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Abstract – A new nonlinear filter, the Kalman- Particle
Kernel Filter (KPKF) is proposed. Compared with other
particle filters like Regularized Particle Filter (RPF), it
adds a local linearization in a kernel representation of
the conditional density. Therefore, it strongly reduces the
number of redistributions which causes undesirable
Monte Carlo fluctuations. This new filter is applied to
terrain navigation, which is a nonlinear and multimodal
problem. Simulations show that the KPKF outperforms
the classical particle filter.
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1 Introduction

    The Kalman filter provides a computationally efficient
(recursive) solution to the least square estimator of the
states of the dynamical system. However, if the system
and/ or measurement equations are nonlinear (which is
often the case), an extended Kalman filter (EKF) needs to
be used, in which the above equations are linearized
around the current system state. In this case the filter is no
longer optimal (in the mean squares sense) and more
importantly it can diverge if the nonlinearity is too
strong. One can of course try to implement the optimal
nonlinear filter but it is impractical because it require
multiple integration in a high dimensional space (which
needs to be numerically approximated anyway). Therefore
a so called particle filter has been proposed [1,2], which
can be viewed as discrete stochastic approximation to the
optimal filter. However, this filter can be very costly to
implement, as a very large number of particles is usually
needed, especially in high dimensional system. In case of
low dynamical noise, we observe that in multiplying the
high weighted particles, the prediction step will explore
poorly the state space. The particle clouds will concentrate
on few points of the state space. This phenomenon is
called particle degeneracy, and causes the divergence of
the filter.

Recently, Musso et Al. [3] have introduced the
Regularized particle filter (RPF), which is based on
regularization of the empirical distribution associated with
particle system, using the kernel method, see [4]. The
main idea consists in changing the discrete approximation
to a continuous approximation in the particle filter such
that the resampling step is changed into simulations from
an absolutely continuous distribution, hence producing a
new particle system with different particle locations.
Nevertheless, these techniques have sometimes
weaknesses in spaces of high dimension : compromises
have to be found between the increase in the number of
the particles (which decreases the error of Monte-Carlo
drawings) and the need to limit this number (to have a
reasonable computing time). In this paper, we introduce a
new filter called Kalman-particle kernel filter, which can
combine the benefice of the correction in the Kalman filter
(both in terms of computational efficiency and filter
performance) and the robustness of the regularized particle
filter with regard to nonlinearities of the system and/or
measurement equations.

In section II, we provide a brief presentation of the
nonlinear filtering problem and the theoretical optimal
filter. We then describe briefly the particle and regularized
particle implementation in next section. Our Kalman-
particle filter kernel filter is introduced and discussed in
section IV. Finally, the last section provides an example
of application to the terrain navigation problem with
elevation measurements.

2 The nonlinear filtering problem

    Consider a stochastic dynamical system in which the

state vectors sequence {

† 

X
k
} is described by

11)(
--

+= kkkk WXFX (1)

where 

† 

F
k
 is a possibly nonlinear function from 

† 

R
n

 to

† 

R
m

, n and m being the dimension of the state and the
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observation vectors respectively, and {

† 

W
k
} is an iid

(independent identically distributed) process with

covariance matrix 
k

S . The goal of the filtering problem

is to estimate (recursively) the state 
k

X  from the

measurements :

kkkk
VXHY += )( (2)

up to time k , where 
k

H  is a possibly nonlinear function

from R
n
 to R

m
 and {

† 

V
k
} is an iid process with covariance

matrix 
k

R , m  being the dimension of the observation

vector. By adopting the mean square error criterion, the
best estimate of the state vector in known to be its

conditional expectation given 
11

,...,
-k

YY . However, point

estimate may be not enough, one would need to know the
accuracy of the estimate and thus the conditional

covariance matrix of kX  given kYY ,...,1  is also of

interest. But in the nonlinear case, the conditional

distribution of kX  given kYY ,...,1  is not Gaussian (in

general) and hence its means and covariance matrix alone
may not provide enough useful information. Therefore, it
is of interest to consider this conditional distribution
itself. Besides, one would need to work with it anyway in
order to construct a recursive filtering algorithm. We

denote by ),...,( 1 kkk yydxP |  the conditional

distribution of kX  given the observations kyy ,...,1  of

kYY ,...,1  and by 

† 

Pk|k-1(dxk | y1,...,yk-1) the

conditional (predictive) distribution of kX  given the

observations kyy ,...,1 . The optimal nonlinear filtering

algorithm consists of two steps.

