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Abstract— This paper introduces a new approach to solve
sensor management problems. Classically sensor management
problems can be well formalized as Partially-Observed Markov
Decision Processes (POMPD). The original approach developped
here consists in deriving the optimal parameterized policybased
on stochastic gradient estimation. We assume in this work that
it is possible to learn the optimal policy off-line (in simulation
) using models of the environement and of the sensor(s). The
learned policy can then be used to manage the sensor(s). In order
to approximate the gradient in a stochastic context, we introduce
a new method to approximate the gradient, based on Infinitesimal
Approximation (IPA). The effectiveness of this general framework
is illustrated by the managing of an Electronically ScannedArray
Radar.
Keywords: Sensor(s) Management, Partially Observable
Markov Decision Process, Stochastic Gradient Estimation,
AESA Radar.
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I. I NTRODUCTION

Years after years the complexity and the performances
of many sensors have increased leading to more and more
complex sensor(s)-based systems which supply the decision
centers with an increasing amount of data. The number, the
types and the agility of sensors along with the increased quality
of data far outstrip the ability of a human to manage them: it is
often difficult to compare how much information can be gained
by way of a given management scheme [1]. It results from this
the necessity to derive unmanned sensing platforms that have
the capacity to adapt to their environment [2]. This problem
is often refered as theSensor(s) Management Problem. In
more simple situations, the operational context may lead to
works on sensor(s) management like in theradar - infrared
sensorcase [3]. A general definition of this problem could
then be : sensor management is the effective use of available
sensing and database capabilities to meet the mission goals.
Many applications deal with military applications,a classical
one being to detect, to track and tp identify smart targets
(a smart target can change its way of moving or its way
of sensing when it detects it is under analysis) with several

sensors. The questions are then the following at each time:
how must we group the sensors, how long, in which direction,
and with which functioning mode? The increasing complexity
of the targets to be detected, tracked and identified, makes the
management even more difficult and led to the development of
researches on the definition of an optimal sensor management
scheme in which the targets and the sensors are treated
altogether in a complex dynamic system [4].

Sensor Management has become very popular this last years
and many approaches can be found in the litterature. In [5] and
[6] the authors use a the modelling of the detection process
of an Electronically Scanned Array (ESA) Radar to propose
management scheme during the detection step. In [7]–[9] an
information-based approach is use to manage a set of sensors.
From a theorical point of view the sensor management can be
modelled as a Partially Observable Markov Decision Process
(POMDP) [10]–[12]. Whatever the underlying application, the
sensor management problem consists in choosing at each time
t an actionAt within the setA of available actions. The
choice of At is generally based on the density state vector
Xt describing the environment of the system and variables
of the system itself. It is generally assumed that the state
or at least a part of this state is Markovian. Moreover in
most of the applications, we only have access to a partial
information of the state andXt must be estimated from the
measurements{Ys}1≤s≤t. This estimation process is often
derived within a Bayesian framework where we use state-
dynamics and observation models such as:

Xt+1 = F (Xt, At, Nt) (1)

Yt = H(Xt, Wt) (2)

whereNt, Wt, F and H respectively stands for the state
noise, the measurements noise, the state-dynamics and the
measurement function.F and H are generally time varying
functions. The control problem consists in finding the schedul-
ing policy π i.e. selectAt given the past and the possible
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futures. However, this control problem may have a theorical
solution, it is generally untractable in practice. Howeverfew
works propose optimal solution in the frame of POMDPs
like [12]. Beside, several works have been carried out to
find sub-optimal policies like for instance myopic policies.
Reinforcement Learning and Q-Learning have also been used
to propose a solution ( [13], [14]).

We propose in this paper to look for a policy within a class
of parametrized policyπθ and to learn it which means learn
the optimal value ofθ. Funding our work on the approach
described in [15] we assume that it is possible to learn this
policy in simulationusing models of the overall system. Once
the optimal parameter has been found it is used to manage
the sensor(s). The frame of this work being the detection and
localization of targets, we show in the last part of this paper
how it may be applied the the management of an ESA radar.

