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ABSTRACT

In this paper, we propose a novel method to solve the forward and inverse problems in diffuse optical tomography.
Our forward solution is based on the diffusion approximation equation and is constructed using the Feynman-Kac
formula with an interacting particle method. It can be implemented using Monte-Carlo (MC) method and thus
provides great flexibility in modeling complex geometries. But different from conventional MC approaches, it
uses excursions of the photons’ random walks and produces a transfer kernel so that only one round of MC-based
forward simulation (using an arbitrarily known optical distribution) is required in order to get observations
associated with different optical distributions. Based on these properties, we develop a perturbation-based
method to solve the inverse problem in a discretized parameter space. We validate our methods using simulated
2D examples. We compare our forward solutions with those obtained using the finite element method and find
good consistency. We solve the inverse problem using the maximum likelihood method with a greedy optimization
approach. Numerical results show that if we start from multiple initial points in a constrained searching space,
our method can locate the abnormality correctly.

Keywords: Diffuse optical tomography, diffusion approximation, Feynman-Kac formula, interacting particle
method, Robin boundary condition, greedy optimization method

1. INTRODUCTION

Diffuse optical tomography (DOT) is a non-invasive imaging modality that is drawing significant attention. It
provides comparatively high-speed data acquisition; the instrument is portable, low-cost, and non-ionizing; and
most importantly, it offers unique physiological information about hemoglobin oxygenation, which cannot be
obtained through other imaging modalities. Currently, DOT is being used in areas such as functional brain
imaging,1, 2 optical mammography,3, 4 as well as stroke and head trauma imaging.5, 6

The forward model in DOT describes the photon propagation in tissue and sets up the relationship between
the optical measurements and tissue’s optical properties (e.g., the absorption coefficient µa and the scattering
coefficient µs). It is given by the Boltzmann transport equation (TE), which can be approximated using the
diffusion approximation (DA) equation under certain assumptions. Different approaches, such as the Monte
Carlo (MC) method,7, 8 random walk method,9, 10 finite element method (FEM),11, 12 and finite difference method
(FDM),13, 14 have been proposed to solve the forward problem. The inverse problem is to reconstruct the spatially
varying µa and µs from the measurements. It is typically ill-posed and requires regularization15 or incorporation
of the prior information.16, 17

In this paper, we propose a novel method to solve the forward problem based on DA and then provide the
inverse solution. For simplicity, we assume that the tissue’s scattering coefficient is known and spatially constant,
and focus on reconstructing the absorption coefficient only. Our forward solution is based on the Feynman-Kac
formula and interacting particle method. The Feynman-Kac formula offers a method of solving certain partial
differential equations (PDEs) by simulating random paths of a stochastic process. It has been applied to areas
such as mathematical finance18, 19 and stochastic physics,20 and we used it in Ref. 21 and Ref. 22 to localize

Further author information: (Send correspondence to Arye Nehorai)
Nannan Cao: E-mail: ncao4@ese.wustl.edu, Telephone: 1 314 935 4146
Mathias Ortner: E-mail: mathias.ortner@gmail.com , Telephone: 1 314 935 4146
Arye Nehorai: E-mail: nehorai@ese.wustl.edu, Telephone: 1 314 935 7520



chemical sources under a biochemical diffusion scenario. The formula expresses the solution as an expectation of
a functional of diffusion processes, which in the case of DOT is with respect to the photons’ initial intensities
and their spatial distributions at a certain time instance.

The forward solution can be approximated using the Monte Carlo method by simulating the photons’ random
walks in the medium, thereby it provides great flexibility in modeling arbitrary complex geometries and parameter
distributions. The main difference from conventional MC approaches, however, is that the Feynman-Kac formula
requires simulating the photons’ random walks starting from the detectors and selecting only the trajectories
hitting the light sources. Since the probability of such an event happening is very low, it would take a long
time to get a meaningful quantity of such trajectories. To tackle this problem, we employ a multilevel Feynman-
Kac method following Del Moral’s work in Ref. 23. This method is based on an interacting particle approach,
which reformulates the forward solution using excursions of photons’ random walks instead of just their natural
evolutions. The main reason of doing so is to select and duplicate in a dynamic way those better-fitting photons
that are more likely to end in the light sources, thus are more favorable for the forward calculation.

