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Abstract

We show that it is feasible to carry out exact Bayesian inference for non-Gaussian
state space models using an adaptive Metropolis-Hastings sampling scheme with the
likelihood approximated by the particle filter. Furthermore, an adaptive independent
Metropolis Hastings sampler based on a mixture of normals proposal is computation-
ally much more efficient than an adaptive random walk Metropolis proposal because
the cost of constructing a good adaptive proposal is negligible compared to the cost
of approximating the likelihood. Independent Metropolis-Hastings proposals are also
attractive because they are easy to run in parallel on multiple processors. We also show
that when the particle filter is used, the marginal likelihood of any model is obtained
in an efficient and unbiased manner, making model comparison straightforward.
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1 Introduction

We show that it is feasible to carry out exact Bayesian inference on the parameters of a general

state space model by using the particle filter to approximate the likelihood and adaptive

Metropolis-Hastings sampling to generate unknown parameters. The state space model can

be quite general, but we assume that the observation equation can be evaluated analytically

and that it is possible to generate from the state transition equation. Our methods are

justified by the work of Andrieu et al. (2010) who show that the approximate likelihood is

the density of the observations conditional on the parameters and a set of auxiliary uniform

variables, with the states integrated out.

We consider a three component version of the adaptive random walk Metropolis proposal

of Roberts and Rosenthal (2009) and the adaptive independent Metropolis Hastings proposal

of Giordani and Kohn (2010) which is based on a mixture of normals approximation to the

posterior density. We show that the adaptive independent Metropolis Hastings proposal can

be much more efficient than the adaptive random walk Metropolis proposal in terms of the

computing time required to achieve a given level of accuracy for three reasons. The first reason

is that it is important to construct efficient adaptive proposals because the approximate

likelihood is stochastic and not a smooth function of the parameters (see Pitt, 2002). This

means that small changes in the parameters can result in large changes in the approximate

likelihood so that a sampling scheme such as a random walk that changes the parameters

by small amounts to try and obtain adequate acceptance may not work well in this context.

Second, it is worthwhile constructing efficient adaptive proposals because the cost of the

adaptation steps is negligible compared to the cost of approximating the marginal likelihood
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using the particle filter. The high cost of approximating the likelihood occurs as it is necessary

to use a large number of particles to obtain an adequate approximation and it is necessary

to run the particle filter thousands of times for simulation based inference. Third, it is much

easier to run an adaptive independent Metropolis Hastings scheme in parallel on multiple

processors than an adaptive random walk Metropolis scheme and such parallel processing

can reduce computational time significantly for a given level of accuracy; in many of our

examples the reduction is by a factor of five to thirty when running in parallel on eight

processors.

Our article also shows that when particle filtering is used, the marginal likelihood of any

model can be obtained using bridge sampling or importance sampling in an efficient and

unbiased manner making model comparison straightforward. The methodology is illustrated

empirically using challenging models and data.

Adaptive sampling methods are simulation methods for carrying out Bayesian inference

that use previous iterates of the simulation to form proposal distributions, that is, the adap-

tive samplers learn about the posterior distribution from previous iterates. See for example

Haario et al. (2001), Atchadé and Rosenthal (2005) and Roberts and Rosenthal (2009) who

consider adaptive random walk Metropolis proposals and Giordani and Kohn (2010) who

base their proposal on a mixture of normals. Adaptive sampling is particularly attractive

when the particle filter is used to approximate the posterior density because it is difficult to

form proposal densities by constructing approximations that require derivatives of the log

likelihood.

Particle filtering (also known as sequential Monte Carlo) was first proposed by Gordon et al.

(1993) for online filtering and prediction of nonlinear or non-Gaussian state space models.
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The auxiliary particle filter method was introduced by Pitt and Shephard (1999) to improve

the performance of the standard particle filter when the observation equation is informa-

tive relative to the state equations, that is when the signal to noise ratio is moderate to

high. There is an extensive literature on online filtering using the particle filter, see for

example Kitagawa (1996), Liu and Chen (1998), Doucet et al. (2000), Doucet et al. (2001),

Andrieu and Doucet (2002), Fearnhead and Clifford (2003) and Del Moral et al. (2006). Our

article considers only the standard particle filter of Gordon et al. (1993) and the generic aux-

iliary particle filter of Pitt and Shephard (1999).

The literature on using the particle filter to learn about model parameters is more limited.

Pitt (2002) proposes the smooth particle filter to estimate the parameters of a state space

using maximum likelihood. Storvik (2002) and Polson et al. (2008) consider online parameter

learning when sufficient statistics are available. Andrieu et al. (2010) provide a framework

for off line parameter learning using the particle filter. Flury and Shephard (2008) give an

insightful discussion of the results of Andrieu et al. (2010) and use single parameter random

walk proposals to carry out off-line Bayesian inference.

2 State space models

Consider a state space model with observation equation p(yt|xt; θ) and state transition equa-

tion p(xt|xt−1; θ), where yt and xt are the observation and the state at time t and θ is a vector

of unknown parameters. The distribution of the initial state is p(x0|θ). See Cappé and Rydén

(2005) for a modern treatment of general state space models. The filtering equations for the
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state space model (for t ≥ 1) are (West and Harrison, 1997, pp. 506-507)

p(xt|y1:t−1; θ) =

∫
p(xt|xt−1; θ)p(xt−1|y1:t−1; θ)dxt−1, (1a)

p(xt|y1:t; θ) =
p(yt|xt; θ)p(xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
, (1b)

p(yt|y1:t−1; θ) =

∫
p(yt|xt; θ)p(xt|y1:t−1; θ)dxt. (1c)

where y1:t = {y1, . . . , yt}. Equations (1a)–(1c) allow (in principle) for filtering for a given θ

and for evaluating the likelihood of the observations y = y1:T ,

p(y|θ) =

T−1∏

t=0

p(yt+1|y1:t; θ) , (2)

where y1:0 is a null observation. If the likelihood p(y|θ) can be computed, maximum like-

lihood and MCMC methods can be used to carry out inference on the parameters θ, with

the states integrated out. When both the observation and state transition equations are

linear and Gaussian the likelihood can be evaluated analytically using the Kalman filter

(Cappé and Rydén, 2005, pp. 141-143). More general state space models can also be esti-

mated by MCMC methods if auxiliary variables are introduced, e.g. Kim and Chib (1998)

and Frühwirth-Schnatter and Wagner (2006) and/or the states are sampled in blocks as in

Shephard and Pitt (1997). See Section 6.3 of Cappé and Rydén (2005) for a review of Markov

chain Monte Carlo methods applied to general state space models. In general, however, the

integrals in equations (1a)–(1c) are computationally intractable and the standard particle

filter is proposed by Gordon et al. (1993) as a method for approximating them with the

approximation becoming exact as the number of particles tends to infinity. Appendix A de-

5



scribes the standard particle filter and its use in approximating the expressions in (1a)–(1c).

