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Abstract

In this paper we introduce a novel particle filter scheme for a class of partially-
observed multivariate diffusions. We consider a variety of observation schemes, in-
cluding diffusion observed with error, observation of a subset of the components of
the multivariate diffusion and arrival times of a Poisson process whose intensity is a
known function of the diffusion (Cox process). Unlike currently available methods,
our particle filters do not require approximations of the transition and/or the obser-
vation density using time-discretisations. Instead, they build on recent methodology
for the exact simulation of the diffusion process and the unbiased estimation of the
transition density as described in Beskos et al. (2006b). We introduce the Gener-
alised Poisson Estimator, which generalises the Poisson Estimator of Beskos et al.
(2006b). A central limit theorem is given for our particle filter scheme.

Keywords : Continuous-time particle filtering, Exact Algorithm, Auxiliary Variables, Cen-
tral Limit Theorem, Cox Process

1 Introduction

There is considerable interest in using diffusion processes to model continuous-time phe-
nomena in many diverse scientific disciplines. These processes can be used to model directly
the observed data and/or to describe unobserved processes in a hierarchical model. This
paper focuses on estimating the path of the diffusion given partial information about it.
We develop novel particle filters for analysing a class of multivariate diffusions which are
partially observed at a set of discrete time-points.
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Particle filtering methods are standard Monte-Carlo methods for analysing partially-
observed discrete-time dynamic models (Doucet et al., 2001). They involve estimating
the filtering densities of interest by a swarm of weighted particles. The approximation
error decreases as the number of particles, N , increases. However, filtering for diffusion
processes is significantly harder than for discrete-time Markov models since the transition
density of the diffusion is unavailable in all but a few special cases. In many contexts even
the observation density is intractable. Therefore, the standard propagation/weighting/re-
sampling steps in the particle filter algorithm cannot be routinely applied.

To circumvent these complications, a further approximation, based on a time-discretisation
of the diffusion, has been suggested (see for example Crisan et al., 1999; Del Moral et al.,
2001). The propagation of each particle from one observation time to the next is done by
splitting the time increment into M , say, pieces and performing M intermediate simula-
tions according to an appropriate Gaussian distribution. As M gets large this Gaussian
approximation converges to the true diffusion dynamics. In this framework the compu-
tational cost of the algorithm is of order M × N , and the true filtering distributions are
obtained as both M and N increase.

Our approach does not rely on time-discretisation, but builds on recent work on the
Exact Algorithm for the simulation of diffusions (Beskos and Roberts, 2005; Beskos et al.,
2006a, 2005b) and on the unbiased estimation of the diffusion transition density (Beskos et al.,
2006b, 2005a). This algorithm can be used in a variety of ways to avoid time discretisa-
tions in the filtering problem. The potential of the Exact Algorithm in the filtering problem
was brought up in the discussion of Beskos et al. (2006b), see the contributions by Chopin,
Künsch, and in particular Rousset and Doucet who also suggest the use of a random weight
particle filter in this context.

One possibility is simply to use the Exact Algorithm to propagate the particles in the
implementation of the Gordon et al. (1993) bootstrap particle filter, thus avoiding entirely
the M intermediate approximate simulations between each pair of observation times. We
call this the Exact Propagation Particle Filter (EPPF). Where possible, a better approach
is to adapt the Exact Algorithm to simulate directly from (a particle approximation to)
the filtering density using rejection sampling; we term this the Exact Simulation Particle
Filter (ESPF).

However, our favoured method goes in a different direction. We work in the framework
of the auxiliary particle filter of Pitt and Shephard (1999), where particles are propagated
from each observation time to the next according to a user-specified density and then are
appropriately weighted to provide a consistent estimator of the new filtering distribution.
Due to the transition density being unavailable, the weights associated with each particle
are intractable. However, our approach is to assign to each particle a random positive
weight which is an unbiased estimator of the true weight. We call this the Random Weight
Particle Filter (RWPF). Our algorithm yields consistent estimates of the filtering distribu-
tions. The replacement of the weights in a particle filter by positive unbiased estimators is
an interesting possibility in more general contexts than the one considered in this paper.
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Indeed, in Section 3.2 we show that this approach amounts to a convenient augmentation
of the state with auxiliary variables.

The construction of the unbiased estimators of the weights is one of the main contri-
butions of this paper, and it is of independent interest. This is based on an extension
of the Poisson Estimator of Beskos et al. (2006b), which we call the Generalised Poisson
Estimator. This estimator is guaranteed to return positive estimates (unlike the Poisson
Estimator) and its efficiency (in terms of variance and computational cost) can be up to
orders of magnitude better than the Poisson Estimator. Optimal implementation of the
Poisson and the Generalised Poisson estimators is thoroughly investigated theoretically
and via simulation.

All three time-discretisation-free particle filters we introduce are easy to implement,
with the RWPF being the easiest and the most flexible to adapt to contexts more general
than those considered here. A simulation study is carried out which shows that the RWPF
is considerably more efficient than the ESPF which is more efficient than the EPPF. We also
provide a theoretical result which shows that our filters can have significant computational
advantages over time-discretisation methods. We establish a Central Limit Theorem (CLT)
for the estimation of expectations of the filtering distributions using either of the EPPF,
ESPF and the RWPF. This is an extension of the results of Chopin (2004). The CLT
shows that, for a fixed computational cost K, the errors in the particle approximation of
the filtering distributions decrease as K−1/2 in our methods, whereas it is known that the
rate is K−1/3 or slower in time-discretisation methods.

The main limitation of the methodology presented here is the requirement that the
stochastic differential equation specifying the underlying diffusion process can be trans-
formed to one with orthogonal diffusion matrix, and gradient drift. Although this frame-
work excludes some important model types (such as stochastic volatility models) it incor-
porates a wide range of processes which can model successfully many physical processes.
On the other hand, our methods can handle a variety of discrete-time observation schemes.
In this paper we consider three schemes: noisy observations of a diffusion process, observa-
tion of a subset of the components of a multivariate diffusion, and arrival times of a Poisson
process whose intensity is stochastic and it is given by a known function of a diffusion.

The paper is organised as follows. Section 2 introduces the model for the underlying
diffusion and the necessary notation, the observation schemes we consider and the simulated
data sets on which we test our proposed methods. Section 3 introduces the RWPF and
states the CLT. Section 4 introduces the main tool required in constructing the RWPF,
the Generalised Poisson Estimator (GPE). Several theoretical results are established for
the GPE, and a simulation study is performed to assess its performance. Section 5 is
devoted in the empirical investigation of the performance of the different particle filters
we introduce. Several implementation issues are also discussed. Section 6 closes with a
discussion on extensions of the methodology and the appendices contain technical results
and proofs.
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2 Signal, data and assumptions

Let the signal be modelled by a d-dimensional diffusion process

dXs = α(Xs) ds+ dBs , s ∈ [0, t] . (1)

We assume throughout the paper that the drift is known. Our approach requires some
assumptions which we summarize in this paragraph: i) α is continuously differentiable in
all its arguments, ii) there exists a function A : Rd → R such that α(u) = ∇A(u), and
iii) there exists l > −∞ such that φ(u) :=

(

‖α(u)‖2 + ∇2A(u)
)

/2 − l ≥ 0. Among these
last three conditions i) and iii) are weak and the strictest is ii), which in the ergodic case
corresponds to X being a time-reversible diffusion.

The transition density of (1) is typically intractable but a useful expression is available
(see for example Beskos et al., 2006b; Dacunha-Castelle and Florens-Zmirou, 1986)

pt(xt | x0) = Nt(xt − x0) exp{A(xt) − A(x0) − lt}E

[

exp

{

−
∫ t

0

φ(Ws)ds

}]

. (2)

In this expression Nt(u) denotes the density of the d-dimensional normal distribution with
mean 0 and variance tId evaluated at u ∈ Rd, and the expectation is taken w.r.t. a
Brownian bridge, Ws, s ∈ [0, t], with W0 = x0 and Wt = xt. Note that the expectation
in this formula typically cannot be evaluated.

