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Abstract unionly, .., E*.

A more tractable alternative to the optimal multi-target
Optimal Bayesian multi-target filtering is, in general, filter is the Probability Hypothesis Density filter of Mahler
computationally impractical due to the high dimensionalit  [9], which propagates the first moment of the multi-target
of the multi-target state. Recently Mahler, [9], introdac®  posterior, known as the intensity function or PHD.
filter which propagates the first moment of the multi-target While multi-target tracking is a mature field, the Point

posterior dlstrlt_)utlon, Wh'(.:h he call_ed th_e Probability Hy . Process formalism behind the derivation of the PHD filter is
pothesis Density (PHD) filter. While this reduces the di- '

. . . o new to the area. The PHD filter has recently been the focus
mensionality of the problem, the PHD filter still involves : . : .
: ) ! ; of much interest due to its favourable performance in multi-
intractable integrals in many cases of interest. Several au . . -
thors have proposed Sequential Monte Carlo (SMC) imple target tracking as compared with traditional approaches. |

Ve prop quent "MPIE~ his paper we present a new SMC implementation of the

t.n;ennstztr'g?seoé th? :IZr?t Sll‘tter:é :g\cl)vtz\t/rzn tgaerstig}g:te;;ma' PHD filter which is much much efficient than the algorithms
' quiv P ' ! proposed in the literature thus far [13], [11], [15]. We refe

the latter is well known to be inefficient. Drawing on ideas the reader to [1] for other approaches to multi-target track
from the Auxiliary Particle Filter of Pitt and Shephard [10] . T app . g
ing not based on the Point Process formalism.

we present a SMC implementation of the PHD filter which
employs auxiliary variables to enhance its efficiency. Nu-
merical examples are also presented. 2 The PHD Filter

1. Introduction The intensity functiong : E — R_., of the multi-target
posterior is useful because it yields the expected number of

Multi-target filtering is a dynamic state estimation prob- targets in any region of the state space:
lem in which both the number of hidden targets and the lo-
cations of the targets are unknown. Additionally, the tar-
gets appear and terminate at random times. The modelling E[N(4)] = / alz)dz, A€ B(E).
of multi-target dynamics in this manner naturally incorpo- A
rates track initiation and termination, a procedure that ha
mostly been performed separately in traditional trackirg a
gorithms.

As in the single-target case, optimal multi-target filter-
ing involves the propagation of the posterior distribution
through Bayes’ law. Exact optimal multi-target filtering is
impossible in many cases of interest due to the presence o
intractable integrals in the filtering recursion. The apgli
tion of numerical methods (Monte Carlo or otherwise) to

whereN (A) is the number of targets in the sét(for the-
oretical details, see [3]). Peaks in the intensity functian

be used to estimate target locations and the total mass of the
intensity function provides an estimate of the total number
of targets. A filtering scheme which propagates only this in-
fensity function, as opposed to the full posterior, is ativa

as the dimensionality of the problem is effectively reduced
to the dimensionality ofs.

approximate the optimal filter is extremely computatiopall ~ The PHD filter consists of a prediction and update oper-
intensive due to the high dimensionality of the multi-targe ation which propagates the intensity function of the multi-
state. state posterior recursively in time [9]:

Consider the state space of a single targetc R<.
Each point in this space may specify, for example, the po-
sition and velocity of the target. Multi-target filtering-in
volves computation of a distribution on the number of tar- @, (z,) = / f(@n|tn-1)ps(@n—1)0n—1(Tn_1)d2, 1
gets and each of their locations i1 The multi-target pos- E
terior is therefore a probability distribution on the disjp + (), (1)



each particle’s ability to explain the observation at thetne
time step. Intuitively, this scheme can work well because

Gn(n) = |1 = pp(an) it_selects pa_rFicIes which are likely to end up in regions of
high probability.