- The prediction step :

At time 1-k , it is supposed that the conditional

distribution ),...,( 1111 --- | kkk yydxP  is already

available. The prediction step consists in computing the

predictive distribution 

† 

Pk|k-1(dxk | y1,...,yk-1) via the

Chapman Kolmogorov equation

[ ] ),...,()(),(

),...,(

111

111

--

--|

||

=|

Ú kk

R

kkk

kkkk

yyduPuSuFdxG

yydxP

n

(3)

where ),( Â| mdxG denotes the Gaussian distribution

with mean m and covariance matrix Â . In practice, the

matrix kS  is often nonsingular. By (4), the predictive

distribution then admits a Gaussian density :

[ ] ),...,()()(

),...,(

111

111

--

--|

||-

=|

Ú kk

R

kkk

kkkk

yyduPuSuFx

yyxP

n

f (4)

where

)2det(/]2/)(exp[)( 1 ÂÂ-=Â| - pf xxx
T

denote the density of the Gaussian distribution of zero

mean and covariance matrix Â .

- The correction step :

This step computes via Bayes’s rule the new conditional

distribution ),...,( 1 kkk yydxP | , once a new

observation ky  is available. To this end, one first

computes the joint predictive (conditional) distribution of

kX , kY , given the observations 11,...,
-kyy , which is

given by

† 

Pk(dxkdyk | y1,..., yk ) = Pk|k-1(dxk | y1,..., yk-1)G(dyk | Hk (xk ),Rk )

Then one would decompose this joint predictive
distribution as a “product” of a marginal distribution of

kY  (conditionally on the observations 11,...,
-kyy ),

denoted by 

† 

Pk|k-1

Y
(dyk | y1,...,yk-1), and the conditional

distribution of kX  given kY (also conditionally on the

observations 11,...,
-kyy ), which is no other than

),...,( 1 kkk yydxP | ,

† 

P
k
(dx

k
dy

k
| y

1
,..., y

k
) =

† 

P
k-1

Y
(dy

k
| y

1
,...,y

k-1
)P

k
(dx

k
| y

1
,...,y

k
)

In the case where both kS  and kR are invertible, the

above formula takes the form much easier to understand.
Indeed, the joint predictive distribution )/( ,...,1 kkk yydxP

then admits the density

))((),...,(

),...,,(

111

11

kkkkkkkk

kkkk

RxHyyyxp

yyyxp

|-|

=|

--|

-

f
(5)

The conditional distribution of interest

),...,( 1 kkk yydxP |  then also admits a density which is

simply the ratio of the above joint to the marginal
density,
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Ú |-|

|-|

=|

--|

--|

dxRxHyyyxp

RxHyyyxp

yyxp

kkkkkkkk

kkkkkkkk

kk

])([),...,(

])([),...,(

),...,(

111

111

1

f

f (6)

3 The particle filter and the

regularized particle filter

    The particle filter can be viewed as an approximation to
the above optimal filter by using the Monte-Carlo method
to approximate the conditional or predictive distribution
by a mixture of Dirac distribution. We describe here the
simplest form of this filter. Assume that at the time k-1,
one has approximation to the conditional distribution

),...,( 1111 --- | kkk yydxP  of 
k

X  given 

† 

{y
1
,...,yk-1

}

of the form 

† 

w
k-1

i d(dx
k-1 | x

k-1

i
)

i=1

N

Â  where 
i

k 1-
w are

positive weights summing to 1, 
N

kk
xx

1

1

1
,...,

--

are points

in
n

R  (called particles) and )(
11

i

kk xdx -- |d denotes the

Dirac distribution with mass at 
i

k
x

1-

. The predictive

distribution admits a density which is simply a mixture
of Gaussian density (4)

