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Abstract . Particle smoothers are widely used algorithms allowing to approximate the smooth-
ing distribution in hidden Markov models. Existing algorithms often suffer from slow compu-
tational time or degeneracy. We propose in this paper a way to improve any of them with
a linear complexity in the number of particles. When iteratively applied to the degenerated
Filter-Smoother, this method leads to an algorithm which turns out to outperform existing lin-
ear particle smoothers for a fixed computational time. Moreover, the associated approximation
satisfies a central limit theorem with a close-to-optimal asymptotic variance, which be easily
estimated by only one run of the algorithm.
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1. Introduction

A hidden Markov model (HMM) is a doubly stochastic process where a Markov chain
{Xt}∞t=0 is only partially observed through a sequence of observations {Yt}∞t=0. More pre-
cisely, let X and Y be two spaces equipped with countably generated σ-fields X and Y,
respectively, and denote by M a Markovian transition kernel on (X,X ) and by G a tran-
sition kernel from (X,X ) to (Y,Y). In our setting, the dynamics of the bivariate process
{(Xk, Yk)}∞k=0 follows the Markovian transition kernel

P [(x, y),A]
def
= M ⊗G[(x, y),A] =

∫∫

M(x, dx′)G(x′, dy′)1A(x
′, y′) , (1)

where (x, y) ∈ X× Y and A ∈ X ⊗ Y.
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We assume that there exist nonnegative σ-finite measures λ on (X,X ) and µ on (Y,Y)
such that for any x ∈ X, M(x, ·) and G(x, ·) are dominated by λ and µ, respectively. This
implies the existence of kernel densities

m(x, x′)
def
=

dM(x, ·)

dλ
(x′) and g(x, y)

def
=

dG(x, ·)

dµ
(y) .

In what follows, we simply write dx for λ(dx).
We are interested here in estimating the expectation of a function of (X0, . . . , XT ) condi-

tionally on the observations Y0, . . . , YT using particle smoothing algorithms. Many different
implementations of the particle filters and smoothers have been proposed in the literature
with different computational costs; see for example Del Moral (2004); Cappé et al. (2005);
Doucet and Johansen (2009). So far, the existing particle smoothers rely on the so-called
Forward-Filter whose complexity is linear in the number of particles N . In its simplest ex-
tension, storing the paths of the Forward-Filter allows to approximate the joint smoothing
distribution as seen by Kitagawa (1996). This method known as the Filter-Smoother unfor-
tunately suffers from a poor representation of the states corresponding to times t ≪ T . To
circumvent this drawback, the FFBS (Forward Filtering Backward Smoothing) algorithm
introduced by Doucet et al. (2000) adds a backward pass to the forward filter at the cost
of a quadratic complexity when used for approximating the marginal smoothing distribu-
tions. However, Godsill et al. (2004) extended it to the FFBSi (Forward Filtering Backward
Simulation), an algorithm which can be implemented with a O (N) computational cost per
time step as proposed by Douc et al. (2010) when approximating the whole joint smoothing
distribution. If we are interested only in approximations of the marginal smoothing distri-
butions, the Two-Filter smoother of Briers et al. (2010) may also be used as an alternative
method. This algorithm originally suffers from a quadratic computational cost but has
recently been modified in Fearnhead et al. (2010) to get a linear one.

Whereas more and more SMC-based smoothing algorithms are linear in the number of
particles, there is a recent surge of interest in mixed strategies (see Andrieu et al. (2010);
Olsson and Rydén (2010) or Chopin et al. (2011)) where nice properties of SMC and MCMC
algorithms are conjugated to produce better approximations. Whereas these methods are
developed mostly in the framework of Bayesian inference for state space models, we focus
here on the quality of the approximation of the smoothing distribution associated to a fixed
Hidden Markov model. This is a crucial problem to address and the hope is to exhibit the key
factors that affects the quality of the estimation. More precisely, fix (once and for all) a set of
observations Y0, . . . , YT and try to approximate the law of X0, . . . , XT conditionally on the
observations with a set of particles (ξi,N0 , . . . , ξi,NT )Ni=1 associated to equal or unequal weights

(ωi,N
T )Ni=1. For a fixed CPU time, how to build the best population of particles? Should we

use mixed strategies? Can we obtain confidence intervals without additional Monte Carlo
passes? These are some of the questions we consider in this work. Since T is fixed, the
context of this work does not exactly correspond to the one of Gilks and Berzuini (2001)
who propose to sequentially alternate SMC stages and MCMC stages as more and more
observations are available. Nevertheless, the MCMC step called the Move stage by these
authors is now included in the method proposed in this paper to form an efficient algorithm
where some directional update of the components extends sequentially the diversity of the
population from high values of t to lower values of t. Despite its simplicity, the resulting
algorithm turns out to be more than a strong competitor to existing smoothing samplers.

We propose here to improve any consistent particle approximation of the joint smoothing
distribution by moving sequentially the particles according to a Metropolis-within-Gibbs
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iteration. Such algorithm has a linear computational cost and can be applied in particular
to the Filter-Smoother to reduce the degeneracy without increasing the complexity. The
paper is organized as follows: in Section 2, we describe the algorithm. In Section 3, we
show that the limiting variance of the algorithm is reduced in comparison with the original
SMC-based population with a multinomial resampling stage. One major characteristic of
this algorithm is the fact that, by letting the number of iterations of the Markov chains
proportional to lnN , the asymptotic variance is close to optimal and can be estimated using
the evolution of only one population of particle paths. Up to our knowledge, this feature
is totally new in the smoothing literature. Numerical experiments and comparisons with
existing linear smoothers are provided in Section 4 for the Linear Gaussian Model (LGM)
and the Stochastic Volatility Model (StoVolM).

