (2.19).

In most cases, the analytical solution of bx(k)njn cannot be found easily because the
perturbed measurement y(k)n is nonlinear in the state bx(k)njn. This in turn results in a
suggestion of a hybrid optimization of bx(k)njn which consists of two parts: (1) select
the initial value for �ltered state vector by stochastic search algorithm (Spall,

2003, p.38) and (2) improve the estimation of the �ltered state vector further

by local optimization procedure, for example Quasi-Newton. The procedure is

described below:

1. Simulate an initial value for the state vector bx(k)n in (2.17) from a speci�ed
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distribution, for example, uniform distribution or Gaussian distribution and

denote its value as bx(k)n (0) : Set j = 0. Compute the objective function

B(bx(k)n (0)).

2. At iteration j (j � 0), generate a new value for the state vector bx(k)n ac-

cording to the speci�ed distribution. If B(bx(k)n (j + 1)) < B(bx(k)n (j)), then

bx(k)njn = bx(k)n (j + 1). Otherwise, bx(k)njn = bx(k)n (j).

3. Repeat Step 2 if the maximum number of iterations is not exceeded or the

recent iterations of bx(k)n (j) yield an improvement in the estimate bx(k)njn.
4. Once bx(k)njn is selected by stochastic search algorithm, it is then used as the
initial value in the Quasi-Newton method.

The convergence result of the stochastic search optimization procedure above

was shown with an enormous number of iterations and the existence of a unique

solution (Spall, 2003, Theorem 2.1). However, it is infeasible to use a huge number

of iterations to estimate the �ltered state. The local optimization procedure, for

example Quasi-Newton method, is used to improve the estimated �ltered state

further.

Over the K ensemble members, the �ltered mean and variance of bx(k)njn are
estimated by

bxnjn =
1

K

KX
k=1

bx(k)njn, (2.20)

and b�xxnjn =
1

K � 1

KX
k=1

�bx(k)njn � bxnjn��bx(k)njn � bxnjn�T , (2.21)

respectively. The asymptotic properties of (2.20) and (2.21) are given by the

following theorem.
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Theorem 2.3. Nonlinear Filtering Given that the prediction density for the

state vector xn is

p (xnjYn�1) = N
�
xn;xnjn�1;�njn�1

�
;

and assume that

(i) E
���bx(k)i;njn��� <1, for i = 1; : : : ;mx; k = 1; : : : ; K,

(ii) E
�bx(k)i;njn� = E (xi;njYn), for i = 1; : : : ;mx; k = 1; : : : ; K,

(iii) E
���bx(k)i;njnbx(k)j;njn��� <1 for i; j = 1; : : : ;mx; k = 1; : : : ; K,

(iv) E
�bx(k)i;njnbx(k)j;njn� = E (xi;nxj;njYn) for i; j = 1; : : : ;mx; k = 1; : : : ; K.

Then,

bxnjn a:s:! xnjn and b�xxnjn a:s:! �xx
njn when K !1.

If condition (i) is replaced by E
���bx(k)i;njn���2 <1 and �xx

njn is positive de�nite, the

asymptotic normality is also ensured, that is,

p
K
�bxnjn � xnjn� d! N

�
0;�xxnjn

�
when K !1:

Proof. The asymptotic properties of bxnjn and b�xxnjn can be derived from the same

reference as in Theorem 2.1. �

This theorem has a similar implication as in Theorem 2.1 and the �ltering

density (2.6) can be approximated by the Gaussian density. The combined results

of Theorems 2.1 and 2.3 imply that the density functions of the state vector xn

in EnGTKF can be approximated by the Gaussian density recursively and this

also holds for Evensen�s EnKF.

The method of nonlinear state updating has been described already. This
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proposed method can also be reduced to the linear updating equation of EnKF

and the asymptotic properties of ensemble �ltered state are summarized by the

following corollary.

Corollary 2.4. If h(xn; �n) is linear in xn, that is, h(xn; �n) = hnxn, the ensem-

ble members bx(k)njn can be derived from the case of EnKF with linear measurement,
that is,

bx(k)njn = bx(k)njn�1 +Kn(y
(k)
n � hnbx(k)njn�1); (2.22)

where Kn = (h
T
nR

�1
n hn + (

b�xx

njn�1)
�1)�1hTnR

�1
n .

Furthermore, its asymptotic properties in Theorem 2.3 are maintained.

Proof. When h(xn; �n) = hnxn, the optimization problem becomes

bx(k)njn = argminbxn2Rmx
h�
y(k)n � hnbxn�TR�1

n

�
y(k)n � hnbxn�

+
�bx(k)njn�1 � bxn�T (b�xxnjn�1)�1 �bx(k)njn�1 � bxn�� :

From (2.18), we have

hTnR
�1
n

�
y(k)n � hnbx(k)njn�+ (b�xx

njn�1)
�1
�bxnjn�1 � bx(k)njn� = 0

hTnR
�1
n y

(k)
n + (b�xx

njn�1)
�1bx(k)njn�1 = �hTnR�1

n hn + (
b�xx

njn�1)
�1
� bx(k)njn:

Hence,
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bx(k)njn = �hTnR�1
n hn + (

b�xxnjn�1)�1��1 �hTnR�1
n y

(k)
n + (b�xxnjn�1)�1bx(k)njn�1� :

By using the results in Meditch (1969, p.190) or Lemma in Diderrich (1985),

letting P0 = b�xx

njn�1; P1 =
�
hTnR

�1
n hn +P

�1
0

��1
and Kn = P1h

T
nR

�1
n . Then,

bx(k)njn = P1(h
T
nR

�1
n y

(k)
n +P�10 bx(k)njn�1)

= Kny
(k)
n +P1P

�1
0 bx(k)njn�1

= Kny
(k)
n + (Imx �Knhn) bx(k)njn�1

= bx(k)njn�1 +Kn(y
(k)
n � hnbx(k)njn�1);

where P1P�10 = Imx �Knhn in the third equality is shown below:

P1 =
�
hTnR

�1
n hn +P

�1
0

��1
P�11 = P�10 + hTnR

�1
n hn

Imx = P1P
�1
0 +P1h

T
nR

�1
n hn;

and the result is shown.

Alternatively, the same result can be achieved by considering bx(k)njn as a gener-
alized least squares estimator. Equation (2.16) in this linear case can be rewritten

as
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264 y
(k)
n

bx(k)njn�1
375 =

264 hn

Imx

375xn +
264 v(k)nbu(k)n

375 ;

where E

264 v(k)nbu(k)n
375 = 0 and Var

264 v(k)nbu(k)n
375 =

264 Rn 0

0 b�xxnjn�1
375 : Then, by generalized

least squares, an ensemble member of the estimated �ltered state is

bx(k)njn =

0BB@� hn Imx

�264 Rn 0

0 b�xx

njn�1

375
�1 264 hn

Imx

375
1CCA
�1

�

0BB@� hn Imx

�264 Rn 0

0 b�xx

njn�1

375
�1 264 y

(k)
n

bx(k)njn�1
375
1CCA

=
�
hnR

�1
n hn + (

b�xxnjn�1)�1��1 �hnR�1
n y

(k)
n + (b�xxnjn�1)�1bx(k)njn�1� ;

which indeed is the same as the one derived previously. �

An analogous proof was given in Harvey (1981, p.108-109), Diderrich (1985)

and Tanizaki (1996) for classical Kalman �lter.

From Theorems 2.1, 2.2 and 2.3, one can construct the con�dence regions for

the prediction state vector xnjn�1, the measurement vector ynjn�1 and the �ltered

state vector xnjn easily due to its recursive Gaussian properties. Speci�cally, their

(1� �)% con�dence regions can be obtained by

Synjn�1 =
n
y :
�
y � bynjn�1�T (b�yy

njn�1)
�1 �y � bynjn�1� � z1��=2o ;

Sxnjn�1 =
n
x :
�
x� bxnjn�1�T (b�xx

njn�1)
�1 �x� bxnjn�1� � z1��=2o ;
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and Sxnjn =
n
x :
�
x� bxnjn�T (b�xxnjn)�1 �x� bxnjn� � z1��=2o ;

respectively where z1��=2 is the 100 (1� �=2)th quantile of the Gaussian density.

Recursive state estimation procedures are summarized below:

1. Generate the initial ensemble states. When n = 0, given the values of x0j0

and �0j0, draw K ensembles from the density function N
�
x0;x0j0;�0j0

�
and denote them as fbx(k)0 gKk=1.

2. Predict the ensemble states. When n = 1, draw an ensemble of K mem-

bers from the density function N (un;0;Qn) and denote them as fu(k)n gKk=1.

Then, generate ensemble predictions with stochastic forces by

bx(k)njn�1 = f(bx(k)n�1jn�1; �n) + u(k)n for k = 1; : : : ; K.

3. Generate the ensemble measurements. When n = 1, draw an ensemble of

K members from the density function N (vn;0;Rn) and denote them as

fv(k)n gKk=1. Then, generate ensemble measurements by

y(k)n = yn + v
(k)
n for k = 1; : : : ; K.

4. Update the ensemble states. The kth ensemble member of the state vector

xn is updated by minimizing (2.17).

5. Repeat Steps 2, 3 and 4 for n = 2; : : : ; N .

6. For n = 1; : : : ; N , the prediction and �ltered mean and variance of the state

vector xn are estimated by (2.10), (2.11), (2.20) and (2.21) respectively.
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Also, the one-step prediction mean and variance of the measurement vector

yn are given by (2.13) and (2.14) respectively.

2.3.3 Smoothing

After the derivation of prediction and �ltered states which progress forward in

time, a �xed-interval smoother for EnGTKF is derived in this section. The

smoothing density for the state vector xn is

p (xn�1jYN) =

Z
p (xn;xn�1jYN) dxn

=

Z
p (xnjYN) p (xn�1jxn;YN) dxn

=

Z
p (xnjYN) p (xn�1jxn;Yn�1) dxn

=

Z
p (xnjYN)

p (xn�1;xnjYn�1)
p (xnjYn�1)

dxn

=

Z
p (xnjYN)

p (xnjxn�1) p (xn�1jYn�1)
p (xnjYn�1)

dxn

= p (xn�1jYn�1)
Z
p (xnjxn�1) p (xnjYN)

p (xnjYn�1)
dxn;

for n = N;N � 1; : : : ; 2. Note that Assumptions 2.1(i) and (ii) is used to show

the third equality. Speci�cally,

p (xn�1jxn;YN)

=
p(xn�1;xn;y1; : : : ;yN)

p(xn;y1; : : : ;yN)

=
p(yN jYN�1;xn;xn�1) : : : p(yn+1jYn;xn;xn�1)p(ynjYn�1;xn;xn�1)p(Yn�1;xn;xn�1)

p(yN jYN�1;xn) : : : p(yn+1jYn;xn)p(ynjYn�1;xn)p(Yn�1;xn)

=
p(yN jYN�1) : : : p(yn+1jYn)p(ynjYn�1;xn;xn�1)p(Yn�1;xn;xn�1)

p(yN jYN�1) : : : p(yn+1jYn)p(ynjYn�1;xn)p(Yn�1;xn)
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=
p(ynjYn�1;xn;xn�1)p(Yn�1;xn;xn�1)

p(ynjYn�1;xn)p(Yn�1;xn)

=
p(ynjxn)p(Yn�1;xn;xn�1)
p(ynjxn)p(Yn�1;xn)

=
p(Yn�1;xn;xn�1)
p(Yn�1;xn)

= p(xn�1jxn;Yn�1):

The posterior density p (xn�1jYN) for the state vector xn follows from Harvey

(1989) and Kitagawa (1987). Although the smoothing density can be derived

by backward recursion in this way, both the prediction density and the �ltering

density of the state vector need to be stored. Typically, the smoothed mean

and variance of xn�1 can be estimated by the Bayesian method. Nevertheless,

following Tanizaki (1996, p.217�220), the estimates can be derived by the MMSE

criterion.

xn�1jN = argminbxn2Rmx E
h
(bxn�1 � xn�1)T (bxn�1 � xn�1)���YNi ;

for n = N;N � 1; : : : ; 2.

The optimal value should be its conditional mean which is given by

xn�1jN = E (xn�1jYN)

=

Z
xn�1p (xn�1jYN) dxn�1

=

ZZ
xn�1p

�
xn�1;XN;�(n�1)jYN

�
dXN;�(n�1)dxn�1

=

Z
xn�1p (XN jYN) dXN

=

R
xn�1p (YN jXN) p (XN) dXNR
p (YN jXN) p (XN) dXN

. (2.23)
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for n = N;N � 1; : : : ; 2; where XN;�(n�1) � fx1; : : : ;xn�2;xn; : : :xNg indicates

the set of all state vectors excluding the one at time n� 1.

From Assumptions 2.1(i) and (ii),

p (XN) = p (x0)
NY
n=1

p (xnjxn�1) ;

and p (YN jXN) =
NY
n=1

p (ynjxn) :

Then, (2.23) becomes

xn�1jN =

R
xn�1

QN
n=1 p (ynjxn) p (xnjxn�1) dXNR QN

n=1 p (ynjxn) p (xnjxn�1) dXN
; (2.24)

for n = N;N � 1; : : : ; 2. Similarly, the conditional variance can be obtained by

�xx
n�1jN =

R �
xn�1 � xn�1jN

� �
xn�1 � xn�1jN

�TQN
n=1 p (ynjxn) p (xnjxn�1) dXNR QN

n=1 p (ynjxn) p (xnjxn�1) dXN
;

for n = N;N � 1; : : : ; 2.

From (2.24), the computation of the smoothed state vector xn�1jN requires (i)

the ensemble members fbx(k)njn�1gKk=1 from the prediction density p (xnjxn�1) and

(ii) the density of yn conditional on xn p(ynjxn = bx(k)njn�1) for k = 1; : : : ; K. The
ensemble mean and variance of the smoothed state vector xn�1jN are estimated

by

bxn�1jN = PK
k=1 bw(k)N bx(k)njn�1PK

k=1 bw(k)N ; (2.25)
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and

b�xx

n�1jN =

PK
k=1 bw(k)N �bx(k)njn�1 � bxn�1jN��bx(k)njn�1 � bxn�1jN�TPK

k=1 bw(k)N ; (2.26)

respectively for n = N;N�1; : : : ; 2. Indeed, a more accurate estimator of variance

can be obtained by

e�xxn�1jN =

PK
k=1 bw(k)N

(
PK

k=1 bw(k)N )2 �PK
k=1( bw(k)N )2

�
KX
k=1

bw(k)N �bx(k)njn�1 � bxn�1jN��bx(k)njn�1 � bxn�1jN�T :
The smoothing weight bw(k)N is computed by the following recursive relation:

bw(k)n = N (by(k)njn�1; bynjn�1; b�yy

njn�1) bw(k)n�1 for n = 1; : : : ; N; (2.27)

and bw(k)0 is initialized with bw(k)0 = K�1 for k = 1; : : : ; K. Indeed, the initialization

of weight bw(k)0 is somewhat arbitrary because

bxn�1jN =

PK
k=1

QN
n=1N (by(k)njn�1; bynjn�1; b�yy

njn�1) bw(k)0 bx(k)njn�1PK
k=1

QN
n=1N (by(k)njn�1; bynjn�1; b�yy

njn�1) bw(k)0
=

PK
k=1

QN
n=1N (by(k)njn�1; bynjn�1; b�yy

njn�1)bx(k)njn�1PK
k=1

QN
n=1N (by(k)njn�1; bynjn�1; b�yy

njn�1)
;

is independent of bw(k)0 for �xed bw(k)0 . Similar property can also applied to b�xx

n�1jN .

On the other hand, the measurement vector yn�1 can also be smoothed, that

is,
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yn�1jN = E (yn�1jYN)

= E
�
h
�
xn�1; �n�1

�
jYN

�
=

Z
h
�
xn�1; �n�1

�
p (xn�1jYN) dxn�1

=

ZZ
h
�
xn�1; �n�1

�
p
�
xn�1;XN;�(n�1)jYN

�
dXN;�(n�1)dxn�1

=

Z
h
�
xn�1; �n�1

�
p (XN jYN) dXN

=

R
h
�
xn�1; �n�1

�
p (YN jXN) p (XN) dXNR

p (YN jXN) p (XN) dXN
;

for n = N;N � 1; : : : ; 2.

By using the same smoothing method as for the state vector xn�1, the ensem-

ble mean and variance of the smoothed measurement vector yn�1jN are estimated

recursively by

byn�1jN = PK
k=1 bw(k)N by(k)njn�1PK

k=1 bw(k)N ; (2.28)

and

b�yy

n�1jN =

PK
k=1 bw(k)N �by(k)njn�1 � byn�1jN��by(k)njn�1 � byn�1jN�TPK

k=1 bw(k)N ; (2.29)

for n = N;N � 1; : : : ; 2.

The estimation of smoothed states and measurements by (2.25), (2.26), (2.28)

and (2.29) is called the ensemble Goldberger-Theil Kalman smoother (EnGTKS).

It seems that the derived smoothers used information of the prediction density

59



p (ynjYn�1) only. Indeed, information from the �ltering density is also used in

the recursive derivation of the prediction density. However, only the ensemble

members of bx(k)njn�1 and by(k)njn�1 are required and the computation time of the
smoothed estimates is reduced. Indeed, this smoother is analogous to those by van

Leeuwen and Evensen (1996) and Evensen and van Leeuwen (2000) in which both

of them were derived by the representer method (Bennett, 2004, p.19). Unlike the

EnGTKF, both of their smoothers have used linear updating equations during

the �ltering stage. The asymptotic properties of smoothed mean and variance

are given by the following theorem.

Theorem 2.5. Fixed-interval Smoothing Assume that the one-step ahead pre-

diction densities of xn and yn are given by Theorems 2.1 and 2.2. Furthermore,

assume that for n = N;N � 1; : : : ; 2.

(i) E
���f (k)i;n�1jn�1

���2+� <1 for some � > 0 with i = 1; : : : ;mx; k = 1; : : : ; K;

(ii) E
���f (k)i;n�1jn�1f

(k)
j;n�1jn�1

���1+� < 1 for some � > 0 with i; j = 1; : : : ;mx; k =

1; : : : ; K;

(iii) �xxn�1jN is positive de�nite.

Then, by the Markov�s SLLN, the estimated mean and variance of the smoothed

state vector by (2.25) and (2.26) are consistent when the ensemble size increases

in�nitely, that is,

bxn�1jN a:s:! xn�1jN and b�xxn�1jN a:s:! �xx
n�1jN when K !1.

Furthermore, by CLT,

p
K
�bxn�1jN � xn�1jN� d! N(0;�xx

n�1jN) when K !1:
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On the other hand, for the measurement vector yn�1, assume that for n = N;

N � 1; : : : ; 2.

(iv) E
���h(k)i;njn�1���2+� <1 for some � > 0 with i = 1; : : : ;my; k = 1; : : : ; K;

(v) E
���h(k)i;njn�1h(k)j;njn�1���1+� <1 for some � > 0 with i; j = 1; : : : ;my; k = 1; : : : ; K;

(vi) �yy
njN is positive de�nite.

The estimated mean and variance of smoothed measurement vector yn�1 by

(2.28) and (2.29) share the similar properties as the state vector, that is,

byn�1jN a:s:! yn�1jN and b�yyn�1jN a:s:! �yy
n�1jN when K !1;

by Markov�s SLLN and

p
K
�byn�1jN � yn�1jN� d! N(0;�yy

n�1jN) when K !1;

by CLT.

Proof. From (2.25),

bxn�1jN = K�1PK
k=1 bw(k)N bx(k)njn�1

K�1PK
k=1 bw(k)N :

Under the regularity conditions for Markov�s SLLN, the denominator term

converges almost surely, that is,

1

K

KX
k=1

bw(k)N a:s:!
Z NY

n=1

p (ynjxn) p (xnjxn�1) dXN :

By Minkowski�s inequality,
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E
��� bw(k)N�1bx(k)i;njn�1���2+�

�
"�
E
���f (k)i;n�1jn�1

���2+��1=(2+�) + �E ���u(k)i;n ���2+��1=(2+�)
#2+�

< 1;

for i = 1; : : : ;mx. The �rst term should be �nite by condition (i) above and

the second term is also �nite due to the Gaussianity of un. Then, by Markov�s

SLLN (White, 2001, p.35), the consistency of bxn�1jN is shown directly. Similar
procedure can be applied to show the consistency of b�xx

n�1jN . The asymptotic

Gaussianity of bxn�1jN can be derived by using Liapounov�s CLT and Cramér-

Wold theorem. The details of proofs are referred to White (2001, p.114, 118).

Similar arguments can be applied to prove for the smoothed measurement vector

byn�1jN as well. �

Unlike previous prediction and �ltering steps, the slightly higher order mo-

ments of xn are controlled in the smoothing stage because of the heterogeneities

of bw(k)N bx(k)njn�1 and bw(k)N by(k)njn�1 within an ensemble. Conditions (i) and (iv) in this
theorem are stronger than needed. Indeed, they are referred to as a simpli�ed

version of Markov�s conditions (White, 2001, p.35). To show the consistencies of

bxn�1jN and b�xxn�1jN , only the moments of order slightly greater than one are nec-
essary. Stronger assumptions are speci�ed here to satisfy the Lindeberg condition

and hence to induce the asymptotic Gaussianity of bxn�1jN .
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2.4 Estimation of Model Parameters

In this section, the likelihood function the state space model (2.1) and (2.2) is

constructed and the estimation of unknown parameters is considered. Following

Dee (1995) and Dee and Silva (1995), the likelihood function for this EnGTKF

problem is expressed in terms of prediction errors of measurement and approxi-

mated by

L (�;YN)

= p (yN jYN�1) p (yN�1jYN�2) : : : p (y2jY1) p (y1)

=
NY
n=1

p (ynjYn�1)

= (2�)�
Nmy
2

NY
n=1

���vv
njn�1

��� 1
2 exp

�
�1
2
vTnjn�1

�
�vvnjn�1

��1
vnjn�1

�
;

with p (y1) = p (y1jY0) where vnjn�1 = yn � ynjn�1; �vvnjn�1 = �yynjn�1 + Rn;

� =
h
xT0j0; vech(�0j0)

T; T1 ; : : : ; 
T
N

iT
;  n =

�
�Tn ; vech(Qn)

T; vech(Rn)
T
�T
. The

Gaussian prediction density of the measurement vector yn conditional on Yn�1 is

derived from Theorem 2.2.

The log-likelihood is then given by

logL (�;YN) = �Nmy

2
log (2�)� 1

2

NX
n=1

log
���vvnjn�1��

�1
2

NX
n=1

vTnjn�1
�
�vv
njn�1

��1
vnjn�1: (2.30)

The unknown parameter estimate is the solution of the following optimization
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problem:

b� = argmax
�

logL (�;YN) : (2.31)

Under the regularity conditions of Jensen and Petersen (1999), the estimate

b� is strongly consistent and asymptotically normal (Jensen and Petersen, 1999,
Theorem 3.3).

Practically, the maximization of (2.30) can be performed by conventional lo-

cal optimization algorithms, such as Newton-Raphson, Quasi-Newton and so on.

However, in many cases, the log-likelihood may not be unimodal even if the

measurement and state errors are Gaussian. In addition, the initial values are

essential for the convergence of local optimization algorithm. Consequently, a

hybrid procedure of optimization algorithm is suggested to estimate unknown

parameters in (2.30).

