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Abstract

In this article we treat the problem of option pricing when the volatility component
of the underlying asset price is stochastic. The basic model we consider is commonly
known as the Stochastic Volatility model: dSt = µStdt + σ(Yt)StdWt, where Yt is
an exogenous mean-reverting-type process. We seek a discrete approximation of this
model, one that will converge in distribution to the above continuous model, and
that will allow us to calculate the option price numerically. First, we show how to
estimate the distribution of the volatility component, using an interacting particle
filtering algorithm due to Del Moral, Jacod and Protter (Del Moral et al., 2001).
Then we use this distribution to construct two different models which converge to
the solution of the original model. The first model is our main contribution to the
research in Mathematical Finance, a recombining tree for the stock process, featuring
four successors at every branch. The second model uses an Euler method to generate
future stock prices and calculate option price.

We are in the incomplete market situation, and in order to price options on the
stock, we use classical arbitrage-free valuation, combined with resampling and Monte-
Carlo methods to generate versions of the stock price and compute expectations. Fi-
nally, we compare our methods with the classical Black-Scholes prices, using daily
European Call Options on the SP500 index price in April 2004, and IBM in July 2005.

Key words and phrases: incomplete markets, Monte-Carlo method, option market,
option pricing, particle method, random tree, stochastic filtering, stochastic volatility.

1 Introduction

We cannot start an article about option valuation without quoting the most celebrated
articles in the domain (Black and Scholes, 1973) and (Merton, 1973). Despite significant
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development in the option pricing theory, the Black-Scholes formula for the European Call
Option remains the most widely used application of stochastic analysis in Finance.

Nevertheless, the above quoted formula has significant biases, see for example (Rubin-
stein, 1985). The model’s failure to describe the structure of reported option prices is thought
to arise principally from its constant volatility assumption. Allowing the volatility to change
over time means that it should generally be modeled as a stochastic process. However, ac-
counting for such stochastic volatility within an option valuation formula is not an easy task.
(Hull and White, 1987), (Chesney and Scott, 1989), (Stein and Stein, 1991), (Heston, 1993)
all have constructed various specific stochastic volatility models for option pricing. A notable
example of an attempt to find analytic formulas for option prices under stochastic volatility
is (Fouque et al., 2000a). Even so, there are no simple formulas for the price of options on
stochastic-volatility-driven stocks. When some means of implicit or explicit equations are
found, the relations involved are cumbersome. Approximations have been constructed to
these and other specific volatility models, e.g. (Hilliard and Schwartz, 1996), and (Ritchken
and Trevor, 1999).

When the tree-based Binomial approximation was developed (Sharpe, 1978), the option
pricing model became accessible to a wider audience. (Cox et al., 1979) constructed a
binomial model that converged in distribution to the lognormal diffusion of Black-Scholes,
and they also showed that the limit of the computed option value was the same as the one
given by Black-Scholes valuation. Later, (Cox and Rubinstein, 1985) used the same approach
to value the American style options on dividend paying stock, and they also relaxed some
other assumptions of the original Black-Scholes model.

We believe that if one hopes to find any concrete results for stochastic volatility option
pricing, one will have to revert to numerical methods. Inspired by the success of the binomial
models, we seek a tree-based approximation. Our work shows how to achieve our goal using
a quadrinomial tree model, one in which, at any time, a stock price’s increment may take
any one of four values.

For our underlying continuous-time stochastic process model, we assume that the price
process St and the volatility driving process Yt solve the equations:

{

dSt = µStdt+ σ(Yt)StdWt

dYt = α(ν − Yt)dt+ ψ(Yt)dZt

(1.1)

This model spans all the stochastic volatility models considered previously for different spec-
ifications of the functions σ(x) and ψ(x). For simplicity, we assume Wt and Zt are two
independent Brownian motions. The case when they are correlated can be treated using
ideas similar to those presented herein. We choose a mean-reverting type process to drive
the volatility because this seems to be the most lucrative choice from the practical point of
view, as noted for example in (Fouque et al., 2000a).

We shall note here that the model presented above implies that the market is incomplete,
and as a consequence any derivative price calculated using this model will not be unique.
We adopt a classical approach to this problem by fixing a derivative price as given apriori,
thus in fact, completing the market. We present the details in Section 4

When trying to implement a tree approximation to price an option on a stock driven
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by this kind of model, one is faced with two problems: modeling the volatility component,
and modeling the price itself. Modeling the volatility is a particularly difficult problem since
the volatility cannot be observed directly from the market, only the stock price is directly
observable.

This tree approximation approach has been tried in former articles, most notably (Leisen,
2000) who uses a binomial tree for the volatility and a so-called 8 successors tree for the price.
His idea is similar with the one applied in (Nelson and Ramaswamy, 1990) for the case when
the volatility is deterministic. However, that idea falls short of replicating the theoretical
model when applied to Leisen’s case, since the transformation used to eliminate the volatility
does not work with stochastic volatility. Another interesting article is (Aingworth et al.,
2003) where a Markov chain is used for the volatility process; unfortunately, the price tree
therein is not recombining.

Section 2 contains the details of the conditions necessary for the convergence of our
tree approximation to the solution of the model (1.1). The theory presented is not new,
it is rather an adaptation of an older result about convergence of Markov Chains to the
solution of diffusion equations. Notably, all previous articles on the subject only pointed to
the referenced books (Stroock and Varadhan, 1979), and (Ethier and Kurtz, 1986) without
checking if they were indeed in the specified case. Verifying this fact is not a trivial matter,
thus we choose to include Section 2 to detail the specific application to our case.

In fact one of the main merits of this paper is the construction of a specific discrete Markov
Chain process (our quadrinomial tree) that will converge in distribution to the solution of
the given diffusion equation (1.1). The method we present herein is not restricted to the
specified Ornstein-Uhlembeck model for the volatility process Yt; indeed for any reasonable
type of stochastic process the construction will proceed in a similar fashion. However, to be
able to use the convergence result we need to construct a discrete distribution approximation
of the volatility driving process Yt in (1.1).

The method for estimating this volatility distribution uses a genetic-type algorithm in-
troduced by Del Moral, Jacod, and Protter (Del Moral et al., 2001). This algorithm works
with a fixed number of interacting particles, and gives a good approximation of the optimal
estimation (in the sense of least squares) of the volatility given the observed stock prices.
Hence it can be best described as an optimal stochastic volatility particle filter. Section 3
details this algorithm.

Based on this estimated volatility distribution we will construct two different models: a
Static model in Section 4 (see page 9) and a Dynamic model in Section 5. Subsections 4.1
and 4.2 present the process of constructing a quadrinomial recombining tree which converges
in distribution to the price process, and includes the stochastic volatility particle filter.
Subsection 4.3 gives the proof of convergence of our quadrinomial tree to the solution of
equation (1.1).

It is possible to prove – although we will leave a full proof out of our article for the sake
of conciseness – that a tree with anything less than four basic successors could not possibly
converge to the Markov process (1.1) it tries to approximate. This includes any binomial
or trinomial tree construction. The proof includes the following idea: the main convergence
theorem in Section 2 cannot be verified for smaller trees, because we simply do not have
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enough parameters in the model to verify all the equations involved. Another fact worth
mentioning, which we also leave out in this paper, is that if the correlation between the
processes W and Z in (1.1) is nonzero, our quadrinomial tree will not work anymore, but a
pentanomial tree should be more than sufficient to handle it.