The section II described the modelling of a sensor man-
agement problem using a POMDP approach. In the section
III we derive the algorithm to learn the parameter of the
policy.In section IV we show how this method may be used
for the tasking of an ESA radar. Finally section V exhibits
firts simulations results.

II. M ODELLING

A. POMDP Modelling

Let us consider three measurable continuous spaces denoted
by X , A andY, X is called thestate space, Y the observation
space andA the action space. We call M(X ) the set of
all the measures defined onX . A Partially-Observable De-
cision Proceess is defined by astate process(Xt)t≥0 ∈ X ,
an observation process(Yt)t≥1 ∈ Y and a set of actions
(At)t≥1 ∈ A. In these definitionst stands usually for the
time. The state process is an homogeneous Markov chain with
initial probability measureµ(dx0) ∈ M(X ) and with Markov
transition kernelK(dxt+1|xt) ( [16]):

∀t ≥ 0, Xt+1 ∼ K(·|Xt) (3)

X0 ∼ µ (4)

(Yt)t≥1 is called the observation is linked with the state
process by the conditional probability measure:

P(Yt ∈ dyt|Xt = xt) = g(xt, yt) dyt (5)

whereg : X × Y → [0, 1] is the marginal density function
of Yt given Xt. In a general way, the state process evolves
continuously with respect to timet whereas the observations
are made at sampled timetn. A new observation is used
to derive a new action. We will therefore consider in the
following the processes(Xt)t≥0, (Yn)n∈N, (An)n∈N where
n stands for the index of the observation. We also assume
that there exists two generative functionsFµ : U → X and
F : X × U → X , where(U, σ(U), ν) is a probability space,
such that for any measurabletest function f defined overX
we have:

∫

X

f(xt)K(dxt|xt−1) =

∫
f(F (xt−1, u))ν(du) (6)

and

∫

X

f(x0)µ(dx0) =

∫
f(Fµ(u))ν(du). (7)

In many practical situations,U = [0, 1]nU , andu is a nU -
uple of pseudo random numbers generated by a computer.
For sake of simplicity, we adopt the notationsK(dx0|x−1) ,

µ(dx0) and F (x−1, u) , Fµ(u). Under this framework, the
Markov Chain (Xt)t≥0 is fully specified by the following
dynamical equation:

Xt+1 = F (Xt, Ut), Ut
i.i.d.∼ ν (8)

The observation process(Yn)n∈N, defined on the measur-
able space(Y, σ(Y )), is actually linked with the state process
by the following conditional probability measure

P(Yn ∈ dyn|Xtn
= xtn

, An) = g(yn, xtn
, An)λ(dyt) (9)

where An ∈ A is defined on the measurable space
(A, σ(A)) andλ is a fixed probability measure on(Y, σ(Y )).
As we assume that observations are conditionally independent
given the state process we cab write∀1 ≤ i, j ≤ t, i 6= j:

P(Yi ∈ dyi, Yj ∈ dyj |X0:t, Ai, Aj) =

P(Yi ∈ dyi|X0:t, Ai)P(Yj ∈ dyj |X0:t, Aj) (10)

where we have adopted the usual notationzi:j = (zk)i≤k≤j .

B. Filtering distribution in a Partially-Observable Markov
Decision Process

Given a sequence of actionA1:n and a sample trajectory of
the observation processy1:n and indices{n1, n2, t1, t2} such
that 1 ≤ n1 ≤ n2 ≤ n and 0 ≤ t1 ≤ tn1 ≤ tn2 ≤ t2 ≤ tn,
we define, using the , the posterior probability distribution
Mt1:t2|n1:n2

(dxt1:t2) by ( [17]):

P(Xt1:t2 ∈ dxt1:t2 |Yn1:n2 = yn1:n2 , An1:n2) (11)

Using the Feynman-Kac framework, the probabilty 11 can
be written:

∏t2
t=t1

K(dxt|xt−1)
∏n2

j=n1
Gtj

(xtj
)

∫
X t2−t1

∏t2
t=t1

K(dxt|xt−1)
∏n2

j=n1
Gtj

(xtj
)
, (12)

where for simplicity’s sake,Gtn
(xtn

) , g(yn, xtn
, An) and

G0(x0) , 0. One of the main interest here is to estimate the
state at timet from noisy observationsy1:nt

with nt the index
of the last observation just before timet. From a bayesian
point of view this information is completely contained in the
so-calledfiltering distributionMt:t|1:nt

. In the following, the
filtering distribution will simply be denoted asMt.