2. MH-Improvement of a particle path population

Denote for u ≤ s, au:s = (au, au+1, . . . , as) and define the smoothing distribution Π0:T |T

associated to a fixed set of observations Y0:T = y0:T by: for any A ∈ X⊗(T+1),

Π0:T |T (A)
def
=

∫

· · ·
∫

χ(dx0)g(x0, y0)
[

∏T
i=1 m(xi−1, xi)g(xi, yi)

]

1A(x0:T )dx1:T

∫

· · ·
∫

χ(dx0)g(x0, y0)
[

∏T
i=1 m(xi−1, xi)g(xi, yi)

]

dx1:T

,

where χ is a probability measure on (X,X ). The distribution Π0:T |T is thus the law of X0:T

conditionally to Y0:T = y0:T when X0 follows the distribution χ. In the sequel, χ is assumed
to have a density w.r.t. λ(dx), density which will be denoted by χ by abuse of notation:
χ(dx) = χ(x)λ(dx). Then, the density π0:T |T of the distribution Π0:T |T with respect to
∏T

t=0 λ(dxt) writes

π0:T |T (x0:T ) ∝ χ(x0)g(x0, y0)

[

T
∏

i=1

m(xi−1, xi)g(xi, yi)

]

. (2)

As noted in Gilks and Berzuini (2001), the smoothing density π0:T |T in (2) is known up
to a normalizing constant so that approximation of this distribution can be perfectly cast
into the general framework of the Metropolis-Hastings algorithm. Given that the resulting
Markov chain evolves in the path space X

T+1, the candidate at each iteration should be
carefully chosen to keep the acceptance rate away from zero which is a delicate task in high
dimensional spaces. Considering this, an appealing approach in the MCMC literature is the
Gibbs sampler and more generally the Metropolis-within-Gibbs sampler which proposes to
update only one component at a time. One could also choose to update components by
blocks but as will be seen in Section 4, moving only one component at a time is sufficient
for our purpose. A key point for exploring the posterior distribution within a reasonable
number of iterations is that the algorithm should be well initialized at least for the first
components to be updated. We propose here to achieve this by exploiting approximation
of Π0:T |T provided by SMC-based algorithms.

More precisely, suppose that we already have an approximation of Π0:T |T through a set

of (normalized) weighted particle paths, (ξi,N0:T , ω
i,N
0:T )

N
i=1 in the sense that

Π0:T |T (h) ≈
N
∑

i=1

ωi,N
0:T h(ξ

i,N
0:T ) ,

N
∑

i=1

ωi,N
0:T = 1 , (3)
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We intend here to improve this approximation by running N independent Metropolis-within-
Gibbs Markov chains (ξi,N0:T [k], k ≥ 0) for i ∈ {1, . . . , N} starting from each path ξi,N0:T , that

is, we set ξi,N0:T [0] = ξi,N0:T for i ∈ {1, . . . , N}. The resulting approximation after K iterations
of the Markov chains then writes

Π0:T |T (h) ≈
N
∑

i=1

ωi,N
0:T h(ξ

i,N
0:T [K]) . (4)

Let us now detail the transition of (ξi,N0:T [k], k ≥ 0). For a simpler exposition, we drop here
the dependence on i, N . Now, consider a family of transition kernel densities (rt)0≤t≤T such
that r0, rT are transition kernel densities on (X,X ) whereas for t ∈ {1, . . . , T − 1}, rt is a
transition kernel density on (X× X,X ). For u, v, w, x ∈ X, set

α0(v, w;x)
def
=

χ(x)g(x, y0)m(x,w)

χ(v)g(v, y0)m(v, w)

r0(w; v)

r0(w;x)
∧ 1 , (5)

αt(u, v, w;x)
def
=

m(u, x)g(x, yt)m(x,w)

m(u, v)g(v, yt)m(v, w)

rt(u,w; v)

rt(u,w;x)
∧ 1 , 1 ≤ t ≤ T − 1 , (6)

αT (u, v;x)
def
=

m(u, x)g(x, yT )

m(u, v)g(v, yt)

rT (u; v)

rT (u;x)
∧ 1 . (7)

At time k, the new path ξ0:T [k] is obtained by updating backward in time each component
ξt[k] as follows

(i) Sample a candidate X ∼ rt(ξt−1[k − 1], ξt+1[k], ·),

(ii) Accept ξt[k] = X with probability αt(ξt−1:t[k − 1], ξt+1[k];X),

(iii) Otherwise, set ξt[k] = ξt[k − 1].

This procedure is valid for t ∈ {1, . . . , T−1}; we skip the description of the updates for ξ0[k]
and ξT [k] since they follow the same lines under very slight modifications. The complete
pseudo-code version of the Metropolis-Hastings Improved Particle Smoother (MH-IPS) is
given below.

Straightforwardly, for any t ∈ {0, . . . , T }, αt is the classical Metropolis-Hastings accep-
tance rate associated to the proposal kernel rt and the target distribution Π0:T |T . Due
to the specific structure of Π0:T |T whose density is a product of quantities involving con-
secutive components, the acceptance ratios in (5), (6) and (7) do not depend on the path
space dimension and are therefore nondegenerated. Of course, it is also possible to up-
date each component from an arbitrary number of neighbors. Nevertheless, in the Gibbs
Sampler for which all the acceptance rates are equal to one, the t-th component is updated
according to the distribution of Xt conditionally on X0:t−1, Xt+1:T , Y0:T which only depends
on Xt−1, Xt+1, Yt. Such dependence suggests that the candidate in the Metropolis-within-
Gibbs algorithm should be proposed according to a distribution which only involves its
nearest neighbors.