We refer to Pitt and Shephard (1999) for a description of the auxiliary particle filter and Pitt

(2002) for the efficient computation of the likelihood based on the auxiliary particle filter.

3 Adaptive sampling

Suppose that π(θ) is the target density from which we wish to generate a sample, but that

it is computationally difficult to do so directly. One way of generating the sample is to use

the Metropolis-Hastings method, which is now described. Suppose that given some initial θ0

the j − 1 iterates θ1, . . . , θj−1 have been generated. We then generate θj from the proposal

density qj(θ; θ̃) which may also depend on some other value of θ which we call θ̃. Let θp
j be

the proposed value of θj generated from qj(θ; θj−1). Then we take θj = θp
j with probability

α(θj−1; θ
p
j ) = min

{
1,

π(θp
j )

π(θj−1)

qj(θj−1; θ
p
j )

qj(θ
p
j ; θj−1)

}
, (3)

and take θj = θj−1 otherwise. If qj(θ; θ̃) does not depend on j, then under appropriate

regularity conditions we can show that the sequence of iterates θj converges to draws from

the target density π(θ). See Tierney (1994) for details.

In adaptive sampling the parameters of qj(θ; θ̃) are estimated from the iterates θ1, . . . , θj−2.

Under appropriate regularity conditions the sequence of iterates θj , j ≥ 1, converges to draws

from the target distribution π(θ). See Roberts and Rosenthal (2007), Roberts and Rosenthal

(2009) and Giordani and Kohn (2010).

In our applications the target distribution is p(θ|y) is not available in a known closed form,
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but the standard and auxiliary particle filters provide unbiased estimates of the likelihood

function (Del Moral, 2004). Andrieu et al. (2010) show that we can view the particle filter

approximation to the likelihood p̂(y|θ) as the density of y conditional on θ and a set of

auxiliary uniform variables u such that p̂(y|θ) = f(y|θ, u) and

∫
f(y|θ, u)f(u|θ)du = p(y|θ). (4)

It follows that f(θ|y) = p(θ|y) so that a method that simulates from f(θ, u|y) yields iterates

from the correct posterior p(θ|y). In particular an adaptive sampling method using the

particle filter to estimate the likelihood can be considered as an auxiliary variable method

to sample from the augmented target p(θ, u|y) such that the joint proposal distribution for

θ and u is q(θ, u; θ̃) = q(θ; θ̃)p(u|θ) with u a vector of uniform variables. The acceptance

probability (3) for an adaptive proposal qj(θ, u; θ̃) becomes

α(θj−1, uj−1; θ
p
j , u

p) = min

{
1,

p(y|θp
j , u

p
j)p(θp)

p(y|θj−1, uj−1)p(θj−1)

qj(θj−1; θ
p
j )

qj(θ
p
j ; θj−1)

}
. (5)

If the adaptive proposal is independent, i.e. qj(θ, u; θ̃) = qj(θ, u), then

α(θj−1, uj−1; θ
p
j , u

p) = min

{
1,

p(y|θp
j , u

p
j)p(θp)

p(y|θj−1, uj−1)p(θj−1)

qj(θj−1)

qj(θ
p
j )

}
. (6)

The two adaptive sampling schemes studied in the paper are discussed in appendix C.

The following convergence results hold for the adaptive independent Metropolis Hastings

sampling scheme described in appendix C.2 (and more fully in Giordani and Kohn (2010))

when it is combined with the standard particle filter. They follow from Theorems 1 and 2 of
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Giordani and Kohn (2010). Let Θ be the parameter space of θ.

Theorem 1 Suppose that (i) p(yt|xt; θ) ≤ φt for t = 1, . . . , T, where φt is functionally

independent of θ ∈ Θ and xt and (ii) p(θ)/g2(θ) ≤ C for any θ ∈ Θ where C is a constant

and the density g2(θ) is the second component in the mixture proposal. Then,

1. The iterates θj of the adaptive independent Metropolis Hastings sampling scheme con-

verge to a sample from p(θ|y) in the sense that

sup
A⊂Θ

| Pr(θj ∈ A) −
∫

A

p(θ | y)dθ | → 0 as j → ∞. (7)

for all measurable sets A of Θ.

2. Suppose that h(θ) is a measurable function of θ that is square integrable with respect to

the density g2. Then, almost surely,

1

n

n∑

j=1

h(θj) →
∫

h(θ)p(θ|y)dθ as n → ∞. (8)

Proof.

p̂(y|θ) =
T−1∏

t=0

p̂(yt+1|y1:t; θ) ≤
T∏

t=1

φt because

p̂(yt|y1:t−1; θ) =
1

M

M∑

j=1

p(yt|xj
t ; θ) ≤ φt

by (18). This shows that the approximate likelihood is bounded and the result now follows

from Giordani and Kohn (2010) when we make the second component heavy tailed compared

to the prior, as outlined in that paper.
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The theorem applies to the stochastic volatility, negative binomial and Poisson state space

models discussed in section 4 as well as to binary and binomial state space models.

We can obtain a similar convergence result for the auxiliary particle filter if it is modified

in a straightforward way to ensure that the importance weights are bounded. The proof is

outlined in appendix B

Theorem 2 Subject to the conditions of theorem 1 and the construction of the importance

weights in appendix B, the results of theorem 1 also hold for the auxiliary particle filter.

