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Abstract

This paper provides a methodology for optimally filtering latent state variables in dis-

cretely observed jump-diffusion models. When prices are continuously observed, state

variables such as volatility, jump times, and jump sizes are also observed, but with dis-

crete observations these variables are unobserved. We combine discretization schemes with

Monte Carlo methods to compute the optimal filtering distribution: the distribution of the

latent states conditional on the observed prices. Our approach is very general, applying

in models with nonlinear characteristics and even non-analytic observation equations. We

use simulations to investigate how sampling frequency affects jump and volatility estimates

and then extract information about volatility jointly from equity index options and index

returns.
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1 Introduction

Asset pricing models for term structure, option pricing, portfolio allocation and exchange

rate applications are commonly specified in continuous-time. To apply these models, re-

searchers require parameter estimates and estimates of any latent variables in order to

compute the predictive distribution of prices. There are now a wide range of methods

available for parameter estimation.1 In this paper, we focus on the other estimation prob-

lem, estimating latent variables from observed prices sequentially.

Latent variable estimates are crucial for empirical applications. For example, in portfolio

allocation or option pricing applications, volatility forecasts are required every time period

to form portfolios or prices options. Similarly, a central problem in models with jumps is

to separately identify or ‘disentangle’ the jumps from diffusive components and to identify

the underlying economic events that generated jumps (see Aït-Sahalia (2004b)). These

predictive and filtering problems are inherently sequential, as it must be repeated for every

time period.2 The sequential nature of the problem places severe constraints on filtering

methods, as it must be implementable in real time as additional data arrives each time

period.

This paper provides a general solution to the predictive and filtering problem in a wide

1For example, simulated method of moments (Duffie and Singleton, 1993, Gallant and Long 1997, and

Gallant and Tauchen 2003), approximate analytical maximum likelihood (Aït-Sahalia, 2004a, Aït-Sahalia

and Kimmel, 2005a,b), simulated maximum likelihood (Brandt and Santa-Clara, 2002, Piazzesi, 2005),

implied state GMM (Pan, 2002), Markov Chain Monte Carlo methods (Jones, 1998, Eraker, 2001, Elerian,

Shephard, and Chib, 2001, Chib, Pitt, and Shephard 2005), and nonparametric methods (Aït-Sahalia,

1996a,b, Conley, Hansen, Luttmer, and Scheinkman 1997).
2In principle, parameters could also be re-estimated every time period. However, since parameters are

fixed and we typically have long time series datasets, parameters do not change substantially as additional

data observations arrive. Johannes, Polson and Stroud (2005) consider the problem of sequential parameter

estimation in discrete-time jump-diffusion models.

3



class of continuous-time models. The approach relies on an commonly used insight: to

accurately approximate a conditional distribution arising from a continuous-time model,

simulate the stochastic differential equations at very high frequencies. This reduces and

can even eliminate the discretization bias and has been used extensively for parameter

estimation. Given the high-frequency approximation, we apply particle filtering methods

based on Gordon, Salmond and Smith (1993) and Pitt and Shephard (1999). By analogy,

this approach is very similar to Jones (1998), Elerian, Shephard and Chib (2001) and Eraker

(2001) who apply MCMC methods to a system augmented by high frequency simulation.

Our approach has a number of advantages. First, it applies in an extremely wide-

range of settings, encompassing virtually all of the models and types of data encountered

in practice. It handles diffusions, jump-diffusions, and continuous-time regime-switching

models, models with nonlinear drift, diffusion, jump intensity or jump amplitude functions,

and models in which the observed prices are non-analytical functions of the state variables,

such as those arising when using option prices in stochastic volatility models.3 These

factors provide the flexibility to model predictable variation in conditional moments as well

as importance economic events such as crashes or announcements.4

Second, our approach computes the optimal filtering distribution, that is, the poste-

rior distribution of the latent state variables given the observed data. This distribution

provides all of the sample information about the state variables, quantifying, for example,

estimation risk. Third, our approach applies with multiple observed price series and allows

the researcher to coherently combine different sources of information when computing the

3As noted in Barndorff-Nielson and Shephard (2004, 2006b), our approach also handles the important

class of Levy-driven stochastic differential equations (see, e.g., Cont and Tankov, 2003).
4In portfolio settings, see Pan and Liu (2003), Liu, Longstaff, and Pan (2003), Das and Uppal (2004)

or Aït-Sahalia, Chaco-Diaz, and Hurd (2006), in fixed income settings, see Andersen, Benzoni, and Lund

(2002), Das (2002), Johannes (2004), Piazzesi (2005), Dai, Singleton, and Yang (2005), in option pricing

settings see Bates (2000), Bakshi, Cao and Chen (1997), Pan (2002) and Duffie, Pan and Singleton (2000).
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filtering distribution. For example, consider the case of filtering stochastic volatility from

observations that include both stock and option prices. Our approach computes the fil-

tering distribution by optimally combining the information based on returns (P−measure)

and option prices (Q−measure).

Finally, our approach is extremely simple to implement and computationally fast. Un-

like many filtering algorithms that rely on solving differential equation or developing de-

terministic approximations, our approach takes only a few lines of code and requires only

simulation from well-known distributions such as the normal or multinomial distribution.5

The algorithms are also extremely fast in terms of computational time. This is important

for real-world examples where data arrives sequential and predictive distributions must be

computed in real time. For these reasons, our approach provides a toolkit for implementing

continuous-time models for finance applications.

We demonstrate our filtering approach with both simulation and real data using the

double-jump model of Duffie, Pan and Singleton (2000). This model offers significant chal-

lenges as it has multiple latent factors (stochastic volatility and jumps in prices and/or

volatility). Thus, price variation is driven by both factors and a central problem is sep-

arately estimating jump and volatility components6; Disentangling jumps and stochastic

volatility, in particular, is important as prior research documents that jumps and diffusive

components are compensated differently as the former earn significant risk premiums while

the latter do not (see, e.g., Pan 2002 or Broadie, Chernov, and Johannes 2005). Moreover,

5For example, classical filtering approaches require computing the solutions to partial differential equa-

tions (see, e.g, Pugachev (1987)). In the Gaussian case, these PDE’s reduce to ODE’s that are solved to

generate the Kalman filter. Bates (2005) use deterministic functional approximations to the characteristic

function of affine and semi-affine processes. Chapter 8 of Anderson and Moore (2004) discusses other

functional approximation methods for filtering.
6There is a growing literature analyzing nonparametric estimators of jumps and realized volatility using

high-frequency data. For example, see, e.g., Barndorff-Nielson and Shephard (2004, 2006a,b), Huang and

Tauchen (2005), and Andersen, Bollerslev, and Diebold (2005).
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volatility forecasts depend crucially on the presence of jumps.

Based on simulations, we provide evidence to document the performance of the algo-

rithm, the ability to estimate volatility and the ability to disentangle volatility from jumps

at various observation frequencies. In a diffusive stochastic volatility model, we find that

for realistic parameters, there is little discretization bias for high frequencies such as daily,

but more for longer frequencies. For these lower frequencies, simulating a small number of

data points between observations largely eliminates the discretization bias. In models with

jumps, however, we find that it is possible to identify jumps at a daily frequency, but it is

very difficult to identify jumps with less frequently sampled data. For example, the filter is

able to identify about 60 percent of the jumps at a daily frequency. The 40 percent of the

jumps not identified are too small to identify. At a weekly frequency, less than a third of

the jumps are correctly identified. Since volatility aggregates, weekly variance is roughly

five times as large as daily variance and therefore only the largest jumps can be identified

at the weekly frequency.

Finally, we address a long-standing issue in empirical finance: Is the time series of

returns consistent with information embedded in option prices? While risk premiums drive

a wedge between the objective measure (P) and risk-neutral measure (Q) parameters, a

well-specified model should be consistent with both the time series of returns and the cross-

section of option prices. To analyze this issue, we estimate volatility, jump times and jump

sizes from only returns and from both returns and options. This will allow us to evaluate the

information about volatility in both data sources and to evaluate the consistency between

the two. We have two main findings.

First, we quantify how much information options contain regarding volatility. If options

were observed without error, volatility could also be estimated without error, but this is

not reasonable as even at-the-money options have large bid-ask spreads. We incorporate

bid-ask spreads into our filtering approach, assuming the observed option prices are noisy
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signals of the true price. We quantify estimation risk via the posterior standard deviation

of the filtering distribution. We find that even with these pricing errors that the estimation

risk falls by as much as forty percent with the addition of option prices.

Second, we find that it is still difficult to reconcile the existing models with the informa-

tion jointly in returns and option prices. In the models with jumps in returns and jumps

in volatility, the option based volatility tends to be higher than that embedded in returns.

Factor risk premia reduce spot volatility, but the two sources are still not wholly consistent.