The data consist of partial observations y1, y2, . . . , yn, at discrete time-points 0 ≤ t1 <
t2 < · · · < tn. We consider three possible observation regimes:

(A) Diffusion observed with error. The observation yi, is related to the signal at time ti
via a known density function f(yi|xti). This model extends the general state-space
model by allowing the signal to evolve continuously in time. There is a wide range
of applications which fit in this framework, see Doucet et al. (2001) for references.

(B) Partial Information. At time ti we observe yi = ζ(Xti) for some non-invertible known
function ζ(·). For example we may observe a single component of the d-dimensional
diffusion. In this model type f(yi|xti) = 1 for all xti for which ζ(xti) = yi.

(C) Cox Process. In this regime the data consist of the observation times ti which are
random and are assumed to be the arrivals of a Poisson process of rate ν(Xs), for
some known function ν. Such models are popular in insurance (Dassios and Jang,
2005) and finance (Engel, 2000; Duffie and Singleton, 1999), and they have recently
been used to analyse data from single molecule experiments (Kou et al., 2005).There
is a significant difference between this observation regime and the two previous ones.
To have notation consistent with (A) and (B) we let yi = ti denote the time of the ith
observation; and define the likelihood f(yi | xti−1

,xti) to be the probability density
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that the next observation after ti−1 is at time ti. This density can be obtained by
integrating

ν(Xs) exp

{

−
∫ ti

ti−1

ν(Xs)ds

}

, (3)

w.r.t. the distribution of (Xs, s ∈ (ti−1, ti)) conditionally on Xti−1
= xti−1

,Xti = xti .
The distribution of this conditioned process has a known density w.r.t. the Brownian
bridge measure and it is given in Lemma 1 of Beskos et al. (2006b). We can thus
show that the density of interest is

ν(xti)Nti−ti−1
(xti − xti−1

)

pti−ti−1
(xti | xti−1

)
exp{A(xti)−A(xti−1

)}E

[

exp

{

−
∫ ti

ti−1

(φ(Ws) + ν(Ws))ds

}]

,

(4)
where expectation is with respect to the law of a Brownian Bridge from xti−1

to xti .

We take a Bayesian approach, and assume a prior distribution for X0. Our interest
lies in the online calculation of the filtering densities, the posterior densities of the signal
at time ti given the observations up to time ti, for each 1 ≤ i ≤ n. While these densities
are intractable, we propose a particle filter scheme to estimate recursively these densities
at each observation time-point. As we point out in Section 6, our approach allows the
estimation of the filtering distribution of the continuous time path (Xs, ti−1 < s < ti).

A more flexible model for the signal is a diffusion process Z which solves a more general
SDE than the one we have assumed in (1):

dZs = b(Zs) ds+ Σ(Zs)dBs , s ∈ [0, t] . (5)

In contrast with (1), (5) allows the diffusion coefficient to be state-dependent. Our methods
directly apply to all such processes provided there is an explicit transformation Zs 7→
η(Zs) =: Xs, where X solves an SDE of the type (1); the implied drift α can be easily
expressed in terms of b and Σ via Itô’s formula and it will have to satisfy the conditions we
have already specified. In model (A) the likelihood becomes f(yi | η−1(Xti)), in model (B)
the data are yi = ζ(η−1(Xti)) and in model (C) the Poisson intensity is ν(η−1(Xs)), where
η−1 denotes the inverse transformation. Therefore, the extension of our methodology
to general diffusions is straightforward when d = 1; under mild conditions (5) can be

transformed to (1) by η(Zs) =
∫ Zs
u∗

Σ(z)−1 dz, for some arbitrary u∗ in the state space of
the diffusion. Moreover, the drift of the transformed process will typically satisfy the three
conditions we have specified. However, the extension is harder in higher dimensions. The
necessary transformation is more complicated when d > 1 and it might be intractable or
even impossible (Äıt-Sahalia, 2004). Even when such a transformation is explicit it might
imply a drift for X which violates condition ii). Nevertheless, many physical systems can
be successfully modeled with diffusions which can be transformed to (1).

Our particle filtering methods will be illustrated on two sets of simulated data:
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Example 1: Sine diffusion observed with error. The signal satisfies

dXs = sin(Xs)ds+ dBs , (6)

and the data consist of noisy observations, yi ∼ N(Xti , σ
2). Figure 1(top) shows a simula-

tion of this model with σ = 0.2. In this case

φ(u) = (sin(u)2 + cos(u) + 1)/2 . (7)

This process is closely related to Brownian motion on a circle. It is convenient as an
illustrative example since discrete-time skeletons can be easily simulated from this process
using the most basic form of the Exact Algorithm (EA1 in Beskos et al., 2006a, R-code is
available on request by the authors).
Example 2: OU-driven Cox Process. The second data set consists of the arrival times
of a Poisson process, yi = ti, whose intensity is given by ν(Xs), s ≥ 0, where

ν(x) = a+ β|x|,

and X is an Ornstein-Uhlenbeck (OU) process,

dXs = −ρXsds+ dBs .

The OU process is stationary with Gaussian marginal distribution, N(0, 1/(2ρ)). Thus,
an interpretation for this model is that the excursions of X increase the Poisson intensity,
whereas a corresponds to the intensity when X is at its mean level. An example data set is
shown in Figure 3; where we have taken a = 0, β = 20, ρ = 1/2. Although the transition
density of the OU process is well-known,

Xt | X0 = x0 ∼ N

(

e−ρtx0,
1

2ρ
(1 − e−2ρt)

)

,

the observation density f(yi+1 | xti , xti+1
) is intractable.

Examples 1 and 2 are examples of observation regimes (A) and (C) respectively. We
will show that observation regime (B) can be handled in a similar fashion as (A), so we
have not included an accompanying example.

3 Random weight particle filter

As in Section 2 we will denote the observation at time ti by yi, and pt(· | ·) will denote the
system transition density over time t (see Equation 2). We will write ∆i = ti+1 − ti, and
the filtering densities p(xti |y1:i) will be denoted by πi(xti), where by standard convention
y1:i = (y1, . . . , yi). To simplify notation, when we introduce weighted particles below, we
will subscript both particles and weights by i rather than ti.
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Our aim is to recursively calculate the filtering densities πi(xti). Basic probability
calculations yield the following standard filtering recursion for these densities

πi+1(xti+1
) ∝

∫

f(yi+1|xti ,xti+1
)p∆i

(xti+1
|xti)πi(xti)dxti . (8)

Particle filters approximate πi(xti) by a discrete distribution, denoted by π̂i(xti), whose sup-

port is a set of N particles, {x(j)
i }Nj=1, with associated probability weight {w(j)

i }Nj=1. Substi-
tuting π̂i(xti) for πi(xti) in (8), yields a (continuous density) approximation to πi+1(xti+1

),

π̃i+1(xti+1
) ∝

N
∑

j=1

w
(j)
i f(yi+1|x(j)

i ,xti+1
)p∆i

(xti+1
|x(j)
i ). (9)

The aim of one iteration of the particle filter algorithm is to construct a further particle
(discrete distribution) approximation to π̃i+1(xti+1

).
We can obtain such a particle approximation via importance sampling, and a general

framework for achieving this is given by the auxiliary particle filter of Pitt and Shephard
(1999). We choose a proposal density of the form

N
∑

j=1

β
(j)
i q(xti+1

|x(j)
i , yti+1

) . (10)

Choice of suitable proposals, i.e. choice of the β
(j)
i s and q, is discussed in the analysis of

our specific applications in Section 5.
To simulate a new particle at time ti+1 we (a) simulate a particle x

(k)
i at time i, where

k is a realisation of a discrete random variable which takes the value j ∈ {1, 2, . . . , N} with

probability β
(j)
i ; and (b) simulate a new particle at time ti+1 from q(xti+1

|x(k)
i , yi+1). The

weight assigned to this pair of particles (x
(k)
i ,xti+1

) is proportional to

w
(k)
i f(yi+1|x(k)

i ,xti+1
)p∆i

(xti+1
|x(k)
i )

β
(k)
i q(xti+1

|x(k)
i , yi+1)

. (11)

This is repeatedN times to produce the set of weighted particles at time ti+1,
{

(x
(j)
i+1, w

(j)
i+1)

}N

j=1
,

which gives an importance sampling approximation to πi+1(xti+1
). Renormalising the

weights is possible but does not materially affect the methodology or its accuracy. Im-
provements on independent sampling in step (a) can be made: see the stratified sampling
ideas of Carpenter et al. (1999). The resulting particle filter has good theoretical properties
including consistency (Crisan, 2001) and central limit theorems for estimates of posterior
moments (Del Moral and Miclo, 2000; Chopin, 2004; Künsch, 2005), as N → ∞. Un-
der conditions relating to exponential forgetting of initial conditions, particle filter errors
stabilise as n→ ∞ (Del Moral and Guionnet, 2001; Künsch, 2005).
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The difficulty with implementing such a particle filter when the signal X is a diffusion
process is that the transition density p∆i

(xti+1
|x(k)
i ) which appears in (11) is intractable for

most diffusions of interest, due to the expectation term in (2). Furthermore, for observation

model (C) (but also for more general models), the likelihood term f(yi+1|x(k)
i ,xti+1

) given
in (4) cannot be calculated analytically.