MH-IPS is based on a first approximation of Π0:T |T given in (3) whereas some SMC
algorithms like the Filter-Smoother are known to suffer from a poor representation of the
states close to 0 but are accurate for states close to T . As a consequence, (ξi,Nt )Ni=1 for large
values of t are well-distributed and this set of particles is then propagated to the poorer ones
by updating the components backward in time. In other words, instead of a random-scan
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Algorithm 1 MH-IPS

1: Initialization
2: Run an SMC-algorithm targeting Π0:T |T and store (ξi,N0:T , ω

i,N
0:T )

N
i=1.

3: Set: ∀ 1 ≤ i ≤ N, ξi,N0:T [0] = ξi,N0:T .
4: K improvement passes
5: for k from 1 to K do

6: for i from 1 to N do

7: Sample X ∼ rT (ξ
i,N
T−1[k − 1]; ·),

8: Accept ξi,NT [k] = X with probability αT (ξ
i,N
T−1:T [k − 1], X),

9: Otherwise, set ξi,NT [k] = ξi,NT [k − 1].
10: for t from T − 1 down to 1 do

11: Sample X ∼ rt(ξ
i,N
t−1[k − 1], ξi,Nt+1[k]; ·),

12: Accept ξi,Nt [k] = X with probability αt(ξ
i,N
t−1:t[k − 1], ξi,Nt+1[k], X),

13: Otherwise, set ξi,Nt [k] = ξi,Nt [k − 1].
14: end for

15: Sample X ∼ r0(ξ
i,N
1 [k]; ·),

16: Accept ξi,N0 [k] = X with probability α0(ξ
i,N
0 [k − 1], ξi,N1 [k], X),

17: Otherwise, set ξi,N0 [k] = ξi,N0 [k − 1].
18: end for

19: end for

procedure where components are updated at random, this determistic-scan Metropolis-
Hastings algorithm extends the diversity of the particle paths to the lower values of t at
each backward pass. The fact that MH-IPS uses the SMC-based approximation just once
and then, keep the N Metropolis-within-Gibbs Markov chains independent from each other
implies that the path degeneracy vanishes as the number of iterations increases. Strong
empirical evidences of this phenomenon are provided in Section 4.

A last but striking particularity of MH-IPS when compared to classical MH algorithms
is the fact that the approximation (4) only involves the states at iteration K of the N
Markov chains instead of using all the history of these Markov chains. Indeed, since only
one component is updated at a time, the consecutive paths are highly positively correlated
so that including them into (4) is detrimental to the quality of the approximation. Another
advantage of considering only states at iteration K is that the CLT of the approximation (4)
which is quite easy to establish when K ∝ lnN includes a very simple and close-to-optimal
expression of the asymptotic variance. The estimation of this variance can be performed
using the evolution of only one population of sample paths. Therefore, on the contrary to
all the smoothing algorithms proposed in the literature so far, confidence intervals can be
obtained without additional Monte Carlo passes.

3. Properties of the algorithm

In this section, since the number of observations is fixed, T is dropped for simplicity from
the notation. For example, we set Π = Π0:T |T , ξi,N = ξi,N0:T |T , ωi,N = ωi,N

0:T |T and so on.

The general procedure induced by MH-IPS can be described as follows. Let Q be a
Markov transition kernel on (XT+1,X⊗(T+1)) with invariant distribution Π. Consider a
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set of normalized weighted particles (ξi,N , ωi,N )Ni=1 and move the particles independently
according to the kernel Q. To be specific, define N independent Markov chains (ξi,N [k], k ≥
0)Ni=1 such that:

ξi,N [0] = ξi,N , (8)

ξi,N [k + 1] ∼ Q(ξi,N [k], ·) , k ≥ 0 . (9)

According to (4), Πh is approximated after k iterations of the Markov chains by:

Πh ≈
N
∑

i=1

ωi,Nh(ξi,N [k]),

N
∑

i=1

ωi,N = 1 . (10)

3.1. A resampling step in the initialization
Let us first consider the impact of the weights on the quality of the approximation. A resam-
pling step in the initialization consists in replacing the weighted particles (ξi,N , ωi,N)Ni=1 by

the unweighted particles (ξ̃
i,N

, 1/N)Ni=1 such that some unbiasedness condition is fulfilled.
Whereas many resampling strategies have been developed in the literature (Liu and Chen
(1998), Kitagawa (1998), Carpenter et al. (1999); see also Douc et al. (2005) for a brief
review of their different properties), we only focus here on the most simple one, the multi-
nomial resampling:

(i) (ξ̃
j,N

)Nj=1 are independent conditionally on (ξi,N , ωi,N)Ni=1,

(ii) for all i, j ∈ {1, . . . , N}, P
[

ξ̃
j,N

= ξi,N
]

= ωi,N .

A straightforward calculation yields:

Var

(

N
∑

i=1

ωi,Nh(ξi,N )

)

≤ Var

(

N
∑

i=1

h(ξ̃
i,N

)/N

)

,

showing that at time 0, the particle system with equal weights is less efficient than the
one with original weights. Despite this, the resampling stage discards particles with small
weights and duplicates "informative" particles (with high weights). As in the particle fil-
tering theory, our hope is that the resampling stage increases the number of Markov chains
starting from interesting regions with respect to the target distribution.