These results are consistent with either model misspecification in the volatility process or

time-varying risk-premiums. The nature of the misspecification is consistent with a model

where the long-run mean of volatility varies over time. This model has been suggested by

Duffie, Pan, and Singleton (2000) but has not been analyzed to date. Time-varying risk

premia are also able to reconcile the issues, as spot volatility is not required to move as

much to explain option implied expectations.

The rest of the paper is outlined as follows. The next section introduces the models

under consideration, reviews general filtering theory and introduces our algorithms. Section

3 provides empirical results. Section 4 concludes.

2 Optimal Filtering of Jump-Diffusions

Before introducing the models and our filtering approach, we briefly discuss the general

filtering problem. We consider the optimal nonlinear filtering problem. In our context, the

optimal filter is abstractly given by p (Lt|P1:t) where P1:t = (P1, ..., Pt) are the discretely

observed prices and Lt are the latent variables. In continuous-time, the optimal filter is

given by p
¡
Lt| {Ps}s≤t

¢
(see, for example, Pugachev 1987).

These posterior distributions are optimal nonlinear filters, in the sense that each of the

conditional moments obtained from these densities, for example E [Lt|P1:t], are the optimal
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estimates in the mean squared error sense. More generally, the optimal estimate of any

function of the state is given by E [f (Lt) |P1:t] which again, is obtained by integrating the

optimal filter against the function f . Moreover, these filters are generally nonlinear, in the

sense that the expectation is not necessarily a linear function of the observed prices. Only

in the specialized cases of linear, Gaussian models (in either continuous or discrete-time)

are the optimal filters linear (e.g. the Kalman filter).

While there are numerous estimators of latent state variables (especially volatility),

there is a strong preference against using optimal filters and in favor of suboptimal filters,

such as the extended Kalman filter and other approximate filters. There is a good reason for

this: historically, the computational burdens of computing optimal filters were overwhelm-

ing. For example, Pugachev (1987) argues that the practical application of the optimal

filter is “a matter of great and often insuperable difficulty.” Due to this, it is common to

focus on simpler, computationally feasible suboptimal filters.

The particle filtering methodology introduced by Gordon, Salmon, and Smith (1993)

provides a general, computationally attractive method for computing optimal filters. In

this paper, we show how to adapt this methodology to continuous-time models and use it

to address a number of empirical issues.

2.1 Model Specification

We assume that there are two types of prices observed: prices whose dynamics are directly

modeled, St, and derivative prices, Ct. Together, we let Pt = (St, Ct). There is also a vector

of state variables, Xt, that impact the level or distribution of prices. As an example, St

could be an equity index, Xt its stochastic variance, and Ct the price of an option written

on that index. Alternatively, Ct could be a vector of yields and Xt are the state variables

describing the spot rate evolution. In general, Ct, will be a function of the observed prices,

the states, and any parameters, Ct = C (St,Xt,Θ).
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We assume sufficient regularity so that the driving variables, St and Xt, jointly solve

the stochastic differential equation with jumps,

dSt = μs (Θ, St,Xt) dt+ σs (Θ, St−, Xt−) dW
s
t + d

³XNs
t

n=1
Zs
n

´
(1)

dXt = μx (Θ, Xt) dt+ σx (Θ,Xt−) dW
x
t + d

³XNx
t

n=1
Zx
n

´
, (2)

where Θ is a vector of parameters, t− denotes the limit taken from the left, W s
t and

W x
t are potentially correlated Brownian motions; N

s
t and Nx

t are point processes with

predictable intensities λs (Θ, St−,Xt−) and λx (Θ,Xt−); τ sn and τxn are the jump times; and

Zs
n and Zx

n are the jump sizes with Fτn− conditional distributions Π
s
¡
Θ, Sτn−, Xτn−

¢
and

Πx (Θ, Xτn−).
7 The interpretation of the process is as follows. At a jump time, τ sn or τ

x
n ,

there is a discontinuity in the sample path, Sτsn − Sτsn− = Zs
n and Xτxn −Xτxn− = Zx

n, and

between jump times, τn ≤ t < τn+1, the prices and state variables diffuse. As is common in

financial applications, we assume that the state variables are exogenous, in the sense that

the characteristics of the stochastic differential equation for the states are independent of

the prices, that is, μx, σx, λx, and Πx do not depend on St. For simplicity, we assume that

St and Xt are univariate, although our approach applies equally to multivariate models.

The specification in (1) and (2) covers nearly all of the cases of interest in economics

and finance: multi-variate diffusion models, multi-variate jump-diffusion models (Duffie,

Pan, and Singleton 2000) and continuous-time regime switching models, diffusion models

in which the drift and diffusion are driven by a continuous-time, discrete state Markov

chain (see, e.g., Dai, Singleton, and Yang 2005 and Landen 2000). We do not consider

infinitely active Levy processes, but, as noted by Barndorff-Nielson and Shephard (2004,

2006b), our approach generalizes to this important class of processes.

7Examples of sufficient conditions for a well-defined strong solution include standard linear growth and

Lipschitz restrictions on the drift, diffusion and jump intensity and integrability conditions on the jump

sizes and initial values, see, for example, Jacod and Shiryaev (1987) and Gihkman and Skorohod (1972).
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Derivative prices are given by

Ct = C (St, Xt,Θ) = EQ
h
e−

T
t rsdsf(ST )|St, Xt,Θ

i
(3)

where Q is a risk-neutral probability measure and f is the payoff function. Due to potential

state dependence in the drift coefficients, the diffusion coefficients, and C (St,Xt,Θ), the

model is also non-linear in the state variables. The only assumptions that we require on

the function C is that it can be evaluated at a pair of points, (x, s), thus C (·, ·,Θ) does

not need to be analytical. It could, for example, solve a partial differential equation or be

given as a integral. Derivative prices offer an interesting challenge for filtering. Since theory

implies a deterministic relationship between prices, parameters and states, derivative prices

are potentially fully revealing of both the parameters and states. With enough derivative

prices, there is a stochastic singularity as it is impossible to simultaneously fit all of the

prices with a low dimensional parameter and state vector.

To circumvent this problem, it is common to assume that some or all of the derivative

prices are observed with error: if C (Xt, St) is the model-implied price, then it is common to

assume thatCt = C (St,Xt,Θ)+εt orCt = C (St,Xt,Θ) e
εt where εt is normally distributed.

There are multiple justifications for pricing errors. First, there is a genuine concern with

noisy price observations, such as those generated by the bid-ask spread or interpolated

prices. In the case of options, estimates for the bid-ask spread for at-the-money, short

maturity index options options vary from three to ten percent (see, Bakshi, Cao, and

Chen, 1997 or George and Longstaff, 1993). In term structure models, it is common to use

zero coupon yields interpolated from coupon bonds or interest rate swaps. Second, even if

the derivative prices are observed without error, the pricing error is a convenient way to

break the stochastic singularity and to recognize that our models are approximations to

reality.
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2.2 Optimal Filtering of Continuous-time Models

We assume that prices and states evolve continuously in time, but the prices are observed

only discretely at a fixed frequency, normalized to unit length without loss of generality.

From the researcher’s perspective, the jump times, jump sizes and Xt are latent, although

we label Xt as the “state” variables. As is often the case, it is possible to expand the

dimension of the state vector to include the jump times and sizes and then, formally, the

jump times and sizes are “states,” although we avoid this formality. We focus on the

filtering problem and therefore assume the parameters are known.

To develop the filtering approach, we write the model in its state space form. The two

observation equations are (suppressing parametric dependence)

St+1 = St +

Z t+1

t

μs (Sv, Xv) dv +

Z t+1

t

σs (Sv−,Xv−) dW
p
v +

X
t<τsn≤t+1

Zs
n (4)

and

Ct = C (St, Xt) + εt. (5)

The state evolution is

Xt+1 = Xt +

Z t+1

t

μx (Xv) dv +

Z t+1

t

σx (Xv−) dW
x
v +

X
t<τxn≤t+1

Zx
n. (6)

Due to the stochastic integrals and the jumps, it is clear that the shocks in the model are

non-normal, both in the observation equations and the state evolution.

The optimal filtering problem is abstractly solved by the sequence of conditional densi-

ties, p (Lt|P1:t), for t = 1, ...T . By Bayes rule,

p (Lt+1|P1:t+1) =
p (Pt+1|Lt+1, Pt) p (Lt+1|P1:t)

p (Pt+1|P1:t)
, (7)

where p (Pt+1|Lt+1, Pt) is the likelihood (the distribution of observed prices conditional on

latent states and past prices), p (Lt+1|P1:t) is predictive distribution of latent states, and
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p (Pt+1|P1:t) is the predictive distribution of prices. Note that these densities are a function

P1:t, and are therefore t-dimensional.

