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ABSTRACT

The stability analysis of possibly time varying positive semigroups on
non-necessarily compact state spaces, including Neumann and
Dirichlet boundary conditions is a notoriously difficult subject. These
crucial questions arise in a variety of areas of applied mathematics,
including nonlinear filtering, rare event analysis, branching processes,
physics and molecular chemistry. This article presents an overview of
some recent Lyapunov-based approaches, focusing principally on
practical and powerful tools for designing Lyapunov functions. These
techniques include semigroup comparisons as well as conjugacy
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principles on non-necessarily bounded manifolds with locally
Lipschitz boundaries. All the Lyapunov methodologies discussed in
the article are illustrated in a variety of situations, ranging from con-
ventional Markov semigroups on general state spaces to more
sophisticated conditional stochastic processes possibly restricted to
some non-necessarily bounded domains, including locally Lipschitz
and smooth hypersurface boundaries, Langevin diffusions as well as
coupled harmonic oscillators.
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1. Introduction

This review article outlines some of the main points of the stability theory of possibly
time varying positive semigroups on non-necessarily compact state spaces, including
Neumann and Dirichlet boundary conditions. We present an overview of some recent
Lyapunov-based approaches, focusing principally on practical and powerful tools for
designing Lyapunov functions.

Foster-Lyapunov criterion dates back to the 1950s with the seminal articles [1,2].
These criteria are nowadays an essential tool to analyze the stability properties of
Markov semigroups on general state spaces [3-8]. There is also a vast literature on sub-
geometric convergence rates for Markov chains, starting with the foundational articles
[9,10] based on sequences of Lyapunov-type functions defined in terms of some well-
chosen subgeometrical rate, followed by the control of modulated moments of the
return-time to some regular set. More practical Foster-Lyapunov conditions are
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presented in [11-15]. Subgeometric convergence rates for continuous time Markov
processes are also discussed in [5, 16,17], see also the more recent article [18].

The use of Foster-Lyapunov criteria in the context of positive semigroup arising in
discrete time nonlinear filtering goes back to the pioneering articles [19,20], based on
coupling techniques developed in [21,22]. The extension of Foster-Lyapunov criterion
to discrete or continuous time varying positive semigroups and their normalized ver-
sions on general state spaces were further developed in [23], extending Dobrushin’s erg-
odic coefficient techniques introduced in [24,25] and further developed in [26-30] to
unbounded state space models.

Recall that the Dobrushin’s ergodic coefficient of a Markov semigroup is the operator
norm of the Markov integral operator acting on probability measures equipped with the
total variation norm (see for instance [28] and references therein). In the same vein, the
V-Dobrushin’s ergodic coefficient of a Markov transition introduced in [30] is defined
as the operator norm of the Markov integral operator acting on probability measures
equipped with the V-norm. In this framework, the contraction w.r.t. V-norms is
deduced by coupling the Foster-Lyapunov criterion with a local contraction on a suffi-
ciently large compact sub-level set of the Lyapunov function.

This operator-theoretic framework is discussed in Section 2 in the context of discrete
time and homogeneous Markov semigroups. Section 2.1 is dedicated to V-norm con-
traction coefficients and the exponential convergence of Markov semigroups. This rather
elementary operator-theoretic framework is further extended in Section 2.2 to derive in
a rather simple way subexponential convergence rates, stripped of all analytical super-
structure, and probabilistic irrelevancies.

The extension of this framework to more general classes of time varying Markov
semigroups with possibly continuous time indices is discussed in Section 2.3 as well as
in Section 2.4 in the context of diffusion semigroups. Exponential stability theorems for
more general classes of positive semigroups are discussed in Section 3.1.

To take the discussion one step further and underline the role of Lyapunov condi-
tions, we emphasize that local contraction principles (a.k.a. local minorization condi-
tions) on the compact sub-level sets of a prescribed Lyapunov function are generally
easily verifiable conditions. This property is often deduced from a Doeblin type local
minorization property of integral operators on the compact sub-level sets of the
Lyapunov function. For instance, this local minorization condition is satisfied as soon
as the semigroup is lower bounded by an absolutely continuous integral operator
(ak.a. transition kernel operator). This class of models includes hypo-elliptic diffusion
semigroups as well as some regular jump processes on non-necessarily bounded
domains.

We also underline that for diffusion semigroups with smooth densities on bounded
manifolds with entrance boundaries (i.e. boundary states that cannot be reached from
the inside), the existence of a sufficiently strong Lyapunov function is essential to ensure
the stability of the semigroup. In this context, the transition densities are null on
entrance boundary states so that the local minorization condition alone applied to some
exhausting sequence of compact subsets is not sufficient to ensure the stability of the
process. The exhausting sequence of compact subsets needs to be equivalent to the sub-
level sets of some sufficiently strong Lyapunov function near entrance boundaries. For a
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more thorough discussion on this subject we refer to Section 2 and the article [23], see
also the series of Riccati-type diffusions discussed in Section 6.

The general problem of constructing Lyapunov functions for positive semigroups, includ-
ing for Markov semigroups often requires having some good intuition about a candidate for
a Lyapunov function on some particular class of model. As for deterministic dynamical sys-
tems, the design of Lyapunov functions for sub-Markov semigroups associated with a non-
absorbed stochastic process requires to use some physical insight on the stability and the
behavior of the free evolution stochastic process near possible absorbing boundaries.

Constructing Lyapunov functions for general classes of positive semigroups is well
known as a very hard problem in system theory as well as in applied probability litera-
ture. The main subject of this article is to find practical ways to design these Lyapunov
functions for various classes of positive semigroups that have been discussed in the lit-
erature, including conditional diffusions on manifolds with Neumann and Dirichlet
boundaries. We did our best to cover the subject as broadly as possible; we also refer to
the article [23] for additional historical and reference pointers. Due to the vast literature
on this subject we apologize for possible omissions of some important contributions
due to the lack of knowledge.

The remainder of this article is structured as follows:

In Section 2, we begin with a brief review on the stability of Markov semigroup. The
extension of these results to time varying positive semigroups is discussed in Section 3.
Section 3.1 is dedicated to exponential stability theorems for normalized semigroups. In
Section 3.2, we present some consequences of these results in the context of time homo-
genous models, including existence of ground states and quasi-invariant measures.
Section 3.3 presents different tools to design Lyapunov functions for continuous time
Markov semigroups and sub-Markov semigroups. We also illustrate these results
through different examples of semigroups arising in physics and applied probability,
including over damped Langevin diffusions, Langevin and hypo-elliptic diffusions, as
well as typical examples of solvable one-dimensional sub-Markov semigroups such as
the harmonic oscillator, the half-harmonic oscillator and the Dirichlet heat kernel.
General comparison and conjugacy principles to construct Lyapunov functions for posi-
tive semigroups are provided in Section 4. Boundary problems are discussed in some
detail in Section 5. We then turn in Section 6 to the design of Lyapunov functions for
Riccati type processes, including positive definite matrix valued diffusions, logistic and
multivariate birth and death processes arising respectively in Ensemble Kalman-Bucy fil-
ter theory and population dynamic analysis.

In Section 7, we illustrate the power of the Lyapunov approach in the context of
multivariate conditional diffusions. Section 8 is dedicated to illustrations with explicit
computations of geometrical objects for the Lyapunov functions discussed in Section 5.3
in the context of hypersurface Dirichlet boundaries.

1.1. Some basic notation

Let B(E) be the algebra of locally bounded measurable functions on a locally compact
Polish space E. We denote by B,(E) C B(E) the sub-algebra of bounded measurable
functions endowed with the supremum norm ||.||.
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For a given uniformly positive function V € B(E), we let By (E) C B(E) be the sub-
space of functions f € B(E) equipped with the norm ||f||, := ||f/V]|.

We also let By (E) C B(E) be the subalgebra of locally bounded and uniformly posi-
tive functions V that grow at infinity; that is, supy V' < oo for any compact set K C E,
and for any r >V, :=infg V > 0 the r-sub-level set V(r) :={V<r} CE is a non-
empty compact subset. We denote by By(E):={1/V : V€ By} CBy(E) the
sub-algebra of (bounded) positive functions, locally lower bounded and that vanish at
infinity. For a given V € B (E), consider the subspace

Bov(E):=={f €B(E) : Ifl/V€Bo(E)}.

We denote by C(E) C B(E) the sub-algebra of continuous functions and by C,(E) C
C(E) the sub-algebra of bounded continuous functions.

We also set Cy(E) := By(E) NC(E), Co(E) := Bo(E) NC(E) and C(E) := B(E)N
C(E) and Cy v(E) := Bo,v(E) NC(E). Note that none of the sub-algebras By(E) and
B (E) have a unit unless E is compact, the null function 0 & By(E) but the unit func-
tion 1 € Cy,v(E) as soon as V € B (E).

Let M, (E) be the set of bounded signed measures p on E equipped with the total
variation norm ||u||,, := |u|(E)/2, where |u|:= p, + p_ stands for the total variation
measure associated with a Hahn-Jordan decomposition p = pu, — u_ of the measure.
Also let P(E) C M,(E) be the subset of probability measures on E. Recall that for any
U 1, € P(E) and € €]0, 1] we have

Il —molly<l—e<= (FveP(E) : yy=2ev and p>ev). (1

With a slight abuse of notation, we denote by 0 and 1 the null and unit scalars as
well as the null and unit function on E.

Let Qs be a semigroup of positive integral operators on B;(E) indexed by continu-
ous time indices s,t € 7 =R, :=[0,00[ or by a discrete time index set 7 = N, with
s<t. The action of Q,; on B,(E) is given for any f € B;(E) by the formulae

Qu(f)(x) = JQs,t(x, dy) (). @)

The left action of Qg on M, (E) is given for any n € M, (E) by the formulae
(1 Quoldy) = [n(ds) Quilos ) ©

In this notation, the semigroup property takes the following form

QsuQu:=Q;¢r with Qgs =1, the identity operator. (4)

In the above display, Q,,Q,,; is a shorthand notation for the composition Qs ,°Qy ¢
of the left or right-action operators. Unless otherwise stated, all the semigroups dis-
cussed in this article are indexed by conformal indices s <t in the set 7. To avoid repe-
tition, we often write Q,; without specifying the order s <t of the indices s,t € 7.

We denote by My (E) be the space of measures pu € M,(E) equipped with the
operator V-norm |||u|||, := |u[(V), and by Py(E) C My(E) be the convex set of
probability measures. Whenever V > 1, for any p > 0 we have the norm equivalence
formulae



STOCHASTIC ANALYSIS AND APPLICATIONS ‘ 5

plllellly < allhpr < @+ )y ®)
We associate with a function h € By v (E) the Boltzmann-Gibbs transformation
Y, : u€Py(E)—Yr(p) € Pyu(E) (6)
with the probability measure
h(x)

W (u)(dx) :== ) u(dx) and V":=V/he By(E).

We also denote by [||Q|||,, the operator norm of a bounded linear operator Q: f €
By (E) — Q(f) € By(E); that is
llQllly := sup{llQUNIlv : f € Bv(E) such that [|f||, <1}. (7)
In terms of the V-conjugate semigroup
f€By(E)—Q"(f) == Q(Vf)/V € By(E)
we have

Qllly = [1R"M)II = [[1Q"]Il == sup{[IQ" (I : f € By(E) such that [[f||<1}.

For a given measurable function f and a given measurable subset, we use the short-
hand notation

—oo < inf f := inf f(x) < supf := sup f(x) < + oc.
A X€A A xEA

For a given s € 7 and t € 7 with 7 > 0, we consider the time mesh
[s,00[; :={s+nt € [s,00] : neN}.

Throughout, unless otherwise is stated we write ¢ for some positive constants whose
values may vary from line to line, and we write ¢,, as well as ¢(f) and ¢,(ff) when their
values may depend on some parameters o,  defined on some parameter sets. We also
set anb = min(a, b), avb = max(a,b), and a; = av0 for a,b € R.

1.2. V-positive semigroups

We say that Q;, is a V-positive semigroup on By (E) for some Lyapunov function V €
B (E) as soon as there exists some 7 > 0 and some function @, € By(E) such that for
any 0 < f € By(E) and s < t we have 0 < Q,,(f) € Bo,v(E) as well as

Que(V)/V<O, and  sup (IQuillIVIQuilly) < . (®)

[t—s| <t

As shown in Section 4.1, the Lh.s. criterion in (8) can be seen as a uniform Foster-
Lyapunov condition (a.k.a. drift condition).

The irreducibility condition f > 0 = Q,(f) > 0 is satisfied if and only if we have
Qs (1) > 0. We check this claim by contradiction. Assume that Q;,(1) > 0 and con-
sider a function f>0 and some x € E such that Q,,(f)(x) = 0. In this case, for any ¢ >
0 we would have

€ Qi(lf>)(x) < Qui(f)(x) =0
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by Fatou’s lemma we would find the contradiction

linelﬂioans,t(lef)(x) =02=Q(1)(x) = Qs¢(1)(x) =0.

Without further mention, all semigroups Q;; considered in this article are assumed
to be semigroups of positive integral operators Qs ; on By(E) satisfying the irreducibility
condition Q,((1) > 0 for any s < t. Notice that the condition

0<feBy(E) = Vs<t 0 < Qs¢(f) € Bo,v(E)

is met as soon as Q,; is a strong V-Feller semigroup (i.e. for any s<t we have
Qs,+(By(E)) C Cy(E) and when we have Q,,(V)/V € By(E)). To check this claim,
observe that for any positive function f € By (E) and s <t the function Q,(f) is posi-
tive and continuous; and thus locally lower bounded. In this situation, whenever
|lf||y <1, for any s <t we have the comparison property

Qi (f)/V < Qi(V)/V € Bo(E) = Qs.1(f)/V € Bo(E) <= Qui(f) € Co,v(E).

In summary, a strong V-Feller semigroup Q,; is V-positive on By (E) as soon as there
exists some 7 > 0 and some function ®; € By(E) such that the Lh.s. condition in (8) is
met and for any s <t we have

Qi(V)/V EBYE) and Qs o(V)/V<®, € By(E).

When V € C(E), we say that Q,, is a V-positive semigroup on Cy(E) as soon as
Q,¢(Cv(E)) C Co,v(E) for any s < t and condition (8) is met.

A V-Feller semigroup Q,; for some V € C.(E), in the sense that for any s<t we
have Q;;(Cy(E)) C Cy(E), is also said to be V-positive on Cy(E) as soon as there exists
some T > 0 and some function ®; € By(E) such that the Lh.s. condition in (8) is met
and for any s <t we have

Qs«(V)/V €Cy(E) and Q,.4:(V)/V <O, € By(E).

Last but not least, observe that positive semigroups Q; ; with continuous time indices
s<t€ R, can be turned into discrete time models by setting Q, , = Qs for any
p<né&N and some parameter 7 > 0. Up to a time rescaling, the parameter 7 > 0 aris-
ing in the definition of a discrete time V-positive semigroups Q,, , can be chosen as the
unit time parameter. In this context, the r.h.s. condition in (8) is automatically satisfied.

2. A brief review on Markov semigroups

The stability analysis of positive semigroups presented in this article is mainly based on
discrete time operator-type contraction techniques combining Lyapunov inequalities
with local minorization conditions. This section presents a brief overview of this oper-
ator-theoretic framework. Our presentation is nearly self-contained and follows that of
Section 8 in the book [30] (see also Section 2 in [23]).

2.1. V-norm contraction coefficients

In this section, we are mainly interested in the contraction properties of discrete time
Markov integral operators. We only consider time homogeneous Markov semigroups
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P:=P; ;1 on By(E), so that P, := Py; = PP, ;. In what follows E is assumed to be a
Polish space. One key mathematical object is the V-norm contraction coefficient.

We further assume that there exists a Lyapunov function V € B, (E) and parameters
€ €]0,1[ and ¢ < oo such that

P(V)<e V+c. (9)
Note that the class of Markov semigroups considered in this section is more general

than the one discussed in (8). Indeed, in our context the Lyapunov condition stated in
the Lh.s. of (8) takes the form

P(V)/V <O € By(E).

This condition ensures that for any 0 < e < ||®||, the set K. := {® > €} is a non-
empty compact subset and we have

P(V)<elpxV+1g(® V)<e V+4c¢. with ¢ :=||O]|[supV.
K.

Replacing V by 27!(1 4 €V/c) there is no loss of generality to assume that c=1/2
and V >1/2. Also assume there exists some 7y >1 and some function o:r €
[ro, 00 —a(r) € ]0,1], such that for any r > ry we have

sup ||0xP — 6,P|[,, <1 —a(r) with V(r):={V<r}. (10)
(% y)eV(r)’

The V-Dobrushin coefficient i, (P) of P is defined by the V-norm operator

By(P) == sup |[[(k—m)P|l[y//[llx—nllly- (11)
s n€Py (E)

As show in Section 8 in [30] (see also Section 2.3 in [23]), the supremum in (11) is
attained on Dirac masses (i, 1) = (0x, d,); that is, we have

[10-P = 6,Plly
sup ——————.
(x,y)€E? V(X) + V()’)

The terminology V-Dobrushin coefficient comes from the fact that we recover the
standard Dobrushin coefficient B(P):= f8,,(P) by choosing the constant function
V=1/2. Theorem 8.2.21 in [30] (see also Lemma 2.3 in [23]) shows that the Lyapunov
inequality (9) combined with the local minorization condition (10) yield a V-norm con-
traction estimate for some well-chosen Lyapunov function.

ﬂV(P) =

Lemma 2.1 ([30]). Assume (9) and (10). In this situation, for any r = rovre with re ==
1/(1 — €) we have

By, (P) <1 —o(r) (12)

with the rescaled Lyapunov function

VE,,:—1<1+ ! @V) and o (r) = 20 &<1—E>>o.

()
2 1+e 2 (1_|_6)_|_“T’ r
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For the convenience of the reader a proof of the V-norm estimate (12) is provided in
the Appendix, on page 75. As an aside, note that whenever (9) is met with ¢c=1/2 we
have

. 1 1 ar
P(V.,)<e V., +c,, with ¢ ,:= 5 <(1 —€)+ e Z(r)>
The equivalence of the V-norm and the V, ,-norm yields without further work the
following contraction theorem.

Theorem 2.2. For any t € N and any u,n € Py(E) we have
11 =mPellly <cor By, (P) llle=nllly with ¢, =1+2r(1+€)/a(r).  (13)

The contraction estimate (13) ensures the existence of a single invariant probability
measure U, = U Py € Py(E). Similar approaches are presented in the article [5], sim-
plifying the Foster-Lyapunov methodologies and the small-sets return times estimation
techniques developed in [7]. While the geometric convergence of discrete time Markov
semigroups toward their invariant measure p ., (a.k.a. Harris-type theorem) are well
known, the V-norm contraction coefficients techniques developed in [30] provides a
very direct and short proof of Theorem 2.2. In Section 2.3, this natural operator-theor-
etic framework is extended without difficulties to time varying and continuous time
indices. For instance, for any collection of Lyapunov functions V; € B, (E) and any
Markov transitions M, indexed by t € N from By,(E) into By, ,(E) we have

P, i= Py M, = My M; = ||| (1t — m)Pil]y, < <H By .v.(M )ll# lllv,

1<s<t

with the V-norm contraction coefficients

By (M) = sup (= mMillly /=il = sup M= Ml
Vien B 1> 1EPy (E) v v (yer Vi1 (%) + Vi (y)

Whenever all the Markov transitions M, satisfy (9) and (10) with the same Lyapunov
function V and the same function «(r), choosing the function V;:= V., defined in
Lemma 2.1 we have fy _ v (M;) < (1 —oc(r)), with the parameter o (r) defined in
Lemma 2.1. More general time-inhomogeneous models can probably be handle extend-
ing the analysis developed in [24, 26] as well as in Theorem 4.18 and Theorem 4.20 in
[31] and in Proposition 1 in [32] using the standard Dobrushin coefficient to non-
necessarily compact spaces in terms of V-norms contraction coefficients.