Denote by ‖·‖TV the total variation norm: ‖µ‖TV
def
= sup|f |∞≤1 |µ(f)| where |f |∞

def
=

supx∈X
|f(x)| and assume that

(A1) For any x ∈ X
T+1, limk→∞

∥

∥Qk(x, ·)−Π
∥

∥

TV
= 0.

Under this assumption, it is straightforward that for any bounded measurable function h,
∑N

i=1 ω
i,Nh(ξi,N [k]) is asymptotically unbiased whatever the weights are, provided their

sum is equal to one. To go further, consider the effect of the weights on the second order
approximation. The following proposition shows that as the iterations of the Markov chains
goes to infinity, the quadratic error tends to a limit which is minimal when all the weights are
equal to 1/N . This advocates for a particle system with equal weights in the initialization
as provided by a resampling step before letting evolve the N Markov chains.
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Proposition 1. Assume (A1). Then, for any bounded measurable function h,

lim
k→∞

E





(

N
∑

i=1

ωi,Nh(ξi,N [k])−Πh

)2


 = VarΠ (h) E

[

N
∑

i=1

(

ωi,N
)2

]

where VarΠ (h) = Πh2 − (Πh)
2
. Moreover, the previous limit is minimized when all the

weights are equal: ωi,N = 1/N for all i ∈ {1, . . . , N}.

Proof. Proof is given the Appendix. �

As a consequence of this proposition, it is assumed in the sequel that the multinomial
resampling stage has been performed in the initialization, i.e. (8), (9) and (10) are replaced
by

ξ̃
i,N

[0] = ξ̃
i,N

, (11)

ξ̃
i,N

[k + 1] ∼ Q(ξ̃
i,N

[k], ·) , k ≥ 0 , (12)

Πh ≈
N
∑

i=1

h(ξ̃
i,N

[k])/N , (13)

Then, according to Proposition 1,

lim
k→∞

E





(

N
∑

i=1

h(ξ̃
i,N

[k])/N −Πh

)2


 = VarΠ (h) /N . (14)

Thus, when N is fixed and k goes to infinity, (14) shows that the approximation cannot be
better than having N independent draws from the distribution Π. A natural question is
now to properly tune the number of iterations k of the Markov chains to the number N of
initial points so that the unweighted particles (ξi,N [k], 1/N)Ni=1 have properties close to iid
draws according to Π without letting k go to infinity. Before treating this question, let us
examine some non-asymptotic result with respect to the approximation.

3.2. Deviation Inequality

Noting that (ξ̃
i,N

[k])Ni=1 are i.i.d conditionally to F̃N
0

def
= σ

{

ξ̃
i,N

, i ∈ {1, . . . , N}
}

and that

E

[

h(ξ̃
i,N

[k])|F̃N
0

]

= Qkh(ξ̃
i,N

), the conditional Hoeffding inequality directly yields:

Proposition 2. For any bounded measurable function h, any k ∈ N and any ǫ > 0,

P

[∣

∣

∣

∣

∣

N
∑

i=1

h(ξ̃
i,N

[k])/N −Πh

∣

∣

∣

∣

∣

> ǫ

]

≤ 2 exp

(

−
Nǫ2

2 (osc (h))
2

)

+ P

[∣

∣

∣

∣

∣

N
∑

i=1

Qkh(ξ̃
i,N

)/N −Πh

∣

∣

∣

∣

∣

> ǫ/2

]

, (15)

where osc (h) = supu,v∈X
|h(u)− h(v)|.

Nevertheless, when reading the inequality in Proposition 2, the question of knowing whether
MH-IPS improves or does not improve the approximation is far from being obvious. We
now answer this question in terms of the Central Limit Theorem.
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3.3. Central limit theorem
MH-IPS is based on a first approximation of Πh by a family of normalized weighted par-
ticles (ξi,N , ωi,N )Ni=1. For various versions of SMC methods, the asymptotic normality
of (ξi,N , ωi,N )Ni=1 have already been obtained under different techniques (see for exam-
ple Del Moral and Guionnet (1999), Künsch (2000), Chopin (2004) or Douc and Moulines
(2008)). The following proposition now focus on the effect of the multinomial resampling on
the central limit theorem: whatever SMC method is chosen, if (ξi,N , ωi,N )Ni=1 are asymp-

totically normal, then (ξ̃
i,N

, 1/N)Ni=1 are also asymptotically normal with VarΠ (h) as an
additional term in the variance.

Proposition 3. Assume that (ξi,N , ωi,N)Ni=1 are asymptotically normal, in the sense
that for any bounded measurable function h, there exists 0 < σ2(h) < ∞ such that

N1/2

[

N
∑

i=1

ωi,Nh(ξi,N )−Πh

]

D
−→ N (0, σ2(h)) .

Then, for any bounded measurable function h,

N1/2

[

N
∑

i=1

h(ξ̃
i,N

)/N −Πh

]

D
−→ N (0,VarΠ (h) + σ2(h)) .

The proof follows closely the lines of (Chopin, 2004, Theorem 1) or (Douc and Moulines,
2008, Theorem 4) and is omitted for the sake of brevity.