The Dynamic model is presented in Section 5 for the sake of comparison, it is what one
would expect to have to construct in order to be consistent with the stochastic volatility
model and the stochastic volatility particle filter estimation method. We present a standard
Monte-Carlo method for pricing in this case, based on an Euler-type discretization of the
governing system of stochastic differential equations (1.1). Our Static model differentiates
itself from the Dynamic because, once the stochastic volatility has been estimated up to the
present time1, the volatility remains unchanged for the future construction of the model.
Note however that this volatility is not a constant, but rather a random variable given as a
function of all passed discrete stock observations.

Although the Static model may seem to be less consistent with the underlying stochastic
processes driving our stock price in the future, we show in this article that it performs
significantly better than the more mathematically natural Dynamic model in terms of option
pricing, when performance is judged by comparison with prices actually observed on the
option market. There are a number of ways of interpreting this mathematically counter-
intuitive result. The easiest way is to note that any option pricing is done conditional on the
filtration available today (F0). Since our constructed process (Xti , Yti) is a Markov Chain
the option price that we are calculating should only depend on the volatility distribution
at time 0. Such an explanation is not a surprise when one knows how popular the straight
constant-volatility Black-Scholes formula is among practitioners.

Section 6 contains numerical results obtained when applying our algorithms to SP500
and IBM option data. Section 7 contains the interpretation of the results, and directions of
future study using our model.

2 The model and theoretical results

We work under an equivalent martingale measure, and instead of the stock price directly
we work with the logarithm of the price (the return). We denote Xt = log St. Under this
measure the system of equations (1.1) becomes:

{

dXt =
(

r − σ2(Yt)
2

)

dt+ σ(Yt)dWt

dYt = α(ν − Yt)dt+ ψ(Yt)dZt

(2.1)

Here r is the short-term risk-free rate of interest. We used the same notations Wt and Zt

for the corresponding Brownian Motions under the martingale measure obtained applying
the Girsanov’s theorem. We would like to obtain discrete versions of the processes (Xt, Yt)
which would converge in distribution to the continuous processes (2.1). Using the fact that
ex is a continuous function, and that the price of the European Option can be written

1the time at which the option pricing question is being asked
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as a conditional expectation of a continuous function of the price, this is enough for the
convergence in distribution of the option price found with our discrete approximation to the
real price of the option.

To achieve this goal, we construct a discrete time Markov chain (our Static model) in
Section 4, and using the theory in Section 11.3 in the book (Stroock and Varadhan, 1979),
we show the convergence in distribution of this Markov chain to the solution of the diffusion
equation (2.1). The same theory can also be found in (Ethier and Kurtz, 1986), though in
a slightly less general form.

We choose to present details of the Theorems from the above cited books, since they
require certain modifications in order to be applicable to our case. Once we present Theorem
2.2 in our specific context, we only need to verify it to obtain convergence of our Static model
to the solution of the diffusion equation (2.1), a task that we accomplish in Subsection 4.3

As noted in Section 4, the market is incomplete. Thus, even though we can prove
convergence in distribution under a fixed equivalent martingale measure, there is an infinite
number of such equivalent martingale measures. However, we can cope with this problem
using the standard approach of fixing one value of the option as given apriori. This fixed
value will help us determine the “proper” martingale measure to use, and solve the pricing
problem.

Let T be the maturity date of the option we are trying to price and N the number of
steps in our tree. Let us denote the time increment by ∆t = T

N
= h.

We will assume that S1, S2, . . . SK historical stock prices are known. We will use this
history of prices to estimate the volatility process in the next Section 3. For now let us assume
that we have constructed an approximating process Y n

t that converges in distribution to the
volatility process Yt in (2.1) for each t = ti time i = 1, 2, . . . , tK . We are only going to be
interested in the last discrete distribution Y n

tK
which will converge in distribution to YtK when

n→ ∞. To be precise, there are two periods of time that concern us. There is the past which
contains the times ti, i = 1, 2, . . . , K, that we use to estimate the discrete distribution Y n

tK
.

Then there is the future time where we construct our Markov chain, dependent only on the
present stock price SK = S, and the distribution of the present day volatility Y n

tK
= Y n

0 . For
simplicity of notation we will drop the subscript in Y and use Y n for the discrete distribution
and Y for the continuous process both at time tK = 0 (present time).

In the following we will prove a convergence result which applies to our Static model de-
tailed in Section 4; the result implies that our quadrinomial tree convergences in distribution
to the solution of the following equation:

dXt =

(

r − σ2(Y )

2

)

dt+ σ(Y )dWt, (2.2)

where Y is a random variable with the same distribution as the volatility process at time
t = 0 i.e., Y0. In modeling terms, we assume that Y0 is consistent with the past evolution of
the volatility process given by the autonomous model for {Ys : s ≤ 0} in (2.1). As alluded to
in the introduction, there is a difference between the distributions of X under the Dynamic
model (2.1) and the Static model (2.2). On the other hand, a simple Euler method will be
used to converge to the distribution of X under the Dynamic model.
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We assume that the coefficients of (2.1) are regular enough to guarantee that the martin-
gale problem associated with the diffusion process Xt in (2.1) has a unique solution starting
from x = logSK , the last data point available. This is equivalent to saying that equation
(2.1) has a unique solution in the weak sense, i.e. that the law of the solution is unique.
Standard texts, such as (Stroock and Varadhan, 1979) can be consulted to see that this
hardly places any practical restriction on the coefficients.

Let us start with a discrete Markov chain (x(ih),Fih) with transition probabilities denoted
pz

x of jumping from the point x to the point z. These transition probabilities also depend
on h, but for simplicity of notation we let that subscript out. For each h let P h

x be the
probability measure on R characterized by:



































(i) Ph
x (x(0) = x) = 1

(ii) Ph
x

(

x(t) = (i+1)h−t

h
x(ih) + t−ih

h
x((i+ 1)h)

, ih ≤ t < (i+ 1)h

)

= 1, ∀ i ≥ 0

(iii) Ph
x (x((i+ 1)h) = z|Fih) = pz

x, ∀ z ∈ R and ∀ i ≥ 0

(2.3)

Remark 2.1. We can see the following:

1. Properties (i) and (iii) say that (x(ih),Fih), i ≥ 0 is a time-homogeneous Markov
Chain starting at x with transition probability pz

x under the probability measure Ph
x.

2. Condition (ii) assures us that the process x(t) is linear between x(ih) and
x((i + 1)h). In turn this will later guarantee that the process x(t) we construct is a
tree.

