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Abstract. We consider a general Schrödinger operator L + V on a domain E ⊂ R
d, and its

associated positive ground state h solution to the maximal eigenvalue problem L(h) + V h = λh.
In this work, an interacting particle model approximating the pair (h, λ) is studied. When V ≤ 0,
a basic version of this particle system consists of N walkers evolving independently according to
the Markov generator L, each walker dying at a rate given by the value of the potential |V | at the
walker’s current location; when a walker dies, any other one splits in two. The long time distribution
of the particle system is then an estimator of h.
Under some reasonable assumptions (with examples for E = R

d), we get a non-asymptotic control
of the L

p deviations (resp. the bias) of this estimator with the genuine rate of convergence in 1/
√

N
(resp.1/N). We also compute explicitly the asymptotic standard deviation of the estimation of λ,
which remains bounded in usual mild situations.
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Introduction. Our motivation can be split in two steps:

1. Control the long time behavior of an interacting particle approximation of
Feynman-Kac formulas with genuine rate of convergence.

2. Use the long time distribution of the particle system as a Monte Carlo esti-
mator of the ground state of Schrödinger operators.
The last question is of very high practical interest in Quantum Physics and Chemistry,
where one uses such Diffusion Monte Carlo methods to compute observable of systems
(see [3], [2] and references therein). In the difficult yet crucial case of Fermi systems,
the so-called Fixed Node Approximation is used ([3],[2]), where one is resorting to the
ground state of a general Schrödinger operator on a domain of R

d.
We have focused in this work on the interacting particle system (IPS) studied by

P.Del Moral and L.Miclo in the article [7]. In its diffusive time-continuous version, it
is particularly well suited to this context. Indeed, the fixed number of particles and
the selection mechanism make it liable to be stable on the long run, and to give rise
to finite variance. Note that it has not yet inspired as such practitioners’ heuristics.
Several keys are given here to design it in practice, and some toy simulations will be
soon available on the author’s web page, and in [12].

We have used for the analysis some semi-group and martingale techniques in-
herited from [7]. However, this paper is mostly self-contained. The good rate of
convergence of the long time distribution of the IPS is a new result, technically de-
manding, and proved in a very reasonable setting which includes examples in R

d.
Intermediate results can be used to precise some proofs of [7] (see remark 4.5). For
the stability questions, we have used a Foster-Lyapounov drift criterion to prove uni-
form exponential convergence of Schrödinger semi-groups (proposition 1.2) under a
quite general assumption, which seems to be a new point also.

If K(x, dy) is an integral kernel, ϕ a test function, and µ a probability measure,
we will use the notation: µK(ϕ) =

∫
ϕ(y)K(x, dy)µ(dx). ( )+ and ( )− denote

respectively the positive and negative part.

∗Lab. J.A. Dieudonné UNSA 06108 Nice (mathias.rousset@polytechnique.org).
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2 M. ROUSSET

Let us give now the main results of this paper. Suppose we are given an irreducible
strong Feller diffusion Xt in an open connected domain E ⊂ R

d with generator L,

reversible with respect to a probability measure µ(dx) =
h2

I (x)dx
R

h2
I(x)dx

for some hI ≥ 0. V

denotes a potential function such that the Feynman-Kac semi-group

P V
t (ϕ)(x) = E

(

ϕ(Xt)e
R

t
0V (Xs)ds|X0 = x

)

ϕ ∈ L
2(µ)

is strongly continuous in L
2(µ) and Fellerian ( x 7→ P V

t (ϕ)(x) is continuous for ϕ
bounded, see [8]). It gives rise to its associated self-adjoint Schrödinger operator

(L+ V )(ϕ) = lim
t→0+

P V
t (ϕ) − ϕ

t
∈ L

2(µ)

defined on its domain D(L+ V ) where the latter limit exists (see [8]).
Our main example (detailed in section 1.1), which arises in many practical situations
of interest (again in [3]), is some importance sampling transformation of the usual
Schrödinger operator (with hI > 0)

(L+ V )(.) = h−1
I (

∆

2
+ V0)(hI .) , (0.1)

which leaves the spectrum of ∆
2 + V0 invariant, and multiply eigenfunctions by h−1

I .
Xt is then a Brownian motion with local drift ∇ lnhI .
We will work under the following usual assumption:

Assumption 1. The spectrum of L + V is bounded by a greatest eigenvalue λ,
and has a spectral gap λ∗ > 0. λ is associated with a unique eigenfunction h ∈ L

2(µ)
(the ground state), which is continuous and strictly positive.

Note that assumption 1 is very general and idiomatic, see [8] chapter 3, [4], [9],
[11], and the example of section 1.1.
By spectral theory, we get that

P V −λ
t (ϕ)

exp−−−−→
t→+∞

hµ(hϕ) in L
2(µ)

with rate λ? > 0. If the initial probability law η0 of X0 has a density in L
2(µ), the

Cauchy-Schwarz inequality gives that

η0P
V −λ
t (ϕ)

exp−−−−→
t→+∞

η0(h)µ(hϕ) .

This is not sufficient to compute h numerically, since of course λ is unknown. That’s
why we resort to the renormalized version of the semigroup

ηt =
η0P

V
t (ϕ)

η0P
V
t (1)

=
η0P

V −λ
t (ϕ)

η0P
V −λ
t (1)

.

This probability flow verifies from the discussion above

ηt(ϕ)
exp−−−−→

t→+∞
µ(hϕ)

µ(h)
= η∞(ϕ) ,

the ground state eigenvalue λ can be recovered from η∞ by the identity

η∞(V ) =
µ(−L(h) + λh)

µ(h)
= λ ,
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and the Feynman-Kac semi-group can be recovered from ηt by

η0P
V
t (ϕ) = ηt(ϕ) exp

(∫ t

0

ηs(V )ds

)

.

Thus a stochastic particle approximation of ηt enables the computation of P V
t , of λ,

and of h under a re-normalized weak form.
Now we consider continuous and bounded potentials V ∈ Cb(E) and smooth test
functions ϕ ∈ C∞

b (E), and we remark then that ηt is a weak solution to the “non-
linear” Fokker-Planck equation

∂tηt(ϕ) = ηt (L(ϕ) + (V − ηt(V ))ϕ)

= ηt(Lηt(ϕ)) . (0.2)

The “nonlinear” Markov generator Lη is a jump perturbation of L defined by (other
choices are possible as in the abstract, see subsection 2.1)

Lη(ϕ)(x) = L(ϕ)(x) +

∫

E

(ϕ(y) − ϕ(x))
(
(V (x) − η(V ))− + (V (y) − η(V ))+

)
η(dy) .