We circumvent these problems by assigning each new particle a random weight which is
a realisation of a random variable whose mean is (11). The construction and simulation of
this random variable is developed in Section 4, and it is based on the particular expression
for the transition density in (2). The replacement of the weights by positive unbiased
estimators is an interesting possibility in more general contexts than the one considered
in this paper. Indeed, in Section 3.2 we show that this approach amounts to a convenient
augmentation of the state with auxiliary variables.

3.1 Simulation of weights

In all models the weight associated with the pair (x
(k)
i ,xti+1

) equals

hi+1(x
(k)
i ,xti+1

, yi+1)µg(x
(k)
i ,xti+1

, ti, ti+1) (12)

where hi+1 is a known function, and for 0 < u < t,

µg(x, z, u, t) := E

[

exp

{

−
∫ t

u

g(Ws)ds

}]

,

where the expectation is taken w.r.t. a d-dimensional Brownian bridge W, starting at time
u from Wu = x and finishing at time t at Wt = z.

Models (A) and (B) : For these model types

hi+1(x
(k)
i ,xti+1

, yi+1) =
w

(k)
i f(yi+1|xti+1

)N∆i
(xti+1

− x
(k)
i ) exp{A(xti+1

) − A(x
(k)
i )}

β
(k)
i q(xti+1

|x(k)
i , yi+1)

,

and g = φ. In model type (B) the proposal distribution q(xti+1
|x(k)
i , yi+1) should be chosen

to propose only values of xti+1
such that ζ(xti+1

) = yi+1; then f(yi+1|xti+1
) = 1.

Model (C): A synthesis of (2), (4) and (11), with g = φ+ ν gives

hi+1(x
(k)
i ,xti+1

, yi+1) =
w

(k)
i ν(xti+1

)N∆i
(xti+1

− x
(k)
i ) exp{A(xti+1

) − A(x
(k)
i )}

β
(k)
i q(xti+1

|x(k)
i , yi+1)

,

Section 4 shows how to construct for each pair of (x, z) and times (u, t), with u < t, ad-
ditional auxiliary variables V, and a function r(v,x, z, u, t) ≥ 0, with the property that
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E[r(V,x, z, u, t) | x, z] = µg(x, z, u, t). The auxiliary variables are simulated according to
an appropriate conditional distribution Qg( · | x, z, u, t), and r is easy to evaluate. Our
method replaces in the weight the intractable term µg with its unbiased estimator r.

Random Weight Particle Filter (RWPF)

PF0 Simulate a sample x
(1)
0 , . . . ,x

(N)
0 from p(x0), and set w

(j)
0 = 1/N .

For i = 0, . . . , n− 1, for j = 1, . . . , N :

PF1 calculate the effective sample size of the {β(k)
i }, ESS = (

∑N
k=1(β

(k)
i )2)−1; if ESS < C,

for some fixed constant C, simulate ki,j from p(k) = β
(k)
i , k = 1, . . . , N and set

δ
(j)
i+1 = 1; otherwise set ki,j = j and δ

(j)
i+1 = β

(j)
i ;

PF2 simulate x
(j)
i+1 from q(xti+1

|x(ki,j)
i , yi+1);

PF3 simulate vi+1 ∼ Qg( · | x(ki,j)
i ,xti+1

, ti, ti+1);

PF4 assign particle x
(j)
i+1 a weight

w
(j)
i+1 = δ

(j)
i+1hi+1(x

(ki,j)
i ,x

(j)
i+1, yi+1)r(vi+1,x

(ki,j)
i ,xti+1

, ti, ti+1) . (13)

Notice that this algorithm contains a decision as to whether or not resample particles
before propagation in step PF1, with decision being based on the ESS of the β

(j)
i . The

constant C can be interpreted as the minimum acceptable effective sample size. (See Liu
and Chen 1998 for the rationale of basing resampling on such a condition.) Whether or
not resampling occurs will affect the weight given to the new sets of particles, and this is
accounted for by different values of δ

(j)
i+1 in PF1. Optimally, the resampling for step PF1

will incorporate dependence across the N samples; for example the stratified sampling
scheme of Carpenter et al. (1999) or the residual sampling of Liu and Chen (1998).

3.2 An equivalent formulation via an augmentation of the state

In the previous section we described a generic sequential Monte Carlo scheme where the
exact weights in the importance sampling approximation of the filtering distributions are
replaced by positive unbiased estimators. We now show that this scheme is equivalent to
applying an ordinary auxiliary particle filter to a model with richer latent structure. We
demonstrate this equivalent representation for model types (A) and (B), since an obvious
modification of the argument establishes the equivalence for model type (C).

According to our construction, conditionally on Xti , Xti+1
, ti and ti+1, Vi+1 is inde-

pendent of Vj and Xtj for any j different from i, i+ 1. Additionally, it follows easily from
the unbiasedness and positivity of r that, conditionally on Xti = x, r(vi+1,x,xti+1

, ti, ti+1)

9



is a probability density function for (Xti+1
,Vi+1) with respect to the product measure

Leb(dz) ×Qg(dv | x, z, ti, ti+1), where Leb denotes the Lebesgue measure.
Consider now an alternative discrete-time model with unobserved states (Zi,Vi), i =

1, . . . , n, Zi ∈ Rd, with a non-homogeneous Markov transition density

pi+1(zi+1,vi+1 | zi,vi) = r(vi+1, zi, zi+1, ti, ti+1) ,

(this density is with respect to Leb × Qg) and observed data yi with observation density
f(yi+1 | zi, zi+1). By construction the marginal filtering distributions of Zi in this model
are precisely πi(xti), i.e. the filtering densities in (8). Consider an auxiliary particle filter

applied to this model where we choose with probability β
(j)
i each of the existing particles

(z
(j)
i ,v

(j)
i ), and generate new particles according to the following proposal

(zi+1,vi+1) ∼ q(zi+1 | z(k)
i , yi+1)Qg(dvi+1 | z(k)

i , zi+1, ti, ti+1)Leb(dzi+1) ,

where q is the same proposal density as in (10). The weights associated with each particle
in this discrete-time model are tractable and are given by (13). Therefore, the weighted

sample
{

(z
(j)
i+1, w

(j)
i+1)

}N

j=1
is precisely a particle approximation to πi+1(xti+1

), and RWPF is

equivalent to an auxiliary particle filter on this discrete-time model whose latent structure
has been augmented with the auxiliary variables Vi.

This equivalent representation sheds light on many aspects of our method. Firstly, it
makes it obvious that it is inefficient to average more than one realization of the positive
unbiased estimator of µg per particle. Instead it is more efficient to generate more particles
with only one realization of the estimator simulated for each pair of particles.

Secondly, it illustrates that RWPF combines the advantages of the bootstrap and the
auxiliary particle filter. Although it is easy to simulate from the probability distribution
Qg (as described in Section 4), it is very difficult to derive its density. (with respect to an
appropriate reference measure). Since the Vis are propagated according to this measure, its
calculation is avoided. This is an appealing feature of the bootstrap filter which propagates
particles without requiring analytically the system transition density. On the other hand
the propagation of the Zis is done via a user-specified density which incorporates the
information in the data.