3. We will show in Section 4 precisely how to construct this Markov chain x(ih)

Conditional on being at x and on the Y n variable, we construct the following quantities
as functions of h > 0:

bh(x, Y
n) =

1

h

∑

z successor of x

pz
x(z − x) =

1

h
EY [∆x(ih)]

ah(x, Y
n) =

1

h

∑

z successor of x

pz
x(z − x)2 =

1

h
EY

[

∆2x(ih)
]

,

where the notation ∆x(ih) is used for the increment over the interval [ih, (i+ 1)h], and EY

denotes conditional expectation with respect to the sigma algebra FY
tK

generated by the Y
variable. Here the successor z is determined using both the predecessor x and the Y n random
variable. We will see exactly how z is defined in Section 4 when we construct our specific
Markov chain. Similarly, we define the following quantities corresponding to the infinitesimal
generator of the equation (2.1):

b(x, Y ) = r − σ2(Y )

2
,

a(x, Y ) = σ2(Y ).
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We make the following assumptions, where
D−→ denotes convergence in distribution:

lim
hց0

bh(x, Y
n)

D−→ b(x, Y ) , when n→ ∞ (2.4)

lim
hց0

ah(x, Y
n)

D−→ a(x, Y ) , when n→ ∞ (2.5)

lim
hց0

max
z successor of x

|z − x| = 0. (2.6)

Theorem 2.2. Assume that the martingale problem associated with the diffusion process Xt

in (2.1) has a unique solution Px starting from x = logSK and that the functions a(x, y) and
b(x, y) are continuous and bounded. Then conditions (2.4), (2.5) and (2.6) are sufficient to
guarantee that Ph

x as defined in (2.3) converges to Px as hց 0 and n→ ∞. Or equivalently
saying: x(ih) converges in distribution to Xt the unique solution of the equation (2.2)

Proof. The proof of the theorem consists in showing the convergence of the infinitesimal
generators formed using the discretized coefficients bh(., .) and ah(., .) to the infinitesimal
generator of the continuous version. Since it is very similar to the proof of Theorem 11.3.4
in (Stroock and Varadhan, 1979) we omit it here.

3 Estimating the filtered stochastic volatility distribu-

tion

In this section we describe the method used to find the distribution of the volatility process
given the discrete stock price observations, also known as the stochastic volatility particle
filter.

The issue of estimating the coefficients of the volatility process Yt is itself a very difficult
problem, which has not led to many satisfactory answers. We plan to address this problem
using a systematic statistical analysis in a subsequent article. For now, the reader is directed
to current work in (Fouque et al., 2000b), (Nielsen and Vestergaard, 2000) or (Bollerslev and
Zhou, 2002).

We assume that the coefficients ν, α and the functions σ(y) and ψ(y) are known or have
already been estimated. We now use an algorithm due to Del Moral, Jacod, and Protter
(Del Moral et al., 2001) adapted to our specific case, in order to estimate, in the optimal
filtering sense, the actual volatility process given all past stock observations. Specifically,
define the random probability measure for all i = 1, · · · , K,

pi (dy) = P [Yti ∈ dy|Xt1, · · · , Xti] .

This is the filtered stochastic volatility process at time i given all discrete passed ob-
servations of the stock price. Note that if Xt1 , · · · , Xti are assumed to be known (ob-
served), then pi is non-random and depends explicitly on these observed values. (Del
Moral et al., 2001), Section 5, provides an algorithm which constructs n time varying
particles

{

Y j
i : i = 1, · · · , K; j = 1, · · · , n

}

together with corresponding probabilities {pj
i :
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i = 1, · · · , K; j = 1, · · · , n} such that for each i, and for any sequence of observations
Xt1 , · · · , Xti, the empirical distribution of these particles converges to the probability mea-
sure pi (dy). This algorithm is a two step genetic-type algorithm with a Mutation step -
Selection step sequence. We refer to the above cited article (Theorem 5.1) for the proof of
convergence. Here we present the algorithm in detail.

The data we work with is a sequence of returns: {x0 = logS0, x1 = log S1, . . . , xK =
log SK}, observed from the market. We need an initial distribution for the volatility process
Yt. For practical purposes, we use δ{ν} for this distribution. Here δ{x} is the Dirac point mass.
The only condition we need is: the functions σ(x) and ψ(x) have to be twice differentiable
with bounded derivatives of all orders up to 2.

Let us define the function:

φ(x) =

{

1 − |x| if −1 < x < 1

0 otherwise

Another function we could use is φ(x) = e−2|x|. In fact, the only requirement on φ is that it
have finite L1 norm. In order to obtain good results, we need φ to be concentrated near 0.
For n > 0 we define the contraction corresponding to φ(x) as:

φn(x) = 3
√
nφ(x 3

√
n) =

{

3
√
n (1 − |x 3

√
n|) if − 1

3
√

n
< x < 1

3
√

n

0 otherwise
. (3.1)

First we choose m = mn an integer.
Step 1: We start with X0 = x0 and Y0 = y0 = ν.
Mutation step: This part calculates a random variable with approximately the same

distribution as (X1, Y1) using the well known Euler scheme for the equation (2.1). More
precisely we set:

Y (m, y0)i+1 : = Yi+1 = Yi +
1

m
α(ν − Yi) +

1√
m
ψ(Yi)Ui

X(m, x0)i+1 : = Xi+1 = Xi +
1

m
(r − σ2(Yi)

2
) +

1√
m
σ(Yi)U

′
i . (3.2)

Here Ui and U ′
i are iid Normal random variates with mean 0 and variance 1. At the end of

this first evolution step we obtain:

X1 = X(m, x0)m,

Y1 = Y (m, y0)m. (3.3)

Selection step: We repeat the evolution step n times to obtain n pairs: {(Xj
1 , Y

j
1 )}j=1,n.

Now we introduce the discrete probability measure:

Φn
1 =

{

1
C

∑n

j=1 φn(Xj
1 − x1)δ{Y j

1
} if C > 0

δ{0} otherwise.
(3.4)
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Here the constant C is chosen to make Φn
1 a probability measure, i.e., C =

∑n

j=1 φn(Xj
1−x1).

The idea is to “select” only the values of Y1 which correspond to values of X1 not far
away from the realization x1. We end the first Selection step by simulating n iid variables
{Y ′j

1}j=1,n.
Steps 2 to K: For each step i = 2, 3, . . . , K, we first apply the evolution step to each of

the variables selected at the end of the previous step, that is, starting with X0 = xi−1 and
Y0 = Y ′j

i−1 for each j = 1, 2, . . . , n in (3.2). Thus, we obtain n pairs {(Xj
i , Y

j
i )}j=1,2,...,n.

Then we apply the selection step to these pairs. That is, we use them in the distribution
(3.4) instead of the {(Xj

1 , Y
j
1 )}j=1,2,...,n pairs, and xi instead of x1.

At the end of each step i we obtain a discrete distribution Φn
i , and this is our estimate

for the transition probability of the process Yt at the respective time ti. In our construction
of the quadrinomial tree, we use only the latest estimated probability distribution, i.e., Φn

K .
We will refer to this distribution by saying that it is the set of particles {Ȳ1, Ȳ2, · · · , Ȳn}
together with their corresponding probabilities (or weights) {p̄1, p̄2, . . . , p̄n}.

4 The Static Model: Constructing the tree

We will present two models that will approximate the price of the option. We called the first
model presented the “Static” model since the volatility distribution is not changing at every
step in the future. It remains static, equal with the distribution at the present time. As we
shall see from Section 7 this is the better model when compared with what we will later call
the “Dynamic” model.

We assume that we have an option with maturity T . Our purpose in this section is to
construct a discrete tree which will assist us calculating an estimate of the given option’s
price. The data available is the value of the stock price today S, and a history of earlier stock
prices. As described in the previous section, we use them to compute a set Y n of particles
{Ȳ1, Ȳ2, · · · , Ȳn} with weights {p̄1, p̄2, . . . , p̄n}, whose empirical law approximates the best
estimate of Y0 at time 0 for the volatility process given all past observations.