Â
=

----| |-=|
N

i

i
k

i
kkk

i
kkkkk SxFxyyxp

1
11111 ])([),...,( fw

One again approximates this mixture by a mixture of

Dirac distribution )(.
11 1

i

kk

N

i

i

kk
x -|= -| |Â dw with the

same weights 
i

k

i

kk 11 --| = ww and located at 
i

kk
x

1-| ,

where 
i

kk
x

1-| are obtained from )( 1

i

kk
xF

-

by adding

independent Gaussian vectors of mean zero and covariance

matrices 
i

k
S . Then from the previous subsection, the

conditional distribution of 
k

X  given

kk yYyY == ,...,
11

, is the weighted distribution,

Â = -|-|-|

-|-|-|

|-

|-
=

N

j

j
kkk

j
kkkk

j
kk

i
kkk

i
kkkk

i
kki

k
xRxHy

xRxHy

1 111

111

)]()([

)]()([

fw

fw
w

and at the points 
i

kk

i

k
xx

1-|= . The Sequential

Importance Sampling (SIS) [1] algorithm consists of
recursive propagations of the weights and support points at
each new measurement.

3.1 Degeneracy Problem

    A common problem with the SIS particle filter is the
degeneracy phenomenon, where after a few iterations, all
but a few particles will have negligible weight. A good
measure of degeneracy is the entropy (7) of the distribution
of the particle weights. Resampling is performed if the
entropy is too low, more precisely if

Â = -|-|+=
N

i

i

kk

i

kk
NEnt

1 11
loglog ww (7)

exceeds a threshold [5].

3.2 The Regularized particle filter

    The Regularized particle filter is identical to the particle
filter except for the resampling stage [3]. The RPF
resamples from a continuous approximation of the
posterior density

† 

ˆ p (xk | y1,..., yk ) = wk

i

i=1

N

Â Kh (xk - xk

i
) (8)

where

)(
1

)(
h

x
K

h
xK

nh
= (9)

in the re-scaled Kernel density (.)K , 0>h  is the kernel

bandwidth (a scalar parameter), n is the dimension of the

state vector x, and Ni
i

k
,...,1, =w  are particles weights.

The kernel K and bandwidth h are chosen to minimize

the Mean Integrated Square Error (MISE) between the true
posterior density and the corresponding regularized
empirical representation in (7), defined as

† 

MISE( ˆ p ) = E{ [ ˆ p (xk | y1:k ) - p(xk | y1:k )Ú ]
2
dxk}

where ky :1  is a shorthand for kyy ,...,1  and

)( :1 kk yxp |
)

 denotes the approximation to

)( :1 kk yxp |  given by (7). In the special case of the all

the samples having the same weight, the optimal choice of
the kernel is the Epanechnikov kernel [3]. For the sake of
homogeneity with our new filter, we use the Gaussian
kernel, wich is almost optimal.

† 

K(x) =
1

(2p )
n / 2

exp(-
1

2
x

2

) (10)

The corresponding optimal bandwidth is

† 

h
opt

= AN
-1 /( n+4 )

(11)
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† 

A = m [4 /(n+ 2)]
(1/( n +4 ))

(12)

where 

† 

m is a tuning parameter related to the

multimodality of the conditional density.

4 The Kalman-Particle Kernel Filter

    This filter combines the good properties of the Kalman
filter and the regularized particle filter. The main idea is to
represent the (predictive) probability density as a mixture
of Gaussian densities of the form

Â
=

|-=
N

i

i
i Pxx

N
xp

1

)(
1

)(ˆ f (13)

where { }
N

xx ,...,
1

 are a set of particles, 
i

P are positive

definite matrices. In classical kernel density estimation,

one takes PP
i

=  equal to 
2

h  times the sample matrix

of the particle 
N

xx ,...,
1

, h  being a parameter to be

adjusted. But the structure (13) with covariance matrices
i

P  being of the order 
2

h  may not be preserved in time.

In order that it is so, we introduce 2 kinds of resampling :
the partial and full resamplings. Partial resampling is
performed to limit the Monte Carlo fluctuations, in the
case where the particle weights are nearly uniform so as
there is little risk of degeneracy.

The filter algorithm consists of 4 steps.

- The initialization step :

We initialize the algorithm at the first correction (and not

prediction), that is we initialize the density 0p |1
ˆ . Based

on the kernel density estimation method, we simply draw

N  particles 

† 

x
1/ 0

1

,...,x
1/ 0

N

 from the unconditional

distribution of 
1

X  and take

( )Â
=

|||| |=
N

i

0
i

0 PxNxp

1

101101 )(/1)(ˆ f , where 0P |1 equals

2
h times the sample covariance matrix of the particles.