3.1 Adaptive sampling and parallel computation

Our work uses parallel processing for adaptive sampling in two ways. Suppose J processors

are available. The first approach applies to any sampling scheme. The likelihood is estimated

for a given θ on each of the processors using the particle filter with M particles and these

estimates are then averaged to get an estimate of the likelihood based on JM particles. This

approach is similar to, but faster, than using a single processor and makes it possible to

estimate the likelihood using a large number of particles.

The second approach applies mainly to independent Metropolis-Hastings sampling schemes

and consists of iterating on the following three steps. Let θc the current value of θ gener-

ated by the sampling scheme and qc(θ) the current proposal density for θ. (a) For each of

J processors generate K proposed values of θ, which we write as θ
(p)
j,k , k = 1, . . . , K, and

compute the corresponding logs of the ratios p̂(y|θ(p)
j,k)p(θ

(p)
j,k )/q(θ

(p)
j,k). (b) After each K block

of proposed values is generated for each processor, carry out Metropolis-Hastings selection

of the JK proposed {θ(p)
j,k} parameters using a single processor to obtain {θj,k} draws from
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the chain. This is fast because drawing uniform variates is the only computation that is

necessary. (c) Use the previous iterates and the θj,k to update the proposal density qc(θ) and

θc.

3.2 Estimating the marginal likelihood

Marginal likelihoods are often used to compare two or more models. For a given model, let

θ be the vector of model parameters, p(y|θ) the likelihood of the observations y and p(θ) the

prior for θ. The marginal likelihood is

p(y) =

∫
p(y|θ)p(θ)dθ. (9)

which in our case becomes

p(y) =

∫
p(y|θ, u)p(θ)p(u)dθ du. (10)

It is often difficult to evaluate or estimate p(y) and appendix D briefly outlines how it can be

estimated using bridge and importance sampling, with the computation carried out within

the adaptive sampling so that a separate simulation run is unnecessary.

4 Performance of the adaptive sampling schemes

This section compares the performance of the two adaptive Metropolis-Hastings sampling

schemes discussed in section 3 using both the standard particle filter and the auxiliary particle

filter. The comparisons are carried out for several models using real data and illustrate
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the flexibility and wide applicability of the approach that combines particle filtering with

adaptive sampling. The comparison is in terms of the acceptance rates of the Metropolis-

Hastings methods, the inefficiency factors (IF) of the parameters, and an overall measure of

effectiveness which compares the times taken by each combination of sampler and particle

filter to obtain the same level of accuracy. We define the acceptance rate as the percentage

of accepted values of each of the Metropolis-Hastings proposals. We define the inefficiency

of the sampling scheme for a given parameter as the variance of the parameter estimate

divided by its variance if the sampling scheme generates independent iterates. We estimate

the inefficiency factor as IF = 1+2
∑L

j=1 ρ̂j , where ρ̂j is the estimated autocorrelation at lag

j. As a rule of thumb, the maximum number of lags L that we use is given by the lowest index

j such that |ρ̂j | < 2/
√

K where K is the sample size used to compute ρ̂j . The acceptance

rate and the inefficiency factor do not take into account the time taken by a sampler. To

obtain an overall measure of the effectiveness of a sampler, we define its equivalent computing

time ECT = 10 × IF × t, where t is the time per iteration of the sampler. We interpret

ECT as the time taken by the sampler to attain the same accuracy as that attained by 10

independent draws of the same sampler. For two samplers a and b, ECTa/ECTb is the ratio

of times taken by them to achieve the same accuracy.

We note that the time per iteration for a given sampling algorithm depends on how the

algorithm is implemented, i.e. the language used, whether operations are vectorized, etc.

Thus the implementation of the sampling scheme affects its ECT, but not the acceptance

rates nor the inefficiencies. Implementation details are given in appendix E.
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4.1 Example 1: Stochastic volatility model

The first example considers the univariate stochastic volatility (SV) model

yt = Kt exp(xt/2)εt, εt ∼ N (0, 1)

xt = µ + φ(xt−1 − µ) + σηηt, ηt ∼ N (0, 1)

(11)

where corr(εt, ηt) = ρ, Pr(Kt = 2.5) = ω and Pr(Kt = 1) = 1 − ω, with ω << 1. This is a

state space model with a non-Gaussian observation equation and a Gaussian state transition

equation for the latent volatility xt which follows a first order autoregressive model. The SV

model allows for leverage because the errors in the observation and state transition equations

can be correlated. The model also allows for outliers in the observation equation because

the standard deviation of yt given xt can be 2.5 its usual size when Kt = 2.5. To complete

the model specification, we assume that all parameters are independent a priori with the

following prior distributions: µ ∼ N (0, 10), φ ∼ T N (0,1)(0.9, 0.1), σ2
η ∼ IG(0.01, 0.01),

x0 ∼ N (0, 10), and ρ ∼ T N (−1,1)(0, 106) where N (a, b) means a normal distribution with

mean a and variance b2, T N (c,d)(a, b) means a truncated normal with location a and scale

b restricted to the interval (c, d) and IG(a, b) is an inverse gamma distribution with shape

parameter a, scale parameter b and mode b/(a + 1). We set ω = 0.03 in the general model.

Shephard (2005) reviews SV models and a model of the form (11) is estimated by

Malik and Pitt (2008) by maximum likelihood using the smooth particle filter.
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4.1.1 S&P 500 index

We apply the SV model (11) to the Standard and Poors (S&P) 500 data from 02/Jan/1970

to 14/Dec/1973 obtained from Yahoo Finance web site1. The data consists of T = 1 000

observations.

Table 1 presents the results of a Monte Carlo study using twelve replications with different

random number seeds for the SV model with leverage using the first parallel computation

method described in 3.1. Implementation details are given in appendix E.1. The table shows

that the adaptive independent Metropolis-Hastings sampling scheme is at least seven times

more efficient than the adaptive random walk Metropolis sampling scheme for both particle

filters.