Remark 4.1. The market is incomplete. Thus, the option price is not unique.

It is easy to see that the remark is true as is the case with all the stochastic volatility
models since the number of sources of randomness (2) is bigger than the number of tradable
assets (1). Remember that the volatility process is not a tradable asset, and cannot, in
practice, be observed in discrete time. This means that the price of a specific derivative will
not be completely determined by the specification (2.1) of the (X, Y ) dynamics observed in
discrete time, and by the requirement that the market is free of arbitrage. However, the
requirement of no arbitrage does imply that the prices of various derivatives will have to
satisfy certain internal consistency relationships, in order to avoid arbitrage possibilities on
the derivative market.

To take advantage of this fact and to be able to use the classical pricing idea in incomplete
markets, we need to make an assumption:

Assumption 4.2. There is a liquid market for every contingent claim.
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p1

p3

δ

( )iY tσ ∆

2 ( )ix j Y tσ= ∆

3 ( 1) ( )ix j Y tσ= − ∆

1 ( 1) ( )ix j Y tσ= + ∆

x
p2

p4

4 ( 2) ( )ix j Y tσ= − ∆

Figure 1: The basic successors for a given volatility value. Case 1.

This assumption assures us that the derivatives are tradable assets. Thus, taking the
price of one particular option (called the “benchmark” option ) as given a priori will allow
us to find a unique price for all the other derivatives. Indeed, we would then have two sources
of randomness and two tradable assets (the stock and the benchmark), and the price of any
derivative would be uniquely determined.

Let us divide the interval [0, T ] into N subintervals each of length ∆t = T
N

= h. At each
of the points i∆t = ih the tree is branching. The nodes on the tree represent possible return
values Xt = log St.

4.1 Construction of the one period model

Now, assume that we are at a point x. What are the possible successors of x?
We sample a volatility value from the discrete approximating distribution Y n at each

time period ih, i ∈ {1, 2, . . . , N}. Denote the value drawn at step i corresponding to time
ih by Yi. Corresponding to this volatility value Yi we will construct the successors in the
following way.

We consider a grid of points of the form lσ(Yi)
√

∆t with l taking integer values. No
matter where the parent x is, it will fall at one such point or between two grid points. In
this grid, let j be the integer that corresponds to the point above x. Mathematically, j is
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p1

p3 δ

( )iY tσ ∆

2 ( )ix j Y tσ= ∆

3 ( 1) ( )ix j Y tσ= − ∆

1 ( 1) ( )ix j Y tσ= + ∆

x
p2

p4

4 ( 2) ( )ix j Y tσ= − ∆

Figure 2: The basic successors for a given volatility value. Case 2.

the point that attains:

inf
{

l ∈ N | l σ(Yi)
√

∆t ≥ x
}

We will have two possible cases: either the point j σ(Yi)
√

∆t on the grid corresponding to j
is closer to x, or the point (j − 1)σ(Yi)

√
∆t corresponding to j − 1 is closer. We will treat

the two cases separately.

Let us denote
δ := x− j σ(Yi)

√
∆t,

q := δ/
(

σ(Yi)
√

∆t
)

.

Remark 4.3. With the notation above we have δ ∈
[

−σ(Yi)
√

∆t

2
, σ(Yi)

√
∆t

2

]

or q ∈
[

−1
2
, 1

2

]

Case 1. j σ(Yi)
√

∆t is the point on the grid closest to x,
(

q ∈
[

−1
2
, 0

])

.

Figure 1 on page 10 refers to this case.
One of the assumptions we need to verify is (2.4), which asks the mean of the increment

to converge to the drift of the Xt process in (2.2). In order to simplify this requirement, we
add the drift quantity to each of the successors. This trick will simplify the conditions (2.4)
to ask now the convergence of the mean increment to zero. This idea has been previously
used by many authors including Leisen as well as Nelson & Ramaswamy.
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Explicitly, we take the 4 successors to be:






























x1 = (j + 1)σ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t

x2 = jσ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t

x3 = (j − 1)σ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t

x4 = (j − 2)σ(Yi)
√

∆t+
(

r − σ2(Yi)
2

)

∆t

(4.1)

First notice that condition (2.6) is trivially satisfied by this choice of successors. The
plan is to set a system of equations consisting of the variance condition (2.5), and the mean
condition (2.4), and to solve it for the joint probabilities p1, p2 , p3 and p4. Because the
market is incomplete, we cannot expect to have a unique solution to the system. However,
each solution will give us an equivalent martingale measure.

Algebraically, we write: j σ(Yi)
√

∆t = x− δ, and using this we infer that the increments
over the period ∆t are:































x1 − x = σ(Yi)
√

∆t− δ +
(

r − σ2(Yi)
2

)

∆t

x2 − x = −δ +
(

r − σ2(Yi)
2

)

∆t

x3 − x = −σ(Yi)
√

∆t− δ +
(

r − σ2(Yi)
2

)

∆t

x4 − x = −2σ(Yi)
√

∆t− δ +
(

r − σ2(Yi)
2

)

∆t

(4.2)

Conditions (2.4) and (2.5) translate here as:

E[∆x|Yi] =

(

r − σ2(Yi)

2

)

∆t

V[∆x|Yi] = σ2(Yi)∆t

where by ∆x we denote the increment over the period ∆t.
We will solve the following system of equations with respect to p1, p2 p3 and p4:



























(

σ(Yi)
√

∆t− δ
)

p1 +(−δ)p2 +
(

−σ(Yi)
√

∆t− δ
)

p3 +
(

−2σ(Yi)
√

∆t− δ
)

p4 = 0
(

σ(Yi)
√

∆t− δ
)2

p1 +(−δ)2p2 +
(

−σ(Yi)
√

∆t− δ
)2

p3 +
(

−2σ(Yi)
√

∆t− δ
)2

p4

−E[∆x|Yi]
2 = σ2(Yi)∆t

p1 + p2 + p3 + p4 = 1

.

(4.3)
Eliminating the terms in the first equation of the system we get:

σ(Yi)
√

∆t (p1 − p3 − 2p4) − δ = 0

or

p1 − p3 − 2p4 =
δ

σ(Yi)
√

∆t
. (4.4)
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Neglecting the terms of the form
(

r − σ2(Yi)
2

)

∆t when using (4.4) in the second equation

in (4.3) we obtain the following:

σ2(Yi)∆t = σ2(Yi)∆t (p1 + p3 + 4p4) + 2δσ(Yi)
√

∆t (p3 − p1 + 2p4) + δ2

−
(

σ(Yi)
√

∆t (p1 − p3 − 2p4) − δ
)2

.

After simplifications, we obtain the equation:

(p1 + p3 + 4p4) − (p1 − p3 − 2p4)
2 = 1.