C. Numerical methods for estimating the filtering distribution

Given a measurable test functionf : X → R, we want to
evaluate

Mt(f) = E[f(Xt)|Y1:nt
= y1:nt

, A1:nt
] (13)

which is equal, using the Feynman Kac framework, to:

E[f(Xt)
∏nt

j=1 Gtj
(Xtj

)]

E[
∏nt

j=1 Gtj
(Xtj

)]
(14)

In general, it is impossible to findMt(f) exactly except for
simple cases such as linear/gaussian (using Kalman filter) or
for finite state space Hidden Markov Models. In the general
dynamics, continuous space case considered here, possible
numerical methods for computingMt(f) include the Extended
Kalman filter, quantization methods, Markov Chain Monte
Carlo methods and Sequential Monte Carlo methods (SMC),
also called particle filtering. The basic SMC method, called
Bootstrap Filter, approximatesMt(f) by an empirical distribu-
tion MN

t (f) = 1
N

∑N
i=1 f(xN

i ) made ofN so-calledparticles
( [18]). It consists in a sequence of transition/selection steps:
at time t, given observationyt ( [15]):

• Transition step: (also calledimportance sampling or
mutation) a successor particles populationx̃1:N

t is gen-
erated according to the state dynamics from the previous
population x1:N

t−1. The (importance sampling) weights

w1:N
t =

g(ex1:N
t ,yt)

P

N
j=1 g(ex

j
t ,yt)

are evaluated.

• Selection step:Resample (with replacement)N particles
x1:N

t from the setx̃1:N
t according to the weightsw1:N

t .

We write x1:N
t = x̃

k1:N
t

t where k1:N
t are the selection

indices.
Resampling is used to avoid the problem of degeneracy of

the algorithm, i.e. that most of the weights decreases to zero. It
consists in selecting new particle positions such as to preserve
a consistency property :

N∑

i=1

wi
tφ(x̃i

t) = E[
1

N

N∑

i=1

φ(xi
t)] (15)

The simplest version introduced in [19] consists in choosing
the selection indicesk1:N

t by an independent sampling from
the set1 : N according to a multinomial distribution with
parametersw1:N

t , i.e. P(ki
t = j) = w

j
t , for all 1 ≤ i ≤ N .

The idea is to replicate the particles in proportion to their
weights. The reader can find some convergence results of
MN

t (f) to Mt(f) (e.g. Law of Large Numbers or Central
Limit Theorems) in [17], but for our purpose we note that
under weak conditions on the test function and on the HMM
dynamics, we have the asymptotic consistency property in
probability, i.e.limN→∞ MN

t (f)
P
= Mt(f).

III. POLICY LEARNING ALGORITHM

A. Optimal Parameterized Policy for Partially-Observable
Markov Decision Process

Let Rt be a real value reward function

Rt , R(Xt, Mt(f)) . (16)

The goal is to find a policy

π : An × Yn → A (17)

that maximizes the criterion performance :

Jπ =

∫ T

0

E[Rt]dt (18)

where T is the duration of the scenario. Designing in
practice policies that depend on the whole trajectory of thepast
observations/actions is unrealistic. It has been proved that the
class of stationary policies that depend on the filtering distri-
bution conditionally to past observations/actionsMt contains
the optimal policy. In general the filtering distribution isan
infinite dimensional object, and it cannot be represented ina
computer and so is the policy. We therefore propose to look
for the optimal policy in a class of parameterized policies
(πα)α∈Γ that depend on a statistic of the filtering distribution
:

An+1 = πα(Mtn
(f)) (19)

wheref is any test function. As the policyπ is parameter-
ized byα, the performance criterion now depends only onα.
Thus we can maximize it by achieving a stochastic gradient
ascent with respect toα :

αk+1 = αk + ηk∇Jαk
, k ≥ 0 (20)

where ∇Jαk
denotes the gradient ofJαk

w.r.t αk. By
convention∇Jαk

is column vector whosei-th component is
the partial derivative with respect toαi. (ηk)k≥0 is a non-
increasing positive sequence tending to zero. We present in
the two following subsection a possible approach to estimate
∇Jαk

based on Infinitesimal Perturbation Analysis (IPA).

B. Infinitesimal Perturbation Analysis for gradient estimation

We assume that we can write the following equality at each
k:

∇Jα =

∫ T

0

∇αE[Rt]dt (21)

Proposition 1: We have the following decomposition of
the gradient

∇αE[Rt] = E[Mt(fSt)∇Mt(f)Rt]

− E[Mt(f)Mt(St)∇Mt(f)Rt]

+ E[RtSt] (22)

where

St =

pt∑

j=1

∇αGtj
(Xtj

)

Gtj
(Xtj

)
(23)

Proof: First let us rewrite∇αE[Rt] as following:

∇αE[Rt] = ∇α

∫

X t×Ynt

RtUtVt

nt∏

j=1

λ(dyj) (24)

where:



{
Ut =

∏t
i=0 K(dxi|xi−1) ,

Vt =
∏nt

j=1 Gtj
(xtj

)
. (25)

Remarking that onlyRt and Vt depends onα so that we
obtain

{
∇αVt = StVt ,

∇αRt = ∇αMt(f)∇Mt(f)Rt
(26)

whereSt is given by eq.(23). Incorporating (24) in (26), we
obtain

∇αE[Rt] = E[∇αMt(f)∇Mt(f)Rt] . + E[RtSt] . (27)

Now using one more time (26), we have

∇αMt(f) = ∇αE

[
f(Xt)

Vt

E[Vt]

]

= E

[
f(Xt)

∇αVt

E[Vt]

]
− E

[
f(Xt)

VtE[∇αVt]

E[Vt]2

]

= E

[
f(Xt)St

Vt

E[Vt]

]
− MtStE

[ Vt

E[Vt]

]

= Mt(fSt) − Mt(f)Mt(St) (28)

so that we obtain (22) by incorporating (28) in (27).

We can deduce directly Algorithm 1 from (22). It is impor-
tant to note that we must deal with two time-scales. This first
and the shorter one allows to simulate the continuous stateXt.
On the contrary the observation and action process are updated
only each time we get a new observation. These specific time is
denotedtn in the algorithm. That is the eason while there is an
alternative to update the variablesSt andw̃

(i)
t−1. A new action

An is also calculated eachtn as already explained above.
One can also be surprised to calculateR(Xt, Mt(f)) using
the sampled value ofXt. To well understand this algorithm
we must remind thatthe learning is made off-line using a
simulated process. It is therefore possible to use thereal value
of Xt in this case.

IV. A PPLICATION TO THEESA RADAR

The ESA is an agile beam radar which means that it is
able to point its beam in any direction of the environnement
almost instantaneously without inertia. However, the targets in
the environement are detected w.r.t a probability of detection
which depends on the direction of the beam and the time
of observation in this direction. In the following, we precise
first the nature of an action, then the influence of the action
onto the probability of detection and finally the nature of the
observations.

Definition of the action:The main property of an ESA is
that it can point its beam without mechanically adjusting the
antenna. An ESA radar provides measurements in a direction
θ. We noteδ, the time of observation in this direction. In this
work the then-th action is :

An =
[
θn δn

]T
(29)

Algorithm 1 Policy Gradient in POMDP via IPA
Initialize α0 ∈ Γ
for k = 1 to ∞ do

for t = 1 to T do
Sampleut ∼ ν

Setxt = F (xt−1, ut),
If t = tn, sampleyn ∼ g(., xt, an)λ(.)