Remark 2.3. Whenever P(V)/V < ©O for some © € By(E) a direct application of (13)
yields for any t > 1 the estimate

(e = mPesllly <car By, ,(P) lllu—nllly, with Vo:=V @

In some situations (cf. for instance Section 6), we can choose ® = 1/V. In this context,
for any p,n € P(E) we have the uniform total variation norm estimates

2 [1Ce = )Pt llyy <M1 = m)Pesallly < 2¢er By, (P)" M= nllly, <2¢ar By, ,(P)'
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In this situation, besides the state space E may not be compact, for sufficiently large
t> 0 the standard Dobrushin contraction coefficient }(P;) < 1 of the Markov transition
P, yields exponential decays.

The extension to more general positive semigroups is slightly more involved and
relies on the stability properties of triangular arrays of Markov operators (cf. [23]). In
Section 3, we present an overview on the stability properties of this class of models.

Combining (1) with (10), for any r > ry there exists some probability measure v,
such that for any pu= (u, —pu_) € My(E) with u(1) =0 and any bounded positive
function f > 0 we have

p+(P(f)) = :“i(IV(r)) a(r) vi(f).

M+(1V(r)) .uf(IV(r))
wgl‘“”<ugm : m0)>'

This implies that

Hlﬁjilt - H (u/:(+1) - uf(1)>P

On the other hand, by Markov inequality we have

1_;«4wvuwv<u4mm V)

() M) S T Nl

This implies that

p 1
|mnwgl_a®<l__nwmj.

o [lully

We summarize the above discussion in the following lemma.

Lemma 2.4. Assume that (10) is met. In this case for any r = ry and u € My(E) with
u(1) = 0 we have

Pl < (1= 1) Nl + 22 il (19)

Whenever (9) is met with ¢=1/2, for any u € My(E) with p(1) =0, recalling that
[lalley = Nlaellly 2 = #4.(1) = p_(1) we have
Py <€ [[lullly + llully-
This yields for any p > 0 the estimate

HEPllly 2y pv < (1= a(r) + p) Il + (%ﬂ) o Mlwllly

from which we readily check the following lemma.

Lemma 2.5. Assume (9) and (10) are met with ¢=1/2. In this situation, for any (r,p)
such that r./r < p/o(r) < 1 we have

/31/2+pv(P) <1—of(r)

with the parameter r. defined in Lemma 2.1 and of (r) defined by
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For instance, for any J > 0 we have

r>(1406)r. and p:=(1+90) oc(r)%

= a(r) > (oc(r) (1—(1+5) 1;>>A<(1—e) 1%) > 0.

We end this section with a weaker version of another popular condition ensuring the
non-expansive property of Markov semigroups w.r.t. V-norms (see for instance [11, 16,
33,34] and references therein). Instead of (9), we further assume there exist an increas-
ing function ¢ : v € [1,00[+ @(v) € [0,00[ some constant ¢ > 0 and some function
V € By (E) such that V > 1 and

P(V)SXV—¢(V)+c and @(V)/V € By(E). (15)

Note that when ¢(V) = (1 — €)V the r.h.s. condition in the above display is not met
(unless E is compact) but the Lh.s. inequality coincides with the Lyapunov condition
(9). In contrast with the Lyapunov condition introduced in [11], the function ¢ is not
required to be concave.

Whenever (10) is satisfied, Lemma 2.4 ensures that for any r > r, := ¢(ry) and u €
M) (E) with u(1) = 0 we have

oy (1)

r

On the other hand, by (15) u € My (E) with u(1) = 0 we have
ePllly < [lallly = alllpe + 2¢llull,,-

[Pl < (1 =oa(r) (Il + Nellly  with o (r) :=a(e™'(r).  (16)

This yields for any p > 0 the inequality

20 (r)
&P 15 pv < allli4pv — (2(061(7)—PC) el + (P— lr ) |||:u’||(p(V)> (17)

from which we readily check the following uniform estimates.

Lemma 2.6. Assume (10) and (15) are met. In this situation, (16) is met for some param-
eters (r1, o). In addition, for any r > r| and parameter p > 0 such that pc<oy(r) and
p =204 (r)/r we have
SUp Py (P S 1 or equivalently  sup [[liPdllypv < [fledllypv (18)
t>

t>

for any p € My(E) with u(1) = 0.

2.2. Subgeometric convergence

Consider the discrete time and homogeneous Markov semigroups discussed in Section
2.1. Without further mention, we shall assume that conditions (10) and (15) are met for
some increasing function ¢ and some Lyapunov function 1<V € B, (E).
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Consider a concave increasing differentiable function ¢, : [1,00[+ [1,00[ such that
01(V)/V € By(E). We further assume there exists some parameters y > 0 and x; > 0
such that

00, (V) (V) = @,(V)  with ¢,(V) =1, V((Pl(V)/V)HX € B (E) (19)
Observe that
12 ¢2(V)/V<00,(V) o(V)/V<09i(1) @(V)/V € Bo(E)

Thus, whenever the function ¢,(V)/V is locally lower bounded and upper semi-con-
tinuous the above estimate ensures that

@(V)/V € Bo(E) = ¢1(V)/V,9,(V)/V € Bo(E)

The prototype of model we have in mind is the case
o(v) =19 V" and @, (v) =K v\ (20)
for some parameters v,0 €]0,1[ and x; > 1. In this context, we have
091(V) @(V) = rori (1 = 08) VU = (V) =1, V (91(V)/ V) € Buo(E)

with the parameters

Ky i= KOKI_I”;A'&(I —vd) and y:= 10_55.
Applying Jensen’s inequality and using (15) we prove that
Po)(V)) <@1(V) = 03(V) + 1 with ¢ = cdp,(1). (1)
We check this estimate using the fact that O¢, is decreasing. Thus, for any 0 <u < v
we have

P1(v—u) <@y (v) — 0oy (v) u.
In the same vein, for any 0 <v<v — u we have
Vw e [v,v—u] 0¢,(v) = 0p,(w) and therefore ¢,(v—u)<¢,(v)—0¢,(v) u.
The Lyapunov inequality (21) applied to (20) is closely related to Lemma 3.5 in [13]

We further assume there exists some r, >1 and some function oy:r€
[r2,00[ +0(r) € ]0,1], such that for any r > r, we have

sup HéxP — 0P|, <1 = 0p(r). (22)
(wy)efon(V)<r)?
The above condition is automatically met with r, = ¢@,(r) and o,(r) := (@, '(r)) as

soon as (10) is satisfied and ¢, is increasing. In this situation, arguing as above, Lemma
2.4 ensures that for any r > r, and u € M,, (v)(E) with u(1) = 0 we have

o (1)

[P [,, < (1 = 0a(r)) [|lls + ey, cv)-
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On the other hand, by (21) we have
P, vy < el vy = el g, vy + 2eal [l
Applying Jensen’s inequality for any u € My (E) with u(1) = 0 we find that

V (@ (V)/ V) : :
il = e A vy s Il /Ml 22

Following word-for-word the proof of (17) we readily check the following lemma.

Lemma 2.7. For any r = rpvry and p > 0 such that

planc) <o(r)no(r) and  6,(r) := K (p —2 W) =0

and for any p € My(E) with u(1) = 0 we have

1P ) < iy vy = G () el o /RIS

To take the final step, recall that |[[|ul[|\ 1, )< (1 + p)[l[ulll,, () Combining this
estimate with the uniform estimate (18) for any t € 7 = N we check that

sy 6y = Pl vy < = S Pl )

with the function ¢, (u) := w,(p) u'** and the parameters

wu(p) == w(p) |lulllif,y  and  (p) = p* 5,(r)/(1+p)"** (24)

Lemma 2.8 ([35]). Consider a decreasing sequence of positive numbers u, such that for
any t € N we have

U — up < — (1)

for some continuous increasing function C from ]0,u] into |0,00[. In this situation, for

any t = 1 we have
" dy

w S(v)

W <INt with L(w) :—J

Proof. Since C is increasing we have v € [u,41, u,] = ¢(v) <c(u,). On the other hand,
by the mean value theorem there exists some v € [u,1, u,]| such that

Unit — Un _ S(un)
sv) T )
We conclude that I.(u,) > n+ I.(ug). This ends the proof of the lemma. |

I(tpi1) — I(un) = —

Observe that for any ¢t > 1 we have

sv) = v = L(w) =
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The above lemma readily yields the following polynomial convergence theorem.

Theorem 2.9. Assume conditions (19) and (22) are satisfied for some function ¢, and
some parameter. In this situation, for any t > 1 and any u € My(E) with u(1) =0 we
have the polynomial convergence estimates
N 1/, . . ~1/,
1Py S €6t il with e = (xeo(p)) /"
In the above display, p and w(p) stands for the parameters defined in Lemma 2.7 and
in (24).

Remark 2.10. Without further work, we recover the sequence of polynomial rates of con-
vergence discussed in [13] by choosing for any 1 < i < n the parameters

0:=(n-1)/n v:i=(i—1)/(n—1)
=1-v=1—-(i—1)/n o(l—v)=1—i/n 1/y=i—1.

As expected, the operator-theoretic framework described above can be extended easily
to situations where the function ¢, in (19) has the following form

P2 (V) ==V Y(p1(V)/V) € B (E) (25)

for some convex increasing function ¥ : [0,00[— [0, 0] such that /(0) = 0. In this
situation, arguing as in (23) for any u € My (E) with u(1) = 0 we have

ey > Ml v (il g/l )

Using the fact that y/(iv) < AY(v), for any 4 € [0,1] and v >0, for any t >0 we
check that

(Ml
o rap ¥ (2l /e 1)
SuPSZOlH:uPsH‘V ey (V) tlv

> supes o [Pl (Pl v/ supe ol Pl )

Pl > sups o Pl

On the other hand, by (18) we have psups>0{||uPs|||V< (1 + p)[||ul]ly- This yields
the rather crude estimate

) |||ﬂPt|||¢1(v>>

EPe [l g, vy = Ml ¥
?2V) FE\E e el

Thus, recalling the norm equivalence formulae (5) we prove that
Pl vy = el g v l,Dp(IIIMPrI||1+p(pl<V)/|||M|||1+pv>

with the rescaled convex function

1 p?
t//p(v) =10, W((l +p)2 v). (26)
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This shows that
vo = [||ulllipy  and up = [P ||y, (v) = e — ue <= Op(r) Gy (1)

with the same J,(r) as in Lemma 2.7 (with x, =1) and the function ¢, (u):=
vo Y,(u/v). In this context, Lemma 2.8 readily yields the following convergence
theorem.

Theorem 2.11. Assume there exists some function ¢, satisfying (19), with the function ¢,
defined in (25) in terms of some convex increasing function . In this situation, for any
t >0 and any p € My (E) with u(1) = 0 we have

Pl pgy vy < Ty, (O Maalllyspy
with the parameter p defined in Lemma 2.7, the function \y, defined in (26) and

"ody . 1y
Jo )= | G5 it = il V)V

Proof. Observe that

Yo dy w/vo gy
L () = J o j/ 5w = /o)

On the other hand, we have uo <1 vy and Iy (u)<Jy, (u). Since I and J, are
decreasing their inverse are also decreasing and choosing u = I, '(#) in the above dis-
p

play we have

t =1, (I, (1)) <Jy, (1, (1))

= fﬁ(t) =>1,'(t) = Igvol(t) = Il;pl(t) < ]J/,IU)-

P

The end of the proof is now a direct consequence of Lemma 2.8. |

2.3. Some V-norm stability theorems

Let P, be a semigroup of Markov integral operators P, ; on B,,(E) indexed by continu-
ous time indices s,t € T = R, := [0,00] or by discrete time indices s,t € 7 = N. We
further assume that

Ps,s+r(V) <ée V4o (27)

for some parameter €, €]0,1[ and some finite constant ¢; < co. The geometric drift
condition (27) ensures that the sequence |||Ps s nc|||, indexed by s > 0 and # > 1 is uni-
formly bounded. In this context, (8) applied to Q ;= P, ensures that the operator
norms of P, are uniformly bounded w.r.t. any time horizon. More precisely, whenever
(27) is met we have the equivalence

sup sup ||[Ps¢[[y, < o0 <= sup [[[Ps[[y < oo (28)

s=0t=s [t—s| <t
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Note that the condition (28) is automatically satisfied whenever (27) is met for any
©> 0 with sup . ;¢ < oco. For instance, consider the Markov transition semigroup
P, of a continuous time stochastic flow X ;(x) on some locally compact normed vector
space (E,||.||) with generator L; defined on some common domain D(L) C B(E). In
this context, for any non-negative function V € D(L) and any parameters a >0, ¢ < 0o
and t > 0 we have

VieT =R, L(V)S—a V+c
(29)
= (27) and (28) with ¢ = (1+4a1)' <1 and ¢ =ct

The above estimate is rather well known, a detailed proof is provided in the appendix
on page 74. Further examples of Markov diffusion semigroups on R" satisfying (27) are

discussed in Section 2.4. We further assume there exists some 7y > 1 and some function
o 1 1 € [rg, 00 —a(r) € ]0,1], such that for any r > r, we have

|5xPs,s+r - 5yPs,s+r||tv < 1 - OCT(T), (30)

sup
(17)eV(r)*

with the compact level sets V(r) introduced in (10). By Theorem 2.2, conditions (27),
(28) and (30) ensure the existence of some parameter T > 0 such that
sup fBy(Ps) <oo and sup By (Pssz) <1 (31)
[t—s| <7 s=0
In the above display, fy(P;;) stands for the V-Dobrushin coefficient of the Markov
operator P;; introduced in (11). The next exponential contraction theorem is a direct

consequence of the operator norm estimates (31) and it is valid on abstract measurable
spaces as well as for any function V > 1.

Theorem 2.12. Let P be a semigroup of Markov integral operators P, on some measur-
able state space E satisfying condition (31) for some function V > 1 and some parameter
T > 0. In this situation, there exists a parameter b>0 and some finite constant ¢ < 0o
such that for any s <t and p,n € Py (E) we have the exponential estimate

1 =m)Psellly < ¢ ) Il —nll]y- (32)

In particular, the above exponential Lipschitz estimates are met as soon as conditions
(27), (28) and (30) are satisfied. The estimates (32) also hold for any s >0 and t €
[s, 00, as soon as (27) and (30) are satisfied for some T > 0 and e, €]0,1].

Theorem 2.12 can be seen as an extension of Harris’ theorem to time varying
Markov semigroup. The proof of Theorem 2.12 is based on the discrete time V-norm
operator contraction techniques presented in Section 2.1. The r.h.s. condition in (28) is
a technical condition only made for continuous time semigroups to ensure that (32)
also holds for continuous time indices. Note that the strength of conditions (27) and
(30) depends on the strength of the function V: when the function V is bounded, the
geometric drift condition (27) and the uniform norm condition (28) are trivially met
but in this case condition (30) is a uniform contraction condition on the state E. In the
reverse angle, when V € B (E) is a function with compact sub-level sets, the geometric
drift condition (27) combined with (28) ensures that uP, is a tight collection of
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probability measures indexed by s <t. For time homogenous models P; ;. = P;, follow-
ing Remark 2.3, uniform total variation estimates can be derived for any t > 7 as soon
||P:(V)|| < oo. Some examples satisfying this condition are discussed in Section 6.

Using (1) we readily check that the local contraction condition (30) is met if and
only if for any s > 0 and any (x,y) € V(r)” there exists some probability measure yu on
E (that may depends on the parameters (7,7,s,x,y)) such that

Vz € {x,y} 0P 1 (dy) = o (r) u(dy).

For instance, the above condition is met as soon as

P st (x) d)/) = ps,s+r(x)y) Vf(dy) (33)

for some Radon positive measure v, on E and some density function p; ., satisfying
for any r = r; the local minorization condition

0< 1n£ inf pssic  and 0 <w(V(r)) < oc. (34)
€T V(r

For locally compact Polish spaces condition 0 < v,(V(r)) < oo is met as soon as V
has compact sub-levels sets V(r) with non-empty interior and v, is a Radon measure of
full support; that is v, is finite on compact sets and strictly positive on non-empty open
sets. For time homogeneous models, also note that the Lh.s. minorization condition (34)
is satisfied as soon as (x,y) € (E')*— p.(x,y) is a continuous positive function on the
interior E” of the set E.

Several illustrations of Theorem 2.12 are discussed in Section 2.4 in the context of
diffusion processes on Euclidean spaces as well as in Section 6 in the context of Riccati-
type diffusion on positive definite matrix spaces and multivariate birth and death jump
type processes on countable state spaces. The stability of Markov semigroups on mani-
folds with entrance boundaries can also be analyzed using the Lyapunov techniques
developed in Section 5. For instance, as shown in Section 5.1, any absolutely continuous
Markov semigroup P;; on a bounded connected subset E C R" with locally
Lipschitz boundary OE satisﬁes the conditions of Theorem 2.12 with the (non unique)
Lyapunov function V(x) =1 /\/m and the distance to the boundary defined for
any x € E by

d(x,0E) := inf{||x —y|| : y € OE}.
We illustrate the above discussion with some elementary one dimensional examples.

Example 2.13. Consider a one dimensional Brownian motion X;(x) starting at Xo(x) =
x € E:=[0,1] and reflected at the boundaries OE = {0,1}. We recall that the Markov
transition of the process t € T := R+ X,(x) € E is symmetric and absolutely continu-
ous; that is we have

Pi(x,dy) :=P(Xi(x) € dy) = pi(x.y) v(dy) with v(dy) :=1p1(y)dy
and the density p;(x,y) is given by the spectral decomposition

pi(xy) =142 Z e (M2 cos (nnx) cos (nmy)

nx=1
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In this situation, P, = Py, coincides with the Neumann heat semigroup on [0,1]. Since
the Neumann heat kernel p,(x,y) is smooth as well as bounded and strictly positive on
the compact interval [0,1], the conditions of Theorem 2.12 are satisfied with the unit
Lyapunov function V(x) = 1, as well as for any of the Lyapunov functions V(x) =
1/vx V(x) =1/V1—x or V(x) =1/y/x+1/V1 —x. Indeed, note that the minoriza-
tion condition (34) holds for any of the Lyapunov functions V discussed above. Since
v(V) < oo, we have ||P.(V)|| < 0o for any © > 0, so that the Lyapunov condition (27) is
also met.

The same reasoning applies to the one dimensional positive Riccati-type diffusions with
an entrance boundary at the origin discussed in Section 6. Reflecting this class of positive
diffusions at x=1, the conditions of Theorem 2.12 are satisfied on E =0, 1] with the

Lyapunov functions V(x) = 1/y/x as well as for V(x) = 1/y/x+1/v/1 — x.
In the same vein, assume there exists some increasing differentiable concave function
@ : veE|[loo[— (v) €[0,00] with bounded differential ||0¢|| < co and some func-

tion V € By (E) such that V>1 and V,@(V) € D(L). In addition, there exists some
finite constant ¢ > ¢(1) such that for any t € 7 = R, we have

L(V)X—@(V)+c and ¢@(V)/V € By(E) (35)
We set
Vii=V+1 (V) and o¢.(v)=oe/p,) with p . :=1+71||e(V)/V]|]. (36)
Observe that
@.(Ve) = (V1 +19(V)/V)/B) < (V) with S :=1+1]lo(V)/V||
and
@:(Ve)/ Vo< o(V)/V € Bo(E)

This estimate ensures that ¢ (V;)/V; € By(E) as soon as ¢.(V;)/V, is locally lower
bounded and upper semi-continuous.

Lemma 2.14. Assume condition (35) is satisfied for some functions (¢, V) and some con-
stant ¢ > ¢(1). In this situation, for any s € T and © > 0 we have

VSGT Ps,s+r(VI)<V1_T wT(VT) +CT
with the function V, defined in (36) and ¢, :==c © (1 + ||00|| t/2).

The proof of the above lemma is provided in the Appendix, on page 74. Next the-
orem is the continuous time version of the polynomial convergence theorem, Theorem
2.9 presented in Section 2.2. The continuous time version of Theorem 2.11 can be
obtained using the same lines of arguments, thus it is left to the reader.