My

Pn m(In) . .
+ : an(ry), (2 4. Particle PHD Filter
2 T an) + Ay | ) @)
where A particle implementation of the PHD filter in its full
generality was proposed in [13], around the same time as
Vn.m(2) = pp(2)g(2n.m|7), two other independent works [11] and [15]. In [11], only

the special case without clutter was considered. On the

B other hand, [15] describes an implementation for the specia

(Won.m, ) = /Ewn’m(x)o‘(x)dx' case with neither birth nor spawning. The theme common
to these approaches is the propagation of a particle approxi

In this notatlo_n,an "?“?d an are respectively the predlcted mation to the intensity function through the PHD recursion
and updated intensities on the state spBces(x) is the (1) and (2)

probability that a target at survives, f(z,|x,—1) is the
transition density of as single target (it is assumed tHat al
targets follow the same transition modey)is the birth in-
tensity,pp () is the probability that a target atis detected,
g(zn.m|z) is the likelihood for thenth observation at time
n, M, is the total number of observations at timandx is

the clutter intensity.

One iteration of existing particle PHD filters is outlined
as follows. Samples are drawn from a proposal distribution,
conditionally upon the previous particle set, and weighted
in accordance with the prediction operation. Supplemen-
tary particles dedicated to the birth term are then added.
This yields an approximation to the predicted intensify
Whilst the PHD filter reduces the dimensionality of the \évgg holfstr:t(i?cl)frun‘(sz(zi:, gi>ei?]tltféy d?nzfnﬁ:\c;)élorri:e(;)h. e_l_lr?;e_

problem, the PHD recursion still involves intractable in- . . i
. . . . particles are then re-weighted according to the update oper
tegrals in many cases of interest, the exception being the

) . ator and resampling is performed.
‘linear-Gaussian’ case, [12]. In general Monte Carlo meth- . plingis p .
In this framework it is not obvious how to choose the
ods are called for.

proposal distribution in order to minimise the variance of
the weights. In practice the prior distribution is chosen as
3. Sequential Monte Carlo the proposal, which is sub-optimal, and this is the analogue
of the ‘bootstrap’ particle filter, which is well known to be

Sequential Monte Carlo methods have become a standnefficient.
dard tool for computation in non-linear optimal filtering Convergence results establishing the theoretical vglidit
problems, [5], and in this context have been terrped of the particle PHD filter have been obtained in [14], [7] and
ticle filters These algorithms recursively propagate a set of [2].
weighted random samples, termeatticles which are used
to estimate integrals of intergst. A typical SM.C algorithm 5. Auxiliary Particle PHD Filter
recursively proposes and weights samples, with occasional
:ifsvmvgil:gnhgtgom the discrete distribution defined by the par 5.1 Outline of the Approach

In order for a SMC scheme to be efficient, it is im- o - ]
portant to ensure that the variance of the weights is min- _ 1he basic idea of our proposed auxiliary particle PHD
imised. Weights with high variance will rapidly degenerate filter, drawing on ideas from [10], is to redefine the sam-
over time, concentrating all mass on a single particledyiel ~Pling problem on a higher dimensional space by introducing
ing poor estimates. Under these circumstances, resamplinguXiliary random variables which index particles and obser
must be performed frequently, which further increases the Vations. In this framework the construction of proposails ta
variance of estimates, locally in time. Therefore an impor- /0red to observations is straightforward. This is in costtra
tant factor in the practical efficiency of SMC methods is the to existing particle PHD filters, for which it is not obvious
mechanism by which particles are proposed. If degeneracy oW t0 construct such proposals. _
of the weights is to be avoided, this mechanism should take [N order to ease exposition, suppose that, at time 1

into account information from the observations and drive We have available a particle 5?*531’107(31}1‘:1:N which

particles into regions of high probability. approximates, 1, in the sense that for some test function
The Auxiliary Particle Filter (APF) of Pitt and Shephard, -

[10], involves the selection of particles for propagatign b

drawing particle indices (the auxiliary random variables)

N
from a discrete distribution defined in terms of an additlona Z gD(I(i) )w(i) a.s. o(2)an_1 (2)dz. 3)
set of particle weights. These weights are defined to reflect — ==l N Lo "