Thirdly, it suggests that the RWPF will have similar theoretical properties with auxil-
iary particle filters applied to discrete-time models. This is explored in Section 3.3.

3.3 Theoretical properties

Consider estimation of the posterior mean of some function ϕ of the state at time ti,
E[ϕ(xti)|y1:i]. A natural approach to the investigation of particle filter effectiveness is to
consider the limiting behaviour of the algorithm as N → ∞. For the standard auxiliary
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particle filter, Chopin (2004) introduces a central limit theorem (CLT) for estimation of
this type of expectations. This CLT applies directly to both EPPF and the ESPF.

In Appendix F we extend the result of Chopin (2004) and give a further necessary
condition on the random weights in RWPF under which a CLT still holds. This extra
condition is (C2). The expression for the variance of the estimator of E[ϕ(xti)|y1:i] obtained
with RWPF differs from the expression in the standard case (i.e. when the weights are
known) by an extra term caused by the randomness in the weights (see Equations 27–29
and the comment on Theorem 3 in Appendix F for further details). The ready adaptation
of Chopin’s approach is facilitated by the observation that the RWPF can be re-expressed
as a standard particle filter for the an augmented state (see Section 3.2).

One important consequence of this CLT is that the errors in estimating E[ϕ(xti)|y1:i]
are of order N−1/2. Previous filtering methods for the diffusion problems we consider are
based on (i) discretising time and introducing M intermediate time points between each
observation time; (ii) using an Euler, or higher order, approximation to the diffusion (1);
and (iii) applying a particle, or other, filter to this approximate discrete time model. See
for example Crisan et al. (1999). Results giving the order of the errors in one such scheme
are given by Del Moral et al. (2001). For Models such as (A) and (B) the errors are of order
N−1/2 provided that the number of intermediate time steps M between each observation
increases at a rate N1/2. Thus for fixed computational cost K ∝ MN the errors decrease
at a rate K−1/3. For models such as (C), where the likelihood depends on the path of the
state between two successive observations, the rate at which errors decrease will be slower,
for example K−1/4 (Del Moral et al., 2001), or K−1/6 (Theorem 1.1 of Crisan et al., 1999).

4 Generalised Poisson Estimators

We have already motivated the need for the simulation of a positive unbiased estimator of

E [E] where E =: exp

{

−
∫ t

0

g(Ws)ds

}

, (14)

where the expectation is taken w.r.t. a d-dimensional Brownian bridge W. In this section
we introduce a methodology for deriving such estimators, and provide theoretical and
simulation results regarding the variance of the suggested estimators. These results are of
independent interest beyond particle filtering, so we present our methodology in a general
way, where g is an arbitrary function assumed only to be continuous on Rd. We assume
that W0 = x and Wt = z, for arbitrary x, z ∈ Rd and t > 0. By the time-homogeneity
property of the Brownian bridge our methodology extends to the case where the integration
limits change to u and u+ t, for any u > 0.

Beskos et al. (2006b) proposed an unbiased estimator of (14), the Poisson Estimator:

PE: e(λ−c)tλ−κ
κ

∏

j=1

[

c− g(W
ψj

)
]

; (15)

11



κ is a Poisson random variable with mean λt, the ψjs are uniformly distributed on [0, t],
and c ∈ R, λ > 0 are arbitrary constants. (Here and below we assume that the empty
product, i.e. when κ = 0, takes the value 1.) The two main weaknesses of the PE are
that it may return negative estimates and that its variance is not guaranteed to be finite.
Both of these problems are alleviated when g is bounded. However this is a very restrictive
assumption in our context. Therefore, here, we introduce a collection of unbiased and
positive estimators of (14) which generalise the PE. The methods we consider allow c and
λ depend on W, and permit κ to have a general discrete distribution. Firstly, we need to
be able to simulate random variables LW and UW with

LW ≤ g(Ws) ≤ UW, for all s ∈ [0, t], (16)

and to be able to simulate Ws at any s, given the condition implied by (16). For un-
bounded g this is non-trivial. However, both of these simulations have become feasible
since the introduction of an efficient algorithm in Beskos et al. (2005b). An outline of the
construction is given in Appendix A.

Let UW and LW satisfy (16) and ψj , j ≥ 1, be a sequence of independent uniform
random variables on [0, t]. Then, (14) can be re-expressed as follows,

E

[

e−UWt exp

{∫ t

0

(UW − g(Ws))ds

}]

= E

[

e−UWt

∞
∑

k=0

1

k!

(∫ t

0

(UW − g(Ws))ds

)k
]

= E

[

e−UWt
E

[

∞
∑

k=0

tk

k!

k
∏

j=1

(UW − g(Wψj)) | UW, LW

]]

= E

[

e−UWt tκ

κ!p(κ | UW, LW)

κ
∏

j=1

(UW − g(Wψj))

]

,

(17)

where κ is a discrete random variable with conditional probabilities P[κ = k | UW, LW] =
p(k | UW, LW). The second equality in the above argument is obtained using dominated
convergence and Fubini’s theorem (which hold by positivity of the summands).

We can derive various estimators of (14) by specifying p(· | UW, LW). The family of all
such estimators will be called the Generalised Poisson Estimator (GPE):

GPE: e−UWt tκ

κ!p(κ | UW, LW)

κ
∏

j=1

(UW − g(Wψj)) . (18)

The following Theorem (proved in Appendix B) gives the optimal choice for p(· | UW, LW).

12



Theorem 1. The conditional second moment of the Generalised Poisson Estimator given
UW and LW, is:

e−2UWt

∞
∑

k=0

tk

p(k | UW, LW)k!2
E

[

(
∫ t

0

(UW − g(Ws))
2ds

)k

| UW, LW

]

. (19)

If
∞

∑

k=0

tk/2

k!
E

[

(∫ t

0

(UW − g(Ws))
2ds

)k

| UW, LW

]1/2

<∞ , (20)

then the second moment is minimised by the choice

p(k | UW, LW) ∝ tk/2

k!
E

[

(
∫ t

0

(UW − g(Ws))
2ds

)k

| UW, LW

]1/2

, (21)

with minimum second moment given by



e−UWt

∞
∑

k=0

tk/2

k!
E

[

(
∫ t

0

(UW − g(Ws))
2ds

)k

| UW, LW

]1/2




2

<∞ , for almost all UW, LW .

(22)

Whilst the right-hand side of (21) cannot be evaluated analytically, it can guide a suitable
choice of p(· | UW, LW). If W were known, the optimal proposal is Poisson with mean

λW :=

(

t

∫ t

0

(UW − g(Ws))
2ds

)1/2

. (23)

We will discuss two possible ways that (23) can be used to choose a good proposal.
A conservative approach takes p(· | UW, LW) to be Poisson with mean (UW−LW)t (an

upper bound of λW). We call this estimator GPE-1. An advantage of GPE-1 is that its
second moment is bounded above by E[e−2LWt]. Thus, under mild and explicit conditions
on g, which are contained in the following theorem (proved in Appendix C), the variance
of the estimator is guaranteed to be finite.

Theorem 2. A sufficient condition for GPE-1 to have finite variance is that

g(u1, . . . , ud) ≥ −δ
d

∑

i=1

(1 + |ui|), for all ui ∈ R, 1 ≤ i ≤ d, δ ≥ 0.

13



Since λW is stochastic, an alternative approach is to introduce a (exogenous) random
mean and assume that p(·|UW, LW) is Poisson with this random mean. For tractability we
choose the random mean to have a Gamma distribution, when p(· | UW, LW) becomes a
negative-binomial distribution:

GPE-2: e−UWt t
κΓ(β)(β + γ

W
)β+κ

Γ(β + κ)ββγκ
W

κ
∏

j=1

[

UW − g(W
ψj

)
]

, (24)

where γ
W

and β denote the mean and the dispersion parameter respectively of the negative
binomial. Since the negative-binomial has heavier tails than the Poisson Estimator, GPE-
2 will have finite variance whenever there exists a PE with finite variance. On the other
hand, big efficiency gains can be achieved if γ

W
is chosen to be approximately E[λW |

UW, LW]. There is a variety of ad-hoc methods which can provide a rough estimation of
this expectation. Applying Jensen’s inequality to exchange the integration with the square
power in (23), and subsequently approximating E[ g(Ws) | UW, LW ] by g(E[Ws]), suggests
taking

γ
W

= tUW −
∫ t

0

g

(

x
t− s

t
+ y

s

t

)

ds > 0 . (25)

A simulation study (part of which is presented in Section 4.1 below) reveals that this choice
works very well in practice and the GPE-2 has up to several orders of magnitude smaller
variance than the PE or the GPE-1. The integral can usually be easily evaluated, otherwise
a crude approximation can be used.