To compute ηt, we construct a particle system associated to this mean-field interpre-
tation. The latter is denoted ξt = (ξ1t , ..., ξ

N
t ) ∈ EN with initial law η⊗N

0 , and its
Markov generator is given by

L(ψ)(ξ) =

N∑

i=1

L
(i)
m(ξ)(ψ)(ξ) with m(ξ) =

1

N

N∑

j=1

δξj (0.3)

for any ξ = (ξ1, ..., ξN ) ∈ EN . The exponent (i) means that the operator acts on
the i-th coordinate of the test function ψ ∈ C∞

b (EN ). The empirical measure of the
particle system ξt denoted

ηN
t = m(ξt) =

1

N

N∑

j=1

δξj
t

is then a stochastic approximation of ηt and converges to the ground state η∞ on the
long run.
ξt consists of N walkers evolving independently according to the Markov generator
L, but constrained by the following birth and death mechanism:

1. with rate (V (ξi
t) − ηN

t (V ))−, each walker ξi
t jumps to the location of a uni-

formly randomly chosen walker.
2. with rate (V (ξi

t) − ηN
t (V ))+, a uniformly randomly chosen walker jumps to

the location of each walker ξi
t .

Under some localization assumptions (assumptions 1, 2 and 3; with examples in R
d),

we prove a strong control on the long time behavior of this IPS,

sup
T≥0

E(|ηN
T (ϕ) − ηT (ϕ)|p)1/p ≤ Cp‖ϕ‖∞√

N

sup
T≥0

|E(ηN
T (ϕ)) − ηT (ϕ)| ≤ C‖ϕ‖∞

N

sup
T≥0

‖Law(ξi
T ) − ηT ‖tv ≤ C

N
.
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To get a more quantitative result, we then consider the asymptotic standard deviation
of the estimator of λ

Ad2(V ) = lim
N→+∞

lim
T→+∞

NE
(
(ηN

T (V ) − λ)2
)
, (0.4)

and wee give an explicit upper bound on the latter which remains finite in usual mild
situations with general unbounded potentials V .

1. Assumptions and examples. We begin with our main example (see also
[3]), which motivates the results of the paper.

1.1. Example. We say that a positive function h has exponential fall-off at
infinity as soon as − lnh goes to infinity at least linearly.

Let E be a bounded open domain of R
d with boundary ∂E. Classically, we

consider the Schrödinger operator ∆
2 +V0, with V0 continuous on Ē and going to −∞

at infinity lim+∞ V0 = −∞.
∆
2 +V0 is then self-adjoint for the core C∞

c (E) of smooth test functions with compact
support in E (Dirichlet conditions), and has compact resolvent (see [11] ch.XIII). The
operator has thus a discrete spectrum with maximal eigenvalue λ, a spectral gap λ∗,
and a ground state h0 > 0 on E. h0 is continuous on Ē with h0|∂E = 0, and has
exponential fall-off at infinity (see [1]).
Now we consider the importance sampling transformation (0.1) for hI ∈ C∞ ∩L

2(Ē),
with hI > 0 on E, hI |∂E = 0 and exponential fall-off. The resulting operator L+ V

then reads

L =
∆

2
+ ∇ lnhI∇

V = V0 + h−1
I

∆

2
hI .

L + V is self-adjoint for the core C∞
c (E) in L

2(µ), with µ(dx) =
h2

I(x)dx
R

h2
I(x)dx

, it has the

same spectrum as ∆
2 + V0, but with continuous ground state h = h0h

−1
I > 0. As a

consequence, L+ V satisfies assumption 1.
To stick to our probabilistic setting we additionally ask that

1. ∇hI 6= 0 on ∂E,
2. For some constant a and b, x.∇ lnhI(x) ≤ a|x|2 + b for all x ∈ Ē,
3. V or h−1

I
∆
2 hI is bounded above.

By proposition 7 of [3], L defines then a non-explosive strong Feller diffusion Xt in
E, verifying the EDS (for some Brownian motion t 7→Wt)

dXt = dWt + ∇ lnhI(Xt)dt ,

and reversible with respect to µ.
Here are two examples satisfying assumptions 2 and 3:

Remark 1.1. Within the context of section 1.1, assumption 2 and 3 are satisfied
as soon as V0 is Hölder continuous, and that there is an ε > 0 such that, outside some
compact set

ε ≤ h = hIh
−1
0 ≤ ε−1 , (1.1)

−ε−1 ≤ h−1
I

∆

2
hI − h−1

0

∆

2
h0 ≤ −ε . (1.2)

Heuristically, this means that hI and h0 must have similar behaviors outside compact
sets; hI being chosen slightly more concave than h0.
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First example for bounded domains. Suppose now that E is bounded and V0 is
Hölder. The Schrödinger operator is regularizing and h0 is smooth. Note this classical
fact 1: ∇h0 6= 0 on ∂E. It is now always possible to construct explicitly a hI satisfying
(1.1) and (1.2), and thus assumptions 1, 2 and 3.

Proof. On the boundary ∂E, ∇h0 and ∇hI are non-degenerated and directed
along the normal vector of ∂E. This ensures (1.1). Now adjust the concavity of hI

near the boundary so that (1.2) is satisfied.
Second example for unbounded domains. This case is slightly more intricate, so

we only give a particular explicit example:
Suppose that E = R

d, V0 Hölder, and that h0 has the following expression

h0(x) = e−
|x|4

4 +ε0(x) ,

where ε0 is smooth and bounded with bounded first derivatives.
Now if we choose hI such that, outside some compact set,

hI(x) = e
− |x|4

4 +ε0(x)− C
|x|2

for some C > 0; (1.1) and (1.2), and thus assumptions 1, 2 and 3 are satisfied.
Proof. (1.1) is obvious. A straightforward computation shows that at infinity

V (x) − λ = −4C + o(|x|−2), which gives (1.2).
Third example for general situations. Here is our last example, less restrictive

(neither V nor h−1 shall be bounded). Assumptions 2 and 3 are not satisfied, but the
expression of the asymptotic standard deviation of the eigenvalue estimation Ad(V )
( defined by (0.4)) remains finite, which is a very favorable indication of practical
efficiency.
Take E = R

d and suppose V0 behaves polynomially at infinity. Choose hI such that:
1. ln hI and its two first derivatives are of polynomial behavior.
2. h = h0h

−1
I is bounded with exponential fall-off.

then the expression of Ad(V ) remains bounded. Note that it is practically easy to
choose such a hI , since the exponential fall-off of h0 is known from V0 (see [1]).

Proof. Remark that: V = V0+ ∆
2 ln(hI)+

1
2 (∇ ln(hI))

2 is polynomially dominated,

and that dη∞

dµ (x) ∝ h(x) = h0(x)h
−1
I (x), dη∞

dx (x) ∝ h0(x)hI (x), and dµ
dx (x) ∝ h2

I(x)
are bounded with exponential fall-off. The result follows then from proposition 3.5.

This latter case could be generalized to non-continuous potentials V0 lying locally
in the Kato class (see [5]).

1.2. Convergence of semi-groups in the uniform sense. We define the
non-linear propagator associated to ηt by

Φt,T (ν) =
νP V

T−t

νP V
T−t(1)

∈ P(E) .

By the semi-group property, it verifies the propagation equation ηT = Φt,T (ηt).
In this subsection, we give an assumption for the uniform convergence of P V −λ

t

and its consequence for the stability of Φt,T . This will be crucial for the stability of
the particle approximation. The only assumption we need is the following:

1consider theorem 4.7 and 4.19 of [5], and an integration by part between ∆

2
h0 and positive

solutions of the Dirichlet Boundary Value Problem.
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Assumption 2. V is bounded above and there is an ε > 0 such that the subset
Kε = {x ∈ E |V (x) − λ ≥ −ε} is relatively compact in E.

