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Abstract

Modelling and evaluation is an important step of the development of
complex systems. In most cases, discrete-event simulation is the only
technique that can be used for this purpose. In highly dependable
systems, simulation of rare events, corresponding to the failures of
system components, will be quite time consuming. A number of
techniques are proposed to speed-up simulation of rare events. This
paper presents a novel approach for fast simulation of rare events
modelled as stochastic activity networks (SANs). SANs are a stochastic
extension of Petri nets. The solution is based on partition of the region
(POR) technique and stratified sampling method. We have evaluated
the proposed method using several examples. Results show that the
simulation time is considerably decreased, comparing to the naive
simulation (up to 100 times) and to the imporance sampling technique.
Moreover, the relative error of the simulation results is declined
considerably. The proposed method is not dedicated to SANs and can
be used for rare event simulation of the other extensions of Petri nets.

1 Introduction

Modelling and evaluation of real-world systems, needs analysing a large and complex
model. Analytic techniques can be used to solve a wide range of such models, which
are based on state space methods. State space generation is not possible for most
models due to the state space explosion problem. In such cases, discrete-event
simulation is the only possible technique.

In highly dependable systems that contain rare events, the cost of simulation will
increase considerably. The main problem in simulation of highly dependable systems
is the small probabilities associated to some important events. These small
probabilities make the simulation to be run too long, because of the small times spent
in these important rare events.

Rare event simulation is a key tool in some several areas such as reliability
evaluation, telecommunications networks, switching systems and similar areas [3, 15,
16]. One famous approach for solving this problem is a technique called importance

sampling (IS) [4, 12, 16] that is a Monte Carlo simulation variance reduction
technique. In typical rare event setting, Monte Carlo method is not viable unless an
acceleration technique is used to help rare events to occur more frequently. Another
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acceleration frequency used for this purpose is splitting [11, 18, 37]. IS increases the
probability of rare events by changing the probability laws to help the simulation to
run faster. Also, it forces the simulation model to focus on rare events. Then, it
multiplies the estimator in /ikelihood ratio to correct the result and get an unbiased
estimator. The likelihood ratio is roughly the ratio of the original measure and the new
measure associated with the generated path. In this way, the cost of evaluation will
decrease and will become more acceptable. The main problem in general IS is to find
a good probability law. This problem is defined in [15, 31, 4] as a good governor for
the model. Unfortunately, a large part of rare-event simulation is focused on static
importance sampling techniques. This means that a fixed change of measure is used
throughout the simulation. While some literature is focused on to the adaptive
importance sampling technique that changes the measure based on sample simulation
path [2].

IS provides several methods that are different in efficiency and are suitable for
various problems. Lewis and Bohm has tested IS on Markovian unreliability models
and developed failure biasing and forced transition [17]. Later, Goyal et al. extended
the above method in SAVE language [13]. SAVE is basically a generalised machine
repairman model. Today several modelling tools provide IS [3031]. One of these tools
is the UltraSAN [24, 25], which was used in 1990s for modeling and evaluation with

stochastic activity networks (SANs) [20, 29]. SANs are a stochastic extension of Petri
nets. These models have widely been used for performance and dependability
evaluation in a wide range of systems.

L'Ecuyer and Tuffin has tried to improve IS by using bounded relative error (BRE)
and logarithmic efficiency (LE) [18, 33, 34].

Splitting technique is also proposed as another approach for rare event simulation.
RESTART* [36, 35, 37] is a techinque based on splitting. This method does not require
changing the probability laws for acceleration, but an artificial drift toward the rare
event is created by terminating with some probability

y trajectories that seems to go away from it and by splitting (cloning) those that are
going in the right direction [19, 11, 9, 5]. The main idea in RESTART is repeation of
important parts of the system (usually rare event) and getting a higher efficiency on
these parts. This method is implemented in ASTRO [36]

This paper presents a novel idea for fast simulation of rare events in SAN models.
The solution is based on partition of the region (POR) technique [27] as an extension
of the stratified sampling. A variant of stratified sampling called transition splitting

has been published in [10]. This technique is extremely efficient on models like an
M/M/1 queuing model. The reason is that it uses all available exact knowledge and
leaves very little to be simulated. It is very hard to find an appropriate transition
splitting and to calculate the probability of each stratum.

Our new solution generally can be used for SAN models. The method is tested on
four SAN models and the results and simulation time has been compared to the
traditional discrete-event simulation. The results show that simulation is run in the
shorter time length while the relative error of the results shows up to 100 times
improvements.