As a notational device, we will introduce an additional par-  As recommended in [13], the number of particles should

ticle, (z nN’l“”, wfﬁ’fl)), with the conventions that: be adjusted at each time step to reflect the estimated num-
ber of targets. Such adaptation can be straightforwardly

wNTY — /7($)dx accommodated in the auxiliary partiple scheme presented

n-l ’ here. However, for ease of presentation and without loss of

generality we describe the algorithm for fixed numhgr,

(N+1) v(x) articles.
f(fL‘|$Cn_1 ) fw(x)dx’ P
ps(@N ) = 1. 5.2 Choice of Proposal Distribution

The value of:" ") can be assigned to any pointinthe state We can design a proposal distribution by first not-

space asitis |rrelevant. This ‘source’ particle doesenter ing that we are able to factorise),(z,j,m) =
into estimation of an integral of the form (3) at time- 1, (|7, m)nn (jlm)n, (m), where form € {1,2, ..., M, },
but will merely act symbolically as a source of intensity at

time n, unifying notation when expressing the birth term in

the prediction operation (1). We augment the particle set Y (@) (]2 Dps (@ wl)

n X " m : )
with this NV + 1th particle to yield{z” ,, w”  }i_1.n 1. T (alfm) = Wy FC129 Dps (@ Hw) )
Furthermore, we introduce a null/,, + 1th observa- ) () )
tion index to unify notation when dealing with the missed- M (jlm) = (Ynm, [ (g~ 1)p5( )wn71>- ’
detection term in (2), and defintt,, = {1,2,..., M,, + 1}. S Wonms £(- 129 ps (@ D)
Letn, : Ex{1,2,...,N+1} x M,, — R, be defined ;
as fo”ows { } * ZN+1 <1/1771 my f( |x77, 1)]75( Eg—l)w’fljzl>
ﬁn(m) SN ¥ H(Zn m)
M(4,m) = G (@) f @l ps (@ (5)
where form € {1, 2, ..., M, }, Similary, form = M,, + 1,
() = . (el — S Po@IGle Dps e
n,m n,m n ’ 1— . (J) 7) IR
(L =ppO)s fClzyZ1)ps (@2 )w,”q)
ndtom =t i = 1= OL A st yul?)
Gnm(@) = 1= pp (). S = po O £l ps (@)l
. . . . . N+1
SN is a consistent estimate 6, ,,,, ), discussed in - G) G) v ()
further detail below. Then from (2), we have, for some test M (m) = ; {1 =pp () fClanr)ps(@n-y)wn -
function, = ©)
N41 M, +1 Noten, (m) is not normalised and this is not the only pos-

Z Z /gp )0 (2, 3, m)da sible decomposition.

=1 A natural choice of proposal distribution factorises in the

N1 M, 41 same manner, i.&y,(z, j, m) = gn(x|j, m)g, (j|m)g.(m),
/ o(2)G (:zr)f(x|x( ps(ab (@) Dw O qz with each term being a normalised approximation to the cor-
n,m Wy 1 . . .
e f—— responding term in (5) and (6). The act of sampling from

gn(m) essentially allocates the number of particles which
a.s. ~ . .
N p(z)ay (r)dz. (4) are going to be used to explore each observation, and sam-
pling fromg,, (j|m) selects which particles to propagate for
Thus, asymptotically in the number of particles at the pre- each observation.
vious time step, the marginal af, is the intensity function Intuitively, this scheme can be efficient for two reasons.
of interesta,,. The approach of the auxiliary particle PHD Firstly, through careful choice aof,,(m), it allows us to
filter is to approximate the integral in (4) using importance concentrate effort on those observations which are likely
sampling. The advantage of this approach, as further de-to originate from true targets. Secondly, through careful
scribed below, is that it naturally accommodates an efficien choice ofg,,(j|m) andg,, (z|j, m), this approach allows the

proposal mechanism. automatic selection and proposal of particles which aré bes
The method consists of drawing samples from a pro- suited to each of these observations, as in the standard aux-

posal distributiony,, (z, j, m) defined onF x {1,2,..., N+ iliary particle filter [10].