This is a natural physical assumption, which ensures that h is a “strict bound”
state in the sense that V is a strict potential barrier outside some compact set.
We then have:

Proposition 1.2. Under assumptions 1 and 2, the Feynman-Kac semi-group
is uniformly exponentially converging, in the sense that there is some C ≥ 0 and
0 < ρ < 1 such that for any test function ϕ,

‖P V −λ
t (ϕ) − hµ(hϕ)‖∞ ≤ ‖ϕ‖∞Cρt .

Proof. We use the results developed by R.L. Tweedie and its collaborators for
instance in [6]. We consider the following strong Feller irreducible Markov diffusion
semi-group

P h
t (ϕ) = h−1P V −λ

t (hϕ) ,

its associated diffusion process Xh
t , and its extended generator Lh = h−1(L + V −

λ)(h.), reversible with respect to h2(x)µ(dx). We show that h−1 is a strict Lyapounov
function for Lh outside K̄ε (in the sense of condition (D̃) of [6]). Indeed we have that:

1. K̄ε is compact and thus is a petite set for Xh
t (see [13] theorem 7.1 and 5.1).

2. Lh(h−1) + εh−1 = (V − λ+ ε)h−1 is bounded on K̄ε and negative outside.
So by theorem 5.2 of [6], Xh

t is h−1-uniformly ergodic which means that:

sup
|g|≤h−1

|P h
t (g)(x) − µ(h2g)| ≤ h−1(x)Cρt ,

and gives the result for ϕ = gh.
We then harvest the uniform stability of Φt,T :
Corollary 1.3. Under assumption 1 and 2, we have for some C ≥ 0, 0 < ρ < 1

and any ν ∈ P(E)

|Φt,T (ϕ)(ν) − η∞(ϕ)| ≤ ‖ϕ‖∞
C

ν(h)
ρT−t .

Proof. We take ‖ϕ‖∞ ≤ 1 and use the Landau symbol “O” uniformly with respect
to t, T , ν and ϕ. From proposition 1.2 we get

Φt,T (ϕ)(ν) =
νP V −λ

T−t (ϕ)

νP V −λ
T−t (1)

=
ν(h)µ(hϕ) +O(ρT−t)

ν(h)µ(h) +O(ρT−t)

=
µ(hϕ) +O( ρT−t

ν(h) )

µ(h) +O( ρT −t

ν(h) )
,

which gives the result.

1.3. A last assumption. To construct the particle system and carry out the
long time analysis, we will need some more boundedness and regularity hypotheses:

Assumption 3.
1. V is continuous and bounded
2. ln h is continuous and bounded
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3. For ϕ ∈ C∞
b (E), (t, x) 7→ P V

t (ϕ)(x) is C1,2
b (E × R

+)

Remark 1.4. C1,2
b (E × R

+) denotes bounded continuous functions of E with
continuous first time derivative and continuous twice space derivatives. The regularity
assumption is probably necessary only for intermediate technical purpose.
The second assumption could be replaced by supt,N E

(
1

(ηN
t (h))p

)
< +∞.

The regularity of P V
t (ϕ) and V gives the backward Fokker-Planck equation in a

pointwise sense:
Lemma 1.5. For all ϕ ∈ C∞

b (E), we have

∂tP
V
T−t(ϕ) = −P V

T−t(L(ϕ) + V ϕ)

= −L(P V
T−t(ϕ)) + V P V

T−t(ϕ) .

2. The Interacting Particle System approximation.

2.1. The generator of the IPS. In this subsection, we design the interacting
particle interpretation of the flow (ηt)t≥0, with initial probability η0 ∈ P(E). The
bounded potential being given, we first consider two continuous bounded applications
(P(E),weak topology) → (Cb(E), ‖ ‖∞), whose images are nonnegative functions de-
noted

η 7→ V b
η ≥ 0 , η 7→ V d

η ≥ 0

and verifying

V b
η (x) − V d

η (x) = V (x) + Cη ,

where Cη does not depend on x (as explained in section 2.2, “b” stands for “birth”
and “d” for “death”).
We define:

V ∗
η = V b

η + V d
η .

Example 2.1. Here are several possible choices of the above functions:
1. V b = 0 , V d = sup(V ) − V (as in the abstract)
2. V b = V + , V d = V −

3. V b
η = (V − η(V ))+ , V d

η = (V − η(V ))−

The last choice is of fundamental importance since it is invariant by the transformation
V 7→ V + C which leaves ηt invariant.

Recall from (0.2) that ηt satisfies the following fundamental non-linear Markovian
evolution equation

∂tηt(ϕ) = ηt(Lηt(ϕ)) ,

but here the non-linear Markov generator is more generally defined by

Lη(ϕ)(x) = L(ϕ)(x) +

∫

(ϕ(y) − ϕ(x))(V b
η (y) + V d

η (x)) η(dy) .

Indeed we have that

η(Lη(ϕ)) = η(L(ϕ)) + η(V b
η ϕ) − η(V d

η ϕ) + η(V d
η )η(ϕ) − η(V b

η )η(ϕ)

= η(L(ϕ) + V ϕ) − η(ϕ)η(V ) .
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If A is a linear operator, the associated formal “carré du champ” ΓA is a bilinear
operator defined by

ΓA(ϕ, ϕ) = A(ϕ2) − 2ϕA(ϕ).

Recall that when A is the generator of a Markov process Xt, ΓA(ϕ, ϕ) ≥ 0 and
∫ t

0 ΓA(ϕ, ϕ)(Xs)ds is the predictable quadratic variation of the martingale part of
ϕ(Xt).
We can define then

ΓLη (ϕ, ϕ)(x) = ΓL(ϕ, ϕ)(x)

+

∫

(ϕ(y) − ϕ(x))2(V b
η (y) + V d

η (x))η(dy) ,

and remark that

η(ΓLη (ϕ, ϕ)) = η(ΓL(ϕ, ϕ)) + η(ϕ2V ∗
η ) + η(ϕ2)η(V ∗

η ) − 2η(V ∗
η ϕ)η(ϕ)

= η(ΓL(ϕ, ϕ)) + η
(
(ϕ− η(ϕ))2(V ∗

η + η(V ∗
η ))

)
.

We now consider the interacting particle model (ξt)t∈R+ associated to the nonlinear
operator Lη as defined in the introduction by its initial law η⊗N

0 and its Markov
generator L given in (0.3). The IPS is a Markov process resulting of a bounded jump
perturbation of N independent copies of Xt, and thus is well defined.
When we use as a test function the empirical mean m(.)(ϕ) ∈ C∞

b (EN ) of a ϕ ∈
C∞

b (E), we have the following simple form of the generator and its associated carré-
du-champs:

Lemma 2.2.