Table 1: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for ten iterations over twelve
replications of the stochastic volatility model with leverage to the S&P 500 data.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

Standard Particle Filter
RWM3C 27.70 1.72 16.40 3.69 22.54 4.89 28.26 8.78 19.35 3.82
IMH-MN 60.32 2.68 2.28 0.30 2.65 0.53 3.45 2.52 2.29 0.48

Auxiliary Particle Filter
RWM3C 27.76 1.76 18.14 3.72 24.28 6.33 30.06 9.76 31.19 8.43
IMH-MN 59.48 3.78 2.29 0.38 2.71 0.75 3.59 1.23 3.44 0.96

We use importance sampling and bridge sampling to compute the marginal likelihoods of

the four SV models: the model with no leverage effect (ρ = 0) and no outlier effect (ω = 0),

the model that allows for leverage but not outliers, the model that allows for outliers but no

leverage and the general model that allows for both outliers and leverage. Table 2 shows the

logarithms of the marginal likelihoods of the four models for a single run of each algorithm.

The differences between the two approaches are very small. In this example, and based on our

1 http://au.finance.yahoo.com/q/hp?s=ˆGSPC
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prior distributions, the SV model with leverage effects has the highest marginal likelihood.

Table 2: Logarithms of the marginal likelihoods for four different SV models for the two
particle filter algorithms computed using the adaptive independent Metropolis Hastings al-
gorithm. BS and IS mean bridge sampling and importance sampling.

Standard Particle Filter Auxiliary Particle FilterModel
log(pBS(y)) log(pIS(y)) log(pBS(y)) log(pIS(y))

SV -1072.9 -1072.9 -1072.9 -1072.9
SV Lev. -1065.0 -1065.0 -1065.0 -1065.0
SV Out. -1076.6 -1076.6 -1076.5 -1076.4
SV Lev. Out. -1069.3 -1069.3 -1069.2 -1069.3

We also ran a simulation using the second parallel computing method described in section

3.1, using 10 000 iteration of the adaptive independent Metropolis Hastings samplers running

on eight processors. Further implementation details are given in apppendix E.1. Table

3 summarizes the results. The table shows that the ECT of the adaptive random walk

Metropolis algorithm is over 30 times larger than the ECT of the adaptive independent

Metropolis Hastings algorithm because the latter takes advantage of the parallelization.

Table 3: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for ten iterations over twelve
replications of the stochastic volatility model with leverage to the S&P 500 data using the
standard particle filter and parallel computing on eight processors.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

RWM3C 27.22 2.42 18.76 2.64 22.00 8.15 31.50 16.03 68.63 25.60
IMH-MN 58.15 1.90 2.56 0.40 2.98 0.54 4.38 2.55 1.39 0.27

4.2 Example 2: Negative binomial model

Pitt and Walker (2005) consider the following Poisson gamma model and give an MCMC
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method to estimate it.

yt | ωt ∼ P(ωt) , ωt | zt−1 ∼ G(ν + zt−1, α + β) ,

zt | ωt ∼ P(αωt) , ωt ∼ G(ν, β),

(12)

where α > 0, β > 0 and ν > 0. We can integrate ωt out in (12) to obtain the negative-

binomial model

yt | zt ∼ NB
(

ν + zt,
α + β

α + β + 1

)
,

zt | zt−1 ∼ NB
(

ν + zt−1,
α + β

2α + β

)
, with zt ∼ NB

(
ν,

β

α + β

)
.

(13)

We use the notation P(a) for a Poisson distribution with mean a, G(a, b) for a gamma

distribution with shape parameter a, scale parameter b and mean a/b and NB(r, p) is a

negative binomial distribution with r number of successes, p the probability of success, and

with mean r(1 − p)/p. One of the advantages of the approach of Pitt and Walker (2005)

is that it is easy to obtain the marginal distribution of yt, which in this example is yt ∼

NB(ν, β/(β + 1)).

4.2.1 Weekly firearm homicides in Cape Town

This section fits the negative binomial model (13) to the number of weekly firearm homicides

(McDonald and Zucchini, 1997, pp. 194-195) in Cape Town from January 1, 1986 to Decem-

ber 31, 1991, (T = 313 observations) shown in figure 1. Pitt and Walker (2005) also fit this

model to the data. We also fitted to this data a state-space Poisson model with a random
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Figure 1: Number of weekly firearm homicides in Cape Town from January 1, 1986 to
December 31, 1991.

walk transition equation,

yt | µt ∼P(exp(µt)) , µt = µt−1 + σεt, εt ∼ N (0, 1). (14)

because figure 1 suggests a possible nonstationarity in the data towards the end of the series.

The prior distributions for both model are based on our empirical analysis of the data. We

assume that the parameters are independent a priori with prior distributions ν ∼ HN (25),

β ∼ HN (25) and α ∼ HN (400) for the negative binomial model, and σ2 ∼ HN (1) and

µ0 ∼ N (0.4324, 9) for the Poisson model, where HN (b2) stands for a half-normal distribution

with scale b.

Table 4 presents the results of a Monte Carlo study using twelve replications with different

random number seeds for the negative binomial model. This simulation is based on the the

first parallel computation method described in 3.1. The implementation details are given in
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appendix E.2. The table shows that the inefficiencies of the adaptive random walk Metropolis

are at least seven times as large as those of the adaptive independent Metropolis Hastings.

Table 4: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for twelve replications of the
negative binomial model applied to the homicide data.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

Standard Particle Filter
RWM3C 25.32 2.26 16.79 3.47 21.79 4.85 27.33 12.39 31.95 8.14
IMH-MN 62.90 2.68 2.24 0.77 2.65 0.83 3.82 3.35 4.18 1.33

Auxiliary Particle Filter
RWM3C 24.58 1.78 19.03 5.81 23.58 5.61 33.81 10.07 37.00 8.76
IMH-MN 56.72 4.74 2.42 1.07 2.93 1.27 3.82 3.38 5.08 2.40

Table 5 shows that the marginal likelihood of the negative binomial model is greater than

that of the Poisson random walk model for the prior distributions chosen. A summary of the

posterior distributions of the model parameters for the negative binomial model (not shown)

provides similar results to those presented in Pitt and Walker (2005).

Table 5: Logarithms of the marginal likelihood estimates for the negative binomial and the
Poisson models for the two particle filter algorithms computed using the adaptive independent
Metropolis Hastings algorithm. BS and IS mean bridge sampling and importance sampling.