Setst =

{
st−1 +

∂g
∂α

(xt,yn,an)

g(xt,yn,an) if t = tn

st−1 else
Set∀i ∈ {1 . . . , I}

x̃
(i)
t = F (x

(i)
t−1, at−1, u

(i)
t ) whereu(i) iid∼ ν

s̃
(i)
t =

{
si

t−1 +
∂g
∂α

(xi
t,yn,an)

g(x
(i)
t ,yn,an)

if t = tn

si
t−1 else

w̃
(i)
t =






g(x
(i)
t ,yn,an)w̃

(i)
t−1

P

j g(x
(j)
t ,yn,an)w̃

(j)
t−1

if t = tn

w̃
(i)
t−1 else

Set (x
(i)
t , s

(i)
t )i∈{1,...,I} = (x̃

(i)
t , s̃

(i)
t )i∈{k1,...,kI}, k1:I

are selection indices associated to(w̃(i))i∈{1,...,I},

mt(f) = 1
I

∑
i f(x

(i)
t ), mt(st) = 1

I

∑
i s(i),

mt(fst) = 1
I

∑
i f(x

(i)
t )s

(i)
t ,

an+1 = παk
(mt) if t = tn

rt = R(xt, mt(f))
∇rt = (mt(fst)−mt(f)mt(st))

∂R
∂mt(f) (xt, mt(f))+

rtst

∇Jαk
= ∇Jαk

+ ∇rt

end for
αk+1 = αk + ηk∇Jαk

end for

with {
θn ∈ [−π

2 , π
2 ] ,

δn ∈ R
+ ∀n ≥ 0 . (30)

This is a simple possible action. One could increase the
number of componenets of an action by adding the emitted
frequency for instance. The action does not influence directly
the observation produced by the ESA but the probability of
detection of a target.

The probability of detectionPd: It refers to the probabil-
ity to detect a target and therefore to the probability to obtain
an estimation of the state of a targetp at time tn denoted
Xtn,p with actionAn. In this work,Xtn,p is composed of the
localisation and velocity components of the targetp at time
tn in the x-y plane:

Xtn,p =
[
rxtn,p rytn,p vxtn,p rytn,p

]T
(31)

where the subscriptT stands formatrix transpose. The terms
rxtn,p and rytn,p refers here to the position andvxtn,p and
vytn,p the velocity of targetp at timetn. We also denoteDn,p

the random variable which takes values1 if the radar produces
a detection (and therefore an estimation) for targetp and0 else
:

Dn =
[
Dn,1 . . . Dn,P

]T
. (32)



As said previously, this probability also depends on the time
of observationδn. Aerial targets being considering here, the
reflectivity of a target can be modelled using a Swerling I
model [20]. We then have the following relation between the
probability of detection and the probability of false alarmPfa

(i.e. the probability that the radar produce a detection knowing
that there is no target) ( [5], [21]):

Pd(xtn,p, An) = P
1

1+ρ(xtn,p,An)

fa (33)

whereρ(xtn,p, An) is the target signal-to-noise ratio. In the
case of an ESA radar, it is equal to :

ρ(xtn,p, An) = αδn

cos2θn

r4
tn,p

e−
(βtn,p−θn)2

2B2 (34)

where rtn,p is the target range andβtn,p the azimuth
associated to targetp at instant timetn. α is a coefficient
which includes all the parameters of the sensor andB is the
beamwidth of the radar. It is reminded in Appendix A how
the equations 33 and 34 may be derived. If we make the
assumption that all the detections are independant, we can
write :

P(Dn = dn|Xtn
= xtn

, An) =
P∏

p

P(Dn,p = dn,p|Xtn,p = xtn,p, An) (35)

where

P(Dn,p = dn,p|Xtn,p = xtn,p, An) =

Pd(xtn,p, An)δdn,p=1 + (1 − Pd(xtn,p, An))δdn,p=0 (36)