Computing these densities is difficult as the none of the distributions are analytical.

For example,

p (Lt+1|P1:t) =
Z

p (Lt+1|Lt) p (Lt|P1:t) dLt, (8)

is a high-dimensional integral. Even though the building blocks, Brownian motions, point

processes and the jump sizes have known distributions, p (Pt+1|Pt, Xt) and p (Lt+1|Lt) are

not known analytically. This is due to the complicated mixture structure of the model: there

are multiplicative mixtures, (σx (Xv−) dW
x
v ), random sums of random variables (

P
Zx
n) and

additive mixtures (both from
R t+1
t

σx (Xv−) dW
x
v , a limit of sums, and

R t+1
t

σx (Xv−) dW
x
v +P

Zx
n). Together, these factors make analytic treatment of the filtering problem impossible.

To solve the filtering problem in this setting, integration and simulation problems

must be addressed. First, suppose that p (Pt+1|Lt+1, Pt) and p (Lt+1|Lt) could be evalu-

ated directly. Then, the filtering problem is one of updating the current filtering density,

p (Lt|P1:t) , to the next period’s, p (Lt+1|P1:t+1). This is a problem of estimating the integral,R
p (Lt+1|Lt) p (Lt|P1:t) dLt. We solve this problem by approximating the filtering density,

p (Lt|P1:t), with a discrete probability distribution, which is the essence of the particle fil-

ter. Second, to evaluate the p (Pt+1|Lt+1, Pt) and p (Lt+1|Lt) when the prices and latent

variables arise from continuous-time models, we use standard time-discretization methods

and simulation.

The next section discusses the discrete-time particle filter and shows how to adapt

the discrete-time particle filter to continuous-time jump-diffusions and models with non-

analytic observations equations.
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2.3 The Particle Filter

The particle filter requires only two assumptions: (A1) that the state evolution can be

exactly simulated, that is, that exact samples from p (Lt+1|Lt) can be drawn; and (A2) the

likelihood can be exactly evaluated as a function of Lt and Pt. Under these assumptions,

the particle filter delivers an estimate pN (Lt|P1:t) of the true filtering density, p (Lt|P1:t).

As the number of particles, N, increases, the approximation converges to the true filtering

distribution under certain regularity conditions which we discuss below. We now describe

the mechanics of the particle filter, drawing on the discussion in Doucet, de Freitas and

Gordon (2001) and Pitt and Shephard (1999).

The particle filter approximates the filtering density by a discrete probability distrib-

ution, that is, p (Lt|P1:t) is approximated by a set of particles,
n
L
(i)
t

oN
i=1

with probabilityn
π
(i)
t

oN
i=1
,

pN (Lt|P1:t) =
NX
i=1

δ
L
(i)
t
π
(i)
t

where δ is the Dirac function. Once the distribution is discretized, integrals become sums.

For example, the estimate of the predictive distribution is

pN (Lt+1|P1:t) =
NX
i=1

p
³
Lt+1|L(i)t

´
π
(i)
t ≈

Z
p (Lt+1|Lt) p (Lt|P1:t) dLt

and the filtering density at time t+ 1 is defined via the recursion:

pN (Lt+1|P1:t+1) ∝ p (Pt+1|Lt+1, Pt)
NX
i=1

p
³
Lt+1|L(i)t

´
π
(i)
t .

Thus, once p (Lt|P1:t) is approximated by a set of particles, pN (Lt+1|P1:t) and pN (Lt+1|P1:t+1)

can be computed.

The previous paragraph showed that the transition from a particle representation of

pN (Lt|P1:t) to pN (Lt+1|P1:t+1) is straightforward, but one steps remains, that is, to generate

new particles,
n
L
(i)
t+1

oN
i=1
, and probabilities,

n
π
(i)
t+1

oN
i=1

that approximate pN (Lt+1|P1:t+1).
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There are a number of different approaches that can be used to update or propagate the

particles: the weighted bootstrap (also known as the sampling/importance sampling (SIR)

algorithm), rejection sampling and MCMC methods. We follow the literature and use the

weighted bootstrap/SIR algorithm (Smith and Gelfand 1992, Gordon, Salmond and Smith

1993) to propagate the particles for its generality and simplicity.

To understand the mechanics of the weighted bootstrap, we view pN (Lt+1|P1:t) as the

prior and p (Pt+1|Lt+1, Pt) as the likelihood:

pN (Lt+1|P1:t+1) ∝ p (Pt+1|Lt+1, Pt)| {z }
Likelihood

XN

i=1
p
³
Lt+1|L(i)t

´
π
(i)
t| {z }

Prior

.

Updating the particles is similar to computing the posterior distribution given draws

from the prior. Generating new states is straightforward as (A1) implies that we can

directly simulate the state evolution. To do this, propagate the states forward by drawing

L
(i)
t+1 ∼ p

³
Lt+1|L(i)t

´
. Given the updated states,

n
L
(i)
t+1

oN
i=1
, the weighted bootstrap then

re-samples these states
n
L
(i)
t+1

oN
i=1

with weights πit+1 ∝ p
³
Pt+1|L(i)t+1, Pt

´
. For clarity, we

state the algorithm in steps:

1. Given
n
L
(i)
t , π

(i)
t

oN
i=1

, simulate the latent state vector forward using the state evolu-

tion equation. That is, draw L
(i)
t+1 ∼ p

³
Lt+1|L(i)t

´
.

2. Evaluate the likelihood function at the new state, p
³
Pt+1|L(i)t+1, Pt

´
, and set

π
(i)
t+1 =

p
³
Pt+1|L(i)t+1, Pt

´
XN

i=1
p
³
Pt+1|L(i)t+1, Pt

´ .
3. Finally, re-sample N particles with replacement from the multinomial distribution ofn

L
(i)
t+1

oN
i=1

with probabilities
n
π
(i)
t+1

oN
i=1
.
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Gordon, Salmond, and Smith (1993), using an argument from Smith and Gelfand (1992),

show that these re-sampled draws provide a sample from the approximated filtering den-

sity, pN (Lt+1|P1:t+1). An advantage of the weighted bootstrap is that by sampling with

replacement according to the probabilities π(i)t+1, the procedure selectively and over time

eliminates states with very low probability by disproportionately re-sampling states with

higher probability. Thus the algorithm propagates high likelihood states forward while dis-

carding low likelihood states. Given the computationally simplicity, it is straightforward

to program and the algorithm runs quickly. This implies that it is possible to estimate the

densities with high precision (large N) for large T .

Another advantage of the particle filter is that it can be easily adapted and improved.

One approach, the auxiliary particle filter, is a straightforward extension of the particle

filter and is described in Pitt and Shephard (1999). Auxiliary particle filters are particularly

useful when dealing with outliers and low probabilities states, as the traditional particle

filter can have difficulties sampling the tails. We have found it to be extremely useful in

models with rare jumps and we use it below.

The particle filter (and its auxiliary extensions) has been applied to a wide-variety of

discrete-time models in econometrics and statistics. Pitt and Shephard (1999) and Chib,

Nardari and Shephard (2002) use particle filtering in discrete time stochastic volatility

models to construct likelihood functions for estimation or testing. Barndorff-Nielson and

Shephard (2004) outline how to use particles to filter volatility in a discrete-time Levy

driven stochastic volatility model. Concurrently to our work, Pitt (2003) uses particle

filtering and data augmentation to construct likelihood functions for maximum likelihood

parameter estimation in diffusion based stochastic volatility models and Durham and Gal-

lant (2002) use a filtering algorithm that resembles the particle filter for estimation of

stochastic volatility models.
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2.4 Adapting the particle filter to continuous-time models

The previous section shows that the particle filter effectively imposes only two requirements

on the state space model: it must be possible to simulate the latent state evolution and

evaluate the likelihood function as a function of the latent states and observables. These

restrictions are extremely mild, as both of these issues have been of central importance for

all of asset pricing. Kloeden and Platen (2001) provides textbook discussions of simulation

methods for stochastic differential equations, and Liu and Li (2000) and Mikulevicius and

Platen (1988) consider the case of jump-diffusions in detail. Evaluating the likelihood is

a combination of simulation and pricing. In the latter case, there is a large literature on

closed-form, near-closed form and approximation methods for pricing.

