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Practicalities of Bayesian Analysis

• In all but trivial cases, analytical posterior unavailable.

• Sequential setup is appealing, but most priors are not

conjugate.

• Approximations (Normal/Laplace) may not be feasible.
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Practicalities of Bayesian Analysis

• In all but trivial cases, analytical posterior unavailable.

• Sequential setup is appealing, but most priors are not

conjugate.

• Approximations (Normal/Laplace) may not be feasible.

• MCMC is typically employed. However, MCMC needs to lap

repeatedly through the dataset (#laps ≥ length of the chain).

• What if your dataset is too large for this to be feasible?
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Problem formulation

• Goal: to compute the expected value of h(θ)

E(h(θ)|x1, . . . , xN ) =

∫
h(θ)f(θ|x1, . . . , xN )dθ (1)

• f(θ|x) is the posterior density of the parameters given the

observed data x = x1, . . . , xN .

The Monte Carlo approximation for this expected value, based on

M samples from the posterior, θ1, . . . , θM would be 1

M

∑M
i=1

h(θi).
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Problem formulation

• Goal: to compute the expected value of h(θ)

E(h(θ)|x1, . . . , xN ) =

∫
h(θ)f(θ|x1, . . . , xN )dθ (1)

• f(θ|x) is the posterior density of the parameters given the

observed data x = x1, . . . , xN .

The Monte Carlo approximation for this expected value, based on

M samples from the posterior, θ1, . . . , θM would be 1

M

∑M
i=1

h(θi).

• However massive data (and model complexity) make it hard to

sample from f(θ|x).

• Main Ideas: Use importance sampling, set up problem in a

data sequential manner, i.e. particle filtering.

[Ridgeway and Madigan, 2002, Chopin, 2002a]
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Importance sampling

Cannot sample from “target density,” f(θ|x), but can from a

“sampling density,” g(θ). Then :

∫
h(θ)f(θ|x1, . . . , xN )dθ =

∫
h(θ)

f(θ|x)

g(θ)
g(θ)dθ (2)

= lim
M→∞

1

M

M∑

i=1

wih(θi) (3)

θi is a draw from g(θ) and wi = f(θi|x)/g(θi). Since the expected

value of wi under g(θ) is 1, we need only compute weights up to a

constant of proportionality and then normalize:
∫
h(θ)f(θ|x1, . . . , xN )dθ = lim

M→∞

∑M
i=1

wih(θi)∑M
i=1

wi

(4)
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Sequential formulation

Let the sampling distribution g(θ) = f(θ|x1, . . . , xn) where n≪ N .

Note: We are partitioning the dataset into two disjoint pieces, a

manageable portion D1:n = x1, . . . , xn and the remainder of the

data, Dn+1:N = xn+1, . . . , xN .

The importance weights simplify (to the likelihood of the

observations evaluated at each particle):

wi = f(θi|x)/g(θi) = f(θi|D1:N )/f(θi|D1:n) (5)

=
f(D1:N |θi)f(θi)

f(D1:N )

f(D1:n)

f(D1:n|θi)f(θi)
(6)

∝ f(Dn+1:N |θi) =
∏

xj∈Dn+1:N

f(xj |θi) (7)
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Formulation contd.

1. Load as much data into memory as possible to form D1:n

2. Draw M times from f(θ|D1:n) via Monte Carlo or Markov chain

Monte Carlo

3. Iterate through the remaining observations (those that comprise

Dn+1:N ). For each observation, xj , update the log-weights on all

of the draws from f(θ|D1:n). Set j = n + 1.

While j < N

for i in 1, . . . , M do wi ← wi × f(xj |θi)
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Formulation contd.

1. Load as much data into memory as possible to form D1:n

2. Draw M times from f(θ|D1:n) via Monte Carlo or Markov chain

Monte Carlo

3. Iterate through the remaining observations (those that comprise

Dn+1:N ). For each observation, xj , update the log-weights on all

of the draws from f(θ|D1:n). Set j = n + 1.

While j < N

for i in 1, . . . , M do wi ← wi × f(xj |θi)

• Are we done?
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Degeneracy

• If all we do is re-weight existing particles, sample degeneracy

quickly becomes an issue.