2.4.1 Orthogonal Decomposition

Due to the multivariate nature of the state space model, the positive de�nite-

ness of variance-covariance matrices are di¢ cult to ensure during the process of

estimation especially the high-dimensional cases. Nevertheless, a special trans-

formation technique is suggested here. Speci�cally, a variance-covariance matrix

can be expressed as a product of rotation matrices and column vector of variances

(Schwefel, 1981; Rudolph, 1992). This technique has been used in evolutionary

strategy which is a kind of evolutionary algorithms (Bäck, 1996), for a long period

of time.

Let C = (cij) be an s� s variance-covariance matrix which is positive de�nite
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and symmetric. Then, it can be decomposed into elementary rotation matrices

and diagonal matrices (Faddeev and Faddeeva, 1963, p.27). Speci�cally,

C =

 
n�1Y
i=1

nY
j=i+1

eR(�ij)!TDT

D

 
n�1Y
i=1

nY
j=i+1

eR(�ij)! , (2.32)

where �ij 2 (��; �] ; eR(�ij) = eRT(��ij) is an s� s elementary rotation matrix

which indeed is a unit matrix except elements rii = rjj = cos�ij, rij = �rji =

� sin�ij and D = (diag(C))1=2 denotes a diagonal matrix whose diagonal ele-

ments are square roots of diagonal elements of C. For example, eR(�24) is given
by

eR (�24) =

266666666666666666664

1 0 0 0 0 � � � 0

0 cos�24 0 � sin�24 0 � � � 0

0 0 1 0 0 � � � 0

0 sin�24 0 cos�24 0 � � � 0

0 0 0 0 1 � � � 0

...
...

...
...

...
. . .

...

0 0 0 0 0 � � � 1

377777777777777777775

.

By using this orthogonal decomposition, the total number of unknown para-

meters of variance matrix C remains the same, that is, s(s�1)=2+s or s(s+1)=2.

Nevertheless, the positive de�niteness of matrix C during optimization can be

maintained easily. Rudolph (1992) showed the usefulness of this orthogonal de-

composition with the mutation operator in evolutionary strategy.

In the current situation, the matrices R�s, Q�s and �0j0 are the unknown

matrices being estimated.
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2.4.2 Stochastic Search Optimization

To �nd the optimal values of parameters in the case of (2.31), one can draw a set of

random parameter values for � from a speci�ed distribution, typically the uniform

distribution, and substitute the values into the objective function in (2.31). Then,

the set of parameter values with the largest value of the objective function will

be the optimal parameter values for the problem. If the number of random draws

is su¢ ciently large, it can be shown that the estimated optimal parameter value

converges to the true optimal parameter value (Spall, 2003, Theorem 2.1). This

result is intuitive because a random draw of parameter values can be considered

as a stochastic search over the parameter space globally. Then, a su¢ ciently

large number of random draws can cover a wide range of parameter values over

the parameter space and hence the optimal parameter values can be located. To

improve the searching results, a localized stochastic search method can be adapted

here (Spall, 2003, p.44). Indeed, this approach can incorporate priori information

of parameters into the stochastic search. Rather than searching for the whole

spectrum of parameter space, the priori information of parameters is used to

construct the initial parameter estimates and the range of parameter estimates.

Then, the stochastic search begins around the initial parameter estimates with

speci�ed range. Theoretical convergence results of the search were proved by

many researchers, as mentioned in Spall (2003, p.44).

However, as shown in Spall (2003), it is di¢ cult to ensure this kind of global

convergence practically because a huge number of iterations is required. As in the

case of state estimation, local optimization is adapted to improve the estimation

results. Then, the optimization algorithm for (2.31) can be summarized below:

1. Determine the initial parameter values by using information of the structure
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of the state space model.

2. Decide the ranges of unknown parameters except variance-covariance ma-

trices where the localized stochastic search occurs.

3. By using (2.32), each variance-covariance matrices of dimension d should

have d(d + 1)=2 parameters. The �rst d ones are corresponding to the

standard deviations and the remaining d(d � 1)=2 ones are those rotation

angles over ranges (��; �].

4. Generate a su¢ ciently large number of possible parameter values by uniform

distribution according to the intervals de�ned previously.

5. Locate the set of parameter values with the largest value in (2.31) and the

result is obtained directly.

6. The set of parameter values in Step 5 is considered as the initial values of

a local optimization algorithm, for example, Quasi-Newton.

2.5 Estimation of Standard Errors

In this section, all parameter estimates by (2.31) are indicated by b. In order to
estimate the standard errors of estimated parameters in Section 2.4, the expected

Fisher�s information matrix is required and de�ned by

I (�) = E
�
@ logL
@�

@ logL
@�T

�
: (2.33)

Apart from Cavanaugh and Shumway (1996) which computed the expected

Fisher�s information matrix (2.33) for linear state space model, a typical and
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consistent approximation of Fisher�s information matrix, the observed Fisher�s

information matrix, is used here, that is,

bI(b�) = 1

N

NX
n=1

�
@ logLn
@�

@ logLn
@�T

�
�=b� ; (2.34)

where Ln stands for the likelihood of the nth observation. Note that (I(b�))�1
is the variance of the estimated parameter b� by Cramér-Rao lower bound under
suitable regularity conditions (Casella and Berger, 2001, p.335). In order to

simplify the derivation of the observed Fisher information matrix (2.34), the

likelihood and hence the log-likelihood functions are reformulated as

L (�;YN) =
NY
n=1

p (ynjYn�1) =
NY
n=1

Ln;

and

logL (�;YN) =
NX
n=1

logLn; (2.35)

respectively where

Ln �

8><>:
RR
p (y1jx1) p (x1jx0) p (x0) dx0dx1 for n = 1;R
p (ynjxn) p (xnjYn�1) dxn for n > 1:

Note that � is omitted in Ln for notation simplicity. Also, Ln is complicated

for n = 1 because the stochastic initial state vector x0 is assumed. The repre-

sentation of the likelihood function here follows from Assumptions 2.1(i) and (ii).

Indeed, the parameter vector � is given by

� =
h
xT0j0; vech

�
�0j0

�T
; T1 ; : : : ; 

T
N

iT
;
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where  n =
h
�Tn ; vech (Qn)

T ; vech (Rn)
T
iT
.

When n = 1, the derivative of Ln with respect to � is

@L1
@�

=

ZZ
@p (y1jx1)

@�
p (x1jx0) p (x0) dx0dx1

+

ZZ
p (y1jx1)

@p (x1jx0)
@�

p (x0) dx0dx1

+

ZZ
p (y1jx1) p (x1jx0)

@p (x0)

@�
dx0dx1: (2.36)

When n > 1, the derivative of Ln with respect to � is

@Ln
@�

=

Z
@p(ynjxn)

@�
p(xnjYn�1)dxn +

Z
p(ynjxn)

@p(xnjYn�1)
@�

dxn: (2.37)

Recall that the recursive relationship of prediction and �ltering densities of

the model state is

p (xnjYn�1) =

Z
p (xnjxn�1) p(xn�1jYn�1)dxn�1;

p(xnjYn) =
p(ynjxn)p(xnjYn�1)

Ln
;

for n > 1. Then, the recursive relationship of their derivatives with respect to �

is given by

@p(xnjYn�1)
@�

=

Z
@p (xnjxn�1)

@�
p(xn�1jYn�1)dxn�1
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+

Z
p (xnjxn�1)

@p(xn�1jYn�1)
@�

dxn�1; (2.38a)

@p(xnjYn)
@�

=
1

Ln

�
@p(ynjxn)

@�
p(xnjYn�1) + p(ynjxn)

@p(xnjYn�1)
@�

�
�p(xnjYn)Ln

@Ln
@�

: (2.38b)

At this stage, @p(x1jY1)=@� is considered as the initial value of recursive

derivatives in (2.37) and it is obtained by

p(x1jY1) =
p(y1jx1)
L1

Z
p(x1jx0)p(x0)dx0

@p(x1jY1)
@�

=
1

L1

�
@p(y1jx1)
@�

Z
p(x1jx0)p(x0)dx0

+p(y1jx1)
Z
@p (x1jx0)

@�
p(x0)dx0

+ p(y1jx1)
Z
p(x1jx0)

@p (x0)

@�
dx0

�
� p(x1jY1)L1

@L1
@�

: (2.39)

Furthermore, the derivatives in (2.36), (2.37), (2.38) and (2.39) are rewritten

in the form of

@p(z)

@�
=
@ log p(z)

@�
p(z);

where p(z) represents the densities p(xnjYn�1), p(xnjYn), p(x1jx0) and p(x0). Af-

ter the above expression is applied to (2.36), (2.37), (2.38) and (2.39), the recur-

sive relationship of derivatives of log-density is obtained directly. More explicitly,

they become

@ log p(xnjYn�1)
@�
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=
1

p(xnjYn�1)

�Z
@ log p (xnjxn�1)

@�
p (xnjxn�1) p(xn�1jYn�1)dxn�1

+

Z
@ log p(xn�1jYn�1)

@�
p (xnjxn�1) p(xn�1jYn�1)dxn�1

�
; (2.40a)

@ log p(xnjYn)
@�

=
@ log p(ynjxn)

@�
+
@ log p(xnjYn�1)

@�
� 1

Ln
@Ln
@�

; (2.40b)

@ log p(x1jY1)
@�

=
@ log p(y1jx1)

@�
+

p(y1jx1)
p(x1jY1)L1

�
Z �

@ log p (x1jx0)
@�

+
@ log p (x0)

@�

�
p (x1jx0) p(x0)dx0

� 1

L1
@L1
@�

: (2.40c)

and the derivative of the likelihood with respect to � in terms of the derivatives

of log-density becomes

@L1
@�

=

ZZ �
@ log p (y1jx1)

@�
+
@ log p (x1jx0)

@�
+
@ log p (x0)

@�

�
�p (x1jx0) p (x0) dx0dx1: (2.41a)

@Ln
@�

=

Z �
@ log p(ynjxn)

@�
+
@ log p(xnjYn�1)

@�

�
p(ynjxn)p(xnjYn�1)dxn

(2.41b)

for n = 2; : : : ; N .

Indeed, the log-density functions used in (2.40) and (2.41) are speci�ed as
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log p (x0)

= �mx

2
log(2�)� 1

2
log j�xx0j0j �

1

2

�
x0 � x0j0

�T �
�xx
0j0
��1 �

x0 � x0j0
�
;

log p (ynjxn)

= �my

2
log(2�)� 1

2
log jRnj �

1

2
(yn � h (xn; �n))

TR�1
n (yn � h (xn; �n)) ;

and log p (xnjxn�1)

= �mx

2
log(2�)� 1

2
log jQnj �

1

2
(xn � f (xn�1; �n))

TQ�1
n (xn � f (xn�1; �n)) ;

respectively. Since the estimation of the model state and hence the measurement

can be computed in Section 2.2, iterative estimations between parameter � and

the model state xn by the EnGTKF imply the joint estimation of parameter and

model state by maximization of (2.35).

In order to derive the derivatives of log-density with respect to �, the following

expressions (Schott, 1997, p.336) are required:

@ log jAj
@vech (A)T

=
@ log jAj
@ jAj

@ jAj
@vech (A)T

= jAj�1 vec
�
AT
#

�T
Dm

= vec
�
A�1�TDm; (2.42)

and
@vec (A�1)

@vech (A)T
= �

�
A�1 
A�1�Dm; (2.43)

with A�1 = jAj�1A# where Dm denotes the duplication matrix of order m such

that Dmvech(A) = vec(A) ; A# is the adjoint of A and A is a m�m symmetric

matrix.

Now, consider the derivatives of log-density with respect to �.
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@ log p (x0)

@xT0j0

= �1
2

@

@xT0j0

��
x0 � x0j0

�T �
�xx0j0

��1 �
x0 � x0j0

��
=

�
x0 � x0j0

�T �
�xx0j0

��1
; (2.44)

@ log p (x0)

@vech
�
�xx
0j0
�T

= �1
2

@ log
���xx0j0��

@vech
�
�xx
0j0
�T � 12 @tr

��
x0 � x0j0

�T �
�xx
0j0
��1 �

x0 � x0j0
��

@vech
�
�xx
0j0
�T

= �1
2
vec
�
�xx0j0

�T
Dmx

�1
2

��
x0 � x0j0

�T 
 �x0 � x0j0�T� @vec ��xx
0j0
��1

@vech
�
�xx
0j0
�

= �1
2
vec
�
�xx0j0

�T
Dmx

+
1

2

��
x0 � x0j0

�T 
 �x0 � x0j0�T����xx
0j0
��1 
 ��xx

0j0
��1�

Dmx

= �1
2
vec
�
�xx0j0

�T
Dmx

+
1

2

���
x0 � x0j0

�T �
�xx0j0

��1�
 ��x0 � x0j0�T ��xx0j0��1��Dmx ;

(2.45)

where Dmxvech
�
�xx0j0

�
= vec

�
�xx
0j0
�
. The �rst term in the second equality of

@ log p (x0) =@vech
�
�xx0j0

�T
is obtained by (2.42) while the second term is obtained

by �rst using the following identity (Schott, 1997, p.263):

tr
��
x0 � x0j0

�T �
�xx
0j0
��1 �

x0 � x0j0
��
=
��
x0 � x0j0

�T 
 �x0 � x0j0�� vec ��xx
0j0
��1

:

and then by (2.43). Note that the derivatives corresponding to the components
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other than x0j0 and vech
�
�xx
0j0
�
are zero. Note that

@ log p (ynjxn)
@�Tn

= (yn � h (xn; �n))
TR�1

n

@h (xn; �n)

@�Tn
(2.46)

@ log p (ynjxn)
@vech (Rn)

T

= �1
2
vec (Rn)

TDmy

+
1

2

�
(yn � h (xn; �n))

T 
 (yn � h (xn; �n))
T
� �
R�1
n 
R�1

n

�
Dmy

= �1
2
vec (Rn)

TDmy

+
1

2

��
(yn � h (xn; �n))

TR�1
n

�


�
(yn � h (xn; �n))

TR�1
n

��
Dmy ;

(2.47)

where Dmyvech(Rn) = vec(Rn). Note that the derivatives corresponding to the

components other than �n and vech(Rn) are zero. Then,

@ log p (xnjxn�1)
@�Tn

= (xn � f (xn�1; �n))
TQ�1

n

@f (xn�1; �n)

@�Tn
; (2.48)

@ log p (xnjxn�1)
@vech (Qn)

T

= �1
2
vec (Qn)

TDmx

+
1

2

�
(xn � f (xn�1; �n))

T 
 (xn � f (xn�1; �n))
T
� �
Q�1
n 
Q�1

n

�
Dmx

= �1
2
vec (Qn)

TDmx

+
1

2

��
(xn � f (xn�1; �n))

TQ�1
n

�


�
(xn � f (xn�1; �n))

TQ�1
n

��
Dmx ;
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(2.49)

where Dmxvech(Qn) = vec(Qn). Note that the derivatives corresponding to the

components other than �n and vech(Qn) are zero.

Indeed, the derivatives of the log-densities and hence those of the likelihood

can be estimated by the Monte Carlo method because they can be considered as

the expectation terms. Speci�cally,

d@L1
@�

=
KX
k=1

KX
j=1

(�
@ log p(y1jx1)

@�

�(j)
+

�
@ log p(x1jx0)

@�

�(j;k)
+

�
@ log p(x0)

@�

�(k))
;

(2.50a)d@Ln
@�

=
KX
k=1

C(k)n

(�
@ log p(ynjxn)

@�

�(k)
+

�
@ log p(xnjYn�1)

@�

�(k))
; (2.50b)

and the subsequent derivatives are

�
@ log p(xnjYn�1)

@�

�(j)
=

1

p(xn = bx(j)njn�1jYn�1)
KX
k=1

B(j;k)n

(�
@ log p (xnjxn�1)

@�

�(j;k)
+

�
@ log p(xn�1jYn�1)

@�

�(k))
; (2.51a)�

@ log p(xnjYn)
@�

�(j)
=

�
@ log p(ynjxn)

@�

�(j)
+

�
@ log p(xnjYn�1)

@�

�(j)
� 1bLn

d@Ln
@�

; (2.51b)
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�
@ log p(x1jY1)

@�

�(j)
=

�
@ log p(y1jx1)

@�

�(j)
+

1PK
k=1B

(j;k)
1

�
KX
k=1

B
(j;k)
1

(�
@ log p (x1jx0)

@�

�(k)
+

�
@ log p (x0)

@�

�(k))

� 1bL1 @
bL1
@�

; (2.51c)

and

"
@ log p (x0)

@xT0j0

#(k)
= buT(k)0j0 (

b�xx

0j0)
�1;"

@ log p (x0)

@vech
�
�xx
0j0
�T
#(k)

= �1
2
vec(b�xx

0j0)
TDmx (2.52a)

+
1

2

��buT(k)0j0 (
b�xx

0j0)
�1
�


�buT(k)0j0 (

b�xx

0j0)
�1
��
Dmx ;

(2.52b)�
@ log p (ynjxn)

@�Tn

�(j)
= bvT(j)njn�1

bR�1
n

�
@h (xn; �n)

@�Tn

�(j)
xn=bx(j)njn�1

; (2.52c)

"
@ log p (ynjxn)
@vech (Rn)

T

#(j)
= �1

2
vec(bRn)

TDmy

+
1

2

��bvT(j)njn�1
bR�1
n

�


�bvT(j)njn�1

bR�1
n

��
Dmy ; (2.52d)�

@ log p (xnjxn�1)
@�Tn

�(j;k)
= buT(j;k)njn�1

bQ�1
n

�
@f (xn�1; �n)

@�Tn

�(k)
xn�1=bx(k)n�1jn�1

; (2.52e)

"
@ log p (xnjxn�1)
@vech (Qn)

T

#(j;k)
= �1

2
vec(bQn)

TDmx

+
1

2

��buT(j;k)njn�1
bQ�1
n

�


�buT(j;k)njn�1

bQ�1
n

��
Dmx ; (2.52f)

for j; k = 1; : : : ; N where bu(k)0j0 = bx(k)0j0 � bx0j0; bu(j;k)njn�1 = bx(j)njn�1 � f(bx(k)n�1jn�1;b�n);
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bv(k)njn�1 = yn � h(bx(k)njn�1;b�n); B(j;k)n = p(xn = bx(j)njn�1jxn�1 = bx(k)n�1jn�1); C(k)n =

p(ynjxn = bx(k)njn�1) for n � 1; bx(k)0j0 is drawn from the density p(x0), bLn is the
likelihood of the nth observation evaluated at � = b�.
In the case of time-invariant parameters, that is,  1 = � � � =  N =  , the

estimated parameter vector b� is reduced to
b� = hbxT0j0; vech(b�0j0)

T; b TiT ;
and the derivatives of the likelihood function are followed by the same procedures

easily. Thus, they are not reproduced here for convenience.

Then, the components in the observed Fisher�s information matrix bI(b�) in
(2.34) can be constructed from the outer product of (2.50). Speci�cally, bI(b�) is
estimated by

bI(b�) = 1

N

NX
n=1

d@Ln
@�

d@Ln
@�T

:

Once all estimates of bI(b�) are obtained, the standard errors of b� are just the
square roots of the diagonal elements of (bI(b�))�1. Although the �rst derivatives
given in (2.50) show the feasibility of the estimation of standard errors, it may

be impractical as the number of parameters increases faster than that of observa-

tions resulting an identi�cation problem. Nevertheless, these �rst derivatives can

provide the general framework for models in the reduced form of (2.1) and (2.2),

for example, models with time-invariant parameters or the model in Section 2.7.
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2.6 Extension to Non-Gaussian Prediction Den-

sities

In previous sections, the prediction densities for the state vector xn and the

measurement vector yn, that is, p (xnjYn�1) and p (ynjYn�1), are asymptotically

Gaussian. However, practically, they may deviate from the Gaussian density even

if the measurement and state errors are Gaussian. This in turn leads to suggest

that the prediction densities p (xnjYn�1) and p (ynjYn�1) are approximated by

the Gram-Charlier densities. Indeed, they are obtained from the Gram-Charlier

type-A series expansion around Gaussian densities. Speci�cally, for a random

variable X with mean zero and variance �2, the Gram-Charlier expansion of a

density function f (x) around a Gaussian density N (x; 0; �2) is given by

f (x) = N
�
x; 0; �2

� �
1 +

bP
s=1

dsHs (x)

�
; (2.53)

where

N
�
x;�; �2

�
�
�
2��2

��1=2
exp

�
�(x� �)

2

2�2

�
;

and Hs (x) denotes the Hermite polynomials of order s. Following Kendall et al.

(1977),

Hs (x) =

8><>:
Ps=2

i=0 (�1)
i xs�2i s!

2ii!(s�2i)! if s is even,P(s�1)=2
i=0 (�1)i xs�2i s!

2ii!(s�2i)! if s is odd.

As mentioned in Cramér (1946, p.223), the convergence of the series in (2.53)

is ensured when
R1
�1 exp (x

2=4) dF (x) < 1 for b ! 1 where F (x) denotes

78



the cumulative distribution function of x. Practically, a �nite and small number

of terms, b, is always used to approximate the density function f (x). On the

other hand, the de�nition of the Gram-Charlier density in (2.53) faced a problem

that the positive estimated density is not guaranteed without certain restrictions

imposed on the parameters ds�s. In the univariate case, Jondeau and Rockinger

(2001) showed the positivity conditions on the parameters ds�s and developed a

two-step procedure for parameter estimation. Alternatively, Perote and del Brío

(2006) suggested a restricted form of the Gram-Charlier density for a random

variable X with mean zero and variance �2, that is,

f (x) = N
�
x; 0; �2

� "
1 +

bX
s=1

dsHs (x)

#2
1

�
; (2.54)

where � = 1+
Pb

s=1 d
2
ss!. Indeed, this speci�cation of the Gram-Charlier density

can lead to a separable form of the log-likelihood function, which can be computed

more e¢ ciently,

log f (x) = logN
�
x; 0; �2

�
+ log

"
1 +

bX
s=1

dsHs (x)

#2
� log �.

However, in the multivariate case, the situation becomes more complicated

because of the correlations among variables and more complicated function of

Hermite polynomials. Perote and del Brío (2006) speci�ed a restricted form of

multivariate Gram-Charlier density to ensure positive density rather than im-

posing restrictions on the parameter ds�s. In fact, an m-variate Gram-Charlier

density for a random vector X can be speci�ed in the following two forms:
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F (x;�;�;d)

=
1

m+ 1

(
N (x;�;�) +

mY
i=1

N
�
xi;�i; �

2
i

� mX
i=1

1

�i

�
1 +

bP
s=1

dsiHs (xi � �i)
�2)

;

(2.55)

or

F (x;�;�;d)

=
1

m+ 1

(
N (x;�;�) +

mY
i=1

N
�
xi;�i; �

2
i

� mX
i=1

1

ci

�
bP
s=1

dsiHs (xi � �i)
�2)

;

(2.56)

where xi; �i and �
2
i represent the ith element of x; the ith element of � and the

ith diagonal element of � respectively, �i = 1 +
Pb

s=1 d
2
sis! and ci = �i � 1. The

speci�cations (2.55) and (2.56) are di¤erent from those speci�ed by Perote and

del Brío (2006) in which F (x) was a density of random vector X with mean zero

while the density with non-zero mean random vector X is speci�ed here. Note

that both speci�cations (2.55) and (2.56) cannot be reduced to (2.54) by putting

m = 1 directly. Nevertheless, as shown in Perote and del Brío (2006), one sound

feature of (2.55) and (2.56) is that the marginal density of a variate in X in (2.55)

and (2.56) can also be expressed in the univariate versions of (2.55) and (2.56)

respectively.