L(m(.)(ϕ)) = m(.)(Lm(.)(ϕ))

ΓL(m(.)(ϕ),m(.)(ϕ)) =
1

N
m(.)(ΓLm(.)

(ϕ, ϕ)).

Proof. The first identity is by definition. The second one is a straightforward
formal computation. We use the linearity of A 7→ ΓA to get

ΓL(ψ, ψ) =

N∑

i=1

Γ
(i)
Lm(.)

(ψ, ψ) ,

and since Lη(constant) = 0, for any ξ ∈ EN , we have

Γ
(i)
Lm(ξ)

(m(.)(ϕ),m(.)(ϕ))(ξ) =
1

N2
2

∑

j 6=i

ϕ(ξj)Lm(ξ)(ϕ)(ξi) +
1

N2
Lm(ξ)(ϕ

2)(ξi)

−2(
1

N

∑

j

ϕ(ξj))
1

N
Lm(ξ)(ϕ)(ξi)

=
1

N2
Γ

(i)
m(ξ)(ϕ, ϕ)(ξi) ,

and the result follows.
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Now we can state our key tool:
Proposition 2.3. For all ϕ. ∈ C1,2

b (E × R
+), the process

Mt(ϕ.) = ηN
t (ϕt) − ηN

0 (ϕ0) −
∫ t

0

ηN
s

(
∂sϕs + LηN

s
(ϕs)

)
ds

is a local martingale, with predictable quadratic variation given by

〈
M(ϕ.)

〉t

0
=

1

N

∫ t

0

ηN
s

(
ΓL

ηN
s

(ϕs, ϕs)
)
ds ,

and jumps estimated by

|∆Mt(ϕ.)| ≤
2‖ϕt‖
N

.

We recall that

ηN
s (LηN

s
(ϕ)) = ηN

s

(
L(ϕ) + (V − ηN

s (V ))ϕ
)

and

ηN
s (ΓL

ηN
s

(ϕ, ϕ)) = ηN
s (ΓL(ϕ, ϕ)) + ηN

s

(

(ϕ− ηN
s (ϕ))2(V ∗

ηN
s

+ ηN
s (V ∗

ηN
s

))
)

.

Proof. This is a particular case of the usual martingale problem associated to the
Markov process ξt. The statement can be proved with a standard application of Itô
formula, with Markov property arguments for the jump part.
The estimate on the jumps follows from the fact that each jump concerns only one
particle (see the probabilistic construction in subsection 2.2).

From the above proposition we immediately get the stochastic differential equa-
tion

dηN
t (ϕ) = ηN

t (LηN
t

(ϕ))dt+ dMt(ϕ) ,

which is a perturbation of the equation (0.2) of the dynamic of ηt by a martingale
whose jumps and predictable quadratic variation of order 1

N . In this sense, we already
see that ηN

t is a natural approximation of the flow ηt. Of course, this point of view
is to elementary to enable an asymptotic analysis mainly because of the non-linearity
of (0.2).

2.2. Probabilistic construction and genetic interpretation. We start with
a more explicit expression for the IPS generator:

Proposition 2.4. We have L = Lmut + Lsel with the pair mutation/selection
generators defined by

Lmut(ψ)(ξ) =

N∑

i=1

L(i)(ψ)(ξ)

Lsel(ψ)(ξ) =
N∑

i=1

V d
m(ξ)(ξ

i)
1

N

N∑

j=1

(ψ(ξi→j ) − ψ(ξ))

+

N∑

i=1

V b
m(ξ)(ξ

i)
1

N

N∑

j=1

(ψ(ξj→i) − ψ(ξ)) ,
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where if ξ′ = ξi→j then ξ′k = ξk except for k = i where ξ′i = ξj .

Proof. The jump part of L is by definition

Lsel(ψ)(ξ) =
N∑

i=1

V d
m(ξ)(ξ

i)(
1

N

N∑

j=1

ψ(ξi→j) − ψ(ξ))

+

N∑

i=1

1

N

N∑

j=1

V b
m(ξ)(ξ

j)(ψ(ξi→j ) − ψ(ξ)) ,

and the result follows by exchanging the indexes i and j in the second part of the
right hand side of the identity.

Thus the N walkers evolve according to the following birth and death mechanism,

for any i ∈ [1, N ] (τ
d/b,i
n+1 designing independent exponential clocks of mean 1):

1. Between each jump time, the walkers evolve independently according to the
mutation generator L.

2. At random times T d,i
n defined by

∫ T d,i
n+1

T d,i
n

V d
ηN

s
(ξi

s)ds = τ
d,i
n+1, a walker is uni-

formly randomly chosen, and the i-th walker then jumps to its location.

3. At random times T b,i
n defined by

∫ T b,i
n+1

T b,i
n

V b
ηN

s
(ξi

s)ds = τ
b,i
n+1, a walker is uni-

formly randomly chosen, and then jumps to the location of the i-th walker.

This explains how the selection generator tends to “get rid of” walkers with relatively
high potential V d

ηN
t

, and tends to “reproduce” walkers with relatively high potential

V b
ηN

t
. The effect of selection being then to favor walkers with relatively high potential

V = V b
ηN

t
−V d

ηN
t
−CηN

t
. In this sense, the IPS can be seen as a continuous time genetic

algorithm with fitness function V and mutations of generator L.
Moreover this structure enables a nice parallelized implementation, where walkers are
individually collecting information from V , but yet learns globally the structure of
the ground state h.
In practice, one may use some Euler discretization scheme, and may approximate
integrals with sums. This requires at least the continuity of the potential V .

3. Long time behavior of the IPS.

3.1. Non-asymptotic control. We give directly the main theoretical results of
this paper, the proof being postponed to section 4:

Theorem 3.1 (Time-uniform L
p estimate). We suppose that assumptions 1, 2

and 3 are verified.
There are constants Cp such that, for all test function ϕ ∈ Cb(E) with ‖ϕ‖∞ ≤ 1

sup
T≥0

E
(
|ηN

T (ϕ) − ηT (ϕ)|p
)1/p ≤ Cp√

N
.

and

Theorem 3.2 (Bias estimate/Time-uniform convergence of a particle). We sup-
pose that assumptions 1, 2 and 3 are verified.
There is a constant C such that, for all ϕ ∈ Cb(E) with ‖ϕ‖∞ ≤ 1:

sup
T≥0

∣
∣E

(
ηN

T (ϕ)
)
− ηT (ϕ)

∣
∣ ≤ C

N
,
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sup
T≥0

‖Law(ξi
T ) − ηT ‖tv ≤ C

N
.

Remark 3.3. One can easily show that the particle system ξt is recurrent and
ergodic. If the invariant measure is finite, it converges in law to a random variable
ξ∞ (this always happens when E is compact). ηN

∞ is then the natural estimator of
η∞ and we have the almost sure convergence

ηN
∞

a.s.−−−−−→
N→+∞

η∞ in the weak topology

which follows the L
p estimate for p = 4 with a Borel-Cantelli argument.

This situation is probably true in general for N large enough, although the positivity
seems difficult to prove. Anyway, one can take for ηN

∞ any adherent limit (which is a
positive measure) of ηN

t under the weak topology of evanescent functions.
We want to lay the emphasis on the difficulty of the proof of these results, which

comes from the non-linear propagation of the error made by the particle approxima-
tion.