Theorem 2.15. Assume (35) is met for some function (¢, V) and the function ¢, defined
in (36) satisfies (19) for some parameters T,y > 0 and some functions (., ¢, ,) such
that ¢ (V:)/ Ve 0. 1(Ve)/ Ve € Bo(E) and ¢ ,(V:) € Boo(E). We also assume that (30)
is satisfied with the compact level sets of the function V.. In this situation, there exists
some constant ¢ < oo (that may depends on t) such that for any s >0 and any t €
[s, 00, and p,n € Py(E)we have



18 M. ARNAUDON ET AL.

—1/y
(et = )Pyl < € (¢ =) |l —nllly

The above polynomial convergence estimates also holds for any continuous time indices
as soon as sup|sft‘<r‘||Ps,,|||V < 0.

Proof. Applying Theorem 2.9, there exists some parameter p, > 0 and some finite con-
stant ¢, such that for any n € N we have the polynomial convergence estimates

1P ssncllliipn v < e n V% Al <o (14 p0) n
This implies that

1P cimllly < e n Y fllullly  with ¢ =c B.(1+p,)
This ends the proof of the theorem. |

2.4. Diffusion semigroups

This section is mainly concerned with the design of Lyapunov functions for continuous
time Markov semigroups. To simplify notation, we only consider time homogeneous
models. All the semigroups discussed in this section satisfy condition (28). Thus, by
(33) the contraction theorem, Theorem 2.12, applies to all the Markov semigroups dis-
cussed in this section as soon as the transition semigroups have a continuous density
with respect to the Lebesgue measure.

Section 2.4.1 presents some elementary principles based on spectral conditions on the
drift function and a simple way to design Lyapunov functions in terms of the generator
of diffusion process. These generator-type techniques are illustrated in Section 2.4.2 in
the context of overdamped Langevin diffusions. The design of Lyapunov functions for
hypo-elliptic diffusions and Langevin diffusions are discussed respectively in Sections
2.4.3 and 2.44.

2.4.1. Some general principles
Consider the Markov semigroup P, of a diffusion flow X;(x) on E = R" defined by

dX(x) = b(X;(x)) dt + a(X,(x)) dB;. (37)

In the above display, B; is a n;-dimensional Brownian motion starting at the origin
for some n > 1, b is a differentiable drift function from R” into itself with gradient-
matrix Vb = (0,V), ; ] <, and ¢ stands for some diffusion function from R" into

R™™_ We set X* := ga’, where ¢’(x) := o(x)’ stands for the transposition of the matrix
o(x), so that ¥*(x) := o(x)0’(x). The absolutely continuity of the transition semigroup
Pi(x,dy) = P(X;(x) € dy) = pi(x,y)v(dy) for some continuous transition densities
pi(x,y) (wrt. the Lebesgue measure v(dy)) is ensured as soon as (b,o) are globally
Lipschitz continuous and the diffusion matrix is invertible or more generally satisfying
a parabolic Hormander condition (see for instance [36-38] and references therein). The
generator L of the diffusion flow X;(x) and its carré du champ operator I'; are given
respectively by the formula
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1
L(f) == b'Vf+5 Tr(Z*V?3f)  and Ty(f.g) := (Vf)Z*Vg. (38)
The next proposition provides a rather elementary way to design a Lyapunov
function.
Proposition 2.16. Assume that o(x) = g, for some gy € R™™ and we have
Vb+ (Vb)' < =241 for some A >0. (39)
Then for any v> 0 and t > 0 there exists some d; > 0 such that
V(x) := exp (v||x]|) = P,(V)/V <¢;/ V. (40)
The proof of the above proposition is rather technical, thus it is provided in the
appendix on page 76.
The next proposition is a slight extension of Theorem 2.6 [39] on reversible semi-

groups to stochastic flows in Euclidean spaces. It provides a rather simple way to design
Lyapunov functions in terms of generators.

Proposition 2.17. Assume there exists some function W = 0 as well as some parameters
o>0,€Rand 0 < e <1 such that

a W+ B+L(W)< —e I (W, W). (41)
In this situation, for any t >0 we have
V= exp (2eW) = P(V)/V < v,/ V" (42)
with the parameters

vi=exp(—2fc (1—e™)/a) and & :=(1—e ™).

The proof of the above proposition follows word-for-word the proof of Theorem 2.6
in [39], thus it is provided in the appendix on page 77.
We further assume that P, satisfies for any t > 0 the sub-Gaussian estimate

1
P dy) <ci exp (—2—02 ||y—mt<x>||2) dy (43)
t

for some parameters g, > 0 and some function m, on R” such that
[Ime ()] <er (1+[Ix])-
In this situation, for any n > 1 and t > 0 we have
V(x) = 1+ )" = [[P(V)/V]] < o,
More refined estimates can be found when the function m, is such that
[mi(x)| <€ |x| with ¢ €]0,1] (44)

for some norm |.| on R". In this situation, observe that any v > 0 and any centered
Gaussian random variable Y on R" with identity covariance matrix I,, we have

vl E(Hm@rarl) ¢ o gmvi-a)l,
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This yields the following lemma.

Lemma 2.18. Consider a Markov semigroup P, satisfying the sub-Gaussian estimate (43)
as well as (44) for some norm |.| on R". Then for any v > 0 and t> 0 there also exists
some finite constant 6; > 0 such that

V(x) := exp (v|x]) = P(V)/V </ V.

2.4.2. Overdamped Langevin diffusion
Let W(x) be some twice differentiable potential function from R" into R. The over-
damped Langevin diffusion is defined by choosing in (37) the drift function

b(x):=—y VW(x) and (n,0(x))=(np I) for some 7y,p>0.
In this context, we have
(39) <= V*W = (i/y) I for some A > 0.

Also observe that

0

(41) <= o W+ B+ Tr(V2W) < (y — € p?) ||[VW]]%.

The above condition is clearly met when W behaves as ||x||" with m > 1 at infinity;
that is, there exists some sufficiently large radius r such that for any ||x|| > r we have

| Te(V*W ()| < [Ixl™7 and VWU > e [l

2.4.3. Hypo-elliptic diffusions

Consider the R"-valued diffusion (37) with (b(x),o(x)) = (Ax,X), for some matrices
(A, X) with appropriate dimensions. We assume that A is stable (a.k.a. Hurwitz); that is
its spectral abscissa ¢(A) defined below is negative

c(A) :=sup{Re(4(A)) : A(A) € Spec(A)} < 0. (45)
In the above display Spec(A) denotes the spectrum of the matrix A, and Re(A(A))

the real part of A(A). We also assume that R := XY’ is positive semi-definite and the
pair of matrices (A, R'/?) are controllable, in the sense that the (# x n?)-matrix

[RV2,ARY?..,A"'RV?] has rank n. (46)
Whenever ¢(A) < 0 we have
1

\/ det(2nCy) 2

with the mean value function

Pi(x,dy) = (y — mt(x))/C;1 (y — mt(x))) dy (47)

x = my(x) == ex—_5 0

and the covariance matrices C, defined for any ¢ >0 by
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t 00

’ !
e Ret ds— ;o Coo ::J eARe ds.
0

O<CtI:J

0

Since A is stable, there exists some norm |.| on R” such that the corresponding oper-

ator norm satisfies |e"4| < /4! for some log-norm parameter I(A) < 0. This implies
that

[y ()] = lea] <" . (48)

This clearly shows that the semigroup P; of the hypo-elliptic Ornstein-Ulhenbeck dif-
fusion satisfies (43) and (44), and thus the conditions of Lemma 2.18 are met.
Let P; be the Markov semigroup of the R"-valued linear diffusion

AX,(x) = (AX,(x) + a(X,(x)))dt + X dB, (49)

with some bounded drift function a on R", an (n X n)-matrix A satisfying (45), some
n;-valued Brownian motion B, starting at the origin and some (n X n;)-matrix X satis-
fying the rank condition (46).
Using the stochastic interpolation formula (cf. Theorem 1.2 in [40]) given by
t

Xi(x) — Xi(x) = L eI a(X(x)) ds

we check the almost sure estimate

|X;(x) — Xy(x)| <c for some finite constant ¢ < oo.
This yields the following proposition.
Proposition 2.19. For any v> 0 and t > 0 there exists some d; > 0 such that
V(x) == exp (v|x]) = P,(V)/V </ V.

2.4.4. Langevin diffusion
Consider the Langevin diffusion flow X;(z) = (X;(z), Y:(z)) € (R" x R") starting at z =
(x,y) € (R" x R") and given by

dXi(z) = Yi(z)/m dt

dY:(z) = (b(X¢(z)) — pYi(z)/m) dt + o dB,.

In the above display, B, stands for an r-dimensional Brownian motion starting at the
origin, o, f,m > 0 some parameters and b a function of the form

b(x):=—y x+a(x) with y>0 and |[|a]] < cc.

In statistical physics, the above diffusion represents the evolution of N particles
Xi(z) = (X}(2)); <;<n €R™ with mass m>0, position X;(z) € R’ and momenta
Y:(2). In this context, y > 0 stands for some friction parameter, and the diffusion par-
ameter ¢ > 0 is related to the Boltzmann constant and the temperature of the system.
In this context, the function b(x) = —VW(x) is often described by the gradient of
some potential function W. For instance, for a quadratic confinement we have
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W(x) == 7[|x]|>/2 + w(x) with [|Vw]| < oo
= b(x) = —VW(x) := —y x+a(x) and a(x) = Vw(x).
Notice that X;(z) can be rewritten in vector form as in (49) with n = 2r, a(x,y) =

< 0 ) and the matrices
a(x)

0 mt I 0 0
A= nn and X := . 50
(_V Lixn _ﬁm_l Inxn) (0 UInxn) (50)

It is a simple exercise to check that A satisfies (45) and (46).
Consider the R*-valued stochastic process X; = (g, p;) defined by

dg. = B2 ar
(51)

B oW a* p
dpy = - (8—q(qt)+? E) dt + o dB,

with some positive constants f§,m,0, a Brownian motion B, and a smooth positive
function W on R such that for sufficiently large r we have

oW
Vgl =r qa—q(q) >6 (W) +4°)

for some positive constant . This condition is clearly met when W behaves as ¢* for
certain [ > 1 at infinity. We let V(g, p) be the function on R* defined by
2

_ 1 2 e (o* 2 > . g
V(q,p)—1+2m p +W(q)+2 <2 q" +2pq with €<

In this situation, there exists some a >0 and ¢ < oo such that
L(V)< —aV +c (52)

The proof of the above estimate is rather technical, thus it is provided in the appen-
dix on page 80.

3. Stability of V-positive semigroups
3.1. Normalized semigroups

For non-necessarily Markov V-positive semigroups Q,; one natural idea is to normalize

the semigroups. For any probability measure n € Py (E) we let @, ,(n) € Py(E) be the
normalized distribution defined for any f € By (E) by the formula
Qs+ (f) . Q.+(f)(x)

D, = and we set Q, x) = ——~= =0, ,(5,)(f). (53)

i) = 22 AP = SEHE — 0,6
The mapping @, is a well-defined semigroup on Py (E). The denormalisation for-
mula connecting these semigroups is given for any t € [s, + oo[_ by
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:uQs,t(f) = (I)s,t(.u)(f) H (I)s,u<.u)(Qu,u+‘r(1))- (54)

u€ls, ff;
with
[s,t; :={s+ntest]: neN}
To check this claim, observe that for any t := s + nt we have

(Ds,s+pr<ﬂ>(Qs+pr,s+(p+l)r(1)) = ,uQs,s+(p+1)r(1)/,“Qs,s+pr<1)

and therefore HO <p<n q)s,s+pr<:u)(Qs+pr,s+(p+l)r(1)) = MQs,s+n‘r<1>~

The above formula coincides with the product formula relating the unnormalized
operators Q,; with the normalized semigroup @, discussed in [[26], Section 1.3.2], see
also [[29], Proposition 2.3.1] and [[41], Section 12.2.1].

Observe that for any u € [s,t[, and f € B,(E) we have

Qs,t = RE,tLQu,t with Rs(,tl(f) = Qs,u(f Qu,t(l))/QS,u(Qu,t(l))

Note that {Rgf,)u 4o U E st } forms a triangular array of time varying Markov semi-
groups. In terms of the standard Dobrushin coefficient discussed in Section 2.1 assume
there exists some J, €]0, 1| such that for any t € [s, + o0o[, and u € [s,t[, we have the

T
strong contraction condition ,8( o +T) < (1 —=0;). In this situation, for any t¢€
[s, + oo[, we have the operator norm contraction

B(Qs ) < H B(R uuH )< (1 5{)“—&)/1

u€ls, t,

For a more thorough discussion on these strong contraction conditions we refer the
reader to Section 4 in [23] and references therein. Unfortunately, the strong contraction
condition discussed above is rarely satisfied for non-compact state spaces and we need
to resort to Lyapunov conditions. In this connection, note that the Lyapunov condition
in (8) is stronger than the one discussed in (27) in the context of Markov semigroups.
We also strengthen (33) and assume that for any s > 0 and 7 > 0, the integral operator
Q1+ has a density g, ;. with respect to some Radon positive measure v, on E; that is
we have the formula

Qs s+e(%,dy) = qs51:(xy) ve(dy). (55)
We also assume there exists some ry > 1 such that for any r > ry we have
0 < 1,(t) == inf inf gy < sup SUP G, s-c <oo and v, (V(r)) >0. (56)
s€T Y(r)? s€T VY(r)?

In this situation, for any r > ry and ¥ > r we have the uniform estimate

inF Queie(1) 2 1 (0) = inf Quese(lyg) = () 12 V(1) > 0.

We associate with a given p € Py (E) and some function H € By v(E) the finite rank
(and hence compact) operator
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Qs t(H)
€ By(E)—TE(f) = =0 € Cy(E
f V( ) , b (f) ﬂs(Qs,t(l)) :ut(f) V( )
with the flow of measures u, = @, ,(u,) starting at p, = p. With this notation at hand,

one has the following theorem.

Theorem 3.1 ([23]). Consider a V-positive semigroups Qs with a density (55) satisfying
(56) for some parameter T > 0 and some ry > 1. In this situation, there exists a param-
eter b >0 such that for any u,n € Pv(E) and any s > 0 and t € [s,00[, we have the local
Lipschitz estimate

11D, ¢ (1) — Dy o ()] < clrm) e 27 ||| —nll]- (57)

For any (u, H) € (Py(E) x Bo,v(E)) there exists some finite constant cy(p) < oo such
that for any s > 0 and t € [s,00[, we have

:usQS,t(l) of

For continuous time semigroups, the above estimates also hold for any continuous time
indices s<t as soon as for any r>=ry there exists some T =r such
that inf(jg[o,r] ‘]r);(é) > 0.

The proof of Theorem 3.1 is based on discrete time type V-norm operator contrac-
tion techniques combining the geometric drift condition stated in the Lh.s. of (8) with
the local minorization condition stated in (56). The condition infsc(o, ] J,(d) > 0 is a

’H = 1| < ) e, (58)
|4

technical condition only made for continuous time semigroups to ensure that (57) and
(58) also hold for continuous time indices.

Theses regularity conditions are rather flexible as we will now explain.

Absolutely continuous integral operators arise in a natural way in discrete time set-
tings [19,20, 26, 29] and in the analysis of continuous time elliptic diffusion absorption
models [42-45]. In connection to this, two-sided estimates for stable-like processes are
provided in [46-49]. Two sided Gaussian estimates can also be obtained for some
classes of degenerate diffusion processes of rank 2, that is when the Poisson brackets of
the first order span the whole space [50]. This class of diffusions includes frictionless
Hamiltonian kinetic models.

Diffusion density estimates can be extended to sub-Markovian semigroups using the
multiplicative functional methodology developed in [27]. Whenever the trajectories of
these diffusion flows, say t+— X;(x), where x € E is the initial position, are absorbed on
the smooth boundary OE of an open connected domain E, for any 7 > 0 the densities
q:(x,y) of the sub-Markovian semigroup Q. (with respect to the trace of the Lebesgue
measure on E) associated with the non-absorption event are null at the boundary.
Nevertheless, whenever these densities are positive and continuous on the open set E
for some 7 > 0, they are uniformly positive and bounded on any compact subset of E;
thus condition (56) is satisfied.

In this context, whenever T(x) stands for first exit time from E and T,(x) the first
exit time from the compact level set V(r) C E starting from x € V(r), for any 6 € [0, 7]
and ry > r we have the estimate
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Q(;(lv(u))(x) = E(lv(u)(X(;(x)) 1T(x)>(5) = IP’(Tm(x) > 5) = IP’(Tr+(x) > T).
In this context, we have

inf P(T, > 1) >0= inf inf Qs(1)> inf 0) > 0. 59
xg)l}(r) (Tr. (%) > 7) aéftl),r] Vi) Q1) aéﬁ,r]b’”( ) (59)

Whenever the interior E; := V(u)o is a connected domain, the Lh.s. estimate in (59)
is met as soon as the sub-Markovian semigroup Q; associated with the non-absorption
event at the boundary OE, has a strictly positive continuous density (x,y) €
E% —q}(x,y). To check this claim, observe that for any x € V(r) we have

P(T,, (x) > 1) = Q7 (1)(x) = Q (ly) (x) = J q; (%y) lvn () ve(dy)

> v, (V(r)) inf g/ > 0.
V(r)?

It is out of the scope of this article to review the different classes of absolutely con-
tinuous operators and related two-sided Gaussian estimates arising in the analysis of
continuous time elliptic diffusion and particle absorption models. For a more thorough
discussion on this topic we refer to the series of reference pointers presented above.

Needless to say that the design of Lyapunov functions is a crucial and challenging prob-
lem in the stability analysis of positive semigroups. We have chosen to concentrate our
review on presenting practical and general principles for designing Lyapunov functions.

3.2. Time homogenous models

For time homogeneous models we use the notation
(q)t’ Qb Qt) = ((Do,b QO,t’ QOJ)'

As expected for time homogeneous semigroups a variety of results follow almost
immediately from the estimates obtained in Theorem 3.1. Following [23] (cf. for
instance Sections 4.1 and 4.3), these results include the existence of a unique leading
Eigen-triple

(poh) € (R X Py(E) x Byv(E)  with (k) =1 (60)
in the sense that for any t € 7 we have
Qh)=e"h and 5, ,Q =¢e" n, or equivalently @(n..) = 1. (61)

The Eigen function h is sometimes called the ground state and the fixed point meas-
ure 77, the quasi-invariant measure. For any x € E we also have the product series for-
mulation

0 <h(x) = ] {1+ 0u3)(Qu(1) = Oprl) (@ (D)}

n=0

In this context, choosing (1, H) = (114, h) in (58), we readily check that

h B _
TS0 (f) = T(f) =g ) and e Q= Tllly <anno) e b,
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In terms of the Boltzmann-Gibbs transformation V) introduced in (6), for any 5 €
Py (E) we have the conjugate formulae

Wi (®:(n)) = W (n)Pt (62)
with the Doob h-transform of Q, defined by the Markov semigroup

1
i f €Bu(B)—Pl(f) =3 Qhf) € Byi(E).
Observe that

The Markov semigroup P! is sometimes called the transition semigroup of the h-pro-
cess, a.k.a. the process evolving in the ground state.

We further assume that Q, is a sub-Markov semigroup of self-adjoint operators on
L,(v) with respect to some locally finite measure v on E. In addition, there exists an
orthonormal basis (¢,), - ; associated with a decreasing sequence of eigenvalues p, <0
such that

Qledy) = > e p,(x) 0,(y) v(dy). (63)

n=1

In this context, the formulae (61) are satisfied with the parameters

(p,h) = (p1¢1) and  n(dx) = ¥ (v)(dx) := h(x) v(dx).

1
v(h)

Note that in this case h has unit norm v(h?) = 1. The spectral resolution (63) yields
for any t > 0 and f € L,(v) the following decomposition

Q) P ) = e o) o) with gl p, - pr (6

This yields the following result.