Proposition 3 shows the asymptotic normality of (ξ̃
i,N

[k], 1/N)Ni=1 for k = 0. The
Markov chains are then run independently according to the transition kernel Q and we now
consider the impact on the approximation given in (13) for k = kN . To be specific, the
following theorem shows that under the assumption that the kernel Q is V -geometrically

ergodic, for kN ∝ lnN , the unweighted particles (ξ̃
i,N

[kN ], 1/N)Ni=1 are asymptotically
normal with a reduced asymptotic variance. Define the following set of assumptions:

(A2) There exists a measurable function V : XT+1 → [1,∞) such that

(i) ΠV < ∞ and for any x ∈ X and any k ∈ N, QkV (x) < ∞ ,

(ii) there exists β ∈ (0, 1) such that for any h ∈ CV
def
= {h; |h/V |∞ < ∞} and any

x ∈ X,

|Qkh(x) −Πh| ≤ βkV (x) ,

(iii) the sequence {N−1
∑N

i=1 V
2(ξ̃

i,N
)}N≥1 of random variables is bounded in prob-

ability.

(A2)-(i) ensures that the quantities appearing in (A2)-(ii) are well defined. (A2)-(ii) shows
that Q is V -geometrically ergodic. (A2)-(iii) is a weak assumption concerning the initial

unweighted particles (ξ̃
i,N

, 1/N)Ni=1. If for example, (ξ̃
i,N

, 1/N)Ni=1 is consistent with respect

to the function V 2 in the sense that
∑N

i=1 V
2(ξ̃

i,N
)/N converges in probability to ΠV 2,

then (A2)-(iii) holds. Condition under which such convergence results hold for possibly
unbounded functions may be found for example in Douc and Moulines (2008).
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Theorem 1. Assume (A2). Let (kN )N≥0 be a sequence of integers such that

lim
N→∞

kN + lnN/(2 lnβ) = ∞ . (16)

Then, for any h such that h2 ∈ CV , the following central limit theorem holds:

N−1/2
N
∑

i=1

[

h(ξ̃
i,N

[kN ])−Πh
]

D
−→ N (0,VarΠ (h)) .

Proof. Proof is given in the Appendix. �

Theorem 1 and Proposition 3 show that kN iterations of the Markov chains reduce the
asymptotic variance when compared to a sample obtained by multinomial resampling of a
population issued from any SMC method. The asymptotic variance VarΠ (h) in Theorem 1
is close to optimal since it is the same as for i.i.d. draws with distribution Π. Moreover, the
expression of σ2(h) in Proposition 3 is usually quite involved and for obtaining confidence
intervals, the estimation of the asymptotic variance in Proposition 3 is classically obtained
by adding some Monte Carlo passes. This is not at all the case in Theorem 1 since esti-

mation of VarΠ (h) can be performed directly via (ξ̃
i,N

[kN ], 1/N)Ni=1. Finally, by adding
typically kN = − lnN/ lnβ iterations of a transition kernel to a SMC-based population of
particles, we obtain a sample with a reduced and close-to-optimal variance which can be
easily approximated without additional simulations.

The fact that the CLT holds for kN ∝ lnN suggests that a good approximation of the
target distribution may be achieved with only a few number of iterations of the parallel
Markov chains. This will be confirmed empirically in the next section.

4. Experiments

The Filter-smoother is known to be quite easy to implement and efficient in terms of CPU
time, but suffers dramatically from the degeneracy of the ancestors. We now see how
only a few iterations of MH-IPS reduce the degeneracy and turn the Filter-smoother to
a strong competitor to the existing smoother algorithms. In the sequel, denote by the
Metropolis-Hastings Improved Filter-Smoother (MH-IFS), Algorithm 1 initialized with the
Filter-Smoother. The performance of this algorithm is now compared to the other linear-
in-N particle smoothers (Filter-Smoother, FFBSi, Two-Filter). In order to be as compu-
tationally fair as possible, all these algorithms are implemented in the same way as their
common base, the Forward-Filter.

4.1. Linear Gaussian Model
We first consider the LGM defined by:

Xt+1 = φXt + σuUt , Yt = Xt + σvVt ,

where X0 ∼ N
(

0,
σ2

u

1−φ2

)

, {Ut}t≥1 and {Vt}t≥1 are independent sequences of i.i.d. standard

gaussian random variables (independent of X1). T + 1 = 101 observations were generated
using the model with φ = 0.9, σu = 0.6 and σv = 1. Furthermore, in this model, the
fully-adapted filters are explicitly computable when needed and the Gibbs sampler may be
implemented.
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The diversity of the particle population at each time step for each algorithm is measured
by an estimate of the effective sample size Nalgo

eff (t) as defined in Fearnhead et al. (2010).

Motivated by the fact that E

[

(

X̄N − µ
)2

/σ2
]

= 1/N, when X(1), . . . , X(N) are i.i.d. with

E[X(1)] = µ, Var(X(1)) = σ2 and X̄N is their sample mean, we set

Nalgo
eff (t)

def
= E





(

πalgo,N
t|T (Id)− µt

σt

)2




−1

, (17)

where Id is the identity function on R, µt and σ2
t are the exact mean and variance of Xt

conditionally to Y0:T obtained from the Kalman smoother. In some sense, the weighted
sample produced by a given algorithm is as accurate at estimating Xt as an "independent"
sample of size Nalgo

eff (t). The expression of Nalgo
eff (t) given in (17) shows that it is inversely

proportional to the quadratic error associated to a normalized estimator of E(Xt|Y0:T ).
To estimate the expectation in (17) we use the mean value from 250 repetitions of each
algorithm with a number of particles chosen such that the computation time of each of
them is the same.