This interacting particle method also offers the forward solver the following property: it produces a transfer
kernel that is readily adaptable to computing the forward solutions associated with any µa distribution. More
specifically, in order to find the best fitting µa to a certain set of measurements, it is sufficient to (i) run the
MC simulation only once using an arbitrarily known absorption distribution, and (ii) keep changing µa in space
and just recompute the forward solution associated with each one of them until the calculated observations are
very close to the real measurements according to some objective functions. The computation in the second step
would need the information obtained in the first step (e.g., the photon genealogical paths); however, it is very
important to note that no additional MC simulations are required in this searching procedure for each possible
µa.

The above method is clearly different from the conventional MC-based inverse approaches, where one needs
to run a round of MC simulation for each possible µa distribution in order to find the best fitting one. As a
consequence, our method can reduce the computational cost of solving the inverse problem. In the current work,
we formulate the inverse solution using a perturbation-based method in a discretized parameter space.

We validate our methods using simulated 2D examples, assuming both remission and transmission geometries.
In the simulation, we approximate the photon migration using a modified Euler scheme proposed by Costantini
et al. in Ref. 24. We first compare the forward solution with those obtained using the FEM and find good
consistency. We then solve the inverse problem using the maximum likelihood method with a greedy optimization
algorithm. Numerical results show that if we start from multiple initial points in a constrained searching space,
our method can locate the abnormality correctly. Our framework can be easily extended to various inverse
processing approaches such as Tikhonov regularization, Bayesian estimation, or Markov random field modeling.
It also allows for different optimization techniques such as simulated annealing.

This paper is organized as follows. In Section 2, we introduce our forward solution based on the DA equation
and multilevel Feynman-Kac formula. In Section 3, we describe the perturbation-based inverse solution and solve
it using the ML method and greedy algorithm. We then give numerical examples in Section 4 and conclude the
paper in Section 5.

2. FORWARD SOLUTION USING THE MULTILEVEL FEYNMAN-KAC FORMULA

In this section, we describe our forward solution using the multilevel Feynman-Kac formula. We first briefly
review the physical model of DOT given by the diffusion approximation (DA) equation. We then provide
the solution to DA using the Feynman-Kac formula, followed by an extension to the multilevel case with the
interacting particle method. Practical implementation using a modified Euler scheme is introduced in the end.

2.1. Physical Model of DOT

In DOT, the diffusion approximation (DA) of the Boltzmann transport equation is well accepted for modeling
the photon propagation in tissue. Consider a domain D with boundary ∂D, DA is given by a partial differential
equation (PDE):

−5 ·κ(r) 5 φ(r, t) + µaφ(r, t) +
1

c

∂

∂t
φ(r, t) = q0(r, t), ∀r ∈ D, (2.1)



where φ is the fluence (W/m2), κ the diffusion coefficient (m), c the speed of light in the medium (m/s), and q0

the source (W/m3). The term κ is defined as κ = 1/3(µa + µ′
s) where µ′

s = (1 − g)µs is the reduced scattering
coefficient (m−1) with g representing the average of the cosine of the scattering angle. Since µa � µ′

s for most
biological tissues,25 we assume κ = 1/3µ′

s in our calculations.

We consider the Robin boundary condition to incorporate the diffuse boundary reflection caused by a refrac-
tive index mismatch between D and its surrounding medium. It is given as

φ(r) + 2Aκ(r)
∂φ(r)

∂n
= 0, ∀r ∈ ∂D, (2.2)

where n denotes the unit outward normal of the boundary and A = (1 + R)/(1 − R) with R representing the
refraction index.

2.2. Diffusion approximation and Feynman-Kac Formula

DA can be solved using the Feynman-Kac formular, which establishes a relationship between PDEs and stochastic
processes. It provides a method of solving certain PDEs by simulating random paths of a stochastic process,
and the solution is given as the expectation of a functional. For the DA (2.1) with boundary condition (2.2), the
Feynman-Kac formula states that the solution φ(rd, t) at a detector position rd at time t can be expressed as

φ(rd, t) = E

[

exp

{

−c

∫ t

0

µa(Xs)ds +
1

2Aκ

∫ t∧τ

0

dξs

}

q0(Xt)

]