1} x M,,, whose support includes that 9f (z, j, m), and A method which was proposed in [10] can be used here

weighting them accordingly, having calculated eﬁf}ﬁm to define the discrete distributiops(m) andg,, (j|m). The
as a local Monte Carlo integral. idea is to approximate (5) and (6) by approximating each of



the integrals therein using either the modefaf|z\,) or  Algorithm 1 Auxiliary SMC PHD Filter

n—1
its mean. Forn € {1,2, ..., M, }, 1n=0
2: for z(): 1to N do
, , , 3 Y ~qlx
S G s (e ol o 7B
Qn(m) x N+1] 7() 5 n = n , 4: wy’ = Nko
T Y (@ ps (2, w4 K(zm) 5: end for
j=1 > n—1 n—1
‘ . . 6:n—n+1
aulilm) = Yo (@ )ps (2wl 7 fori =110 N do
ZN:ﬁl wn,m(&'\g))ps xgzjfl)wnjfl & T,n'n h qn(m) ]
df j o )~ gu(ilmi)
and form = M,, + 1, 100 X~ Qn(x|j7(11)7m511))
N+1 ~(9) () J 11: end for
111 —pa(T Ty )wy
Gn(m) Zj_l [ N_Z?ld( ()J]?S( Z_) Wi , 12: for m = 1to M,, do
> o1 ps(@yZ)wy’y 13:  if N,, > Othen
Gim) - pd(f(j))]ps(xgll)wnj;l 14 S = NLm 2 i€ T m lﬂ’n,m(xs))
an(Jim) = {77 NE - ~—,
PRI pa@)ps (=) Jwl? | £ 295 ) ps () ywn)
where, T @D mE)
My +1 ) .
Z qn(m) —1, 15: end if
~ 16: end for
g = w:fori=1toNdo =
an i n (@), 4y sy
1o i = )
7 = /xf(x|:vff)71)dx or argmaxf(:v|:vff)71). 19: end for
Variants of the proposed scheme involve assigning a f|xed6. Results

or minimum number of particles to each observation, but we

do not discuss these approaches further herej FolV +1, , , )
the above scheme will only be of use whef) is uni- We present simulation results to demonstrate the im-

modal and localised. Various methods. as in the stan-Provementin efficiency over the bootstrap particle PHD fil-

dard particle filter, can be used to construct an efficient € Which is possible under the proposed scheme.
gn(z]j,m), see [6] for some examples Consider a constant velocity tracking model for a ve-
n b ’ - . g . = . . .

As in existing particle PHD filters, in order to compute Nicle whose position is specified in two dimensions, re-
the particle weights, it is necessary to obtain Monte Carlo Stricted to the window0, 100] x [0,100]. The state of a
approximations to the integrals of the for, ., ). Let single target is specified by 4dimensional vector,, =

NoG) (i Y [Zn1 Tn2;Tn3 Tna]®; [n1 Ta.3]T specifies position and
(2,35 mP}i_1.n be N samples frong,, (, j, m). One m1 n,2; T8 Tnal s [Tn1 Tn3)” SP P

T ifi i i _
possibility, applicable when targets are well separatet) i 7,2 Zn,4]" Specifies velocity. The target dynamics are de

compute each integral using thé,, particles assigned to fined by:
the corresponding observation. In this case, we have: 1 1.0 0 v
X R B S 2 IR
Sﬁ% =N Z wn,m(xgzi)) "o 01 " 3
Now o5t 000 1 vy
f(l'gf)|$C(j£‘i;))ps(l'(jgi))w(jgl)) wherev;, v3 andvsy, v4 are i.i.d. zero mean Gaussian with
D0 | variances2 ;| = 0.09 anduv,, vy are i.i.d. zero mean Gaus-
Gn(@n’ [jn” s m)qn (jn" [m) sian with variances?, = 0.0025. Probability of sur-

vival is setps = 0.98 and the birth intensity is defined as

— [ SN () _
whereY,, ., = {i € {1,2,..., N} : my,’ = u} andN,, = + = 0.2N (- 23, Qp), Where:

#7,, . Note that under the auxiliary particle PHD filtering

scheme, in evaluating the importance weights we need not 30 9 0 0 0
computeS;Vr, for anym such thatV,, = 0. 0 010 0