Proposition 3.2. For any time horizon t = 0 and any f € L,(v) we have the exponential
estimates

h

e "Qi(f) - 1= (h) Moo (f)

1/2

<e (u(f?) — v(hf)) (65)

Ly (v)

Whenever Q, is a positive semigroup of self-adjoint operators on LL,(v) the Doob h-
transform P! is a semigroup of self-adjoint operators on L, (5" ) and we have the fol-
lowing spectral decomposition

Lemma 3.3. For any t > 0 and f € Ly(n".) we have
P(x,dy) =, (dy) + > €' ha(x) ha(y) 1l (dy) (66)

n=2

with the 1L (n",) orthonormal basis (hy), - , defined for any n =2 by
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hy:=@,/h and 2, =p,—p; <0 and #" =W¥p,).

Note that the density of the integral operator P! (x,dy) w.r.t. n"_(dy) is given by

h =t qt X,y Int
Pixy) =e h( h(y 1—|—n§>:2 e hy(x) ha(y). (67)

We further assume that h € By(E) and Pﬁ‘ is ultra contractive, in the sense that for
any ¢t >0 we have

- q:(x, y)
H|P?|HL2(;1§Q)HLOO(;1@ =e M sup ht noyy | Sup Pi(xy) < . (68)
k (x,y)€E? ( ) ) (x,y)€E?

Proposition 3.4. Assume that v(E) < oo and h € By(E). In addition, for any t>0 (68)
holds and the mapping x+— [ pl(x,y) v(dy) is upper semi-continuous and locally lower
bounded. In this situation, the function V :=1/h € Bo(E) and for any t>0 we have
Qi(V)/V € By(E). In addition, for any t >0 we have

Q(V)/V <c;/V?* € By(E). (69)

3.3. Sub-Markov semigroups

Sub-Markov semigroups are prototype-based models of positive integral operators. In
time homogeneous settings, these stochastic models are defined in terms of a stochastic
flow X;(x) evolving on some metric Polish space (£,d), some non-negative absorption
potential function U on some non-necessarily bounded Borel subset E C £. For a given
x € E we denote by T(x) the exit time of the flow X;(x) from E.

We associate with these objects, the sub-Markov semigroup QEU] defined for any f €
By(E) and x € E by

Qf)(x) =E (f (Xe(x)) 1r(>e exp (— JO U(Xs(x))d5> ) : (70)

The above model can be interpreted as the distribution of a stochastic flow evolving
in an absorbing medium with hard and soft obstacles. Before killing, the flow starts at
x € E and evolves as X;(x). Then, it is killed at rate U or as soon as it exits the set E.
In the case E =&, the flow cannot exit the set E and it is only killed at rate U. This
situation is sometimes referred a sub-Markov semigroup with soft obstacles represented
by the absorbing potential function U on E. When the flow may exit the set E C &, the
complementary subset C:= & — E is interpreted as a hard obstacle, a.k.a. an infinite
energy barrier.

We illustrate the V-positive semigroup analysis developed in this article through three
typical examples of solvable sub-Markov semigroups arising in physics and applied
probability.
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3.3.1. The harmonic oscillator
Consider the case E= & =R, and let X;(x) = B;(x) be a Brownian motion starting at

x € R and let U(x) = x?/2. In this situation, the semigroup QgU] = Q; defined in (70)
coincides with the one dimensional harmonic oscillator. For any ¢ > 0, the integral oper-
ator Q, has a continuous density w.r.t. the uniform measure v on E given by

qt(x’}’) = Z ep,,t (pn(x)q)n(y) (71)

nz=1
with the LL,(v) orthonormal basis Eigen states
0,(x) = (2" (n— D) ? e H,_(x)
associated with the eigenvalues

p, =—(n—1/2) and the Hermite polynomials H,(x) = (—1)" e §e

In this context, the Eigen state associated with the top eigenvalue p = p, = —1/2 is
given by the harmonic function
hx) = oi(x) =7t e (72)

The spectral resolution of integral operator P!(x,dy) and its density p/(x,y) with
respect to the invariant measure

b (dy) —\/LE ¢ dy
are given as in (66) and (67) with Lz(nﬁo) orthonormal basis defined for any n > 2 by
ha= 2" n—)) " H,.y and pl=p,—p =—(n—1).
In this context, the h-process is given by the Ornstein-Uhlenbeck diffusion
dX"(x) = dlogh(X!(x)) dt + dB, = —X!'(x) dt + dB,. (73)

In the above display, B; = B;(0) stands for the one dimensional Brownian motion
starting at the origin. The conjugate formula

Q(hf)/Q(h) = P{(f) <= Qu(f) = ¢"h P(f/h) (74)
yields the following proposition.

Proposition 3.5. For any time horizon t = 0 we have

_ < 1 (7 — mi(x))”
Qlody) = s &P <_2 Pt> N (‘zp> Y

with the mean and variance parameters (m;(x), p;) defined by

my(x) = x/cosh(t) and p; = tanh(¢).

The proof of the above proposition is a direct consequence of the conjugate formula
(74), thus it is provided in the appendix, on page 78.
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Choosing V(x) =1+ |x|", for some n > 1, we readily check that
VeECL(E) and Q(V)/V<v Q1) €Co(E) (75)

where v, is a constant depending only on .

3.3.2. The half-harmonic oscillator
Consider the case E =]0,00[C £ =R, and let X;(x) = B;(x) be a Brownian motion

starting at x € £ and let U(x) =x?/2. In this situation, the semigroup QEU] =Q
defined in (70) coincides with the harmonic oscillator with an infinite barrier at the ori-
gin OE = {0} (a.k.a. the half-harmonic oscillator). Using the fact that

2 1 2
e /2 3 P e =Ux)—1/2

by an exponential change of probability measure (cf. for instance Section 18.3 in [30])
we have the conjugate formula

Qf)(x) = e e B(f(Y() L 1)
with the Ornstein-Uhlenbeck diffusion

dYt(X> = —Yt(x) dt + dBt
(76)
and TV(x):=inf{t>0 : Y,(x) € 9E} with OE={0}.

Note that the stochastic flow Y;(x) coincides with the h-process of the harmonic
oscillator discussed in (73). Thus, by reflection arguments we have

Q' (f)(x) : = E(f(Yi(x)) 1rv(x)=t) = E(f (B, (€:%)) Ir(ex)>e)
:Jo f0) 4/ (xy) dy  with g/(xy) := (r(xy) — r(x —y)).

In the above display, (¢, ;) stands for the parameters

(eror):=|e™* l-q and r(x,y) = ! ex L — x)?
tYt) - > 2 t ))’ \/ﬁ p 20%()) l‘) .

This yields the following proposition.

Proposition 3.6. For any t> 0 and x € E the normalized semigroup Q, defined in (53) is
given by

_ ~ sinh(y my(x)) 1 ¥+ my(x)°
Qi(xdy) = P0<Z<m(x)/V5) X o P <— T) v(dy).

In the above display, v(dy) := 1o, c[(y) dy stands for the trace of the Lebesgue measure
on the half-line, Z is a centered Gaussian variable with unit variance and (m(x),p;) are
the mean and variance parameters defined in Proposition 3.5. In addition, the total mass
function Q;(1)(x) is given by the formula
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Q(1)(x) =2 Th(t) x P(0<Z<my(x)//pr) € Co(E).

The proof of the above proposition follows the same lines of arguments as the proof
of Proposition 3.5; it is provided in the appendix, on page 79.
Choosing V(x) = x" 4+ 1/x, for some n > 1, we readily check that

VeEC(E) and QV)/V<c/V €Cy(E). (77)
The proof of the above estimate follows elementary but lengthly calculations, thus it
is provided in the appendix on page 81.

For any t>0, the integral operator Q; has a continuous density w.r.t. the uniform
measure v on E given by

a(xy) = e 9, (x) ¢, (y)

n>1
with the L, (v) orthonormal basis Eigen states
Pu(x) = V2 (2" 2n - 1)Wm) VP ey, (x)
associated with the eigenvalues
pu=— (21— 1) +1/2).

In this context, the Eigen state associated with the top eigenvalue p = p, = —3/2 is
given for any x €]0, co[ by the harmonic function

h(x) = @, (x) =217/ x e72 = hy(x) H,(x)

with the ground state hy of the harmonic oscillator discussed in (72). Note that h coin-
cides with the restriction on ]0,00[ of the first excited state of the harmonic-oscillator
(negative on | — 00, 0] and crossing the origin at x =0).

The spectral resolution of integral operator P!(x,dy) and its density p/(x,y) with
respect to the invariant measure

o (dy) =% y* e 1]0.00[(y) dy

are given for any x,y €]0,00[ as in (66) and (67) with L,(" ) orthonormal basis
defined for any n > 2 and x €]0, co[ by the odd Hermite functions

ha(x) = (22" (2n — 1)) 72 Hy, i (x)/x  and  pl = —2(n—1).
In this context, the h-process is given by the diffusion
1

dX"(x) = dlogh(X!'(x)) dt + dB; = (h — X! (x)> dt + dB;. (78)
X' (x)

3.3.3. The Dirichlet heat kernel
Let X;(x) = B;(x) be a Brownian motion starting at x € E :=]0,1[C £ := R and T(x) be
the first time ¢ >0 the process B;(x) € OE := {0,1}. Choosing U=0 in (70), the
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semigroup QEU] = Q; takes the following form
Qi(f)(x) = E(f(Bi(x)) lr(o>e)-

For any t>0, the integral operator Q, has a continuous density w.r.t. the uniform
measure v on E given by the Dirichlet heat kernel

a(xy) = e 0,(x)0,0) (79)

n>=1
with the LL,(v) orthonormal basis Eigen states

¢,(x) = V2 sin(nmx)  associated with the eigenvalues p, = —(nn)’/2.

In this context, the Eigen state h(x) = ¢,(x) = /2 sin (nx) associated with the top
eigenvalue p = p; = —7?/2 is strictly positive except at the boundary {0, 1}. By remov-
ing the boundary, the semigroup P/ of the process evolving in the ground state h(x) on
the open interval E is a self-adjoint operators on L,(n" ) with

" (dx) = W (x) v(dx) =2 sin?(mx) 1g(x) dx.
In addition, we have the spectral decomposition (66) with the L,(5".) orthonormal
basis Eigen states
h,(x) := sin (nnx)/ sin (7x)
associated with the eigenvalues
Jp = —m*(n* —1)/2 < 0.
Our next objective is to estimate the density p/(x,y) of the integral operator P!(x,dy)

w.rt. n". defined in (67). Recalling that |sin (ny)| <n|sin(y)|, for any n > 1 and y €
R, for any x € E we have the diagonal estimate

Pinn) 1= e by’

nx=2
with
2 sin (nnx)\*
h,(x)"=|———="] <n” so that condition (68)is satisfied.

sin (7x)
Observe that the function

V : x€E—V(x) :=V2/h(x) € [1, 00
is locally bounded with compact level sets given for any 0 < e <1 by the formulae

Ke:={x€]0,1] : V(x)<1/e} ={x : sin(nx) > €} CE.
In any dimension we can use the intrinsic ultracontractivity to produce a Lyapunov

function V. Let E be a bounded domain of R"” for some n > 1 and assume that it is a

C"* domain for some a > 0. Denote by g;(x,y) the Dirichlet heat kernel on E. By [51]
one has

q:(x,y) < ¢t d(x,0E)d(y, OF)
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for some constant ¢, independent on x and y. Here d(x, E) denotes the distance from x
to the boundary of E. Set V(x) = m. The above intrinsic ultracontractivity implies

QV)(x) = qut<x,y>v<y>dy < ¢[E| d(x0E)

which in turn gives Q;(V)/V < ¢|E|/V? € By(E), where |E| stands for the volume of
the bounded set E.

4, Lyapunov design principles

The aim of this section is to present some general principles to construct Lyapunov
functions for positive semigroups. Section 4.1 provides equivalent formulations of the
Lyapunov condition in (8) encountered in the literature in terms of exhausting sequen-
ces of compact level sets. This section also presents simple ways to design Lyapunov
functions for sub-Markov semigroups on normed spaces in terms of their generators.
Section 4.2 presents some principles to construct Lyapunov functions for positive semi-
groups dominated by semigroups with known Lyapunov functions. Section 4.3 is dedi-
cated to the design of Lyapunov functions for conjugate semigroups. All the principles
discussed in this section are illustrated in Section 6 as well as in Section 7 in the context
of conditional diffusions.

4.1. Foster-Lyapunov conditions

For time homogeneous models Qs i := Qy, the Lh.s. condition in (8) takes the form
Q:(V)/V<0O, € By(E). In terms of the compact sets K.:={®,>e¢€}, the Lhs
Lyapunov condition in (8) yields for any 7 > 0 the estimate

Q(V)(x) <€ V(x) + 1k (%) c (80)

for any € >0 with the parameter c. := supy (VO;) < oo. This implies that for any
n = 1 we have

Q(V)(x) <en V(x) + 1, (%) <, (81)

where K, C E stands for some increasing sequence of compacts sets and c., some finite
constants, indexed by a decreasing sequence of parameters ¢, € [0, 1] such that ¢, — 0
as n — oco. In the reverse angle, assume that Q.(V)/V is locally lower bounded and
lower semicontinuous. In this situation, condition (81) ensures that Q.(V)/V € By(E)
for any © > 0. Indeed, for any 6 > 0, there exists some n > 1 such that ¢, < § and we
have

{Q(V)/V =6} C{Q.(V)/V >e} CK,,.

Since {Q;(V)/V = 6} is a closed subset of a compact set it is also compact.

More generally, whenever (81) is met for some exhausting sequence of compact sets
K.,, in the sense that for any compact subset K C E there exists some #n > 1 such that
K C K., we have
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This ensures that the function Q;(V)/V is necessarily locally lower bounded. In this
situation, we have Q(V)/V & By(E) as soon as Q.(V)/V is lower semicontinuous.

Notice that the sub-level set V(r) := {V <r} of the Lyapunov function V € By (E)
and the e-super-level sets K. :={®, >¢} of O, € By(E) are equivalent compact
exhausting sequences, in the sense that for any r > 1 we have

V(r) C K, CV(r.) with ¢ := )1}1(1f) ®, and r.:=supV.
r K

€r

Whenever E is a locally compact Polish space, the abstract sequence C, := K, in (81)
is automatically exhausting; that is, we have that E = U, > (C, with C, is included in
the interior C:, 41 of the compact set C,;;. To check this claim, observe that for any
n > 1 there exists some m, = n such that

C,C{O, > igf@} CCp, C{O, > icnf®}.

Thus, the exhausting sequence C, is equivalent to the one defined by the super-level
sets of O;.

The rather abstract condition (81) is often presented in the literature as an initial
condition to check on a case-by-case basis to analyze the stability property of time
homogenous sub-Markov semigroups (see for instance [52,53], as well as Section 17.5
in [30] in the context of Markov semigroups and the references therein).

We end this section with a brief discussion on condition (81) in the context of
the sub-Markov semigroup discussed in (70). Note that this semigroup can be turned
into a Markov semigroup by sending the killed process into a cemetery state, say A,
at the killing time. In this interpretation, functions on E are extended to Ep =
EU{A} by setting f(A) =0. More interestingly, whenever E is locally compact its
topology coincides with the weak topology induced by Cy(E) := By(E) N Cy(E), and
inversely (cf. Proposition 2.1 in [54]). In this context a continuous function f van-
ishes at infinity if and only if its extension to the one point compactification (a.k.a.
Alexandroff compactification) Ep := EU {A} (obtained by setting f(A) =0) is con-
tinuous. For locally compact spaces, we also recall that the one point extension Ep is
compact.

Whenever it exists, the generator LY of these sub-Markov semigroups QLU] are
defined on domain of functions D(LY) C By(E). As expected, the analysis of this class
of models in terms of generators often requires developing a sophisticated analysis
taking into account the topological structure of the set E. To the best of our know-
ledge, there is no simple sufficient condition to check (81) in terms of these
generators.

The situation is greatly simplified for sub-Markov semigroups with soft obstacles.
When E = £ is a locally compact normed space (E,||.||) we let L be the generator of

the flow X;(x). In this situation, the generator of the sub-Markov semigroup QEU] is

given by LY = L — U. We further assume that L and LY are defined on some common
domain D(L) C B(E).



34 M. ARNAUDON ET AL.

Lemma 4.1 ([52]). Let V,Vy € D(L) be a couple of functions such that V,Vy > 1 and
V(x)—waHOOOO and V(X)/V()(X)—mxl‘ﬂoooo_ (82)
In this situation, condition (81) is satisfied as soon as there exists some finite constant
co < 00 such that
LU(Vo)/VO < Co and LU(V>(JC)/V(X)—>”XH_,OO — OQ. (83)
Note that in this context, the compact sets in (81) are given for some sufficiently
large radii . > 0 by the closed balls:
Ke=B(0,r):={x€E : ||x|]|<r}. (84)

4.2. Semigroup domination
For a given p > 1 we clearly have
V€ By(E) <= VP € B, (E) and By, (E) C By(E) C By (E).

We say that a V-positive semigroup Q;, is p-dominated by a collection of integral
operators Q; ; on By»(E) and we write Q<,Q as soon as for any non-negative function
f € By(E) and any s <t we have

Quilf) < is(p) Qurlf)'
To simplify notation, when p=1 we write Q <« Q instead of Q<; Q. Observe that
Q<,Q = Vs<t (Qu(V)/ V)P <cs(p) Qs (VP)/VE.
This yields for any 7 > 0 and 0, € B,(E) the Lyapunov estimate
Qssee(VP) VP = Qusse(V)/V <cc O: (85)

We illustrate the above domination property with the Langevin diffusion flow
XE“) (z) = (Xi(2), Yi(z)) € (R" x R") starting at z = (x,y) € (R” x R") and defined by
the hypo-elliptic diffusion

dXt(Z) = Yt(Z)/m dt

dY,(z) = (a(X;(z)) — yX(2) — pYi(2)/m) dt + o dB;. (86)

In the above display, a,7, 5,m > 0 stands for some parameters and a some Lipschitz

function on R", with n > 1. Notice that when a=0, the flow XEO) (z) resumes to an
hypo-elliptic Ornstein-Ulhenbeck on R*". Consider a bounded open connected domain
D C R” and set

Vze E:=DxR" T (z) := inf{t>0 : Xga)(z) EaE}.

We associate with these objects, the sub-Markov semigroup defined for any f €
By(E) and z = (x,y) € E by

Q1 (F)(2) =E(f(X (@) rot)-



STOCHASTIC ANALYSIS AND APPLICATIONS e 35

In this situation, we have

supa<oo = Vp>1 QW«,0. (87)
D

The proof of the above assertion is a direct consequence of Girsanov’s theorem and
Holder’s inequality. For the convenience of the reader, a detailed proof is provided in
the appendix on page 83.

To emphasize the role of the absorption in sub-Markov semigroups we return to the
class of models discussed in (70). We let P, be the free evolution Markov semigroup

associated with the stochastic flow X;(x). Assume that QEU]( 1) € By(E) and

||Q£U](V)/V|| < oo for some t >0 and V € B, (E). (88)

Applying Holder’s inequality and choosing V,, := VP € B, (E) with p>1 we readily
check the estimate

QU (v, /v, <alp) QU(1) P € By(E). (89)

The next lemma provides several practical conditions to check the uniform estimate
(88) for sub-Markov semigroups associated with soft obstacles.

Lemma 4.2. Consider the sub-Markov semigroup discussed in (70) when E=E is a
locally compact normed space (E,||.||). Assume that the generators L and LY of the flows

P, and QEU] are defined on some common domain D(L) C B(E). In this situation, for any
V € B (E) N D(L) and parameter a> 0 we have

V(V)<—av4ec = vi=0 ||QY(V)/V] < . (90)
Whenever U € Boo(E) N D(L), for any ay = 0 and a; € R we have
LU)<ap+aU = vt=0 [|QUU)] < . (91)

The proof of the above lemma follows essentially the same lines of arguments as the
proof of Lemma 4.1; thus it is provided in the appendix, on page 82.

Whenever E = £ and the absorption potential function U is bounded, we have P <

QY < P. In this context, there is no hope to have that Q\"'(1) € By(E) for some t> 0.
Nevertheless, for any V € B, (E) and any time horizon ¢ > 0 we have

QU (V)/V € By(E) < Pi(V)/V € By(E).