The remainder of this paper is organized as follows: In section 2, some background
theories are reviewed. In section 3, a new solution for simulation of SAN models
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based on POR technique is presented. In section 4, the results of four example models
and analysis of the effect of the proposed method is presented. Finally, some
concluding remarks are mentioned in section 5.

2 Background

In this section, we briefly review the background theories and techniques, which are
used in the remainder of this paper.

2.1 Stratified Sampling
Let us consider the problem of estimating the below integral:
I:jg(x)dx, xeDcR" (1)

2 2
Let suppose that & €L (%) g0 [g0rar exists and therefore that [ exists. For stratified
sampling must break the region D into m disjoint subregions D;, i =1, 2..., m that is:

D :UZIDI.,Dk ND, =D,k # J
Then let define:
1= [, 8@ fy (), ®)
I; can be estimated separately.
The idea of this technology is similar to the idea of IS: simulation also take more
observation in the parts of the region D that are more "important", but the effect of

reducing the variance is achieved by concentrating more sample in more important
subsets D;, rather than by choosing the optimal probability density function (PDF).

2.2 Partition of the Region

This technique is similar to stratified sampling and may be able to present an
extension for that [27]. In this technique we break the region D into two parts D=D;
uD,, representing the integral I defined in (1) as:

1= J.D g(x)dx = IDI g(x)dx+ J.DZ g(x)dx. 3)
Let us assume that the integral:
I = J.D, g(x)dx @)
can be calculated analytically. Let us define a truncated PDF as:
So®)
ot 1-p Txebs )
0, otherwise
where:
P=[ fi(dx )

By applying above formulas /(x) became an acceptable PDF. Formula (3) can be
written as:
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I =] +ID g(x)dx

=1+ By

)
] 0] ;
=1 +(1- P)E[%}
An unbiased estimated of / is:
Y=1]+(1—P);gX((XX)) (8)

And the integral / can be estimated by:
N
0:11+(1—P)iz (X)) )
NT fr(X)

This estimator can be used for simulation need some accelerator such as rare event
simulation. The variance decrease depended on how break the region.
In section 3, we will try to introduce a method that breaks simulation area in a SAN
model in such a way that all unimportant and important events divide into two
separate parts. Important events are those events that take a role in computation of
rare events. Similarly, unimportant events are those events that have not any role in
computation of rare events.

2.3 Stochastic Activity Networks

Stochastic activity networks (SANs) [20, 29] are a general and stochastic extension of
the Petri nets. SANs are powerful and flexible models for concurrent and distributed
systems. These models are supported by several powerful modelling tools, such as

UltraSAN or Moébius [8].

Elements of SANs are places, gates and activities as in Petri nets [20]. Places are
same as Petri nets. Gates are used to connect places and activities and have two types:
Input and output. Input gates connect one or more places to a single activity and have
a predicate and a function. Output gates connect an activity to one or more places.
These gates have only a function. The other element of SAN is activity. There are two
types of activities: timed and instantaneous. Timed activities against instantaneous
activities have a delay to complete. Delay time represented by a distribution function
called activity time distribution. F(., |; a) denotes the distribution function for activity
a in marking p. Activities also have cases in their outputs to show uncertainly about
action taken at completing. C(., ; a) used for showing case distribution function of
activity a in marking p.

An activity called enabled when all gates and places connected directly to activity
hold #rue. The predicate of gates must return true and places must has at least one
token. When an activity is enabled, it waits for completing. Time for delay taken from
time activity distribution called activity time. After completion, first the input
functions executed and then the output function. An enabled activity does not require
completion. During activity time, SAN can move to a marking that activity be no
more enabled and aborted.
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3 Fast Simulation of SANs Using POR Technique

Consider a SAN model with possible path set Q and possible events set /7. Our
interest is in estimating a probability P(g) of a rare event e /1. Let I(g) be an indicator
function, g, which is defined as follows:

. {1 if the events belong to € are simulated in the model

0 otherwise

In practice, a reward variable can be defined for the indicator function. Let y denote
the probability P(¢). This may be estimated by Monte Carlo i.e. generating n

independent sample of 7 (/;(¢), Iy(¢), ..., I,(¢)) and taking the average 12 1.(s)3
nin '

estimator of P(g) called vy,. In general Monte Carlo method, when P(g)—>0 for
reaching y,—>Yy almost sure as n—co. This cause to relative error (or relative variance)
be constant or at least be bounded [15, 18].
First try to solve this problem need to decrease variance (related error or related
variance). For getting best result variance must be zero [16]. This needs /(¢) be equal
to one in every simulation run. However, this is not possible to be implemented. In
practice, this guides us to run the model in a way that the probability of executing rare
events increases. One approach is using POR such that only the important part of
model is simulated, which means rare events in a rare event simulation.
In this case first must find a way that break the path set (here a SAN model).
Partitioning must keep all rare events in one part that is the goal of simulation. If we
can break model such that the second part has no rare event (/(¢) always be zero) so
no need to simulate this part. This help run time and efficiency get dramatic results.
Let us redefine Q as follows:
Q= ({allpath in model|
start state of path (10)
= final state of path=x,}

where, x, is the initial state of the model.
In the next step, we need to break () set into two separate sets, as below:
Q, ={yeQ|l(e)=constantin y} 1
Q,=7cQ|7e0,) (an
which are our new state space sets.
Note that only the second set in important for us, which contains rare events. In
practice, the place that is the beginning of Q; and Q, paths is chosen as the start state,
i.e. the last common place that belongs to the intersection of the two sets.
In the next step, the SAN model will be partitioned into two separate parts. For this
purpose, the first part must be divided into events set /1. Let us define two new sets as
follows:
\=lecll|3yeQ, |eisin z}
zz{eel—l\ﬂzeQz\eisin;{}: (12)
-11,
In simple words if event e is being ran in simulation of a path x, e is a member of /7,
if and only if there is some x that belong to €,. Otherwise e is a member of I1;. If find
some x;€Q; and x,Q, e will be in IT,. So, common events between two path sets
will be in 17, respectively.
Final step is computing P as defined in (6). Let us define a new indicator function:

IT
IT
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, {1 g'ell,
I(e") = (13)

0 otherwise

A simple simulation can evaluate P(e’). ¢" has no rare event and a general Monte Carlo
method take result with good confidence level.

7P =21, (14)

In practice, I(¢') implement via a reward variable and it is large enough along
simulation to compute in normal executing.

Then it is easy to break SAN model. Just remove all events belong to 77;. All
remained events are rare or need to run rare events. Definitely it is reduce variance to
dramatic small value. In continue just use the below estimator:

7P =Y 11~ P) (15)

that take random variable only from important space of model €2,. It is clear that
Iﬂl 1(e)de =0 (16)

This help remaining part simulate correctly respect to rare event evaluation.
Example. A SAN model is shown in Figure 1, which models a rare event with a low
distribution of 0.0001. In this model Q simply can be defined as

D= {(rare— event,actl,act2),

)
(act3,actd,act5)};

placel has one token in the initial state and all other places are empty. So, initial state
is [1, 0, 0, 0, 0]. Now let us consider indicator function point to token in place3 that is
a result of completing rare event activity. Q; and Q, respectively define as

Q, ={(act3,act4,act5)}

Q, ={(rare—event,actl,act2)}

So, I1; and I1, will be

(18)

I, ={act3, act4, act5}

II, = {mre —event,actl, act2} (19)
It is clear that /(¢) points to completing of act3, act4, act5. Also clear that P’ simply
can be compute.

Place2
At

Rare_event Place3

Plac

Placed Actd
Figure 1. A SAN model with a rare event
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Table 1. Activities of SAN model in Figure 1

Timed Activity Distribution Parameters
Act3 Exponential 100
Act4 Exponential 10
Acts Exponential 10
Actl Exponential 10
Rare_Event Exponential 0.0001

Just as last step for using POR we define probability P' as required in (15).
Let us define a new reward variable R’ as

{Zmark( p) reward — function

== (20)
0 impluse — function

That p is a place in set {place4, place5} (an unimportant part) and mark (p) return
number of token in p. For computing R’ SAN model must simulate in normal mode.
In this step fast simulation does not require, because R’ does not contain any rare
event. Result of R’ is the value of probability P' defined in (15). An Impulse reward
can be used for this purpose respectively. However we don't define that for simpler
implementation.
As POR shows model breaks into two parts Q; and Q,. Q, is the important part and
must observe more than Q; Q; can simulate normally But about Q, that contain goal
of simulation probability P’ help us to estimate result in correct mode therefore we
have a new SAN model that only contain set €2, and /7,. New SAN model of Figure 1
is shown in Figure 2.