Returning to the current situation, the ensemble mean and variance for pos-

sible non-Gassianities of p (xnjYn�1) and p (ynjYn�1) are estimated by the maxi-
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mization of the likelihood for (2.55) or (2.56) rather than using the simple averages

in (2.10), (2.11), (2.13) and (2.14). Focusing on the multivariate Gram-Charlier

density (2.55), the ensemble mean and variance of state vector xn given Yn�1 are

estimated by the maximization of the function

�exnjn�1; e�xx

njn�1;
edx;njn�1� = argmax

x;�;d

KY
k=1

F(bx(k)njn�1;x;�;d);
where d = (d11; : : : ; d1mx ; : : : ; ds1; : : : ; dsmx ; : : : ; dbmx ; : : : ; dbmx). Note that the or-

ders of Hermite polynomials are restricted to b in all cases for simplicity although

this restriction is not essential.

Similar operation can be applied to p (ynjYn�1) as well, that is, the ensemble

mean and variance of measurement vector yn conditional on Yn�1 are obtained

by the maximization of the following likelihood function:

�eynjn�1; e�yy

njn�1;
edy;njn�1� = argmax

y;�;d

KY
k=1

F(by(k)njn�1;y;�;d);
where the dimension of d is conformable with that of y.

In the case of Gaussian density, the ensemble members of �ltering density

p (xnjYn) can be obtained by the generalized least squares method. Now, the en-

semble members of �ltering density p (xnjYn) in the current situation are obtained

by maximum a posteriori (MAP) (Sorenson, 1980, p.199).

bx(k)njn = argmax
xn2Rmx

p (xnjYn)

= argmax
xn2Rmx

[p (ynjxn) p (xnjYn�1)]

= argmaxbx(k)n 2Rmx
N (y(k)n � h(bx(k)n ; �n);0;Rn)F(bx(k)n ; ex(k)njn�1; e�xx

njn�1;
edx;njn�1):
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Similar to the Gaussian case, the ensemble of �ltered state bx(k)njn can be ex-
pressed as a function of y(k)n and bx(k)njn�1 although the formulation becomes more
complicated. Then, the ensemble mean and variance for �ltering density can be

found by the maximization of

�exnjn; e�xx

njn;
edx;njn� = argmax

x;�;d

KY
k=1

F(bx(k)njn;x;�;d):
Furthermore, the smoothed state vector xn and measurement vector yn can be

derived in a similar sense because they relied on the derivation of the prediction

densities of the state vector xn and the measurement vectors yn; : : : ;yN . Together

with the conditional density p(ynjxn), the smoothed estimates bynjN and bxnjN can
be computed easily.

For parameter estimation, the likelihood function is no longer expressed in

terms of approximated Gaussian densities. Instead, the unknown parameters are

estimated by maximizing the following likelihood function:

b� = argmax
�2Rp

L (�;YN)

= argmax
�2Rp

NY
n=1

p (ynjYn�1)

= argmax
�2Rp

NY
n=1

F(yn; eynjn�1; e�yy

njn�1;
edy;njn�1):

2.7 Empirical Applications

In this section, the assimilation of data by EnGTKF is focused on the time-

varying vector smooth transition autoregressive model (TV-VSTAR) which was
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a multivariate extension of Lundbergh et al. (2003) but a simpli�ed version of

He et al. (2005). Here, the case of a two-regime transition function and the same

transition function for all measurements in yn is considered. Speci�cally, we can

consider the following p-order two-regime TV-VSTARmodel for the measurement

vector yn.

yn =

"
(1�G1 (yn�d))

pP
j=1

�1;jyn�j +G1 (yn�d)
pP
j=1

�2;jyn�j

#
(1�G2 (n))"

(1�G1 (yn�d))
pP
j=1

�3;jyn�j +G1 (yn�d)
pP
j=1

�4;jyn�j

#
G2 (n)

+vn; (2.57)

for n = 1; : : : ; N; where vn � N (0;R) ; yn =
�
y1;n; : : : ; ymy ;n

�T
is a (my � 1)

column vector, �r;s�s are (my � my) coe¢ cient matrices for r = 1; : : : ; 4 and

s = 1; : : : ; p, transition functions G1 (yn�d) and G2 (n) are de�ned as G1 (yn�d) =�
1 + exp

�
�1

Qmy

i=1 (yi;n�d � c1;i)
	��1

and G2 (n) = [1 + exp f�2 (n� c2)g]
�1

respectively with 1; 2 > 0. Note that both of them satisfy the condition

0 � G1 (�) ; G2 (�) � 1. Here, the model (2.57) is denoted as VSTAR(p; d).

Without loss of generality, assume that 1 � d � p. In state space form, the

measurement and transition equations for (2.57) can be rewritten as

yn =

�
Imy 0 � � � 0

�
xn + vn; (2.58a)
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xn =

2666666664

yn

yn�1

...

yn�p+1

3777777775
=

2666666664

	1 � � � 	p�1 	p

Imy � � � 0 0

...
. . .

...
...

0 � � � Imy 0

3777777775
xn�1 +

2666666664

�n

0

...

0

3777777775
:(2.58b)

for n = 1; : : : ; N; where �n � N (0;��) ;

	i = (1� g2;n) [(1� g1;n)�1;i + g1;n�2;i] + g2;n [(1� g1;n)�3;i + g1;n�4;i] ;

for i = 1; : : : ; p; g1;n = G1 (yn�d) and g2;n = G2 (n). After reparameterization,

the vector autoregressive coe¢ cient 	i consists of the time-invariant component

(1� g1;n)�1;i + g1;n�2;i;

and the time-varying component

g2;n [(1� g1;n) (�3;i ��1;i) + g1;n (�4;i ��2;i)] :

According to (2.57) and (2.58), the nonlinearity of the model arises from the

randomness of coe¢ cient matrices 	i�s which are determined by the transition

functionsG1 (yn�d) andG2 (n). These two functions share the same property that

they are a type of logistic curve and always transit between zero and one. Focusing

on G1 (yn�d), when the level of measurement yn�d falls below the threshold level

c1 � (c1;1; c1;2), the function G1 (yn�d) moves between 0 and 0:5. This implies

that the measurement yn moves between the regimes with coe¢ cients �1;i�s and

�3;i�s more probably. On the other hand, if the measurement yn�d jumps above
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the threshold level c1, the function G1 (yn�d) moves between 0:5 and 1. the

measurement yn moves between the regimes with coe¢ cients �2;i�s and �4;i�s

more probably. Similar interpretation is applied to the function G2 (n). It allows

the measurement yn to move between the regimes with the coe¢ cients �1;i�s

and �2;i�s more probably when n < c2. When c > c2, the measurement yn

moves between the regimes with the coe¢ cients �3;i�s and �4;i�s more probably.

The purpose of the logistic function for G1 (�) and G2 (�) is to allow the smooth

transition between regimes.

When both G1 (�) and G2 (�) are considered together, the situation becomes

more complicated. At the beginning of the time series, the measurement yn

transits between the regimes with coe¢ cients �1;i�s and �2;i�s more probably

and the level of yn�d determine whether the coe¢ cients �1;i�s or �2;i�s play the

role of movement. As the time goes by and after time n = c2, the movement of

measurement yn is determined by �3;i�s and �4;i�s more probably. The smooth

transition between coe¢ cient �3;i�s and �4;i�s determined by the level of yn�d.

The speed of transition is determined by the parameters 1 and 2. When both

of them are large, the model coe¢ cients can transit between regimes very quickly.

In extreme cases, when 1 and 2 become in�nite, the model coe¢ cients switch

between regimes instantaneously and the model (2.57) is reduced to the case

of self-excited threshold autoregressive (SETAR) model by Tong (1983). On

the other hand, when both G1 (�) and G2 (�) are constant, (2.57) is reduced to

standard case of vector autoregressive model.

In vector form, the unknown parameters of (2.58) in the corresponding likeli-

hood function are represented as
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� =
h
xT0j0; vech(�0j0)

T; �T; vech (R)T ; vech(��)T
i
,

where �T =
�
vec(�1;1)T; : : : ; vec(�4;p)

T; 1; 2; c1;1; : : : ; c1;my ; c2
�
. These unknown

parameters are estimated by maximization of (2.30) while their standard errors

are computed by (2.50) in which the derivatives of h (�) and f (�) with respect to

�T are required. Obviously,

@h (xn; �)

@�T
= 0;

for n = 1; : : : ; N . On the other hand, the function f (xn�1; �) for the transition

equation in (2.58) can be written as

f (xn�1; �) =

2666666664

Pp
i=1	iyn�i

yn�2

...

yn�p

3777777775
:

Then, the derivative of f (xn�1; �) with respect to �
T is partitioned into two

parts, namely,

@f (xn�1; �)

@ [vec(�1;1)T; : : : ; vec(�1;p)T; : : : ; vec(�4;1)T; : : : ; vec(�4;p)T]

=

2666666664

@	1yn�1
@vec(�1;1)T

� � � @	pyn�p
@vec(�1;p)T

� � � @	1yn�1
@vec(�4;1)T

� � � @	pyn�p
@vec(�4;p)T

0 � � � 0 � � � 0 � � � 0

...
...

...
...

0 � � � 0 � � � 0 � � � 0

3777777775
;
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and

@f (xn�1; �)

@
�
1; 2; c1;1; : : : ; c1;my ; c2

�

=

2666666664

Pp
i=1

@	i

@1
yn�i

Pp
i=1

@	i

@2
yn�i

Pp
i=1

@	i

@c1;1
yn�i � � �

Pp
i=1

@	i

@c1;my
yn�i

Pp
i=1

@	i

@c2
yn�i

0 0 0 � � � 0 0

...
...

...
...

...

0 0 0 � � � 0 0

3777777775
;

where for i = 1; : : : ; p,

@	iyn�i

@vec (�1;i)
T
= (1� g1;n) (1� g2;n)

@�1;iyn�i

@vec (�1;i)
T
;

@	iyn�i

@vec (�2;i)
T
= g1;n (1� g2;n)

@�2;iyn�i

@vec (�2;i)
T
;

@	iyn�i

@vec (�3;i)
T
= (1� g1;n) g2;n

@�3;iyn�i

@vec (�3;i)
T
;

@	iyn�i

@vec (�4;i)
T
= g1;ng2;n

@�4;iyn�i

@vec (�4;i)
T
;

@�j;iyn�i

@vec (�j;i)
T
= yTn�i 
 Imy for j = 1; 2; 3; 4;

@	i

@1
= [(1� g2;n) (�2;i ��1;i) + g2;n (�4;i ��3;i)]

�
@g1;n
@1

�
;

@	i

@c1;j
= [(1� g2;n) (�2;i ��1;i) + g2;n (�4;i ��3;i)]

�
@g1;n
@c1;j

�
for j = 1; : : : ;my;

@	i

@2
= [(1� g1;n) (�3;i ��1;i) + g1;n (�4;i ��2;i)]

�
@g2;n
@2

�
;

@	i

@c2
= [(1� g1;n) (�3;i ��1;i) + g1;n (�4;i ��2;i)]

�
@g2;n
@c2

�
;

@g1;n
@1

=

Qmy

k=1 (yk;n�d � c1;k) exp
�
�1

Qmy

k=1 (yk;n�d � c1;k)
	�

1 + exp
�
�1

Qmy

k=1 (yk;n�d � c1;k)
	�2 ;

@g1;n
@c1;j

= �
1
Q
k 6=j (yk;n�d � c1;k) exp

�
�1

Qmy

k=1 (yk;n�d � c1;k)
	�

1 + exp
�
�1

Qmy

k=1 (yk;n�d � c1;k)
	�2

87



for j = 1; : : : ;my;

@g2;n
@2

=
(n� c2) exp f�2 (n� c2)g
(1 + exp f�2 (n� c2)g)

2 ;

@g2;n
@c2

= � 2 exp f�2 (n� c2)g
(1 + exp f�2 (n� c2)g)

2 :

Before the illustration of the assimilation of empirical data by the TV-VSTAR

model, numerical simulations, which show the validity of the EnGTKF �lter, are

given in the following sections.

2.7.1 Numerical Simulations

2.7.1.1 Vector Autoregressive Model

In state space form, the observations in the vector autoregressive (VAR) model

of order 1 are generated in the following form:

yn = xn + vn;

xn = �xn�1 + �n:

for n = 1; : : : ; 100; where yn = (y1;n; y2;n)
T is a (2 � 1) column vector, � is a

coe¢ cient matrix of order (2� 2). The values of parameters are speci�ed below:

� =

264 0:8 �0:2

�0:2 0:7

375 ; x0 � N
0B@
264 0
0

375 ;
264 0:5 0

0 0:5

375
1CA ;

vn � N

0B@
264 0
0

375 ;
264 1:0 0:3

0:3 1:5

375
1CA ; �n � N

0B@
264 0
0

375 ;
264 1:6 �0:2

�0:2 1:8

375
1CA :
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From Figure 2.1, one can see that the prediction, �ltering and smoothing by

the EnGTKF perform well over the sample. The main reason is attributed to

the linear feature of the state space model. Then, the prediction and �ltering

densities of state and measurement variables do not deviate from the Gaussian

density. Hence, consistent estimates of the ensemble mean and variance can be

achieved easily. From Figure 2.2, the interval estimates of measurement variables

are displayed as well. The con�dence limits are approximated by the asymptotic

Gaussianity due to the ensemble size. Obviously, due to the asymptotic normal-

ity of estimated ensemble means and stable estimates of ensemble variances, the

widths of con�dence intervals do not change over the sample dramatically. Fur-

thermore, the con�dence limits of predicted model states are wider than those of

�ltered and smoothed model states. Intuitively, the �ltered and smoothed esti-

mates are obtained by using more information and then more accurate estimates

are obtained.

2.7.1.2 Time-varying Vector Smooth Transition AutoregressiveModel

The lags chosen for simulation of model (2.57) are my = 2, p = 1 and d = 1, that

is, a bivariate VSTAR(1,1) model. The detailed speci�cation of parameters are

given below:

�1;1 =

264 0:8 �0:2

�0:2 0:7

375 ; �2;1 =
264 0:5 �0:3

�0:3 0:4

375 ;

�3;1 =

264 0:6 0:1

0:1 0:2

375 ; �4;1 =
264 0:2 �0:01

�0:01 0:6

375 ;
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x0 � N

0B@
264 0
0

375 ;
264 0:5 0

0 0:5

375
1CA ; 1 = 8:7; 2 = 2:7; c1 = (�0:3;�0:5) ; c2 = 20;

vn � N

0B@
264 0
0

375 ;
264 1:0 0:3

0:3 1:5

375
1CA ; �n � N

0B@
264 0
0

375 ;
264 1:6 �0:2

�0:2 1:8

375
1CA :

for n = 1; : : : ; 100.

Unlike the previous example, although the measurement equation is still linear

in this case, the transition equation is not linear any more. Indeed, the coe¢ -

cients in the transition equation vary with the level of measurement yn. The

prediction and �ltering results in Figure 2.3 show that the predicted and �ltered

measurement variables move along with actual values of measurement. Indeed,

the state vector xn is updated e¢ ciently as shown in Figures 2.3(b) and (e). This

can be explained by the similar reason as in previous example. Furthermore, the

con�dence intervals in Figure 2.4 show the performance of EnGTKF under this

model is similar to that under previous model.

2.7.1.3 A Nonlinear Gaussian Simulation Model by Kitagawa

Here, Gaussian means that the measurement and state errors are Gaussian. The

model being studied in this section was originated in Netto et al. (1978) and then

studied in Kitagawa (1987, 1991, 1996, 1998) for smoothers. Indeed, the model

is given by

yn =
x2n
50
+ vn;

xn = 0:5xn�1 +
25xn�1
1 + x2n�1

+ 8 cos(1:2n) + un;
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where vn � N(0; 1); un � N(0; 1); x0 � N(0; 1) for n = 1; : : : ; 200.

According to Figure 2.5(a), the simulated measurement yn �uctuates between

0 and 20 and below 0 occasionally because of the term x2n and the noise vn in the

measurement equation. For the simulated state xn in Figure 2.5(b), the values

always fall within the range �20 and 20. Due to the presence of the deterministic

cosine function in the transition equation, together with the stochastic component

of the equation, the state xn proceeds periodically over a number of time points

above zero and continues the oscillations below zero.

The prediction and �ltering results by the conventional EnKF are shown in

Figures 2.5(d) to (f). Several unexpected spikes of prediction and �ltering of

measurement and state variables are observed in the diagrams. These estimates

can be explained by the fact that the prediction and �ltering densities of state

xn deviate from Gaussian. The same reason can also be applied to the case of

measurement yn. A pick of observation at n = 50 shows their multimodal condi-

tional densities. In Figures 2.6(a) to (c), the prediction density of yn is skewed

to the right. On the other hand, when the prediction and �ltering densities of

measurement and state variables at n = 100 are investigated in Figures 2.6(d)

and (e), the situation is much better than the previous case. The prediction den-

sity of yn is not skewed to the right although certain bimodal feature is observed

near the tail of the density. As a result, the conventional EnKF cannot provide a

satisfactory result of the predicted mean of xn and yn and the method discussed

in Section 2.6 is attempted here, that is, the Gram-Charlier density is used to

approximate these densities.

To estimate the ensemble mean and variance Gram-Charlier density, one

should choose the order of the Hermite polynomial. Here, the order is chosen
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by the one with minimum RMSE in the prediction stage and the results are

shown in Table 2.1.

Table 2.1: RMSEs of predicted xn and yn under various orders of Hermite poly-
nomial, b

Order yn xn
1 5:2239 9:3915
2 5:6118 9:1596
3 6:4111 10:6886
4 6:9949 11:4211
5 7:8988 12:2895
6 7:6440 11:5733

From Table 2.1, the RMSE of yn increases with the order of Hermite poly-

nomial while that of xn is minimized at order b = 2. Hence, the diagrams in

Figures 2.5(a) to (c) are referred to the case of order b = 2. From Figure 2.5,

the spikes in the predictions of the measurement yn and the state variable xn

disappear. However, the prediction and �ltering results of the state variable xn

are not totally satisfactory. Two possible reasons are suggested here. Firstly,

the periodical term 8 cos(1:2n) induces the process xn to be periodic and hence

non-ergodic. Then, Assumption 2.1(iii) is violated and the performance of EnKF

is accountable in Figure 2.5. Secondly, the method discussed in Section 2.6 can

solve the problem in the conditional densities of yn and xn partially. From Table

2.1, the RMSEs of predicted yn and xn increase quickly when the order of Her-

mite polynomial increases. This is possibly due to the divergence feature of the

Gram-Charlier density with high order of Hermite polynomial, as demonstrated

by Blinnikov and Moessner (1998). Nevertheless, since the prediction of the mea-

surement variables is more important than that of the state variables in many

real applications, under this simulation model, the EnGTKF still outperforms
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the conventional EnKF marginally.

2.7.2 Algal Bloom Data

To demonstrate the use of EnGTKF with empirical application, a bivariate model

of algal bloom data is assimilated by the TV-VSTAR model in (2.57). The TV-

VSTAR model is chosen due to its capability of capturing the asymmetric cyclical

�uctuations during bloom and non-bloom periods. In this application, the bivari-

ate model contains dependent variables of standardized chlorophyll �uorescence

(CHL) and standardized dissolved oxygen concentration (DO) which were ob-

tained from the algal bloom dynamics �eld monitoring station of the University

of Hong Kong at Kat O, Hong Kong. The full sampling period covered between

2000 and 2004. The detailed data description was provided by Lee et al. (2003,

2004).

In this empirical application, the daily observations during 2000-2001 are se-

lected to perform the in-sample estimation. Before the estimation of the model

parameters, the lag parameters p and d in the TV-VSTAR model should be

identi�ed �rstly. A common approach is the usage of the Akaike information

criterion (AIC) and the lag parameters p and d are selected with the minimum

AIC. Indeed, the AIC is de�ned by

AIC = �2 logL(�;YN) + 2 dim(b�);
where dim(b�) represents the number of parameters in the model.
The results of AICs of the models are presented in Table 2.2. Clearly, TV-

VSTAR(1,1) model is chosen among the model candidates, with AIC=14318. On
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the other hand, VAR(1) model is chosen with AIC=14368. When the RMSEs

of both models are compared, the prediction of CHL by the TV-VSTAR model

is outerperformed by the VAR model except when p = 1 and 3. Furthermore,

the prediction of DO by the TV-VSTAR model improves that by the VAR model

generally. To highlight the results of VSTAR(1,1) model, the RMSEs of CHL and

DO are 0:7174 and 0:5488 respectively and they are smaller than those of VAR(1)

model. From Table 2.3, the in-sample predictions of both measurements by the

univariate versions of TV-VSTAR and VAR models demonstrate the domination

of their results over those by multivariate models.

Table 2.2: In-sample performance of TV-VSTAR and VAR models where the
columns of CHL and represent the RMSEs of CHL and DO respectively. The
columns of AIC represent the AICs of corresponding models.

TV-VSTAR VAR
p d CHL DO AIC CHL DO AIC
1 1 0:7174 0:5488 14318 0:7713 0:6036 14368
2 1 1:5319 0:5466 47245 0:6952 0:6127 14761
2 2 0:7110 0:5921 51778 0:6952 0:6127 14761
3 1 0:7614 0:6332 34521 0:8117 0:7173 42484
3 2 0:8070 0:7277 45472 0:8117 0:7173 42484
3 3 0:8168 0:7323 47360 0:8117 0:7173 42484

After the determination of the lag parameters of TV-VSTAR model, the pa-

rameter estimates and its standard errors are given in Table 2.4.
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Table 2.3: In-sample performance of TV-VSTAR and VAR models (univariate)
where the columns of CHL and DO represent the RMSEs of CHL and DO re-
spectively.

TV-VSTAR VAR
p d CHL DO CHL DO
1 1 0:7044 0:5473 0:7329 0:5595
2 1 0:6982 0:5796 0:7116 0:5410
2 2 0:6982 0:5910 0:7116 0:5410
3 1 0:7015 0:5621 0:7016 0:6180
3 2 0:7015 0:5621 0:7016 0:6180
3 3 0:7016 0:5620 0:7016 0:6180

Table 2.4: Parameter estimates of VSTAR(1,1) model by EnGTKF for CHL and

DO where the numbers insides the brackets represent the corresponding elements

within the matrices or vectors. The p-values are approximated by the asymptotic

Gaussianity.