So now the system of equations to be solved looks like:











p1 + p3 + 4p4 = 1 + δ2

σ2(Yi)∆t

p1 − p3 − 2p4 = δ

σ(Yi)
√

∆t

p1 + p2 + p3 + p4 = 1

(4.5)

Note that this is a system with 4 unknowns and 3 equations. Thus, there exists an
infinite number of solutions to the above system. Since we are interested in the solutions in
the interval [0, 1], we are able to reduce somewhat the range of the solutions. Let us denote
by p the probability of the branch furthest away from x. In this case p := p4. Expressing
the other probabilities in term of p and the q defined in Remark 4.3, we obtain:











p1 = 1
2
(1 + q + q2) − p

p2 = 3p− q2

p3 = 1
2
(1 − q + q2) − 3p

(4.6)

Now using the condition that every probability needs to be between 0 and 1, we solve the
following three inequalities:











1
2
(−1 + q + q2) ≤ p ≤ 1

2
(1 + q + q2)

q2

3
≤ p ≤ 1+q2

3
1
6
(−1 − q + q2) ≤ p ≤ 1

6
(1 − q + q2)

(4.7)

It is not difficult to see that the solution of the inequalities (4.7) is p ∈ [ 1
12
, 1

6
]. Respectivelly,

we will obtain an equivalent martingale measure for every p ∈ [ 1
12
, 1

6
] thanks to the first

equation in (4.3).
We postpone the statement of this result until after Case 2 bellow.

Case 2. (j − 1)σ(Yi)
√

∆t is the point on the grid closest to x,
(

q ∈
[

0, 1
2

])

.

Figure 2 on page 11 refers to this case.

Remark 4.4. This second case is just the mirror image of the first case with respect to x.
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The 4 successors are the same as in Case 1; the increments are going to be calculated
similarly with (4.2) and using the Remark 4.4 together with the equations (2.4) and (2.5)
will give the following solution:











p2 = 1
2
(1 + q + q2) − 3p

p3 = 3p− q2

p4 = 1
2
(1 − q + q2) − p

, (4.8)

where p is the probability of the successor furthest away, in this case p1. This is just
the solution given in (4.6) with p1 ⇄ p4 and p2 ⇄ p3 taking into account the interval for δ.
Thus, we are able to state the following result.

Lemma 4.5. If we construct a one step qudrinomial tree with the successors given by (4.1),
and we denote with p the probability of the furthest away successor from x, then for every
p ∈ [ 1

12
, 1

6
]:

(i) in Case 1 (q ∈ [−1
2
, 0]) the relations (4.6) define an Equivalent Martingale Measure.

(ii) in Case 2 (q ∈ [0, 1
2
]) the relations (4.8) define an Equivalent Martingale Measure.

Remark 4.6. As we observed above, constructing the Equivalent Martingale Measure involves
solving a system with 3 equations and 4 unknowns. It is natural to ask then why not try a
tree with three successors, which will in turn imply solving a system with 3 equations and 3
variables. However, it turs out that such a system has no solution for any possible choice of
successors2.

4.2 Construction of the multi-period model. Option valuation.

Suppose now that we have to compute an option value. For illustrative purposes we will
use an European type option, but the method should work with any kind of path dependent
option e.g., American, Asian, Barrier etc.

Assume that the payoff function is: Φ(XT ). The maturity date of the option is T , and
the purpose is to compute the value of this option at time t = 0 (for simplicity) using our
model (2.1). We divide the interval [0, T ] into N smaller ones of length ∆t := T

N
. At each of

the points i∆t with i ∈ {1, 2, . . . , N} we then construct the successors in our tree as in the
previous section. This tree converges in distribution to the solution of the stochastic model
(2.2). A proof of this fact using Theorem 2.2 is found in the next subsection.

In order to calculate an estimate for the option price we will employ a resampling method
based on the particles defining the approximate discrete distribution for the initial volatility
Y . Suppose that we have the discrete probability distribution of Y , i.e. we know the stochas-
tic volatility particle filter values {Ȳ1, Ȳ2, . . . , Ȳn}, each with probability {p̄1, p̄2, . . . , p̄n}. We
sample N values from this distribution, and use them like the realization of volatility process
Y along the N levels of the tree, into the future. In other words, call these sampled values

2This is to be expected, since the existence of such a solution will contradict the incompleteness of the
market
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Y1, · · · , YN , we start with the initial value x0. We then compute the 4 successors of x0 as
in the previous section for the first sampled value, Y1. After this, for each one of the 4
successors we compute their respective successors for the second sampled volatility value Y2,
and so on.

The tree we construct this way allows us to compute one instance of the option price
by using the standard pricing technique that is consistent with a no-arbitrage condition:
after creating the tree based on our sampled values, we compute the value of the payoff
function Φ at the terminal nodes of the tree. Then, working backward in the path tree, we
compute the value of the option at time t = 0 as the discounted expectation of the final node
values. Because the tree is recombining by construction, the level of computation implied is
manageable, typically of a polynomial order in N . The complexity of the filtering algorithm
leading to the original particle values {Ȳ1, Ȳ2, . . . , Ȳn} is no greater.

If we are to iterate this procedure by using repeated samples {Y1, · · · , YN}, we can take the
average of all prices obtained for each tree generated using each separate sample. This Monte
Carlo method converges, as the number of particles n increases, to the true option price for
the quadrinomial tree in which the original distribution of the volatility is the true law of Y0

given past observations of the stock price. We leave a full proof of this convergence out of
our article. It uses the following fact proved by Pierre del Moral, known as a propagation of
chaos result: as n increases, for a fixed number N of particles {Y1, · · · , YN} sampled from
the distribution of particles {Ȳ1, Ȳ2, . . . , Ȳn} with probabilities {p̄1, p̄2, . . . , p̄n}, the Yi’s are
asymptotically independent and all identically distributed according to the law of Y0 given
all past stock price observations. Chapter 8, and in particular Theorem 8.3.3 in (Del Moral,
2004), can be consulted for this fact. The convergence proof in the next section is also based
on del Moral’s propagation of chaos.

In fact, a further convergence result can be established here. According to del Moral’s
propagation of chaos Theorem 8.3.3 in (Del Moral, 2004), if the number of samples N = N (n)
is taken to be a function of the number of particles n, and if the number of time steps
K = K (n), used before time 0 to simulate the particle approximation of Y0, is also a
function of n, then the speed at which the samples {Y1, · · · , YN} converge to independent
copies of the filtered value of Y0 given all past continuously observed stock prices is given by

N2 (n)K (n)

n
.

Thus ifN andK are chosen so that this quantity tends to 0 as n tends to +∞, we indeed have
the announced convergence. But because of the very special nature of stochastic volatility
filtering, at any time t, the squared volatility in the original model (2.1) is actually equal to
the differential of the quadratic variation of the martingale X, which means that when the
number of time observations N tends to infinity, σ2 (Yt) does not need to be filtered: it is
actually known given the entire past of the path of X in continuous time. For simplicity,
assume that σ2 is a bijective function on the space where Y lives, or change the dynamics
of Y so that σ2 (Yt) is Yt itself. Alternately, we see that the filtered value of Y0 tends to
the actual objective value of Y0 when N tends to +∞. Hence in the above situation where
we can apply the propagation of chaos, if N (n) also tends to +∞, we can guarantee that
our sample {Y1, · · · , YN} converges in distribution to independent copies of Y0. Then, also
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invoking the convergence theorem of the next section, we conclude that the option valuation
method described in this section converges to the true option price under the Static model
(2.2) where the fixed random variable Y is the true objective volatility Y0.

