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Abstract

Optimal Bayesian multi-target filtering is, in general,
computationally impractical due to the high dimensionality
of the multi-target state. Recently Mahler, [9], introduced a
filter which propagates the first moment of the multi-target
posterior distribution, which he called the Probability Hy-
pothesis Density (PHD) filter. While this reduces the di-
mensionality of the problem, the PHD filter still involves
intractable integrals in many cases of interest. Several au-
thors have proposed Sequential Monte Carlo (SMC) imple-
mentations of the PHD filter. However, these implementa-
tions are the equivalent of the Bootstrap Particle Filter, and
the latter is well known to be inefficient. Drawing on ideas
from the Auxiliary Particle Filter of Pitt and Shephard [10],
we present a SMC implementation of the PHD filter which
employs auxiliary variables to enhance its efficiency. Nu-
merical examples are also presented.

1. Introduction

Multi-target filtering is a dynamic state estimation prob-
lem in which both the number of hidden targets and the lo-
cations of the targets are unknown. Additionally, the tar-
gets appear and terminate at random times. The modelling
of multi-target dynamics in this manner naturally incorpo-
rates track initiation and termination, a procedure that has
mostly been performed separately in traditional tracking al-
gorithms.

As in the single-target case, optimal multi-target filter-
ing involves the propagation of the posterior distribution
through Bayes’ law. Exact optimal multi-target filtering is
impossible in many cases of interest due to the presence of
intractable integrals in the filtering recursion. The applica-
tion of numerical methods (Monte Carlo or otherwise) to
approximate the optimal filter is extremely computationally
intensive due to the high dimensionality of the multi-target
state.

Consider the state space of a single target,E ⊂ R
d.

Each point in this space may specify, for example, the po-
sition and velocity of the target. Multi-target filtering in-
volves computation of a distribution on the number of tar-
gets and each of their locations inE. The multi-target pos-
terior is therefore a probability distribution on the disjoint

union
⊎

k≥0 E
k.

A more tractable alternative to the optimal multi-target
filter is the Probability Hypothesis Density filter of Mahler,
[9], which propagates the first moment of the multi-target
posterior, known as the intensity function or PHD.

While multi-target tracking is a mature field, the Point
Process formalism behind the derivation of the PHD filter is
new to the area. The PHD filter has recently been the focus
of much interest due to its favourable performance in multi-
target tracking as compared with traditional approaches. In
this paper we present a new SMC implementation of the
PHD filter which is much much efficient than the algorithms
proposed in the literature thus far [13], [11], [15]. We refer
the reader to [1] for other approaches to multi-target track-
ing not based on the Point Process formalism.

2. The PHD Filter

The intensity function,α : E → R+, of the multi-target
posterior is useful because it yields the expected number of
targets in any region of the state space:

E[N(A)] =

∫

A

α(x)dx, A ∈ B(E).

whereN(A) is the number of targets in the setA (for the-
oretical details, see [3]). Peaks in the intensity functioncan
be used to estimate target locations and the total mass of the
intensity function provides an estimate of the total number
of targets. A filtering scheme which propagates only this in-
tensity function, as opposed to the full posterior, is attractive
as the dimensionality of the problem is effectively reduced
to the dimensionality ofE.

The PHD filter consists of a prediction and update oper-
ation which propagates the intensity function of the multi-
state posterior recursively in time [9]:

αn(xn) =

∫

E

f(xn|xn−1)pS(xn−1)α̂n−1(xn−1)dxn−1

+ γ(xn), (1)



α̂n(xn) =

[
1− pD(xn)

+

Mn∑

m=1

ψn,m(xn)

〈ψn,m, αn〉+ κ(zn,m)

]
αn(xn), (2)

where

ψn,m(x) = pD(x)g(zn,m|x),

〈ψn,m, α〉 =

∫

E

ψn,m(x)α(x)dx.

In this notation,αn and α̂n are respectively the predicted
and updated intensities on the state spaceE, pS(x) is the
probability that a target atx survives,f(xn|xn−1) is the
transition density of as single target (it is assumed that all
targets follow the same transition model),γ is the birth in-
tensity,pD(x) is the probability that a target atx is detected,
g(zn,m|x) is the likelihood for themth observation at time
n,Mn is the total number of observations at timen andκ is
the clutter intensity.

Whilst the PHD filter reduces the dimensionality of the
problem, the PHD recursion still involves intractable in-
tegrals in many cases of interest, the exception being the
‘linear-Gaussian’ case, [12]. In general Monte Carlo meth-
ods are called for.