Figure 1: Comparison of f(θ|D1:n, Dn+1:N ) (dashed) and f(θ|D1:n)

(solid)

V ar(θ|D1:n) = E(V ar(θ|D1:n, Dn+1:N )) + V ar(E(θ|D1:n, Dn+1:N ))
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Further illustrating degeneracy

• Images from “Tutorial on Particle filters” by Keith Copsey
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Sequential Monte Carlo Ideas

• Fight sample degeneracy by resampling

[Gordon et al., 1993, Kitagawa, 1996] and rejuvenating

particles (we will make precise exactly when a little later...)

using a move step [Gilks and Berzuini, 2001]. This is a single

Metropolis-Hastings step, conditioned on all the data seen

thus far, x′.

1. Draw a proposal θ′ from q(θ|θi−1),

2. Compute the acceptance probability

α(θ′, θi−1) = min

(
1,

f(θ′|x′)q(θi−1|θ′)
f(θi−1|x′)q(θ′|θi−1)

)
(8)

3. With probability α(θ′, θi−1) set θi = θ′.

Otherwise set θi = θi−1
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Remaining issues

1. When to apply this resample-move step

2. This is a very expensive step!
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Remaining issues

1. When to apply this resample-move step

2. This is a very expensive step!

• 1. Monitor the Effective Sample Size (ESS)

[Kong et al., 1994, Liu, 2001].

The ESS is the number of observations from a simple random

sample needed to obtain an estimate with Monte Carlo variation

equal to the Monte Carlo variation obtained with the M weighted

draws of θi.
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More on the ESS

Although computing the ESS depends on the quantity we are

trying to estimate, the h(θ) in our case, it can be approximated as

ESS ≈ M

1 + Var(w)
=

(
∑
wi)

2

∑
w2

i

. (9)

• So to counter degeneracy all we do is monitor the approximate

ESS. Whenever it falls below a certain fraction, p of M (and

note that it always must be ≤M) say, it’s time to

resample-move.
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More on the ESS

Although computing the ESS depends on the quantity we are

trying to estimate, the h(θ) in our case, it can be approximated as

ESS ≈ M

1 + Var(w)
=

(
∑
wi)

2

∑
w2

i

. (9)

• So to counter degeneracy all we do is monitor the approximate

ESS. Whenever it falls below a certain fraction, p of M (and

note that it always must be ≤M) say, it’s time to

resample-move.

• Now we focus on the second issue: the computational expense

of the resample-move step.
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The resample-move step

• While the MH step does exactly what we want (rejuvenate the

particles from the correct distribution), it necessarily needs to

look at the entire dataset seen till that point.

• Intuition: In some sense, the MH step does excessive work. Our

current posterior sample (albeit impoverished) is drawn from

the correct distribution. If all we want is a new and diverse set

of particles, drawing from a smoothed approximation to the

current posterior distribution should do the trick as well.

Work on these lines include

[Liu and West, 2000, Stavropoulos and Titterington, 2001]
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1 Pass Filtering with Shrinkage

When it is time to rejuvenate the particles, resample as usual and

then sample from the approximate importance sampling posterior

density f(θ|D1:n+n1
) given by:

f̂(θ|D1:n+n1
) =

M∑

i=1

K(θ; θ̃i, b
2V ) (10)

where K(θ; s, T ): value at θ of the kernel function (e.g. Gaussian)

with mean s and variance matrix T . θ̃i and V are the shifted

sample/particle values and the sample Monte Carlo variance

respectively with b being the kernel bandwidth.
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Shrinkage

• The shrinkage rule [Liu and West, 2000] specifies the shifted

sample locations as:

θ̃i = aθi + (1 − a)θ (11)

where a =
√

1 − b2 and θ is the current Monte Carlo mean θi

value. The sample drawn from the kernels placed at the

shrinkage locations will now have both the correct mean and

variance (the sample mean θ, and the sample variance V ).
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1PFS walkthrough I

−4 −2 0 2 4 6 8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

• The new resample-move step. Generate an initial sample from
f(θ|D1:n) (the solid curve). The stars mark the particles, the sam-
pled θi.
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1PFS walkthrough II
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• Weight based on f(θ|D1:n, Dn+1:N ) (the dashed density) and re-
sample, the length of the vertical lines indicate the number of times
resampled. Shrink these locations towards θ (the open diamond).
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1PFS walkthrough III
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• For each θi sample from the now shifted kernel density distribution
and thus diversify and obtain the new sample (the stars mark these
locations).
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Convergence

• There exist established asymptotic Central Limit Theorems for

Sequential Monte Carlo methods -

[Del Moral and Guionnet, 1999], [Gilks and Berzuini, 2001],

and [Chopin, 2002b].

• These results hold for the more general version of the problem

involving unseen state variables in addition to static model

parameters.