The algorithm for the auxiliary particle PHD filter is To =11 39 | Q@ = 00 9 0
given below, withk, being the expected initial number 0 00 0 1

of targets. We advocate the use of low variance sam-

pling methods when drawing from the discrete distributions The position of the target is observed in additive, isotropi
qn(j|m) andq, (m), for example as in the residual and strat- Gaussian noise with varianeé = 0.04. The clutter inten-
ified resampling schemes, see [4] for comparisons. sity is sets = 0.001 uniform on|0, 100] x [0, 100], corre-



sponding to an average numbenofclutter points per scan. or

Without loss of generality, in this example we ggt = 1. o

70

While the structure of this model is simple, the low ob- 60l
servation noise is a challenge for SMC algorithms. The lo- ™ sof
calisation of the likelihood means that blind proposalsehav a0
little chance of putting particles in regions of high weight sor ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
The auxiliary particle PHD scheme described above was *%o 5 10 15 20 25 30 35 40
run with 3000 particles at each iteration. The proposal dis- 701

tribution was designed as specified in section (5.2), with 60

gn(z|j,m) = f(x|xn 1). Therefore results illustrate the jEM
improvementin performance due to auxiliary variable tech-  ~_|

nigues alone, and further improvements in performance can ZO,M

be expected through more structured desigg,@k|j, m). 10}

Results show comparison with the particle PHD scheme of 0 : ‘ ‘ ’ ’ ’ ’ ‘

0 5 10 15 20 25 30 35 40
[13], proposing from the prior with a total df000 par- n
ticles including1000 particles allocated for births. Both . N o
N (520, Q). s_tate estimates (crosses) for auxiliary particle PHD
filter.
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Figure 1. Observations.

Figure (1) shows a typical observation record generated
from the model for the ground truth data displayed in fig-
ure (2). As noted in section (2), the peaks in the intensity
function can be used to obtain state estimates. Typically
this requires heuristic clustering of the particles, fokal
by estimation within each cluster. For the auxiliary parti-
cle PHD filter, there is a natural method which can be em-
ployed to this end without the increased computational cost
of employing a clustering algorithm. This consists of sim-
ply computing estimates from particles clustered by which
observation they are assigned to, and can be expected to
work well when the clutter intensity is not too high. MMSE
estimates computed using this method for a single run of the
auxiliary particle algorithm are shown in figure (2).

Figures (4) and (5) show histograms of estimates of the The estimates from the bootstrap algorithm show more un-
number of targets from the two algorithms, averaged over certainty, frequently under estimating the number of texge
200 runs, each with a different observation set. The ground This is due to the bootstrap algorithm loosing track of tar-
truth is shown in figure (3). Note that estimates of the num- gets and failing to identify the birth of a targetrat= 11.
ber of targets are not affected by heuristic clustering ag th Figure (6) shows the effective sample size (ESS) of the
are made on the basis of the total mass of the particle setnormalised particle sets, calculated at each iteration and

Figure 4. Auxiliary particle PHD filter. Estimated
number of targets averaged over 200 observation re-
alisations.
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Figure 6. Effective sample size for auxiliary and boot-
strap algorithms averaged over 200 observation reali-
sations.

then averaged across tB80 runs. The ESS, introduced

in [8], provides a measure of the degeneracy of the weights, [10]
and has a maximum possible valuel6H%. The decrease

in ESS atn = 11 for the auxiliary particle algorithm is
caused by the birth of a target. Birth particles, i.e. those [11]
with j = N + 1, are proposed from the prior and cannot
benefit from auxiliary particle index effects from the pre-
vious time step. Performance at this time step is therefore
the same as for the bootstrap algorithm. A more construc-
tive choice ofg,, (x|j, m) would lead to improvements un-
der these circumstances. At all other time steps, the perfor [13]
mance of the auxiliary algorithm is significantly betterrtha

that of the bootstrap algorithm.

7. Conclusions [14]

We have introduced an auxiliary particle implementation
of the PHD filter. The proposed scheme involves auxiliary [15]
random variables which index particles and observations.
The resulting algorithm samples on a higher dimensional
space than previous particle implementations of the PHD
filter and naturally permits more efficient proposals. Ferth
coming work will give a more detailed analysis of the pro-
posed particle algorithm and its variants.