Standard Particle Filter Auxiliary Particle FilterModel
log(pBS(y)) log(pIS(y)) log(pBS(y)) log(pIS(y))

N. Binomial -620.6781 -620.6582 -620.5979 -620.6767
Poisson -625.3963 -625.3939 -625.4304 -625.4298

We also ran a simulation using the second parallel computing method described in sec-

tion 3.1, using 10 000 iteration of the adaptive independent Metropolis Hastings samplers

running on eight processors. Implementation details are the same as for the second simula-

tion in section 4.1.1. Table 6 summarizes the results and shows that the ECT of the adaptive

random walk Metropolis algorithm is nearly 50 times larger than the ECT of the adaptive

independent Metropolis Hastings algorithm.
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Table 6: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for twelve replications of the
negative binomial model applied to the homicides data using the standard particle filter and
parallel computing on eight processors.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

RWM3C 24.68 1.96 18.46 6.40 25.72 8.13 36.14 11.89 103.14 33.89
IMH-MN 52.52 12.64 2.98 1.05 3.37 1.69 4.41 2.64 2.04 1.01

4.3 Example 3: Poisson model

This section considers a state space model with a Poisson observation equation, dynamic

level and slope equations as well as explanatory variables

yt ∼ P(exp(xtβ + µt + st))

µt = µt−1 + at−1 + δI(t = tint) + σεt, εt ∼ N (0, 1),

at = at−1 + τξt, ξt ∼ N (0, 1),

st =
J∑

j=1

{αj cos (ωjt) + γj sin (ωjt)} ,

(15)

where ωt = 2πj/h so that st has period h. The variable I(t = tint) = 1 if t = tint and 0

otherwise so the model allows for a change in level in the µt equation if δ 6= 0. We assume that

the parameters are independent a priori with the following prior distributions: β ∼ N(0, ϕ2
βI),

µ0 ∼ N(µ0, ϕ
2
µ), a0 ∼ N(0, ϕ2

a), σ2 ∼ HN(0, ϕ2
σ2), τ 2 ∼ HN(0, ϕ2

τ2), δ ∼ N(0, 1), αj ∼ N(0, ϕ2
α),

and γj ∼ N(0, ϕ2
γ), for j = 1, . . . , J .

4.3.1 Killed or seriously injured children in Linz

The first application of the Poisson model is the number of children aged 6-10 that were killed

or seriously injured by motor vehicles in Linz, Austria, from 1987 to 2002, corresponding to
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T = 192 observations. The data is analyzed by Frühwirth-Schnatter and Wagner (2006). We

fit the Poisson model at (15) to the data. The seasonal pattern in our model uses a Fourier se-

ries representation that differs from the state space model in Frühwirth-Schnatter and Wagner

(2006). We also include the same explanatory variable xt = log(zt), where zt is the number

of children living in Linz, as used by Frühwirth-Schnatter and Wagner (2006). The coeffi-

cient β at (15) is set to 1 so there a multiplicative effect on the mean of the Poisson model.

The hyperparameters in the prior are based on an empirical analysis of the data using the

Ascombe (Anscombe, 1948) transform. In particular, we set µ0 = −8.3779 , ϕ2
µ = 1.5,

ϕ2
a = ϕ2

α = ϕ2
γ = 0.005, ϕ2

σ2 = 0.2, ϕ2
τ2 = 0.002 and ωj = 2π/12. An intervention parameter

I(t = tint) is included in the model to capture a possible decrease in the level of the series

due to a change in the law in Linz in October 1, 1994 (tint = 95) as can be seen in figure 2.
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Figure 2: Monthly counts of killed or injured children from 1987 to 2002 in Linz.

Table 7 presents the results of a Monte Carlo study using twelve replications with different

random number seeds for the Poisson model. This simulation is based on the the first parallel
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computation method described in 3.1. The implementation details are given in appendix E.3.

The table shows that the inefficiencies of the adaptive random walk Metropolis are at least

seven times as large as those of the adaptive independent Metropolis Hastings.

Table 7: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for twelve replications of the level
and trend state-space poisson model applied to the Linz data.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

Standard Particle Filter
RWM3C 25.71 1.88 40.61 5.22 56.41 6.11 81.04 9.57 14.54 1.44
IMH-MN 40.90 5.23 4.15 0.88 6.04 2.56 15.90 29.70 1.55 0.66

Auxiliary Particle Filter
RWM3C 27.12 1.77 40.38 7.52 55.94 5.27 80.31 22.59 21.76 2.09
IMH-MN 41.78 3.80 4.16 0.72 6.47 2.14 22.03 28.13 2.43 0.74

We compared the eight models given in table 8 using marginal likelihood. All the mod-

els with seasonal effects include five harmonics. The table shows that the simplest model

is slightly better than the level and intervention model which is consistent with the results

reported in Frühwirth-Schnatter and Wagner (2006). However, the intervention parameter

is clearly negative with high probability and two of the seasonal coefficients have high prob-

ability of being different from zero (results not shown). The bridge and importance samplers

give similar estimates of the marginal likelihoods.

Table 8: Logarithms of the marginal likelihoods for different Poisson models for the two
particle filter algorithms. BS and IS mean bridge sampling and importance sampling.

Standard Particle Filter Auxiliary Particle FilterPoisson model
log(pBS(y)) log(pIS(y)) log(pBS(y)) log(pIS(y))

Level -320.984 -320.987 -320.995 -320.995
Level and trend -333.110 -333.122 -333.100 -333.100
Level and intervention -321.279 -321.278 -321.285 -321.291
Level, trend and intervention -333.867 -333.866 -333.861 -333.857
Level and seasonality -328.438 -328.436 -328.451 -328.444
Level, trend and seasonality -343.214 -343.202 -343.246 -343.247
Level, intervention and seasonality -328.632 -328.640 -328.662 -328.657
Level, trend, intervention and seasonality -341.253 -341.246 -341.267 -341.264
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We also ran a simulation using the second parallel computing method described in section

3.1 with 20 000 iteration of the adaptive independent Metropolis Hastings sampler running

on eight processors. Implementation details are in appendix E.3. Table 9 summarizes the

results and shows that the ECT of the adaptive random walk Metropolis algorithm is nearly

50 times larger than the ECT of the adaptive independent Metropolis Hastings algorithm.