, (2.3)

where Xs (0 ≤ s ≤ t) denotes a stochastic process with X0 = rd, ξs an increasing stochastic process called
local time, τ the first time that Xs hits the boundary ∂D, and E the expectation with respect to the probability
distribution P(Xt). The processes Xs and ξs satisfy

{

dXs =
√

2cκdWs + nsdξs,
ξs =

∫ s

0
I∂D(Xr)dξr ,

(2.4)

where Ws denotes a standard Brownian motion and I(·) the indicator function defined as

IA(x) =

{

1 if x ∈ A,
0 otherwise

(2.5)

Looking at Equation (2.3), we can see that the terms in the square brackets constitute a functional of Xs. They
incorporate the effects of the optical properties of the medium (the first term in the exponential), the boundary
condition (the second term in the exponential), and the source (the last term q0). Note that unlike the usual
concepts in the Monte Carlo methods or random walk theory, the Feynman-Kac formula requires that Xs be
started from the detector position rd, and considers only those paths that reach the light source position (denoted
by rs) for the solution (since q0(Wt) 6= 0 only at rs). We illustrate the idea in Figure 1.

2.3. Diffusion approximation and Multilevel Feynman-Kac Formula

We extend the above concept using the multilevel Feynman-Kac formula where the domain is divided into several
sublevels and (2.3) reformulated using excursions of a particle’s random walks instead of its natural evolution.
Furthermore, the photon’s migration path is updated in a dynamic manner so that the better-fitting ones are
duplicated and are more likely to end in the source locations. There are two advantages of this extension: (i) it
favors the forward computation, and (ii) it produces a transfer kernel that will facilitate the inverse solution.

The multilevel Feynman-Kac formula is described in detail by Del Moral,23 where the author provides a
unified treatment on Feynman-Kac and interacting particle methods. The procedure can be outlined as follows:

(1) Domain decomposition

Let D0 = {rd} denote the positions of all the detectors, B the source positions, and A = ∂D − B. We
decompose D ∪ B into a decreasing sequence of sets B0,B1, . . . ,Bm:

Bm ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0, (2.6)



Figure 1. Illustration of solving the diffusion equation using the Feynman-Kac formula. (a) The initial condition at
t = 0 where the disk represents a source with unit intensity (q0 = 1) and the circle denotes the detector. (b) A series of
stochastic processes Xs are launched from the detector to obtain the probability distribution P(Xs). (c) The diffusion
result at t = ts computed using Equation (2.3).

(a) (b)

Figure 2. Illustration of the domain decomposition. In (a), D represents the whole domain under consideration, the
detector is in D0, and B represents the source position. In (b), we decompose D ∪ B into m = 6 subsets such that
B = B6 ⊂ B5 ⊂ B4 ⊂ . . . ⊂ B0 and D0 = B0 − B1.

and require that D0 = B0 − B1 and Bm = B. See Figure 2 for an illustration. Using this setup and considering
a process Xs starting from D0, we define the hitting time for the nth sublevel:

Tn = inf{s ≥ 0 : Xs ∈ Bn ∪ A}, 1 ≤ n ≤ m, (2.7)

which is the first time that Xs hits either Bn or A. Note that since the sequence of sets Bn is increasing, we
have T0 = 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tm = T , where T is called a stopping time, representing the time that Xs hits
the boundary ∂D. If Xs exits D through A at some time Tk with k < m, we define Tk = Tk+1 = · · · = Tm = T
and say that Xs is frozen.

(2) Excursions and Markov Chain formulation

We define excursions of the process Xs as the sequence:

χn = (Tn, (Xs)Tn−1≤s≤Tn
) with n = 1, . . . , m and χ0 = (0, X0), (2.8)

which represents the evolution of Xs between successive hitting times. For a frozen process with T = Tk and
k < m, we have χk+1 = . . . = χm = (T, XT ). It can be shown that the sequence χ0, χ1, . . . , χn forms a Markov
chain, which we will use in the later derivation. This observation is not obvious, coming from a strong Markov
property and some conditions on the hitting times.23

We then define a potential function Gn for χn. The potential function is an important concept in our method.
It captures the behavior of the particle’s migration in each sublevel, which is affected by the medium properties
and different boundary conditions; it also represents a “killing or creation” rate related to the absorbing nature



of the medium. For the DA equation with Robin boundary condition,

Gn(χn) = IBn
(XTn

) exp

{

−c

∫ Tn

Tn−1

µa(Xs)ds +
1

2Aκ

∫ Tn

Tn−1

dξr

}

. (2.9)

Clearly, for a given µa, the shorter the path the particle takes to reach Bn, the smaller the potential. If the
particle reaches the boundary A during the migration, its potential is 0.