Place2
ACtZ

Rare_event Places3

Flace1

Figure 2. New SAN model of Figure 1 for using POR

4 Applications and Results

In this section we present the results of using our proposed method on four sample
SAN models. To evaluate the proposed method, we have used the Mobius modelling
tool. First, a simple SAN model with only one rare event is simulated. Then, another
model with some other normal events is tested. Finally, a third model with two rare
events and some interesting properties is tested. And finally, we have chosen a sample
to compare the proposed method with the IS technique.

4.1 Example 1: A Simple Model

As the first example a simple SAN model is tested. This model contains only a rare
event with a normal event that will race together. The SAN Model is shown in Figure
3 and its properties in Table 2 and Table 3.
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Actd

Figure 3. A simple SAN model with one rare event

Table 2. Intial markings of SAN model of Figure 3

Place Names | Initial Markings
Placel 1
Place?2 0
Place3 0

In first step Q ; and €, must define:
Q, ={(act3,act4)}

Q, ={(rare —event,act2)} @n
And
IT, = {act3, act4}
22)
I, = {rare —event, act2}

Table 3. Activities of SAN model of Figure 3

Timed Activity Distribution Parameters
Act? Exponential 10
Act3 Exponential 100
Act4 Exponential 10
Rare_Event Exponential 0.00001

In next step we define a reward variable as (23) for computing probability P’. This
reward variable is simply defined on Q; set.

mark(place3) reward — function

R= ‘ . (23)
0 impluse— function

We evaluate this reward variable by Mobius modelling tool and get the result as

9.090908e-001. Now we test the original model and our new model, which contains

only Placel and Place2 for the result of the reward variable defined in (24) (i.e.

removing Act3 activity).

_ {mark( place2) f”eward - fifnct{on (24

0 impluse— function

Simply this new model is contains only /7, set Simulation results of this model for

evaluation of rare event are shown in table 5. Simulator uses (1-P’) to biased the

estimator. Remember that goal is rare event or in the other word token in place2.
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Simulator run both traditional and POR methods. The time is in terms of seconds. The
results represent huge improvements in simulation time and precision. The results are
compared to the outputs of the steady state solver of Mobius modelling tool. This
helps us to get a real relative error that shown in last column.

Table 4. Results of simulation of SAN model represnted of Figure 3

Method 1-P Time(s) Results Replications Confidence Error
Interval

Naive - 7267.404 9.6558236535E-08 240636000 1.0887829753E-08 | 6.21%

Simulation

POR 0.09090809 186.843 9.6199450981E-08 69213000 9.6065787077E-09 | 5.81%

4.2 Example 2: A More Complex Example

In this example, the model has some other normal events running with rare event, so
model is more than just two simple parts. In this model still there is no event
commonly in Q; and Q,. The model presented in Figure 4 obviously has two separate
parts:

Flace2
Act2

Rare_event Place3
Flac

Placed Artd
Figure 4. A SAN model with a rare event

Table 5. Results of simulation of SAN model represnted of Figure 4

Method 1-P Time(s) Results Replications Confidence Error
Interval

Naive - 2012.609 5.0371920274E-07 67975000 | 5.0284734014E-08 | 5.78%

simulation

POR 0.04761813 42.922 4.6574525135E-07 12197000 | 4.6561591212E-08 | 2.19%

Table 6. Activities of SAN model of Figure 4

Timed Activity Distribution Parameters
Act3 Exponential 100
Actd Exponential 10
Acts Exponential 10
Actl Exponential 10
Rare_event Exponential 0.0001

In the model presented in Figure 4, the initial markings of all places except Placel
are zero. Placel has one token in its initial markings. The sets (Q;, Q,, I1;, I1,) of this
model have shown in (18) and (19) so just see the result of simulation in table 6.
Results in this test are also compared with outputs of steady state solver of Mdbius
software.
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4.3 Example 3: Two Rare Events

As third example, we choose a model with two rare events. This model has a special
property that make it distinguished from previous samples. In the presented model, Q;,
and Q, sets have some common events in their members. We interested in this model
from this view that only just one activity is removed for fast simulation by our method
however all places still cooperate in simulation. Notice that in previous sample some
places goes away from simulation. The model is shown in Figure 5. The indicator
function points to fail events so; the goal is computing the following reward variable:

mark( faill)+ .
. reward — function
R =3 mark( fail2) (25)
0 impluse — function

Sets Q;, Q, are as below

Q, ={(job _request, job _done)}

Q, = {(job _request, faill, repairl), (26)