Table 9: Medians and interquartile range (IR) of the acceptance rates and the inefficiencies
(minimum, median and maximum) and ECT = IF × time for twelve replications of the level
and trend state-space Poisson model applied to the Linz data using the standard particle
filter and the parallel computing in eight processors.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

RWM3C 26.37 0.86 40.60 7.57 56.41 4.40 85.81 26.95 107.70 13.41
IMH-MN 40.07 4.41 4.54 0.81 6.86 2.99 27.26 38.01 1.90 0.81

4.3.2 Sydney asthma data

This example models the time series of daily counts of asthma presentations at the accident

and emergency department of Campbelltown Hospital located in southwest metropolitan

area of Sydney. figure 3 is a plot of the data, which has 1461 observations from January

1, 1990 to December 31, 1994. Davis et al. (2003) analyze this data using a Poisson model.

Davis et al. (2003) argue that the peaks in the series can be lined up with the four terms

in the school year with the break between the first and second terms occurring at vary-

ing times because of the timing of the Easter vacation. They include only one harmonic,

(α cos(2πt/365) + γ sin(2πt/365)) to model the seasonal effect, and model the peaks by con-

structing the explanatory variable

Pij(t) = p

(
t − Tij

100

)
, for i = 1, 2, 3, 4 and j = 1, . . . , 1461
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where Tij is the start time for the jth school term in year i and p(x) ∝ xa−1(1 − x)b−1

(a beta density), with parameter a = 2.5 and b = 5. There are sixteen such explanatory

variables but their preliminary analysis only includes eight of them corresponding to terms

1 and 2 across all four years. They also include the following explanatory variables: Sunday

and Monday effects (dummy variables), maximum daily ozone, maximum daily NO2 and

humidity. We apply model (15) to the asthma data, but without the intervention variable,
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Figure 3: Counts of asthma presentation in Campbelltown Hospital.

i.e. taking δ identically zero, and use the hyperparameters ϕ2
β = 0.02, µ0 = 0.5093 , ϕ2

µ = 20,

ϕ2
a = 0.001, ϕ2

σ2 = 1.5, ϕ2
τ2 = 0.002, ϕ2

α = ϕ2
γ = 10, ωj = 2π/365, which are obtained through

an empirical analysis of the data. Table 10 presents the results of a Monte Carlo study

using twelve replications with different random number seeds for the Poisson model with

level, trend and seasonality, and the explanatory variables. This simulation is based on the

first parallel computation method described in 3.1, with the implementation details given in

appendix E.4. The table shows that the inefficiencies of the adaptive random walk Metropolis

are at least twice as large as those of the adaptive independent Metropolis Hastings.
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Table 10: Asthma data: Medians and interquartile ranges (IR) of acceptance rates and the
inefficiencies (minimum, median and maximum) and ECT = IF × time for twelve replications
of the level and slope state-space Poisson model.

Ac. Rate Min. Inef. Median Inef. Max. Inef. Median ECTAlgorithm
Median IR Median IR Median IR Median IR Median IR

Standard Particle Filter
RWM3C 25.59 1.09 68.46 7.00 88.50 2.81 119.74 16.62 148.59 5.18
IMH-MN 27.52 7.75 8.51 6.18 16.45 15.62 52.26 49.66 27.73 26.34

General Auxiliary Particle Filter
RWM3C 26.52 3.45 73.96 8.06 87.41 1.64 114.99 14.29 219.95 4.26
IMH-MN 18.45 7.22 14.52 7.32 26.16 11.38 55.21 16.44 66.03 28.71

Table 11 uses marginal likelihood to compare the model with just the level µt in the

transition equation to a model containing the level µt and the trend at, with the simpler

model preferred.

Table 11: Logarithms of the marginal likelihood estimates for the two Poisson models es-
timated using the two particle filters. BS and IS mean bridge sampling and importance
sampling.

Standard Particle Filter Auxiliary Particle FilterModel
log(pBS(y)) log(pIS(y)) log(pBS(y)) log(pIS(y))

Level and seasonality -2558.3 -2558.3 -2558.2 -2558.3
Level, trend and seasonality -2577.3 -2577.3 -2577.2 -2577.2

Acknowledgment

The research of Robert Kohn and Ralph S. Silva was partially supported by an ARC Discovery

Grant DP0667069. We thank Professor Sylvia Frühwirth-Schnatter for the Linz data and
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Appendices

A Standard particle filter

This section outlines the standard Sampling-Importance-Resampling (SIR) particle filter of

Gordon et al. (1993). We suppress the dependence on the fixed parameter θ for notational

convenience. Suppose that that we have samples xk
t−1 ∼ p(xt−1|y1:t−1) for k = 1, ..., M .

The particle filter works by taking this sample, from the filtering density at time t − 1,

and translating it into a sample from the filtering density at time t. The first step involves

simply passing each of these samples through the transition density to obtain x̃k
t ∼ p(xt|xk

t−1),

for k = 1, ..., M , which produces samples which are approximately distributed from equation

(1a). These samples {x̃k
t } are therefore samples from the prediction density (we denote filtered

samples as x and the corresponding predictive samples as x̃). To each of these samples, for
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k = 1, ..., M , we attach the following weights, ωk
t , and corresponding masses, πk

t ,

ωk
t = p(yt|x̃k

t ), πk
t =

ωk
t∑M

i=1 ωi
t

. (16)

This collection
{
(x̃k

t , π
k
t )

}M

k=1
is now a discrete approximation to the filtering density p(xt|y1:t).

Explicitly, we may write this approximation, in terms of Dirac-delta functions, δ(·), as,

p̂(xt|y1:t) =

M∑

k=1

πk
t δ(xt − x̃k

t ). (17)

We need to resample from this mass function to obtain an equally weighted sample. However,

prior to doing this we may estimate the term (1c) unbiasedly (Del Moral, 2004) by the

denominator at equation (16),

1

M

M∑

k=1

p(yt|x̃k
t ) =

1

M

M∑

k=1

ωk
t . (18)

We may also estimate any moments under the filtering density, say E[g(xt)|y1:t], in the Rao-

Blackwellised form as,
M∑

k=1

g(x̃k
t )π

k
t .