We have confined our presentation to the case where the expectation in (14) is w.r.t.
the Brownian bridge measure. Nevertheless, as pointed out in Beskos et al. (2006b) the
PE can be constructed in exactly the same way when the expectation is taken w.r.t. an
arbitrary diffusion bridge measure, as long as exact skeletons can be simulated from this
measure. The GPE can also be implemented in this wider framework, provided that the
process W can be constructed to satisfy (16).

4.1 Simulation study

We consider a smooth bounded test function g(u) = (sin(u)2+cos(u)+1)/2. This has been
chosen in view of Example 1. The function g is periodic, with period 2π. In [0, 2π] it has
local minima at 0 and 2π, global minimum at π and maxima at π/3 and 5π/3. Since g is
bounded by 9/8 we can construct a PE which returns positive estimates by setting c ≥ 9/8.
Under this constraint, Beskos et al. (2006b) argued that a good choice is c = λ = 9/8.
Simulation experiments suggested that the performance of the GPE-2 is quite robust to
the choice of the dispersion parameter β. We have fixed it in our examples to β = 10. Table
1 summarizes estimates of the variance of the estimators based on 104 simulated values.
We see that GPE-2 can be significantly more efficient than PE, in particular when taking
into account E[κ]. In general, the performance of PE is sensitive to the choice of c and λ.
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Estimator x = 0, z = 0 x = 0, z = π x = π, z = π
variance PE 0.202 0.200 0.027

GPE-1 4.21 × 10−3 0.208 0.034
GPE-2 2.08 × 10−3 0.220 0.033
Var(E) 3.74 × 10−5 3.27 × 10−3 4.72 × 10−3

E[κ] PE 1.118 1.126 1.121
GPE-1 0.130 1.091 0.744
GPE-2 0.119 0.329 0.735

Table 1: Monte Carlo estimates of the variance of four estimators of (14) where g(u) =
(sin(u)2 + cos(u) + 1)/2. For comparison we give also var(E). We also report an estimate
of E[κ]. We consider three different pairs of starting and ending points (x, z) and time
increment t = 1. The estimates in the table were obtained from a sample of 104 realisations.

GPE-1 is typically less efficient than GPE-2. Table 1 also gives the value of Var(E) which
takes significantly smaller values (by a couple of orders of magnitude) than any of PE,
GPE-1 or GPE-2, illustrating the efficiency cost of these auxiliary variable constructions
in absolute terms.

We have also investigated how the efficiency of the PE and GPE-2 varies with the
time increment t and in particular for small t (results not shown). These empirical results
suggest that the coefficient of variation of the errors of both PE and GPE-2 are O(tδ) for
some δ > 0; but that the value of δ differs for the two estimators. In the cases that we
investigated, the GPE-2 appears to have a faster rate of convergence than PE.

The results of this simulation study have been verified for other functions g (results not
shown). We have experimented with differentiable (e.g. g(u) = u) and non-differentiable
(e.g. g(u) = |u|) unbounded functions. In these cases it is impossible to design a PE
which returns positive estimates w.p.1. Again, we have found that the GPE-2 performs
significantly better than the PE.

It is important to mention that alternative Monte Carlo methods exist which yield
consistent but biased estimates of (14). One such estimator is obtained by replacing the
time-integral in (14) with a Riemann approximation based on a number, M say, of interme-
diate points. This technique is used to construct a transition density estimator in Nicolau
(2002) and effectively underlies the transition density estimator of Durham and Gallant
(2002) (when the diffusion process has constant diffusion coefficient). The approach of
Durham and Gallant (2002) has been used in MCMC and filtering applications (Golightly and Wilkinson,
2006; Chib et al., 2006; Ionides, 2003). In the filtering context it provides an alternative to
RWPF, where the weights are approximated. It is not the purpose of this paper to carry
out a careful comparison of RWPF with such variants. However, as an illustration we
present a very small scale comparison in the context of estimating the transition density,
pt(z | x), of (6) for t = 1 and x, z as in Table 1. We compare 4 methods. Two are based on
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Estimator x = 0, z = 0 x = 0, z = π x = π, z = π
PE 1.25 0.93 0.17

GPE-2 0.13 0.78 0.2
DG-1 0.5 0.45 0.3
DG-5 0.28 0.19 0.22

Table 2: Monte Carlo estimates based on 104 realisations of the root mean square error
divided by the true value of 4 estimators of pt(z | x), of (6) for t = 1 and various x, z. As
true value we take the estimate produced by averaging the estimations given by GPE-2.
The number of intermediate points used for each estimator are 1 and 5 for DG-1 and DG-5
respectively; the number of Brownian bridge simulations for PE and GPE-2 are given in
Table 1 (E[κ]).

(2) and use the PE and the GPE-2 to generate estimators of the expectation. The other
two, DG-1 and DG-5 are two implementation of the Durham and Gallant (2002) estimator,
with 1 and 5 respectively intermediate points. We compare the methods in terms of their
root mean square error divided by the true value (i.e. the coefficient of variation). As the
true value we used the estimate of the GPE-2. The results of the comparison are presented
in Table 2. Notice that DG-1 and DG-5 simulate many more variables than GPE-2 to
construct their estimates.

5 Comparison of particle filters on the simulated data

We now demonstrate the performance of the different particle filters we have presented on
the two examples introduced in Section 2.

5.1 Analysis of the sine diffusion

We first consider analysing the sine diffusion of Example 1. The simulated data is shown
in Figure 1(top). We compare four implementations of the particle filter each of which
avoids time-discretisations by using methodology based on the Exact Algorithm (EA) for
simulating diffusions: i) EPPF, which uses EA for implementing a bootstrap filter, ii)
ESPF, which adapts EA to simulate by rejection sampling from the filtering densities, iii)
RWPF1, an implementation of RWPF using PE (see Table 1) to simulate the weights, iv)
RWPF2, an implementation of RWPF using GPE-2 to simulate the weights. Details on
the implementation of EPPF and ESPF are given in Appendix D.

In this simple example ESPF is more efficient than EPPF, since it has the same compu-
tational cost, but it is proposing from the optimal proposal distribution. However, we have
efficiently implemented ESPF exploiting several niceties of this simple model, in particular
the Gaussian likelihood and the fact that the drift is bounded. In more general models
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Figure 1: Top: A realisation of the sine diffusion (black line) on [0, 100]; 100 observations
at unit time intervals (blue circles); mean of the filtering distribution of the diffusion at the
observation times obtained by RWPF2 with N = 1, 000 particles (red circles). Bottom: the
difference between observed data and filtered means (circles) and 90% credible intervals
(red dashed lines) from RWPF2. (Whilst for clarity they are shown for all times, the
credible intervals were only calculated at the observation times.)

implementation of ESPF can be considerably harder and its comparison with EPPF less
favorable due to smaller acceptance probabilities.

In this context where φ is bounded one can speed up the implementation of GPE-2 with
practically no loss of efficiency by replacing UW in (24) and (25) by 9/8 which is the upper
bound of φ. In this case, there is no need to simulate UW and LW. We have implemented
this simplification in the RWPF2.

Algorithms EPPF, RWPF1-2 used the stratified re-sampling algorithm of Carpenter et al.
(1999), with re-sampling at every iteration. For RWPF1-2 we chose the proposal distribu-
tion for the new particles based on the optimal proposal distribution obtained if the sine
diffusion is approximated by the Ozaki discretisation scheme (details in Appendix E). For

EPPF we chose the β
(k)
i s to be those obtained from this approximation.