Based on this definition, the forward solution (2.3) can be expressed as

φ(rd, t) = E

[

q0(χm)

m
∏

p=1

Gp(χp)

]

. (2.10)

Equation (2.10) is important for the derivation of the final forward solution. It gives us a new approach to
implement Monte Carlo approximations by simulating the excursions χ0, . . . , χm of the random process Xs.
Moreover, it allows the development of our novel particle updating scheme (described next), which favors the
solution of the inverse problem.

(3) Interacting particle updating scheme

The particle updating scheme modifies the paths of particles in each sublevel according to their potential
values. The goal is to get an unbiased expression of (2.10) while duplicating the better-fitted particles and
moving them forward to explore the whole domain. By recording the genealogical histories of each particle, the
inverse problem can also be solved in a simplified way.

We consider N realizations of χn denoted as ϕn = (ϕ1
n, . . . , ϕi

n, . . . , ϕN
n ), where each ϕi

n is generated using
the same Markov kernel as χn and is associated with a potential function Gi

n defined as in (2.9). We use the
following two-step updating scheme:

(i) Evolution: A total of N photons are evolved from t = Tn, producing a set of ϕn.

(ii) Selection: A new set of photons ϕ̂n are selected according to their potential values Gi
n = G(ϕi

n), since the
smaller Gi

n is, the less the particle χi
n contributes to the forward solution. We use the following selection

scheme:

Sn(ϕ̂i
n, ·) =

Gi
n

max {Gj
n}

δϕi
n
(·) + (1 − Gi

n

max {Gj
n}

)ΨN
n (·), (2.11)

where the first term on the right represents the probability of χi
n staying, and the second term is the

probability of it being replaced. More specifically,

• with a probability
Gi

n

max {G
j
n}

, the particle stays where it is, i.e., ϕ̂i
n = ϕi

n;

• otherwise, it is replaced by a new ϕ̂i
n, which is randomly selected according to the distribution

ΨN
n (·) =

1
∑N

j=1 Gj
n

N
∑

j=1

Gj
nδϕ

j
n
(·). (2.12)

We illustrate the above procedure in Figure 3. We can see that this algorithm is built such that:

• If a particle reaches A, it will always be discarded and replaced by a “better” one which hits Bi. A
direct consequence of this scheme is that each photon will evolve in a direction “more favorable” to our
calculation.

• There are always N trajectories evolving in the medium, and we will obtain N photons in B in the end.

As a consequence, Equation (2.10) is approximated using results of Ref. 23 as

φ(rd, t) =
1

Nm

m−1
∏

p=0





N
∑

j=1

Gj
p



×
N
∑

j=1

Gj
mq0(ϕ

j
m). (2.13)



A B A B

(a) (b)
A B A B

(c) (d)

Figure 3. Illustration of successive steps of photon migrations using the multilevel Feynman-Kac formula. In this case,
m = 6 levels and N = 4 photons. (a) The photons are launched from the set D0 and all reach B0. (b)-(d) The photons
progress through the domain. At each level, the trajectories hitting the “bad set” A of the boundary are stopped and
replaced by the good trajectories selected randomly according to Equation (2.12). In the end, all four photons end up in
the subset B = B6 and contribute to the observation.

2.4. Implementation of the Forward Solution

In order to implement the forward solution (2.13) using the Monte Carlo method, we need to find a scheme to
simulate the photon migration (i.e., Equation (2.4)) in a discrete manner. We use the modified Euler scheme
given by Costantini (see Ref. 24 for details). Denote h the temporal discretization step and Np the number of
random walks in the pth sublevel, the potential function is approximated as

Gi
p(t, X) = IBn

(Xt) exp







−ch

Np
∑

l=1

µa(Xl) +
h

2Aκ

Np
∑

l=1

ξl







, (2.14)

and (2.13) can then be computed accordingly.