Parameters Estimates Standard Errors p-values

x0j0 (1) 0:0710 0:0332 0:0323

x0j0 (2) �0:1093 0:0650 0:0925

�0j0 (1; 1) 0:2212 0:1167 0:0581

�0j0 (2; 1) �0:3935 0:2582 0:1275

�0j0 (2; 2) 0:7435 0:4353 0:0877

�1;1 (1; 1) 0:6976 0:3297 0:0343

�1;1 (1; 2) 0:1716 0:1107 0:1211

�1;1 (2; 1) �0:1011 0:0839 0:2282

�1;1 (2; 2) 0:8898 0:3725 0:0169

�2;1 (1; 1) 0:7102 0:3241 0:0285

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

�2;1 (1; 2) �0:0929 0:0633 0:1420

�2;1 (2; 1) �0:2196 0:0948 0:0205

�2;1 (2; 2) 0:9011 0:4418 0:0414

�3;1 (1; 1) 0:7861 0:3277 0:0164

�3;1 (1; 2) 0:0603 0:0434 0:1650

�3;1 (2; 1) 0:0579 0:0319 0:0699

�3;1 (2; 2) 0:9999 0:5415 0:0648

�4;1 (1; 1) 0:6165 0:2850 0:0305

�4;1 (1; 2) �0:0333 0:0217 0:1246

�4;1 (2; 1) 0:3788 0:2175 0:0816

�4;1 (2; 2) 0:7682 0:3298 0:0198

R (1; 1) 0:1732 0:1006 0:0849

R (2; 1) �0:3283 0:2170 0:1303

R (2; 2) 0:6498 0:5080 0:2009

�� (1; 1) 0:2999 0:1357 0:0271

�� (2; 1) �0:6075 0:2912 0:0369

�� (2; 2) 1:2306 0:9330 0:1872

1 19:8845 11:2258 0:0765

2 20:1574 11:8266 0:0883

c1 (1) 0:0098 0:0075 0:1898

c1 (2) �0:0236 0:0141 0:0936

c2 10:1231 4:5180 0:0251
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According to Table 2.4, almost all parameters are signi�cantly di¤erent from

zero. When the parameter estimate of c1 is investigated, the values of 0:0098

and �0:0236 correspond to the threshold level of standardized CHL and DO at

which the transition between bloom and non-bloom periods occurred on average

respectively. Furthermore, the time-varying transition function indicates that a

10-day cycle is observed for CHL and DO to change coe¢ cients on average.

To see the in-sample prediction performance of the TV-VSTAR model, the

�rst 100 in-sample estimation of CHL and DO are presented in Figure 2.7. Refer

to Figure 2.7(a), the prediction of CHL is reasonably well including the peaks

at n = 6, n = 33 and n = 66. When the �ltering result of CHL is considered,

the �ltered values of CHL are su¢ ciently close to the actual values. From Figure

2.7(c), the smoothers of CHL and DO perform well in a sense that the actual

movements of both variables are re�ected in their smoothed values. In Figure 2.8,

the estimated con�dence intervals in prediction, �ltering and smoothing stages

shows that the performance of EnGTKF is fairly stable for both CHL and DO.

As mentioned in Lee et al. (2003, 2004) and Muttil et al. (2004), algal blooms

occurred frequently during July 2001 and October 2001. This also initiates the

study of the predictability and �ltering of TV-VSTARmodel by EnGTKF for this

period. The estimated CHL and DO and their interval estimates are displayed

in Figures 2.9 and 2.10 respectively. The RMSEs of standardized CHL and DO

within this period are 0:6259 and 0:6385 respectively and they are comparable

with the results in Lee et al. (2004) and Muttil et al. (2004). In fact, the

RMSE of CHL was 0:5345 in the paper of Lee et al. (2004) after standardization

where the arti�cial neural network was used to perform the prediction. On the

other hand, Muttil et al. (2004) produced the RMSE of 0:4793 for CHL after
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standardization in which the genetic programming was applied to predict CHL.

Nevertheless, one should emphasize that only a bivariate model with 2 lags for

prediction is considered.

From these �gures, the in-sample prediction by TV-VSTAR model seems to

capture the algal blooms at n = 421 quite well. When the results of �ltering

are investigated, it seems that the observations can be assimilated very well even

in the cases of spikes. Therefore, it is interesting to investigate the prediction

and �ltering densities of CHL and DO and they are shown in Figure 2.11 where

the prediction and �ltering density of CHL and DO at n = 421 and n = 431

are produced. From the �gures, even if the prediction and �ltering densities of

CHL and DO deviate from the Gaussian density a bit, the assimilations of mea-

surements CHL and DO are still successful. This also implies that the nonlinear

updating equation is not very sensitive to the assumption of Gaussian density

under current empirical application.

To assess the out-of-sample prediction performance of CHL and DO in 2002-

2004, their RMSEs and AICs under various orders of the TV-VSTAR models are

reported in Table 2.5.

Table 2.5: Out-of-sample performance of TV-VSTAR and VAR models in 2002-
2004 where the columns of CHL and DO represent the RMSEs of CHL and DO
respectively. The columns of AIC represent the AICs of corresponding models.

TV-VSTAR VAR
p d CHL DO AIC CHL DO AIC
1 1 0:3061 0:4638 4336 0:4846 0:4979 5787
2 1 0:3743 0:4605 25533 0:2447 0:5672 3675
2 2 0:3832 0:4587 35194 0:2447 0:5672 3675
3 1 0:4201 0:4859 22477 0:4573 0:4920 25661
3 2 0:4670 0:4993 31160 0:4573 0:4920 25661
3 3 0:4800 0:4991 33207 0:4573 0:4920 25661
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Table 2.6: Out-of-sample RMSEs of TV-VSTAR and VAR models in 2002-2004
(univariate) where the columns of CHL and DO represent the RMSEs of CHL
and DO respectively.

TV-VSTAR VAR
p d CHL DO CHL DO
1 1 0:5964 0:4617 0:4990 0:4690
2 1 0:3309 0:5060 0:4683 0:4627
2 2 0:3314 0:5222 0:4683 0:4627
3 1 0:3387 0:4567 0:3386 0:5021
3 2 0:3392 0:4567 0:3386 0:5021
3 3 0:3392 0:4569 0:3386 0:5021

From Table 2.5, the performance of the VSTAR(1,1) model is still better

than that of the other TV-VSTAR models and this is consistent with the in-

sample prediction performance. Surprisingly, the out-of-sample prediction of CHL

by the VAR(2) model is better than the other models and an improvement of

accuracy over the TV-VSTAR models is nearly 20%. Nevertheless, the out-of-

sample prediction of DO by the TV-VSTAR model is better and this is di¤erent

from its in-sample prediction performance. The univariate prediction in Table 2.6

demonstrates the consistency of model performance during in-sample prediction.

In general, the RMSEs in Table 2.6 are smaller than those in Table 2.5 except

the VSTAR(1,1) model.

The out-of-sample predictions of CHL and DO by the VSTAR(1,1) model

are shown in Figure 2.12. The prediction performance of CHL during the start

and the end of the sampling period is reasonably well even when the variation

of CHL is larger relative to the remaining observations during the out-of-sample

period. Furthermore, the prediction of DO is satisfactory over the full out-of-

sample period.
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2.8 Conclusion

In this chapter, a new �lter EnGTKF is proposed in which the conventional EnKF

is extended in two directions. Firstly, the nonlinear updating equation is derived

based on the Gaussian density assumption of the measurement and state errors.

Under the Gaussian assumption, together with the use of Goldberger-Theil�s

mixed estimation, the �ltered state can be obtained by the method of generalized

least squares. Then, the ensemble mean and variance of state vector xn are

estimated by the ensemble averages. Secondly, when the prediction densities of

the measurement and state vectors, yn and xn, deviate from that of Gaussian, the

multivariate Gram-Charlier density is suggested to approximate the non-Gaussian

densities. The ensemble mean and variances are obtained by the maximization

of the corresponding likelihood functions. Under the non-Gaussian prediction

densities, the generalized least squares method becomes not robust enough to

estimate the �ltered state. As a result, the MAP approach is used to derive the

nonlinear updating equation. As in the case of prediction densities, the ensemble

�ltering mean and �ltering variance are estimated by the maximization of the

likelihood function.

To estimate the model parameters in the multivariate state space model, an or-

thogonal transformation technique is suggested to ensure the positive de�niteness

of a variance-covariance matrix. In addition, a hybrid approach of optimization

procedure is suggested where the localized stochastic search algorithm is incorpo-

rated with the local optimization procedure, quasi-Newton say, to estimate the

parameters. To draw statistical inference on the parameters, a recursive estima-

tion method of the derivative of the likelihood with respect to the parameters is

provided and hence the observed information matrix can then be estimated.
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In the numerical simulations of the VAR and TV-VSTAR models, the estima-

tion of the state variables shows a satisfactory result in prediction, �ltering and

smoothing. In the case of nonlinear simulation model by Kitagawa, the prediction

of measurement variable yn is satisfactory after choosing the appropriate order of

Hermite polynomial while that of state variable xn is not completely satisfactory

due to the presence of the sinusoidal component.

Furthermore, an empirical application of EnGTKF is illustrated for the algal

bloom data in Hong Kong. However, since its measurement equation is linear in

the state variables under TV-VSTARmodel, its performance should be equivalent

to the conventional EnKF. In this study, the amount of standardized chlorophyll

�uorescence and standardized concentration of dissolved oxygen in water are the

measurement variables in the TV-VSTAR and VAR models. Their in-sample pre-

diction RMSEs show that the TV-VSTAR model can outperform the VAR model

at the optimal lag chosen by the AIC. On the other hand, the in-sample prediction

of CHL in the selected period is comparable with those by Lee et al. (2004) and

Muttil et al. (2004). However, one should emphasize that only a bivariate model

with 2 lags is considered for prediction while they used multivariate prediction

equations with longer lags. For the out-of-sample predictability of the model, the

prediction RMSEs of various orders of p and d show that the out-of-sample pre-

diction performance is consistent with the in-sample prediction performance of

the models generally. Finally, the speci�ed state space model can be extended to

the non-Gaussian model and state errors, for example Gaussian mixtures, while

more theoretical and empirical works should be done in the future.
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(a) x1 - Prediction (d) x2 - Prediction
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(c) x1 - Smoothing (f) x2 - Smoothing
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Figure 2.1: Prediction, �ltering and smoothing of simulated VAR(1) model by
EnGTKF where the left and right panels represent the results of prediction,
�ltering and smoothing of x1 and x2 respectively. The red lines indicate the
estimated quantities while the blue lines indicate the simulated quantities.
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(a) x1 - Prediction (d) x2 - Prediction
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(b) x1 - Filtering (e) x2 - Filtering
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(c) x1 - Smoothing (f) x2 - Smoothing

12.0

8.0

4.0

0.0

4.0

8.0

12.0

0 20 40 60 80 100
8.0

4.0

0.0

4.0

8.0

12.0

0 20 40 60 80 100

Figure 2.2: Estimation of con�dence intervals of prediction, �ltering and smooth-
ing of simulated VAR(1) model by EnGTKF where the left and right panels
represent the results of prediction, �ltering and smoothing of x1 and x2 respec-
tively. The middle thick lines indicate the estimated quantities while the thin
lines indicate the lower and upper con�dence limits.
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(a) x1 - Prediction (d) x2 - Prediction
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(b) x1 - Filtering (e) x2 - Filtering
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(c) x1 - Smoothing (f) x2 - Smoothing
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Figure 2.3: Prediction, �ltering and smoothing of simulated TV-VSTAR(1,1)
model by EnGTKF where the left and right panels represent the results of pre-
diction, �ltering and smoothing of x1 and x2 respectively. The red lines indicate
the estimated quantities while the blue lines indicate the simulated quantities.
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(a) x1 - Prediction (d) x2 - Prediction
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(b) x1 - Filtering (e) x2 - Filtering
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(c) x1 - Smoothing (f) x2 - Smoothing
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Figure 2.4: Estimation of con�dence intervals of prediction, �ltering and smooth-
ing of simulated VSTAR(1,1) model by EnGTKF where the left and right panels
represent the results of prediction, �ltering and smoothing of x1 and x2 respec-
tively. The middle thick lines indicate the estimated quantities while the thin
lines indicate the lower and upper con�dence limits.
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(a) y - Prediction (d) y - Prediction

5.0

0.0

5.0

10.0

15.0

20.0

25.0

0 20 40 60 80 100 120 140 160 180 200

50.0

0.0

50.0

100.0

150.0

200.0

0 20 40 60 80 100 120 140 160 180 200

(b) x - Prediction (e) x - Prediction
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(c) x - Filtering (f) x - Filtering
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Figure 2.5: Prediction and �ltering of Kitagawa�s simulation model by EnGTKF
and EnKF where the left and right panels represent the nonlinear and linear
updating equations respectively. The red lines indicate the estimated quantities
while the blue lines indicate the simulated quantities.
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(a) y - Prediction, n = 50 (d) y - Prediction, n = 100

(b) x - Prediction, n = 50 (e) x - Prediction, n = 100

(c) x - Filtering, n = 50 (f) x - Prediction, n = 100

Figure 2.6: Prediction density of yn, prediction and �ltering densities of xn when
n = 50 and n = 100 where the solid lines denote the estimated density and the
dotted lines denote the Gaussian density. The order of Hermite polynomial used
in the Gram-Charlier density is 2.
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(a) CHL - Prediction (d) DO - Prediction
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(b) CHL - Filtering (e) DO - Filtering
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(c) CHL - Smoothing (f) DO - Smoothing
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Figure 2.7: In-sample estimation of CHL and DO by EnGTKF with VSTAR(1,1)
model for the �rst 100 observations where the left and right panels indicate the
prediction, �ltering and smoothing of CHL and DO respectively. Red lines repre-
sent the estimated quantities while the blue lines represent the actual qnanitites
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(b) CHL - Filtering (e) DO - Filtering
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(c) CHL - Smoothing (f) DO - Smoothing
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Figure 2.8: In-sample estimated con�dence intervals of CHL and DO with VS-
TAR(1,1) model for the �rst 100 observations where the left and right panels
indicate the prediction, �ltering and smoothing of CHL and DO respectively.
The middle thick lines represent the estimated quantities while the thin lines
represent the lower and upper con�dence limits.
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(a) CHL - Prediction (d) DO - Prediction
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(b) CHL - Filtering (e) DO - Filtering
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(c) CHL - Smoothing (f) DO - Smoothing
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Figure 2.9: In-sample estimation of CHL and DO by EnGTKF with VSTAR(1,1)
model during 1 July, 2001 and 31 October, 2001 where the left and right panels
indicate the prediction, �ltering and smoothing of CHL and DO respectively. Red
lines represent the estimated quantities while the blue lines represent the actual
qnanitites.
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(b) CHL - Filtering (e) DO - Filtering
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(c) CHL - Smoothing (f) DO - Smoothing
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Figure 2.10: In-sample estimated con�dence intervals of CHL and DO with VS-
TAR(1,1) model during 1 July, 2001 and 31 October, 2001 where the left and
right panels indicate the prediction, �ltering and smoothing of CHL and DO re-
spectively. The middle thick lines represent the estimated quantities while the
thin lines represent the lower and upper con�dence limits.
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(a) CHL (Predicted), n = 421 (e) CHL (Predicted), n = 431
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(b) DO (Predicted), n = 421 (f) DO (Predicted), n = 431
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(c) CHL (Filtered), n = 421 (g) CHL (Filtered), n = 431
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Figure 2.11: Prediction and �ltering densities of CHL and DO when n = 421 and
n = 431 where the solid lines denote the estimated density and the dotted lines
denote the Gaussian density
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Figure 2.12: Out-of-sample prediction of CHL and DO by EnGTKF during 2002-
2004 where the upper and lower panels denote CHL and DO respectively. The
red lines represent the predicted quantities and the blue lines represent the actual
quantities.
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Chapter 3

An Ensemble-based Dynamic Switching
Kalman Filter

3.1 Introduction

In atmospheric science, Evensen (1994)�s ensemble Kalman �lter (EnKF) has

been applied to data assimilation over ten years. The main feature of this �lter is

to improve over the estimation of the �rst two moments of prediction and �ltering

densities under nonlinear state space models although the Gaussian densities of

disturbance terms are still assumed. Unlike the particle �lter (Carlin et al., 1992;

Gordon et al., 1993; del Moral, 1996; Crisan et al., 1999; Gilks and Berzuini,

2001; and Arulampalam et al., 2002), the computational burden is reduced by

the estimation of only the �rst two moments and their propagation over time.

Since the EnKF generates stochastic distribution to brute force the propagation

of state variables over time, it needs to know the functional forms of the density

functions. Although Gaussian density is su¢ cient in many applications, large

deviation from the Gaussian density may lead to divergence of propagated means

and variances over time due to incorrect estimation of the mean and variance by

the ensemble members.

A simple scenario is that the density functions of measurement and state errors

may not be unimodal, but multimodal. Some researchers have suggested that the

multimodal densities can be approximated by a Gaussian mixture or Gaussian

densities with Markov switching. Early studies of Gaussian mixture in Kalman
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�lter was due to Sorenson and Alspach (1971) and Alspach and Sorenson (1972).

Afterwards, some researchers suggested the usage of Gaussian mixtures in the

EnKF although this results in the estimation of more parameters. For example,

Anderson and Anderson (1999) was the earliest one to consider the application

of EnKF with Gaussian mixtures in which the unknown density function is ap-

proximated by a sum of two Gaussian densities with di¤erent means and same

variance matrix by di¤erent scalars. Miller and Ehret (2002) suggested that if the

covariances of state variables in the state equation was large, even if the initial

density function is Gaussian, bimodal density may be generated by certain highly

dynamical systems. Also, Chen and Liu (2000) suggested the mixture Kalman �l-

ter (MKF) which included the sequential Monte Carlo and resampling features of

particle �lter with Kalman �lter prediction and updating rules. Bengtsson et al.

(2003) proposed the mixture ensemble Kalman �lter (XEnsF) and local-local en-

semble �lter (LLEnsF) where the prior density was assumed to be a Gaussian

mixture and the number of Gaussian components was re-estimated by clustering

techniques. Concerning with Markov switching, Hamiltion (1989, 1990) was a

pioneer to introduce Markov switching into time series model. Furthermore, Kim

(1994), Krolzig (1997), Chen and Liu (2000) and Higuchi and Fukuda (2003)

speci�ed various dynamic linear models in the form of state space models with

Markov switching structure and di¤erent approximations of densities were used

during the operation of the �lters. It is well known that the structure of Markov

switching can include the mixture of densities as a special case.

In this chapter, a new variant of EnKF called the ensemble Markov switching

Kalman �lter (EnMSKF) is proposed in which the feature of Markov switching

is incorporated into EnKF such that the dynamic nonlinear time series model
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can switch between unobserved regimes over time. Indeed, the proposed �lter is

closely related to that by Kim (1994). However, a di¤erent sampling method of

ensemble members is considered in this new nonlinear �lter. Therefore, the setting

of Gaussian mixture in Anderson and Anderson (1999) is extended to Markov

switching by a formal statistical treatment. To allow for Markov switching of the

measurement and state errors, the number of Gaussian components and hence the

number of parameters increases with the sample size exponentially. This results

in the infeasible operation of the �lter. An approximation is suggested in Kim

(1994) to control the number of Gaussian components.

In many atmospheric applications, little emphases were placed on the estima-

tion of unknown parameters. Typically, unknown parameters are estimated by

some ad hoc methods, for example, the method of moment estimation. In fact,

a vast literature in statistics focused on the issue of parameter estimation, for

example, see McLachlan and Peel (2000) and Frühwirth-Schnatter (2006) for an

overview. Typically, local optimization algorithm is applied to �nd the unknown

parameters. However, a typical di¢ culty in the estimation of model with mix-

ture errors is the multimodal feature of likelihood. As a result, in this chapter,

a localized stochastic search algorithm, is implemented to improve the quality of

the initial values. As well known in many local optimization algorithms, good

quality of initial values can lead to the fast convergence of estimation results. One

advantage of this algorithm is that it does not require the objective function to

be di¤erentiable with respect to the unknown parameters. A feature in evolution-

ary strategy is introduced into this algorithm to ensure the positive de�niteness

of variance-covariance matrices across generations. The variance-covariance ma-

trices are decomposed into products of orthogonal rotation matrices which are
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determined by rotation angles only. After the global optimization of the like-

lihood function, a local optimization algorithm, such as Newton-Raphson and

Quasi-Newton algorithms, is used to improve the estimation results further.

In Section 3.2, the model and assumptions are presented. Then, in Section 3.3,

EnMSKF is derived in which the ensemble predictions of measurement and state

variables and prediction and �ltered probabilities of the switching regimes are

included. The asymptotic properties of estimated mean and variances are studied

afterwards. A natural extension of the ensemble Kalman smoother (EnKS) is

given in deriving an smoother which is called the ensemble Markov switching

Kalman smoother (EnMSKS). In Section 3.4, the estimation of model parameters

is investigated. The estimation of standard errors of model parameters and the

determination of the number of switching regimes are given in Sections 3.5 and

3.6 respectively. An empirical application of this �lter is given in Section 3.7.

Finally, the conclusions are drawn in Section 3.8.

3.2 The Model

Consider the nonlinear state space model:

yn = h(xn; �
[sn]) + vn; (3.1)

xn = f(xn�1; �
[sn]) + un; (3.2)

for n = 1; 2; : : : ; N; where yn 2 Rmy ; xn 2 Rmx ; h : Rmx ! Rmy and f : Rmx !

Rmx are vector-valued functions. Also, �[sn] 2 Rz is a vector of model parame-

ters which depend on the hidden state variable sn. Both functions h (�) and f (�)
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are assumed to be smooth, that is, all derivatives of h (�) and f (�) exist and

continuous. In state space modelling, equations (3.1) and (3.2) are known as

measurement equation and transition equation respectively. The speci�cation of

(3.1) and (3.2) can include many time series models, such as, Markov switch-

ing vector autoregressive (MS-VAR) model, multivariate version of self-excited

threshold autoregressive (SETAR) model and vector smooth transition autore-

gressive (VSTAR) model. The details are referred to Krolzig (1997, p.36).

For notation simplicity, we denote Xn � fx1; : : : ;xng ; Yn � fy1; : : : ;yng and

Sn � fs1; : : : ; sng. The conditional density functions of vn and un are assumed

to be

p(vnjYn�1; sn) = N (vn;0;Q[sn]) and p (unjYn�1; sn) = N (un;0;R[sn]) (3.3)

respectively where

N (x;�;�) = (2�)�
mx
2 j�j�

1
2 exp

�
�1
2
(x� �)T��1(x� �)

�
;

Q[sn] andR[sn] are non-negative de�nite for all n and sn. The hidden state variable

sn possesses a Markovian structure and takes a value from f1; : : : ;Mg where M

is �nite. The transition probability for sn is de�ned by pij = Pr(sn = jjsn�1 =

i) > 0 for i; j = 1; : : : ;M . Then, it follows that
PM

j=1 pij = 1 for i = 1; : : : ;M .

Note that the Markov switching model can be reduced to the mixture model when

Pr (sn = jjsn�1 = i) = Pr (sn = j) or pij = pi0j for i 6= i0 is assumed.

The density function of the initial state x0 is de�ned by
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p (x0js0 = j) = N (x0;x[j]0j0;�
[j]
0j0); for j = 1; : : : ;M .

For identi�ability of the mixture components, many authors have proposed

various constraints on the model parameters. For example, Titterington et al.

(1985, Corollary 3.11) showed a generic identi�ability constraint on a �nite mix-

ture in which the transformed component densities are linearly independent.