The number of particles used in each algorithm was set so that each filter had com-
parable CPU cost, which resulted in 500, 500, 910 and 1000 particles used respectively
for each algorithm. For these numbers of particles, EPPF and ESPF on average required
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Figure 2: Relative efficiency of the 4 particle filter algorithms at estimating the filtering
mean E[Xti |y1:i]. Each line gives the relative efficiency of one algorithm compared to
RWPF2 (black: RWPF2, green: RWPF1, red: ESPF, blue: EPPF). See text for details.

the proposal of 1360 particles and required 675 Brownian bridge simulations within the
accept-reject step (iii) at each iteration of the algorithm. By comparison RWPF1 and
RWPF2 simulated respectively 910 and 1000 particles and required on average 1025 and
850 Brownian bridge simulations to generate the random weights at each iteration.

Note that the comparative CPU cost of the four algorithms, and in particular that
of EPPF and ESPF as compared to RWPF1-2 depends on the underlying diffusion path.
The acceptance probabilities within EPPF and ESPF depend on the values of x

ki,j
i and

xti+1
, and get small when both these values are close to 0(mod 2π). (in the long run the

diffusion will visit these regions infrequently and will stay there for short periods.) Thus,
simulated paths which spent more (or less) time in this region of the state-space would
result in EPPF and ESPF having a larger (respectively smaller) CPU cost.

We compared the four filters based on the variability of estimates of the mean of the
filtering distribution of the state across 500 independent runs of each filter. Results are
given in Figure 2, while output from one run of RWPF2 is shown in Figure 1. The com-
parative results in Figure 2 are for estimating the mean of the filtering distribution at each
iteration (similar results were obtained for various quantiles of the filtering distribution).
They show RWPF2 performing best with an average efficiency gain of 15% over RWPF1,
50% over ESPF and 200% over EPPF. Interpretation of these results suggest that (for
example) ESPF would be required to run with N = 750 (taking 1.5 times the CPU cost
for this data set) to obtain comparable accuracy with RWPF2.

Varying the parameters of the model and implementation of the algorithms will affect
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the relative performance of the algorithms. In particular increasing (or decreasing) σ2,
the variance of the measurement error, will increase (respectively decrease) the relative
efficiency of EPPF relative to the other filters. Similar results occur as ∆i is decreased
(respectively increased). The relative performance of the other three algorithms appears to

be more robust to such changes. We considered implementing EPPF with β
(k)
i = w

(k)
i ; and

also using an Euler rather than an Ozaki approximation of the sine diffusion to construct
the proposal distribution for RWPF1-2, but neither of these changes had any noticeable
effect on the performance of the methods. We also considered re-sampling less often, setting
C = N/4 in step PF1 of the RWPF algorithm (so re-sampling when the effective sample

size of the β
(j)
i s was less than N/4) and this reduced the performance of the algorithms

substantially (by a factor of 2 for RWPF1-2).
We also investigated the effect of increasing the amount of time, ∆, between observa-

tions. To do this we used the above data taking (i) every 10th; or (ii) every 20th time-point.
To measure the performance of the filter for these different scenarios we used the Effec-

tive Sample Size (ESS) of Carpenter et al. (1999). ESS is calculated based on the variance
of estimates of posterior means across independent runs of the filter, but this variance is
compared to the posterior variance to give some measure of how many independent draws
from the posterior would produce estimators of the same level of accuracy. We focus on
estimates of the posterior mean of the state at observation times; and if s2 is the sample
variance of the particle filter’s estimate of E[Xti |y1:i] across 100 independent runs, and σ̂2

is an estimate of Var[Xti |y1:i], then the ESS is σ̂2/s2. Note that comparing filters by their
ESS is equivalent to comparing filters based on the variance of the estimators.

Table 3 gives ESS values for the different values of ∆. We see that the ESS values
drops dramatically as ∆ increases, and the filter is inefficient for ∆ = 20. This drop
in performance is due to the large variability of the random weights in this case. The
variability of these weights is due to (a) the variability of

exp

{

−
∫ ti+1

ti

g(Ws)ds

}

, (26)

across different diffusion paths; and (b) the Monte Carlo variability in estimating this for a
given path. To evaluate what amount is due to (a), we tried a particle filter that estimates
(26) numerically by simulating the Brownian Bridge at a set of discrete time points (for
this example we sampled values every 1/2 time unit) and then using these to numerically
evaluate the integral. This approach is closely related to the importance sampling approach
of Durham and Gallant (2002); Nicolau (2002), see Section 4.1. The results for this filter
are also given in Table 3 (note the ESS values ignore any bias introduced through this
numerical approximation), and we again see small ESS values, particularly for ∆ = 20.
This filter’s performance is very similar to the RWPF, which suggests that the Monte Carlo
variability in (b) is a small contributor to the poor performance of the RWPF in this case.

Finally we tried introducing pseudo observations at all integer time-intervals where cur-
rently no observation is made. The RWPF is then run as above, but with no likelihood
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Filter ∆ = 10 ∆ = 20
RWPF2 73 5
Discretisation 80 12
pseudoRWPF2 923 933

Table 3: Comparison of filter’s mean ESS values for different time intervals between obser-
vations (∆). Results are for the Random Weight Particle Filter using GPE-2 (RWPF2), a
filter that numerically approximates the weight through discretising the diffusion process
(Discretisation), and the RWPF after introducing uninformative observations at unit time
intervals (pseudoRWPF2).

contribution to the weight at the time-points where there are these uninformative obser-
vations. The idea is that now ∆ = 1, so that the variance of the random weights is well-
behaved, but we still have adaptation of the path of the diffusion in the unit time-interval
prior to an observation to take account of the information in that observation. Results are
again shown in Table 3, and the ESS values are very high (and close to the optimal value,
that of the number of particles, 1000). Note that the computational cost is only roughly
doubled by adding these extra pseudo observations; as the total computational cost for
the simulation of the Brownian bridge is unchanged. These results are reasonably robust
to the choice of how frequently to introduce these uninformative observations (results not
shown).

5.2 Analysis of the Cox process

We now consider applying the random weight particle filter (RWPF) to Example 2 from
Section 2, the OU-driven Cox process. The data we analysed is given in Figure 3(top).
It is either impossible or difficult to adapt the other two EA-based particle filters (the
EPPF and the ASPF) to this problem. For instance we cannot implement EPPF as the
likelihood function is not tractable. As such we just focus on the efficiency of the RWPF
in estimating the filtering distribution of |Xt|.

Our implementation of the RWPF was based on proposing particles from the prior
distribution, so β

(k)
i = w

(k)
i and q(xti+1

|xji , yi+1) is just the OU transition density p(xti+1
|xji ).

We simulated the random weights by GPE-2. We calculated the filtering density at each
observation time, and also at 56 pseudo-observation times chosen so that the maximum
time difference between two consecutive times for which we calculated the filtering density
was 0.1. This was necessary to avoid the number of Brownian bridge simulations required
to simulate the weights being too large for long inter-observation times, and also to control
the variance of the random weights (see above). The likelihood function for these non-
observation times is obtained by removing ν(xti) from (4).

We set the number of particles to 1, 000 and resampled when the ESS of the β
(j)
i s was
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Figure 3: Top: Simulation from the Cox process of Example 2 and results from anal-
ysis by the RWPF. The path of the absolute of the underlying diffusion (black line);
observed arrival times (green dashes); filter estimates from the RWPF (red circles); and
90% credible interval for the absolute of the diffusion (red dashed line). (Whilst for clarity
they are shown for all time, the credible intervals were only calculated at and apply for
times where filter estimates are shown.) Bottom: ESS of the RWPFs weights (defined as

(
∑N

j=1w
(j)
i )2/

∑N
j=1(w

(j)
i )2) over time. The dramatic increases in the effective sample sizes

correspond to re-sampling times.

less then 100 (C = N/10 in step PF1 of the algorithm in Section 3). Whilst results for the
sine diffusion suggest that this will result in an algorithm that re-samples too infrequently,
we chose to have a low threshold so that we could monitor the performance of the particle
filter by how the ESS of the particle filter weights decay over time. The results of one run
of this filter are shown in Figure 3(top). The computational efficiency of this method can

be gauged by Figure 3 (bottom) where the ESS of the w
(j)
i s is plotted over time.