To simulate the state variables forward and evaluate the likelihood function, we use

time-discretized solutions to the stochastic differential equations. Assuming that prices

are observed at times t and t + 1, we simulate an additional M − 1 points between those

observations via the Euler scheme

St+ j+1
M
= St+ j

M
+ μs

³
St+ j

M
,Xt+ j

M

´
M−1 + σs

³
St+ j

M
, Xt+ j

M

´
εs
t+ j+1

M

+ Zs
t+ j+1

M

Js
t+ j+1

M

X
(i)

t+ j
M

= X
(i)

t+ j−1
M

+ μx
³
Xt+ j

M

´
M−1 + σx

³
Xt+ j

M

´
εx
t+ j+1

M

+ Zx
t+ j+1

M

Jx
t+ j+1

M

.

where j = 1, ...,M−1, εst and εxt are mean zero, jointly normally distributed (with constant

correlation ρ) with common variance jM−1, Js
t
and Jx

t are Bernoulli random variables

with respective intensities λs (St−M−1 ,Xt−M−1)M−1 and λx (Xt−M−1)M−1. The jump size

distribution is exactly the same as in the continuous-time specification. These additional

simulated states are the key to our filtering approach.

While we use an Euler scheme discretization for the jump-diffusion, there are other

strong and weak discretization schemes that can be used. The only requirement is the that

drift and diffusion coefficients satisfy the assumptions (e.g., differentiability) that justify

the various schemes. For the jump times, we use a Bernoulli discretization. If the jumps are
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Poisson (constant arrival intensity), the inter-arrival times can be exactly simulated which

implies there is no discretization bias in the jump component. When the jump intensity

is state dependent, the Bernoulli approximation is straightforward, but there are other

algorithms available (see, e.g., Glasserman and Merener 2003).

The time discretization simulates augmented prices and state variables between times t

and t+1. We collect the augmented values in the following vectors:XM
t+1 =

³
Xt, ...,Xt+M−1

M

´
,

SM
t+1 =

³
St+ 1

M
, ..., St+M−1

M

´
, Zk,M

t+1 =
¡
Zk
t+M−1 , ..., Zk

t+1

¢
, and Jk,M

t+1 =
¡
Jk
t+M−1, ..., Jk

t+1

¢
where k = s, x. These vectors contain the simulated values of the variables in between

times t and t+ 1. The entire matrix of latent variables is

LM
t+1 =

³
XM

t+1, S
M
t+1, Z

s,M
t+1 , Z

x,M
t+1 , J

s,M
t+1 , J

x,M
t+1

´
.

Note that the latent variables include augmented prices between times t and t+1 in SM
t and

that the states are simulated up to one-discretization interval before the next observation.

It is on this quantity that we define the particle filter. Note, that conditional on LM
t+1 and

St, the likelihood is conditionally Gaussian.

Given the time-discretization, we nowmodify the particle filter to handle the continuous-

time specification. Conditional on
n¡

LM
t

¢(i)oN
i=1
, the first stage involves simulating the

state variables forward. To do this, first generate jump times, jump sizes and discretized

Brownian increments. All of these draws are straightforward as the distributions are con-

ditionally independent. Next, the jump times, jump sizes and Brownian increments feed

through the Euler scheme to generate
¡
XM

t+1

¢(i)
and

¡
SM
t+1

¢(i)
. This provides the propa-

gated state vector,
n¡

LM
t+1

¢(i)oN
i=1
. Finally, these updated states are re-sampled with the

appropriate probabilities. The Appendix provides the details of the algorithm.
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2.5 Relation to existing literature

Our approach is related to a number of different literatures and in this sub-section, we

briefly connect our work to prior related work.

First, our approach complements the recent literature on “realized volatility,” see, for

example, the review article by Andersen, Bollerslev, and Diebold (2004). The original focus

was on using high frequency data to estimate volatility (Andersen, Bollerslev, Diebold and

Labys 2001, Aït-Sahalia, Mykland, and Zhang 2005), but recently, Barndorff-Nielson and

Shephard (2004, 2006a,b) have derived the limiting behavior of fractional moments and

show that this approach can be used to estimate jumps in returns. There is a recent

focus on estimating total volatility and separating stochastic volatility from jumps (see,

e.g., Andersen, Bollerslev, and Diebold (2005), Barndorff-Nielson and Shephard (2004,

2006a,b), and Huang and Tauchen (2005)).

It is important to understand the differences between our approach and the existing

shrinking interval estimators. First, our approaches is firmly parametric while the realized

volatility literature is nonparametric. In many financial applications such as option pricing,

term structure modeling and optimal portfolio allocations, explicit parametric models are

used for applications, and our filtering approach applies in these cases. Second, our ap-

proach neither requires nor precludes the use of high frequency data. Third, our approach

can be used to filter any latent state variable, not just those that affect the second moment.

Thus, for example, we can estimate both time-varying volatility and time-varying expected

returns. Finally, our approach provides a method to coherently combine the information

in different sources. This allows us to combine the information from different sources, such

as option prices and equity prices, to estimate volatility.

Second, Bates (2005) develops a filtering approach that works in models with expo-

nential affine conditional characteristic functions. Bates uses deterministic, analytical ap-

proximations to filtering distributions, whereas our approach use discrete particle approx-
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imations. Bates (2005) focusses on parameter estimation, as he uses his filtering approach

to compute likelihood functions, but does also report the filtered volatility estimates and

compares to implied volatility. As Bates’ approach relies on analytical approximations,

standard gradient algorithms can be used to optimize the likelihood. Our particle ap-

proach does not result in differentiable likelihood functions. Our approach for filtering is

more general than Bates as we do not rely on closed-form characteristic functions. Thus it

applies in non-linear models. Our approach also applies in settings with multiple observed

prices. For example, this allows us to jointly filter volatility from returns and options.

Finally, our approach builds on a large literature that develops and applies particle

filtering methods in finance and economics. There are now a number of papers apply-

ing particle filtering methods to various discrete-time models: Kim, Shephard, and Chib

(1998) apply the particle filter to a discrete-time log-stochastic volatility model to construct

likelihood functions; Omori, Chib, Shephard and Nakajima (2005) apply the particle fil-

ter to a discrete-time stochastic volatility model with leverage effects; Calvet, Fisher, and

Thompson (2004) apply the particle filter to a discrete-time switching-Markov model; and

in macroeconomics, Fernandez-Villaverde and Rubio-Ramirez (2005) construct likelihood

functions with particle filters for discrete-time general equilibrium models. Elerian, Shep-

hard, and Chib (2001) compute marginal likelihoods in continuous-time models using an

Euler approximation. Our particle filtering approach provides an alternative for computing

likelihoods for model comparison.

2.5.1 Convergence of Particle Filters

Our filtering approach relies on two approximations: discretizing the stochastic differential

equation and approximating the filtering distribution with particles. While there are exten-

sive literatures analyzing convergence of each of these components, it is not straightforward

to combine the asymptotics. In this section, we briefly discuss the convergence properties
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of our algorithms.

Our algorithm shares many properties with standard Monte Carlo estimates of expecta-

tions of smooth functions of the prices (or states) in continuous-time models. There, sample

paths are discretized and expectations are approximated by a sample average across N sim-

ulations. Here, we also discretize the sample path at frequency M but the filtering density

is approximated by a discrete set of N particles. Since the density can be viewed as an

expectation of an indicator function, the approaches are quite similar.

When estimating expectations in continuous-time models using Monte Carlo and time

discretizations, there is a natural trade-off between reducing discretization bias (large M)

and Monte Carlo error (large N). In the case of estimating expectations of smooth func-

tions, there are standard results on the “efficient” asymptotic trade-off. For example, a

standard Euler discretization would imply that N should grow at a rate proportional to

M2, thus cutting the discretization interval in half would quadruple the number of simu-

lations (see, Duffie and Glynn 1995). These results cannot be directly applied to our case

because the traditional Monte Carlo literature addresses the convergence of expectations

of smooth functions. Here, we are interested instead in pointwise convergence of filtering

densities.

First, consider the convergence of the particle filter, ignoring discretization bias (by

either assuming that we can exactly simulate from the state transition or that true model

is generated by theM = 1 Euler discretization of the continuous-time model). In this case,

the particle filter has well known convergence properties summarized in Crisan and Doucet

(2002). To focus issues, consider only the estimation of the state variable at time t,Xt. If we

denote the particle approximation to the filtering density for a fixed N as pN (Xt|P1:t), then

we are interested in the behavior of this density for large N . Under sufficient regularity

on the state transition and the likelihood, the particle filter is consistent in the sense

that lim
N→∞

pN (Xt|P1:t) = p (Xt|P1:t), where p (Xt|P1:t) is the optimal filter. The regularity
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conditions require that the state variable transition density is Feller continuous and the

likelihood is positive, bounded and continuous (Crisan and Doucet 2002).

Second, consider the more general case with M > 1. If we let pM,N (Xt|P1:t) denote the

particle filter approximation for a given M and N and pM (Xt|Xt−1) the state transition

for a given M , then we are interested in the behavior of the filter for large M and N .

From the previous results, we know that if the true model is given by a fixed M , the

particle filter is consistent. This implies that the difficult step is proving convergence of

the approximate transition density pM (Xt|Xt−1) to the true transition density, p (Xt|Xt−1).