• The static parameter only case is better behaved and more

tractable than the general problem [Chopin, 2002b].

• Finally, we are concerned solely with the convergence

properties of the final posterior distribution estimate that our

algorithm returns (not all the intermediate distributions).
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Convergence contd.

• Thus, convergence is guaranteed if we can prove

(asymptotically) that the samples returned by the kernel

smoothing approximation to the importance sampling posterior

distribution f̂(θ|x), resemble random samples from the target

distribution f(θ|x).

• [Stavropoulos and Titterington, 2001] prove a restricted version

of the above. Their theorem states:

Theorem 1 Under mild conditions, for univariate θ and the

Normal kernel K, the cumulative distribution function of the

values generated by the kernel approximation to the posterior

distribution f̂(θ|x), converges to that of the target density,

f(θ|x).
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Other convergence related

observations

• The previous theorem has a multivariate generalization and

can be adapted for non-Normal K as well.

• The assumptions under which it holds are essentially the same

as those required by [Geweke, 1989] for the importance sample

estimates to converge, with the additional requirement that the

kernel functions variance should shrink to zero as the number

of particles tends to infinity.

Second Workshop on Monte Carlo Methods 17



Bandwidth selection

• For Normal kernels (where K(s, T ) = ϕ(s, T ), the Gaussian

density function), kernel density estimation literature

[Silverman, 1986] suggests a choice of T = V bM
2, with

bM =

(
4

(d+ 2)M

) 1
d+4

(12)

where d is the dimensionality of the samples.

• This choice of bandwidth is asymptotically optimal if the

density being approximated is multivariate-Normal, and the

samples had been obtained from this distribution.
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Case Study I - Fully Bayes

Logistic Regression

• The training data comprise vectors xi = [xi1 , . . . , xid
]T in Rd

and yi ∈ {0, 1}, i = 1, . . . , n. We consider a model of the form:

p(y = 1|x) = ψ(βT x) (13)

where β is a vector of regression co-efficients and ψ(·) is the

logistic link function.

• Sparse model [Tibshirani, 1995, Figueiredo, 2001]; we use an

independent Laplace prior for each component of β:

π(βi|γ) =
1

2

√
γe−γ|βi|, λ > 0, n = 1, . . . , d.

which results in posterior modes of zero for many parameters

(simultaneous variable selection, we set γ = 5).
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• Our interest here however is not in obtaining the posterior

mode but rather in fully Bayesian inference for arbitrary

characteristics of the posterior distribution of β.

• “outpic data” comprising N = 744, 963 customer records (57

Mb in double precision). Telecommunications company data.

The binary response variable identifies customers who have

switched to a competitor. 7 predictor variables. 5 continuous

and two 3-level categorical variables (total 10 parameters for

regression).

• The dataset is small enough that regular MCMC to compute

f(β|D1:N ), while cumbersome, is still feasible. We also used

MCMC to generate the initial particles from f(β|D1:n). In

both cases we used a straightforward Metropolis-within-Gibbs

sampler.
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IPFS implementation details

• 1PFS implemented using Gaussian kernel function. The

optimal Gaussian bandwidth formula (formula 12) defines the

kernel bandwidth.

• Conditioning on the first 10,000 observations (i.e., n = 10, 000),

we generated 25,000 initial particles using the MCMC

algorithm, dropping the first 5,000.

• Thus we accessed each of the first 10,000 obervations 25,000

times. 1PFS executed a rejuvenation step whenever ESS

dropped below 10,000 (occurred 51 times).
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IPFS implementation details

• 1PFS implemented using Gaussian kernel function. The

optimal Gaussian bandwidth formula (formula 12) defines the

kernel bandwidth.

• Conditioning on the first 10,000 observations (i.e., n = 10, 000),

we generated 25,000 initial particles using the MCMC

algorithm, dropping the first 5,000.

• Thus we accessed each of the first 10,000 obervations 25,000

times. 1PFS executed a rejuvenation step whenever ESS

dropped below 10,000 (occurred 51 times).

• Results
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MLE: the logistic regression model parameters fit using maximum
likelihood and MCMC: MCMC run on the entire dataset.

MLE -0.574 0.155 0.056 0.220 -0.087 0.361 -0.358 -0.204 0.079 0.079

MCMC -0.574 0.155 0.056 0.220 -0.087 0.360 -0.358 -0.204 0.080 0.078

1PFS -0.574 0.156 0.056 0.221 -0.087 0.360 -0.357 -0.204 0.079 0.079

Table 1: Mean β estimates obtained from Bayesian logistic regression analysis
of the outpic data.