6 Discussion

We have described how recent methods for the exact simulation of diffusions and the
unbiased estimation of diffusion exponential functionals can be used within particle filters,
so that the resulting particle filters avoid the need for time-discretisation. Among the
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approaches we have introduced special attention was given to RWPF which implements
an auxiliary particle filter, but simulates the weights that are allocated to each particle.
We showed that this methodology is equivalent to an auxiliary particle filter applied to
appropriately expanded model. We expect that this methodology will have interesting
applications to different models than those considered in this paper, which however involve
intractable dynamics or likelihoods.

We have focused on the filtering problem, estimating the current state given observa-
tions to date. However, extensions to prediction are trivial – merely requiring the ability
to simulate from the state equation, which is possible via the EA algorithms. It is also
straightforward to use the idea of Kitagawa (1996), where each particle stores the history
of its trajectory, to get approximations of the smoothing density (the density of the state
at some time in the past given the observations to date).

Note that while particles store values of the state only for each observation time, it
is straightforward to fill in the diffusion paths between these times to produce inferences
about the state at any time. A particle approximation to the distribution of (Xs, ti−1 <
s < ti), conditionally on the data y1:i can be constructed using the current set of weighted

particles {(x(j)
i−1,x

(j)
i )}Nj=1 with weights {w(j)

i }, as follows. Firstly we need to introduce

some notation; we denote by x
(j)
i−1|i the value of the particle at time ti−1 from which the jth

particle at time ti is descended. The particle approximation is given by a set of weighted
paths {(xs, ti−1 < s < ti)

(j)}Nj=1 with weights {w(j)
i }. Each path is a diffusion bridge

starting from x
(j)
i−1|i and finishing at x

(j)
i and it can be simulated using EA, as described

in Beskos et al. (2006a) and Beskos et al. (2005b). In observation regimes (A) and (B)
the EA is applied to simulate a diffusion bridge with density w.r.t. the Brownian bridge
measure given by exp{−

∫ ti
ti−1

φ(Xs)ds}, whereas in regime (C) the corresponding density

is exp{−
∫ ti
ti−1

(φ(Xs) + ν(Xs))ds}. This representation can be directly exploited to draw

inferences for any function of a finite skeleton of X in-between observation times.

Appendix A: The layered Brownian motion

The algorithm proposed in Beskos et al. (2005b) starts by creating a partition of the sample
space of W for the given W0 = x and Wt = y. Writing x = (x1, . . . , xd), for a user-specified
constant a >

√

t/3, a sequence of subsets of Rd is formed as Aj = {u = (u1, . . . , ud) :
min(xti , yi)− ja < ui ≤ max(xti , yi)+ ja}, j ≥ 0, where ∪jAj = Rd. This sequence defines
a partition of the sample space of the form ∪∞

j=1Dj, where a path belongs to Dj if and only
if the path has exceeded the bounds determined by Aj−1 but not the bounds determined
by Aj . In Beskos et al. (2005b) it is shown how to simulate the random variable which
determines which of the Djs W belongs to, and how to simulate W at any collection of
times conditional on this random variable, the layered Brownian bridge construction. Since
g is assumed continuous, knowing W ∈ Dj is sufficient to determine UW and LW which
satisfy (16). In fact, in the simplified setting where g is bounded, as in the sine diffusion
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of Example 1, the layered Brownian bridge construction can be avoided since it is easy to
choose UW and LW independently of W.

Appendix B: Proof of Theorem 1

I :=
tκ

κ!p(κ | UW, LW)

κ
∏

j=1

(UW − g(Wψj)) .

Then, (19) is established as follows:

E[I2 | UW, LW] = E[ E[I2 | κ,W] ] = E

[

t2κ

(κ!p(κ | UW, LW))2

(
∫ t

0

(UW − g(Ws))
2

t
ds

)κ]

= E

[

tκ

(κ!p(k | UW, LW))2
E

[(
∫ t

0

(UW − g(Ws))
2ds

)κ

| UW, LW, κ

]]

=
∞

∑

k=0

tk

p(k | UW, LW)k!2
E

[

(
∫ t

0

(UW − g(Ws))
2ds

)k

| UW, LW

]

.

Fubini’s theorem and dominated convergence are used above (valid since the integrands
are positive a.s.). (22) is obtained using the following result (which can be easily proved
using Jensen’s inequality). Let fi > 0 for i = 1, 2, . . .. Then the sequence of pis which
minimize

∑∞
i=0 fi/pi under the constraint

∑

pi = 1 is given by pi =
√
fi/

∑√
fi.

Appendix C: Proof of Theorem 2

GPE-1≤ e−LWt so that the result holds if E[e−LWt] <∞, where the expectation is w.r.t. a
d-dimensional Brownian bridge from x at time 0 to y at time t. However

E[e−LWt] =

∫ ∞

0

P[e−LW > w]dw

=

∫ ∞

0

P[LW < − logw]dw ≤
∫ ∞

0

P[δ
d

∑

i=1

(1 +Mi) > logw]dw

where Mi = sup0≤s≤t |Wi| using the the growth bound in Theorem 2. Furthermore,

∫ ∞

0

P[δ
d

∑

i=1

(1 +Mi) > logw]dw ≤
∫ ∞

0

d
∑

i=1

P[δ(1 +Mi) > d−1 logw]dw

=

∫ ∞

0

d
∑

i=1

P[Mi > (dδ)−1 logw − 1]dw .
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It remains therefore to bound the d integrals on the right hand side of this expression. How-
ever from the Bachelier-Levy formula for hitting times for Brownian motion and bridges,

P[Mi > v] ≤ exp
{

−2(v − max{xi, yi})2/t
}

+ exp
{

−2(min{xi, yi + v})2/t
}

and so

P[Mi > (dδ)−1 logw − 1] ≤ exp{−2((dδ)−1 logw − 1) − max{xi, yi})2/t}
+ exp{−2(min{xi, yi + (dδ)−1 logw − 1)})2/t}

which recedes like w−k logw as w → ∞ thus concluding the proof.

Appendix D: EPPF and ESPF for Example 1

EPPF generates the new particles according to the following procedure:

(i) choose one of the current particles x
(ki,j)
i , where particle j is chosen w.p. β

(j)
i ;

(ii) propose xti+1
from Normal with mean x

(ki,j)
i , and variance ∆i;

(iii) accept this proposal w.p. exp(− cos(xti+1
) − 1); if proposal is rejected return to (i).

(iv) accept this proposal with probability

E

[

exp

{

−
∫ ∆i

0

φ(Ws)ds

}]

,

where expectation is with respect to the law of a Brownian Bridge from W0 = x
(ki,j )
i

and W∆i
= xti+1

, and φ is given in (7). If the proposal is rejected return to (i),
otherwise xti+1

is the new particle at time ti+1 with weight wi+1 = f(yi+1|xi+1).

(iv) is performed using retrospective sampling as described in Beskos et al. (2006a).
ESPF proceeds as above but with steps (i) and (ii) replaced by the step

(i’) propose (x
(ki,j)
i , xti+1

) according to the density proportional to

exp











− cos(x
(ki,j )
i ) −

(

yi+1 − x
(ki,j)
i

)2

2(σ2 + (∆i))











exp

{

−(xti+1
− η)2

2τ 2

}

where η = (σ2 + ∆i)
−1(x

(ki,j)
i σ2 + ∆iyi+1), and τ = σ2∆i/(σ

2 + ∆i).

The algorithm is repeated until N values for xti+1
are accepted, each with weight 1/N .
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Appendix E: Proposal Distribution for Example 1

Consider a diffusion satisfying SDE (1), with d = 1 for simplicity. The Ozaki approximation
of this SDE is based on a first order Taylor expansion of the drift about some value x. For
the sine diffusion of Example 1, we get the following approximating SDE

dX̃s = − cos(x)[x− tan(x) − X̃s] ds+ dBs.

So X̃s− (x− tan(x)) is an OU process as defined in Example 2 with ρ = cos(x) and σ = 1.