3. Sequential Monte Carlo

Sequential Monte Carlo methods have become a stan-
dard tool for computation in non-linear optimal filtering
problems, [5], and in this context have been termedpar-
ticle filters. These algorithms recursively propagate a set of
weighted random samples, termedparticles, which are used
to estimate integrals of interest. A typical SMC algorithm
recursively proposes and weights samples, with occasional
resampling from the discrete distribution defined by the par-
ticle weights.

In order for a SMC scheme to be efficient, it is im-
portant to ensure that the variance of the weights is min-
imised. Weights with high variance will rapidly degenerate
over time, concentrating all mass on a single particle, yield-
ing poor estimates. Under these circumstances, resampling
must be performed frequently, which further increases the
variance of estimates, locally in time. Therefore an impor-
tant factor in the practical efficiency of SMC methods is the
mechanism by which particles are proposed. If degeneracy
of the weights is to be avoided, this mechanism should take
into account information from the observations and drive
particles into regions of high probability.

The Auxiliary Particle Filter (APF) of Pitt and Shephard,
[10], involves the selection of particles for propagation by
drawing particle indices (the auxiliary random variables)
from a discrete distribution defined in terms of an additional
set of particle weights. These weights are defined to reflect

each particle’s ability to explain the observation at the next
time step. Intuitively, this scheme can work well because
it selects particles which are likely to end up in regions of
high probability.

4. Particle PHD Filter

A particle implementation of the PHD filter in its full
generality was proposed in [13], around the same time as
two other independent works [11] and [15]. In [11], only
the special case without clutter was considered. On the
other hand, [15] describes an implementation for the special
case with neither birth nor spawning. The theme common
to these approaches is the propagation of a particle approxi-
mation to the intensity function through the PHD recursion
(1) and (2).

One iteration of existing particle PHD filters is outlined
as follows. Samples are drawn from a proposal distribution,
conditionally upon the previous particle set, and weighted
in accordance with the prediction operation. Supplemen-
tary particles dedicated to the birth term are then added.
This yields an approximation to the predicted intensityαn,
which is itself used in its entirety to approximate the inte-
grals of the form〈ψn,m, αn〉 in the denominator of (2). The
particles are then re-weighted according to the update oper-
ator and resampling is performed.

In this framework it is not obvious how to choose the
proposal distribution in order to minimise the variance of
the weights. In practice the prior distribution is chosen as
the proposal, which is sub-optimal, and this is the analogue
of the ‘bootstrap’ particle filter, which is well known to be
inefficient.

Convergence results establishing the theoretical validity
of the particle PHD filter have been obtained in [14], [7] and
[2].

5. Auxiliary Particle PHD Filter

5.1 Outline of the Approach

The basic idea of our proposed auxiliary particle PHD
filter, drawing on ideas from [10], is to redefine the sam-
pling problem on a higher dimensional space by introducing
auxiliary random variables which index particles and obser-
vations. In this framework the construction of proposals tai-
lored to observations is straightforward. This is in contrast
to existing particle PHD filters, for which it is not obvious
how to construct such proposals.

In order to ease exposition, suppose that, at timen − 1

we have available a particle set{x(i)
n−1, w

(i)
n−1}i=1:N which

approximateŝαn−1, in the sense that for some test function
ϕ:

N∑

i=1

ϕ(x
(i)
n−1)w

(i)
n−1

a.s.
−−−−→
N→∞

∫
ϕ(x)α̂n−1(x)dx. (3)



As a notational device, we will introduce an additional par-
ticle, (x(N+1)

n−1 , w
(N+1)
n−1 ), with the conventions that:

w
(N+1)
n−1 =

∫
γ(x)dx,

f(x|x
(N+1)
n−1 ) =

γ(x)∫
γ(x)dx

,

pS(xN+1
n−1 ) = 1.

The value ofx(N+1)
n−1 can be assigned to any point in the state

space as it is irrelevant. This ‘source’ particle doesnotenter
into estimation of an integral of the form (3) at timen− 1,
but will merely act symbolically as a source of intensity at
timen, unifying notation when expressing the birth term in
the prediction operation (1). We augment the particle set
with thisN + 1th particle to yield{x(i)

n−1, w
(i)
n−1}i=1:N+1.

Furthermore, we introduce a nullMn + 1th observa-
tion index to unify notation when dealing with the missed-
detection term in (2), and defineMn = {1, 2, ...,Mn + 1}.