Observation equation:At instant time tn, the radar
produces a raw observationYn composed ofP measurements
:

Yn =
[
Yn,1 . . . Yn,P

]T
. (37)

whereYn,p is the observation related to target of state value
xtn,p obtained with actionAn (we do not consider here the
problem of measurement-target association). Moveover, we
assume that the number of targetsP is known. Each of these
measurements has the following formulation :

Yn,p =
[
rn,p βn,p ṙn,p

]T
(38)

wherern,p, βn,p, ṙn,p are range, azimuth and range rate. The
equation observation can be written

P(Yn ∈ dyn|Xtn
= xtn

, An) = (39)
P∏

p

P(Yn,p ∈ dyn,p|Xtn,p = xtn,p, An) (40)

where

P(Yn,p ∈ dyn,p|Xtn,p = xtn,p, An) (41)

= g(yn,p, xtn,p, An)λ(dyn,p)(42)

g(yn,p, xtn,p, An) =

(
N (ht(xtn,p), Σy) Pd(xtn,p, An)

1 − Pd(xtn,p, An)

)T

(43)

and

λ(dyn,p) = λcont(dyn,p) + λdisc(dyn,p) (44)

The relation between the state and the raw observations is
given by :

Yn,p = htn
(Xtn,p) + Wn,p (45)

with htn
(xtn,p) equals to:




√
(rxtn,p − rxobs

tn
)2 + (rytn,p − ryobs

tn
)2

atan

{
rytn,p−ryobs

tn

rxtn,p−rxobs
tn

}

(rxtn,p−rxobs
tn

)(vxtn,p−vxobs
tn

)+(rytn,p−ryobs
tn

)(vytn,p−vyobs
tn

)√
(rxtn,p−rxobs

tn
)2+(rytn,p−ryobs

tn
)2




(46)

andWn,p a gaussian noise the covariance matrix of which is
given by :

Σy = diag(σ2
r , σ2

β , σ2
ṙ ) . (47)

State equation:First let us introduce the definition of the
unknown stateXt at time t and its evolution through time.
Xt,p is the state of the targetp. It has been defined above. Let
P be the known number of targets in the space under analysis
at time t. Xt has the following form: .

Xt =
[
Xt,1 . . . Xt,P

]T
(48)

Based on [22] works, we classically assume that all the
targets follow a nearly constant velocity model. We use a
discretized version of this model ( [23]) :

Xt,p = F (Xt−1,p, Ut) whereUt ∼ N
(
0, σ2Q

)
(49)

where

F =




1 0 β 0
0 1 0 β

0 0 1 0
0 0 0 1


 andQ =




β3

3 0 β2

2 0

0 β3

3 0 β2

2
β2

2 0 β 0

0 β2

2 0 β


 . (50)

V. SIMULATIONS

VI. CONCLUSION

APPENDIX A

We show in this Appendix how the probability of detection
is derived. First, the radar transmits a pulse expressed as
follows

s(t) = α(t) cos(wct) (51)

= Re{α(t)ejwct} (52)

whereα(t) is the envelope also called the transmitted pulse
and wc the carrier frequency. This pulse is modified by the
process of reflection. A target is modelled as a set of elemen-
tary reflectors, each reflecting: time delayed, Doppler shift,



Phase shift and attenuated version of the transmitted signal.
We usually assume that the reflection process is linear and
frequency independent within the bandwidth of the transmitted
pulse. The return signal has the following formulation:

sr(t) = G
∑

i

α(t − τi)gie
j(wc(t−τi+

2ṙi
c

t)+θi) + n(t) (53)

where

• gi is the radar cross section associated to reflectori,
• θi is the phase shift associated to reflectori,
• ṙi is the radial velocity between the antenna and the

object (Doppler frequency shift),
• G: others losses heavily range dependent due to spatial

spreading of energy,
• n(t) is a thermal noise of the receiver such that

Re{n(t)}, Im{n(t)} ∼ N (0, σ2
n).