In this situation, the design of Lyapunov functions V satisfying (8) or equivalently
Foster-Lyapunov conditions of the form (81) is equivalent to the problem of finding a
Lyapunov function for the Markov semigroup P;.

Whenever P, is stable, in the sense that it has a Lyapunov V € By (E) such that
Pi(V)/V € By(E) for some t> 0, then the domination property Q! < P yields auto-
matically a Lyapunov function for QgU].

Whenever P; is not necessarily stable but we have ||P,(V)/V]|| < oo for some ¢ >0
and V € By (E), applying (89) the domination property QI < P ensures that for any
p>1 we have V, := V// € B, (E) and
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V) eByE) =  QU(V,)/V, € By(E).

Last, but not least, note that the above discussion extends without difficulties to time
varying models.

4.3. Some conjugacy principles
For any given V € B (E), observe that for any positive function H,
H € By v(E) <= V" := V/H € B, (E).
Thus, Q; is a V-positive semigroup on By (E) if and only if the H-conjugate semi-
group OV (f) := Q;(fH)/H is a V"-positive semigroup on By (E). In this situation, any

semigroup Q < Q" dominated by Q yields for any s > 0 and ¢ > 0 the Lyapunov esti-
mate

Qo st:t(VI) VI < Qu(V)/V € By(E).
To get one step further, observe that
Q(V)/V = Q1) Qu(V)/V.

In this notation, for any H € B, v(E) and any V-positive semigroup Q; on By (E)
such Q,(1) € By(E) and |||Q;|,, < oo we have

QK ot = Qs,s+t(VH)/VH <c¢ Q1) € By(E). (92)

We illustrate the above comparison principles with an elementary example. Let £ :=
R and W € B,(R) be some non-negative function. Consider the stochastic flow X/¥ (x)
of a one-dimensional Langevin diffusion on £ with generator

1
L(f) = 5 Vo (e 2" of). (93)
We associate with a given open connected interval E C &, the sub-Markov semigroup
Q; on By(E) defined by
Q) (x) :== E(f (X" (x)) ITL%(,C)N) with Thi(x) :=inf{t >0 : X"(x) € OE}.
(94)

Observe that

H=e"=U:= H”% OPH = % (oW)> — &*W). (95)

When W=0 the flow X?(x) = B;(x) coincides with the Brownian flow B;(x) starting
at x. Thus, by a change of probability we check that

Q= ith QNG =E(f(B) 1y e L D) 09

Whenever E =]0, 1| the semigroup Q; is dominated by the Dirichlet heat kernel on
10, 1 discussed in Section 3.3.3. When E = R, respectively E =]0,00[, and U(x) > ¢+
¢ x?/2, for some ¢ < co and ¢ > 0, the semigroup Q, is dominated by the harmonic
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oscillator discussed in Section 3.3.1, respectively the half-harmonic oscillator discussed
in Section 3.3.2. All of these dominating semigroups are completely solvable with
Q,(1) € By(E) and known Lyapunov functions.

5. Boundary problems

Let (£,d) be a locally compact Polish space with a distinguished complete metric d :
(x,y) € E*—d(x,y) € R,. We recall that these metric spaces are complete o-compact
and locally compact metric spaces, thus they have the Heine-Borel property, that is each
closed and bounded subsets in £ are compact.

We also recall that a subspace E C & is Polish if and only if it is the intersection of a
countable collection of open subsets. The distance from x € £ to a measurable subset

A C £ is denoted by
d(x, A) :=inf{d(x,y) : y€ A}.
We also denote by OE := E — E the boundary of some domain (open and connected)
E C &, where E and E stand for the closure and the interior of a subset E.
In the further development of the article, y stands for some decreasing positive func-
tion y on |0, oo[ such that for any 0 < o < 1 we have

o

}(13?) x(o) = +o0 x(e) <1/oo  and (o) := L x(u)du < oo.

Definition 5.1. We associate with y the function Vy € C(E) defined by

Vo : x€E — Vy(x):= y(d(x,0E)) €0, 0. (97)

For instance, we can choose y(u) = 1/u'"¢, for some € €]0, 1[. For any r>0 the r-
sub-level sets of V are given by the closed subsets

Vo(r):={x€E : Vy(x)<r} ={x€E : d(x0E) =y '(r)}.

Note that V € Co(E) as soon as E is compact.

5.1. Bounded domains

Let EC £:=R" be some bounded domain with locally Lipschitz boundary OE, for
some n > 1. Consider a semigroup of integral operators

Qi(x, dy) = qi(x.y) dy (98)

having for any t>0 a bounded density (x,y) € E*— q;(x, y) € [0, 00[ w.r.t. the trace of
the Lebesgue measure v(dy) = dy on E. In this situation, we have the following lemma.

Lemma 5.2. For any t> 0 we have

Vo € Co(E) and ||Qi(Vy)||<c: J x(d(x,0E)) dx < oo. (99)
E
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The proof of the above lemma follows from an elementary change of variable formulae,
thus it is provided in the appendix, on page 83.

The estimate (99) clearly applies to the class of sub-Markov semigroups QEU] defined
in (70) for any choice of the absorption potential function, as soon as the semigroup
QY « Q is dominated by a collection of integral operators Q;(x,dy) having a bounded
density g;(x,y) on E*> w.r.t. the Lebesgue measure on E. For instance, when the transi-
tion semigroup of the free evolution flow X;(x) in (70) has a density p;(x,y) for any
non negative function f on E and any x € E we have

QU (f)(x) < j @oy) FO) dy  with () = pe(y) 16(y).

We summarize the above discussion with the following proposition.

Proposition 5.3. Assume that QU < Q is dominated by a collection of integral operators
Q satisfying (98). Then,

QV(V5)/Va </ Va € By(E).

The choice of the Lyapunov function V is clearly not unique. For instance, when E =
10, 1] instead of Vy we can choose V(x) :=1/y/x+1/y/1 —x. For the Dirichlet heat
kernel discussed in Section 3.3.3 we can also choose V(x) = 1/ sin (nx).

We emphasize that sub-Markov integral operators on the compact interval E = [0, 1]
with a positive continuous density w.r.t. the Lebesgue measure on E arise when the free
evolution process is reflected at both sides of the interval. In this context the process is
not conditioned by any type of non-absorption at the boundaries. In this context, the
unit function V=1 belongs to B, (E). In the same vein, sub-Markov integral operators
with mixed boundary conditions on the left-closed interval E = [0, 1], or respectively on
the right-closed interval E =|0,1] arise when the free evolution process is reflected at
the Neumann boundary dyE := {0} and non-absorbed at the Dirichlet boundary OpE =
{1}, or respectively reflected at OyE := {1} and non-absorbed at dpE = {0}.

More generally, consider a bounded domain Q C R" with Lipschitz boundary 0Q =
OpQ U OnQ consisting of two disjoint connected components 9pQ and IyQ closed in
R", and set E := QU OyQ. In this notation, the function Vy(x) := y(d(x, OpE)) belongs
to Coo(E). In addition, for any bounded density g;(x,y) on E* we have the uniform
estimate

L qi(xy) Voly) dy<ci Lva@) dy < .

The above estimate also holds for the function Vy(x) = y(d(x, OE)).

5.2. Unbounded domains

When the domain E is not bounded the function Vy & B (E). In this context, one nat-
ural way to design a Lyapunov function V € B, (E) is to consider an auxiliary function
Ve € Coo(€) with Vg(x) > 1 for any x € E. In this situation, we have
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V= Vy+ Ve € C(E).

To check this claim, observe that the sub-level sets of V are given by the closed sub-
sets

Vo(r) .= {Vo<r} ={x€E : d(x,0E) >y '(r)} CE
and we have the compact inclusion
V(r) :={V<r} CVe(r)NVs(r) with Ve(r):={xe& : Ve(x)<r}.

This yields the following easily checked proposition.

Proposition 5.4. For any t >0 we have
NQ(Va)lIVIIQi(Ve)l <00 = Qu(V)/V<a/V € Bo(E).
When Q;(1) € By(E) we also have
1Qi(Va)lIVIIQi(Ve) / Vel < 00 = Qu(V)/V < e Qu(1) € Bo(E).

The design of a function Vg is rather flexible. For instance, assume that Q < P is
dominated by some Markov integral operators P; on B;(E) such that ||P;(Ve)/Ve|| <
oo for some Vg € B (€). In this situation, we have ||Q,(V¢)/Ve|| < oo as well as

Ve Qi(1)]] < 0o = ||Qi(Ve)]| < oo.

For instance, when P, satisfies the sub-Gaussian estimates (43) on £ = R"” we can
choose Vg(x) := 1+ ||x|
faster than ||x||7*.

When the domain E and its boundary OE are both non-necessarily bounded, it may

happens that Q;(1) € By(E) but Q,(Vy) & By(E). In this situation, we can use the fol-
lowing proposition.

¥, for some k > 1, as soon as the function Q: (1) (%)= 1xf|—oc0

Proposition 5.5. Assume there exists some Vg € Coo(E) with Vg(x) =1 for any x € E
and such that

1Q:(Va) / Vel IVIIQi(Ve) / Vel V]| Qi (1) Vel < o0
Then we have

Proof. Using the following decompositions
Qi(Vo) = Q(1)Ve Qi(Vp)/Ve and Q(Ve) = Qi(1)Ve Qu(Ve)/Ve
and applying Proposition 5.4 we have
[1Q:(Va)||V]|Q:(Ve)|| < oo and therefore Q(V)/V <¢;/V € By(E).
This ends the proof of the proposition. |

The case Q;(1) & By(E) can also be handle whenever the pair (Vy, Vg) can be chosen
so that
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V6 >0  Vy V2eC(E). (100)
For instance we can choose for some v>0 and € €]0, 1] the functions
Ve(x) i= exp (vllxl)  and () = 1/u'",
Observe that
d(x,0E) <||x|| +d(0,0E) and Vjy(x) = y(||x|| + (1vd(0,IE)))
and for any m > 0 and 6 > 0 we have
Ve(x) > ¢,(m,6) (1+||x|)™ 7.
This implies that

(1 + [l)™"
(I[xl] + (1vd(0.0E)))"™

Using the fact that Vg(x) > 1 for any x € E, this implies that
{x€E : Ve(x)Vo(x)<rtC{x€E : ¢ A+ |x])™<rin{x€E : Vyx)<r}.

Ve(x)°Va(x) = o > (1+||x|)"

We conclude that Vg Vs has compact level sets and (100) is satisfied.
In this context, we have the following proposition.

Proposition 5.6. Consider a couple of functions (Vy, Vg) satisfying (100). Assume there
exists some parameters t >0, &; > 0 and € = 0 such that

Qi(Ve)/Ve<c/VY and Q(Vy) < V. (101)
In this situation, for any p > 1+ € we have
V=V P Vi e C(E)
as well as

QV)/V<a/(VETVYT) € Co(E) with ¢ = (1—(1+¢)/p) > 0.

Proof. Observe that for any p > 1 + € we have
VoVE™l € C(E)  and therefore V := V(_})/P V;l/p € Cx(E).
In the same vein, for any € > 0 we have
(100) = Van(S'E” € Cx(E) and therefore V(;/p Vg'q’ € Cx(E).
On the other hand, using Holder’s inequality, we have

Qi(V)/V < (Qi(Ve)/Ve) P (Qi(Va) Vo) /?
<a(1)(Qi(Va)/ (Ve IV )P < cy(2) (1) (VEH Py e,

This ends the proof of the proposition. |



STOCHASTIC ANALYSIS AND APPLICATIONS 41

The design of a function Vg satisfying (101) is rather flexible. For instance, (101) is
automatically satisfied when Q < P is dominated by some Markov integral operators P,
on B;(€) such that

Pi(Ve)(x)/ Ve(x) < cr(1)/ Ve (x)™.

Section 2.4 discusses a variety of Lyapunov functions Vg satisfying the above condi-
tion for Markov diffusion semigroups. These Lyapunov functions can also be designed

using the domination principles presented in Section 4.2. For instance, consider the

semigroup Q; := an) associated with the Langevin diffusion flow on a cylinder dis-

cussed in (87). In this situation, combining (85) with Proposition 2.18, for any v > 0
and t > 0 there exists some finite constant d; > 0 such that

Ve(x) == exp (v|x]) = Qu(Ve)/Ve </ Ve
Next, we illustrate the r.h.s. condition in (101) when g, are sub-Gaussian densities; in
the sense that for any x,y € E we have
1

a(xy) < glxy)  with g(xy) " 2no?)?

1
exp (—2— ||y_m,<x>||2> (102)

for some parameter o; > 0 and some non-necessarily bounded function m;, on E.

Proposition 5.7. Let ¢ be a Lipschitz function on R"' with uniformly bounded gradient
and set

E:={x=(x);cicy €ER" : x> @(x_n)} with x_,:=(x;), ., €R"".
Then the r.h.s. condition in (101) is met with e =0 for any positive semigroup satisfying

(102). The same property holds when the boundary OE can be decomposed as a finite
union of graphs of differentiable functions on R"™ with uniformly bounded gradients.

Proof. We choose o > 0 sufficiently small so that for any
x € D,(E):={x€E : d(x,0E)<a}

there exists a projection x € OF with d(x, OE) = ||x — X||. Let C(X) be an interior cone
with a given base vertex X = (x_,,¢(x_,)) € OE and a given half-opening angle @
around the axis A(x) := {(x_p,Xxn) : %, = ¢(x_,)}. For any x € A(x) there exists a
projection X € IC,(x) on the boundary dCy,(x) with

d(x,0Cy (%)) = d(x,X) = cos G - w> (%0 — @(x_n)) <d(x, %)

On the other hand, for any y € JE we have

2i= (om@(x-0)) = 0< 2w <jRz  and tan (jRz) = |<P<|’|w> - WHn)l .
X—n —)Y-n

This yields the estimate

T — 1
Ccos <E — w> = Ccos (yxz) =

\/1+ tan2(yxz)
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from which we conclude that

0<x, — @(x_y) <k d(x,X)

ki=/1+[[Vo|* and ||[Voll:= sup |[Vo()|| < co.

yERn—l

with

This implies that

jD A0 0B aey) dy

<ay |

Dy (E)

1 (O — 90-))/K)) exp (—zi (O — 00-n)) + (@) — <mt<x>>n>>2)

1
< exp (=52 lyon = Om(0) I ) iy
t

Using the change of variables

z2:= (Y — @(y-n))/x = dy, = K dz
we find that

j 0B aey) dy

_ 1
<walD) 1) | exp (=5 s = Om(0) P ) dyon <@,
R Oy
On the other hand, for any o > 0 we have
J, 1240595 @) dy <) QDI <)

This ends the proof of the proposition. |

5.3. Smooth boundaries

Next, we illustrate the Lyapunov conditions on Vj in the context of absolutely continu-
ous sub-Markov semigroup of the form (98) with a bounded density g;(x,y) on a non-
necessarily bounded domain E C R" with smooth non-necessarily bounded C*>-boundary
with uniformly bounded interior curvature.

We assume that there exists o > 0 sufficiently small so that every point of the a-offset
of OE (a.k.a. a-tubular neighborhood) defined by

Tub,(JE) := {x € R" : d(x,0E) <o}

lies on some normal ray passing through a point on JE and no two normal rays passing
through different points of JF intersect in Tub,(OE). We let N(z) be the unit normal
vector at z € Tub,(OE) pointing inward E, and let D,(E) the closed subset defined for
any r <a by
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D,(E):={x€E : d(x,0E)<r} and D_,(E):={xeR"—E : d(x,0E)<r}.
In this notation, the inverse of the normal coordinate map
F : (z,r) € OE x [—o,0]— F(z,r) = z+r N(z) € Tub,(0E) (103)
is given for any x € Tub,(0E) by

Flx) = (projy(x), dy(x, OF))

where projy(x) stands for the projection of x € Tub,(OE) onto OE and d,(x,0E)
stands for the signed distance function

dy(x,0E) := d(x,0E) 1p,g)(x) — d(x,0E) 1p_ ) (x) € [~ a].

In addition, the inward normal N(x) at any x on the C*> boundary OE is given by
Vd,(x,0E) = N(x).

The Hessian of the signed distance function on the boundary OE gives the
Weingarten map W(x). With this notation at hand, we have

| o) atny) dy=| o) g2wr)
Dy (E) 0
with the level-set density function

ﬁmm:} 4e(.y) o0.4(dy)
OF: (104)

- LE q:(x.z +N(2)) |det(I —r W(z))| ao(dz).

In the above display, 04 ,(dz) stands for the Riemannian volume measure on the
r-extended boundary

OE,:={x€E : d(x,0E) =r}.
Moreover, since E has uniformly bounded interior curvature, for any r < a we have
Ko(or) := sup|det(I —r W(z))| <oo and «; () := sup|det(I+r W(y))| < .

In the above display, the supremum is taken over all z € JE, y € OE,, and r< .
Several examples of hypersurface boundaries satisfying the above conditions are dis-
cussed in Section 8 (cf. for instance Proposition 8.4).

We denote by g7 > q? the function defined as q? by replacing g, by g,. Using the fact that

o

émww<mm+jﬂaﬁmom

0

we readily check the following proposition.
Proposition 5.8. For any t >0 we have

sup sup () < 00 = Q(Vo) <7(2) Q1) +a(%) 7(%)
STr<o xe
sup supgy (x,7) < 0o = Qu(Vi) < (%) + ci(2) 7(2).

0<r<ua xeE

(105)
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When the boundary OE is bounded, for any t > 0 we have the estimate
1Q:(Vo)ll < ci(2) <X(O€) +7(2) sup Ga,r(aET)>- (106)

0<r<ua

We end this section with some practical tools to estimate the level-set density func-
tions discussed in Section 5.3. Most of our estimates are based on the following tech-
nical lemma.

Lemma 5.9. Consider a couple of non-negative functions f, g on R" and some parameter
o > 0 such that

sup f(z+u)<i(a) g(z)  for some 1(a) < 0.

llul| <o
In this situation, we have the uniform estimate
sup | f12) a0,lde) <) wolo) | gl@) oal)
o<r<aJoE, OE
as well as the co-area estimate

J f(2) Ga(dz)éé 1) ’Ca(“)J g(z) dz.
OE

D,(E)

The proof of the above lemma is provided in the appendix, on page 85.
Note that the level-set density function defined in (104) can be estimated for any
0 < r < a by the formula

q?(x, r) < Kkg(a) J q:(x,z 4+ rN(z)) 0s(dz).
OE

Proposition 5.10. Assume that q;(x,y) <@, &(x,y) is dominated by some probability
density y— g(x,y) on R" for some t>0 and some parameter w; < co. In addition, we
have

sup gi(xy +u) < (o) gui(xy) (107)

[l <

for some probability density y+— g, ((x,y) and some 1,(a0) < co. In this situation, we have
the uniform density estimates

sup sup g’ (x,7) <@ 1:(o)i, (o) rcp(er)/on. (108)

0<r<ua xcE

Proof. By (107) for any 0 < r < o we have

qf(x, r)<w; Kp(a) LE g&(x,z+1rN(z)) o0s(dz).

On the other hand, we have

J 8ra(xy) dy<1.
D,(E)
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The estimate (108) is now a direct consequence of the co-area estimate stated in
Lemma 5.9. This ends the proof of the proposition. |

We illustrate the above condition when g; are the sub-Gaussian densities discussed in
(102). In this situation, using the fact that 2a’b < 1||a||*> + €[|b||* for any 0 < € < 1 and
||u|| <o we check that

(1-9

1 2 2, 1 /1 2
sz o+ = mlE <=y ml 4 (21 2

In this context, condition (107) is met with the Gaussian density

g emlr

o, t(Xs =5,
& t( y) (27‘[0’t(6)2)n/2
with

:42/5
(o) == ¢; e’ and a.(e)’ == a7 /(1 —e).