Figure 1.a shows that when the number of improvements increases, the degeneracy of
the particle population for small values of t decreases and for K = 8 all the time steps have
the same diversity.

Figure 1.b displays the effective sample size of the four linear smoothing algorithms.
As expected, the Filter-Smoother is highly degenerated for small values of t as opposed
to the other algorithms. Furthermore, the MH-IFS clearly outperforms all others within a
fixed computational time. In order to check that this efficiency is not due to the fact that
the LGM allows to easily implement the Gibbs sampler, we now turn to a model where a
rejection sampling is required.

4.2. Stochastic Volatility Model
StoVolM have been introduced in financial time series modeling to capture more realistic
features than ARCH/GARCH models (Hull and White (1987)). Despite its apparent sim-
plicity, the following equations do not allow to directly simulate according to rt(u,w; ·) ∝
m(u, ·)g(·, yt)m(·, w):

Xt+1 = αXt + σUt+1 , Yt = βe
Xt
2 Vt ,

where X0 ∼ N
(

0, σ2

1−α2

)

, Ut and Vt are independent standard gaussian random variables.

T + 1 = 101 observations were generated using the model with α = 0.3, σ = 0.5 and
β = 1 in order to estimate the effective sample size defined in (17). The true values of µt

and σt cannot be computed explicitly so they are estimated by running the MH-IFS with
N = 650000.

4.2.1. Gibbs sampler

In the StoVolM, the Gibbs sampler requires to sample exactly from

rt(u,w;x) ∝ exp

{

−
e−x

2β2
y2t −

1 + α2

2σ2

[

x−

(

α

1 + α2
(u+ w)−

σ2/2

1 + α2

)]2
}

, (18)
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(b) Comparison of four linear smoothing algorithms

Figure 1: Average effective sample size for each of the 100 time steps of the LGM using
different smoothing algorithms for a fixed CPU time.

for 1 ≤ t ≤ T − 1 (the cases t = 0 and t = T are dealt with in a similar way) which does not
correspond to a classical distribution. However, we propose here to implement a rejection
sampling. The first idea is to sample the proposal candidate X = x according to the a priori
distribution of Xt conditionally to Xt−1 = u and Xt+1 = w. The corresponding ratio of
acceptance is then given by (|yt|/β) exp

{

−(x− 1)/2− e−xy2t /(2β
2)
}

and will obviously lead
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to poor results for small values of yt. To counterbalance the effect of yt in the acceptance
rate, the proposal distribution should also take the value of yt into account; we then rewrite
(18) for any γt ≥ 0 (possibly depending on yt):

rt(u,w;x) ∝ e
− γt

2
x− e

−x

2β2
y2

t × exp

{

−
1 + α2

2σ2

[

x−

(

α

1 + α2
(u+ w)−

σ2/2

1 + α2
(1− γt)

)]2
}

,

(19)

which suggests to propose x according to N
(

α
1+α2 (u+ w) − σ2/2

1+α2 (1− γt),
σ2

1+α2

)

and to

accept it with a probability given by:

(

|yt|

γ
1/2
t β

)γt

exp

{

−
γt
2
(x− 1)−

e−x

2β2
y2t

}

. (20)

An optimal choice for γt would consist in maximizing the smoothed expectation of (20) but
this quantity is intractable. An intuitive choice for γt is then:

γt =

{

(|yt|/β)
2 , if |yt| ≤ β ,

|yt|/β , if |yt| > β .
(21)

Indeed, for small values of yt, (20) is then close to one and for bigger values, the exponential
becomes very small but the first term remains non-neglectable.
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Figure 2: Average effective sample size for each of the 100 time steps of the StoVolM using
different smoothing algorithms for a fixed CPU time.

The Improved Filter-Smoother used to generate Figure 2 performs simulations using the
Gibbs sampler with the previous rejection sampling. We can see that this algorithm still
leads to better results than the other ones within an equivalent computational time.

In many instances (for example Expectation-Maximization algorithm, score computa-
tion), it is necessary to estimate smoothed additive functionals such as Π0:T |T (H) where
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for all x0:T ∈ X
T+1, H(x0:T ) =

∑T
t=0 xt. In order to assess the smoothing algorithms on

this matter, T + 1 = 1001 observations were generated. As seen before, the computational
cost of the MH-IFS is linear in N which is verified by numerical experiments in Figure 3.
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Figure 3: Average CPU time for computing a smoothed additive functional with the MH-IFS
as a function of the number of particles.

Figure 4.a shows that the variance vanishes quickly with the number of improvement
passes and only 4 iterations of the Markov chains are sufficient to get an efficient estimator.
Then, the variances displayed in Figure 4.b allow again to draw the conclusion that for a
fixed CPU time, the MH-IFS is more efficient than the Two-Filter. Finally, one improvement
pass has been applied to the particle paths given by the FFBSi. The variance reduction is
again significant as shown in Figure 4.c.

4.2.2. Metropolis-within-Gibbs and confidence interval

In order to assess Algorithm 1 in the case where the Gibbs sampler could not be imple-
mented, we now turn to the Metropolis-within-Gibbs sampler which is implemented by
using again the proposal distribution:

rt(u,w; ·) ∼ N

(

α

1 + α2
(u+ w) −

σ2/2

1 + α2
(1 − γt),

σ2

1 + α2

)

,

where γt is defined in (21), and the associated acceptance rate is now given by:

αt(u, v, w;x) = exp

{

−
γt
2
(x− v)−

e−x − e−v

2β2
y2t

}

∧ 1 .