3. INVERSE SOLUTIONS

In this section, we solve the inverse problem using a perturbation-based method in a discretized parameter space.
We compute it using the maximum likelihood method with a greedy optimization algorithm.

3.1. Perturbation-based Inverse Solution

The inverse problem in DOT is to estimate µa(r) from φ. It does not look easy from (2.13), since µa exists
only in G and its relationship to φ is highly nonlinear. To tackle this issue, we propose a perturbation-based
algorithm. The key idea is that if we assume a known µa and run MC simulations using the multilevel Feynman-
Kac formula, saving each particle’s potential value G on each sublevel along with its genealogical history, then
the observation φ̄ associated with any other µ̄a can be computed directly using the saved information without
running additional MC simulations. The feasibility of this method is based on the following result:23

φ̄(rd, t) =
1

Nm

m−1
∏

p=0

(

N
∑

j=1

Gj
p) ×

N
∑

j=1

(

Gj
m ×

m
∏

p=0

Ḡp(Anc(ϕj
m, p))

Gp(Anc(ϕj
m, p))

q0(ξ
j
m)

)

, (3.15)

where Anc(ϕj
m, p) represents the ancestor of the particle ϕj

m at level p, Gj
p the potential value of ϕj

p at level p,

Gp the potential function defined in (2.9) for the known µa, and Ḡ same as in (2.9) but for the unknown µ̄a.



A B

Figure 4. An example of the ancestors of two photons.

Among all these four quantities, the first three are associated with µa and are known a priori. The only factor
that is affected by µ̄a is Ḡ, which, however, is also calculated using the genealogical histories obtained from µa.
In Figure 4 we give an example of the genealogical tree of two photons at level m, composed of their ancestors.

Therefore, according to Equation (3.15), we can find the inverse solution µ̂a by continuing to change µ̄a

(recomputing only one term (Ḡ) each time) until a calculated φ̄s is as close as possible to the real measurements
according to some objective functions. We claim that µ̂a = µ̄s

a.

This procedure reduces the computations compared with the conventional Monte Carlo method. The MC
method requires rerunning a complete simulation of the particle’s evolution for a different µ̄a, which is compu-
tationally very expensive. After substituting (2.14) into (3.15), we can easily obtain

φ̄ =
1

Nm

m−1
∏

p=0

(
N
∑

j=1

Gj
p) ×

N
∑

j=1



Gj
m × exp







−ch
m
∑

p=0

Np
∑

l=1

δµa(Anc(ϕj
m, p))







φ0(ξ
j
m)



 , (3.16)

where δµa = µ̄a − µa. We can see that the last term in (2.14) related to the local time is canceled out and does
not contribute to the final solution. This observation actually simplifies the computation, since we do not need
to save the information of ξ during the simulation with µa.

Actually, as we will show later, calculating Ḡ can be further simplified after we discretize the function µa in
space. We will show that we need to consider only the spatial difference between the discretized µa and µ̄a in
order to obtain φ̄.

3.2. Domain Discretization

In order to estimate the spatial distribution of µa, we discretize the domain D into Na small elements Di such
that

D =

Na
⋃

i=1

Di and Di ∩ Dj = ∅, ∀i 6= j. (3.17)

We assume constant µai in each element and express the spatial distribution of µa as µa =
∑Na

i=1 IDi
µai. In this

way, the inverse solution is estimating {µai} from the measurements.

This discretization step has the following effect on computing (3.16): when we record Anc(·) for each sublevel,
instead of saving the exact position of the photon along each path, now we only need to record how many times
the photon passes element Di in each sublevel. Denote this number by Ni,p. Then (3.16) becomes

φ̄ =
1

Nm

m−1
∏

p=0

(

N
∑

j=1

Gj
p) ×

N
∑

j=1

(

Gj
m × exp

{

−ch

Na
∑

i=1

Ni,pδµai

}

q0(ξ
j
m)

)

, (3.18)

which is the formula we will use for the inverse solution.