6. Riccati type processes
6.1. Positive diffusions

Consider the Riccati type diffusion on E =0, + oo| defined for any x € E by

dX,(x) = (a0 + a1 Xi(x) — b X,(x)?) dt + o1 (X(x)) dB} + 02(X;(x)) dB?, Xo(x) = x

for some Brownian motion (B!, B?) on R?, the diffusion functions
o(x)i=c Vx  ox) =g x
and the parameters
a €R a0>;f b>0 and ¢,5 =0.
Applying It0’s formula, we readily check that
OE(X¢(x)) < Ricc(E(X¢(x))) and OE(1/X;(x)) < Ricc (E(1/X(x)))
with the Riccati drift functions defined by
Ricc(z) :=ap + a;z — bz*> and Ricc (z) :=a; +a;z—b 2 (109)
with the parameters
a, :=b a; :=(3—a) and b =ay—¢.

Consider the Lyapunov function V € By (E) defined by V(x):=x+ 1/x. By well-
known properties of Riccati flows, for any ¢>0 we have ||P;(V)|| < co. For a more
thorough discussion on this class of one-dimensional Riccati diffusions, we refer to the
article [55].
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6.2. Matrix valued diffusions

Let E and E be the space of (n x n)-positive semi-definite and definite matrices respect-
ively. Also let 4;(x) > ... > ,(x) denote the ordered eigenvalues of x € E. Let W,
denotes an (n x n)-matrix with independent Brownian entries. Also let A be an
(n x n)-matrix with real entries and let R,S € E. We associate with these objects the
E-valued diffusion

dX, = (AX,+ XA +R—X,SX,) dt + g[X}/Zth RY2 4+ RVZ 4w, 1/2}

Whenever €<2/y/n+ 1, the diffusion X; has a unique strong solution that never
hits the boundary JE = E — E. In addition, the transition semigroup P, of X; is strongly
Feller and admits a smooth density w.r.t. the Lebesgue measure on E, thus it is irredu-
cible. Furthermore, when €*(1+n)/2<2,(R)/A1(R) then the function V(x)=

Tr(x) + Tr(x~!) is a Lyapunov function with compact level subsets. For a detailed
proof of the above assertion for more general classes of Riccati matrix valued diffusions
we refer to [56] (see for instance the stability Theorem 2.4 and Section 5.4 in [56]).

6.3. Logistic birth and death process

Let X;(x) be the stochastic flow on E := N — {0} with generator L defined for any f €
By(E) and x > 2 by

L)) =J(xx=1) (flx = 1) =f(x)) +J(ex + 1) (f(x+1) = f(x))
and for x=1 by
L)1) =J(1,2)(f(2) = f(1))-
In the above display, the birth and death rates are given by
Jx,x+1):=4 x+v, and J(xx—1):=lg x+ 4 x(x—1) + vy (110)

for some non-negative parameters A4, Ay, p, 04 = 0 and 4; > 0. Consider the identity
function V : x € E— V(x) = x. For any x > 2 we have

LV)(x)=T(xx+1)—J(x,x—1) = (FOV)(x)
with the concave function
ZzER —F(2):=(vp—vg) + (A + A4 —2a) z— 1y 22 €R. (111)
Observe that
L(V)(1) —F(V(1)) =J(1,2) — F(1) = J(1,0) = vg + A4.
This yields the estimate
P(L(V))(x) = P10 L(V))(x) + Pe(111y L(V))(x)

= P((F°V))(x) + Pi(1y)(x) (L(V)(1) — F(V(1)))
SF(P(V))(x) +J(1,0)

from which we check that
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0P (V)(x) < Rice(Py(V)(x))
with the Riccati drift function defined in (109) with the parameters
ag :=0p + A4 a, =Ml +A4—23 and b:=1>0.

By well-known properties of Riccati flows, for any ¢>0 we conclude
that ||P,(V)]|| < oo.

6.4. Multivariate birth and death processes

We denote by e:= {e;, 1<i<n} the collection of column vector ¢; on {0,1}" with
entries e;(j) = 1,—; and with a slight abuse of notation we denote by 0 the null state in
N". Let X;(x) be a stochastic flow on E = N" — {0} with generator L defined by

L(f)(x) =Y _J(xy) (F) —f(x)). (112)

y€EE

Let 4,1, 0,¢ be some column vectors and let C, D some (d x d)-matrices with real
entries such that for any 1 <i<d and any x € E we have

Jx,x+e) :=vi+x (4i+(Cx),) >0 and J(x,x—e):=¢ +x (g + (Dx);) > 0.

We also set
J(x,y) =0 as soon as |x—y| > 2.
We further assume that
[v] = |¢] B:=(D—-C)=bI>0 for someb > 0.
and we set
a =l —[c[ =0 ar:=vicicald — 1)
and for any x € N"
= (|3 ) e Y w
1<i<n 1<i<n
Consider the Lyapunov function
x € Em—V(x) = |x] € N,.

Note that V' is locally bounded with finite level sets and for any x € E — e we have

LV)(x) = Y ((vi+x (di+(Cx)) = (c+x (w+ (Dx))).

1<i<n
In this situation, we have the formula

L(V)(x) = ag + (. — u)'x — X Bx < ap + a\|x| — b||x||*. (113)
On the other hand, for any y = ¢; we have

L)) = > Ty +e).

1<i<n
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This implies that
Py(L(V)) = P(1g—¢ L(V)) + Pi(1. L(V))
=ay+a; P(V)—b P(V?)
+ 3 P (L(V)(e]-) - (ao +(h— e — e;Bej))

1<j<n
from which we readily check that
OE(V(X:(x)) <ag + amE(V(Xi(x))) — b (E(V(X:(x))))*

with

af =ap+ Y (Z J(ejej+e;) — (Ivl—|€|+(i—ﬂ)/ej—e§(D—C)ef)>

1<j<d \1<i<d

=ay+ Z (|g| + e+ eJ’Dej>.

1<j<d

We conclude that ||P,(V)|| < oo, for any t> 0. The semigroup analysis discussed above
can be extended without difficulties to more general process on countable spaces models
satisfying condition (113). The extension to time varying models can also be handle
using a more refined analysis on time varying Riccati equations.

We also mention that the case |v| = 0 = |¢| coincides with the competitive and multi-
variate Lotka-Volterra birth and death process discussed in Theorem 1.1 in [57].

7. Some conditional diffusions
7.1. Coupled harmonic oscillators

Consider the R"-valued diffusion (37) with (b(x),o(x)) = (Ax, X), for some non-neces-
sarily stable drift matrix A and some diffusion matrix X with appropriate dimensions.
We associate with a given semi-definite positive (n X n) matrix S > 0 the potential
function

1
U(x) := 3 x'Sx and we set R=ZXY'. (114)

We assume that the pairs (A,R/?) and (A’,S'/?) are both controllable. Let Q, = QEU]
be the sub-Markov semigroup defined in (70) on the Euclidean space £ = E = R". As
shown in [58], the leading-triple (p, h, 7., ) discussed in (61) is given by

p=— Tr(Rqx)/2 = — Tr(p~S)/2
ol os _ e (Xplx/2) (113)
h(x) = exp (—¥'qx/2) and 5, (dx) = det(27p..) e

with the positive fixed points p, and g, of the dual algebraic Riccati matrix equation
APoo + PocA’ + R — pocSpo =0 and  A'qoo + gooA + S — gouRgs = 0.

In this context, the h-process, denoted (Xfl(x))tzo and defined by the stochastic dif-
ferential equation
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dX"(x) = A"X!(x) dt + £ dB; with A":=A-R g.. (116)

Our controllability conditions ensure that A" is a stable matrix. Note that X"(x) is an
R"-valued Gaussian random variable with mean m!(x) and covariance matrix p" €
R™" given for any ¢t >0 by

t
mh(x) = exp (A"t) x  and ph= J exp (A"s) Rexp ((A")'s) ds > 0.
0
This yields the explicit formula

i) = s e (50l 0 0= ntw)) &y

Moreover the invariant measure 1", = 5" P! is unique and given by

1 1 _
Wi.lo(dx) = T Y &P <_§)’/(Pgo) 1)’) dy

\/ det(2mph)
with the limiting covariance matrix
pho= J exp (A"s)Z? exp ((A")'s) ds = (bl +400) ' > 0.
0

For any time horizon ¢t > 0 and any measurable function F on the set C([0,t],R") of
continuous paths from [0,¢] into R” we have the path space exponential change of
measure Feynman-Kac formula

E<F<xt<x>>exp <j U, (%,(x)) d)) = e hix) E(P(X(x)/h(X ()

0
with the historical processes
Xi(x) := (Xs(x))0<s<t> Xi’(x) = (Xsh(x))0<s<t and  U(X(x)) := Us(X;(x))-
This yields the conjugate formulae

Q(f) =" h P(f/h).

We denote by (m;(x),p;) € (R" x R™") the mean and covariance parameters satisfy-
ing the linear evolution and the Riccati matrix differential equations

Omy(x) = (A—psS) m(x)
(117)
opr = Ap+p A+ —pSp; with  (mo(x), po) = (x,0).

The next proposition provides an explicit description of these semigroups.

Proposition 7.1 ([58]). For any time horizon t > 0 we have p, > 0 and the normalized
semigroup Q, defined in (53) is given by

1 1 r—1
Q) = (-30-meo-m@) & amw
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as well as
t t
—2log Q;(1)(x) = ¥ J F.SF; ds x+J Tr(Sps) ds
0 0
with the fundamental matrix semigroup F, starting at Fy = I given by
8[F[ = (A —ptS) Ft'

Observe that the normalized Markov operator Q, satisfies (43) and (44) with the
parameters

1
=, OF = Jmax(p) and € = |eT(A_p°°S)| —0 as t—oo (119)
\/ det(2mp;)
for some matrix norm |.|. The r.h.s. assertion is a direct consequence of the Floquet

representation theorem presented in [59] (cf. (1.3) and Theorem 1.1) and the fact that
(A — pooS) is a stable matrix. Applying Lemma 2.18 for any v > 0 and ¢> 0 there also
exists some finite constant 6; > 0 such that

V(x) := exp (v|x]) = Qi(V)/V </ V.
Using Proposition 7.1, for any k > 0 and ¢ > 0 it is also readily checked that
V(x) = (L4 [lxl)* = [|Qi(V)/V]] < oo and [ Q(V)]| < oc.

7.2. Half-harmonic linear diffusions

For one dimensional models, the coupled harmonic oscillator discussed in Section 7.1
resumes to one dimensional linear diffusion

dX;(x) = a X,(x) dt +dB;, and the potential U(x) = ¢cx*/2 (120)

for some parameters ¢ > 0 and a € R. We set § := a+ y/a? + ¢. In this notation, the
leading pair (p, h) = (p;, ¢,) is given by

p=—p/2 and h(x)=((f—a)/n)" exp (—px*/2). (121)

The quasi-invariant measure is therefore given by

Moo (dx) = ﬁ exp (—cx?/(2p)) dx.

Therefore, the h-process resumes to the Ornstein-Uhlenbeck diffusion
dX"(x) = —b X!(x) dt + dB, (122)

with the invariant measure

i (dx) = \/g exp(—b x?) dx with b:=(f—a)=+/a®+¢>0.



STOCHASTIC ANALYSIS AND APPLICATIONS e 51

Note that any Ornstein-Uhlenbeck process can be seen as the h-process associated
with a non absorbed (possibly transient) linear diffusion evolving in some quadratic
potential well.

In this context, Proposition 7.1 is also satisfied with the mean and variance parame-
ters

Omy(x) = (a—p) m(x)
(123)
Ope = 2ap;+1—cpr with (mo(x),po) = (x,0).
We also have
2 _
—=log Qi(1)(x) = p, + 1, X° (124)

with
t S t
X = J exp <—ZJ (a —pug)du) ds and p,:= J psds.
0 0 0

The half-harmonic semigroup associated with the flow X;(x) is defined for any x € E :=
10,00] and f € B,(E) by the formulae

Q(f)(x) := E(f(Xt(x)) I7(x)>t €xXp {— J; U(Xs(x)) ds}). (125)

In the above display, T(x) stands for the hitting time of the origin. In terms of the
h-process of the flow in the harmonic potential (122) we also have the conjugate formula

Q) = e B(f(0) PP 1) (126
with the parameters (p, §) defined in (121) and the Ornstein-Uhlenbeck diffusion flow
defined by

dY,(x) = —b Yy(x) dt +dB; with b:=(f—a)>0.
In the above display, T" (x) stands for the hitting time of the origin by the flow Y;(x)
starting at x > 0. Arguing as in Section 3.3.2 we check that

Q:(x, dy)

= sinh(y my(x)) exp —E(X *+p,) ) x 2 exp _ylt(x)z 1]0,00[(y) dy
2\ ! np; 2p;
with the parameters (m;(x),p) and (y,,p,) defined in (123) and (124).
Arguing as in (77), choosing the Lyapunov function V(x) =x"+ 1/x, for some

n =1, we readily check that
VECL(E) and QiV)/V<¢/V €Cy(E). (127)
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7.3. Linear diffusions in some domains

Consider the one-dimensional stochastic flow Y;(x) of an Ornstein-Uhlenbeck

dY,(x) = —b Yi(x) dt + dB; for some b > 0.

In the above display, B, is a one-dimensional Brownian motion starting at the origin.
For a given x € E :=|0,00[, we let TY(x) be the hitting time of the origin by the flow
Y(x) starting at x > 0. Consider the semigroup

Q(F)(x) = E(f(Y:(x)) Lrrsr)-

Choosing (a,¢, 8, p) = (0,b% b, — b/2) in (121), formula (126) takes the form

Q () = Hx)'Q(fH)(x) with H(x)= exp(~bx’/2)

with the semigroup Q; defined in (125) with U(x) = b*x/2.
For any given n > 1 we have
V(x):=x"+1/x =V €Cy(E) and V" :=V/HcC.(E).

Using (127) we conclude that

VB e Co(E) and QI (VH)/VH =e Q(V)/V <)V €Cy(E).

The long time behavior of the positive semigroup Q) is also studied in [60], and
more recently in [61] in terms of the tangent of the h-process.

More generally, consider the R”-valued diffusion flow X;(x) defined in (37) with
(b(x),0(x) = (Ax,Z), for some matrices (A,X) with appropriate dimensions. Assume
that R := ¥’ is positive semi-definite and the pair of matrices (A, R'/?) are control-
lable. In this situation, the Markov semigroup P, of the stochastic flow X;(x) satisfies
the sub-Gaussian estimate (102) for some parameters (a;, m;(x)).

Consider a domain E C R” with C*>-boundary with uniformly bounded interior curva-
ture. For any given x € E, let Q; be the sub-Markov semigroup

Q) (x) == E(f(Xe(x) lrwsr) with T(x):=inf{t >0 : X,(x) € OE}. (128)

We clearly have Q;(Vy) <P;(Vy), with the function Vj defined in (97). When E is
none necessarily bounded but its boundary OE is bounded we known from (106) that
[|Q:(Vs)|| < co. For non-necessarily bounded boundaries the sub-Gaussian property
(102) ensures that ||Q;(Vy)|| < oc.

When E is bounded, applying Lemma 5.2 (see also Proposition 5.3) we have

Vs € COO(E) and Qt(Va)/Vgéct/Va S C()(E)

For unbounded domains we need to ensure that A is stable so that (48) is satisfied
for some norm |.| on R". In this situation, applying Proposition 2.19 for any t> 0 there
exists some J; > 0 such that

Ve(x) == exp (v|x]) = Qu(Ve)/Ve </ VY.
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Applying Proposition 5.6 with e =0, for any p > 1 we conclude that
V, = VP VP ec (B) and Q(V,)/V,<c O, (129)
with the function

®, = 1/(ViIVPIVIPy ¢ cy(E).

7.4. Langevin diffusions in some domains

Consider the semigroup Q; of the one-dimensional Langevin diffusion defined in (94)
with E =]0, c0[ and a quadratic confinement potential

W(x) =x2/2 = H(x) := e V¥ = e and U:== (PZ+1).

N =

In this case, the semigroup Q, defined in (96) coincides with the semigroup of the
half-harmonic oscillator discussed in Section 3.3.2. By (77) for any n > 1 we have

V(x):=x"+1/x= Q(V)/V<c/V €Cy(E).
Notice that

&2
+—.

VH(x) := V(x)/H(x) = x" &"/? (130)

Using (96) we conclude that
Ve Co(E) and Q((V")/V? = Qi(V)/V <)V € Cy(E).

More generally, consider the case E =]0, 00| with at least a quadratic confinement
potential U, in the sense that

1
Ux) = 3 (OW)? = W)(x) = Uy(x) :=c+¢ x*/2 for some ¢ > 0.

In this situation, Q, <« Q[UZ] is dominated by the semigroup Q[UZ] of the half-har-
monic oscillator discussed in Section 3.3.2. Arguing as in (130) we have

H:=e" V0:=V/HecC(E) and Q(V?)/VH <)V € Cy(E).
For instance, whenever the confinement potential W is chosen so that
W(x) = e logx+ Wi(x) for some 0< e < 1

and some function W; > 1 such that Wi (x)—,_.,00 we have

H=c¢" = Vi(x) = V(x)/H(x) = x" "® +
Using (96) we conclude that
VA €Co(E) and Q(V?)/VH =Q,V)/V<¢/V € Cy(E).

We illustrate the above result, with the logistic diffusion discussed in [62]. Consider
the generalized Feller diffusion
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dY,(x) := (2a Y,(x) — (8b/c?) Y,(x)*) dt + o \/Y,(x) dB,
starting at x € E :=]0,00[. In the above display, B; is a one dimensional Brownian
motion starting at the origin and a,b, ¢ > 0 some parameters. Observe that

Xt(x) = (2/0')\/ Yt<x) = dXt(x) = _8W(Xt(x)) dt+ dBt
with the potential function
1

8W(x):2——ax—|—bx3 with a,b > 0.
X
Thus, choosing
1 4 2
W(x) = 5 logx + bxz —a—

we readily check that
VE(x) == "W (x" 4+ 1/x) = (x" 2 +1/v/5x) e o yH ¢ Coo(E).
More generally, consider the Langevin diffusion flow
Xi(z) = (Xi(2), Yi(2)) € (R" x R")

starting at z = (x,y) € (R” x R") and defined by the hypo-elliptic diffusion (86). We
further assume that sup,a < oo for some bounded open connected domain D C R"
with C*>-boundary, and for any z € E := D x R" and f € B,(E) we set

() (z) == E(f(Xi(2)) 17¢z») with T(z):=inf{t>0 : X,(z) € OD}.

We know from (87) that for any g>1 we have 9<,Q is g-dominated by the sub-
Markov semigroup Q; associated with the Ornstein-Uhlenbeck diffusion on E defined in
(128), with the matrices (A,X) defined in (50). In terms of the functions (V,,®,,)
defined in (129), combining (85) with (129) for any p,q > 1 we conclude that

Qt(Vp,q)/Vp,q < Ct(p: q> ®p,q,t
with the collection of Lyapunov functions

Vg = V;/q € Cx(E) and the function @, ,,:= @11,)/? € Co(E).

7.5. Coupled oscillators in some domains

Consider the R"-valued diffusion X;(x) and the quadratic potential function U discussed
in Section 7.1, for some n >2 and set E:=]0,00[xR"'. Let Q, be the semigroup
defined for any f € B,(E) and x € E by the formulae

Q(f)(x) :==E (f(Xt(x)) l7()>t exp <_ Jt U(Xs(x))d5>> (131)

0

with the quadratic function U in (114) and the exit time T(x) given by
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T(x):=inf{t >0 : X,(x) € 9E} with OE={0} x R"".

In terms of the h-process Y;(x):= X!(x) associated with the leading pair (p,h)
defined in (116) we also have the conjugate formula

Q(f)=¢" h Q(f/h) with Q/(f)(x) ==E(f(Yi(x)) Lrs(0).
In the above display, TY(x) stands for the boundary hitting time
TY(x):==inf{t >0 : Y,(x) € OE}.

When n=2, the linear diffusion X;(x) associated to the matrices A}, = Ay =
Ay,=0and Ajp,=1and X;; =%;, =2, =0 and %, , = 1 coincides with the inte-
grated Wiener process model discussed in [63-65]. In a seminal article [65], McKean
obtained the joint distribution of the pair (T(x),X%(X)) in the absence of soft absorption,
that is when U=0. To the best of our knowledge, an explicit description of the distri-
bution of this pair and the corresponding sub-Markov semigroup is unknown in more
general situations.