Figures 3 and 4, on pages 26 and 27, contain a number of simulated trees for various values
of the parameter p. We can also visualize from Figures 3 and 4 that the trees recombine,
and accordingly that the level of computation is not very high.

4.3 Convergence result for the quadrinomial tree

As noted in Section 2 we shall prove that our constructed tree converges to the solution of
the process

dXt =

(

r − σ2(Y )

2

)

dt+ σ(Y )dWt,

where Y is a random variable with the same distribution as the actual volatility process at
time t = 0 i.e., Y0.

From the empirical results in Section 6 we shall see that this model actually performs
better than the Dynamic model presented in Section 5, as announced in the introduction.

Theorem 4.7. If we denote by p the probability of the successor furthest away from the
parent point x, then the relations (4.6) and (4.8) respectively define an Equivalent Martingale
Measure for every p ∈ [ 1

12
, 1

6
] depending on which successor is further away from x: x4,

respectively x1.
Furthermore, under any such measure the tree defined by the relations (4.1) converges in

distribution to the continuous process (2.2) as the time interval ∆t → 0 and the number of
particles n→ ∞ in the discrete distribution Y n

Proof. The first equation in the systems we solved above guarantees that the discounted
process has expected increments zero, thus assuring us that the resulting measure we find is
a martingale measure.

It remains to show the convergence result, and to this end we are using Theorem 2.2.
More specifically, we are going to prove that the two critical assumptions (2.4) and (2.5) are
satisfied. Assume that at step i the tree is constructed using the volatility value Yi sampled
from the distribution Y n.

Let us define the variable X in Case 1:

X =























σ(Yi)
√

∆t− δ with probability p1

p̄i

−δ with probability p2

p̄i

−σ(Yi)
√

∆t− δ with probability p3

p̄i

−2σ(Yi)
√

∆t− δ with probability p4

p̄i
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and in Case 2 as:

X =























2σ(Yi)
√

∆t− δ with probability p1

p̄i

σ(Yi)
√

∆t− δ with probability p2

p̄i

−δ with probability p3

p̄i

−σ(Yi)
√

∆t− δ with probability p4

p̄i

where δ

σ(Yi)
√

∆t
is in the interval [−1

2
, 0] in case 1 and in [0, 1

2
] in the case 2.

Let us note here that in either of the two cases ∆x|Yi = X +
(

r − σ2(Yi)
2

)

∆t. Also, remark

that the system (4.3) gives the mean and variance of X as 0 and σ2(Yi)∆t, respectively.
Thus, we have:

E[∆x|Yi] = E[X ] +

(

r − σ2(Yi)

2

)

∆t

=

(

r − σ2(Yi)

2

)

∆t

Now from the definition of bh(x) we have:

bh(x) =
E[∆x|Yi]

∆t
= r − σ2(Yi)

2

At this point we need to invoke Theorem 8.3.3 in (Del Moral, 2004). When applied to
our particular case it implies that each of the variables Y1, Y2, . . . drawn from the discrete
distribution Y n converge in distribution as n → ∞ to a random variable Y ∆t whose law is
that of the filtered value of Y0 given the observed stock prices before time 0. Moreover, using
the facts given in the last paragraph of the previous subsection, when ∆t → 0, the law of
Y ∆t tends to the law of the actual initial volatility Y0. Thus for a n large enough and ∆t
small enough, using the continuity of σ(y), we obtain that the Assumption (2.4) is satisfied.

Since V[∆x|Yi] = V[X ] we have:

E[(∆x)2|Yi] = V[X ] + E[∆x|Yi]
2 = σ2(Yi)∆t+

(

r − σ2(Yi)

2

)2

∆t2

Thus:

ah(x) =
E[∆x2|Yi]

∆t
= σ2(Yi) +

(

r − σ2(Yi)

2

)2

∆t

Using the fact that r is a constant and that the function σ is locally bounded, the
second term in ah(x) converges to 0 as ∆t → 0. Using again the Theorem 8.3.3 in (Del
Moral, 2004) and the continuity of the function σ2(y), for a large enough n, we obtain the
Assumption (2.5).
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To construct our tree we need to know the value of the parameter p described in the
previous Subsection. In order to do that we use the price of a suitably chosen option from
the market to calibrate for the parameter p. The option we chose to use in our numerics
(see Section 6) is the previous day (April 21, 2004, in our case) at-the-money option, but
theoretically, it could be any option from any moment in the past. For fixed values of p on a
dense grid on the interval [ 1

12
, 1

6
] we generate trees and compute option prices corresponding

to each p in the grid. Then we compare the results obtained with the price of the option
from the market and we choose the value p that gave the closest value to the option on the
market.

We use this parameter p to compute values for all the options at time 0 (April 22, 2004).
A graphical illustration of this process applied to a specific example is presented in Figure 7.
It turns out that these option prices are quite insensitive to the actual choice of p, for p in
a wide range within the interval [ 1

12
, 1

6
]. This robustness is a highly desirable property when

one is faced with deciding in a rather arbitrary way how to choose a martingale measure.
Using our tree we can also approximate the sensitivities of the option price (the Greeks).

If we denote by C the value of the option obtained using our tree method, we can compute:

delta =
∂C

∂S
=
C(S + ∆S) − C(S − ∆S)

2∆S

gamma =
∂2C

∂S2
=
C(S + ∆S) − 2C(S) + C(S − ∆S)

∆S2

theta =
∂C

∂t
=
C(t+ ∆t) − C(t)

∆t

rho =
∂C

∂r
=
C(r + ∆r) − C(r)

∆r

Here the value of the option is calculated using various initial conditions. For example,
C(S + ∆S) will be estimated using an initial asset price of S + ∆S with ∆S small. ∆S =
0.001S would be a good choice here. Every price in a difference or a sum should be computed
using the same set of volatility values to eliminate variability due to randomness.

Remark 4.8. Notice that we do not compute vega which is the derivative with respect to
the volatility, because in our case it does not make much sense. We could also compute a
nonstandard derivative with respect to the above described parameter p.

Remark 4.9. From the present moment when we start to construct our quadrinomial tree and
until expiration the discrete distribution of the volatility remains unchanged in time. The
next section details a simple model when the discrete distribution of the volatility evolves in
time: the dynamic model.

5 The Dynamic Model: using stochastic volatility fil-

tering in a Monte-Carlo method

The idea of this model is to start with the estimated volatility distribution at the present
time Y n = Y n

0 and with the logarithm of the price of the stock today x0 = log S0 in equation
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(2.1), and then to take advantage of the same Euler scheme we used in the Section 3 to
generate future stock prices and volatility values.

More precisely we start with x0 and the Y n
0 distribution. We sample a volatility value

y0 from the distribution Y n
0 . We divide the time to expiration T into N intervals of length

∆t = T/N and generate a path (X, Y ) recursively:

Y (y0)i+1 : = Yi+1 = Yi + α(ν − Yi)∆t+ ψ(Yi)Ui

√
∆t,

X(x0)i+1 : = Xi+1 = Xi + (r − σ2(Yi)

2
)∆t+ σ(Yi)U

′
i

√
∆t. (5.1)

where the variables Ui and U ′
i are iid standard normal and i ∈ {0, 1, 2, . . . , N − 1}. In other

words, we use the actual “Stochastic Volatility” dynamics for simulating future values of
(X, Y ), but started from the initial distribution δ{x0} ⊗ Y n

0 .
Once we find the value at the expiration X(x0)N = XT we can compute the value of the

option at the expiration, and then we discount back to the present value using the risk-free
rate. This represents one replication of a Monte Carlo method: to compute an estimate of
the option price we generate many replications (typically of the order 106) then compute
the average of the values obtained. This average is our estimate for the price of the option
today.