Frühwirth-Schnatter (2006, p.19�20) suggested that in a multi-parameter case,

two mixture components can be identi�ed when at least one of the parameter

elements are distinct from the other components and the mixing proportions are

arranged in ascending order. This can avoid the problem of label switching. In

this chapter, the constraints by Frühwirth-Schnatter (2006) are imposed on the

model parameters, x[sn]0j0 , �
[sn]
0j0 , �

[sn], R[sn], and Q[sn].

The assumptions for conditional density functions of yn; xn and sn are given

below:

Assumption 3.1

(i) Conditional on xn, the current measurements yn are independent of Xn�1;

Yn�1 and Sn�1, that is,

p (ynjXn;Yn�1;Sn) = p (ynjxn; sn) ; for n = 2; : : : ; N;

and

p (ynjXn;Sn) = p (ynjxn; sn) ; for n = 1:

The conditional independence assumption follows from the measurement

equation (3.1).
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(ii) The state vector xn depends on its one-period lagged value xn�1 and the

current hidden state variable sn only, that is,

p (xnjXn�1;Yn�1;Sn) = p (xnjxn�1; sn) ; for n = 1; : : : ; N:

(iii) The hidden state variable sn is Markovian and the Markov chain fsngNn=1

is homogenous. Then,

Pr(snjSn�1;Yn�1) = Pr (snjsn�1) ; for n = 1; : : : ; N:

(iv) The Markov chain fxn; sngNn=1 is irreducible, aperiodic and admits an in-

variant probability measure.

Assumption 3.1 implies that given the values of xn and current hidden state

sn, the density function of yn can be derived directly. Furthermore, the den-

sity function of the state vector xn can be derived only from the state vector

xn at time n � 1 and the current hidden state sn. Indeed, conditions (ii), (iii)

and (iv) imply that the Markov chain fxn; sngNn=1 is ergodic (Chan and Tong,

2001, p.34). Furthermore, when the Markov chain fxn; sngNn=1 is assumed to

be Harris recurrent by Meyn and Tweedie (1993, Theorem 13.0.1), the state

process fxn; sngNn=1 converges to a stationary distribution for every initial con-

dition (x0; s0) 2 Rmx � f1; : : : ;Mg. This theorem also ensures the stability

of the state space model of (3.1) and (3.2) since the Foster�s condition (Meyn

and Tweedie, 1993, p.501) is satis�ed automatically. One may suggest that

fxn; sngNn=1 can be considered as an augmented state space and the state space

model can be expressed in a simpler form. Note that fxngNn=1 and fsng
N
n=1 are
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de�ned in continuous and discrete state spaces respectively. One feature of the

proposed �lter is that no simulation related to fsngNn=1 is required and the oper-

ation of this �lter is in parallel with the conventional EnKF. To enable the new

�lter, more assumptions on un, vn and x0 are necessary and given below:

Assumption 3.2

(i) The disturbances un and vn are uncorrelated with each other for all time

periods, that is, E
�
unv

T
m

�
= 0 for all m and n.

(ii) The initial state vector x0 is uncorrelated with un and vn; that is, E
�
unx

T
0

�
=

E
�
vnx

T
0

�
= 0 for n = 1; : : : ; N .

3.3 Recursive Estimation of Model States

In this section, the recursive estimations of the state vector xn and the prob-

ability mass of the hidden state variable sn are derived. As a by-product, the

prediction of the measurement vector yn is derived as well. To simplify the no-

tation for the probability of the hidden state sn, s
[j]
n and s[i;j]n�1;n denote (sn = j)

and (sn = j; sn�1 = i) respectively. Hence, Pr(s
[i;j]
n�1;n) = Pr(s

[j]
n js[i]n�1)� Pr(s

[i]
n�1).

The parameters fPr(s[j]0 )gMj=1; fx
[sn]
0j0 ;�

[sn]
0j0 ; �

[sn];R[sn];Q[sn]gNn=1 and fpijg
M
i;j=1 are

assumed to be known in this section. Then, the recursive estimation of the model

states and measurements in the forms of density functions is given below.

Given s[j]n , the prediction and �ltering densities for the state vector xn are

given by

p(xnjYn�1; s[j]n ) =
Z
p(xnjxn�1; s[j]n )p(xn�1jYn�1; s[j]n )dxn�1; (3.4)
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and

p(xnjYn; s[j]n ) =
p(xnjYn�1; s[j]n )p(ynjxn; s[j]n )R
p(xnjYn�1; s[j]n )p(ynjxn; s[j]n )dxn

; (3.5)

respectively for n � 1 where the �ltering density is initialized by

p(x0jy0; s[j]0 ) = p(x0js
[j]
0 ) = N (x0;x

[j]
0j0;�

xx[j]
0j0 ).

The one-step ahead prediction density for the measurement vector yn is

p(ynjYn�1; s[j]n ) =
Z
p(ynjxn; s[j]n )p(xnjYn�1; s[j]n )dxn: (3.6)

The recursive estimation of �ltering and prediction probabilities of the hidden

state variable sn, Pr(s
[j]
n jYn) and Pr(s[j]n jYn�1), is

Pr(s[j]n jYn) = Pr(s[j]n jyn;Yn�1)

=
p(ynjYn�1; s[j]n ) Pr(s[j]n jYn�1)

p (ynjYn�1)

=
p(ynjYn�1; s[j]n ) Pr(s[j]n jYn�1)PM
i=1 p(ynjYn�1; s

[i]
n ) Pr(s

[i]
n jYn�1)

; (3.7)

with Pr(s[j]0 jY0) = Pr(s
[j]
0 ) and

Pr(s[j]n jYn�1) =
MX
i=1

Pr(s
[i;j]
n�1;njYn�1)

=

MX
i=1

Pr(s[j]n js
[i]
n�1;Yn�1) Pr(s

[i]
n�1jYn�1)
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=

MX
i=1

Pr(s[j]n js
[i]
n�1) Pr(s

[i]
n�1jYn�1)

=
MX
i=1

pij Pr(s
[i]
n�1jYn�1); (3.8)

where the third equality in (3.8) is deduced by the homogeneity of Markov chain

fsngNn=1. The probability Pr(ynjYn�1; s
[j]
n ) in (3.7) in fact is the denominator term

in (3.5). Therefore, the conditional probabilities (3.7) and (3.8) are derived by

using the transition probabilities pij and the normalizing constant in the �ltering

density (3.5).

Now, the notations of conditional mean and variance of the measurement and

state vectors are denoted in the following manner:

z
[j]
tjs � E

�
ztjYs; s[j]t

�
;

�
zz[j]
tjs � E

�
(zt � z[j]tjs)(zt � z

[j]
tjs)

TjYs; s[j]t
�
;

z
[i;j]
tjs � E

�
ztjYs; s[i;j]s;t

�
;

�
zz[i;j]
tjs � E

�
(zt � z[i;j]tjs )(zt � z

[i;j]
tjs )

TjYs; s[i;j]s;t

�
;

where the variable z is replaced by x and y correspondingly.

Furthermore,
�
f
[i;j](k)
n�1jn�1

�
p
;
�
f
[i;j]
n�1

�
p
;
�
h
[i;j](k)
njn�1

�
p
and

�
h
[i;j]
n

�
p
denote the pth

elements of f(bx[i;j](k)n�1jn�1; �
[i]); E

�
f(xn�1; �

[i])jYn�1; s[i;j]n�1;n

�
; h(bx[i;j](k)njn�1 ; �

[i]) and

E
�
h(xn; �

[i])jYn�1; s[i;j]n�1;n

�
respectively;

�bx[i;j](k)n�1jn�1

�
p
;
�bx[i;j](k)njn�1

�
p
;
�by[i;j](k)njn�1

�
p
;
�
u
[j](k)
n

�
p

and
�
v
[j](k)
n

�
p
denote the pth elements of bx[i;j](k)n�1jn�1; bx[i;j](k)njn�1 ; by[i;j](k)njn�1 ; u

[j](k)
n and v[j](k)n

respectively for i; j = 1; : : : ;M ;
�
x
[i;j]
n�1jn�1

�
p
;
�
x
[i;j]
njn�1

�
p
and

�
y
[i;j]
njn�1

�
p
denote

the pth elements of x[i;j]n�1jn�1; x
[i;j]
njn�1 and y

[i;j]
njn�1 respectively for i; j = 1; : : : ;M ;

123



�b�xx[i;j]njn�1

�
pq
;
�b�xx[i;j]njn

�
pq
;
�b�yy[i;j]njn�1

�
pq
;
�
�
xx[i;j]
njn�1

�
pq
;
�
�
xx[i;j]
njn

�
pq
and

�
�
yy[i;j]
njn�1

�
pq

denote the (p; q)th elements of b�xx[i;j]njn�1 ;
b�xx[i;j]

njn ; b�yy[i;j]

njn�1 ; �
xx[i;j]
njn�1 ; �

xx[i;j]
njn and�yy[i;j]

njn�1

respectively for i; j = 1; : : : ;M .

The propagation of the whole conditional density function of the state vector

xn is clearly computationally unfavorable and it is more desirable to consider

propagating its mean and variance over time.

3.3.1 Prediction

Assume that the �ltering density for the state vector xn for n � 1 is

p(xn�1jYn�1; s[i]n�1) = N (xn�1;x
[i]
n�1jn�1;�

xx[i]
n�1jn�1), (3.9)

for i = 1; : : : ;M .

From (3.4) and (3.5), one may consider to generate ensemble members of the

state vector xn�1jn�1 by a jumping of the hidden state from s
[i]
n�1 to s

[j]
n , that is,

generating ensemble members of density p(xn�1jYn�1; s[j]n ) from p(xn�1jYn�1; s[i]n�1).

The derivation of density p(xn�1jYn�1; s[j]n ) from p(xn�1jYn�1; s[i]n�1) is then given

below:

p(xn�1jYn�1; s[j]n ) =
p(xn�1; s

[j]
n jYn�1)

Pr(s
[j]
n jYn�1)

: (3.10)

Consider the numerator term p(xn�1; s
[j]
n jYn�1);

p(xn�1; s
[j]
n jYn�1) =

MX
i=1

p(xn�1; s
[i;j]
n�1;njYn�1)
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=

MX
i=1

p(s[j]n js
[i]
n�1;Yn�1;xn�1)p(xn�1; s

[i]
n�1jYn�1)

=
MX
i=1

pijp(xn�1jYn�1; s[i]n�1) Pr(s
[i]
n�1jYn�1);

where the third equality is obtained by the homogeneity of Markov chain fsngNn=1.

Then, together with (3.8), (3.10) becomes

p(xn�1jYn�1; s[j]n ) =
PM

i=1 pij Pr(s
[i]
n�1jYn�1)p(xn�1jYn�1; s

[i]
n�1)PM

i=1 pij Pr(s
[i]
n�1jYn�1)

: (3.11)

for j = 1; : : : ;M .

Obviously, p(xn�1jYn�1; s[j]n ) is a mixture of Gaussian densities due to (3.9).

The derivation here is slightly di¤erent from that in Frühwirth-Schnatter (2006,

p.408). Furthermore, the mixing proportions in (3.11) are generated from (3.7).

Then, following from (3.4), (3.6) and (3.11), the kth ensemble members of the

predicted state and measurement vectors are generated by

bx[i;j](k)njn�1 = f(bx[i;j](k)n�1jn�1; �
[j]) + u[j](k)n ; u[j](k)n � N(0;Q[j]), for i; j = 1; : : : ;M;

(3.12)

and

by[i;j](k)njn�1 = h(bx[i;j](k)njn�1 ; �
[j]); for i; j = 1; : : : ;M; (3.13)

respectively for k = 1; : : : ; K. The ensemble member bx[i;j](k)n�1jn�1 is generated frombx[i](k)n�1jn�1 with density (3.11). Although this approach is similar to that of Kim
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(1994), the Gaussian mixture of the �ltering density at time n�1 arises from the

jump in the hidden state sn which was not pointed out explicitly by Kim (1994).

The conditional mean and variance of the (i; j)th component of the predicted

state vector xnjn�1 are approximated by

bx[i;j]njn�1 =
1

K

KX
k=1

bx[i;j](k)njn�1 ; (3.14)

and

b�xx[i;j]

njn�1 =
1

K � 1

KX
k=1

�bx[i;j](k)njn�1 � bx[i;j]njn�1

��bx[i;j](k)njn�1 � bx[i;j]njn�1

�T
; (3.15)

respectively for i; j = 1; : : : ;M .

Similar formulae can be applied to the measurement vector yn. Hence,

by[i;j]njn�1 =
1

K

KX
k=1

by[i;j](k)njn�1 ; (3.16)

and

b�yy[i;j]

njn�1 =
1

K � 1

KX
k=1

�by[i;j](k)njn�1 � by[i;j]njn�1

��by[i;j](k)njn�1 � by[i;j]njn�1

�T
; (3.17)

for i; j = 1; : : : ;M .

The overall one-step ahead prediction mean and variance for the state vector

xn are
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bx[j]njn�1 =
PM

i=1 Pr(s
[i;j]
n�1;njYn�1)bx[i;j]njn�1PM

i=1 Pr(s
[i;j]
n�1;njYn�1)

; (3.18)

and

b�xx[j]

njn�1

=

PM
i=1 Pr(s

[i;j]
n�1;njYn�1)

�b�xx[i;j]

njn�1 +
�bx[i;j]njn�1 � bx[j]njn�1��bx[i;j]njn�1 � bx[j]njn�1�T�PM

i=1 Pr(s
[i;j]
n�1;njYn�1)

;

(3.19)

respectively for j = 1; : : : ;M where the discrete probabilities in (3.18) and (3.19)

are estimated by the following formulae recursively:

Pr(s
[i;j]
n�1;njYn�1) = Pr(s[j]n js

[i]
n�1)

MX
i0=1

Pr(s
[i0;i]
n�2;n�1jYn�1)

= pij

MX
i0=1

Pr(s
[i0;i]
n�2;n�1jYn�1); (3.20a)

Pr(s
[i;j]
n�2;n�1jYn�1) =

p(s
[i;j]
n�2;n�1;yn�1jYn�2)PM

i=1

PM
j=1 p(s

[i;j]
n�2;n�1;yn�1jYn�2)

; (3.20b)

p(s
[i;j]
n�2;n�1;yn�1jYn�2) = p(yn�1jYn�2; s[i;j]n�2;n�1) Pr(s

[i;j]
n�2;n�1jYn�2)

� N (yn�1; by[i;j]n�1jn�2;
b�yy[i;j]

n�1jn�2) Pr(s
[i;j]
n�2;n�1jYn�2):

(3.20c)

The derivation of probabilities in (3.20) above follows from that of Kim (1994)

where the estimates of prediction mean and variance are replaced by the ensemble

estimates (3.16) and (3.17) respectively. The approximation of Gaussian density
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arises from the estimated mean and variance and this approximation also holds

for the dynamic linear state space model of Kim (1994).

Similar procedures can be applied to obtain the overall mean and variance of

the measurement vector yn, that is,

by[j]njn�1 =
PM

i=1 Pr(s
[i;j]
n�1;njYn�1)by[i;j]njn�1PM

i=1 Pr(s
[i;j]
n�1;njYn�1)

; (3.21)

and

b�yy[j]

njn�1

=

PM
i=1 Pr(s

[i;j]
n�1;njYn�1)

�b�yy[i;j]njn�1 +
�by[i;j]njn�1 � by[j]njn�1��by[i;j]njn�1 � by[j]njn�1�T�PM

i=1 Pr(s
[i;j]
n�1;njYn�1)

;

(3.22)

for j = 1; : : : ;M .

Actually, the overall mean and variance of the predicted state and measure-

ment vectors are derived based on the marginalization of prediction densities of xn

and yn respectively (Harrison and Stevens, 1976). The asymptotic properties are

shown easily once those of individual components are derived. The asymptotic

properties of ensemble estimates are given by the following theorem.

Theorem 3.1. Asymptotics of One-step Ahead Predicted States Assume

that the �ltering density for the state vector xn�1 given s
[i]
n�1 for i 2 f1; : : : ;Mg,

n � 1 is

p(xn�1jYn�1; s[i]n�1) = N (xn�1;x
[i]
n�1jn�1;�

xx[i]
n�1jn�1).

Then, the ensemble mean and variance of the state vector xn by prediction den-
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sity p(xnjYn�1; s[j]n ) are estimated by (3.18) and (3.19) respectively. Furthermore,

given (i; j) 2 f1; : : : ;Mg � f1; : : : ;Mg, assume that

(i) E
�����f [i;j](k)n�1jn�1

�
p

����2+� <1 for some � > 0 with p = 1; : : : ;mx; k = 1; : : : ; K;

(ii) E
�����f [i;j][(k)n�1jn�1

�
p

�
f
[i;j][(k)
n�1jn�1

�
q

����1+� < 1 for some � > 0 with p; q = 1; : : : ;mx;

k = 1; : : : ; K;

Then,

bx[j]njn�1 a:s:! x
[j]
njn�1 and b�xx[j]

njn�1
a:s:! �

xx[j]
njn�1 when K !1;

and bx[j]njn�1 converges in distribution to a mixture of Gaussian densities, that is,
p
K
�bx[j]njn�1 � x[j]njn�1� d!

MX
i=1

�[i;j]n N (xn;0;�xx[i;j]
njn�1); when K !1;

where �[i;j]n = pij Pr(s
[i]
n�1jYn�1)=

PM
`=1 p`j Pr(s

[`]
n�1jYn�1):

Theorem 3.2. Asymptotics of One-step Ahead Predicted Measurements

Assume that the ensemble prediction mean and variance for the measurement

vector yn are estimated by (3.21) and (3.22) respectively. In addition to the

assumptions for ensemble states, given (i; j) 2 f1; : : : ;Mg � f1; : : : ;Mg, assume

that

(iii) E
�����h[i;j](k)njn�1

�
p

����2+� <1 for some � > 0 with p = 1; : : : ;my; k = 1; : : : ; K;

(iv) E
�����h[i;j](k)njn�1

�
p

�
h
[i;j](k)
njn�1

�
q

����1+� < 1 for some � > 0 with p; q = 1; : : : ;my;

k = 1; : : : ; K;

Then,

by[j]njn�1 a:s:! y
[j]
njn�1 and b�yy[j]

njn�1
a:s:! �

yy[j]
njn�1 when K !1,
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and by[j]njn�1 converges in distribution to a mixture of Gaussian densities, that is,
p
K
�by[j]njn�1 � y[j]njn�1� d!

MX
i=1

�[i;j]n N (yn;0;�yy[i;j]njn�1); when K !1:

where �[i;j]n = pij Pr(s
[i]
n�1jYn�1)=

PM
`=1 p`j Pr(s

[`]
n�1jYn�1):

Proof of Theorems 3.1 and 3.2. Note that the estimators are in the form of sample

averages. All ensemble members are considered as heterogeneous but indepen-

dent since they are generated from a Gaussian mixture where their variances are

dependent on the hidden state variable.

To show the consistency of bxnjn�1, one need to show that
E
�����bx[i;j](k)njn�1

�
p

����1+� � E �����bx[i;j](k)njn�1

�
p

����2+� <1 for p = 1; : : : ;mx.

By Minkowski�s inequality,

E
�����bx[i;j](k)njn�1

�
p

����2+� = E
�����f [i;j](k)n�1jn�1

�
p
+ u[j](k)n

����2+�

�

24 E �����f [i;j](k)n�1jn�1

�
p

����2+�
!1=(2+�)

+

�
E
����u[j](k)n

�
p

���2+��1=(2+�)
352+�

� E
�����f [i;j](k)n�1jn�1

�
p

����+ E ��u[j](k)n

��
< 1;

for p = 1; : : : ;mx. The �rst term should be �nite by condition (i) above and the

second term is also �nite due to the Gaussianity of un. Then, by Markov�s SLLN

(White, 2001, p.35), the consistency of bx[i;j]njn�1 is shown directly. This also induces

the strong consistency of bx[j]njn�1 from (3.18). Similar procedure can be applied to
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show the consistency of b�xx[i;j]

njn�1 by condition (ii) because

b�xx[i;j]

njn�1 =
1

K � 1

KX
k=1

�bx[i;j](k)njn�1

��bx[i;j](k)njn�1

�T
� K

K � 1

�bx[i;j]njn�1

��bx[i;j]njn�1

�T
:

Now, the asymptotic distribution of bx[i;j]njn�1 is N (xn;x
[i;j]
njn�1;�

xx[i;j]
njn�1) with order

Op(K
�1=2) by using Liapounov�s CLT and Cramér-Wold theorem. The details of

proofs are referred to White (2001, p.114, 118). Furthermore,

p(xnjYn�1; s[j]n ) =
MX
i=1

p(xn; s
[i]
n�1jYn�1; s[j]n )

=
MX
i=1

Pr(s
[i]
n�1jYn�1; s[j]n )p(xnjYn�1; s

[i;j]
n�1;n)

=

PM
i=1 pij Pr(s

[i]
n�1jYn�1)p(xnjYn�1; s

[i;j]
n�1;n)PM

i=1 pij Pr(s
[i]
n�1jYn�1)

;

which is a weighted average of p(xnjYn�1; s[i;j]n�1;n). Then, by the Continuous Map-

ping Theorem (Pollard, 1984, p.68), the bx[j]njn�1 converges in distribution to a
mixture of Gaussian densities, that is,

p
K
�bx[j]njn�1 � x[j]njn�1� d!

MX
i=1

�[i;j]n N (xn;0;�xx[i;j]
njn�1):

Similar arguments can be applied to prove for the predicted measurement

vector by[i;j]njn�1 as well while the conditions (iii) and (iv) are used instead. �

Theorem 3.1 indicates that the one-step ahead prediction of the state vector

xn can be considered as a combined prediction of the state vector xn for each

Gaussian error. Hence, its prediction density can be described by Gaussian mix-
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ture in the best due to the jump in the hidden state from s
[j]
n�1 to s

[j]
n . Similar

phenomenon can also be found for the measurement vector yn. Consequently,

Bayesian forecasting can be performed in the way of classical forecasting while

the forecasting results are combined linearly although they are weighted by dis-

crete probabilities which are determined by ensemble members of the state vector

xn in previous period.

Following the result of Theorem 3.2, the prediction density of the measurement

yn is approximated by

p(ynjYn�1; s[j]n ) �
PM

i=1 pij Pr(s
[i]
n�1jYn�1)N (yn; by[i;j]njn�1;

b�yy[i;j]

njn�1)PM
i=1 pij Pr(s

[i]
n�1jYn�1)

: (3.23)

The formula is useful in approximating the likelihood function for parameter

estimation.

3.3.2 Filtering

In this section, the �ltering problem of the state vector xn is studied once the

measurement data yn becomes available. One can expect that the prediction

density of the state vector xn is a mixture of Gaussian densities. Then, following

Kim (1994) and Evensen (2003), the (i; j)th component of the predicted state

vector bxnjn�1 is updated by the following equation:

bx[i;j](k)njn = bx[i;j](k)njn�1 +
bK[i;j]
n (y[j](k)n � bx[i;j](k)njn�1 ); for i; j;= 1; : : : ;M ; k = 1; : : : ; K;

(3.24)
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where bK[i;j]
n = b�xy[i;j]

njn�1(
b�yy[i;j]njn�1 +R

[j])�1; y
[j](k)
n = yn+vn, vn � N(0;R[j]) and the

estimate b�xy[i;j]njn�1 in bK[i;j]
n is given by

b�xy[i;j]

njn�1 =
1

K � 1

KX
k=1

�bx[i;j](k)njn�1 � bx[i;j]njn�1

��by[i;j](k)njn�1 � by[i;j]njn�1

�T
:

Similar to the prediction of the state vector, the conditional mean and variance

of the updated state vector x[i;j]njn are estimated by

bx[i;j]njn =
1

K

KX
k=1

bx[i;j](k)njn ; (3.25)

and

b�xx[i;j]njn =
1

K � 1

KX
k=1

�bx[i;j](k)njn � bx[i;j]njn

��bx[i;j](k)njn � bx[i;j]njn

�T
; (3.26)

respectively for i; j = 1; : : : ;M .