We also propose an asymptotic study of the standard deviation:

3.2. Long time asymptotic standard deviation. The asymptotic standard
deviation gives a quantitative information of the IPS approximation. We show in
proposition 3.5 that the latter is likely to remain bounded in many mild situations of
interest.

Theorem 3.4. Under assumptions 1, 2 and 3, we have for any ϕ ∈ Cb(E)
(ϕ̄ = ϕ− η∞(ϕ))

lim
N→+∞

lim
T→+∞

NE
(
(ηN

T (ϕ) − η∞(ϕ))2
)

= Ad2(ϕ) = η∞(ϕ̄2) + 2

∫ +∞

0

η∞
(
P V −λ

s (ϕ̄)2(V b
η∞

+ η∞(V d
η∞

))
)
ds .

Note that by proposition 1.2, the local noise introduced by interactions

s 7→ η∞
(
P V −λ

s (ϕ̄)2(V b
η∞

+ η∞(V d
η∞

))
)

is exponentially decreasing with s.
We’re interested at clarifying this quantity for the meaningful case ϕ = V , which

corresponds to the eigenvalue estimation. We will take V b
η = (V − η(V ))+ and V d

η =
(V − η(V ))−.

Proposition 3.5. Under assumption 1 only, we have

Ad2(V ) ≤ η∞((V − λ)2) +
1

λ∗

∥
∥
∥
dη∞
dµ

×
(
(V − λ)+ + η∞((V − λ)−)

)
∥
∥
∥
∞
µ((V − λ)2) .

Proof. Since ϕ̄ = ϕ − η∞(ϕ) is orthogonal to h in L
2(µ), we have by spectral

theory: µ(P V −λ
t (ϕ̄)

2
) ≤ e−2λ∗tµ(ϕ̄2). The result follows from theorem 3.4 for ϕ = V

with η∞(V ) = λ.
When dη∞

dµ = h
µ(h) is bounded with exponential fall-off, this upper bound is ex-

pected to remain finite in almost any situation of interest (see the third example of
section 1.1).
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4. Proofs. In all this section we will use the following notations:
1. T > 0 will be a deterministic horizon time and we will take t ∈ [0, T ].
2. n ≥ 0 p ≥ 1 are integers.
3. ‖ ‖ is the uniform norm.
4. ϕ ∈ C∞

b (E) is a test function such that ‖ϕ‖ ≤ 1, and ϕ̄ = ϕ− ηT (ϕ).
5. C > 0 a constant independent of test functions, of the time parameters t, T

and of the number of particles N . In the same spirit, we will use the Landau notation
“O” uniformly with these variables. Note: The constant C and the “O” notation may
depend on integers n and p.

We recall that ‖V ‖ ≤ C and supη ‖V ∗
η ‖ ≤ C.

The proofs are based on the use of a “linearized” version of the propagator of ηt

defined by

Qt,T (ϕ) =
P V

T−t(ϕ)

ηtP
V
T−t(1)

which verifies the propagation equation

ηT (ϕ) = ηtQt,T (ϕ) .

The main idea is to analyze the martingale part and the predictable part of the
process t 7→ ηN

t Qt,T (ϕ̄) for ϕ̄ = ϕ − ηT (ϕ). Because we have ηt(Qt,T (ϕ̄)) = 0, it
can be interpreted as a stochastic perturbation of the identically null process. Note
that ηN

T (QT,T (ϕ̄)) = ηN
T (ϕ) − ηT (ϕ) which is the quantity we wish to control when

T → +∞.
In computations, the test function ϕ will be omitted to lighten.
Throughout these proofs, we will use the following stability results:

Lemma 4.1. The propagator Qt,T verify the following properties:
n being given, there is a C such that for any test function ϕ

‖Qt,T (ϕ)‖ ≤ C
∫ T

t

‖Qs,T (ϕ)‖2n

ds ≤ C(T − t) .

Moreover there is some 0 < ρ < 1 such that for any ϕ̄ = ϕ− ηT (ϕ)

‖Qt,T (ϕ̄)‖ ≤ CρT−t

∫ T

t

‖Qs,T (ϕ̄)‖2n

ds ≤ C .

Proof. First we write

Qt,T (ϕ) =
P V −λ

T−t (ϕ)(x)

ηtP
V −λ
T−t (1)

.

We claim that

1

ηtP
V −λ
T−t (1)

≤ C .

Indeed by definition and semi-group property we have ηtP
V −λ
T−t (1) =

η0P V −λ
T (1)

η0P V −λ
t (1)

, and

t 7→ η0P
V −λ
t (1) is continuous, positive, and goes from 1 to η0(h)µ(h) > 0.
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By proposition 1.2, we get then for any ϕ: ‖Qt,T (ϕ)‖ ≤ C.
For ϕ̄ = ϕ− ηT (ϕ) we use the decomposition

|Qt,T (ϕ̄)| =
1

(ηtP
V −λ
T−t (1))2

|ηtP
V −λ
T−t (1)P V −λ

T−t (ϕ) − ηtP
V −λ
T−t (ϕ)P V −λ

T−t (1)| ,

and again proposition 1.2 gives a 0 < ρ < 1 such that for any ϕ̄: ‖Qt,T (ϕ̄)‖ ≤ CρT−t.

Note the control on the initial error:
Lemma 4.2. We have for any ϕ

E((ηN
0 (ϕ) − η0(ϕ))p) ≤ C

Np/2
.

Proof. Since, at time t = 0, all particles are sampled independently with law η0,
ηN
0 (ϕ) is a sum of N zero-mean i.i.d. variables. The result is then Burkholder-Davies-

Gundy inequality for i.i.d. variables.

4.1. Precise Lp-estimate of the key martingales. We want to apply propo-
sition 2.3 to the collection (Qt,T (ϕ)2

n

)n≥0 ≡ (Q2n

t,T )n≥0. Recall that ηt(P
V
T−t(1)) =

η0P V
T (1)

η0P V
t (1)

and so

∂tηt

(
P V

T−t(1)
)

= − η0P
V
T (1)

η0P
V
t (1)2

η0P
V
t (V )

= −ηt

(
P V

T−t(1)
)
ηt(V ) ,

this yields using lemma 1.5

∂tQt,T = −L(Qt,T ) − V Qt,T +
1

ηt(P V
T−t(1))2

ηt

(
P V

T−t(1)
)
ηt(V )

= −L(Qt,T ) − (V − ηt(V ))Qt,T ,

and

∂tQ
2n

t,T = −2nQ2n−1
t,T L(Qt,T ) − 2nQ2n

t,T × (V − ηt(V )) .