While there are numerous results proving convergence of approximations of expectations of

smooth functions of the state, E [f (XT ) |Xt = x] (Kloeden and Platen (2001)), pointwise

convergence of the density function is a more difficult as it applies in the case where the

function f is an indicator function, which is neither smooth nor continuous.

For diffusions, there is a remarkable result in Bally and Talay (1996) proving pointwise

convergence of pM (Xt|Xt−1) to p (Xt|Xt−1). Brandt and Santa-Clara (2002) use this result

to prove convergence of simulated maximum likelihood estimators (see also the appendix

in Pedersen 1995). Jacod and Del Moral (2001) and Jacod, Del Moral and Protter (2002)

combine the Bally and Talay (1996) with standard limiting results to show that an inter-

acting particle system filter is consistent provided that M increases slower than N (for

example, M =
√
N).8 That N grows faster than M is intuitive and it is similar to the

results cited above on Monte Carlo estimation of expectations.

If an analog to Bally and Talay (1996) existed for jump-diffusions, the arguments in

Jacod, Del Moral and Protter (2002) would apply to derive the limiting distribution of the

particle filter in the case of jump-diffusions. However, to our knowledge, there is no analog

8The algorithms in Jacod and Del Moral (2001) and Jacod, Del Moral and Protter (2002) do not

perform any resampling nor can they adapt (as in Pitt and Shephard 1999) resulting in poor performance

in practice.
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to Bally and Talay (1996) for jump-diffusion processes. Proving pointwise convergence of

the densities for jump-diffusions is an is open problem in stochastic analysis, although it has

been conjectured that the Bally and Talay (1996) approach carries over to jump-diffusions

by Hausenblas (2002).

3 Empirical Results

In this section, we first analyze the performance of the optimal filter in the context of the

double-jump model of Duffie, Pan, and Singleton (2000). Section 3.1 introduces the model,

Section 3.2 provides simulation based evidence for the SV and SVJ models, and Section

3.3 analyzes the informational content of equity returns and options regarding volatility.

3.1 Stochastic volatility with jumps in prices and volatility

We assume that the equity index (St) and its stochastic variance (Vt) jointly solve

d log (St) = (rt + ηvVt − Vt/2) dt+
p
Vt−dW

s
t + d

³XNt

j=1
Zs
j

´
dVt = κv (θv − Vt) dt+ σv

p
Vt−dW

v
t + d

³XNt

j=1
Zv
j

´
where W s

t and W v
t are Brownian motions, ηv is the volatility risk premium, Z

s
j = μs +

ρsZ
v
j + σsεj, εj ∼ N (0, 1), Zv

j ∼ exp (μv) and Nt ∼ Poi(λt). We let SV denote the

special case with λ = 0, SVJ the case with μv = 0 and SVCJ denotes the general model.

Throughout, we set ρs = 0, as this parameter is difficult to estimate (Eraker, Johannes

and Polson (2003) and Chernov, Gallant, Ghysels and Tauchen (2003) find it negative, but

insignificant). This also makes the filtering problem more difficult because there is a lower

signal-to-noise ratio between jumps in volatility and returns.

This model has received significant attention as a model of equity index returns. Broadie,

Chernov, and Johannes (2005), Chernov, Gallant, Ghysels and Tauchen (2003), Eraker
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(2004), and Eraker, Johannes and Polson (2003) find support for this specification. This

model also provides closed-form (up to the numerical solution of an ordinary differential

equation) solutions for optimal portfolio weights and option prices. Second, this model

contains a very general factor structure. It includes an unobserved diffusive state (Vt), un-

observed jumps in the observed state (Zs
j ) and unobserved jumps in the unobserved state¡

Zv
j

¢
. Because of this complicated factor structure, the model provides a rigorous hurdle

for our filtering approach.

3.2 Simulation based results

3.2.1 SV Model

To analyze the performance of our filtering algorithm as a function of the degree of data

augmentation (M) and the sampling frequency of returns (daily, weekly, monthly), we

simulated 100 sample paths from the continuous-time model using the Euler scheme and

100 data points per day. We sample the resulting process daily, weekly or monthly and

compute the optimal filter for M = 1, 2, 5, 10, 25, and 100.9 Since it is impossible to

compute the true filter, we regard M = 100 as the true filter, in the sense that it is devoid

of discretization error.

We summarize the filter’s performance with two sets of statistics. The first is the root-

mean-squared (RMSE) and mean-absolute error (MAE) between the approximate filtered

means for a givenM and the true filter, thus we compare the difference between EM [Vt|S1:t]

and E [Vt|S1:t]. This is consistent with the literature and the fact that E [Vt|S1:t] is the

minimum variance estimator of Vt. We also report the RMSE andMAE between the filtered

means and the true simulated volatilities. These results are generally of less interest (as

9As an example of the computing time, the filter (N=10,000, M=10) took about 3 minutes of CPU time

on a Xeon 1.8MHz processor in Linux with code written in C.
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the optimal filtering distribution is our target), but they do provide a intuitive sense of

how discretization bias and sampling frequency effects the accuracy of volatility estimates.

Tables 1 and 2 summarize the performance for two different parameter configurations,

for daily, weekly, and monthly data, and for different degrees of data-augmentation. Table

1 reports the filtering results using the following “base case” for the parameters: θv = 0.9,

κv = 0.02, σv = 0.15, and ρ = 0. The units are in daily variances. For example, θv = 0.9

corresponds to about 15 percent annualized (
√
θv · 252). The volatility parameters are

consistent with the estimates in Eraker, Johannes, and Polson (2003). We constrain ρ = 0

to reduce the signal to noise ratio, making it more difficult to estimate volatility. Table 2

reports filtering results for different parameters that generate high and volatility variance

paths (κv = 0.08, θv = 1.8, and σv = 0.30).

Table 1 documents that for a fixed sampling interval (daily, weekly, or monthly), increas-

ing M reduces the discretization bias, improving the accuracy of the filter. For monthly

data, the RMSE and MAE fall drastically as M increases: they are roughly halved when

M increases from 1 to 2, from 2 to 5 and from 5 to 10. This occurs because the conditional

distribution of volatility increments, p (Vt+1|Vt), is non-central χ2 for all sampling intervals,

but is very close to normal for high frequencies (daily data) but very non-normal for lower

frequencies. In fact, the non-normalities increase and for typical parameterizations peak at

frequencies close to the monthly range (Das and Sundaram 1999).

While data augmentation improves the performance for all sampling frequencies, the

effects are extremely modest for the daily sampling frequency. The RMSE for daily data

falls from 0.25 for M = 1 to 0.20 for M = 2. The results are similar for MSE, indicating

that discretization bias is not a first order effect for data sampled daily. This is consistent

with papers that analyze parameter estimation in continuous-time models and document

via simulations that any effect of discretization bias on parameter estimates is swamped

by sampling variation, at least for the sample sizes that we encounter in practice (see,
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Table 1: Simulation results for the SV model using the parameters θv = 0.9, κv = 0.02,

σv = 0.15, and ρ = 0. R1 (R2) and M1 (M2) are RMSE and MAE errors between the

filtering density for a given M and the true filtering density (or the true volatilities). The

numbers are multiplied by 10 and throughout we use N = 10, 000.

Monthly Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2 R1 R2 M1 M2

1 2.76 7.28 2.47 5.86 0.93 5.44 0.73 4.15 0.25 4.14 0.19 3.07

2 1.08 6.84 0.95 5.27 0.30 5.40 0.20 4.05 0.20 4.15 0.14 3.06

5 0.41 6.76 0.33 5.08 0.23 5.40 0.14 4.04 0.21 4.15 0.14 3.06

10 0.22 6.76 0.18 5.04 0.20 5.40 0.13 4.04 0.19 4.14 0.13 3.06

25 0.17 6.76 0.13 5.02 0.19 5.40 0.13 4.04 0.19 4.15 0.13 3.06

e.g., Pritsker 1998). This formalizes the intuition from Merton (1980) who showed that, in

a constant volatility model, volatility estimates are improved by increasing the sampling

frequency. This is why it is common to use daily or even intradaily data to learn about

volatility (see Andersen, Bollerslev and Diebold, 2004, and Barndorff-Nielson and Shephard,

2004, for further results on the use of ultra high frequency data).

The results are sensitive to parameter values, in large part due to the fact that the

degree of non-normality in p (Vt+1|Vt) varies with the parameter values, especially κv and

σv. When these parameters are small, there is little discretization bias in approximating

the solution to the stochastic with the M = 1 Euler scheme. To quantify this affect,

Table 2 considers a set of parameters with higher average volatility (θv = 1.8), faster mean-

reversion (κv = 0.08), and higher volatility of volatility (σv = 0.30). These parameters are

consistent with volatility processes for individual stocks (see Bakshi and Cao 2004). Table

2 indicates, as expected, that there are larger gains to data augmentation and, again, the
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Table 2: Simulation results for the SV model using the parameters κv = 0.08, θv = 1.8,

and σv = 0.30. R1 (R2) and M1 (M2) are RMSE and MAE errors between the filtering

density for a given M and the true filtering density (or the true volatilities). The numbers

are multiplied by 10 and throughout we use N = 10, 000.