(job _request, fail2,repair2)}

In the previous examples, the start state of paths is same as the start state defined for
model, but in this model to simplify the paths we have changed the sets as bellow:

Q, ={(job _done, job _request)}

Q, = {(faill,repairl, job _request), 27)

(fail2,repair2, job _request)}
It means that the start state is (job_doing, 1) marking (the last common state between
two sets). In continue we define
T1, = {job _done}
I, = {jobirequest, faill, fail2, repairl, repairZ} (28)

As seen in (28) job request is common between two path sets however at last it
moved to [, set. Indicator of &' points to completing of activity job done and
job_request in sequence. Simply because completing sequence fail, repair,
job_request is a rare event, P can computing by supposing the all tokens in idl/e place
is moved in by completing job done activity. A reward variable can be defined for
this purpose. Definition of this variable is as follows:
R {mark(idle) reward — function

= 29

0 impluse — function
Probability of P’ is the value of evaluating of the variable in (29). However this
reward variable is not actually as same as analytic definition of indicator of ¢’ but in
practice they are such close that can be assume one. Now model can be simulated
easily by removing job done activity and using 1-P' probability for biasing the
estimator. Result of this simulation is shown in table (7). This model is compared
with results of steady-state solver of Mdbius modelling tool.
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job_requets epairt

Fail2

Figure 5. A SAN model with two rare events

Table 7. Intial markings of SAN model of Figure 5

Place Names | Initial Markings
idle 1
Faill 0
Fail2 0
Job doing 0

Table 8. Activity of SAN model of Figure 5

Timed Activity Distribution Parameters
Job_request Exponential 100
Job done Exponential 1000
Faill Exponential 0.0001
Fail2 Exponential 0.00001
Repairl Exponential 1
Repair2 Exponential 10

Table 9. Results of simulation of SAN model represnted of Figure 5

Method 1-P Time(s) Results Replications Confidence Error
Interval
Naive - 2718.750 | 8.7378789281E-06 13210000 | 8.7044577598E-07 | 4.83%
simulation
POR 0.09092855 788.547 | 9.1541250070E-06 100000000 | 2.0061251233E-07 | 0.29%

4.4 Example 4: POR vs. IS

For last example of presented method, we test that on a model studied by Obal II and
Sanders [26] for IS technique presenting in UltraSAN. This model can be seen in
Figure 6. Obal II study the unreliability of this model over an interval of time. This
can be computed through an instant of time reward variable when the system failure
marking is an absorbing marking by examining the instantaneous rate reward at the
end of interval [26]. Model is a machine-repairman system that uses a delayed group
repair policy. There are two types of components in the system, with different failure
rates. The places labeled type 1 and type 2 model the two types of components. The
marking of each place represents the number of working components of that type. In
this case, there are two type-one components, and four #ype-two components. Timed
activities fail 1 and fail 2 model the time between failures for each component. As
shown in Table 11, the failure times are exponentially distributed with marking
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dependent rate parameters. A component of type-one fails with rate 0.005, while
components of type-two fail at twice that rate. The use of marking dependent rate
parameters allows us to avoid including an activity for each component's failure time
distribution, resulting in a more compact representation.

type_ i ailed_1

repair

type_2 fail 2 failed_2

Figure 6. The machine-repairman model presented by Obal II

Table 10. Intial markings of SAN model of Figure 6

Place Names Initial Markings
type 1 2
type 2 4
failed 1 0
failed 2 0

Table 11. Activity of SAN model of Figure 6

Timed Activity Distribution Parameters
fail 1 Exponential 0.005*Mark(zype 1)
fail 2 Exponential 0.01*Mark(type 2)
repair Exponential 1

Table 12. Activity of SAN model of Figure 6

Gate Enable Predicate Function
policy (type 1->Mark() >0 || if (failed _1->Mark() == 2)
type 2->Mark() > 0) && {
(failed_1->Mark() ==2 || failed_1->Mark()=0;
failed 2->Mark() > 1) type_1->Mark() = 2;

failed 2->Mark() = 0;
type 2->Mark() = 4;