3.3. Maximum Likelihood Method

We propose to solve the inverse problem using the maximum likelihood method. We assume a zero-mean additive
Gaussian noise e that is spatially uncorrelated with an unknown variance σ2

e , i.e., e ∼ N (0, σ2
eI). We formulate

the measurement model as
y = g(µa, f ) + e, (3.19)

where y = [y1, y2, . . . , yNd
]T is the measurement vector, e = [e1, e2, . . . , eNd

]T the noise vector, and g =
[g1, g2, . . . , gNd

]T with each gi given in (3.18). The term f = {f1, f2, . . . , fNs
} represents the known source

intensities and µa = {µa1, µa2, . . . , µaNa
} the discretized absorption coefficient in each element. In order to find

the optimal µa for the given y, we need to minimize the following objective function:

J(µa) = ||y − g||2. (3.20)

3.4. Greedy Algorithm

It is clear that the above inverse problem is highly nonlinear with respect to the unknown µa. It is also
underdetermined because of the large number of unknowns (µai’s) and limited number of measurements. We
propose to estimate µa using the greedy optimization algorithm (GOA). GOA is a numerical method that selects
a locally optimum choice at each stage with the hope of finding the global optimum. For simplicity, we assume
that there is only one abnormality in the domain. We denote the normal µa as µ1

a and the abnormal one as µ2
a,

and thus the elements in µa are composed of {µ1
a, µ

2
a}. The procedure of GOA is described as follows.

• Start from an arbitrary µa distribution and discretize it in space, obtaining a µa0.

• Generate a random number ind uniformly distributed in [1, Na] and flip the indth element in µa0, i.e., if
µaind = µ1

a, let µaind = µ2
a; otherwise, µaind = µ1

a. Name the flipped µa distribution µa1.

• Compute (3.20) using µa0 and µa1. If J(µa1) < J(µa0), accept the change; otherwise, keep µa0.

• Repeat the computation until the minimum value is reached or the number of iterations exceeds a prescribed
value Nmaxiter.

For most problems, GOA is not guaranteed to converge to the globally optimal solution, since it usually does
not operate exhaustively on all the data. To avoid this problem, we implement GOA using different initial points
to find the best fitting µa. Additionally, we constrain our searching space according to our foreknowledge, in
order to ameliorate the underdetermined nature of the problem.

4. NUMERICAL EXAMPLES

In this section, we present numerical examples to (i) validate our forward solution, and (ii) illustrate the appli-
cability of our inverse solutions.

4.1. Comparison to FEM

We first analyze the validity of our forward solution by comparing it to the FEM, which is commonly used in
DOT.11, 12 We consider a 2D rectangular domain of size 8 × 10 cm2. We assume two sources at rs1 = (−2, 0)
cm, rs2 = (2, 0) cm, and three detectors at rd1 = (−4, 0) cm, rd2 = (0, 0) cm, and rd3 = (4, 0) cm. We assume
that each source has a unit intensity and the source fiber has a radius of 3mm.

The simulation setup is illustrated in Figure 5. In our forward simulations, we divide the space between all
the source-detector pairs into six sublevels as is shown in Figure 5 using different red levels. We assume κ = 0.06
cm, c = 22 cm/ns, and A = 3.24 in the domain, which are close to the real values for biological tissue.26

We consider the following two cases for the validation. In the first case, we assume homogeneous absorption
coefficient µa = 0.2 cm−1 throughout the whole domain, whereas in the second case, we assume a 2 × 1.5 cm2

rectangular abnormality centered at (1,−1.25) cm. The abnormality has an absorption coefficient µb = 0.6 cm−1.
In each case, we compute the optical fluences at three detectors using both FEM and our proposed method.



Figure 5. 2D simulation setup (in cm units). The two small rectangles represent the source light fibers with radius
3mm, the dots the detectors, and the semicircle areas with different red levels denote the sublevels we constructed for the
forward calculation.

Table 1. FEM Results (in mW/cm2) Using Different Absorption Distributions.

µa Distribution φd1 φd2 φd3

Case 1 4.585 9.176 4.584
Case 2 4.584 6.507 4.338

The FEM solutions are given in Table 1. They were obtained using the software FEMLAB, where we
divided the domain into 126,720 triangular elements and applied Lagrange quadratic polynomials as interpolation
functions. Considering the fine nature of this tessellation, we claim that the values we obtained are very close
to the real solutions.