Let ηn : E ×{1, 2, ..., N + 1}×Mn → R+, be defined
as follows:

ηn(x, j,m) = Gn,m(x)f(x|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1,

where form ∈ {1, 2, ...,Mn},

Gn,m(x) =
ψn,m(x)

SN
n,m + κ(zn,m)

,

and form = Mn + 1,

Gn,m(x) = 1− pD(x).

SN
n,m is a consistent estimate of〈ψn,m, αn〉, discussed in

further detail below. Then from (2), we have, for some test
functionϕ,

N+1∑

j=1

Mn+1∑

m=1

∫
ϕ(x)ηn(x, j,m)dx

=

N+1∑

j=1

Mn+1∑

m=1

∫
ϕ(x)Gn,m(x)f(x|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1dx

a.s.
−−−−→
N→∞

∫
ϕ(x)α̂n(x)dx. (4)

Thus, asymptotically in the number of particles at the pre-
vious time step, the marginal ofηn is the intensity function
of interest,α̂n. The approach of the auxiliary particle PHD
filter is to approximate the integral in (4) using importance
sampling. The advantage of this approach, as further de-
scribed below, is that it naturally accommodates an efficient
proposal mechanism.

The method consists of drawing samples from a pro-
posal distributionqn(x, j,m) defined onE×{1, 2, ..., N+
1} ×Mn, whose support includes that ofηn(x, j,m), and
weighting them accordingly, having calculated eachSN

n,m

as a local Monte Carlo integral.

As recommended in [13], the number of particles should
be adjusted at each time step to reflect the estimated num-
ber of targets. Such adaptation can be straightforwardly
accommodated in the auxiliary particle scheme presented
here. However, for ease of presentation and without loss of
generality we describe the algorithm for fixed number,N ,
particles.

5.2 Choice of Proposal Distribution

We can design a proposal distribution by first not-
ing that we are able to factoriseηn(x, j,m) =
ηn(x|j,m)ηn(j|m)ηn(m), where form ∈ {1, 2, ...,Mn},

ηn(x|j,m) =
ψn,m(x)f(x|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1

〈ψn,m, f(·|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉

,

ηn(j|m) =
〈ψn,m, f(·|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉∑N+1

j=1 〈ψn,m, f(·|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉

,

ηn(m) =

∑N+1
j=1 〈ψn,m, f(·|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉

SN
n,m + κ(zn,m)

.

(5)

Similary, form = Mn + 1,

ηn(x|j,m) =
[1− pD(x)]f(x|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1

〈[1− pD(·)], f(·|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉

,

ηn(j|m) =
〈[1 − pD(·)], f(·|x

(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉∑N+1

j=1 〈[1− pD(·)], f(·|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉

,

ηn(m) =

N+1∑

j=1

〈[1− pD(·)], f(·|x
(j)
n−1)pS(x

(j)
n−1)w

(j)
n−1〉.

(6)

Noteηn(m) is not normalised and this is not the only pos-
sible decomposition.

A natural choice of proposal distribution factorises in the
same manner, i.e.qn(x, j,m) = qn(x|j,m)qn(j|m)qn(m),
with each term being a normalised approximation to the cor-
responding term in (5) and (6). The act of sampling from
qn(m) essentially allocates the number of particles which
are going to be used to explore each observation, and sam-
pling fromqn(j|m) selects which particles to propagate for
each observation.

Intuitively, this scheme can be efficient for two reasons.
Firstly, through careful choice ofqn(m), it allows us to
concentrate effort on those observations which are likely
to originate from true targets. Secondly, through careful
choice ofqn(j|m) andqn(x|j,m), this approach allows the
automatic selection and proposal of particles which are best
suited to each of these observations, as in the standard aux-
iliary particle filter [10].

