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Abstract. We give a comprehensive description of the algorithm pro-
posed in “2D Action Recognition Serves 3D Human Pose Estimation” [1].

1 Preliminaries

Having a skeleton and a surface model of the human, the human pose is repre-
sented by a vector in a bounded, high-dimensional state space E ⊂ RD+6. While
Θ = θ1, · · · , θD ∈ EΘ denotes the joint angles, the global orientation and posi-
tion are encoded by the 6D vector (r, t). An element of the search space is given
by x = (r, t, Θ). We formulate pose estimation as an optimization problem over
E for a given positive energy function V , i.e. minx∈E V (x). The energy function
measures the consistency between the image and the projected surface of the
human for a given pose x.

2 Baseline

As a baseline, we implemented the particle-based annealing optimization scheme
ISA over E (Algorithm 1), which has been used in the multi-layer framework [2].
The optimization scheme, based on the theory of Feynman-Kac models [3], it-
erates over a selection and mutation step, and is also the underlying principle
of the annealed particle filter [4]. In our experiments, we use the polynomial
annealing scheme:

βk = (k + 1)b (1)

with b = 0.7. The mutation step is implemented with the scaling factor αΣ = 0.4
and the positive constant ρ = 0.0001. The set of particles is denoted by S. An
estimate of the pose is given by the weighted mean of the particles after the last
iteration, i.e. x̂ =

∑
si∈S(wi · xi). For ri, the mean is computed in the space of

rotations. The uniform distribution and the normal distribution are denoted by
U [0, 1] and N (µ,Σ), respectively.
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Algorithm 1 Interacting Simulated Annealing over E
For k = 1, . . . , It
• Selection
• ∀si ∈ Sk−1: wi = exp

`
−βk · V

`
ri, ti, Θi

´´
• ∀si ∈ Sk−1: wi = wi/

P
sj∈Sk−1

wj

• Sk = ∅; ∀si ∈ Sk−1 draw u from U [0, 1]:
If u ≤ wi/maxsj∈Sk−1

wj then

• Sk = Sk ∪ {si}
Otherwise
• Sk = Sk ∪ {sj}, where sj is selected with probability wj

• Mutation
• µ = 1

|Sk|
P
sj∈Sk

(rj , tj , Θj)

Σ = αΣ
|Sk|−1

“
ρ I +

P
sj∈Sk

`
(rj , tj , Θj)− µ

´ `
(rj , tj , Θj)− µ

´T”
• ∀si ∈ Sk sample (ri, ti, Θi) from N ((ri, ti, Θi), Σ)

3 Proposed Algorithm

We modify the baseline algorithm to optimize over a set of manifolds instead
of a single state space. To this end, we consider a set of action classes A =
{a1, · · · , a|A|}, where we learn for each class an action-specific low-dimensional
manifold Ma ⊂ Rda with da � D. We assume that the following mappings are
available:

fa : EΘ 7→Ma, ga : Ma 7→ EΘ, ha : Ma 7→Ma, (2)

where fa denotes the mapping from the state space to the low-dimensional
manifolds, ga the projection back to the state space, and ha the prediction
within an action-specific manifold. Since the manifolds encode only the space
of joint angles, a low-dimensional representation of the full pose is denoted by
ya = (r, t, Θa) with Θa = fa(Θ). A particle si = (yia, a

i) stores the correspond-
ing manifold label ai in addition to the vector yia = (ri, ti, Θia). While Select p1

is outlined in Algorithm 2, Optimization A, Select p2, and Optimization B are
described in Algorithm 3. The particles in the manifolds Ma after Optimization
A are denoted by SM

ItA
and the particles in the state space after Optimization

B are denoted by SE
ItB

. The probability of an action class a for a given frame t
is denoted by p(A = a |T = t, I) and the estimated joint angles of the previous
frame are denoted by Θ̂t−1.
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Algorithm 2 Select p1

• SM = ∅; ∀si ∈ SM
ItA

draw u from U [0, 1]:
If u < p1 then
• SM = SM ∪ {si}

Otherwise
• SM = SM ∪

˘`
rj , tj , faj (Θ

j), aj
´¯

, where (rj , tj , Θj) ∈ SE
ItB

and aj is
selected with probability p(A |T = t, I)
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Algorithm 3 Optimizing over Ma

Optimization A:

For k = 1, . . . , ItA
• Selection
• ∀si ∈ SM

k−1: wi = exp
`
−βk · V

`
ri, ti, gai(Θ

i
a)
´´

• ∀si ∈ SM
k−1: wi = wi/

P
sj∈SM

k−1
wj

• SM
k = ∅; ∀si ∈ SM

k−1 draw u from U [0, 1]:
If u ≤ wi/maxsj∈SM

k−1
wj then

• SM
k = SM

k ∪ {si}
Otherwise
• SM

k = SM
k ∪ {sj}, where sj is selected with probability wj

• Mutation
• ∀a ∈ A: µa = 1

|Sa|
P
sj∈Sa Θ

j
a with Sa = {si ∈ SM

k : ai = a}

∀a ∈ A: Σa = αΣ
|Sa|−1

“
ρ I +

P
sj∈Sa(Θja − µa) (Θja − µa)T

”
µ0 = 1

|SM
k
|

P
sj∈SM

k
(rj , tj)

Σ0 = αΣ
|SM
k
|−1

“
ρ I +

P
sj∈SM

k

`
(rj , tj)− µ0

´ `
(rj , tj)− µ0

´T”
• ∀si ∈ SM

k sample Θia from N (Θia, Σai) and (ri, ti) from N ((ri, ti), Σ0)

Select p2:

• â = argmina∈A

‚‚‚Θ̂t−1 − ga(fa(Θ̂t−1))
‚‚‚ , (Σâ)ii =

|Θ̂t−1−gâ(fâ(Θ̂t−1))|i
3

• SE
ItA

= ∅; ∀si ∈ SM
ItA

draw u from U [0, 1]:
If u < p2 then
• SE

ItA
= SE

ItA
∪
˘`
ri, ti, gai(Θ

i
a)
´¯

Otherwise
• SE

ItA
= SE

ItA
∪
n

(ri, ti, Θ̂)
o

, where Θ̂ is sampled from N (Θ̂t−1, Σâ)

Optimization B:

For k = ItA + 1, . . . , ItB
• Selection
• ∀si ∈ SE

k−1: wi = exp
`
−βk · V

`
ri, ti, Θi

´´
• ∀si ∈ SE

k−1: wi = wi/
P
sj∈SE

k−1
wj

• SE
k = ∅; ∀si ∈ SE

k−1 draw u from U [0, 1]:
If u ≤ wi/maxsj∈SE

k−1
wj then

• SE
k = SE

k ∪ {si}
Otherwise
• SE

k = SE
k ∪ {sj}, where sj is selected with probability wj

• Mutation
• µ = 1

|SE
k
|

P
sj∈SE

k
(rj , tj , Θj)

Σ = αΣ
|SE
k
|−1

“
ρ I +

P
sj∈SE

k

`
(rj , tj , Θj)− µ

´ `
(rj , tj , Θj)− µ

´T”
• ∀si ∈ SE

k sample (ri, ti, Θi) from N ((ri, ti, Θi), Σ)