Figure 5 compares the empirical variance of the Gibbs and Metropolis-within-Gibbs
samplers of the smoothed additive functional conditionally to the T +1 = 1001 observations
used previously. The efficiency of both algorithms is equivalent, showing that Algorithm 1
remains a great performer even when exact a posteriori simulation is not possible.

Finally, Theorem 1 is assessed in Figure 6. The empirical variance of the estimator
given by Algorithm 1 run with KN ∝ lnN has been computed over 250 runs using the
Gibbs and the Metropolis-within-Gibbs samplers for different number of particles N and
compared to the asymptotic variance VarΠ (h) /N estimated through only one population
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(a) Variance of the Improved Filter-Smoother
according to the number of improvement passes K
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(b) Variance of the Two-Filter Smoother and the Improved
Filter-Smoother according to the CPU time
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(c) Variance of the FFBSi and its improved version
according to the CPU time

Figure 4: Variance of different smoothed additive functional particle estimators in the
StoVolM.

of particles. The results show that it is possible in practice to get a confidence interval for
the approximation with only one run of Algorithm 1 of complexity O(N lnN).
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Figure 5: Variance of the Gibbs and Metropolis-within-Gibbs samplers according to the
CPU time.
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Figure 6: Algorithm 1 variance according to the number of observations.

5. Conclusion

At first sight, one could fear that the MH-IPS is too slow since the updates concern only
one component at a time. The various comparisons performed for a fixed CPU time in the
previous section show that this is not the case at all. Roughly speaking, a backward pass
in the MH-IPS proposes to sequentially modify each component of the N parallel Markov
chains. This can be seen as one run of N particles through T + 1 observations which is
computationally equivalent to one pass of the bootstrap filter. By empirical evidences, we
have seen that only a few backward passes (K = 4 or 8 in the examples) of the MH-IFS
sweep out the degeneracy of the ancestors by extending backward in time the diversity of
the particles.

This method is linear in N and outperforms other existing algorithms as the FFBSi or
the Two-Filter within a fixed CPU time. These performance results may be explained by
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the fact that in the FFBSi algorithm, the points are sampled in the forward pass once and
for all; the backward pass in the FFBSi only modifies the weights of the particles without
moving them. On the contrary, the MH-IPS allows in the backward pass to move the
particles and thus to explore interesting regions of the posterior distribution. In the Two-
Filter sampler, two populations (the "forward" population and the "backward" population)
evolve independently. At time t, a particle is sampled after choosing a couple of particles
at time t − 1 and t + 1. The two components of these couples belong to independent
populations and it is likely that even if their weights are respectively high, associating
these independent particles could be detrimental to the approximation. On the contrary,
in the MH-IPS, even if the Markov chains are independent, the proposed modification of
the component is sampled with respect to its two neighbors which both belong to the same
Markov chain. Note that we did not compare this algorithm to the Population Monte
Carlo by Markov chains (PMCMC) samplers introduced by Andrieu et al. (2010) since the
framework here is not the Bayesian inference of parameterized Markov chains.

Another major advantage here is the fact that a CLT can be obtained with a very
simple asymptotic variance which can be estimated with only one run of the Algorithm
and a complexity in O(N lnN). This is totally new in comparison to all the smoothing
algorithms proposed in the literature so far, where the asymptotic variances are usually
particularly involved. Thus, for a fixed CPU time and only one run, this algorithm is able
to produce both approximations of the smoothing distributions and confidence intervals.

Finally, we only focus here on the MH-IFS since it is efficient enough for our purpose. Of
course, many other variants with different SMC-based approximations in the initialization
step may be performed. In the context of the paper, the MH-IPS only uses the SMC-based
approximation once before starting independent MCMC Markov chains. The empirical
performances of this algorithm, namely with respect to the diversity of the population and
the precision of the approximation, seem to us convincing enough to let the Markov chains
evolve independently without trying to interact them again. Of course, as previously noted
in Gilks and Berzuini (2001), in some different contexts, where for example, the observa-
tions are available sequentially whereas approximations of the smoothing distributions are
needed at each time, some variants with SMC steps mixed with MCMC steps can also be
elaborated. Nevertheless, in the framework of this paper, the number T of the observations
is fixed and we only focus here on how the independent MCMC steps drastically improve
the first approximation obtained by SMC algorithms. In this context, there is no need to
interact again the Markov chains; this allows to keep the diversity of the population while
approximations and confidence intervals are obtained without effort.

Appendix

A. Proof of Proposition 1

For all k ≥ 0, the bias plus variance decomposition writes

E





(

N
∑

i=1

ωi,Nh(ξi,N [k])−Πh

)2




=

{

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

]

−Πh

}2

+ Var

(

N
∑

i=1

ωi,Nh(ξi,N [k])

)
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=

{

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

]

−Πh

}2

+ Var

(

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

])

+ E

[

Var

(

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

)]

, (22)

where FN
0 = σ

{

ξi,N , ωi,N , i ∈ {1, . . . , N}
}

. Now, by definition of ξi,N [k], i ∈ {1, . . . , N},

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

]

=
N
∑

i=1

ωi,NQkh(ξi,N ) ,

and the first term of the RHS of (22) is bounded by

∣

∣

∣

∣

∣

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

]

−Πh

∣

∣

∣

∣

∣

≤ E

[

N
∑

i=1

ωi,N
∣

∣

∣
Qkh(ξi,N )−Πh

∣

∣

∣

]

.