A method which was proposed in [10] can be used here
to define the discrete distributionsqn(m) andqn(j|m). The
idea is to approximate (5) and (6) by approximating each of



the integrals therein using either the mode off(x|x
(j)
n−1) or

its mean. Form ∈ {1, 2, ...,Mn},

qn(m) ∝

∑N+1
j=1 ψn,m(x̂

(j)
n )pS(x

(j)
n−1)w

(j)
n−1

∑N+1
j=1 ψn,m(x̂

(j)
n )pS(x

(j)
n−1)w

(j)
n−1 + κ(zm)

,

qn(j|m) =
ψn,m(x̂

(j)
n )pS(x

(j)
n−1)w

(j)
n−1∑N+1

j=1 ψn,m(x̂
(j)
n )pS(x

(j)
n−1)w

(j)
n−1

.

and form = Mn + 1,

qn(m) ∝

∑N+1
j=1 [1− pd(x̂

(j)
n )]pS(x

(j)
n−1)w

(j)
n−1

∑N+1
j=1 pS(x

(j)
n−1)w

(j)
n−1

,

qn(j|m) =
[1− pd(x̂

(j)
n )]pS(x

(j)
n−1)w

(j)
n−1∑N+1

j=1 [1− pd(x̂
(j)
n )]pS(x

(j)
n−1)w

(j)
n−1

,

where,
Mn+1∑

m=1

qn(m) = 1,

and

x̂(i)
n =

∫
xf(x|x

(i)
n−1)dx or argmax

x
f(x|x

(i)
n−1).

Variants of the proposed scheme involve assigning a fixed
or minimum number of particles to each observation, but we
do not discuss these approaches further here. Forj = N+1,
the above scheme will only be of use whenγ(x) is uni-
modal and localised. Various methods, as in the stan-
dard particle filter, can be used to construct an efficient
qn(x|j,m), see [6] for some examples.

As in existing particle PHD filters, in order to compute
the particle weights, it is necessary to obtain Monte Carlo
approximations to the integrals of the form〈ψn,m, αn〉. Let

{x
(i)
n , j

(i)
n ,m

(i)
n }i=1:N beN samples fromqn(x, j,m). One

possibility, applicable when targets are well separated, is to
compute each integral using theNm particles assigned to
the corresponding observation. In this case, we have:

SNm
n,m =

1

Nm

∑

i∈Υn,m

[
ψn,m(x(i)

n )

×
f(x

(i)
n |x

(j(i)
n )

n−1 )pS(x
(j(i)

n )
n−1 )w

(j(i)
n )

n−1

qn(x
(i)
n |j

(i)
n ,m)qn(j

(i)
n |m)

]
,

whereΥn,u = {i ∈ {1, 2, ..., N} : m
(i)
n = u} andNm =

#Υn,m. Note that under the auxiliary particle PHD filtering
scheme, in evaluating the importance weights we need not
computeSNm

n,m for anym such thatNm = 0.
The algorithm for the auxiliary particle PHD filter is

given below, withk0 being the expected initial number
of targets. We advocate the use of low variance sam-
pling methods when drawing from the discrete distributions
qn(j|m) andqn(m), for example as in the residual and strat-
ified resampling schemes, see [4] for comparisons.

Algorithm 1 Auxiliary SMC PHD Filter
1: n = 0
2: for i = 1 toN do
3: x

(i)
1 ∼ q0(x)

4: w
(i)
1 = 1

N
k0

5: end for
6: n← n+ 1
7: for i = 1 toN do
8: m

(i)
n ∼ qn(m)

9: j
(i)
n ∼ qn(j|m

(i)
n )

10: X
(i)
n ∼ qn(x|j

(i)
n ,m

(i)
n )

11: end for
12: for m = 1 toMn do
13: if Nm > 0 then

14: SNm
n,m = 1

Nm

∑
i∈Υn,m

[
ψn,m(x

(i)
n )

×
f(x(i)

n |x
(j

(i)
n )

n−1 )pS(x(i)
n )w

(j
(i)
n )

n−1

qn(x
(i)
n |j

(i)
n )q(j

(i)
n |m

(i)
n )

]

15: end if
16: end for
17: for i = 1 toN do
18: w

(i)
n = 1

N

ηn(x(i)
n ,j(i)

n ,m(i)
n )

qn(x
(i)
n ,j

(i)
n ,m

(i)
n )

19: end for

6. Results

We present simulation results to demonstrate the im-
provement in efficiency over the bootstrap particle PHD fil-
ter which is possible under the proposed scheme.