To calculate q(xti+1
|x(j)
i , yi+1) we compute the product of the transition density given by

the Ozaki approximation about x = x
(j)
i and the likelihood function f(yi+1|xti+1

). Defining

τ 2 = (1−exp{−2 cos(x
(j)
i )∆i})/(2 cos(x

(j)
i )), and η = x

(j)
i −tan(x

(j)
i )(1−exp{− cos(x

(j)
i )∆i})

we get that q(xti+1
|x(j)
i , yi+1) is Normal with mean (ησ2 + yi+1τ

2)/(τ 2σ2) and variance

η2τ 2/(η2 + τ 2). Furthermore we calculate β
(j)
i ∝ w

(j)
i Nτ2+σ2(yi+1 − η).

Appendix F: Central Limit Theorem

For notational simplicity, we consider a special case of our particle filter, chosen to resemble
those considered in Chopin (2004). We choose our proposal density for time ti+1 to have

βj = w
(j)
i ; and we assume iid sampling of X

(j)
ti in step PF1. The particle filter of Chopin

(2004) splits up simulating particles at time ti+1 into (i) a resampling of particles at time ti;
and (ii) a propagation of each of these particles to time ti+1. Our assumption of iid sampling
is equivalent to the multinomial resampling case of Chopin (2004). (The conditions for the
central limit theorem are the same if the residual sampling methods of Liu and Chen (1998),
but the variances differ.) For simplicity we consider observation model (A) or (B), though
the result extends easily to observation model (C).

Let θ
(j)
i = (x

(j)
ti , x

(ki,j)
ti−1

), where ki,j is the index sampled in step PF1 when simulating

the j particle at time ti and θ
(j)
i is the jth particle at time ti together with the particle

at time ti−1 from which it is descended. Also let Eθi denote conditional expectation given
θi. Similarly, let µi(θi) = µg(xi−1, xi, ti−1, ti), and denote by Ri the unbiased estimator of
µi(θi), i.e. E[Ri] = µi(θi). An important quantity is σ2

i (θi) = Var(Ri).
We define Ei[ϕ] and Vari(ϕ) to be the posterior mean and variance of an arbitrary

function ϕ(θ) at time i, and consider Particle Filter estimates of Ei[ϕ]. Let π̃i(θi) be the
density p(xti−1

|y1:i−1)q(xti |xti−1
). Finally define Eqi[ϕ] and Varqi(ϕ) to be shorthand for

the conditional expectation and variance of ϕ(θi) with respect to q(xti |xti−1
) (which are

functions of xti−1
). We denote ‖ · ‖ to be the Euclidean norm and define recursively Φi to

be the set of measurable functions ϕ such that for some δ > 0 Eπ̃i[‖hiRiϕ‖2+δ] < ∞, and
that the function xti−1

7→ Eqi [hiµiϕ] is in Φi−1.

Theorem 3. Consider a function ϕ; define Ṽ0 = Varπ̃(x0)(ϕ), and by induction:

Ṽi(ϕ) = V̂i−1 {Eqi [ϕ]} + Ei−1 {Varqi(ϕ)} , for i > 0, (27)
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Vi(ϕ) =
Ṽi {µihi · (ϕ− Ei[ϕ])} + Eπ̃i((ϕ− Ei[ϕ])2σ2

i h
2
i )

Eπ̃i(µihi)
2

, for i ≥ 0, (28)

V̂i(ϕ) = Vi(φ) + Vari(φ), for i ≥ 0. (29)

Then if for all i (C1) xti 7→ 1 belongs to Φi; (C2) Eπ̃i[h
2
iσ

2
i ] <∞; and (C3) Eπ̃i [σiϕhi]

2+δ <
∞ for some δ > 0; then for any ϕ ∈ Φi, Ei[ϕ] and Vi(ϕ) are finite and we have the following
convergence in distribution as the number of particles, N , tends to infinity:

N1/2

{

∑N
j=1w

(j)
i ϕ(x

(j)
ti )

∑N
j=1w

(j)
i

− Ei[ϕ]

}

→ N (0, Vi(ϕ))

Comment Equations (27)–(29) refer to the changes in variance of the weighted particles
due to the propagation, weighting and resampling stages at iteration i. Only (28) differs
from the respective result in Chopin (2004), and this is due to the second term on the
right-hand side, which represents the increase in variance due to the randomness of the
weights. Condition C1 is taken from Chopin (2004) and applies to standard particle filters;
conditions C2 and C3 are new and are conditions bounding the variance of the random
weights which ensures that Vi(ϕ) is finite.

Proof. We adapt the induction proof in Chopin (2004), considering in turn the propagation,
weighting and resampling steps Our filter differs from the standard particle filter only in
terms of the weighting step; and therefore we need only to adapt the result of Lemma A2
in Chopin (2004). In fact, (27) and (29) are identical to the corresponding quantities in
Chopin (2004), therefore it remains to show (28). We define the constant K = Eπ̃i[Rihi]
and ϕ∗ = Rihi(ϕ− Ei(ϕ))/K. Within the enlarged signal space framework, we can apply
Equation (4) of Chopin (2004), to give:

Vi(ϕ) = Ṽi (ϕ
∗) = V̂i−1 {Eqi[ϕ

∗]} + Ei−1 {Varqi(ϕ
∗)} .

Now we can calculate Eqi [ϕ
∗] by first taking expection over the auxiliary variables (condi-

tional on θi). This gives Eqi[ϕ
∗] = Eqi[µihi(ϕ− Ei(ϕ))/K]. Similarly we get

Varqi(ϕ
∗) = Varqi(E[Rihi(ϕ−Ei(ϕ))/K]) + Eqi(Var[Rihi(ϕ−Ei(ϕ))/K]) (30)

= Varqi(µihi(ϕ−Ei(ϕ))/K) + Eqi(σ
2
i h

2
i (ϕ−Ei(ϕ))2/K2). (31)

(Here the expectation and variance in (30) are w.r.t. the auxiliary variables). Combining
these results gives (28). The regularity conditions (C1) - (C3) translate directly also.
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Äıt-Sahalia, Y. (2004) Closed-form likelihood expansions for multivariate diffusions. Work-
ing paper, available from http://www.princeton.edu/∼yacine/research.htm.

26



Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005a) Monte Carlo maximum like-
lihood estimation for discretely observed diffusion processes. Submitted.

— (2005b) A new factorisation of diffusion measure and finite sample path constructions.
Submitted.

— (2006a) Retrospective exact simulation of diffusion sample paths with applications.
Bernoulli, 12, 1077–1098.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006b) Exact and
efficient likelihood–based inference for discretely observed diffusions (with discussion).
Journal of the Royal Statistical Society, Series B.

Beskos, A. and Roberts, G. O. (2005) Exact simulation of diffusions. Annals of Applied
Probability, 15, 2422–2444.

Carpenter, J., Clifford, P. and Fearnhead, P. (1999) An improved particle filter for non-
linear problems. IEE proceedings-Radar, Sonar and Navigation, 146, 2–7.

Chib, S., Pitt, M. K. and Shephard, N. (2006) Likelihood based inference for diffusion
driven state space models. Submitted.

Chopin, N. (2004) Central limit theorem for sequential Monte Carlo methods and its ap-
plication to Bayesian inference. The Annals of Statistics, 32, 2385–2411.

Crisan, D. (2001) Particle filters - a theoretical perspective. In Sequential Monte Carlo
Methods in Practice (eds. A. Doucet, N. de Freitas and N. gordon), 17–41. Springer–
Verlag; New York.

Crisan, D., Del Moral, P. and Lyons, T. J. (1999) Interacting particle systems approx-
imations of the Kushner-Stratonovich equation. Advances in Applied Probability, 31,
819–838.

Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimation of the coefficients of a
diffusion from discrete observations. Stochastics, 19, 263–284.

Dassios, A. and Jang, H.-W. (2005) Kalman-Bucy filtering for linear systems driven by the
Cox process with shot noise intensity and its application to the pricing of reinsurance
contracts. J. Appl. Probab., 42, 93–107.

Del Moral, P. and Guionnet, A. (2001) On the stability of interactin processes with appli-
cations to filtering and genetic algorithms. Ann. Inst. of H. Poincaré Probab. Statist.
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