Observe that for any x € E and any non-negative function f € B,(R") we have

Q(f)(x) < Q(f)(x) = e h(x) E(f(Yi(x))/h(Y:(x))).

The semigroup Q, defined above coincides with the semigroup of the coupled har-
monic oscillator discussed in Section 7.1. We know from (119) that O, satisfies the sub-
Gaussian estimates (43) with

1
¢ =————— and of = Amax(Pr)

\/ det(2mp;)

with the solution p, of the Riccati-matrix equation (117). Using Proposition 7.1 for any
k =1 we have

Ve(x) = 1+ [[x][" = [|Q:(Ve)/ Vell < 00 = Qu(Ve) <a Qi(1)Ve.
Recalling that Q;(1)(x) tends to 0 exponentially fast as ||x|| — oo, this implies that
V>0 [|Qe(Ve)|| < 0.

On the other hand for any y = (y1,y_;) € E = (]0,00[xR"™!), the distance to the
boundary is given by d(y,JE) = y;. In terms of the function V, defined in (97) his
implies that

Qt<va><x><j Q,(xdy) 110.1[(31) 20n) + 2(1) Q1))

from which we check that ||Q;(Vy)|| < co. Applying Proposition 5.4, we conclude that
V:i=Vy+ Ve €Cx(E) and QiV)/V<¢/V €Cy(E).

The same analysis applies by replacing the half line E; by the unit interval E; :=|0, 1].
In this context, the boundary is given by the two infinite potential walls

OE = ({0} x R" YU ({1} x R"™") and d(x,9E) = x;A(1 — x1).
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More generally, consider a domain E C R” with C*-boundary with uniformly
bounded interior curvature. In this situation, the sub-Gaussian property (102) ensures
that ||Q,(Vy)|| < oo and therefore

UVl < 11Q:(Vo)ll = [|Q:(1)Q:(Va)l| < oo

Applying Proposition 5.4, we conclude that
Vi=Voa+ Ve €Cx(E) and QV)/V<c/V €Cy(E).

8. Some hypersurface boundaries
8.1. Defining functions and charts

Consider a smooth function y € R"'+— ¢(y) € R with non-empty and connected level
set, for some n > 2. Consider a domain E in R" with a smooth boundary OE =
@ 1({0}) defined as the null level set of the function

x=(%)cicn ER"—0(x) = @(x_p) —x, with x_,:=(x;);;., €R"

Consider the column vectors Vo(x_,,) := (9y,¢(x_4)), < ;,- In this notation, the unit
normal vector N(x) at x € JE is given by the column vectors

oo Vel 1 Vo(x_n)
N Vo)l \/1+||V(p(x,n)\|2 < -1 )

Observe that the vector N(x) is the outward-pointing normal direction to E as soon
as E=0!'(]—00,0]) and the inward-pointing normal direction to E
when E = ¢ 1(]0, + oo]).

Consider the column vectors e; := (1(j)), <;,» With 1<i <n. In this notation, the

(n — 1) tangential column vectors T;j(x) at x € OF are given for any 1<i < n by the

column vectors
e.
Ti = ! .
9= (0,00

The inner product g(x) on the tangent space T,(OE) (a.k.a. the first fundamental
form on OE) is given by the Gramian matrix

g(x) = (Ti(x)/Tj(x)>1<i’j<n:T(x)T(x)’ with  T(x)' = (T3 (), o Tar (x)).

This yields the matrix formula
g(x) = (I, V(p(xfn) ) (vqo(xny) =1+ V(/)(xfn)v@(xfn) .
In this notation, the projection projy ) on the tangent space T,(OE) is defined for

any column vector V = (V') ;. € R" by
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Ty (%) v
pProjp g (V) == (T1(x), ..., Tyo1(x))g(x) " : :
Ty (x) v

In matrix notation, the projection of m column vectors V; € R", with i € {1,...,m}
and any m > 1 takes the synthetic form

projTX(aE>(V1, s Vi) = (T(x)/g(xf1 T(x)) (Vi eos Vi)

= ( Projr (og) (V1), - PijTx<aE)(Vm))~

Equivalently, if g(x)*/ denotes the (i, j)-entry of the inverse matrix g(x) ', the projec-
tion of a column vector V € R" onto T,(JE) is defined by

Projy, o) (V) = Z g(x)" <Tj(x)/V) Ti(x).

1<, j<n

8.2. The shape matrix

Consider the Monge parametrization

Yoo 0= (0)),cip €S := R y(0) = <(P?9)) € 0E C R". (132)

In this chart, the tangent vectors and the normal unit vector at x = /() are given
for any 1<i < n by

TY(0) = 0 (0) = TW(0)) €TLOE) and N¥(0) == N($(0)) € T(IE).
For any 1 <i,j < n we have

(00 (0))N¥(0) =0

= QY(0)),; == (99, 00(0)) NV (0) = — (9p,1(0)) 95, N" (0).
Observe that for x = /(0),

HNY(0) = 3 (9,N)(x) Dpyh(0) = (VN(x))' Dy (0)
1<k

N
N

n

from which we check that for any 1 <i,j < n the coefficients of the second fundamental
form can be computed as follows:

Q(x);; = —(90,$(0)) (VN(x)) 0, (0).-
We set
(ONY(0))" := (9, N¥(0), ..., B, ,N*(0)) € (Ty(e)(9E))" .



58 M. ARNAUDON ET AL.

In this notation, for any x = y/(0) we have the matrix formulation
Q(x) := ~0w(0) (ON'(0)" = ((90,0,$/(0)) N(x))
V2p(0)

- with V2@ (0) := (8p,0,90(0))
1+ ||V ()|

1< i j<n

1<i,j<n’

We also readily check the matrix formulation of the Weingarten’s equations

(N (0))" = (9w (0))'g (W (0)™") ((0)) (ONY (0))" = — (A (0)) W(x).

In the above display, WW(x) stands for the shape matrix (a.k.a. the Weingarten map
or the mixed second fundamental form) defined by

W(x) := g(x) "' Qx)
1

T I

We summarize the above discussion in the following proposition.

(I+ Vo) Volxn))  Vielx_y).

Proposition 8.1. For any 1 <i < n we have the Weingarten’s equations

BNV (0) == > WW(0)),; 0,0(0) € Ty0)(IE).

1<k<n

Example 8.2. For n=2 we have x € R— p(x) = @(x) — x, so that the boundary OE =
@ 1({0}) coincides with the graph of the function ¢. In this context, the metric and
Weingarten map at x € OE = {x = (x1,x,) € R* : x, = ¢(x1)} take the form

1
0*¢(x1).

g0) =1+ 9¢(x1)|* and W(x) = — 32
(1 + [109(x)]*)

Example 8.3. For n=3, the boundary OE is given by the surface in R* defined
OE :={x = (xi)1<i<3 eR® : x= o(x1,%2) }.
The Monge parametrization is given by
0

T 6—(91,92)€R2|—>¢(9)—( 0, )eaEcR3.
¢(01,0,)

In this situation, the tangent vectors at x € OE are given by

1 0
T)(x) = ( 0 ) and Th(x) = ( 1 )
8x1 QD (X) aXz QD(X)

In the same vein, whenever E = {x € R’ : ¢(x1,x;) <x3} the outward pointing unit
normal at x € OE is given by
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) Ox, ()
- Oo(x) |.
V1 0u0@) + @@ \ -1

The inner product g(x) is easily computed and given by

(14 0ue®) (a0()(Onox)
g = ((axl(p<x>><axz<p<x>> 1t (00(x) )

The inverse metric is given by

P L+ (050(x)"  =(940(x)(On0(x))
£ det(g(x)) ( (05, 0(0)) (05 0(x)) 1+ (O50(x)° )

with
det(g(x)) = 1+ (9,0(x))* + (0 (x))* = 1+ ||Vo(x)|*.

The second fundamental form is also given by

1 o4 P(x)  Oy.xo(x)
Q(x) = — ( X1 x 12 2 N >
L [Vl \ OB a0t

and the Weingarten map is defined by

1
Wix)=-—
) 1+ Vo))
(14 (04,0(x)") 22 0(x) = (04, 0(x)) (O, 0(1)) sy, 0(x) (1 + (D 0(x))*) iy, 0(x) — — (s, 0(x)) (D, (%)) %, 0 <))

~(0,0(x))(0,9(x)) 3%, 9 (x) + (1 + (95, 0(x))") 02,0 (%) (05, 90(%)) (02 0(x)) st 2, 0(x) + (1 + (9, 0(x))*) O, 0 () '

8.3. Surface and volume forms
The surface form o5 on the boundary OF expressed in the chart ¥ introduced in (132)
is given by
(00°Y 1) (d0) = \/ det(g(w(0))) 0
with the Gramian of the coordinate chart
g(¥(0)) := Gram (3, $(0), ..., By, ,/(0))
= (O9(0))(0(0)) =1+ V(P(G)( 0(0))

with the coordinates tangent vectors Oy(0) = T¥(0) := T(y(0)). To check this claim
recall that the surface area spaced by the column vectors

O (0) := (9, (0), ... Oy, , ¥ (0))

is equal to the volume of the parallelepided generated by the column vectors

(0 (0),N((0))) := (00, (0), .. B, ,(0), N(¥(0)))

which is given by the determinant of the column vectors, so that
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(a0°9")(d0) = | det(ay(0), N(¥(0)))| do.

On the other hand, we have

oy (0) /
(N(w(e))’) (ow(0),N(y(0)))

(@0 b0))

_ (@) @(0) 0,11
ooy | (PO YO NG@) (v )
N(y(0))

This implies that
| det(@ (), N(W(0))] = \/| det((AW(6) . N((6))) (W (6) . N(¥(0)))
— \/ det((00(0))(90(0))).

Using the determinant perturbation formula w.r.t. rank-one matrices det(I + uv') =
1 + v'u which is valid for any column vectors u,v € R” we check that

det(I+ Vo (0)Ve(0)) = 1+ [V (0)|.

This yields the formula

(00°y ") (d0) = \/1+ [V (O)]I* do.
The mapping F defined in (103) can also be rewritten as a chart i on D,(E) defined
for any (0,u) € (S x [0,7]) defined by

W (0,u) = F(b(0),u) = Y(0) + u N((0)) € Dr(E).
The Jacobian matrix of ¥ is given by

Jac() (0, 1) = (9o, (0, 1), .., Do, W (0, 1), N((0))).
By Proposition 8.1, we have

o (0,11) = Do (6) + u DN (0)

=000 —u Y Yl Y(0)) -

1<k<n
This yields the formula
(00, (0,10, ..., O,V (0 )) = (0, (0: ), ., 0o, ¥(0)) (I —u W((0))

from which we check that

\det( Jac()(0. u) )‘ V det(g(y(0)) |det(I — u W((0)))]-

Note that 1/ (0,0) = y(0), and for any given u < r, the mapping 0 — (0, u) is a chart
on OE,. This yields the following proposition. For the convenience of the reader, a
more detailed proof of the next proposition is provided in the appendix on page 85.
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Proposition 8.4. For any u<r, the surface form 65, on the boundary OE, expressed in
the chart 0 € S (0,u) := F((0), u) is given by the formula
(0, (1)) (d0) = |det(T — u W(W(0))] (o0°%")(d0)
with
|det(I —u W(Y(0)))|

= |det 1+ " 2 (I+Vo(0)Ve(0)) ' V2p(0) .
1+ (Ve (0)]]

In addition, the volume form op (g on D,(E) expressed in the chart W is given by

(om0 ™) (@(0,)) = [det(t — u W(O)] (556" (d0) di
Using Jacobi’s formula for the derivative of determinants, we also have
dylog det(I —u W(x)) = — Tr((I — u W(x))"'W(x)).

The level-set density function defined in (104) expressed in the chart ¥ is given by
the formula

97 (x,1)

= Js @y (0) +r N(0))) |det(I —r W((0))) / det(g((0))) do.

8.4. Boundary decompositions
For some given coordinate index k € {1,..,n} and x = (x;); ., ,, € R" we set
Xog = (xi);er with T :={1,..,n} — {k}
We further assume that
JE={x€eR" : x4 €8 and oxi)=x}=0¢ "({0})
is defined as the null level set of some global defining function of the form
P x€{(x)<;c,n ER" + x4 €S} 0(x) == 0(x) —x ER

for some open domain S C R"".

Example 8.5 (Cylindrical boundaries). Let 1 <k<ny and n = ny + n, for some n; > 1

and ny = 1. Consider a domain S of the form S = (8 x R™) with S C R""' and
assume that

VyeR" st. y €S and VzeR™ we have o(y_z) = d(y_s).
In this situation, the set OE is a cylindrical boundary given by the formula

OE = 0E x R™ with OE := {y ER™ : y eS8 and §(y) :yk}.
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In this context, the coordinates of the outward normal by

; € , .
N'(x) = = (1z0) O50(x-k) + k() (=1))
L+ [V (x|
with the orientation parameter ¢=1 when E = @ !(] — 00,0[); and ¢ = —1 when E =

@ 1(]0, + 0o[). In the same vein, the entries T{: (x) of the tangent vectors T;(x) indexed
by i € 7 are given for any 1 <j<n by

Ti(x) = L) + k() Dq(x4).
Consider the (n x (n — 1))-matrix
T(x) := (Ty(%)s oy The1 (%), Tip1 (%)s ooy T()).

In this notation, the inner product g(x) on the tangent space Ty(OE) is given by the
((n—1) x (n—1))-square Gramian matrix

gx) = TX)T(x)' =1+ Vo(x_x)Vo(x_r)
with the gradient column vector

axl (P(x—k)

axqu)(x*k) c R

Vo(x_g) = (aqu)(x—k))iel - O (%)

Ox, ® (x—k)

We check this claim using the fact that for any i;,i, € Z we have

T To(x) = D (1a() + () O, 0(x-)) (1o06) + 14(G) O, 0(x-))

1<G<n
= 1ii=i, + O @(xk) O, @(xi).
The parametrization of the hyper surface JE is now given by the chart function
Vot 0=(0) €S—y(0) € OE
with
vij<n o Y(0):=12() 0; +1(j) 0(0).
For any 1 <j<n and i, i, € Z observe that
0o, W(0) = TV(0) := T, (W(0)) and  dy, , ¥(0) = 1i,(j) D0, (0).
This implies that
(vz(p(g))il,iz
L+ IV (el
with VZ¢p(0) := (8(),1,0,.2(p(G))(ibiz)ezz.

(90,0, ¥(0)) N (0)) = ¢
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We set (Oy(0)) = T(y(0))" and N¥(0) := N(4(0)). In this notation, we also have
(on*(0))
= (aglw(e), oy Oy NV(0), 0y, NV (0), ... agan(e))

Vie(0)

= - WW(0) = —g(W(0)'Q(0)) with Q(y(0)) =~ -
1+ [[Vo(0)]

Example 8.6. For the cylindrical boundary discussed in Example 8.5, the inner product
and the Weingarten map on the boundary OF are given for any y € OF by the matrices

V20 (y-)
V1419660l

80) =Tty +VO-)VP(-r) and W(y):=e g0~

with the gradient column vector and the Hessian matrix given by
Vo(y-i) = (0,0 (1)) ,cz
Vo) = (B 0n)), oy with T :={L,...m} —{k}.

Observe that
A~ A vz 7 - 0 m—1ny
@) =1+ Vo 0-F and Tz = (5 PO foctn ),

In this case, the inner product and the Weingarten map on the boundary OE are given
for any point x = (y,z) € (OE x R™) by the matrices

g(x) — <§(y) 0(711—1,112)) and W(x) _ (W()/) O(ﬂl—l,nz) )

O(ﬂz,nrl) I(nz,nz) O(nz,nrl) O(nz,nz)

Observe that the above matrices are bounded (w.r.t. any matrix norm) as soon as OF
is bounded.

More generally, assume that the boundary JE C U,c;yO(1) C R" admits a finite cov-
ering by open connected subsets O(1) C R” indexed by some finite set 7. In addition,
there exists some local defining smooth functions ¢, with non-vanishing gradients on
O(1) such that

OE(1) :=0ENO(1) = ¢, '({0}) and E(1):=ENOG) =, '(]0,00[).

Up to shrinking the set O(1), by the implicit function theorem there is no loss of
generality to assume that the defining functions are given by

B x= (%) i € O ,(x) = 0,(x ) — 3,

for some parameter 1 <k, <7 and some smooth function ¢, on some ball S(1) C R"'.
We set Z, :={1,...,n} — {k,}. In this notation, the parametrization of the hyper surface
OE(1) is now given by the smooth homeomorphism
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U, 0 0= (0)icr, € S()=,(0) € E()  with i(0) := 17,() 0; + 1x,(j) .(0).
(133)

The first and second fundamental forms on T,(0E(1)) as well as the Weingarten map
at x € OE(1) are given by

&%) =1+ Vo, (x_)Veo(xy)
0,(x) Volx i)

V14 190,ei)IP

The atlas A = (,,S,),.; represents a collection of local coordinate systems of the

and W, (x) := g.(x)"'Q(x).

boundary OE = U,c70E(1). In this situation, the surface form on OE and the volume
form op, g on D,(E) expressed in the atlas A are defined by the formulae

07(d0) =Y m(,(0)) 1s)(0) \/1+ [IVe,(0)]]* d0

1eJ
o ) (d(0:10) =Y 1 (,(0)) Lsg)(0)|det(T —u Wi(,(0)] /1 + [[Ve,(0)]* du.
1€J
In the above display, n, : OE— [0,1] stands for some partition of unity subordinate

to the open cover of the boundary induced by the atlas.

Example 8.7. Observe that the metric in the graph model discussed in Example 8.2 is not
necessarily bounded. In this context, we can also use for any a < ay < b_ < b a covering
of the form

0(0) = |a, b[xR O(—1) =]b_, + o[xR and O(1) =] — oco,a[xR.

For instance when ¢(z) = z? and (a,a,,b_,b) = (=2, — 1,1,2) we have

O0E(0) = {(x1,x2) €] — 2,2[x]4,00[ : x2 = y(x1)}
OE(1) = {(x1,%2) €] — 00, — 1[x]1, + 00[ : x1 = @;(x2)}
PE(~1) = {(1, %) €] oo[x]1, + 00l : 1 = g_,(x2)}

with the functions
¢o(z) =7 and Vec {-1,1} ¢.(z) = —ey/z.

Whenever E is the sub-graph of ¢, the parameter € € {—1,1} plays the role of the orienta-
tion and the outward pointing unit normal vector at x € OE(0) and y € OE(¢) are given by

No(x) = JT}ZE%' <2_x11) and N, (y) = Hi/(%) (_6/_\}@;)

The tangent vectors at x € OE(0) and at y € OE(¢) are defined by
To(x) = (2)16 > and Te()’) — <_€/(1\/ 4)/2) >
1

The above sub-graphs can be described with 3 charts {Yg, ¥, \/_,} defined for any
ee{-11} by
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Vo ee]—z,z{H%(@)_@) and Y, : ee]l,oolH%(e) - (‘60\/5)

In this situation, the tangent vectors are given by
o) = Ton(0) = ( 3 ) and 0w (0) = T.(0,0) = (‘6/ (@))

In this context, for any 0 €] — 2,2[ we have

gWo(0)) =1+40* and W(py(0)) = —2 (1 +40%)

-3/2

In addition, for any 0 €]1,00] we have
g (0)) =1+1/(40) and W(W.(0)) = —2¢ (1+40) .

Observe that the metric expressed in the chart {yo, W, W_,} is defined in terms of
bounded functions.