- The correction step :

According to formula (5), the joint predictive density of

k
X , given {

1111
,...,

--

== kk yYyY }, is

† 

p
k
(x

k
, y

k
| y

1
,..., y

k-1
) =

† 

w
k|k-1

i

i=1

N

Â f(x
k
- x

k|k-1

i
| P

k|k-1

i
)f(y

k
- H

k
(x

k
) | R

k
)

This is mixture of distribution of densities

† 

f(x
k
- x

k|k-1

i
| P

k|k-1

i
)f(y

k
- H

k
(x

k
) | R

k
) (14)

Since 
i

kk
P

1-|  is small, )(
11

i

kk

i

kkk Pxx -|-| |-f

becomes negligible as soon as 
k

x is not close to 
i

kk
x

1-| .

Thus in (14) one can linearize 
k

H around 
i

kk
x

1-| .

Which yields that (14) can be approximated by

))(()( 1111
i
k

i
kkk

i
k

i
kkk

i
kk

i
kkk RxxHyyPxx |-—+-|- -|-|-|-| ff (15)

where )(
11

i
kkk

i
kk

xHy -|-| = and
i

k
H— denotes the

gradient (matrix) of 
k

H at the point 
i

kk
x

1-| . It can be

shown, using similar calculations as in the derivation of
the Kalman filter, that (15) can be re-factorized as

† 

f(xk - xk

i
| Pk

i
)f(y i - yk|k-1

i
| Sk

i
)

where

)(
11

i
kkk

i
k

i
kk

i
k

yyGxx -|-| -+= (16)

1
1

)( -
-| S—= i

k

T
i

k

i

kk

i

k
HPG (17)

i

kk

i

k

i

k

T
i

k

i

kk

i

kk

i

k
PHHPPP

1
1

11
)( -|
-

-|-| —S—-= (18)

† 

S
k

i

= —H
k

i

P
k|k-1

i

—H
k

iT

+ R
k

(19)

Therefore

)()(

),...,,(

1
1

1

11

i
k

i
kkk

i
k

i
kk

N

i

i
kk

kkkk

yyPxx

yyyxp

S|-|-

ª|

-|
=

-|

-

Â ffw

The conditional density ),...,( 1 kkk yyxp | of 
k

X

given the observations ,,...,
11 kk yYyY == being

proportional to ),...,,( 11 -| kkkk yyyxp , is thus

given by

† 

pk(xk | y1,..., yk ) = wk

if(
i=1

N

Â xk - xk

i
| Pk

i
)  (20)

where
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Â = -|-|

-|-|

S|-

S|-
=

N

j

j
k

j
kkk

j
kk

i
k

i
k\kk

i
kki

k
yy

yy

1 11

11

)(

)(

fw

fw
w (21)

 One see that the conditional density ),...,( 1 kkk yyxp |
is also a mixture of Gaussian densities, as states before.

Note that the covariance matrices 
i

k
P  of the components

of this mixture, by (18), is bounded above by 
i

kk
P

1-| ,

hence remain small they are so before. Finally, one can
interpret this correction step as composed of two types of
correction : a Kalman type correction defined by (17), (19)
and a particle type correction defined by (19) and (21).

- The prediction step :

The correction step has provided an approximation to the

conditional density ),...,( 1 kkk yyxp | in the form of a

mixture of Gaussian density (20) with the mixture

component matrices 
i

kk
P

1-| being small. By (4) and (20),

the predictive density at the next step equals

ÚÂ |-|-

=|

+++
=

+|+

nR

i
k

i
kkkk

N

i

i
k

kkkk

PxuSuFx

yyxp

)())((

),...,(

111

1

111

ffw

but since )( i

k

i

k
Pxu |-f becomes negligible a soon as u

is not close to 
i

k
x , one can again make the approximation

)()()(
111

i

k

i

k

i

kkk xuFxFuF -—+ª
+++  where

i

k
F

1+
—  denotes the gradient (matrix) of 

1+k
F at the point

i

k
x . Using this approximation, it can be shown that,

Â
=

++++

+|+

+——|-

=|

N

i

k

Ti
k

i
k

i
k

i
kkk

i
k

kkkk

SFPFxFx

yyxp

1

1111

111

))((

),...,(

fw

Thus the predictive density is still a mixture of Gaussian
distribution, with the covariance matrix of the i-th
component of the mixture equal to

1111 +++|+ +——= k
iT

k

i

k

i

k

i

kk
SFPFP (22)

and with the weights 
i

k

i

kk
ww =|+1

. However, the

mixture component covariance matrices may not be small.