Monthly Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2 R1 R2 M1 M2

1 6.44 12.39 6.28 10.47 2.17 10.03 1.82 7.95 0.81 8.41 0.62 6.46

2 3.02 11.01 2.89 8.97 0.52 9.85 0.43 7.70 0.32 8.37 0.24 6.41

5 0.80 10.62 0.72 8.36 0.26 9.84 0.21 7.67 0.28 8.38 0.21 6.41

10 0.30 10.60 0.25 8.27 0.24 9.85 0.19 7.67 0.29 8.39 0.22 6.41

25 0.22 10.60 0.17 8.25 0.24 9.85 0.18 7.67 0.28 8.37 0.21 6.40

gains are much greater for less frequent sampling. The results show that even a modest

amount of data augmentation (M=2) with daily data drastically reduces the errors.

Figures 1 and 2 provide a graphical depiction of the performance of the particle filtering

algorithm. The top panels of Figures 1 and 2 display simulated returns, the middle panels

display the true volatilities (dots) and posterior means for M=1, 2, 5, and 25. The bottom

panel displays the difference between the true filtered posterior mean and the simulations

for M=1, 2, 5, and 25. Figure 1 samples daily while Figure 2 samples monthly.

There are a number of noticeable results. First, errors at both frequencies and for all

degrees of data augmentation are greater when volatility is higher. Second, the filtered esti-

mates typically under-estimate volatility when volatility is high and over-estimate volatility

when it is low. This is clearly the pattern in Figures 1 and 2. This occurs because the

estimates are smoothed expectations based on past returns and volatility is mean-reverting.
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Third, economically, there is no differences across the filtered volatility for various degrees

of data augmentation when the data is sampled daily. In fact, in the figure it is impossible

to see the different estimates in the middle panel as the largest differences are on the order

of 0.05 when Vt is over 1.5. In Figure 2, with monthly sampling, data augmentation is eco-

nomically important. For example, the large errors for M = 1, are drastically reduced via

data augmentation. For example, around data points 375, the true variance is very reason-

ably high around four (30 percent annualized volatility) and the filtered estimate forM = 1

is more than 1 variance unit lower than the other filtered estimates with M > 1 estimates.

This shows how important data-augmentation is with infrequently sampled data.

Figure 3 displays a smoothed version of the posterior distribution p (Vt|S1:t) as we vary

the degree of data augmentation. Here, the data is sampled monthly and the figure displays

how the shape of the filtering distribution changes with the degree of data augmentation.

The distribution p (Vt|S1:t) is close to normal for M = 1, but clearly becomes increasingly

non-normal (positively skewed) as the degree of data augmentation increases. In the case

of M = 1, we do not fill in any data and essentially assume the conditional distribution

of log returns and volatility increments are conditionally normal. When M is increased,

the model generates non-normal conditional distribution for returns and volatility which

directly appear in p (Vt|S1:t) via equations (7) and (8). Although this figure shows an

average volatility day, the effect is even stronger during extremely high or low volatility

periods, when the affect of mean-reversion is stronger. There is a similar effect on the

filtered distribution of returns. Although not included, the kurtosis increases with data

augmentation as the approximations to the conditional distributions are more accurate.

3.2.2 Incorporating jumps

This section considers a model with jumps in prices and stochastic volatility, in order to

understand how the filter performs in separating jumps from stochastic volatility. The
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Figure 1: A representative simulated sample path of daily returns (top panel), posterior

means of the filtered volatility distribution for M=1, 2, 5, 100 (the true volatilities are the

dots), and discretization error for the difference between the posterior means and the true

distribution for M=1, 2, 5, 100.
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Figure 2: A representative simulated sample path of daily returns (top panel), posterior

means of the filtered volatility distribution for M=1, 2, and 5 (the true volatilities are the

dots), and discretization error for the difference between the posterior means and the true

distribution for M=1, 2, and 5.
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Figure 3: Filtering densities for the stochastic volatility model as a function of the degree

of data augmentation (M). The densities were smoothed using kernels.

SVJ model adds an additional layer of complexity because the “volatility” of returns is

now generated by two components: a slow-moving stochastic volatility component and

infrequent, but large jumps. This complicates filtering because large movements could be

generated by either high volatility or jumps. The parameters in the SVJ model are again

based on Eraker, Johannes, and Polson (2003): μ = 0.05, θv = 0.8152, κv = 0.02, σv = 0.10,

μy = −2.5, σy = 4.0 and λy = 0.006.

Table 3 summarizes the filtering results for volatility, jump sizes, and jump times for

daily and weekly frequencies. The results on jump estimation were so poor at the monthly

frequency, there are not reported. For the variances and jump sizes, the first two panels

provide results provide the RMSE and MSE distances between the approximate filtered

posterior means for a givenM and either the true filter or the true state, as in the previous

30



section. The volatility filtering results are qualitatively similar to those in the previous

section. Since jumps capture the largest movements, σv and θv are lower, which makes

volatility more slowly moving, reducing the benefits of data-augmentation.

Turning to the filtered jump sizes, the results indicate that there is little benefit to data

augmentation at either the daily or weekly frequency, thus R1 andM1 decrease very slowly.

Similarly, there is no increase in the precision of the jump size estimate vis-a-vis the true

jump sizes as augmentation increases. Since jumps are rare (about 0.006 · 252 = 1.6 per

year), it is extremely unlikely that more than one jump would occur over either the daily

or weekly frequency, and thus there are few gains to data augmentation. The jumps are

far more precisely estimated using daily data as all of the error metrics are much smaller

using daily data than weekly data. This is not at all surprising.

To quantify jump time estimates, we use two statistics to quantify the types of errors

that could be made. If the filtered posterior probability of a jump is greater than 50 percent,

we assume that a jump occurred over that sampling period. The first statistic quantifies

how data augmentation affects jump time estimates. This statistic, labeled Hit1, gives

the percentage of jump times identified by the approximate filter that were identified by

the true (M=100) filter. For example, a number of 90 for M = 2 indicates that of the

total jump times identifies by the true filter, 90 percent of these jump times were identified

by the approximate filter filling in one additional data point between observations. This

quantifies the discretization bias. The second statistics, Hit2, gives the percentage of actual

or simulated jumps that were correctly identified by the approximate filter. This shows

how accurately one can identify true jump times.

The results indicate that it is very difficult to estimate jump times at a weekly frequency.

A comparison of the distance measures to the truth (R2 and M2) for daily and weekly

frequencies show that RMSE (MSE) for weekly data is about five (12) times as large. Hit2

indicates that with daily data, about 60 percent of the jump times are correctly identified.
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This should not be surprising. Since Zj ∼ N (2.5, 42), just over 40 percent of the jump sizes

are between ±2.5 percent. Since daily diffusive volatility is about 0.9 (
√
0.8), more than 40

percent of the jumps are not “significant” as they are less than a three standard deviation

diffusive shock. In addition, volatility changes over time, and thus it is not surprising that

even with daily data, only about 60 percent of the jumps are identified.10

The ability to correctly identify jumps rapidly decreases for longer sampling intervals.

For weekly data, only 30 percent of the true jump times are correctly identified. Via the

aggregation in the stochastic differential equation, total diffusive return volatility over a

week is roughly
√
5 ≈ 2.25 times larger than daily volatility. If daily volatility is, for

example, about one percent, a three percent move is a statistical outlier. For weekly data,

this requires an almost seven percent move, showing why far fewer jumps are correctly

identified using weekly data. This indicates that even when the parameters are known, it is

very difficult to identify jumps are weekly. Although most papers estimating models with

jumps, even many of the earliest ones (e.g., Beckers 1981, Jarrow and Rosenfeld 1984) use

daily data, there are papers that use less frequently sampled data. For example, Andersen,

Benzoni, and Lund (2003) use weekly data to estimate a term structure model with jumps

while Das and Uppal (2004) use monthly data to estimate a jump-diffusion model on equity

returns. The results here indicate that it is likely very difficult to identify jump components

at these frequencies.

Figure 4 provides a graphical view of the filtering results for a randomly selected simu-

lation of 2000 days for the SVJ model with filtered estimates usingM = 10 and N = 10000.