Consider a constant velocity tracking model for a ve-
hicle whose position is specified in two dimensions, re-
stricted to the window[0, 100] × [0, 100]. The state of a
single target is specified by a4 dimensional vectorxn =
[xn,1 xn,2;xn,3 xn,4]

T ; [xn,1 xn,3]
T specifies position and

[xn,2 xn,4]
T specifies velocity. The target dynamics are de-

fined by:

xn =





1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



xn−1 +





v1
v2
v3
v4





wherev1, v3 andv2, v4 are i.i.d. zero mean Gaussian with
varianceσ2

x,1 = 0.09 andv2, v4 are i.i.d. zero mean Gaus-
sian with varianceσ2

x,2 = 0.0025. Probability of sur-
vival is setpS = 0.98 and the birth intensity is defined as
γ = 0.2N (·;xb, Qb), where:

xb =





30
0
30
0



 , Qb =





9 0 0 0
0 1 0 0
0 0 9 0
0 0 0 1





The position of the target is observed in additive, isotropic
Gaussian noise with varianceσ2

z = 0.04. The clutter inten-
sity is setκ = 0.001 uniform on[0, 100]× [0, 100], corre-



sponding to an average number of10 clutter points per scan.
Without loss of generality, in this example we setpD = 1.

While the structure of this model is simple, the low ob-
servation noise is a challenge for SMC algorithms. The lo-
calisation of the likelihood means that blind proposals have
little chance of putting particles in regions of high weight.

The auxiliary particle PHD scheme described above was
run with 3000 particles at each iteration. The proposal dis-
tribution was designed as specified in section (5.2), with
qn(x|j,m) = f(x|x

(j)
n−1). Therefore results illustrate the

improvement in performance due to auxiliary variable tech-
niques alone, and further improvements in performance can
be expected through more structured design ofqn(x|j,m).
Results show comparison with the particle PHD scheme of
[13], proposing from the prior with a total of3000 par-
ticles including1000 particles allocated for births. Both
algorithms were initialised withk0 = 2, sampling from
N (·;xb, Qb).
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Figure 1. Observations.

Figure (1) shows a typical observation record generated
from the model for the ground truth data displayed in fig-
ure (2). As noted in section (2), the peaks in the intensity
function can be used to obtain state estimates. Typically
this requires heuristic clustering of the particles, followed
by estimation within each cluster. For the auxiliary parti-
cle PHD filter, there is a natural method which can be em-
ployed to this end without the increased computational cost
of employing a clustering algorithm. This consists of sim-
ply computing estimates from particles clustered by which
observation they are assigned to, and can be expected to
work well when the clutter intensity is not too high. MMSE
estimates computed using this method for a single run of the
auxiliary particle algorithm are shown in figure (2).

Figures (4) and (5) show histograms of estimates of the
number of targets from the two algorithms, averaged over
200 runs, each with a different observation set. The ground
truth is shown in figure (3). Note that estimates of the num-
ber of targets are not affected by heuristic clustering as they
are made on the basis of the total mass of the particle set.

0 5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

90

n

x

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

n

y

Figure 2. Ground truth target positions (solid line) and
state estimates (crosses) for auxiliary particle PHD
filter.
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Figure 3. Ground truth number of targets.

Figure 4. Auxiliary particle PHD filter. Estimated
number of targets averaged over 200 observation re-
alisations.

The estimates from the bootstrap algorithm show more un-
certainty, frequently under estimating the number of targets.
This is due to the bootstrap algorithm loosing track of tar-
gets and failing to identify the birth of a target atn = 11.

Figure (6) shows the effective sample size (ESS) of the
normalised particle sets, calculated at each iteration and



Figure 5. Bootstrap particle PHD filter. Estimated
number of targets averaged over 200 observation re-
alisations.
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Figure 6. Effective sample size for auxiliary and boot-
strap algorithms averaged over 200 observation reali-
sations.

then averaged across the200 runs. The ESS, introduced
in [8], provides a measure of the degeneracy of the weights,
and has a maximum possible value of100%. The decrease
in ESS atn = 11 for the auxiliary particle algorithm is
caused by the birth of a target. Birth particles, i.e. those
with j = N + 1, are proposed from the prior and cannot
benefit from auxiliary particle index effects from the pre-
vious time step. Performance at this time step is therefore
the same as for the bootstrap algorithm. A more construc-
tive choice ofqn(x|j,m) would lead to improvements un-
der these circumstances. At all other time steps, the perfor-
mance of the auxiliary algorithm is significantly better than
that of the bootstrap algorithm.

7. Conclusions

We have introduced an auxiliary particle implementation
of the PHD filter. The proposed scheme involves auxiliary
random variables which index particles and observations.
The resulting algorithm samples on a higher dimensional
space than previous particle implementations of the PHD
filter and naturally permits more efficient proposals. Forth-
coming work will give a more detailed analysis of the pro-
posed particle algorithm and its variants.
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