Typically these estimators are more efficient than using the resampled analogs.

To produce an equally weighted sample from equation (17), we need only think about

the sampling of the discrete univariate index k with mass πk
t for k = 1, ..., M . This is a

multinomial sample and is the equivalent of a weighted bootstrap.2 We then have a sample

2The SIR filter is sometimes referred to as the bootstrap filter for this reason.
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z1
t , ..., z

M
t of resampled indices. Having sampled in this manner, we can now associate our

resampled points, which we call xk
t for k = 1, ..., M , with the predictive points,

xk
t = x̃

zk
t

t for k = 1, ..., M.

The method now proceeds to the next time step in a similar fashion.

We may replace the multinomial resampling (weighted bootstrap) procedure with a strat-

ified sampling step instead. This does not affect the validity of the particle filter or the

subsequent MCMC strategy that we pursue.

B Proof of theorem 2

This section briefly outlines the conditions for theorem 2 to hold and its proof. The generic

auxiliary particle filter of Pitt and Shephard (1999) uses an importance density of the form

p(yt|zk
t ; θ)p(xt|xk

t−1), where zk
t is a suitable value of xt. We replace the term p(yt|zk

t ; θ) in

the importance density by εφt + (1 − ε)p(yt|zk
t ; θ) where φt is defined in theorem 1. By Pitt

(2002), the term (1c) is estimated unbiasedly by

p̂(yt|y1:t−1; θ) =

(
1

M

M∑

k=1

p(yt|xk
t ; θ)

)(
1

M

M∑

k=1

p(yt|xk
t ; θ)

εφt + (1 − ε)p(yt|zk
t ; θ)

)
.

It follows that p̂(yt|y1:t−1; θ) ≤ φt. The rest of the proof is the same as that of Theorem 1.
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C Adaptive sampling schemes

This appendix describes the two adaptive sampling schemes used in the paper.

C.1 Adaptive random walk Metropolis

The adaptive random walk Metropolis proposal of Roberts and Rosenthal (2009) is

qj(θ; θj−1) = ω1jφd(θ; θj−1, κ1Σ1) + ω2jφd(θ; θj−1, κ2Σ2j) (19)

where d is the dimension of θ and φd(θ; θ̃, Σ) is a multivariate d dimensional normal density in

θ with mean θ̃ and covariance matrix Σ. In (19), ω1j = 1 for j ≤ j0, with j0 representing the

initial iterations, ω1j = 0.05 for j > j0 with ω2j = 1 − ω1j ; κ1 = 0.12/d, κ2 = 2.382/d, Σ1 is a

constant covariance matrix, which is taken as the identity matrix by Roberts and Rosenthal

(2009) but can be based on the Laplace approximation or some other estimate. The matrix

Σ2j is the sample covariance matrix of the first j−1 iterates. The scalar κ1 is meant to achieve

a high acceptance rate by moving the sampler locally, while the scalar κ2 is considered to be

optimal (Roberts et al., 1997) for a random walk proposal when the target is a multivariate

normal. We note that the acceptance probability (3) for the adaptive random walk Metropolis

simplifies to

α(θj−1, uj−1; θ
p
j , u

p) = min

{
1,

p(y|θp
j , u

p
j)p(θp)

p(y|θj−1, uj−1)p(θj−1)

}
. (20)

We refine the two component random walk Metropolis proposal in (19) by adding a third

component with Σ3j = Σ2j and with κ3 = 25 ≫ κ1, κ2. We take ω3j = 0 if j ≤ j0, ω3j = 0.05

for j > j0 and ω2j = 1−ω1j −ω3j . We refer to this proposal as the three component adaptive
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random walk. The purpose of the heavier tailed third component is to allow the sampler to

explore the state space more effectively by making it easier to leave local modes.

C.2 A proposal density based on a mixture of normals

The proposal density of the adaptive independent Metropolis-Hastings approach of Giordani and Kohn

(2010) is a mixture with four terms of the form

qj(θ) =
4∑

k=1

ωkjgk(θ|λkj) ωkj ≥ 0, for k = 1, . . . , 4 and
4∑

k=1

ωkj = 1 , (21)

with λkj the parameter vector for the density gkj(θ; λkj). The sampling scheme is run in

two stages, which are described below. Throughout each stage, the parameters in the first

two terms are kept fixed. The first term g1(θ|λ1j) is an estimate of the target density and

the second term g2(θ|λ2j) is a heavy tailed version of g1(θ|λ1j). The third term g3(θ|λ3j) is

an estimate of the target that is updated or adapted as the simulation progresses and the

fourth term g4(θ|λ4j) is a heavy tailed version of the third term. In the first stage g1j(θ; λ1j)

is a Gaussian density constructed from a preliminary run, of the three component adaptive

random walk. Throughout, g2(θ|λ2j) has the same component means and probabilities as

g1(θ|λ1j), but its component covariance matrices are ten times those of g1(θ|λ1j). The term

g3(θ|λ3j) is a mixture of normals and g4(θ|λ4j) is also a mixture of normals obtained by

taking its component probabilities and means equal to those of g3(θ|λ3j), and its component

covariance matrices equal to 20 times those of g3(θ|λ3j). The first stage begins by using

g1(θ|λ1j) and g2(θ|λ2j) only with, for example, ω1j = 0.8 and ω2j = 0.2, until there is a

sufficiently large number of iterates to form g3(θ|λ3j). After that we set ω1j = 0.15, ω2j =
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0.05, ω3j = 0.7 and ω4j = 0.1. We begin with a single normal density for g3(θ|λ3j) and as

the simulation progresses we add more components up to a maximum of six according to a

schedule that depends on the ratio of the number of accepted draws to the dimension of θ.