Algorithm first 10,000 next 734,963

MCMC 2.5 ×108 1.8 ×1010

R&M 2.5 ×108 2.4 ×106

1PFS 2.5 ×108 7.3 ×105

Table 2: Total number of data accesses for MCMC, R&M (Ridgeway and
Madigan’s Particle Filter), and 1PFS.
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• Plot showing the representative mean posterior parameter

values of β(1) determined via 1PFS as a function of the

amount of data processed. Also shown on the plot is the

corresponding MLE for the same amount of data.
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• Plot showing the representative mean posterior parameter

values of β(7) determined via 1PFS as a function of the

amount of data processed. Also shown on the plot is the

corresponding MLE for the same amount of data.
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Case Study II - Mixtures of

Transition Models

• Mixtures of first-order transition model:

[Cadez et al., 2000, Ridgeway, 1997, Ramoni et al., 2002].

• Data comprise N state sequences of random length generated

by one of C S × S transition matrices.

• Unknowns: the C transition matrices, the mixing vector of

length C, P1, . . . , PC and the N cluster assignments,

zj ∈ {1, . . . , C}, j = 1, . . . , N . We assume that both C and S

are fixed.

• Ridgeway describe a Gibbs sampler that generates draws from

this posterior distribution. Two scans of the entire dataset are

required per iteration.
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Dataset; 1PFS implementation

• We generate 1 million sequences of length between 5 and 20

from two 4 × 4 transition matrices. We used the first n = 1000

sequences to obtain the initial sample of M = 1000 particles.

We execute a rejunevation step each time ESS drops below 100.

• The rows of the transition matrices and the vector of mixing

proportions must sum to one, therefore we chose a Dirichlet

kernel function K(., .). Following [Aitchison and Lauder, 1985],

we choose the bandwidth b that maximizes the

pseudo-likelihood (the average leave-one-out cross validation

approximated likelihood).

• One extra detail. The shrinkage rule requires parametrization

of the kernel K(θ̃i, b
2V ) in terms of its mean θ̃i and variance

b2V . Unfortunately, starting from a mean and variance, a
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closed-form expression for the corresponding Dirichlet

distribution Dirichlet(α) does not exist.

• As per [Ronning, 1989] we compute an approximation to α by

matching first and second moments.

• Aside from the first 1000 observations, 1PFS accesses each of

the remaining observations once. Represents a substantial

computational savings as compared to the Ridgeway scheme. A

Gibbs sampler, conditioned on the entire dataset, would need

to access each observation 2000 times.
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Comparison to Gibbs sampler

0.2 0.22 0.24 0.015 0.02 0.025 0.52 0.54 0.56 0.2 0.22

0.11 0.12 0.51 0.52 0.53 0.23 0.24 0.25 0.12 0.13

0.39 0.4 0.41 0.15 0.16 0.17 0.21 0.22 0.23 0.215 0.235

2 4

x 10
−3

0.86 0.87 0.88 0.07 0.08 0.09 0.045 0.06

• The posterior distribution of the transition probabilities for one of
the transition matrices for the first 10,000 observations. MCMC
posterior: blue solid line; 1PFS: red dashed line.
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Comparison to ground truth

0.222 0.224 0.019 0.02 0.538 0.54 0.216 0.218

0.1165 0.1173 0.5165 0.5185 0.238 0.239 0.24 0.126 0.127

0.394 0.396 0.1605 0.1625 0.2115 0.2135 0.2305 0.2325

1.15 1.35

x 10
−3

0.864 0.866 0.0785 0.08 0.054 0.055

• The posterior distribution of the transition probabilities for one
of the transition matrices. 1PFS generated these densities. The
vertical line marks the true value used to simulate the dataset.
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Concluding Remarks

• The number of data accesses are reduced but high-dimensional

data may be problematic.

• The fully Bayes approach is only one way to approach this

problem; posterior mode estimation/approximation represents

a viable alternative.

• Future work: application to more complex examples -

streaming financial data or to text. Perhaps explore issues with

state-space models.
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[Ronning, 1989] details

Specifically, the parameter values αisc for the ith row of the

transition matrix Pc are:

αisc = θ̃isc

∑

s

αisc (14)

log
∑

s

αisc =
1

S − 1

S−1∑

s=1

log

(
θ̃isc(1 − θ̃isc)

b2Visc

− 1

)
(15)

We model each row independently. A similar set of equations exists

for the mixing vector’s parameters.
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