The top panel displays the simulation returns; the second panel displays the true volatility

path (dots), the (10, 50, 90) percent quantiles; the third panel displays the true jump times

(dots) and estimated jump probabilities; and the bottom panel displays the true jump sizes

10This raises a subtle specification issue. The normally distributed jump specification implies that many

of the jumps are going to be small. An alternative specification which constrains all jump movements to

be large might be preferred.
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(dots) and the filtered jump size estimates. The confidence bands on the volatility state

are typically about 2 percent on each side of the posterior mean. This estimation risk has

always been a major concern, given the important role that volatility estimates play in

finance applications. In fact, Merton (1980) argues that the "Most important direction is

to develop accurate variance estimation models which take into account of the errors in

variance estimates" (p. 355). We discuss this in greater detail below.

Our algorithm does an excellent job identifying the large jumps, but it misses many of

the smaller jumps that are less than about 2 percent in absolute value. . The missed jumps

are too small to be identified as the algorithm cannot separate them from normal, day-to-

day movements. These results are important for practical applications, as the results show

that the algorithm is effective in identifying important (i.e., reasonably large sized jumps)

movements.

The results for the SVCJ model are similar to those for the SVJ model and are not

reported. At daily frequencies, it is possible to identify both return and volatility jumps as

their occurrence in coincidental. In effect, the jump in returns signals that volatility has

increased. If the occurrence is not coincidental, as is the case in one of the double-jump

models in Duffie, Pan and Singleton (2000), then it is possible to estimate return jumps,

but estimates of volatility jumps are not reliable.

3.3 The Information in Returns and Options

Most approaches for estimating volatility and jumps rely exclusively on returns, ignoring

the information embedded in option prices. In principle, options are a rich source of

information regarding volatility, which explains the common use of Black-Scholes implied

volatility as a volatility proxy for practitioners. In contrast to this is the common academic

approach of only using returns to estimate volatility.

In this section, we consider volatility estimates using returns and, additionally, option
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Table 3: Simulation results for the SVJ model. The summary statistics for variance esti-

mation are the same as in the previous tables. Hit1 reports the percentage of jumps (as

identified by the true filter) that are identified by the approximate filter. Hit2 identifies

the percentage of actual jumps that are identified by the approximate filter.

Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2

Variances
1 0.020 0.365 0.016 0.282 0.020 0.281 0.015 0.214

2 0.016 0.364 0.012 0.282 0.020 0.281 0.014 0.214

5 0.015 0.364 0.012 0.282 0.020 0.281 0.014 0.214

10 0.015 0.364 0.012 0.282 0.021 0.281 0.015 0.214

25 0.015 0.364 0.012 0.282 0.019 0.281 0.014 0.214

Jump Sizes

1 0.016 0.588 0.005 0.132 0.005 0.120 0.001 0.011

2 0.014 0.587 0.005 0.131 0.004 0.120 0.001 0.011

5 0.013 0.587 0.005 0.131 0.004 0.120 0.001 0.011

10 0.013 0.587 0.005 0.131 0.004 0.120 0.001 0.011

25 0.013 0.587 0.005 0.131 0.004 0.120 0.001 0.011

Jump Times

HIT1 HIT2 HIT1 HIT2

1 98.6 29.5 98.6 60.2

2 99.1 29.5 98.6 60.2

5 99.1 29.5 100 61.1

10 99.1 29.5 100 61.1

25 99.5 29.6 100 61.1
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Figure 4: Performance of the filtering algorithm using simulated daily data. The top

panel displays returns, the second panel displays the simulated volatilities (dots) and the

(10, 50, 90) quantiles of the filtering distribution, the third panel displays filtered jump

times (true jumps displayed as a dot), and the fourth panel displays the filtered jumps

sizes (true jump sizes are dots). Prices were simulated from an Euler scheme with 100 time

steps per day and the algorithm was run for M=10 and N=10000.
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prices. Our goal is to quantify the informativeness of options regarding volatility and also

to examine whether the informational content of the two sources is consistent, as a good

model would indicate.

To understand why option prices are, in principle, so informative about volatility, it is

useful to recall the arguments in Hull and White (1987). Hull and White (1987) indicate

that if there is stochastic volatility, then under certain conditions, the variance implied from

the Black-Scholes model (Black-Scholes implied volatility) at time t for an an-the-money

option that expires at time T , denoted, σ2t,T , is the average expected variance to maturity.

If we assume there are no jumps or leverage effects, then their result implies that

σ2t,T = (T − t)−1EQ
t

∙Z T

t

Vsds

¸
,

where Q is the equivalent martingale measure. Since option prices are one-to-one with im-

plied volatility, this implies that option prices (at least at-the-money ones) are determined

by expected variance over the life of the option contract.

Assuming a specific parametric model, the right-hand-side can be computed analytically.

For example, in the case of square-root stochastic variance with jumps in variance (but not

in prices), the Black-Scholes implied volatility relates the underlying parameters and

σ2t,T = (T − t)−1EQ
t

∙Z T

t

Vsds

¸
=
¡
θQv + λQμQv

¢
+

Vt −
¡
θQv + λQμQv

¢
κQv (T − t)

³
e−κ

Q
v (T−t) − 1

´
.

This relation does not hold exactly with jumps in prices, however, it does provide a

number of general points. For short-dated options, (T − t) is very small and e−κ
Q
v (T−t)−1

κQv (T−t)

is close to one. This implies that σ2t,T ≈ Vt, which, in large part, is the reason why it is

common to state that options are so informative about volatility. Second, the informational

content of implied volatility in the context of a formal model crucially depends on model

specification and accurate estimates of risk-neutral parameters. Misspecification or poorly

estimated risk premia could results in directionally biased estimates of Vt based on options.

Finally, index option prices generally contain a relatively large bid-ask spread relative to
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futures or individual stocks, as noted by Bakshi, Cao, and Chen (1997) or George and

Longstaff (1993). This implies that while option prices are informative, they made be quite

noisy as a measure of volatility.

We filter jumps and volatilities from the following system:

log
¡
CMar
t

¢
= log

¡
CMol

¡
St, Vt,Θ

P,ΘQ¢¢+ εt.

d log (St) = (rt + ηvVt − Vt/2) dt+
p
Vt−dW

s
t + d

³XNt

j=1
Zs
j

´
dVt = κv (θv − Vt) dt+ σv

p
Vt−dW

v
t + d

³XNt

j=1
Zv
j

´
,

where ΘP are the structural parameters of the system, ΘQ are the risk premiums, and εt

is the pricing error which captures bid-ask spreads. We assume that εt ∼ N (0, σ2ε) and

assume σε = 0.10 (ten percent). In general, the higher the bid-ask the less informative

option prices are about volatility, which implies our pricing error is conservative and will

not bias our findings.

We focus on two issues. The first is the general informativeness of the two data sources.

We filter volatilities using only returns and then using returns and options jointly and

compare the average posterior standard deviations. That is, we compare the average pos-

terior standard deviations of p (Vt|P1:t) and p (Vt|P1:t, C1:t). Since options are informative

about volatility, we expect the posterior standard deviations to be smaller with options.

One advantage of our approach is that we are able to numerically quantify the information

content. Second, we compare the filtering distributions with and without options to ana-

lyze the extent to which the information in returns is consistent with the information in

option prices. The existing literature typically compares Black-Scholes implied volatility to

future realized volatility in order to understand the predictive content of implied volatility.

This literature is firmly non-parametric in the sense that specific models or risk premium

estimates are not considered. Here, we are interested in understanding the informational

content of the two sources in the context of a model that has been shown to fit both returns
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and options well.

To implement the filter, we S&P 500 index returns and options on the S&P 500 index

futures contract. We use the at-the-money call option contract with maturity greater than

one week. The options are American and thus it important to account for the possibility of

early exercise. We use the American adjustment feature in Broadie, Chernov, and Johannes

(2005) which uses an extremely accurate binomial Black-Scholes adjustment. The sample

period is from 1987 to 2003. We useN = 50, 000 andM = 10. We estimate the model using

only objective measure parameters and also estimate the model using the risk premium

estimated in Broadie, Chernov, and Johannes (2005). BCJ (2005) find a pure stochastic

volatility model (with no jumps) to be so misspecified that we do not consider it separately

here.

The results are in Table 4 and Figures (5) and (6) which display the filtering distribu-

tions for the SVCJ model. Regarding informativeness, Table 4 indicates that the posterior

standard deviation falls drastically in each model when options are added. The decrease is

greatest when we incorporate risk premia, as the posterior standard deviation is roughly

40 percent lower in the SVJ and SVCJ models. This decrease in estimation uncertainty

occurs despite the fact that we assumed a rather large pricing error variance. These results

show the precision of the information embedded in options regarding volatility and justifies

the common perception that options are highly informative about volatility.