This may be due to presence of the additive term 
1+k

S

and the amplification effect of the multiplication by
i

k
F

1+
.

- The resampling step :

To reduce the errors introduced by resampling, we adopt a
simple rule, which waits for m filter cycles before
possibly resampling (m being a tuning parameter). In
these m filter cycles resampling is skipped. One simply

set )(11
i

kk
i

kk
xFx +|+ =  and 

i

kkk ww =|+1 . After

these cycles a full or partial resampling will be made
depending on the entropy criterion (7). It purpose is both

to keep the matrices 
i

kk
P |+1

 low and to avoid degeneracy.

To perform resampling, one first computes the matrices :

))(cov( 1

1

11 kkk

N

i

i

kk

i

kkk
xFP ww |+=P +

=
|+|+ Â

where ))(cov( 1 kkk xF w|+  denotes the sample

covariance matrix of the vectors )(1
i

kk xF
+

 relative to

the weights 
i

k
w , Ni ,...,1= . Then one computes its

Cholesky factorization 
T

kk CC=P |+1  and then 
2*

h ,

the minimum of the smallest eigenvalues of the matrices

1
1

1 )( -
|+

- Ti

kk
CPC . The next calculations depend on

whether partial or full resampling is required.

Partial       resampling    : if the weights are nearly uniform,

that is, if the entropy criterion is less than the threshold
(7), we do :

For each i add to )(1
i

kk xF
+

a random Gaussian vector

with zero mean and covariance matrix

kk
i

kk
hP |+|+ P- 1

*

1
 to obtain the new particles

i

kk
x |+1

. Then set 
i

k

i

kk
ww =|+1

.

Full       resampling    : if the weights are disparate, that is the

entropy criterion is greater than the threshold (7), we do :

Select N particles among )( 1
1 kk xF

+
,…, )(1

N

kk xF
+

according to the probabilities 
N

kk
ww ,...,

1
, then add to

each of them a random Gaussian vector with zero mean
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and covariance matrix kk
i

kk
hP |+|+ P- 1

*

1
to get the

new particles 
i

kk
x |+1

. Then set ./11 N
i

kk =|+w

After resampling, the matrices 

† 

P
k +1|k

i
 are reset to

kkh |+P 1
2 . Thus they become small and one may expect

that they remain so for least several subsequent filter
cycles.

5 Application to terrain navigation

with elevation measurements

5.1 Problem description

    Aircraft autonomous navigation can be made with
Inertial navigation System (INS). Absolute positions and
velocities are obtained by integrating the
gyroscopics/accelerometrics measurements. But the
position error grows with time. Therefore external
measurements are needed to correct these errors. A
radioaltimeter provides elevation measurements (relatives

heights 
k

Y ) along the aircraft path. Comparing these

elevations with a Digital Terrain Elevation Data (DTED)
on board it is theorically possible to reconstruct the
absolute position of the aircraft . The DTED gives the

absolute elevation ),( kk yxH  as function of the

latitude/longitude coordinates
k

x and ky of the aircraft.

This yields the measurement equation :

† 

Yk = zk - h(xk,yk ) + Vk = H(Xk ) + Vk (23)

where 
k

z is the altitude of the aircraft and 

† 

V
k
a centered

Gaussian noise.

Figure 1 : Elevation measurements

This method is called terrain navigation ([6], [8]) and is
useful if the terrain contains enough relevant information,
that is if the elevation variation is noticeable. The above
equation should be supplemented by the dynamical
equations which describes the movement of the aircraft in
term of its acceleration provided by the accelerometers.
These equations are rather complex as one has to take into

account the curvature and the rotation of the earth and the
variation of the “angles” of the aircraft provided by the
gyroscopic measurements. The gyroscopic and
accelerometric error then appear indirectly as dynamical
errors. In the simulation below, we however consider a
simple model in which the aircraft has zero acceleration up
to some Gaussian error. The dynamical equations can then
be written (in discrete time) as