From proposition 2.3, we obtain a collection of difference of martingales between t

and T indexed by n:

MT
t (Q2n

.,T ) = MT (Q2n

.,T ) −Mt(Q
2n

.,T )

= ηN
T (Q2n

T,T ) − ηN
t (Q2n

t,T ) −
∫ T

t

ηN
s

(

L(Q2n

s,T ) − 2nQ2n−1
s,T L(Qs,T )

)

ds

−
∫ T

t

ηN
s

(

Q2n

s,T ×
(
V − ηN

s (V ) − 2n(V − ηs(V ))
))

ds (4.1)

with predictable quadratic variation given by

N
〈
M(Q2n

.,T )
〉T

t
=

∫ T

t

ηN
s

(

ΓL

(
Q2n

s,T , Q
2n

s,T

))

+ ηN
s

((
Q2n

s,T − ηN
s (Q2n

s,T )
)2 (

V ∗ + ηN
s (V ∗)

))

ds . (4.2)
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We can get rid of the carré du champs term and get the following bounds up to a
martingale:

Lemma 4.3. For all n ≥ 0 and any test function ϕ we have

N
〈
M(Q2n

.,T (ϕ))
〉T

t
≤ C(T − t+ 1) −MT

t (Q2n+1

.,T (ϕ)) ,

and for any centered test function ϕ̄ = ϕ− ηT (ϕ)

N
〈
M(Q2n

.,T (ϕ̄))
〉T

t
≤ C −MT

t (Q2n+1

.,T (ϕ̄)) .

Proof. The formal carré-du-champs upper bound (lemma 5.1) gives

∫ T

t

ηN
s

(

ΓL(Q2n

s,T , Q
2n

s,T )
)

ds ≤ (= for n = 0)

∫ T

t

ηN
s

(

L(Q2n+1

s,T ) − 2n+1Q2n+1−1
s,T L(Qs,T )

)

ds .

From (4.2), we use the above inequality and (4.1) at rank n + 1 to find the upper
bound

N
〈
M(Q2n

.,T )
〉T

t

(= for n=0)

≤ −MT
t (Q2n+1

.,T ) + ηN
T (Q2n+1

T,T ) − ηN
t (Q2n+1

t,T )

−
∫ T

t

ηN
s

(

Q2n+1

s,T

(
V − ηN

s (V ) − 2n+1(V − ηs(V ))
))

ds

+

∫ T

t

ηN
s

((
Q2n

s,T − ηN
s (Q2n

s,T )
)2(

V ∗ + ηN
s (V ∗)

))

ds . (4.3)

The result follows then from lemma 4.1.
The case n = 0 is of crucial importance. From (4.1) or proposition 2.3 we can get

dηN
t (Qt,T ) = dMt(Q.,T ) +

(
ηs(V ) − ηN

s (V )
)
ηN

s (Qs,T )ds , (4.4)

which gives for centered test functions, by integrating on [0, T ],

ηN
T (ϕ) − ηT (ϕ) = ηN

0 (Q0,T (ϕ̄)) + MT (Q.,T (ϕ̄))

+

∫ T

0

(
ηs(V ) − ηN

s (V )
) (
ηN

s (Qs,T (ϕ̄)) − ηs(Qs,T (ϕ̄))
)
ds . (4.5)

The martingale part and the initial error ηN
0 (Q0,T (ϕ̄)) is expected to be of order 1√

N
,

and the predictable part of order 1
N .

Note that by developing the right hand side of (4.3) with the identity V = V b
ηN

s
−

V d
ηN

s
+ CηN

s
, the predictable quadratic variation of the martingale gives

N
〈
M(Q.,T )

〉T

0
= −MT (Q2

.,T ) + ηN
T (Q2

T,T ) − ηN
0 (Q2

0,T )

+2

∫ T

0

ηN
s (Q2

s,TV
b
ηN

s
) + ηN

s (Q2
s,T )ηs(V

d
ηN

s
)

−ηN
s (Qs,T )ηN

s (Qs,TV
∗
ηN

s
) + ηN

s (Q2
s,T )

(
ηN

s (V b
ηN

s
) − ηs(V

b
ηN

s
)
)
ds . (4.6)
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We can now state the first result of this section, which is the control of all moments
of these martingales:

Theorem 4.4. For all p ≥ 1, all n ≥ 0 and all test functions ϕ,

E

(([
M(Q2n

.,T (ϕ)
]T

t

)p
)

≤ C(T − t+ 1)p

Np
,

and for centered test functions ϕ̄,

E

(([
M(Q2n

.,T (ϕ̄)
]T

t

)p
)

≤ C

Np
.

Proof. Note that by localization, we can suppose that we work with bounded
martingales.
Thanks to Jensen inequality, it is sufficient to prove the inequalities for all p = 2q.
We are going to use an induction on q to prove that

∀n ≥ 0,

E

((〈
M(Q2n

.,T )
〉T

t

)2q)

≤ C(T − t+ 1)2
q

N2q

E

(([
M(Q2n

.,T )
]T

t

)2q)

≤ C(T − t+ 1)2
q

N2q .

For q = 0, these inequalities are a direct consequence of lemma 4.3.
Suppose the inequality true at order q and lower. Again from lemma 4.3, we get

E

(

N2q+1(〈M(Q2n

.,T )
〉T

t

)2q+1)

≤ C(T − t+ 1)2
q+1

+ CE

(

MT
t (Q2n+1

.,T )2
q+1

)

≤ C(T − t+ 1)2
q+1

+ CE

(([
M(Q2n+1

.,T )
]T

t

)2q)

(by BDG inequality).

By induction, this proves the first upper bound at rank q + 1.
Now we use the alternate BDG inequality stated in lemma 5.2 to the martingale

M(Q2n

.,T ), whose jumps verify by proposition 2.1: a ≤ 2‖Q2n

t,T ‖
N ≤ C

N . This gives

E

(([
M(Q2n

.,T )
]T

t

)2q+1)

≤ C

q+1
∑

k=0

1

N2q+2−2k+1 E

((〈
M(Q2n

.,T )
〉T

t

)2k)

.

By induction,

E

(([
M(Q2n

.,T )
]T

t

)2q+1)

≤ C

q+1
∑

k=0

(T − t)2
k

N2q+2−2k+1+2k

≤ C(T − t)2
q+1

N2q+1 ,

which proves the second upper bound at rank q + 1.
The case of centered test functions is identical.

Remark 4.5. Some results of [7] use L
p estimates of a similar martingales (lemma

3.23) whose proof is using Itô formula but may be incorrect. Resorting to Itô formula
seems to be intractable, and the techniques used for theorem 4.4 enable to clarify
these results.
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4.2. Proof of theorem 3.1. First of all let’s define the following quantity:

Ip(N) = sup
T,ϕ

E
(
(ηN

T (ϕ) − ηT (ϕ))p
)
.

In this subsection, we will prove the time-uniform estimate: Ip(N) ≤ C
Np/2 . And

before, we start with our first key lemma:

Lemma 4.6. There is an ε > 0 independent of p such that

Ip(N) ≤ C

N εp/2
.

Proof. Let’s fix T and use the decomposition

ηN
T (ϕ) − ηT (ϕ) = ηN

T (ϕ) − Φt,T (ηN
t )(ϕ)

︸ ︷︷ ︸

a(t)

+ Φt,T (ηN
t )(ϕ) − ηT (ϕ)

︸ ︷︷ ︸

b(t)

.

a(t) can be controlled by the stochastic errors made by the particle approximation
between t and T . b(t) can be controlled by the stability property of the limiting
propagator Φ between t and T . b(0) can also be controlled by the error made by the
initial condition. We then optimize the whole in t.