We launched 106 photons to compute our forward solutions. The simulation was performed using Matlab 7
on a PC with Pentium 4 2.6GHz CPU and 1G of RAM. Because of the Monte Carlo nature of our method, we
cannot obtain a single exact forward solution, since the observation φ varies with a small variance among different
realizations. As a consequence, we use the function “boxplot()∗” in Matlab in order to make the comparison. The
boxplots (labeled as “MC”) for three detectors are given in Figure 6, where the first row represents the results
using homogenous µa distribution and the second row corresponds to the µa with the rectangular abnormality.
In each figure, the FEM result (labeled as “FEM”) is also plotted to the right of the box. We can see that the
FEM solutions always fall within the range of each box (around the median of the distribution), which indicates
that our method provides good approximations to the true forward solutions.

4.2. Inverse Solutions

We tested our inverse method using a transmission geometry as shown in Figure 7a. The domain is of size 6 ×
12 cm2, where 9 sources are placed on the top surface and 9 detectors on the bottom. A 1 × 2 cm2 rectangle
abnormality with µb = 0.5 cm−1 is inserted with its center at (2.5,3) cm, and the the background absorption
coefficient is assumed to be µa = 0.2 cm−1. We imposed additive Gaussian noises and chose the noise variance
such that the signal-to-noise ratio (SNR) was 20dB. We defined the SNR as SNR = 10 log((

∑Nd

i=1 φ2
i )/σ2

e ), where
φi = gi(µa, f) represents the calculated observation at the ith detector.

We discretized the domain into small elements of size 2.5 × 2.5 mm2 and applied the greedy optimization
algorithm for the inverse solutions. In our case, since we know the correct position of the abnormality, we simplify
the inverse computations by (i) randomly picking an initial point within the range x ∈ [0, 6] cm, y ∈ [−1,−5]
cm, and (ii) updating the µa in the same range according to the scheme we introduced in Subsection 3.4. In

∗A boxplot produces a box-and-whisker plot for a set of data, providing a good visual summary of the important
aspects of a distribution. The box stretches from the lower hinge (defined as the 25th percentile) to the upper hinge (the
75th percentile) and also indicates the median as a line across the box. The whiskers are lines extending from each end
of the box to show the extent of the data.
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Figure 6. Box plots of the simulated forward solutions for DOT using our method compared with FEM. The first row
represents results at different detectors with homogeneous µa distribution, and the second row is for the heterogeneous
µa distribution with a rectangle abnormality.

(a) (b)

Figure 7. Estimation results of the abnormality using the greedy optimization method. (a) Simulation setup. (b) Inverse
solutions of the absorption distribution.

order to avoid being stuck in the local minimum, we used different initial points and picked the µa configuration
leading to the least objective function value as our final solution. The estimated absorption distribution is shown
in Figure 7b. We can see that the abnormality was recovered at the correct location.

5. CONCLUSIONS

In this paper, we introduced the application of Feynman-Kac formula and interacting particle method to solve
the forward and inverse problems in DOT. Our method is based on the diffusion approximation and belongs to
the class of Monte Carlo methods. Therefore, it can be applied to arbitrary complex geometries and parameter
distributions. However, unlike the conventional MC approaches, it has the following features:

• It uses excursions of the photons’ random walks instead of their natural evolutions.

• It updates the photon evolution in a dynamical way (according to its potential values) such that the
better-fitted photons are duplicated and moved forward.



• It requires only one round of MC simulations in order to get observations from different optical parameter
distributions. This property is based on recording the photons’ genealogical histories, and greatly favors
the inverse computation.

We validated the proposed forward solution method by comparing it with FEM and found good consistency.
We developed a maximum likelihood estimator and computed it numerically using the greedy optimization
method in a constrained searching space. We found that assuming a single abnormality and starting from
different initial points, our approach can localize the anomaly correctly. It is known that the greedy algorithm
often suffers from the problem of being trapped in a local minimum. In this paper, we tackled this issue by using
multiple initial values. An alternative method would be to apply the simulated annealing (SA) algorithm, which
guarantees convergence to the global minimum.

We have applied our methods to both remission measurements, which has the potential application to brain
tomography, and transmission geometries, which can be useful for breast imaging. We will extend our work to
the 3D case, which is of interest in real applications. We will also consider a layered head model (e.g., the one
obtained using MRI) and explore the effects of different noise models (e.g., the Poisson noise).
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