Any Monte-Carlo method is notoriously inefficient, and one may try to improve the
convergence of the method by such techniques as reduction of variance, and the like. However,
since our dynamic model yields option prices which are not as close to those given in the
market as the static model’s prices, there seems little reason to improve the efficiency of our
Monte-Carlo method for the dynamic model.

At this stage it is worth noting that this article’s second-named author, in (Viens, 2002),
provides a Monte Carlo method that solves a related stochastic portfolio optimization prob-
lem using elements of stochastic control, dynamically in time, based on the dynamic evolution
of the stochastic volatility particle filter. Because of the non-linear nature of portfolio opti-
mization, as opposed to the linear nature of option pricing, the numerics proposed in (Viens,
2002) are difficult to implement in general (see however the special case of power utility, for
which a successful implementation can be found in (Batalova and Viens, 2005)). We hope
that the successful option-pricing implementation in this article will be an invitation for
researchers to apply the same models and methods to the optimization problem in (Viens,
2002).

6 Using real data: European Call options on S&P500

and IBM

We have chosen to illustrate our method with two sets of data. The first set is S&P500
data gathered on April 21-22 2004. We are using daily data from January 1st, 1999 to April
21, 2004 to compute the discrete volatility distribution according to the method described
in Section 3. Figure 5 represents the evolution of the S&P500 index price over the time

19



period mentioned above. The second set used is IBM data gathered on July 18-19, 2005.
We present a more detailed explanation about this dataset on page 20

We are working with the model presented in (2.1) with φ(y) = β and σ(y) = e−|y|, using
the following parameters for the volatility equation: α = 50, m = −4.38 β = 1 and r = .01
for the price. The parameters have been estimated from the data, and the short term interest
rate is the value published for April 21, 2004.

We estimate the discrete volatility distribution using the Del Moral, Jacod, Protter
method presented in Section 3. Figure 6(a) presents a plot of this distribution.

To compare our method, we also estimate the implied volatility on April 21 for a range
of strike prices from the option data available that day. To do so, we use a simple bisection
method. Figure 6(b) shows the implied volatility’s behavior for various strike prices.

We should note that we used the option and stock (index) data available on April 21st to
estimate these two plots. The implied volatility plot 6(b) corresponds to the 29-day-maturity
options but it is representative for the other maturities as well. We notice very high implied
volatility values for options deep in the money, and for the most others the implied volatility
is around 0.12 − 0.135.

Using the data available a day earlier we estimate option prices for that day for many
values of the parameter p in the interval [ 1

12
, 1

6
]. Then, we compare the estimated prices with

the price of the “benchmark option” which we chose to be the option at the money. We can
see computed values corresponding to a grid for the p parameter in Figure 7.

Beginning with p = 0.135 and ending with p = 0.16, the option values obtained are
close to each other. In fact, this is a feature we have observed for all the option values
calculated for the entire range of strike prices. The values of the 29-day-maturity options
obtained for p = 0.135 are presented in Table 1 in the Appendix. For better illustration of
the performance of the various methods we present in Figures 8, 9, and 10 on pages 30, 31,
and 32, the values of the options separated in groups depending on the range of the strike
prices (in the money, at the money, and out of the money, respectively).

All the above option-price graphs include, for comparison, the bid-ask spread of the actual
prices seen on the option market, the price given via the standard Black-Scholes formula with
constant (non-random) volatility. Figure 11 presents the estimated derivatives (sensitivities)
with respect to various variables in the model.

One of the big advantages of our method is that it allows the computation of option prices
even when there exists no formula for that option type. Since we lacked data for nonstandard
options we have tried something else. In the third Friday of each month the European option
with maturity that month expires. Thus the option with expiration 2 months becomes a one
month option and so on. Also, during the following Monday and Tuesday an option with a
new, intermediate, maturity date is starting to be traded. Since there is no implied volatility
in the previous day for this option we suspected that our method will perform well. For this
simulation we used IBM stock data from July 18-19, 2005. The new options with expiration
in September did not appear until Tuesday July 19, 2005 so we are using the Monday July
18 for volatility calibration and finding the optimal p according to the method described
above. The coefficients used in this case were: α = 11.85566, m = 0.9345938 β = 4.13415
and r = .0343. We have estimated these coefficients from the historical data, the method we
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used is to be the subject of another article. We present the values obtained in the Table 2
in the Appendix, we also plot these values in Figure 12 on page 34.

7 Conclusions

The approximation methods presented in this work are computationally intensive, but are
based on simple algorithms featuring low, manageable, complexity. By performing volatility
estimation using a distribution corresponding to the best estimate of the present volatility
level given all past stock price observations, we are able to implement a quadrinomial tree
method yielding option prices that are very close to the same prices observed on the option
market.

The two applied cases presented here are fundamentally different. In the first application
we used an Index (S&P 500) which is not very sensitive to small movements in the market,
therefore preferred by the majority of the theoretical papers in Mathematics of Finance.
For the second application we choose a popular technology stock (IBM) but we should
mention that the same basic conclusions were observed and calculated for many other stocks
(Microsoft, Intel, Yahoo, Ford and GM), not included here for obvious space considerations.

In the first (S&P 500) case we observe that pricing using our Static model (Section 4)
is clearly better than the pricing using the Dynamic model of Section 5, since the former
typically falls within the option market’s bid-ask spread, while the latter does not. This
is despite the fact that the Dynamic model approximates pricing under the true Stochastic
Volatility model, while in the Static model, volatility is assumed to be constantly distributed
in the future according to its best present estimated distribution given all past stock price
observations. We should also mention that we used 106 simulations for the Dynamic model
and that the run time is about eight times larger than the run time for the Static model.

If we look at the three regions depending on how close the strike price is relatively to
the stock price in that respective day, we see that the best performance is obtained for the
options at-the-money – conveniently so, since those are the majority of options traded. We
suspect that we have obtained better results for that region because we used an option at the
money to calibrate the parameter p. This fact would suggest to use different optimal values
of p for each of the three regions. Recalibrating p for each maturity date should provide
even better estimates, although this might go against the idea of arbitrage-free consistency
within a single option market.

On the other hand, since we are using European call options, for which there exists a
formula that every market participant can look up at any moment, our results are naturally
not far from the values obtained using the Black-Scholes formula. The strength of our
method is that it works for any type of option including those that do not have a valuation
formula, and may be path dependent.

This fact is illustrated in the second analysis (the IBM case). We see that the Static
model once again performs better for at the money options (in the Strike price range 75-85).
In this case we also wanted to investigate the reason why the Dynamic method performed
worse in the previous simulation so we increased the number of simulations by 100 (thus
now using 108 runs). We see that practically there is no difference now between the Static
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and the Dynamic models, with the exception of the runtime, which naturally is huge now
for the Dynamic model when compared with the Static one.