The overall conditional mean and variance are then estimated by

bx[j]njn =
PM

i=1 Pr(s
[i;j]
n�1;njYn)bx[i;j]njnPM

i=1 Pr(s
[i;j]
n�1;njYn)

; (3.27)

and

b�xx[j]

njn =

PM
i=1 Pr(s

[i;j]
n�1;njYn)

�b�xx[i;j]

njn +
�bx[i;j]njn � bx[j]njn��bx[i;j]njn � bx[j]njn�T�PM

i=1 Pr(s
[i;j]
n�1;njYn)

; (3.28)

respectively j = 1; : : : ;M .

Alternatively, one may consider the �ltered ensemble members to be generated

by the method of maximum a posteriori (MAP) (Sorenson, 1980, p.199) from
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(3.5). However, this approach is computationally unfavorable as it can be shown

as follows. The posterior density p(xnjYn; s[i;j]n�1;n) is given by

p(xnjYn; s[i;j]n�1;n) / p(ynjxn; s[i;j]n�1;n)p(xnjYn�1; s
[i;j]
n�1;n)

= p(ynjxn; s[j]n )p(xnjYn�1; s
[i;j]
n�1;n);

where the equality is obtained from Assumption 3.1(i).

Note that both densities are approximately Gaussian from (3.1) and the result

of Theorem 3.1. Nevertheless, the maximum of this product of densities may not

be easy to achieve due to the nonlinear feature of measurement equation (3.1).

Furthermore, M2 optimizations are required to carry out although more precise

estimates of updated state vector can be obtained. Therefore, the method of

MAP is not preferred due to its computational complexity.

As pointed out by Kim (1994), the updating equation by (3.24) is not the

best estimate under the mixture of Gaussian densities even in the case of linear

state space. Nevertheless, under certain regularity conditions, the approximation

of updating equation (3.24) can still be reasonable.

Theorem 3.3. Filtering In addition to the assumptions in Theorem 3.1, given

(i; j) 2 f1; : : : ;Mg � f1; : : : ;Mg assume that

(i) E
�����bx[i;j](k)njn

�
p

����2+� <1 for some � > 0 with p = 1; : : : ;mx; k = 1; : : : ; K;

(ii) E
�����bx[i;j][(k)njn

�
p

�bx[i;j][(k)njn

�
q

����1+� < 1 for some � > 0 with p; q = 1; : : : ;mx;

k = 1; : : : ; K;

Then, the ensemble estimates by (3.27) and (3.28) have the following prop-
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erties:

bx[j]njn a:s:! x
[j]
njn and b�xx[j]

njn
a:s:! �

xx[j]
njn when K !1;

and bx[j]njn converges in distribution to a mixture of Gaussian densities, that is,
p
K
�bx[j]njn � x[j]njn� d!

MP
i=1

�[i;j]n N (xn;0;�xx[i;j]
njn ); when K !1;

where �[i;j]n = pij Pr(s
[i]
n�1jYn�1)=

PM
`=1 p`j Pr(s

[`]
n�1jYn�1).

Proof. The strong consistency of the mean and variance of �ltered ensemble

members can be shown by the similar method as in the case of Theorem 3.1.

Now, the asymptotic distribution of the mean of �ltered ensemble members is

shown below. As mentioned in Frühwirth-Schnatter (2006, p.409), the �ltering

density of the state vector xn is

p(xnjYn; s[j]n ) =
MX
i=1

p(xn; s
[i]
n�1jYn; s[j]n )

=
MX
i=1

p(xnjYn; s[i;j]n�1;n) Pr(s
[i]
n�1jYn; s[j]n ):

As in the proof of Theorem 3.1, the �rst density is asymptotically Gaussian

N (xn;x[i;j]njn ;�
[i;j]
njn ) by condition (i). By the Bayes�Theorem, the conditional prob-

ability Pr(s[i]n�1jYn; s
[j]
n ) is

Pr(s
[i]
n�1jYn; s[j]n ) =

pij Pr(s
[i]
n�1jYn)PM

`=1 p`j Pr(s
[`]
n�1jYn)

:

Then, by the Continuous Mapping Theorem (Pollard, 1984, p.68),
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p
K
�bx[j]njn � x[j]njn�!d

MX
i=1

�[i;j]n N (xn;0;�[i;j]njn ).

�

From the �ltering density of the state vector xn, the measurement vector yn

is brute force by Gaussian component v[j]n � N(0;R[j]) for j = 1; : : : ;M and this

follows from the conventional feature of EnKF. On the other hand, the number

of Gaussian components in the mixture is increased by M times. However, this

problem was not found in the conventional EnKF of Evensen (1994, 2003) and

the mixture ensemble Kalman �lter of Bengtsson et al. (2003). Speci�cally, at

time n, the number of Gaussian components becomes Mn.

Therefore, the �ltering density should be approximated in an appropriate way

such that the number of Gaussian components is controlled over time. In the

literature, many authors have suggested various methods to tackle this problem.

For example, Kitagawa (1989, 1994) proposed that the Gaussian components

in the Gaussian mixture be combined after each �ltering stage based on the

Kullback-Leibler divergence criterion. Intuitively, two Gaussian components with

similar mean and variance were combined and approximated by one Gaussian

component with the same combined mean and variance of these two components.

On the other hand, Kim (1994) collapsed the mixture �ltering density of bx[j]njn to a
single Gaussian by keeping the same �ltered mean and variance after each �ltering

stage. In this chapter, this approach is adopted where the estimated mean and

variance are replaced by ensemble mean and ensemble variance respectively, that

is,

p(xnjYn; s[j]n ) � N (xn; bx[j]njn; b�xx[j]njn ); (3.29)
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for j = 1; : : : ;M where bx[j]njn and b�xx[j]

njn are the ensemble estimates given by (3.27)

and (3.28) respectively.

The recursive operation of prediction and �ltering on the state vector xn

provides the estimates of ensemble mean and variance in (3.18), (3.19), (3.27) and

(3.28). The Markov switching state space model operated by EnKF in this way

is called the ensemble Markov switching Kalman �lter (EnMSKF). Actually, the

ensemble mean and variances are adjusted by the marginalization of prediction

and �ltering densities of the state vector xn. The idea of the estimation of mean

and variance is originated from Kim (1994) in which the linear state space model

with Markov switching structure was considered, but now the method is extended

to the nonlinear state space model and incorporated into EnKF.

The recursive state estimation procedure is given below:

1. Generate the initial ensemble states. When n = 0, given the values of x[j]0j0,

�
[j]
0j0 and j, draw K ensembles from the density function N (x0;x[j]0j0;�

[j]
0j0)

and denote them as fbx[j](k)0 gKk=1 for j = 1; : : : ;M .

2. Generate the modi�ed ensemble states. When n = 0, generate the ensemble

member bx[i;j](k)0j0 for i; j = 1; : : : ;M ; k = 1; : : : ; K from the Gaussian mixture

(3.11) with mixing proportions pij Pr(s
[j]
0 )=

PM
i=1 pij Pr(s

[j]
0 ) = pij=

PM
i=1 pij.

3. Predict the ensemble states. When n = 1, draw an ensemble of K members

from the density function N (un;0;Q[j]) and denote them as fu[j](k)n gKk=1

for j = 1; : : : ;M . Then, generate the ensemble predictions for the (i; j)th

Gaussian component with stochastic forces by

bx[i;j](k)njn�1 = f(bx[i;j](k)n�1jn�1; �
[j]) + u[j](k)n for k = 1; : : : ; K.

137



4. Generate the ensemble measurements. When n = 1, draw an ensemble of

K members from the density function N (vn;0;R[j]) and denote them as

fv[j](k)n gKk=1 for j = 1; : : : ;M . Then, generate the ensemble measurements

by

y[j](k)n = yn + v
[j](k)
n for k = 1; : : : ; K.

5. Obtain the updated ensemble states by (3.24).

6. Compute the prediction and �ltering probabilities of the hidden state sn by

(3.7) and (3.8) respectively, that is, Pr (s1jY0) and Pr (s1jY1).

7. Collapse the number of components of the �ltering density p(xnjYn; s[j]n )

from M to 1 by using (3.29).

8. Repeat Steps 1 to 7 for time n = 2; : : : ; N .

9. At any time n = 1; : : : ; N , the prediction and �ltered mean and variance of

the state vector xn are given by (3.18), (3.19), (3.27) and (3.28). Also, the

one-step prediction mean and variance of the measurement vector yn are

given by (3.21) and (3.22) respectively.

3.3.3 Smoothing

Now, a �xed-interval smoother for EnMSKF is derived. The joint smoothing

density for the state vector xn and the hidden state variable sn is

p(xn�1; s
[i]
n�1jYN)

=
MX
j=1

Z
p(xn;xn�1; s

[i;j]
n�1;njYN)dxn
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=

MX
j=1

Z
p(xn; s

[j]
n jYN)p(xn�1; s

[i]
n�1jxn; s[j]n ;YN)dxn

=

MX
j=1

Z
p(xn; s

[j]
n jYN)p(xn�1; s

[i]
n�1jxn; s[j]n ;Yn�1)dxn

=

MX
j=1

Z
p(xn; s

[j]
n jYN)

p(xn; s
[j]
n jxn�1; s[i]n�1;Yn�1)p(xn�1; s

[i]
n�1jYn�1)

p(xn; s
[j]
n jYn�1)

dxn

= p(xn�1; s
[i]
n�1jYn�1)

MX
j=1

Z
p(xn; s

[j]
n jxn�1; s[i]n�1;Yn�1)p(xn; s

[j]
n jYN)

p(xn; s
[j]
n jYn�1)

dxn

= p(xn�1; s
[i]
n�1jYn�1)

MX
j=1

Z
pij
p(xnjxn�1; s[j]n )p(xn; s[j]n jYN)
p(xnjYn�1; s[j]n ) Pr(s[j]n jYn�1)

dxn; (3.30)

for i; j = 1; : : : ;M and n = N;N � 1; : : : ; 2. Note that fxn; sngNn=1 is considered

as a Markov chain and Assumptions 3.1(i), (ii) and (iii) are used to show the

third equality. Speci�cally,

p(xn�1; s
[i]
n�1jxn; s[j]n ;YN)

=
p(xn�1;xn; s

[i]
n�1; s

[j]
n ;y1; : : : ;yN)

p(xn; s
[j]
n ;y1; : : : ;yN)

=
p(yN jYN�1) : : : p(yn+1jYn)p(ynjxn;xn�1; s[j]n ; s[i]n�1;Yn�1)p(xn;xn�1; s

[j]
n ; s

[i]
n�1;Yn�1)

p(yN jYN�1) : : : p(yn+1jYn)p(ynjxn; s[j]n ;Yn�1)p(xn; s[j]n ;Yn�1)

=
p(ynjxn;xn�1; s[j]n ; s[i]n�1;Yn�1)p(xn;xn�1; s

[j]
n ; s

[i]
n�1;Yn�1)

p(ynjxn; s[j]n ;Yn�1)p(xn; s[j]n ;Yn�1)

=
p(ynjxn; s[j]n )p(xn;xn�1; s[j]n ; s[i]n�1;Yn�1)

p(ynjxn; s[j]n )p(xn; s[j]n ;Yn�1)

=
p(xn;xn�1; s

[j]
n ; s

[i]
n�1;Yn�1)

p(xn; s
[j]
n ;Yn�1)

= p(xn�1; s
[i]
n�1jxn; s[j]n ;Yn�1).

In fact, the derivation of posterior density of the smoothed state vector in
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(3.30) follows from Harvey (1989) and Kitagawa (1987). Although the smooth-

ing density can be derived by backward recursion, both prediction and �ltering

densities of the state vector need to be stored. Moreover, in order to obtain the

smoothed mean and variance of the state vector, the hidden state variable sn�1

should be integrated out. Typically, the smoothed mean and variance of xn�1 and

smoothed probability of s[i]n�1 are estimated by the Bayesian method. Unlike the

�xed-interval smoothers derived by Koopman (1993) and deJong and Shephard

(1995) which were based on the minimum mean squared error (MMSE) criterion

in which a linear state space model was considered, the joint density (3.30) is

non-Gaussian and intractable. As a result, an alternative derivation of smoothed

mean of the state vector xn�1 based on the MMSE criterion is provided here.

Following Tanizaki (1996, p.217�220), the smoothed mean of xn�1 given s
[i]
n�1

for i 2 f1; : : : ;Mg is estimated by the MMSE criterion, that is,

x
[i]
n�1jN

= E(xn�1jYN ; s[i]n�1)

=

Z
xn�1p(xn�1jYN ; s[i]n�1)dxn�1

=
X
SN

ZZ
xn�1p(xn�1;XN;�(n�1);SN jYN ; s[i]n�1)dXN;�(n�1)dxn�1

=
X
SN

Z
xn�1p(XN ;SN jYN ; s[i]n�1)dXN

=

Z
xn�1

P
SN p (XN ;YN ;SN)
p(s

[i]
n�1;YN)

dXN

=

Z
xn�1

P
SN p (YN jXN ;SN) p (XN jSN) Pr(SN)

Pr(s
[i]
n�1jYN)p(YN)

dXN

=

P
SN

R
xn�1p (YN jXN ;SN) p (XN jSN) Pr(SN)dXN

Pr(s
[i]
n�1jYN)

P
SN

R
p (YN jXN ;SN) p (XN jSN) Pr(SN)dXN

; (3.31)
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for n = N;N � 1; : : : ; 2; where XN;�(n�1) � fx1; : : : ;xn�2;xn; : : :xNg indicates a

set of all state vectors except the one at time n � 1 and the sum
P

SN denotesPM
s0=1

PM
s1=1

� � �
PM

sN=1
.

From Assumption 3.1,

p (XN jSN) = p (x0js0)
NY
n=1

p (xnjxn�1; sn) ;

p (YN jXN ;SN) =

NY
n=1

p (ynjxn; sn)

and Pr (SN) = Pr(s0)

NY
n=1

Pr (snjsn�1) :

From (3.31), the computation of the smoothed state vector xn�1jN requires (i)

the ensemble members fbx[sn�1;sn](k)njn�1 gKk=1 from the prediction density p (xnjxn�1; sn)

and (ii) p(ynjxn = bx[sn](k)njn�1 ) for k = 1; : : : ; K and (iii) the smoothed probability

Pr(s
[i]
n�1jYN). The main di¢ culty of this smoother is integrating out the hidden

state variable sn for all n.

From (3.18) and (3.20a), one can observe that

x
[j]
njn�1 =

PM
i=1 pij Pr(s

[i]
n�1jYn�1)x

[i;j]
njn�1PM

i=1 pij Pr(s
[i]
n�1jYn�1)

:

To integrate out the hidden state s[j]n , the following relation is used:

p(xnjYn�1) =
MX
j=1

p(xn; s
[j]
n jYn�1) =

MX
j=1

p(xnjYn�1; s[j]n ) Pr(s[j]n jYn�1):

Hence,
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xnjn�1 =
MX
j=1

Pr(s[j]n jYn�1)x
[j]
njn�1:

Then, the ensemble mean and variance of the smoothed state vector given

s
[i]
n�1 for i 2 f1; : : : ;Mg are estimated by

bx[i]n�1jN = 1

Pr(s
[i]
n�1jYN)

KX
k=1

bw(k)N bx(k)njn�1; (3.32)

and

b�xx[i]

n�1jN =
1

Pr(s
[i]
n�1jYN)

KX
k=1

bw(k)N �bx(k)njn�1 � bx[i]n�1jN��bx(k)njn�1 � bx[i]n�1jN�T ; (3.33)
respectively for n = N;N � 1; : : : ; 2, where

bw[i;j](k)n =
pijN (by[i;j](k)njn�1 ; by[i;j]njn�1;

b�yy[i;j]

njn�1)w
[i](k)
n�1PK

k=1 pijN (by[i;j](k)njn�1 ; by[i;j]njn�1;
b�yy[i;j]njn�1)w

[i](k)
n�1

for n = 2; : : : ; N;

bw[i;j](k)1 =
Pr(s

[i]
0 )pijN (by[i;j](k)njn�1 ; by[i;j]njn�1;

b�yy[i;j]njn�1)PK
k=1 Pr(s

[i]
0 )pijN (by[i;j](k)njn�1 ; by[i;j]njn�1;

b�yy[i;j]

njn�1)
for j = 1; : : : ;M;

bw[j](k)n =

MX
i=1

bw[i;j](k)n for n = 1; : : : ; N;

bw(k)n =

MX
j=1

bw[j](k)n ;

bx[j](k)njn�1 =

PM
i=1 pij Pr(s

[i]
n�1jYn�1)bx[i;j](k)njn�1PM

i=1 pij Pr(s
[i]
n�1jYn�1)

;

bx(k)njn�1 =
MX
j=1

Pr(s[j]n jYn�1)bx[j](k)njn�1
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The measurement vector yn�1 can also be smoothed in a similar way, that is,

y
[i]
n�1jN

= E(yn�1jYN ; s[i]n�1)

=
X
SN

Z
h(xn�1; �

[i])
p (YN jXN ;SN) p (XN jSN)
Pr(s

[i]
n�1jYN)p(YN)

dXN

=

P
SN h(xn�1; �

[i])
R
p (YN jXN ;SN) p (XN jSN) Pr(SN)dXN

Pr(s
[i]
n�1jYN)

P
SN

R
p (YN jXN ;SN) p (XN jSN) Pr(SN)dXN

;

(3.34)

for n = N;N � 1; : : : ; 2.

By using the same smoothing method as in the state vector xn�1, the ensemble

mean and variance of the smoothed measurement vector yn�1 given s
[i]
n�1 for

i 2 f1; : : : ;Mg are estimated by

by[i]n�1jN = 1

Pr(s
[i]
n�1jYN)

KX
k=1

bw(k)N by(k)njn�1; (3.35)

and

b�yy[i]

n�1jN =
1

Pr(s
[i]
n�1jYN)

KX
k=1

bw(k)N �by(k)njn�1 � by[i]n�1jN��by(k)njn�1 � by[i]n�1jN�T ; (3.36)
respectively for n = N;N � 1; : : : ; 2 where the notation of by(k)njn�1 follows frombx(k)njn�1 easily.
To compute the smoothed mean and variance of the measurement and state

vectors in (3.32), (3.33), (3.35) and (3.36), it is necessary to derive the recursive es-
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timation of smoothed probability Pr(s[i]n�1jYN). Given the value of i 2 f1; : : : ;Mg,

the smoothed probability for the hidden state variable sn�1 is given by

Pr(s
[i]
n�1jYN) =

MX
j=1

Pr(s
[i;j]
n�1;njYN)

=

MX
j=1

Pr(s
[i]
n�1js[j]n ;YN) Pr(s[j]n jYN)

=

MX
j=1

Pr(s
[i]
n�1js[j]n ;Yn�1;Yn:N) Pr(s[j]n jYN)

=

MX
j=1

p(Yn:N js[i;j]n�1;n;Yn�1) Pr(s
[i]
n�1js

[j]
n ;Yn�1)

p(Yn:N js[j]n ;Yn�1)
Pr(s[j]n jYN)

=
MX
j=1

Pr(s
[i]
n�1js[j]n ;Yn�1) Pr(s[j]n jYN)

=

PM
j=1 pij Pr(s

[i]
n�1jYn�1) Pr(s

[j]
n jYN)PM

j=1 pij Pr(s
[i]
n�1jYn�1)

;

where Yn:N � fyn; : : : ;yNg. The �fth equality follows from Assumption 3.1(i).

Indeed, the recursion of smoothed probability follows from Kim (1994) although

the derivation is somehow related to Tanizaki (1996). It is interesting that the

smoothed probability of the hidden state sn�1 is a mixture of the �ltered proba-

bility of the hidden state sn. The mixing proportions are computed by using the

results in the prediction and �ltering stages, that is, equations (3.7) and (3.8).

The estimation of smoothed states and measurements by (3.32), (3.33), (3.35)

and (3.36) is called the ensemble Markov switching Kalman smoother (EnMSKS).

At �rst glance of (3.32) and (3.33), the estimation of mean and variance of the

smoothed model state, bx[i]n�1jN and b�xx[i]n�1jN , requires information of the prediction

density p(ynjYn�1; s[i;j]n�1;n) and the smoothed probability of the hidden state sn�1
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only. Implicitly, the smoothed probability Pr(s[i]n�1jYN) is also dependent on the

state vector xn from (3.20), Indeed, information from the �ltering density is used

in the recursive derivation of the prediction density of the model state implicitly.

Furthermore, the recursion of smoothed probability of the hidden state variable

requires the likelihood p(ynjYn�1; sn) and the transition probabilities fpijgMi;j=1.

Therefore, the ensemble members of bx[i;j](k)njn�1 and by[i:j](k)njn�1 and the predicted and

�ltered probabilities of the hidden state sn are needed for the computation of the

smoothed estimates. The strong consistency of the ensemble estimates is given

by the following theorem.

Theorem 3.4. Smoothing Assume that the one-step ahead prediction densities

of xn and yn are given by Theorems 3.1 and 3.2. Given that i 2 f1; : : : ;Mg, the

ensemble estimates (3.32) and (3.33) have the following strong consistency.

bx[i]n�1jN a:s:! x
[i]
n�1jN and b�xx[i]n�1jN

a:s:! �
xx[i]
n�1jN when K !1:

Similarly, for measurement vector yn�1,

by[i]n�1jN a:s:! y
[i]
n�1jN and b�yy[i]n�1jN

a:s:! �
yy[i]
n�1jN when K !1;

Proof. Since the estimates of the smoothed model states are derived from the

predicted model states and the number of switching statesM is �nite, the strong

consistency of smoothed ensemble mean and variance follows from the result of

Theorems 3.1 and 3.2 directly. �
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3.4 Hybrid Estimation of Model Parameters

From the result of Theorems 3.1 and 3.2, the joint density of observations is

approximated by

L(�;YN) =
(

NY
n=2

MX
j=1

p(ynjYn�1; s[j]n ) Pr(s[j]n jYn�1)
)(

MX
j=1

p(y1js[j]1 ) Pr(s
[j]
1 )

)
;

(3.37)

where � =
h
fpijgMi;j=1 ; 

[1]T; : : : ; [M ]T
iT
; [j]T =

h
Pr(s

[j]
0 ); (x

[j]
0j0)

T; vech(�[j]
0j0)

T; �[j]T;

vech(R[j])T; vech(Q[j])T
�
for j = 1; : : : ;M and the calculations of densities follow

from (3.7), (3.8) and (3.23).

The log-likelihood is then given by

logL (�;YN) =
NX
n=1

logLn; (3.38)

where Ln stands for the likelihood of the nth observation, that is,

Ln =
MX
j=1

N (yn; by[j]njn�1; b�yy[j]njn�1) Pr(s
[j]
n jYn�1),

for n > 1. When n = 1,

Ln =
MX
j=1

p(y1js[j]1 ) Pr(s
[j]
1 ).