The RHS goes to 0 as k tends to infinity by the Lebesgue convergence theorem since h is
bounded. The same argument holds to handle the second term of the RHS of (22):

lim
k→∞

Var

(

E

[

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

])

= lim
k→∞

Var

(

N
∑

i=1

ωi,NQkh(ξi,N )

)

= Var

(

N
∑

i=1

ωi,NΠh

)

= Var (Πh) = 0 .

Finally, conditionally to FN
0 , the random variables (ξi,N [k])Ni=1 are independent and

Var

(

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

)

=

N
∑

i=1

(ωi,N )2Var
(

h(ξi,N [k])
∣

∣

∣
FN

0

)

=

N
∑

i=1

(ωi,N )2
[

Qkh2(ξi,N )−
(

Qkh(ξi,N )
)2
]

,

leading to

lim
k→∞

E

[

Var

(

N
∑

i=1

ωi,Nh(ξi,N [k])

∣

∣

∣

∣

∣

FN
0

)]

=
[

Πh2 − (Πh)2
]

E

[

N
∑

i=1

(ωi,N )2

]

.

This shows the first part of the proposition. Now, by the Cauchy-Schwartz inequality:

1 =

N
∑

i=1

ωi,N ≤

(

N
∑

i=1

(ωi,N )2

)1/2

N1/2 ,

i.e.
∑N

i=1(ω
i,N )2 ≥ 1/N with equality only for ωi,N = 1/N for all i. The proof is completed.
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B. Proof of Theorem 1

Let γN = kN +lnN/(2 lnβ). Under the assumptions of Theorem 1, limN→∞ γN = ∞. Now,
write

N−1/2
N
∑

i=1

[

h(ξ̃
i,N

[kN ])−Πh
]

= N−1/2
N
∑

i=1

[

QkNh(ξ̃
i,N

)−Πh
]

+N−1/2
N
∑

i=1

[

h(ξ̃
i,N

[kN ])−QkNh(ξ̃
i,N

)
]

. (23)

Since V ≥ 1, (A2)-(iii) implies that {N−1
∑N

i=1 V (ξ̃
i,N

)}N≥1 is bounded in probability.
Combining this with
∣

∣

∣

∣

∣

N−1/2
N
∑

i=1

[

QkNh(ξ̃
i,N

)−Πh
]

∣

∣

∣

∣

∣

≤ N−1/2βkN

N
∑

i=1

V (ξ̃
i,N

) = βγN ×N−1
N
∑

i=1

V (ξ̃
i,N

) ,

shows that the first term of the RHS of (23) converges in probability to 0. Now, the second
term of the RHS of (23) writes

N−1/2
N
∑

i=1

[

h(ξ̃
i,N

[kN ])−QkNh(ξ̃
i,N

)
]

=

N
∑

i=1

{UN,i − E [UN,i|FN,i−1]} ,

where

UN,i = N−1/2h
(

ξ̃
i,N

[kN ]
)

,

FN,i = σ
{

ξ̃
ℓ,N

, ξ̃
j,N

[kN ], (ℓ, j) ∈ {1, . . . , i}2
}

.

To apply (Douc and Moulines, 2008, Theorem A3) with MN = N and σ2 = VarΠ (h), we
need to check that

N
∑

i=1

Var (UN,i|FN,i−1)
P

−→ σ2 , (24)

N
∑

i=1

E
[

U2
N,i1{|UN,i|≥ε}

∣

∣FN,i−1

]

P
−→ 0 , for any ǫ > 0 . (25)

We start with (24). Write

∣

∣

∣

∣

∣

N
∑

i=1

Var (UN,i|FN,i−1)− σ2

∣

∣

∣

∣

∣

≤ N−1
N
∑

j=1

∣

∣

∣
QkNh2(ξ̃

j,N
)−Πh2

∣

∣

∣
+N−1

N
∑

j=1

∣

∣

∣

∣

[

QkNh(ξ̃
j,N

)
]2

− (Πh)2
∣

∣

∣

∣

. (26)

As h2 ∈ CV , the first term of the RHS is upper-bounded by

βkN ×N−1
N
∑

i=1

V (ξ̃
i,N

) ,
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which converges in probability to 0. Now, note that the functions h2 and V are in CV and
|h| ≤ max(h2, 1) ≤ max(h2, V ) so that h ∈ CV . By applying |a2− b2| ≤ |a− b|2+2|b||a− b|,
the second term of (26) is then upper-bounded by

β2kN ×N−1
N
∑

i=1

[

V (ξ̃
i,N

)
]2

+ 2|Πh|βkN ×N−1
N
∑

i=1

V (ξ̃
i,N

) ,

which again converges in probability to 0. This proves (24). Now, let ε > 0,

N
∑

i=1

E
[

U2
N,i1{|UN,i|≥ε}

∣

∣FN,i−1

]

≤ Π
[

h2
1{h2≥ε2N}

]

+N−1
N
∑

i=1

∣

∣

∣
QkN

[

h2(ξ̃
i,N

)1
{h2(ξ̃

i,N
)≥ε2N}

]

−Π
[

h2
1{h2≥ε2N}

]

∣

∣

∣

≤ Π
[

h2
1{h2≥ε2N}

]

+ βkN ×N−1
N
∑

i=1

V (ξ̃
i,N

) , (27)

where h2
1{h2≥ε2N} ∈ CV . Since h2 ∈ CV ,(A2)-(i) implies that Πh2 < ∞. Then, the RHS

of (27) converges in probability to 0, showing (25). The proof is completed.
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