We make the following approximations:
{

ṙi ≈ ṙ

α(t − τi) ≈ α(t − τ)
(54)

whereṙ is the mean radial velocity of the targetτ is the mean
time delay of the target. Using these approximations, the return
signal can be rewritten as follows:

sr(t) = α(t − τ)GejwDtb + n(t) (55)

where
{

wD = wc(1 + 2ṙi

c
)

b =
∑

i gie
j(−wcτi+θi)

. (56)

The fluctuations ofb are known and modelled using Swerling
1 model [20]. There are differents models availables (Swerling
1, 2, 3,...) corresponding to different types of targets. Swerling
1 given below is convenient for aircrafts. We can then write :

Re{b}, Im{b} ∼ N (0, σ2
RCS) . (57)

This modelling of b assumes that the phase shiftsθi are
independent and uniformly distributed and the magnitudes
gi are identically distributed. If the number of reflector is
large, the central limit theorem gives thatb is a complex-
valued Gaussian random variable centered at the origin. Now,
a matching filter is applied to our return signal

sm(t) =

∫ +∞

−∞

sr(t)h(s)ds (58)

whereh(t) is a shifted, scaled and reversed copy ofsr(t)

h(s) = α(δ − t)e−jwD(δ−t) . (59)

We chooset = δ+τ which yields the best signal to noise ratio
whereδ is the length of the transmitted pulse. The probability
of detection is based on quantity|sm(δ + τ)|2. We can show
that

sm(δ + τ) = GejwDτ b +

∫ +∞

−∞

n(δ + τ − s)h(s)ds . (60)

One can remark thatsm(δ + τ) is the sum of two complex-
value Gaussian variables. We look at the following statistic

Λ =
|sm(δ + τ)|2

2σ2
n

(61)

and we introduce the following notation

σ2
s = G2σ2

RCS (62)

Now we construct the test
{

H1 : data generated by signal + noise
H0 : data generated by noise

(63)





H1 : pΛ(x) = 1
σ2

s
σ2

n
+1

e

− x

σ2
s

σ2
n

+1

H0 : pΛ(x) = e−x

(64)

Then, we derive the probability of detection and false alarm.




Pd =

∫ +∞

γ
pΛ(x|H1 is true) = e

− γ

σ2
s

σ2
n

+1

Pfa =
∫ +∞

γ
pΛ(x|H0 is true) = e−γ

(65)

Consequently

Pd = P

1
σ2

s
σ2

n
+1

fa (66)

The ratio σ2
s

σ2
n

is called the Signal-to-Noise Ration notedρ. This
SNR is related to the parameters of the system and the target.
The classical radar equation is given by the following formula
( [21]):

ρ =
PtGtGrλ

2σ

(4π)3r4
(67)

where Pt is the energy of the transmitted pulse,Gt is
the gain of the transmitted antenna,Gr is the gain of the
received antenna,σ is the radar cross section (for an aircraft
between0.1 and1 m2), r is the target range,γ is the system
noise temperature andL is a general loss term. However,
the above formula does not take into account for the sake
of simplicity the losses due to atmospheric attenuation andto
the imperfection of the radar. Thus , extra terms must be added
:

ρ =
PtGtGrλ

2σ

(4π)3kbLγr4
(68)

where b is the receiver noise bandwith (generally consider
equal to the signal bandwidth so thatb = 1

δt
), k is Boltzmann’s

constant,γ is the temperature of the system andL some losses.
Moreover, the gain reduces with the deviation of the beam
from the antenna normal in an array antenna.

Gt = G0cos
α(θt) , (69)

Gr = G0cos
α(θt) (70)

whereG0 is the gain of the antenna. In [24],α = 2, in [21],
α = 2.7. According [25], there is also a beam loss because the



radar beam is not pointing directly so that the radar equation
is:

ρ =
PtG

2
0λ

2σδt cos2(θt)

(4π)3kLγr4
e−

(θt−βt)
2

2B2 (71)

where isB is the beamwidth.
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