Example 8.8. Consider the hyperbolic paraboloid boundary
IE={(yy3) €R’ = ys =yl +y3}
= OE(0) UOE(1,1) UJE(1, — 1) UOE(2,1) UOE(2, — 1).
In the above display, OE(0) and OE(i,€) with i € {1,2} and e € {—1,1} stands for the
partition defined for any e € {—1,1} by
OE(0) :={y e R’ : (yy2) €S0 ys = @o(y1-32) := 1 + 13}
OE(Le) :={yeR® : (y,33) €S y2= 01 (Y1, 33) = ey/y3 — y1}
IE2,€) :=={y e R : (y1,03) €S y1 =05 (y1,32) = €\/y3 — y3}
with the sets
So:={l.y2) €R* : yi+y; <2}
S:={(ny;) ER* : y3>1 Iy2| < /3y3/4}.

On the truncated boundary OE(0) we use a single chart defined by

0
lpo 0= (91,92) € Sy lpo(e) = 0, € 8E(0)
07 + 03
On OE(1, €) we use the chart defined by
0

Yro @ 0=1(01,05) € S—y (0) = 6\/93—9% € JE(L,¢).
03
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Finally, on OE(2) we use the chart defined by

6\/93—95
‘ﬁz,e : 9:(82’93) ESHwZ,e(g)

= 0, € 0E(2,¢).

For any 0 = (0,,0,) € Sy we have

1 0
o (0) = ( 0 ) and Oy, o(0) = ( 1 )
20, 20,

In this chart, the metric is given by

(14407 40,0, e 1 1+40; —40,0,
s = (U ih ) e s) T a0 @) \ 400, 1+a)

In addition, the outward pointing unit normal at (0) € OE(0) is given by

No(Wo(0)) = ———t ;g; and  Qu(y (9)):;(2 0).
it e\ 0 L@ )\ 0 7

For any 0 = (0,,05) € S we have

1
—601 (6)—
801¢1,6(9) = /63 . 0% and aOSlpl,F(e) = 2 /93 _ 9%
0 1

In this chart, the metric is given by

140 O pa— o
0, — 02 2005 — ¢ _ 1 400, — 07) 2(05 - 02
gy =| B0 200 g g o)t [ A 20 )
- ! 1+ L+ e+ 10 l702) ! 1+ !
2(05 — 6}) 4(0; — 07) o o 2(65 — 67) 05 — 07

In addition, the outward pointing unit normal at , .(0) € OE(1,¢€) is given by

—el
\/—12 €03 —eb,
0; — 0 2\3/2 2\3/2
—€ 50 —e 05 — 0 05— 0
N, (0)) = —— | VL, PR ) ——— VR
6 L . 1+ 0 4 1 o 7
-0 T 300 05=07 " 40507 -0 - 07
D) Zm 0507 T a0s-05) \ (05 — 07) 4(05 — 07)

Finally, for any 0 = (0,,0;) € S we have

bz e
2 2
0o, W5, (0) = @ and Oy, (0) = ZW

0 1
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In this chart, the metric and the outward pointing unit normal at Y, (0) € OE(2,¢)
are given by

-1

1+ 95 0, —el,
Y iy g 2
80, (0) = 0302 0; 2(0s 102) and Ny (Y (0)) = ——— ,/03: 0?

0
0,02

+ 1

4(0;—0;
R S

1+

— 1
200,-0) a0, -
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Appendix

Proof of (29)
We have
t

(—aPg (V) +¢) du=V +ct — aJ P (V) du
0

s+t
Ps,s+t(V) < V + J

s
and

t

t
J Pyva(V) dut = Py (V) — [ WPy s a(Losa(V)) dtt > 1Py ers(V) — 22,
0 JO

Combining the above estimates, we readily check that

1+ at/2

< +at) 'V +ct.
1+ at (+a) T

Pooot(V)S(1+at) ' V4t

This ends the proof of (29).
Proof of Lemma 2.14 We have

L<Pes(V) <V — J (Psral (V) = ©) du

By Jensen’s inequality

(Pssru(@(V) = @(V)) /u <™ (¢(Ps.s:u(V)) = @(V))

<wt(p(vien= [ Rt av) = ov)
0
Letting u — 0 we conclude that

Li(@(V)) < (99)(V)(c = @(V)) <c (99)(V)
For any s <u <t, this implies that

t

Pu(V) < Puslp(V) + ¢ | Pos((@0)(V) dv
Integrating u € [s, t] and using (134) we conclude that
¢ 2
t—s)

(t=Puslo) < | Palo(v)idu-+ e 1o0l]

N

v+ (e t-9 e ool ©5)

(134)
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We conclude that
Pie(V)) =Pt (VH+10(V) K V4, =V —10(V) + ¢

with the parameter ¢, defined in (36).
This ends the proof of Lemma 2.14. |

Proof of Lemma 2.1 Set V,:=1/2+ pV with p €]0,1[. We associate with these parameters
the function

Ay (0= 802

V,
Héx - 5y||V/,

10 = 0,)M[l,,  p(P(V)(x) +P(V)(y))
S lHp(V) VD) 1+p(V()+ V)

By (9) (with ¢=1/2), whenever V(x) + V(y) = r > ry we have

1 p(V(x) + V(7)) 1
TF oV + V) | 1+ p(VE) + V() (” )

- (“1+p<v<i>+v<y>>) (1‘ (+1>)

This yields for any r > ryvr, the estimate

Ap(xy) <1 —d, (1)

dir) = (1—¢) (1 = jpr) (1 —’7)

Recalling that V > 1/2 we readily check that P(V)/V < (1 +¢€) and
V(x)+V(y)<r
_ PV PWV)(x)/V(x) +pV() (PV)G)/VE))
1+ p(V(x) + V()
This yields for any (x, y) s.t. V(x) + V(y) <r the estimate

Ap(xy) <

with

or
1+ pr’

<(1+¢)

1—ofr) pr
Ay(xy) <1 —do(r) := 1 .
o) L= =0 (g LI
Choosing
o(r) or o(r) 1
= = = =7 _ -
PP = S g T T 2 (1+o)+20
we have
1- €
a0 =20 029 (8
2 (1+e+% r
and

1= d(r) :%/()’()r/)z <1—afr))2.
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We conclude that

By, (M) = XSI;EEA,»(X’)’) <A =dy(N)v(1 = dj(r) <1 = o (n).

This ends the proof of Lemma 2.1. |

Proof of Proposition 2.16 We have the following almost sure estimate ||VX,(x)||, <e %,
where ||A||, stands for the spectral norm of a matrix A. This yields for any x,y € R" the almost
sure estimate

[1X: () = Xe Il < e flx = ll- (135)
Applying the above to y =0 we find that
P(V)(x) <P(V)(0) V(x)'™° with d=1—e""
Next, we check that PX(V)(0) < co. We have
u u 1l
Xu(0) = J (b(0) ds+c dB) +J J Vb(exX(0)) X,(0) de ds.

0 0Jo
This implies that

u

X< B et B+ B[ X ds

0

with f§:= aVv/||b(0)||V||Vb]||. Applying Gronwall lemma we check that

law u
1X,(0)]] < B (u+||Bul]) + B L (s + ||B:|)eP=) ds.
On the other hand, we have

u 1 1
law
JO||BS|| ds—u J 1Bucl| ds' 12 J 1B ds.

0 0
This yields the rather crude estimate
law 1
X Ol < B (ut w IBl) + B w?/2+ pre w2 J [IBS|| ds.
0
For any a > 0 by Jensen’s inequality

1 1
E(J’J"O [|Bsl| ds) < J E(CHHB“H) ds < eazr/Z.
0

It is now an elementary exercise to check that E(e®(©Il) < 0o. This ends the proof of the
proposition. |

Proof of Proposition 2.17 Consider the function

fi(x) == exp (26 <ewf W) — B 1— ewt))

o

= —0logfi(x) =2¢ e (aW(x) + f).
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In the same vein, we check that
Dufe(x) [fi(x) = 2e e D, W
8 (3) = 26 € (26 € B, W0, W+ 0, ).

This implies that
(L(f) — i) /fr
=2 e ((aW+B)+L(W)+ee™ I(W,W)).
Combining the above with (41) we find that
(L)) — 0fi(@) < —2 & e (1— )Ty (W, W)(x) filx) <.
This yields the interpolation formula

E(f(X,(x))) — fi(x) = j;mcfzfs(xs(x)))) 45<0.

We check (42) after some elementary manipulations, thus there are skipped. This ends the
proof of the proposition. |

Proof of Proposition 3.5 Notice that

t

Xth(x) faw & X+ 0y Z=Bg (e x) with ¢:=e" and o, := 5

and some centered Gaussian random variable Z with unit variance. The conjugate formula (74)
yields the integral operator equation

— 2 2

1
R
\/2na? P ( 207 2

Observe that

o pr 1—o; 1—o0;
with
1—¢ 5 )
pri=1 o= tanh(t) <= Op,=1—p; with py=0. (136)
t

We check this claim using the fact that

1 2 1+ € 1

== =1 L=14+—.

o} 1—¢é Tz € + P

On the other hand, we have
1—o?
——+t =cosh(t) and 0O,logcosh(t) = p, = tanh(t).

€t

This implies that

t t
€ 1
=1 h = =exp | — ds |.
J Ds ds ogcosh(t) and 1 2= Cosh(D) e p( Jo ps s)

0
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We also have

l-g=1-"— ="t =t

This implies that

Q1)(x) = 2 @ exp (—5 pt) = ¢ h(x) PI(1/B)().

e t/2 \/_ 1-— Et 2 _ 1
1+e1— Et 1/e + € cosh(t)

omy(x) = —p; mi(x) and Op, =1—p> with (mp(x),po) = (x,0).
This ends the proof of the proposition. |

Notice that

and

Proof of Proposition 3.6 Notice that
et/ /2 Q,(x, dy)

1 y—ex)’ y G+ex)’ »
N (eXP <_ 202 +?> - P (‘ 207 +7>) Lo.co[t) oy

This implies that

67% tanh(t)

cosh(t)

* 1 (y = mi(x))’ (y + mi(x))*
X.[o N (exp (—T) — exp (—T)> dy.

We conclude that

Q) =

7% tanh(t)
Q) = e ¥ P(om)/ VP <2< () VP
-2 tanh(f)

e 2 x
=2 ——xP(0<Z —/—————
cosh(t) < sinh(t)cosh(t))

—0 asx—ooorx—0orast— oo.

In the above display, Z stands for some centered Gaussian random variable with unit variance.
Note that we have used the fact that

x
my(x)/v/pr = cosh(t \/tanh) \/sinh(t)cosh(t).
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In addition, we have
_ 1
Q(xdy) =
IP’(O <Z<x/ sinh(t)cosh(t))

1 (y — mi(x))* (y + me(x))*
Xz\/Zn—p, (exp (— 20 ) — exp <_T>> Lo,00[0) a:

This ends the proof of the proposition. |

Proof of (52)
The generator of the process (51) is defined by

L. p O OW o2 p\of o* O
L(f)(q.p) =B m g <8_q+7 E) .

Recalling that 2pg < p? + g%, we prove that

2

V(q,p)<§(%+e> P+ (%H) g+ W)
<C() (140" + 4" + Wlg)

with

2

+o—

Under our assumptions, this implies that for any |q| > r we have

g [L(Zoc) pres W +a)] <2

m 2m 2m
<= Cu68) (1+p°+ 7+ W(q)) + cmle0)

with

Ca(6,5) == B min{ (l (”—2 e ),e 5)} and  cn(66) = Cy(60) + 2.

2m
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We conclude that for any |g| > r,

o CCl6d) (149 + 4+ W(q) = cm(e0)
(V'L(V))(g.p) < V(ar)
< Cu(6d) (1+p*+q*+ W(q) — cn(e9)

Cr(e) (1+p*+q*+ W(q))
_Gled)  enle) !

C(e)  Ce) 1+p*+4q*+ W(q)

Ci(

g_

68)  cnled) 1
)

Ce)  Ce) 14+p+4
We choose r sufficiently large to satisfy

p| >r or |gq|>r

Ci(6,0) cm(€0) 1 Ci(6,9) cm(e9) 1 o )
T 0 PrEC Ol ol P20 Y

and we set

K, == {(g.p) ER* : |plvig|<r}.

In this notation, we have

L(V)<—aV 1g g +supL(V)< —aV +c¢ with c:=supL(V)+asupV.
K, K, K,
Proof of (77)

Observe that for any 0 < y<1 and z € E =0, oo[ we have

sinh(yz) <y sinh(z) and sinh(z) <

N | =

This implies that

[" ot | <mnmo) = (= 7)) 4
X, - Lsinh(my(x)) ———— X — exp | -2 :
o ) y ' cosh(t) 0 TP P 2py 7

from which we check that

J, e | nonm< exp (~(3 () = %))
>

0

On the other hand, for any n
i Qlxdy) y

L iex —ﬂ—x—Z JOO " ex ex—i d
cosh(t) \ mp: P 2p, b 0 yoeR e 2p, s

2 1 2

y X
yetx_2_pt _E( _Etxpt)z +7 € pr

1 we have

<

SR

Notice that

so that



STOCHASTIC ANALYSIS AND APPLICATIONS e 77

o 1 1 2
bl d " < o - — -
J Qi dy) y 2 cosh(t) \/ 7p:

K 2 & 00 n 1 2
xep| =5 (A=) pt o by exp —op )’ ) dy.

For any n > 1, we conclude that
V(x) :=x"+1/x =V €Cx(E) and ||Q¢«(V)]] < c0.
This ends the proof of (77). |

Proof of Lemma 4.2 To simplify notation, we write Q, instead of QgU]‘ For any V €
B (E) N D(L) we have

Q(V)=V+ J:) Q:(L(V) — UV) ds

t t

[—a Qi(V)+c Q1)) ds = V+c[t Qs(1) ds — aJ Qs(V)ds.

<ve|
0

0
On the other hand, through integration by parts we have

j Q(V)ds = s Qv - |

0

t

d
s %QS(W) ds

=t Q(V)— J; s Q(L(V)—UV) ds=t Q(V) — CJ: s Qs(1)ds.

This implies that

t

Qi(V) < V+cjt Qi(1) ds — a(t Q(V) - cJ s Qs(l)dS)

0

from which we conclude that

\%4 t Vv
< < — .
(V)< 1+at+CL Qs = QV) < et

This ends the proof of (90). Now, we come to the proof of (91). We have the forward evolu-
tion equation given for any f € D(L) by

0 (f) = Q(LY()).
Applying the above to f= U we readily check that
atQt(U) <ag+a; Qt(U) - Qt(Uz) <ap+a; Qt(U) - (Qt(U))Z/Qt(l)
from which we find the Riccati estimates
2QU)<ag+a, Q(U) — (Q(U) =Vt>0 [|Q(U)|| < oc.
This ends the proof of the lemma. |

Proof of (87)
By Girsanov theorem we have

9 (f)(2) = E(f(X0(2)) Z(2) Loyt
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with the exponential martingale

Zy(z) = exp <1J a(X,(z))" dB; L J lla(X:(2))|? ds).

0 J)o 202 0

By Holder’s inequality, for any non-negative function f on E, any z € E and any conjugate
parameters p,q > 1 with 1/p +1/q = 1 we have

O (f)(2) SE(Zi(2)! 1) Q1 (1)(2)' .
On the other hand, we have

E(Zi(2)? 1) = E(Z,(z) €xp <q(q ) L lla(X:(2))II” ds) 1T°(Z)>t> <alp) = exp (ﬁtl)a)z sup a)

202 D

with the exponential martingale
> q ' 612 ! 2
Zu(z) = exp [ 2 J a(X,(2)) dB, L J lla(X(2))]| ds>.
o Jo 20% ),

This ends the proof of roof of (87). |

Proof of Lemma 5.2 For any z € OE there exists some open ball B(z,r) C R" with r>0 and
some C'-mapping g from R""! into R such that

ENB(z,r) ={x € B(z,7) : x, < g(x_n)}
OENB(z,r) ={x€B(z,r) : x, =g(x_p)} with x_,:= (x1,..,%-1).

We make the change of variables

E(z,1r) := ENB(z,7)

= g(x) i= (XX, — g(x_)) € Oz, 1) :=¢(E(z, 1)) € (R™ x R,)

with Jacobian

Inf X(n— -V, X—n
R )

Observe that

¢ : x€&lzr):=(0ENB(z7))

= ¢(x) = (x_n, 0) € Op(2,7) := ¢(Eo(z, 1)) C (R x {0}).
The inverse is given by

y€O0(zr) = () = (-nya+80-n) € E(z1)

— I n— X(n— v —n
= i) = (Moo V),

On the other hand we have

1) = <@l = (heon = %l + (0 — 2l + Ige0) — gE-0)))

< (||x—n - x—nHz + 2[x, — j‘n|2 + 2||VgH2Hx—n - ’?—HHZ

<clg) |lx—x||  with ¢(g) :=1/2v(1 +2|\Vg||2) >1.

1/2

)1/2
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In the same vein, we have
_ 1 _ 1 _ _ 1
™) =<' @II<clg) lly =7l so that @ ly =7l <lls™' o) =<' @)II-

For any x € £(z,r) and X € &(z,r) we have ¢(x) € Oy(z,r) and

x| = |lc (c(x) — ¢ M e(x L”x—a_c L”x.
[l = x|l = [lc™ (c(x)) =<7 ()| = @ lls(x) — ()l = @ |5 (%),
Taking the infimum of all x € So(z, r) this implies that
1 B
d(x,Eo(z1)) = (g) c(x),| and d(c(y),E(z 7)) = @ [ynl
for any x € £(z,r) and y € O(z,r). We conclude that
J 1(d(x,E0(z,1))) dx
E(z,1)
=] e L) Wl O] < s s [dals O] [ ) dy <o
O(z,r) yeO(z,1) O(z, 1)

We end the proof of the lemma by covering OE by finitely many boundary coordinates patches
(E(zinri). i), <i<p for some z; € OE, r; > 0 and some local defining functions g;. [ |

Proof of Lemma 5.9 Using the change of variable formulae
J £(2) 00.0(d2) :J Flz+1N(2)) | det(I —r W(2))| oo(dz)
OE, OE
and

|, @) ootae) = | fle=m¥(e) | decir W] a0, ()

OE,

we check that

LE £(2) 6,/(d2) < () J flz+N(2))) op(d2)

OE
and
[ £(2) caldz) < K5<oc>j flz—N() 0a,(de).
JOE OE,
This yields the estimate
J £(2) Ga(dz) < 1(2) Kka() j ¢(2) oo(dz).
OE, OE
In the same vein, we have

| @ catdr) <t )] gte) atie)
OE 0

E,
Integrating w.r.t. the parameter r € [0, %] we check the co-area estimate
o J f(z) oa(dz) < l(oc)Kg(oc)J dr J g(2) 04,+(dz2)
OE 0

OE,

1) k5 )|gle) de

Dy (E)

This ends the proof of the lemma. |
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Proof of Proposition 8.4 For any given 0 := (0,...,0,) € (R" x [0,7]) we set 0_, :=
(61, ..., 0,—1). In this notation, we have

b0 ®x[0.]) - d0) = FW0.)0,)
= l//(éfn) + én N(‘P(éfn)) € Dr(E)

The volume form op, (g on D,(E) expressed in the chart i is given by

(™) ) = | der( 1ac@)0)] =/ den((00) 09(0)') .
Arguing as above, we have
@30) = (9 .9®) 0,60 € (T, (B
with the tangent vectors
(00, 9®) = (06,00),.. 0, 5(®))  and 0, 1(0) = N((D,).

In addition, we have
Y _ ;. =
(3., 0®) = (@w(0-))" +0, (ONW(
This yields the formula

!
|
=
N
N
=
=
I
—
o5
<
~
=
=
N
=
—
~
[
>
=
=
<
~
5
g
N
=
SN—

from which we check that
(06/(0) (23(9))' = (gW g 1
We conclude that

\/det((l/}é ) (99/(0)) ) Wldetl—f) W(0-,)))]

and therefore
(00,0 ") (dB) = [det(1 — B, W(H(B_))| dB (000" ") (dD-).

For any given 0, = u € [0,7], the volume form 6, on the boundary 9E, expressed in the

boundary chart

U(ou) : 0 € Ry (0,u) = F(Y(0),u) € OE,

is given by

(00,4 (. u) ") (d0) = |det(I —u W((0))| (c0,0°% ") (d0).

This ends the proof of the proposition.
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