The prediction probability of the hidden state variable sn is estimated by (3.7)

and (3.8) recursively.

The unknown parameter estimate is the solution of following optimization

problem:
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b� = argmax
�

logL (�;YN) : (3.39)

Under the regularity conditions of Fuh (2006, p.2042�2043), it can be shown

that estimate b� should be strongly consistent and asymptotically normal (Fuh,
2006, Theorems 5 and 6).

Although the maximization problem of (3.38) can be performed by standard

optimization algorithm, such as Newton-Raphson, Quasi-Newton and so on. In

particular, the expectation-maximum (EM) algorithm is a popular method in the

estimation of Markov switching and mixture models. However, this algorithm still

faces the similar problem as in conventional optimization algorithm, for example,

traps in multiple modes of likelihood functions. Several authors have proposed

various variants of EM algorithms to tackle this problem, such as, Monte Carlo

EM by Wei and Tanner (1990), stochastic EM by Celeux and Diebolt (1985),

supplementary EM byMeng and Rubin (1991) and simulated EM by Ruud (1991).

Nevertheless, the EM algorithm faces a problem in the state space model where

the model states of full sample are smoothed for conditional expectation of the

model states (Shumway and Sto¤er, 2006, Chapter 6). Due to the computation

burden of the smoother in the nonlinear state space model, the EM algorithm

does not seem to be a favorable tool in maximizing the likelihood (3.38).

To avoid the traps in local optimal and multiple optimal solutions and en-

sure the numerical stability of the estimation process, the global optimization

algorithm suggested in Chapter 2 is then implemented in this chapter again to

estimate the unknown parameters in (3.38). Indeed, this algorithm sheds lights

on both localized stochastic search algorithm and evolutionary strategy and is

suitable to tackle the current estimation problem.

147



3.5 Estimation of Standard Errors

In this section, all parameter estimates by (3.39) are indicated by b. In order to
estimate the approximate standard errors of estimated parameters in Section 3.3,

the expected Fisher�s information matrix is required and de�ned by

I (�) = E
�
@ logL
@�

@ logL
@�T

�
; (3.40)

Unlike Cavanaugh and Shumway (1996) which computed the expected Fisher�s

information matrix for linear state space model, a typical and consistent approxi-

mation of Fisher�s information matrix, the observed Fisher�s information matrix,

is used here, that is,

bI(b�) = 1

N

NX
n=1

�
@ logLn
@�

@ logLn
@�T

�
�=b� : (3.41)

Once all estimates of bI(b�) are obtained, the standard errors of b� are just the
square roots of the diagonal elements of (bI(b�))�1.
To obtain the derivative of the likelihood Ln with respect to the parameter �,

a recursive procedure is proposed here. From (3.37), we have

L(�;YN)

=
NY
n=1

Ln

=

(
NY
n=2

MX
i=1

MX
j=1

p(ynjYn�1; s[j]n ) Pr(s[j]n ; s
[i]
n�1jYn�1)

)(
MX
i=1

MX
j=1

pijp(y1js[j]1 ) Pr(s
[j]
1 ; s

[i]
0 )

)

=

(
NY
n=2

MX
i=1

MX
j=1

pijp(ynjYn�1; s[j]n ) Pr(s
[i]
n�1jYn�1)

)(
MX
i=1

MX
j=1

pijp(y1js[j]1 ) Pr(s
[i]
0 )

)
:
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Then,

Ln �

8>><>>:
PM

i=1

PM
j=1 pijL

[j]
n Pr(s

[i]
0 ) for n = 1;PM

i=1

PM
j=1 pijL

[j]
n Pr(s

[i]
n�1jYn�1) for n = 2; : : : ; N;

where

L[j]n �

8>><>>:
p(y1js[j]1 ) for n = 1;

p(ynjYn�1; s[j]n ) for n = 2; : : : ; N:

Note that L[j]n can be expanded to

L[j]n �

8>><>>:
RR
p(y1jx1; s[j]1 )p(x1jx0; s

[j]
1 )p(x0js

[j]
1 )dx0dx1 for n = 1;R

p(ynjxn; s[j]n )p(xnjYn�1; s[j]n )dxn for n = 2; : : : ; N:

When n = 1, the derivative of Ln with respect to � is

@L1
@�

=
@

@�

MX
i=1

MX
j=1

pijL[j]1 Pr(s
[i]
0 )

=
MX
i=1

MX
j=1

L[j]1
@pij Pr(s

[i]
0 )

@�
+

MX
i=1

MX
j=1

@L[j]1
@�

pij Pr(s
[i]
0 ) (3.42)

where

@pij Pr(s
[i]
0 )

@�
=

@pij
@�

Pr(s
[i]
0 ) + pij

@ Pr(s
[i]
0 )

@�
;
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@L[j]1
@�

=

ZZ
@p(y1jx1; s[j]1 )

@�
p(x1jx0; s[j]1 )p(x0js

[j]
1 )dx0dx1

+

ZZ
p(y1jx1; s[j]1 )

@p(x1jx0; s[j]1 )
@�

p(x0js[j]1 )dx0dx1

+

ZZ
p(y1jx1; s[j]1 )p(x1jx0; s

[j]
1 )
@p(x0js[j]1 )

@�
dx0dx1:

The derivative @p(x0js[j]1 )=@� is obtained by rearranging the expression for

p(x0js[j]1 ) and di¤erentiating both sides with respect to �. Then,

p(x0js[j]1 ) =

PM
i=1 pij Pr(s

[i]
0 )p(x0js

[i]
0 )PM

i=1 pij Pr(s
[i]
0 )

=) @p(x0js[j]1 )
@�

=

(
MP
i=1

@pij Pr(s
[i]
0 )

@�
p(x0js[i]0 ) +

MP
i=1

pij Pr(s
[i]
0 )
p(x0js[i]0 )
@�

�
MP
i=1

@pij Pr(s
[i]
0 )

@�
p(x0js[j]1 )

)
1PM

i=1 pij Pr(s
[i]
0 )

where

@pij Pr(s
[i]
0 )

@�
=
@pij
@�

Pr(s
[i]
0 ) + pij

@ Pr(s
[i]
0 )

@�
:

When n > 1, the derivative of Ln with respect � is

@Ln
@�

=
MX
i=1

MX
j=1

L[j]n
@pij Pr(s

[i]
n�1jYn�1)
@�

+
MX
i=1

MX
j=1

pij Pr(s
[i]
n�1jYn�1)

@L[j]n
@�

; (3.43)

where
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@L[j]n
@�

=

Z
@p(ynjxn; s[j]n )

@�
dxn +

Z
p(ynjxn; s[j]n )

@p(xnjYn�1; s[j]n )
@�

dxn;

@p(xnjYn�1; s[j]n )
@�

=

Z
@p(xnjxn�1; s[j]n )

@�
p(xn�1jYn�1; s[j]n )dxn�1

+

Z
p(xnjxn�1; s[j]n )

@p(xn�1jYn�1; s[j]n )
@�

dxn�1:

Recall that the recursive relationships of conditional densities of state variables

and hidden variables are given by

Pr(s[j]n jYn�1) =
MP
i=1

pij Pr(s
[i]
n�1jYn�1);

Pr(s[j]n jYn) =
L[j]n Pr(s[j]n jYn�1)

Ln
;

p(xnjYn�1; s[j]n ) =

Z
p(xnjxn�1; s[j]n )p(xn�1jYn�1; s[j]n )dxn�1;

p(xnjYn; s[j]n ) =
p(ynjxn; s[j]n )p(xnjYn�1; s[j]n )

L[j]n
;

p(xn�1jYn�1; s[j]n ) =

PM
i=1 pij Pr(s

[i]
n�1jYn�1)p(xn�1jYn�1; s

[i]
n�1)PM

i=1 pij Pr(s
[i]
n�1jYn�1)

;

for n > 1. Then, the corresponding derivatives for the �rst three expressions are

@ Pr(s
[j]
n jYn�1)
@�

=
MP
i=1

@pij
@�

Pr(s
[i]
n�1jYn�1) + pij

@ Pr(s
[i]
n�1jYn�1)
@�

; (3.44)

@ Pr(s
[j]
n jYn)
@�

=
1

Ln

(
@L[j]n
@�

Pr(s[j]n jYn�1) + L[j]n
@ Pr(s

[j]
n jYn�1)
@�

)

�Pr(s
[j]
n jYn)
Ln

@Ln
@�

; (3.45)

@p(xnjYn�1; s[j]n )
@�

=

Z
@p(xnjxn�1; s[j]n )

@�
p(xn�1jYn�1; s[j]n )dxn�1
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+

Z
p(xnjxn�1; s[j]n )

@p(xn�1jYn�1; s[j]n )
@�

dxn�1; (3.46)

@p(xnjYn; s[j]n )
@�

=
1

L[j]n

(
@p(ynjxn; s[j]n )

@�
p(xnjYn�1; s[j]n )

+p(ynjxn; s[j]n )
@p(xnjYn�1; s[j]n )

@�

)
� p(xnjYn; s

[j]
n )

L[j]n
@L[j]n
@�

:

(3.47)

respectively.

To consider the derivative @p(xn�1jYn�1; s[j]n )=@�, the expression for

p(xn�1jYn�1; s[j]n ) is rearranged.

MP
i=1

pij Pr(s
[i]
n�1jYn�1)p(xn�1jYn�1; s[j]n ) =

MP
i=1

pij Pr(s
[i]
n�1jYn�1)p(xn�1jYn�1; s

[i]
n�1):

Di¤erentiation of both sides with respect to � yields

MP
i=1

@pij Pr(s
[i]
n�1jYn�1)
@�

p(xn�1jYn�1; s[j]n ) +
MP
i=1

pij Pr(s
[i]
n�1jYn�1)

@p(xn�1jYn�1; s[j]n )
@�

=
MP
i=1

@pij Pr(s
[i]
n�1jYn�1)
@�

p(xn�1jYn�1; s[i]n�1) +
MP
i=1

pij Pr(s
[i]
n�1jYn�1)

@p(xn�1jYn�1; s[i]n�1)
@�

:

This implies that

@p(xn�1jYn�1; s[j]n )
@�

=

(
MP
i=1

@pij Pr(s
[i]
n�1jYn�1)
@�

p(xn�1jYn�1; s[i]n�1)
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+
MP
i=1

pij Pr(s
[i]
n�1jYn�1)

@p(xn�1jYn�1; s[i]n�1)
@�

�
MP
i=1

@pij Pr(s
[i]
n�1jYn�1)
@�

p(xn�1jYn�1; s[j]n )
)

1PM
i=1 pij Pr(s

[i]
n�1jYn�1)

;

(3.48)

where

@pij Pr(s
[i]
n�1jYn�1)
@�

=
@pij
@�

Pr(s
[i]
n�1jYn�1) + pij

@ Pr(s
[i]
n�1jYn�1)
@�

:

Clearly, @p(x1jY1; s[j]1 )=@� and @ Pr(s
[j]
1 jY1)=@� are the initial values of the re-

cursive derivations of @Ln=@� for n > 1: Consider the derivative @p(x1jY1; s[j]1 )=@�;

p(x1jY1; s[j]1 ) =
p(y1jx1; s[j]1 )p(x1js

[j]
1 )

L[j]1
:

This implies that

@p(x1jY1; s[j]1 )
@�

=
1

L[j]1

(
@p(y1jx1; s[j]1 )

@�
p(x1js[j]1 ) + p(y1jx1; s

[j]
1 )
@p(x1js[j]1 )

@�

)

�p(x1jY1; s
[j]
1 )

L[j]1

@L[j]1
@�

(3.49)

where

@p(x1js[j]1 )
@�

=
@

@�

Z
p(x1jx0; s[j]1 )p(x0js

[j]
1 )dx0

=

Z
@p(x1jx0; s[j]1 )

@�
p(x0js[j]1 ) + p(x1jx0; s

[j]
1 )
@p(x0js[j]1 )

@�
dx0.
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Consider the derivative @ Pr(s[j]1 jY1)=@�,

Pr(s
[j]
1 jY1) =

L[j]1 Pr(s
[j]
1 )

L1

=) @ Pr(s
[j]
1 jY1)
@�

=
1

L1

(
@L[j]1
@�

Pr(s
[j]
1 ) + L

[j]
1

@ Pr(s
[j]
1 )

@�

)
� Pr(s

[j]
1 jY1)
L1

@L1
@�

(3.50)

where

@ Pr(s
[j]
1 )

@�
=

@

@�

MP
i=1

pij Pr(s
[i]
0 )

=
MP
i=1

@pij
@�

Pr(s
[i]
0 ) + pij

@ Pr(s
[i]
0 )

@�
:

Since the densities p(x0js[j]0 ), p(ynjxn; s
[j]
n ) and p(xnjxn�1; s[j]n ) are Gaussian,

the recursive estimation of derivatives of density can be transformed to the es-

timation of derivatives of log-density easily by rewriting the expressions in the

form of

@p(z)

@�
=
@ log p(z)

@�
p(z);

where p(z) represents the densities p(xnjYn�1), p(xnjYn), p(x1jx0) and p(x0).

Indeed, the log-density functions used in @Ln=@� are speci�ed as

log p(x0js[j]0 )
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= �mx

2
log(2�)� 1

2
log j�[j]

0j0j �
1

2
(x0 � x[j]0j0)

T(�
[j]
0j0)

�1(x0 � x[j]0j0);

log p(ynjxn; s[j]n )

= �my

2
log(2�)� 1

2
log jR[j]j � 1

2

�
yn � h(xn; �[j])

�T
(R[j])�1

�
yn � h(xn; �[j])

�
;

log p(xnjxn�1; s[j]n )

= �mx

2
log(2�)� 1

2
log jQ[j]j � 1

2

�
xn � f(xn�1; �[j])

�T
(Q[j])�1

�
xn � f(xn�1; �[j])

�
;

respectively.

In order to derive the derivatives of log-density with respect to �, the following

expressions (Schott, 1997, p.336) are required:

@ log jAj
@vech (A)T

=
@ log jAj
@ jAj

@ jAj
@vech (A)T

= jAj�1 vec
�
AT
#

�T
Dm

= vec
�
A�1�TDm; (3.51)

and
@vec (A�1)

@vech (A)T
= �

�
A�1 
A�1�Dm; (3.52)

with A�1 = jAj�1A# where Dm denotes the duplication matrix of order m such

that Dmvech(A) = vec(A) ; A# is the adjoint of A and A is a m�m symmetric

matrix.

Now, consider the derivatives of log-density with respect to �.

@ log p(x0js[j]0 )
@x

[j]T
0j0

= �1
2

@

@x
[j]T
0j0

�
(x0 � x[j]0j0)

T(�
[j]
0j0)

�1(x0 � x[j]0j0)
�

= (x0 � x[j]0j0)
T(�

[j]
0j0)

�1; (3.53)
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@ log p(x0js[j]0 )
@vech(�[j]

0j0)
T

= �1
2

@ log
����[j]

0j0

���
@vech(�[j]0j0)

T
� 1
2

@tr
�
(x0 � x[j]0j0)T(�

[j]
0j0)

�1(x0 � x[j]0j0)
�

@vech(�[j]0j0)
T

= �1
2
vec(�[j]0j0)

TDmx �
1

2

�
(x0 � x[j]0j0)

T 
 (x0 � x[j]0j0)
T
� @vec(�[j]

0j0)
�1

@vech(�[j]
0j0)

= �1
2
vec(�[j]0j0)

TDmx

+
1

2

�
(x0 � x[j]0j0)

T 
 (x0 � x[j]0j0)
T
��
(�

[j]
0j0)

�1 
 (�[j]0j0)
�1
�
Dmx

= �1
2
vec(�[j]0j0)

TDmx

+
1

2

��
(x0 � x[j]0j0)

T(�
[j]
0j0)

�1
�


�
(x0 � x[j]0j0)

T(�
[j]
0j0)

�1
��
Dmx (3.54)

where Dmxvech(�
[j]
0j0) = vec(�[j]

0j0). The �rst term in the second equality of

@ log p(x0js[j]0 )=@vech(�
[j]
0j0)

T is obtained by (3.51) while the second term is ob-

tained by �rst using the following identity (Schott, 1997, p.263):

tr
�
(x0 � x[j]0j0)

T(�
[j]
0j0)

�1(x0 � x[j]0j0)
�
=
�
(x0 � x[j]0j0)

T 
 (x0 � x[j]0j0)
�
vec(�[j]

0j0)
�1:

and then by (3.52). Note that the derivatives corresponding to the components

other than x[j]0j0 and vech(�
[j]
0j0) are zero. Note that

@ log p(ynjxn; s[j]n )
@�[j]T

=
�
yn � h(xn; �[j])

�T
(R[j])�1

@h(xn; �
[j])

@�[j]T
;

@ log p(ynjxn; s[j]n )
@vech(R[j])T
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= �1
2
vec(R[j])TDmy +

1

2

��
yn � h(xn; �[j])

�T


�
yn � h(xn; �[j])

�T�
�
�
(R[j])�1 
 (R[j])�1

�
Dmy

= �1
2
vec(R[j])TDmy +

1

2

���
yn � h(xn; �[j])

�T
(R[j])�1

�


��
yn � h(xn; �[j])

�T
(R[j])�1

��
Dmy

where Dmyvech(R
[j]) = vec(R[j]). Note that the derivatives corresponding to the

components other than �[j] and vech(R[j]) are zero. Then,

@ log p(xnjxn�1; s[j]n )
@�[j]T

=
�
xn � f(xn�1; �[j])

�T
(Q[j])�1

@f(xn�1; �
[j])

@�[j]T
; (3.55)

@ log p(xnjxn�1; s[j]n )
@vech(Q[j])T

= �1
2
vec(Q[j])TDmx +

1

2

��
xn � f(xn�1; �[j])

�T


�
xn � f(xn�1; �

[j])
�T�

�
�
(Q[j])�1 
 (Q[j])�1

�
Dmx

= �1
2
vec(Q[j])TDmx +

1

2

���
xn � f(xn�1; �

[j])
�T
(Q[j])�1

�


��
xn � f(xn�1; �

[j])
�T
(Q[j])�1

��
Dmx (3.56)

where Dmxvech(Q
[j]) = vec(Q[j]). Note that the derivatives corresponding to the

components other than �[j] and vech(Q[j]) are zero.

By replacing the unknown parameter � with the parameter estimate b� and
following the Monte Carlo approach in Chapter 2, the derivative @Ln=@� can be

estimated by
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d@L1
@�

=
MX
i=1

MX
j=1

bL[j]1 \
@pij Pr(s

[i]
0 )

@�
+

MX
i=1

MX
j=1

cpij \Pr(s[i]0 ) d@L[j]1@� (3.57)

and

d@Ln
@�

=

MX
i=1

MX
j=1

bL[j]n \
@pij Pr(s

[i]
n�1jYn�1)
@�

+

MX
i=1

MX
j=1

cpij \
Pr(s

[i]
n�1jYn�1)

d
@L[j]n
@�

(3.58)

for n = 2; : : : ; N .

Note that only the sampling from the conditional density of the state variables

xn is required during the computation of derivatives of conditional density.

3.6 Determination of M

Up to now, the number of switching regimesM is treated as given. Under certain

circumstances, the value ofM can be determined by prior information. However,

if no prior information is provided forM , some criteria should be applied to deter-

mine its value. Otherwise, the number of model parameters becomes extremely

large and the estimation procedure becomes more complicated when M is large.

Here, the Bayesian information criterion (BIC) is suggested (for example,

Frühwirth-Schnatter, 2006, p.422) to determine the value of M .

BIC = �2 logL(b�;YN) + log(N) dim(b�);
where logL(b�;YN) is the approximated log-likelihood (3.38) evaluated at b� and
dim(b�) is the number of parameters in the model. Implicitly, this criterion varies
with the value of M . The appropriate value of M is chosen with the smallest
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BIC value.

3.7 Empirical Applications

In this section, the assimilation of environmental data of Markov switching state

space model is considered. Speci�cally, the Markov switching vector autoregres-

sive (MS-VAR) model is attempted in this study. Here, the case of a two-regime

switching function for all measurements in yn is considered, that is, M = 2.

Speci�cally, one can consider the following p-order two-regime MS-VAR model

for the measurement vector yn.

yn =
pP
j=1

�
[sn]
j yn�j + vn; (3.59)

for n = 1; : : : ; N; where vn � N(0;R[sn]); yn =
�
y1;n; : : : ; ymy ;n

�T
is a (my � 1)

column vector, �r�s are (my�my) coe¢ cient matrices for r = 1; : : : ; p, the hidden

state variable sn takes values within f1; 2g. Here, model (3.59) is denoted as MS-

VAR(p). In state space form, the measurement and transition equations for (3.59)

can be rewritten as

yn =

�
Imy 0 � � � 0

�
xn + vn; (3.60a)

xn =

2666666664

yn

yn�1

...

yn�p+1

3777777775
=

2666666664

�
[sn]
1 � � � �

[sn]
p�1 �[sn]p

Imy � � � 0 0

...
. . .

...
...

0 � � � Imy 0

3777777775
xn�1 +

2666666664

�n

0

...

0

3777777775
;(3.60b)
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for n = 1; : : : ; N; where �n � N(0;��[sn]):

In particular, when M = 1, models (3.59) and (3.60) are reduced to the

speci�cation of conventional vector autoregressive (VAR) model. Therefore, in

the current application, the value of M should be greater than 1. According to

(3.59) and (3.60), the operation of the model is described as follows: suppose that

at time n � 1, the hidden state variable sn�1 = 1. Then, two possible outcomes

are chosen. The hidden state variable may stay at the same state at time n,

that is, sn = 1 or it may jump to the state sn = 2. All the above decisions

are made with probabilities p11 and p12 respectively. Similar explanation can be

given for the case of sn�1 = 2, while the transition probabilities p22 and p21 are

used instead. Afterwards, the vector autoregressive process propagates over time

with coe¢ cients �[1]j �s or �
[2]
j �s correspondingly.

The operation of the state space model (3.60) becomes more complicated

because the prediction and �ltering of the density of the state vector xn and

the probability mass of the hidden state sn are estimated recursively. These

features have been described in previous sections, so the repeated description of

the operation is not provided here.