Control of a(t). Let us define the continuous finite variation process

At2
t1 = exp

(∫ t2

t1

(ηN
s (V ) − ηs(V ))ds

)

.

An elementary integration by parts for s ∈ [t, T ] gives

d
(
As

t η
N
s (Qs,T )

)
= ηN

s (Qs,T )As
t (ηN

s (V ) − ηs(V )) ds

+As
t dη

N
s (Qs,T )

= As
t dMs(Q.,T ) (by (4.4)).

Integrating from t to T and simplifying by (AT
t )−1 gives

ηN
T (ϕ) − (AT

t )−1ηN
t (Qt,T (ϕ)) = (AT

t )−1

∫ T

t

As
t dMs(Q.,T (ϕ)) . (4.7)

Now, recalling that Φt,T (ηN
t )(ϕ) =

(AT
t )−1ηN

t (Qt,T (ϕ))

(AT
t )−1ηN

t (Qt,T (1))
, we write a(t) as follows:

a(t) = ηN
T (ϕ) − (AT

t )−1ηN
t (Qt,T (ϕ)) − ΦT−t(η

N
t )(ϕ)

(
1 − (AT

t )−1ηN
t (Qt,T (1))

)
,

which using (4.7) gives the upper bound

|a(t)| ≤ (AT
t )−1

(∣
∣
∣

∫ T

t

As
t dMs(Q.,T (ϕ))

∣
∣
∣ +

∣
∣
∣

∫ T

t

As
t dMs(Q.,T (1))

∣
∣
∣

)

,
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and thus

E (|a(t)|p) ≤ Ce2‖V ‖p(T−t)
E

(∣
∣
∣

∫ T

t

As
t dMs(Q.,T (ϕ))

∣
∣
∣

p)

≤ Ce2‖V ‖p(T−t)
E

(∣
∣
∣

∫ T

t

(As
t )

2 d
[
M(Q.,T (ϕ))

]

s

∣
∣
∣

p/2)

(by BDG inequality)

≤ Ce4‖V ‖p(T−t)
E
(∣
∣
[
M(Q.,T (ϕ))

]T

t

∣
∣
p/2)

≤ Ce4‖V ‖p(T−t) (T − t+ 1)p/2

Np/2
(by theorem 4.4)

≤ C
Rp(T−t)

Np/2
(for R = e4‖V ‖+1 > 1).

Control of b(t). We have for some 0 < ρ < 1, as a direct consequence of corollary
1.3,

E(|b(t)|p) = E
(∣
∣Φt,T (ηN

t )(ϕ) − Φt,T (ηt)(ϕ)
∣
∣
p)

≤ (E(
1

ηN
t (h)p

) + 1)CρT−t

≤ CρT−t by assumption 3.

Control of b(0). We remark that η0(Q0,T (1)) = 1 and write b(0) as follows:

b(0) =
(
ηN
0 (Q0,T (ϕ)) − η0(Q0,T (ϕ))

)
+ Φ0,T (ηN

0 )(ϕ)
(
η0(Q0,T (1)) − ηN

0 (Q0,T (1))
)
,

which gives by lemma 4.2

E(|b(0)|p) ≤ C

Np/2
.

Global control. We have

E((a(0) + b(0))p) ≤ C
RpT + 1

Np/2

E((a(t) + b(t))p) ≤ C
Rp(T−t)

Np/2
+ Cρp(T−t) (∀t ∈ [0, T ]).

Now we take ε = − ln ρ
− ln ρ+ln R , and remark that

R
1
2

ln N
ln R−ln ρ

N1/2
=

1

N ε/2
,

and

ρ
1
2

ln N
ln R−ln ρ =

1

N ε/2
.

We get then E((ηN
T (ϕ) − ηT (ϕ))p) ≤ C

Nεp/2 from the first inequality when T ≤
1
2

ln N
ln R−ln ρ , and from the second one otherwise for T − t = 1

2
ln N

ln R−ln ρ .

Now we go back to equation (4.5) which readily gives
(
ηN

T (ϕ) − ηT (ϕ)
)p ≤ C

(
ηN
0 (Q0,T (ϕ̄))

)p
+ CMp

T (Q.,T )

+C
(∫ T

0

|ηN
s (V ) − ηs(V )||ηN

s (Qs,T (ϕ̄))|ds
)p

.
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From lemma 4.2:

E(ηN
0 (Q0,T (ϕ̄))p) ≤ C

Np/2
.

From theorem 4.4:

E
(
Mp

T (Q.,T (ϕ̄))
)
≤ C

Np/2
.

On the other hand, using Hölder inequality, we also have

( ∫ T

0

|ηN
s (V ) − ηs(V )||ηN

s (Qs,T (ϕ̄))|ds
)p

≤
∫ T

0

|ηN
s (V ) − ηs(V )|p

∣
∣
∣η

N
s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)∣
∣
∣

p

‖Qs,T (ϕ̄)‖ds
( ∫ T

0

‖Qs,T (ϕ̄)‖ds
)p−1

≤ C

∫ T

0

∣
∣
∣η

N
s

( V

‖V ‖
)

− ηs

( V

‖V ‖
)∣
∣
∣

p∣
∣
∣η

N
s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)

− ηs

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)∣
∣
∣

p

‖Qs,T (ϕ̄)‖ds .

Taking expectations, and then using Cauchy-Schwarz inequality, we obtain

E

(( ∫ T

0

|ηN
s (V ) − ηs(V )||ηN

s (Qs,T (ϕ̄))|ds
)p)

≤ C

∫ T

0

I2p(N)‖Qs,T (ϕ̄)‖ds

≤ CI2p(N) , (4.8)

which gives on the whole for all p ≤ 1

Ip(N) ≤ C

Np/2
+ I2p(N) .

Applying this result to lemma 4.6 gives:

Ip(N) ≤ C

N inf(2ε,1)p/2
,

and by induction we get

Ip(N) ≤ C

Np/2
,

which ends the proof.

4.3. Proof of theorem 3.2. We take expectation in (4.5) to find

E(ηN
T (ϕ)) − ηT (ϕ) =

∫ T

0

E

(
(
ηs(V ) − ηN

s (V )
)
ηN

s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
))

‖Qs,T (ϕ̄)‖ds .

As above, we use Cauchy-Schwarz inequality, and find that

|E(ηN
T (ϕ)) − ηT (ϕ)| ≤ C

∫ T

0

I2(N)‖Qs,T (ϕ̄)‖ds

≤ CI2(N) ≤ C

N
, (4.9)

which gives the estimate on the bias.
The second result is a direct consequence of exchangeability of particles.
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4.4. Proof of theorem 3.4. The study of the asymptotic standard deviation
rely on the following asymptotic behavior:

Lemma 4.7. For all T > 0, and ϕ̄ = ϕ− ηT (ϕ),

E
(
(ηN

T (ϕ) − ηT (ϕ)
)2

) =
1

N
E(ηN

T (ϕ̄)2)

+
2

N
E

( ∫ T

0

ηN
s

(
Q2

s,T (ϕ̄)V b
ηN

s

)
+ ηN

s

(
Q2

s,T (ϕ̄)
)
ηs(V

d
ηN

s
)ds

)

+O(
1

N3/2
) .