Regarding consistency, the results are not as strong. First, assuming no risk premia we

see fromTable 4 that the upper 95 percent tail of the filtering distribution using only returns

is typically lower than the lower 5 percent tail of the filtering distribution using options

and returns. This is most easily seen in Figure (5) where the green lines (which represent

the (5, 50, 95) percent quantiles of the filtering distribution using options and returns) are

generally higher than those obtained only from returns. Whale the two series tend to move

together (spikes at similar points, e.g.), the properties tend to be very different.
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Table 4: Filtering results using returns and returns and option prices for the SVJ and SVCJ

models.

Model Risk Premiums std (Vt|P1:t) std (Vt|P1:t, C1:t) Prob(P95 > Q05)

SV No 0.354 0.235 0.061

SVJ No 0.298 0.228 0.144

Y es 0.298 0.175 0.560

SVCJ No 0.384 0.256 0.117

Y es 0.384 0.233 0.274

A few examples provide the necessary intuition. In late 1990, the option based estimates

of Vt were higher than those based on returns. This occurred after Iraq’s invasion of Kuwait

and imply the option based information anticipated larger moves that were subsequently

observed. Next, note that the level of volatility from the two sources were broadly consistent

in the low volatility period from 1993 to 1996. From 1997 onward, the estimates based on

options are substantially higher than those based only on returns. Finally, the estimates

using options have more short-lived spikes up and down. This could, in part, be due to

data issues related to changing option contracts upon expiration (moving from a one-week

to five-week option).

Figure 5 incorporates jump risk premia based on the estimates in Broadie, Chernov, and

Johannes (2005). The jump risk premia reduce μs (from about -4 percent to -6 percent)

and increase σs (from about 3 percent to 7 percent) and μv (from 1.5 to 7). Figure 6

displays the results incorporating risk premia which have the net result of increasing risk

neutral expected variance and thereby generally decreasing option based estimates of Vt.

The two data sources are now generally consistent from 1993 to 1996, however, the options

based information still implies a higher volatility for the pre 1993 period and the post 1997
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Figure 5: Filtered volatility using only returns data and both returns and options data.

For each we include the posterior means and a (5, 95) confidence band. The darker lines

are using only returns (generally the higher of the two sets of lines) and the lighter lines

are using both returns and options. We assume no risk premia.
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period, indicating that the two sources are not generally consistent.

The main explanation for the difference is model misspecification, in terms of the spec-

ification of the stochastic evolution under the objective measure, P, or time-varying risk

premia. The main problem is that actual volatility (whether under P (returns) or Q (op-

tions)) is generally high for long periods of time (1987 to 1992 and 1997 to 2003) and low

for long periods of time (1992 to 1996). In the model specified above, the long run mean

of Vt is constant (θv in the SV and SVJ models, θv + μvλ/κv). It is unlikely that Vt would

remain above or below its long run mean for an extended period of time. Duffie, Pan, and

Singleton (2000) introduced a model with a time-varying long-run diffusive variance mean

which could capture this feature. We find this to be a plausible explanation. Second, time-

varying risk premia provide an alternative explanation. This implies that the risk-neutral

parameters generating option prices vary over time, due to, for example, time-varying risk

aversion or business cycle risk. While this could generate the required effects, the does not

explain why these parameters vary across time, and is somewhat unsettling. Moreover, this

explanation would not explain why volatility estimates based only on time series display a

similar pattern of alternating low and high periods.

4 Conclusions

In this paper, we develop particle filtering algorithms for filtering and sequential parameter

learning. The methods developed apply generically in multivariate jump-diffusion models.

The algorithm performs well in simulations and we also apply the methodology to filter

volatility, jumps in returns, and jumps in volatility from S&P 500 index and index option

returns.

In future work, we plan a number of methodological and empirical extensions. Method-

ologically, the logical net step is to consider sequentially learning about state variables and
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Figure 6: Filtered volatility using only returns data and both returns and options data.

For each we include the posterior means and a (5, 95) confidence band. The darker lines

are using only returns (generally the higher of the two sets of lines) and the lighter lines are

using both returns and options. We assume the risk premia estimated in Broadie, Chernov,

adn Johannes (2005). 42



parameters. Johannes, Polson, and Stroud (2004) is a first step in this direction. Another

interesting extension is to apply particle filtering to continuous-time models with small

jumps, such as those driven by Levy processes (see, e.g., Barndorff-Nielson and Shephard,

2006b). Empirically, an interesting extension would be to compare the accuracy of volatil-

ity and jump estimates obtained from our filtering methodology to those obtained from

high-frequency data. Finally, the empirical results in the final section indicate that the

SVJ and SVCJ model are misspecified, as options and returns do not provide the same

information about volatility. It would be interesting to examine more flexible classes of

models with time-varying risk premia or long-run volatility levels.
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Appendix: Full Particle Filtering Algorithm for Jump-Diffusions

For simplicity, we first describe the full algorithm in the case of no derivative prices and

then discuss how to adapt the procedure to deal with derivatives.

1. Given
n¡

LM
t+1

¢(i)
, π

(i)
t+1

oN
i=1

, simulate the latent state vector and latent prices forward.

This requires the following steps. For j = 1, ...,M − 1, conditional on S(i)t+(j−1)M−1and

X
(i)
t+(j−1)M−1 :

(a) Sample Brownian increments

³¡
εst+jM−1

¢(i)
,
¡
εxt+jM−1

¢(i)´ ∼ N

⎛⎝0, J
M

M−1

⎛⎝ 1 ρ

ρ 1

⎞⎠⎞⎠ ;
(b) Sample jump sizes from their conditional distributions³

Zs

t+jM−1

´(i)
∼ Πs

µ
S
(i)

t+
(j−1)
M

, X
(i)

t+
(j−1)
M

¶
³
Zx

t+jM−1

´(i)
∼ Πx

µ
S
(i)

t+
(j−1)
M

,X
(i)

t+
(j−1)
M

¶
;

(c) Sample jump times

Js,(i)

t+
j
M

∼ Ber

µ
λs
µ
S
(i)

t+ (j−1)
M

, X
(i)

t+ (j−1)
M

¶
M−1

¶
Jx,(i)

t+
j
M

∼ Ber

µ
λx
µ
S
(i)

t+
(j−1)
M

, X
(i)

t+
(j−1)
M

¶
M−1

¶
;

(d) Using the simulated shocks, simulate states and prices forward:

S
(i)

t+ j
M

= S
(i)

t+ j−1
M

+ μs
µ
t+

(j − 1)
M

¶
M−1 + σs

µ
t+

(j − 1)
M

¶
ε
s,(i)

t+ j
M

+ Zs,(i)

t+
j
M

Js,(i)

t+
j
M

X
(i)

t+ j
M

= X
(i)

t+ j−1
M

+ μx
³
X
(i)

t+ j−1
M

´
M−1 + σx

³
X
(i)

t+ j−1
M

´
εx,(i)
t+

j
M

+ Zx,(i)

t+
j
M

Jx,(i)

t+
j
M

.
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where

μs
µ
t+

(j − 1)
M

¶
= μs

³
S
(i)

t+ j−1
M

,X
(i)

t+ j−1
M

´
and

σs
µ
t+

(j − 1)
M

¶
= σs

³
S
(i)

t+ j−1
M

,X
(i)

t+ j−1
M

´
2. Collect the new simulated prices and states into

¡
LM
t+1

¢(i)
=

µ¡
XM

t+1

¢(i)
,
¡
SM
t+1

¢(i)
,
³
Zs,M
t+1

´(i)
,
³
Zx,M
t+1

´(i)
,
³
Js,M
t+1

´(i)
,
³
Jx,M
t+1

´(i)¶
.

3. Evaluate the likelihood function at the new state, p
³
Pt+1|

¡
LM
t+1

¢(i)´
, and set

π
(i)
t+1 =

p
³
Pt+1|

¡
LM
t+1

¢(i)
, Pt

´
XN

i=1
p
³
Pt+1|

¡
LM
t+1

¢(i)
, Pt

´ .
4. Re-sample N particles with replacement from the distribution of

n¡
LM
t+1

¢(i)oN
i=1
with

probabilities
n
π
(i)
t+1

oN
i=1
.

Adding derivative prices adds only one additional complication. To evaluate the deriv-

ative prices, we need to compute C
³
X
(i)
t+1, St+1

´
, since St+1 is observed. LM

t+1 contains

state variables only up to time
¡
t+ 1− M−1

M

¢
, and therefore we must add an additional

simulation step to simulate X(i)
t+1 conditional on X

(i)

t+1−M−1
M

. Then, given C
³
X
(i)
t+1, St+1

´
,

the likelihood function in step 3 used to compute π(i)t+1 is just a bivariate likelihood function.

The simplicity and flexibility of the particle filtering approach is clear: even though the

derivative prices are not known analytically, the filter still applies as we need only evaluate

the likelihood.
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