 

˙
˙
˙

˚

˘

Í
Í
Í

Î

È

D+

˙
˙
˙

˚

˘

Í
Í
Í

Î

È

=

˙
˙
˙

˚

˘

Í
Í
Í

Î

È

-

-

-

k

k

k

k

k

k

k

k

k

vz

vy

vx

t

z

y

x

z

y

x

1

1

1

, 

† 

vxk

vyk

vzk

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

=

vxk-1

vyk-1

vzk-1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

+ Wk (24)

where 

† 

vx
k
, 

† 

vyk , 

† 

vz
k
 denote the velocities of the aircraft,

† 

Dt  the time interval between measurements and

k
W represents the acceleration error. Thus 

k
X ,

k
Y  in

equations (1) and (2) corresponds to

† 

Xk = [xk yk zk vxk vyk vzk ] (24) and 
k

Y  (23). The

function 
k

F is linear and does not depend on k and

HH
k

= . Our simplified model still captures the

essence of the terrain navigation problem, since the
difficulty in such problem lies in the divergence of the
dynamic, the strong nonlinearity of the measurement
equation and the multimodal terrain.

5.2 Simulation results

    We present an application of the KPKF in terrain
navigation [6]. Simulations have been performed on a
DTED (see Figure 8) with angle 15 arc second resolution.
The region of interest for the simulation is centered on a
point at coordinates (44 deg N, 3 deg. E). The 6

dimensional state 

† 

Xk = [xk yk zk vxk vyk vzk ] is to be

estimated. This problem contains strong multimodality
due to the ambiguity of the terrain. The initial position of
the aircraft is a Gaussian centered on the reference position
(200 km, 150 km) (see Figure 8). The initial state
uncertainty (which is large) is given by the covariance
matrix,

2
0 )/1,/5,/5,100,3000,3000( smsmsmmmmdiagP =

The reference trajectory has been generated according to
the model (24) with

† 

cov(W
k
) = diag(Dts

x
,Dts

y
,Dts

z
)

2 , with an initial

horizontal velocity vector of magnitude 141 m/s

† 

(vx
0

=100m / s,vy
0

=100m / s) and with vertical

velocity vector equals to 4 m/s. The number of
measurements is 400 (see Figure 2), the number of
particles for RPF is 10 000, for KPKF is 1300 which
gives the same computing time for the 2 filters. Every
0.7 s the aircraft measures the elevation with standard
deviation fixed to 15 m, according to equation (23). 100
Monte Carlo (MC) trials have been performed. In
averaging the results of the filters, we compute the RMS
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(Root Mean Square) for each filter. The PCRB (Posterior
Cramer-Rao bound) has been computed. It is an universal
lower bound for the covariance matrix for any unbiased
estimators [6].
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Figure 2 : Relative elevation during the flight.

The tuning parameters of the 2 filters are :

RPF : Best value of threshold is 0.3 (7). The bandwidth

constant is 25.0=m  (12)

KPKF : Best value of threshold is 0.1. The bandwidth is

† 

m =1 and tuning parameter 35=m  (filter cycle, before

resampling).
Results for 2 filters are shown on following figures. For
each trial, and for each measurement time, the aircraft
position is estimated by the mean of the particle cloud.
The RPF has given 5 divergences (out of 100), the KPKF
gives 2 divergences. We call divergence when the state
estimate at the three last steps of the algorithm is out the
99% confidence region (ellipsoid) given by the PCRB.
The rough terrain case (see Figure 6, 7) allows good
performances of the 2 filters (especially for the KPKF)
with a convergence rate of the RMS close to the PCRB.
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Figure 3. One trial x-error for the 2 filters
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Figure 4. One trial z-error for the 2 filters
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Figure 5. One trial  vx-error for the 2 filters
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Figure 6. RMS, PCRB -x error
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Figure 7. RMS, PCRB -vx error

6 Conclusions

    We have proposed a new particle filter called Kalman-
Particle Kernel Filter (KPKF). It is based on kernel
representation of the conditional density and on local
linearization. It reduces the number of redistributions
which causes undesirable Monte Carlo fluctuations.
Simulations in a terrain navigation context  show the
robustness of this filter. In this difficult context with a
large initial position uncertainty, the particle filter KPKF
works with only 1300 particles
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