The markings of places failed I and failed 2 represent the number of components of
each type that have failed. There is one repairman in the system. The repair policy is
to wait until at least two components of the same type have failed, and then begin to
repair the whole group. Type-one component repair is given preemptive priority over
repair of type-two components. When the repair is completed, all components of that
type are as good as new. This repair policy is implemented in the input gate policy.
The properties of policy are shown in table 12. type [1->Mark() points to marking of
type_1 and so on. If all components of both types fail, the system fails, and all repair
activity halts; the failed state is an absorbing state.
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For evaluation of unreliability of model a reward variable is used. A reward structure
that identify the failed state is
1 if (type _1,0)and(type _2,0) .
R= {0 otherwise reward — function 30)
0 impluse — function
Goal is computing the unreliability in interval [0,100]. This can be done by using
reward variable as instant of time reward variable.
For using this model in POR method, we must break it into two parts. For this
purpose we define two type of repair: repair_type 1 and repair_type 2. Each repair
type note to repairing of one type e.g. repair type I is repair activity on type one
components. Also as described before the start state for defining cycle is the last
marking common between two parts. This state simply is {(failed 1, 2), (failed 2, 4)}
when system fails and {(failed 1, 2)} or {(failed 2, 2)} when repair enabled. So sets
Q;, Q,are as below

Q, = {(repair —type _1, faill, faill),(repair — type _2, fail2, fail2),...}

Q, = {(systemfail)} GD

Q; members are those who run repair activity however Q, has only one member that
is fail state. If we continue this partitioning, for computing P we must evaluate
following probability when a component fail.
B P(Q,) B P(systemfail)
©P(Q)+P(Q,)  P(systemfail) + P(repair)
This probability is a rare event and is same as finding unreliability. So in this model
we use some other Q sets. These new sets however does not complete push rare
events on one part and other events in other part, help simulation in a way to reduce
time and variance. New sets defined as

Q, ={(repair —type _1,...)}

Q, = {(systemfail),(repair —type _2,...)}
This partitioning breaks system into one part that contain repairing of type one
components and another part has fail state and repairing of type two components.
Now 1-P define as
B P(Q,) B P(systemfail) + P(repair — type _2)
- P(Q)+P(Q,) B P(systemfail) + P(repair —type 1)+ P(repair —type _2)
Probability (32) can evaluate simply. Partitioned model has no repair activity for type
one components. This increase the frequently of system fail while (1-P) probability
help for biasing the estimator. The result of this simulation is shown in table 14.
Results of Obal II simulation also present in table 13.

1-P

(32)

(33)

(34)

Table 13. Results of simulation of SAN model represnted of Figure 6

Method Time(s) Results Replications | Error
Naive simulation 67230 1.52E-06 28375000 | 20.8%
I 1385 1.90E-06 338497 | 1.02%

Table 14. Results of simulation of SAN model represnted of Figure 6

Method 1-P Time(s) Results Replications | Error
Naive - 1290.203 | 1.7176054559E-06 79180000 | 10.5%
Simulation
POR 0.1147283 73.203 | 1.9193768592E-06 8189000 | 0.01%
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Both simulation (naive and partitioned) run with 98% confidence level. Result in our
simulation show about 17 times improvement in simulation time and about 1050
times in relative error while Obal II's results shows 48 in former and 20 times in later,
respectively. Note that in this model, POR is not used completely because of reaching
another rare event when computing the probability P. The problem of using the
presented method for this model is that common part between Q;, Q, is not so much
so computing P is need computing original rare event. However, Simulation results'
show good improvements.

5 Conclusions

Partition of the region by breaking the region of the simulation into two parts helps
simulator to spend more time on important parts of the model. In this paper, using this
technique a new approach for fast simulation of SAN models is introduced. For this
purpose, we have defined sets Q; and Q, than breaking a model using /7, and /7, sets.
Then, the probability of being in the important part that is defined by a new indicator
function is computed. And finally, the model is simulated without events in set /7.
Since partition of the region uses simulation in a way that only rare events are
observed, it improves efficiency of simulation. Also this technique can simply define
dynamically so one can enjoy this method automatically on every SAN model.

We have evaluated the proposed method using four examples of SANs. Results show
that simulation time is decreased even up to 100 times, while the results of the
simulation show high improvements regarding the relative errors.

The method presented in this paper is not dedicated to SANs and can also be used
with other stochastic extensions of Petri nets, such as SPNs, GSPNs, etc. It is also
possible to use this method with Markov chains. We are currently working to use the
proposed method for rare event simulation of SPNs and Markov chains.
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