In vector form, the unknown parameters of (3.60) in the corresponding likeli-

hood function are represented as

� =
h
p11; p12; p21; p22; 

[1]T; [2]T
i
,

where  [j]T =
h
Pr(s

[j]
0 ); (x

[j]
0j0)

T; vech(�[j]
0j0)

T; �[j]T; vech(R[j])T; vech(��[j])T
i
and

�[j]T =
h
vec(�[j]

1 )
T; : : : ; vec(�[j]p )

T
i
for j = 1; 2. These unknown parameters are

estimated by the maximization of (3.38).
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3.7.1 Numerical Simulation

The behavior of MS-VAR model under the EnMSKF is studied by numerical

simulation. For simplicity, the simulated data is generated from the two-regime

MS-VAR(1) model which is expressed as

yn = xn + vn;

xn = �[sn]xn�1 + �n;

for n = 1; : : : ; 100, where yn = (y1;n; y2;n)
T is a (2 � 1) column vector, given

sn 2 f1; 2g; �[sn] is a coe¢ cient matrix of order (2�2). The detailed speci�cation

of parameters is given below:

�[1] =

264 0:8 �0:2

�0:2 0:7

375 ; �[2] =

264 0:5 �0:3

�0:3 0:4

375 ;
264 p11 p12

p21 p22

375 =
264 0:2 0:8

0:6 0:4

375 ;
Pr(s

[1]
0 ) = 0:3;Pr(s

[2]
0 ) = 0:7;

x0js[1]0 � N

0B@
264 0
0

375 ;
264 0:5 0

0 0:5

375
1CA ;x0js[2]0 � N

0B@
264 0
0

375 ;
264 0:8 0

0 0:8

375
1CA ;

vnjs[1]n � N

0B@
264 0
0

375 ;
264 1:0 0:3

0:3 1:5

375
1CA ;vnjs[2]n � N

0B@
264 0
0

375 ;
264 0:6 0

0 0:3

375
1CA ;

�njs[1]n � N

0B@
264 0
0

375 ;
264 1:6 �0:2

�0:2 1:8

375
1CA ;�njs[2]n � N

0B@
264 0
0

375 ;
264 0:5 0

0 1:2

375
1CA :
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From Figure 3.1, the predicted y1;n and y2;n seem to follow the movement

of simulated measurements. When the results of �ltering is investigated, the

predicted y1;n and y2;n are updated by the new measurements reasonably. This

implies that the current linear updating equation can use information of the new

measurements e¢ ciently even though the �ltering density is a Gaussian mixture.

Furthermore, the results in the diagrams show that the lines of the actual and

�ltered measurements are almost overlapped while the numerical results show

their minor discrepancy in values.

3.7.2 Algal Bloom Data

In this section, the daily algal bloom data are extracted from the real time

monitoring station at Kat O Island, Hong Kong. In this study, the variables

standardized chlorophyll �uorescence (CHL) and standardized dissolved oxygen

concentration (DO) are considered as the measurements, that is, my = 2. Fur-

thermore, the full sampling period of 2000-2004 is splitted into 2000-2001 and

2002-2004 individually. The �rst period is regarded as the in-sample period and

the observations are used for parameter estimation while the second period is

the out-of-sample period used to test the prediction performance of the MS-VAR

model under the EnMSKF �lter. For the numerical stability during estimation,

the measurements of standardized CHL and DO is obtained by the subtraction

of the measurements by their respective means and divided by their respective

standard deviations. Detailed data description was provided by Lee et al. (2003,

2004). Furthermore, the interpretation of the hidden state variable becomes more

speci�c. Suppose that sn = 1 and sn = 2 stand for the non-blooming and bloom-

ing status at time n respectively. Then, given the current non-blooming status,
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p11 and p12 represent the transition probabilities of moving to non-blooming and

blooming status at next time period respectively. Similar interpretation can be

applied to p21 and p22.

One feature of the MS-VAR model is that the hidden state sn can jump in-

stantaneously to the other state. Therefore, the switching between non-blooming

and blooming status can occur as a sharp movement of CHL and DO without

any transition process. It seems that this is suitable to explain the sharp changes

in CHL and DO during algal blooms and also the sudden drops in CHL after al-

gal blooms are �nished. In addition, the MS-VAR model under EnMSKF shares

a feature of providing prediction probability that an algal bloom occurs given

the current condition of water quality. Furthermore, the prediction probability

that an algal bloom collapses can also be provided. They are informative in

constructing an algal bloom alarm system.

Since the primary objective is the prediction of the measurements CHL and

DO by the EnMSKF �lter, the lag parameter p of the MS-VAR(p) model is chosen

by the one with the smallest root mean squared error (RMSE) in the prediction

stage. The in-sample prediction results are presented in Table 3.1.

Table 3.1: In-sample RMSEs of CHL and DO byMS-VAR and VARmodels where
the columns of CHL and DO represent the RMSEs of CHL and DO respectively.
The columns of BOTH represent the RMSEs of both CHL and DO and they are
obtained by the square roots of the sums of squared RMSEs of CHL and DO.

MS-VAR VAR
p CHL DO BOTH CHL DO BOTH
1 0:7343 0:6222 0:9625 0:7713 0:6036 0:9794
2 0:7172 0:6012 0:9359 0:6952 0:6127 0:9266
3 0:7834 0:6495 1:0176 0:8117 0:7173 1:0832

For benchmark purpose, the vector autoregressive (VAR) model is chosen.
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Table 3.2: In-sample RMSEs of CHL and DO by MS-VAR and VAR models
(univariate) where the columns of CHL and represent the RMSEs of CHL and
DO respectively.

MS-VAR VAR
p CHL DO CHL DO
1 0:6975 0:5911 0:7329 0:5595
2 0:6742 0:5772 0:7116 0:5410
3 0:7520 0:6690 0:7016 0:6180

From Table 3.1, the in-sample prediction performance of the MS-VAR model for

CHL is generally better than that of the VAR model although it is not true for

the dissolved oxygen concentration DO. To identify the lag parameter p of the

MS-VAR model, minimum RMSE of BOTH is shown in Table 3.1 when p = 2.

When the RMSEs of CHL and DO are investigated in details, the RMSE of CHL

is minimized when p = 2 under both models although this does not hold for

DO exactly. Therefore, the lag parameter is chosen to be 2 and the MS-VAR(2)

model is used for the interpretation of algal dynamics.

To compare the prediction results, the predictions of CHL and DO by the

univariate version of the MS-VAR and VAR models are presented in Table 3.2.

Generally, the univariate predictions of CHL and DO improve over the results of

multivariate models. This may be caused by the introduction of variation of DO

during the prediction of CHL and vice versa and the prediction task will become

complicated.

Furthermore, the gain in prediction performance of MS-VAR model over VAR

model increases with the lag parameter p. For example, when p = 2, the RMSEs

of CHL and DO of the MS-VAR model are 0:7172 and 0:6012 respectively while

those of the VAR model are 0:6952 and 0:6127 respectively.
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The result of estimated parameters of the MS-VAR(2) model is given in the

Table 3.3.

Table 3.3: Parameter estimates of MS-VAR(2) model by EnMSKF for CHL and

DO where the numbers insides the brackets represent the corresponding elements

within the matrices or vectors. The p-values are approximated by the asymptotic

Gaussianity.

Parameters Estimates Standard Errors p-values

p11 0:0989 0:0471 0:0359

p12 0:3734 0:2682 0:1639

p21 0:9011 0:6763 0:1828

p22 0:6266 0:2868 0:0289

Pr(s
[1]
0 ) 0:0720 0:0383 0:0602

x
[1]
0j0(1) 0:0082 0:0046 0:0708

x
[1]
0j0(2) 0:0109 0:0074 0:1383

x
[1]
0j0(3) 0:0206 0:0115 0:0737

x
[1]
0j0(4) 0:0100 0:0050 0:0437

�
[1]
0j0(1; 1) 0:2849 0:1839 0:1214

�
[1]
0j0(2; 1) �0:2384 0:1239 0:0544

�
[1]
0j0(3; 1) 0:2038 0:1542 0:1862

�
[1]
0j0(4; 1) �0:3098 0:2185 0:1562

�
[1]
0j0(2; 2) 0:1995 0:1053 0:0582

�
[1]
0j0(3; 2) �0:1706 0:0801 0:0333

�
[1]
0j0(4; 2) 0:2593 0:2157 0:2293

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

�
[1]
0j0(3; 3) 0:1458 0:0698 0:0368

�
[1]
0j0(4; 3) �0:2216 0:1043 0:0336

�
[1]
0j0(4; 4) 0:3370 0:2233 0:1314

�
[1]
1 (1; 1) 0:6912 0:3744 0:0649

�
[1]
1 (2; 1) �0:0368 0:0194 0:0577

�
[1]
1 (1; 2) �0:0170 0:0088 0:0526

�
[1]
1 (2; 2) 0:8562 0:5561 0:1236

�
[1]
2 (1; 1) 0:0612 0:0438 0:1625

�
[1]
2 (2; 1) 0:0088 0:0056 0:1164

�
[1]
2 (1; 2) 0:0026 0:0016 0:0988

�
[1]
2 (2; 2) �0:0121 0:0057 0:0340

R[1](1; 1) 0:2902 0:2322 0:2114

R[1](2; 1) �0:4526 0:2281 0:0472

R[1](2; 2) 0:7058 0:5678 0:2139

��[1](1; 1) 0:2837 0:1894 0:1342

��[1](2; 1) �0:4447 0:2559 0:0822

��[1](2; 2) 0:6979 0:4958 0:1593

Pr(s
[2]
0 ) 0:9280 0:5403 0:0859

x
[2]
0j0(1) �0:0221 0:0148 0:1358

x
[2]
0j0(2) �0:0175 0:0093 0:0597

x
[2]
0j0(3) �0:0239 0:0163 0:1438

x
[2]
0j0(4) �0:0199 0:0104 0:0566

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

�
[2]
0j0(1; 1) 0:2836 0:1738 0:1026

�
[2]
0j0(2; 1) �0:2404 0:1511 0:1116

�
[2]
0j0(3; 1) 0:2064 0:1253 0:0996

�
[2]
0j0(4; 1) �0:3250 0:2172 0:1346

�
[2]
0j0(2; 2) 0:2039 0:1001 0:0418

�
[2]
0j0(3; 2) �0:1750 0:0812 0:0312

�
[2]
0j0(4; 2) 0:2756 0:1448 0:0570

�
[2]
0j0(3; 3) 0:1502 0:0924 0:1041

�
[2]
0j0(4; 3) �0:2365 0:1120 0:0347

�
[2]
0j0(4; 4) 0:3726 0:2254 0:0984

�
[2]
1 (1; 1) 0:6811 0:4416 0:1230

�
[2]
1 (2; 1) �0:0291 0:0164 0:0765

�
[2]
1 (1; 2) �0:0268 0:0149 0:0725

�
[2]
1 (2; 2) 0:8492 0:5477 0:1210

�
[2]
2 (1; 1) 0:0699 0:0565 0:2161

�
[2]
2 (2; 1) 0:0008 0:0004 0:0384

�
[2]
2 (1; 2) 0:0025 0:0019 0:1761

�
[2]
2 (2; 2) �0:0041 0:0023 0:0759

R[2](1; 1) 0:2860 0:1429 0:0453

R[2](2; 1) �0:4623 0:2579 0:0730

R[2](2; 2) 0:7473 0:5343 0:1619

��[1](1; 1) 0:2929 0:1366 0:0320

Continued on next page
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Continued from previous page

Parameters Estimates Standard Errors p-values

��[1](2; 1) �0:4449 0:2074 0:0319

��[1](2; 2) 0:6759 0:3894 0:0826

As before, the non-blooming and blooming statuses are denoted as sn = 1 and

sn = 2 respectively. From Table 3.3, the high estimated transition probability

p12, 0:9, indicates that the algal blooms are highly probable to occur within the

in-sample period. Furthermore, the estimated p22 is over 0:5 showing that once

the algal blooms occur, they will last for a period of time. The probability for

the initial blooming status, Pr(s[2]0 ), is rather high and this is consistent with the

frequent occurrence of the algal blooms during 2000-2001.

To investigate the in-sample prediction performance of the MS-VAR model,

the prediction and �ltering results of the �rst 100 observations are presented in

Figure 3.2. The peaks of CHL at n = 6, n = 33 and n = 66 are predicted

reasonably well. Furthermore, the �ltering result of CHL is su¢ ciently close the

actual CHL and the similar result is also found in DO. This re�ects the updating

power of predicted CHL and DO with the EnMSKF. When the prediction and

�ltering densities of CHL and DO at n = 66 in Figures 3.4(a) to (d) are studied,

the prediction density of CHL is highly concentrated at its mean with thin tails

while that of DO has relatively thick tails. On the other hand, four peaks are

found in their �ltering densities although they are not shown in the diagrams

very clearly.

The frequent occurrence of algal bloom during July 2001 and October 2001

as mentioned in Lee et al. (2003, 2004) and Muttil et al. (2004) encourages
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the comparison of prediction performance of the MS-VAR model. Although the

RMSEs of CHL and DO are 0:6532 and 0:6012 respectively, it is comparable with

the results of Lee et al. (2004) and Muttil et al. (2004). Speci�cally, the RMSE

of CHL was 0:5345 in the paper of Lee et al. (2004) where the arti�cial neural

network was adopted for the prediction. On the other hand, Muttil et al. (2004)

provided the RMSE of 0:4793 with the assistance of genetic programming. One

should emphasize that a bivariate 2-lag model is used here while the multivariate

model with longer lags were used in both cases of Lee et al. (2004) and Muttil

et al. (2004).

The in-sample prediction results of CHL and DO in Figure 3.3 show that the

movements of CHL and DO are captured reasonably well although the predictions

seem to be smoothed after the peak levels of CHL occurred. When the prediction

and �ltering density of CHL and DO at n = 431, which falls within the period of

July and October of 2001, are studied, similar observations as in the case of n = 66

are found in Figures 3.4(e) to (h). The multimodal �ltering densities of CHL and

DO represent that both measurements switch between regimes suddenly during

the blooming period is provided. On the other hand, the highly concentrated

prediction densities of CHL and DO shows that both measurements persist at

certain levels for a while before the algal blooms occur.

For the assessment of the out-of-sample prediction of the MS-VAR model, the

prediction RMSEs under various lags are compared with those of VAR model and

they are given in Table 3.4.

From Table 3.4, the out-of-sample prediction performance of the MS-VAR(2)

model is better than that of MS-VAR(1) and MS-VAR(3) models when both

measurements are investigated. For the prediction of CHL, the performance of
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Table 3.4: Out-of-sample RMSEs of CHL and DO by MS-VAR and VAR models
in 2002-2004 where the columns of CHL and DO represent the RMSEs of CHL
and DO respectively. The columns of BOTH represent the RMSEs of both CHL
and DO and they are obtained by the square roots of the sums of squared RMSEs
of CHL and DO.

MS-VAR VAR
p CHL DO BOTH CHL DO BOTH
1 0:5391 0:5415 0:7641 0:4846 0:4979 0:6948
2 0:4830 0:5162 0:7070 0:2447 0:5672 0:6177
3 0:5848 0:5638 0:8123 0:4573 0:4920 0:6717

Table 3.5: Out-of-sample RMSEs of CHL and DO by MS-VAR and VAR mod-
els in 2002-2004 (univariate) where the columns of CHL and DO represent the
RMSEs of CHL and DO respectively.

MS-VAR VAR
p CHL DO CHL DO
1 0:4636 0:5091 0:4990 0:4690
2 0:4106 0:4905 0:4683 0:4647
3 0:5030 0:5356 0:3386 0:5021

VAR model denominates that of MS-VAR model generally. However, it may

not be the case for the prediction of DO. Speci�cally, although the prediction

performance of VAR(2) model for CHL is better, the MS-VAR(2) model can

predict the DO better over the VAR(2) model. To consider the out-of-sample

prediction of CHL and DO by the univariate version of both models in Table 3.5,

the prediction of the MS-VAR model is dominated by its univariate results while

this does not hold for the VAR model, especially the DO concentration.

To illustrate the out-of-sample prediction results, the predictions of CHL and

DO during 25 July 2004 and 3 December, 2004 are presented in Figure 3.5 as

the variation of both variables changes dramatically within this sampling period.

Without the update of model parameters, the prediction of CHL is still quite
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reasonable and the pattern of actual measurement of CHL is followed even though

the variation of predicted values seems to be reduced. On the other hand, the

prediction of DO is more close to the actual measurement of DO despite several

sudden drops in DO concentration.

3.8 Conclusion

In this chapter, the ensemble Markov switching Kalman �lter (EnMSKF) is de-

rived and this �lter is considered as an extension of the dynamic linear model by

Kim (1994). Indeed, the Markov switching between nonlinear state space models

is considered with the ensemble estimation of mean and variance. Furthermore,

the mixture of Gaussian densities of the prediction density arises from the jump

in switching regimes at the beginning of the prediction stage. Nevertheless, in or-

der to control the growth in the number of components and hence the number of

model parameters over time, the approximation of Gaussian mixture of �ltering

density by a single Gaussian density as in the case of Kim (1994) and Harrison

and Stevens (1976) is maintained. The asymptotic properties of ensemble esti-

mation of mean and variance is also justi�ed by the theorems in this chapter.

Once the regularity conditions are satis�ed, the ensemble mean and variables

are consistent and the asymptotic distribution of ensemble mean is shown to be

Gaussian mixture.

As a result of EnMSKF, the ensemble Markov switching Kalman smoother

(EnMSKS) is also derived. The complexity of this recursive ensemble smoother

is caused by the marginalization of the hidden state sn. When the hidden state

variable sn is removed, the resulting smoother can also be considered as an im-
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provement over the ensemble Kalman smoother (EnKS) by Evensen and van

Leeuwen (2000) due to its recursive and computationally e¢ cient feature.

The numerical simulation result of MS-VAR model shows that the predicted

measurements under the EnMSKF can capture the movements of simulated mea-

surements. Surprisingly, the �ltered measurements are su¢ ciently close to the

simulated measurement and this implies the e¢ ciency of linear updating equa-

tion with new coming measurements. For the empirical application of EnMSKF

with the algal bloom data in Hong Kong, the �ltering performance of EnMSKF

again shows its capability of updating prediction results and this is consistent

with the numerical simulation result. The in-sample prediction performance of

CHL by the MS-VAR model can improve over the benchmark VAR model. Fur-

thermore, the MS-VAR model can provide the insights of transition probabilities

between blooming and non-blooming periods. As a comparison of the in-sample

prediction, the results are comparable with those of Lee et al. (2004) and Muttil

et al. (2004) within the same selection period. However, it should be noted that

the results in this chapter are derived from a bivariate 2-lag model while their

results relied on the multivariate model with longer lags. From the out-of-sample

prediction results, it seems that the MS-VAR model under EnMSKF is more ap-

propriate to provide some insights for the understandings of the algal dynamics

while the VAR model is useful for the prediction of CHL and DO. Nevertheless, a

nice prediction result of the MS-VAR(2) model is found for DO as compared with

the VAR(2) model. Finally, further modelling work can be done on the predic-

tion of chlorophyll �uorescence and dissolved oxygen concentration, for example,

allowing the heteroskedasticity of variance over time or using the nonparametric

approach.
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(a) x1 - Prediction (c) x2 - Prediction
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(b) x1 - Filtering (d) x2 - Filtering
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Figure 3.1: Prediction and �ltering of simulated MS-VAR(1) model by EnMSKF
where the left and right panels represent the results of prediction and �ltering of
x1 and x2 respectively. The red lines indicate the estimated quantities while the
blue lines indicate the simulated quantities.
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(a) CHL - Prediction (c) DO - Prediction
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(b) CHL - Filtering (d) DO - Filtering
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Figure 3.2: In-sample estimation of CHL and DO by EnMSKF with MS-VAR(2)
model for the �rst 100 observations where the left and right panels indicate the
prediction and �ltering of CHL and DO respectively. Red lines represent the
estimated quantities while the blue lines represent the actual qnanitites
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(a) CHL - Prediction (c) DO - Prediction
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(b) CHL - Filtering (d) DO - Filtering
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Figure 3.3: In-sample estimation of CHL and DO by EnMSKF with MS-VAR(2)
model during 1 July, 2001 and 31 October, 2001 where the left and right panels
indicate the prediction and �ltering of CHL and DO respectively. Red lines repre-
sent the estimated quantities while the blue lines represent the actual qnanitites
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(a) CHL (Predicted), n = 66 (e) CHL (Predicted), n = 431
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(c) CHL (Filtered), n = 66 (g) CHL (Filtered), n = 431
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Figure 3.4: Prediction and �ltering densities of CHL and DO when n = 66 and
n = 431
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Figure 3.5: Out-of-sample prediction of CHL and DO by EnMSKF during 25th
July, 2004 and 31st December, 2004 where the upper and lower panels denote
CHL and DO respectively. The red lines represent the predicted quantities and
the blue lines represent the actual quantities.
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Chapter 4

Conclusion

In this thesis, two new variants of conventional EnKF are derived. Firstly, the

ensemble Goldberger-Theil Kalman �lter (EnGTKF) has incorporated the feature

of Goldberger-Theil�s mixed estimation into the conventional EnKF. This results

in the nonlinear updating equation which is an extension of conventional linear

updating equation. Since the deviation of asymptotic Gaussianity of the ensemble

mean and variance may lead to the divergence of the �lter, the multivariate Gram-

Charlier density is suggested to re-estimate the ensemble mean and variance.

This suggestion can also be applied to extend the nonlinear updating equation in

EnGTKF although the computation becomes more sophisticated.

Secondly, the Markov switching structure of unobserved regimes is introduced

into the EnKF and this results in the derivation of the ensemble Markov switch-

ing Kalman �lter (EnMSKF). This suggested nonlinear �lter can encompass the

dynamic linear model by Kim (1994). The mixture of Gaussian densities in the

prediction and �ltering densities arises from the jump in the unobserved regimes

during the prediction stage and this in turn leads to an alternative sampling

method for ensembles under the framework of EnKF. The computation of en-

semble mean and variances in the prediction stage basically follows from the

marginalization of the prediction density as in the case of Harrison and Stevens

(1976) and Kim (1994) and this also holds for the computation in the �ltering

stage. In parallel to the extensions of EnKF, two recursive ensemble smoothers

are derived. Speci�cally, the EnGTKS and EnMSKS are derived from the En-

GTKF and EnMSKF respectively.
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To estimate the unknown model parameters in the nonlinear state space mod-

els, the likelihood for each observation is expressed as a function of prediction

error of measurement. Then, it is approximated by the Gaussian density in the

case of EnGTKF while it is approximated by the Gaussian density conditional on

the value of hidden state variable in the case of EnMSKF. Due to the complexity

of the likelihood function, a hybrid estimation procedure is suggested here. This

algorithm consists of three components, namely, (1) orthogonal decomposition

of error variance matrices; (2) localized stochastic search over parameter space

and (3) conventional local optimization algorithm. This procedure can ensure the

positive de�niteness of error variance matrices and escape from the traps in local

optimal during maximization of the likelihood function. The �nal component is

just used to improve the results in previous localized stochastic search. Since the

number of iterations is enormously large during the stochastic search, the local

optimization can reduce the computational burden.

Focusing on the empirical application of derived �lters, the algal bloom data

in Hong Kong is assimilated to demonstrate their usefulness. Speci�cally, only

two variables, the standardized chlorophyll �uorescence and standardized dis-

solved oxygen concentration, are being assimilated. The TV-VSTAR and MS-

VAR models are formulated in the form of state space model and adopted with

the �lters respectively. The TV-VSTAR and MS-VAR models can capture the

movements of measurements between blooming and non-blooming periods. By

using the VAR model as a benchmark, the in-sample prediction results show that

the TV-VSTAR models and MS-VAR models outerperform the VAR model. Sur-

prisingly, the out-of-sample prediction performance of the TV-VSTAR model is

still better than the VAR model at the optimal lag chosen by AIC. Furthermore,
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the TV-VSTAR model can provide some insights of algal bloom dynamics where

the measurements transit between the blooming and non-blooming periods. Fur-

thermore, the MS-VAR model can be used to explain the sudden movements of

chlorophyll �uorescence and dissolved oxygen during the algal blooms. The es-

timation results of both models can be informative to the physical modelling of

algal bloom dynamics.
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