Proof. Again we start from equation (4.5):

ηN
T (ϕ) − ηT (ϕ) = ηN

0 (Q0,T (ϕ̄)) + MT (Q.,T (ϕ̄))
︸ ︷︷ ︸

a

+

∫ T

0

(
ηs(V ) − ηN

s (V )
)
ηN

s (Qs,T (ϕ̄))

︸ ︷︷ ︸

b

ds ,

which gives

E((ηN
T (ϕ) − ηT (ϕ))2) = E(a2) + E(b2) + 2E(ab)

Now we note by the results of the previous section, that is to say by equation (4.8),
that

E(b2) = E

(∣
∣
∣

∫ T

0

(
ηs(V ) − ηN

s (V )
)
ηN

s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)

‖Qs,T (ϕ̄)‖ds
∣
∣
∣

2)

= O(
1

N2
) ,

and by theorem 4.4 and lemma 4.2

E(a2) = E
(
MT (Q.,T (ϕ̄))2

)
+ E

(
ηN
0 (Q0,T (ϕ̄))2

)
= O(

1

N
) .

So we get

E
(
(ηN

T (ϕ) − ηT (ϕ))2
)

= E
(
ηN
0 (Q0,T (ϕ̄))2

)
+ E

(〈
M(Q.,T (ϕ̄))

〉T

0

)
+O(

1

N3/2
) .

Now we shall use the identity (4.6) to compute the asymptotic (with respect to N)

value of E(
〈
M(Q.,T (ϕ̄))

〉T

0
). For this purpose, we note that by theorem 3.1

∣
∣
∣E

(

ηN
s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)
ηN

s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖V
∗
ηN

s

))
∣
∣
∣ ≤ CE

(∣
∣
∣η

N
s

( Qs,T (ϕ̄)

‖Qs,T (ϕ̄)‖
)
∣
∣
∣

)

= O(
1

N1/2
) ,

and the same way

∣
∣
∣E

(

ηN
s

( Q2
s,T (ϕ̄)

‖Q2
s,T (ϕ)‖

)(
ηN

s (V b
ηN

s
) − ηs(V

b
ηN

s
)
))

∣
∣
∣ = O(

1

N1/2
) .

Finally we remark that ηN
0 (Q0,T (ϕ̄)) is a sum of centered i.i.d. random variables, and

thus

E
(
ηN
0 (Q2

0,T (ϕ̄))
)

= η0(Q
2
0,T (ϕ̄)) = E

(
ηN
0 (Q0,T (ϕ̄))2

)
,
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which ends the proof.

Now recall that theorem 3.1 implies by a Borel-Cantelli argument:

ηN
s

a.s.−−→ ηs (in the weak sense)

We take the limit first when N → +∞ in lemma 4.7 uniformly with respect to T , and
then when T → +∞. Of course, the two limits commute. This gives by Lebesgue
convergence therorem

lim
N→+∞

NE
(
(ηN

T (ϕ) − ηT (ϕ))2
)

= ηT

(
(ϕ− ηT (ϕ))2

)

+2

∫ T

0

ηs

(
Q2

s,T (ϕ̄)V b
ηs

)
+ ηs(Q

2
s,T (ϕ̄))ηs(V

d
ηs

)ds .

Now we do the change of variables s 7→ T − s in the above integrand, and take the
limit T → +∞. We have

ηT−s → η∞

ϕ̄ = ϕ− ηT (ϕ) → ϕ̄ = ϕ− η∞(ϕ)

QT−s,T (ϕ̄) → P V
s (ϕ̄)

η∞P V
s (1)

= P V −λ
s (ϕ̄) ,

which gives the asymptotic standard deviation.

5. Two general lemmas.

Lemma 5.1 (An upper bound for the “carré du champ” operator). Let L be
a Markov generator and Γ be its associated “carré du champs” operator defined by
Γ(ϕ, ϕ) = L(ϕ2) − 2ϕL(ϕ). Then we have the upper bound for all n ≥ 0

Γ(ϕ2n

, ϕ2n

) ≤ L(ϕ2n+1

) − 2n+1ϕ2n+1−1L(ϕ) .

Proof. Check out by induction the formal identity

Γ(ϕ2n

, ϕ2n

) = L(ϕ2n+1

) − 2n+1ϕ2n+1−1L(ϕ)

−
n∑

k=1

2n+1−kϕ2n+1−2k

Γ(ϕ2k−1

, ϕ2k−1

) ,

and use the positivity property Γ(ϕ, ϕ) ≥ 0.
Lemma 5.2 (BDG inequalities). Let M be a quasi-left-continuous (i.e. with

continuous predictable increasing process) locally square-integrable martingale with
M0 = 0 and bounded jumps supt |∆Mt| ≤ a < +∞. Then there is a constant C
(dependant on q) such that

E
(
sup

t
M2q+1

t

)
≤ CE

([
M

]2q

∞
)
≤ C

q
∑

k=0

a2q+1−2k+1

E
(〈
M

〉2k

∞
)
.

Proof. The first inequality is the classical Burkholder-Davis-Gundy (BDG) in-
equality (p. 350 of [10]).
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For the second, by localization, we can suppose that M is a square-integrable mar-
tingale. We are to use the martingale N =

[
M

]
−

〈
M

〉
. Because

〈
M

〉
is continuous

∆N = ∆
[
M

]
= (∆M)2. Moreover, N has finite variation so

[
N

]
=

∑

s≤.

(∆Ns)
2 =

∑

s≤.

(∆Ms)
4

≤ a2
∑

s≤.

(∆Ms)
2 ≤ a2

[
M

]

≤ a2(N +
〈
M

〉
) . (5.1)

We will also us the general fact (C depends of q):

∀x, y, (x+ y)2
q ≤ C(x2q

+ y2q

) . (5.2)

By definition of N and (5.2) we get

E
([
M

]2q

∞
)
≤ CE

(
sup

t
N2q

t

)
+ CE

(〈
M

〉2q

∞
)
.

Now it remains to prove for any q ≥ 1

E
(
sup

t
N2q

t

)
≤

q−1
∑

k=0

Ca2q+1−2k+1

E
(〈
M

〉2k

∞
)
, (5.3)

which we are going to do by induction on q. For q = 1, (5.3) follows from BDG
inequality applied to Nt, with (5.1). Suppose (5.3) true for a given q. Applying again
BDG inequality to Nt, and using (5.1) and (5.2), we get

E
(
sup

t
N2q+1

t

)
≤ Ca2q+1

E
(
sup

t
N2q

t

)
+ Ca2q+1

E
(〈
M

〉2q

∞
)
.

(5.3) at rank q + 1 follows then from the induction hypothesis.
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