In the second stage, g1(θ|λ1j) is set to the value of g3(θ|λ3j) at the end of the first stage

and g2(θ|λ2j) and g4(θ|λ4j) are constructed as described above. The heavy-tailed densities

g2(θ|λ2j) and g4(θ|λ4j) are included as a defensive strategy to get out of local modes and to

explore the sample space of the target distribution more effectively.

It is computationally too expensive to update g3(θ|λ3j) (and hence g4(θ|λ4j)) at every

iteration so we update them according to a schedule that depends on the problem and the

size of the parameter vector.

D Marginal likelihood evaluation using bridge and im-

portance sampling

Suppose that q(θ) is an approximation to p(θ|y) which can be evaluated explicitly. Bridge

sampling (Meng and Wong, 1996) estimates the marginal likelihood as follows. Let

t(θ) =

(
p(y|θ)p(θ)

U
+ q(θ)

)
−1

,

where U is a positive constant. Let

A =

∫
t(θ)q(θ)p(θ | y)dθ . Then,

A =
A1

p(y)
where A1 =

∫
t(θ)q(θ)p(y | θ)p(θ)dθ .

(22)
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Suppose the sequence of iterates {θ(j), j = 1, . . . , M} is generated from the posterior density

p(θ|y) and a second sequence of iterates {θ̃(k), k = 1, . . . , M} is generated from q(θ). Then

Â =
1

M

M∑

j=1

t(θ(j))q(θ(j)), Â1 =
1

M

K∑

k=1

t(θ(k))p(y|θ(k))p(θ(k)) and p̂BS(y) =
Â1

Â

are estimates of A and A1 and p̂BS(y) is the bridge sampling estimator of the marginal

likelihood p(y).

In adaptive sampling, q(θ) is the mixture of normals proposal. Although U can be any

positive constant, it is more efficient if U is a reasonable estimate of p(y). One way to do

so is to take Û = p(y|θ∗)p(θ∗)/q(θ∗), where θ∗ is the posterior mean of θ obtained from the

posterior simulation.

An alternative method to estimate of the marginal likelihood p(y) is to use importance

sampling based on the proposal distribution q(θ) (Geweke, 1989; Chen and Shao, 1997). That

is,

p̂IS(y) =
1

K

K∑

k=1

p(y|θ(k))p(θ(k))

q(θ(k))
.

Since our proposal distributions have at least one heavy tailed component, the importance

sampling ratios are likely to be bounded and well-behaved, as in the examples in this paper.

E Implementation details and sampling schedules

We coded most of the algorithms in MATLAB, with a small proportion of the code written

using C/Mex files. For the particle filters, we also use a C/Mex file for the resampling

step using an efficient algorithm to draw from a general discrete distribution (Walker, 1977)

34



available as a C function in the GNU Scientific Library (Galassi et al., 2009). We carried

out the estimation on an SGI cluster with 42 compute nodes. Each of them is an SGI Altix

XE320 with two Intel Xeon X5472 (quad core 3.0GHz) CPUs with at least 16GB memory.

We ran parallel jobs using up to eight processors and MATLAB 2009.

E.1 Implementation details for the S&P 500 index data

This section gives the implementation details for the first and second simulations in sec-

tion 4.1.1. The first simulation uses a sampling rate of M = 3000 particles for each time

period for each of eight processor, so each step of the particle filter uses 24 000 particles.

The number of iterations of the adaptive samplers is 10 000 with the updates of the pro-

posal distributions for the adaptive independent Metropolis-Hastings samplers performed at

iterations 100, 200, 500, 1 000, 2 000, 3 000, 4 000, 5 000, 6 000 and 7 500. The adaptive

independent Metropolis Hastings sampling scheme is initialized using 2000 iterations of the

ARWM3C. The initial proposal for all the AIMH algorithms are based on a multivariate

normal distribution estimated from these draws and the initial starting values are the sample

means.

The second simulation uses eight processors with block sizes for each processor of 15,

25, 60, 125, 250, 375, 500, 625, 750 and 940, corresponding to 120, 200, 480, 1 000, 2 000,

3 000, 4 000, 5 000, 6 000 and 7 520 proposed parameter values before each update of the

proposal density. The proposal distribution is updated at the completion of each block. In

this simulation M = 10 000 for the standard particle filter.
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E.2 Implementation details for the weekly homicide data

This section gives the implementation details for the first and second simulations in sec-

tion 4.2.1. The sampling rate for the first simulation is M = 2 500 particles on each of

eight parallel processors, so each step of the particle filter uses 24 000 particles. The number

of iterations of the adaptive sampling algorithms is set to 10 000 with the updates of the

proposal distributions for the adaptive independent Metropolis-Hastings samplers performed

at iterations 100, 200, 500, 1 000, 2 000, 3 000, 4 000, 5 000, 6 000, and 7 500. The simulation

is initialized as in E.1.

The schedule for the second simulation is the same as in section E.1.

E.3 Implementation details for the analysis of the Linz data

This section gives the implementation details for the first and second simulations in sec-

tion 4.3.1. The sampling rate for the first simulation is M = 4 500 particles in each of eight

parallel processors. The number of iterations is 20 000 with updates of the proposal distribu-

tion for the adaptive independent Metropolis-Hastings sampler performed at iterations 300,

1 000, 3 000, 5 000, 10 000, and 15 000. The simulation is initialized as in E.1.

For the second simulation the number of iterations of the adaptive samplers is 20 000 with

the adaptive independent Metropolis-Hastings sampler running on eight processors with the

block sizes for each processor 40, 125, 375, 625, 1250, and 1875, corresponding to 320, 1000,

480, 3 000, 5 000, 10 000 and 15 000 proposed parameter values. The updates of the proposal

distribution occur at the end of each block. In this simulation, M = 30 000 particles for the

standard particle filter.
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E.4 Implementation details for analysis of the asthma data

This section gives the implementation details for the simulation in section 4.3.2. The sampling

rate for the simulation is M = 4 000 particles in each of eight parallel processes. The number

of iterations is set to 50 000 with the updates of the proposal distributions for the adaptive

independent Metropolis-Hastings samplers performed at iterations 1 000, 2 000, 3 000, 4 000,

5 000, 7 000, 8 000, 10 000, 15 000, 20 000, 25 000, 30 000, and 40 000.
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