Thus, in conclusion, this article’s merit is in showing that in a well-known and mature
market, our quadrinomial tree method outperforms others techniques, including the classical
Black-Scholes method, or the Monte-Carlo method for the Stochastic Volatility model, even
when the latter is based on an excellent particle approximation of the best possible stochastic
volatility estimation technique.

Lastly, we mention the question of hedging. Since we can estimate the sensitivity of the
estimated option price with respect to the various factors in the model (the Greeks: delta,
gamma, theta and rho) we can do a heuristic delta hedging : starting with the option value at
time zero, we can devise a dynamic trading strategy in stock and in a risk-free account, based
on the dynamically observed values of the option’s delta (for example), that approximately
replicates the payoff of the option at maturity. We will investigate this topic in separate
publication.

8 Appendix

Table 1: Results for 29 day SP500 Call Option on April 22

Strike
Price

Bid-
Ask
Spread

Implied
Volatil-
ity

Black-
Scholes
with const.
vol = 0.13

Black-
Scholes
with vol =
prev. day

Static
Tree
Method

Dynamic
Method

700 435.9 437.9 0.99999994 440.4859435 440.4859435 440.8361291 441.6392171
750 386 388 0.99999994 390.5256538 390.5256538 390.8360651 389.4179381
800 336 338 0.99999994 340.565364 340.565364 340.8361125 343.1698244
825 311.1 313.1 0.99999994 315.5852191 315.5852191 315.8360728 317.7046472
850 286.1 288.1 0.99999994 290.6050743 290.6050743 290.8359979 288.6177766
875 261.1 263.1 0.99999994 265.6249294 265.6249294 265.8360605 264.3557368
900 236.2 238.2 0.99999994 240.6447845 240.6447845 240.8361814 242.4258073
925 211.3 213.3 0.99999994 215.6646397 215.6646397 215.8361042 216.070995
950 186.4 188.4 0.99999994 190.6844968 190.6844968 190.8361121 191.9580826
975 161.5 163.5 0.99999994 165.7044244 165.7044244 165.8361814 165.3575168
995 141.7 143.7 0.99999994 145.7211165 145.7211165 145.8365447 144.0436024
1005 131.9 133.9 0.99999994 135.7308655 135.7308655 135.8375831 136.3773022
1025 112.2 114.2 0.99999994 115.7639408 115.7639408 115.8489649 115.8511543
1035 102.5 104.5 0.99999994 105.8005096 105.8005096 105.1462257 104.9907379
1040 97.6 99.6 0.107155383 100.8298139 100.8298139 100.6728878 101.2075435
1050 88 90 0.135827243 90.92671721 90.92671721 91.05013255 90.85553399
1060 78.5 80.5 0.144771874 81.10857475 81.10857475 81.09046311 79.87881581

continued on next page
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continued from previous page

Strike
Price

Bid-
Ask
Spread

Implied
Volatil-
ity

Black
Scholes
formula
constant
vol = 0.13

Black
Scholes
formula
vol = prev.
day

Static
Tree
Method

Dynamic
Method

1070 69.1 71.1 0.145104229 71.4350287 71.4350287 71.32386 72.79518986
1075 64.5 66.5 0.14579457 66.67796494 66.67796494 66.42264828 64.8763511
1080 59.9 61.9 0.144722283 61.99094358 61.99094358 61.05169626 64.4851441
1090 51 53 0.142792165 52.88699128 52.88699128 52.64029526 54.52657424
1100 42.4 44.4 0.1389274 44.25484143 44.25484143 43.86203883 44.96215623
1110 34.3 36.3 0.138166845 36.23617352 36.23617352 35.8019852 38.1543003
1115 30.4 32.4 0.133875668 32.50000074 32.50000074 32.01309525 33.06596175
1120 26.7 28.7 0.131962717 28.96654938 28.96654938 28.47139516 31.31540725
1125 24 24.7 0.131792247 25.64879123 25.64879123 25.12064397 26.1069527
1130 20.5 22 0.127446949 22.55710072 22.55710072 21.93006175 24.08772635
1135 17.1 18.6 0.126670897 19.69885882 19.69885882 19.10765002 21.01885359
1140 14.3 15.8 0.123505414 17.07818041 17.07818041 16.43635034 17.63322328
1145 12.2 13.3 0.121538699 14.6957816 14.6957816 14.03991679 15.35886164
1150 9.8 10.8 0.118664801 12.54899328 12.54899328 11.92985116 13.46731373
1155 7.8 8.8 0.118339717 10.63191686 10.63191686 8.807748226 10.92497799
1160 6 7 0.115783632 8.935708498 8.935708498 7.628036313 10.06979747
1165 4.7 5.4 0.116955578 7.448969646 7.448969646 6.944491652 9.177123201
1170 3.5 4 0.113949478 6.158216369 6.158216369 5.63323987 6.099003098
1175 2.7 3 0.113022745 5.048396347 5.048396347 4.606569754 6.228565193
1180 1.9 2.4 0.112161219 4.10342223 4.10342223 3.695063503 4.245166183
1185 1.3 1.8 0.112685382 3.306691969 3.306691969 2.962457681 4.203963659
1190 1 1.35 0.116848767 2.641570893 2.641570893 2.208950922 2.545651178
1200 0.5 0.8 0.117960393 1.641927513 1.641927513 1.417832905 2.068167719
1210 0.4 0.5 0.123467147 0.985039802 0.985039802 0.834163001 1.189949817
1215 0.25 0.4 0.130912602 0.752833946 0.752833946 0.62279235 1.145398155
1225 0.15 0.2 0.130754888 0.428105579 0.428105579 0.339846938 0.642447332

Table 2: Results for IBM Call Option with September Expiration Date on July 19
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Strike
Price

Bid-Ask
Spread

Black-
Scholes
with const.
vol = 0.234

Static
Tree
Method

Dynamic
Method

60 23.8 24 24.0377906947886 24.1653535881753 24.0399236162121
70 13.9 14.1 14.161570849552 14.1653762415814 14.0904229344650
75 9 9.2 9.51642872827289 9.16997303037814 9.11994784069207
80 4.6 4.8 5.57383978902307 4.37994074833957 4.23440233858245
85 1.6 1.65 2.76178935046618 1.05711159482768 0.662309959257055
90 0.35 0.4 1.14035152327993 0.112329477448275 0.0454043560956927
95 0.1 0.15 0.391956502635727 0.00401547052393596 0.0050792747562195
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(a) Tree for p = 0.09
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(b) Tree for p = 0.1
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(c) Tree for p = 0.11
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(d) Tree for p = 0.12

Figure 3: Example of reduced trees for values of p between 0.09 and 0.12
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(a) Tree for p = 0.13
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(b) Tree for p = 0.14
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(c) Tree for p = 0.15
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(d) Tree for p = 0.16

Figure 4: Example of reduced trees for values of p between 0.13 and 0.16
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Figure 5: The S&P500 stock price over time
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Figure 6: Estimates from historical data
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Figure 7: Determining optimal p parameter value
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Figure 8: Estimated 29 day option prices: Deep in the money
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Figure 9: Estimated 29 day option prices: At the money
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Figure 10: Estimated 29 day option prices: Deep out of the money
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Figure 11: The estimated sensitivities
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Figure 12: Estimated IBM call option values
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